Incremental Construction of LSTM Recurrent
Neural Network

Evandsa Sabrine Lopes-Lima Ribeiro
Universitat Politecnica de Catalunya
Departament de Llenguatges e Sistemes Informatics
Programa d’Intelligencia Artificial
Jordi Girona Salgado, 1-3, C6-201,

08034, Barcelona, Espana.
e-mail: eslopes@lsi.upc.es

December 2, 2002

Advisor:
Dr. René Alquézar Mancho.

Technical Report UPC-LSI Juny, 2002

Preface

In this work, the outcomes of my research carried out in the field of
Recurrent Neural Networks (RNNs) are presented. In particular, it has been
focused on the Long Short-Term Memory (LSTM) RNN architecture and its
application to signal forecasting tasks.

The investigation accomplished is summarized in two different works.
The former is an article that has been accepted in the Third International
NAISO Symposium on Engineering of Intelligent Systems (EIS’2002) to be
held in Malaga next September, whereas the latter is a Technical Report to
be published shortly at the LSI Department of UPC.

In the first work, LSTM is applied to the prediction of maximum ozone
concentrations from meteorological data (temperature, wind, cloud covering)
and previous ozone concentrations. The obtained results are compared to
those achieved by other techniques (including other types of neural networks)
on the same data. This paper has been attached in Appendix ?7.

In the second work, the incremental construction of the LSTM network is
investigated and some different options are identified for growing the network.
These have been applied to another signal forecasting task concerning the
identification of models for the Central Nervous System Control. The results
obtained by the growing LSTM have been shown to be better than those
provided by the original LSTM (without the incremental construction) on the
same problem. This work is indeed a preliminary step towards the definition
of my Ph.D.thesis project, that will deepen in the incremental construction of
RNNs for forecasting tasks, maybe combining LSTM units (memory blocks)
with other RNN architectures or even with Time-Delay Neural Networks.

Abstract

Long Short-Term Memory (LSTM) is a recurrent neural network that
uses structures called memory blocks to allow the net remember significant
events distant in the past input sequence in order to solve long time lag tasks,
where other RNN approaches fail.

Throughout this work we have performed experiments using LSTM net-
works extended with growing abilities, which we call GLSTM. Four meth-
ods of training growing LSTM has been compared. These methods include
cascade and fully connected hidden layers as well as two different levels of
freezing previous weights in the cascade case. GLSTM has been applied to
a forecasting problem in a biomedical domain, where the input/output be-
havior of five controllers of the Central Nervous System control has to be
modelled. We have compared growing LSTM results against other neural
networks approaches, and our work applying conventional LSTM to the task
at hand.

1l

Contents

1

2

Introduction

Dynamic Input/Output Neural Networks

2.1 Time-Delay Neural Networks

2.2 Recurrent Neural Networks
2.2.1 Partially Recurrent Neural Networks
2.2.2 Fully Recurrent Neural Networks
2.2.3 Locally Recurrent Neural Networks

2.3 Summary

Neural Networks Growing Methods

3.1 Feedforward Neural Networks
3.1.1 Dynamic Node Creation
3.1.2 Projection Pursuit
3.1.3 Cascade Correlation
3.1.4 Orthogonal Methods
3.1.5 SAOCIF

3.2 Recurrent Neural Networks.
3.2.1 Recurrent Cascade Correlation.
3.2.2 Parallel-modular RCC
323 GNARL

LSTM Recurrent Neural Network
4.1 LSTM Structure
4.2 Learning

Growing LSTM
5.1 Cascaded Growing LSTM
5.2 Fully Connected Growing LSTM

Case of Study

Experimental Methodology
7.1 Prediction Strategy
7.2 TheData

7.3 Experimental Setup
Results

Conclusions

16
16
19

20
20
21

21

22
23
24
25

26

32

List of Figures

1

11
12
13
14
15

TDNN representation: All output activations in a given layer
are buffered several time steps and then propagated to the

next layer. 3
Elman (a) and Jordan (b) recurrent neural networks. 4
Back-Propagation through time. Each connection in the net-

work is assumed to have a delay of one time step. 6
Focused MLP with self feed back at all hidden units. 7
Candidate or hidden unit with a self-recurrent link. 14

Example of LSTM net consisting of 4 inputs units, 1 output
unit and 2 memory blocks of size 2. Only a limited subset of

connections are shown. 16
The standard LSTM cell with a recurrent self-connected con-
nection (CEC) and its respective gates. 17

Cascade growing. Whereas in (a) all preexisting weights are
frozen, in (b) only weights arriving at already existing blocks

are frozen, letting the hidden-output weights free. 21
Fully GLSTM. 22
Simplified diagram of the cardiovascular system model, com-

posed of the hemodynamical system and the CNS control. . . 23
Setup for the output signals. 24
Carotid sinus pressure and Heart rate control signal. 24
GLSTM vs. LSTM prediction. 29

Prediction of the HRC training signals using LSTM and GLSTM. 30
Prediction of the HRC test set 1 for stepwise prediction and
iterated prediction (7" = 300) using LSTM and GLSTM. . .. 31

List of Tables

1

Average of three trials NMSE errors (in percent) for training
and test sets of each controller using different growing archi-

tectures. L 26
Average NMSE errors (in percent) for step-wise prediction on
training and test sets. oo 27
Average NMSE errors of the CNS controller models inferred
by TDNN-BP, ASLRNN, LSTM and GLSTM. 28

vi

1 Introduction

In this work, the application of four growing methods are studied to
improve the learning of a recurrent neural network (RNN) called Long Short—
Term Memory (LSTM) in signal prediction tasks.

Recurrent neural networks are an interesting class of models which pre-
serves information through time. Their recurrent links bring past information
back to the network itself so that the state at time ¢ depends on both the
current input and its previous state at time t — 1. This kind of network
is a better candidate for dynamical problems in comparison with the static
feedforward networks (FNNs).

LSTM [Hoc95, GS00a] is a recurrent network that uses structures called
memory blocks to allow the net remember significant events distant in the
past input sequence in order to solve long time lag tasks, where other RNN
approaches fail. LSTM have been quite successfully applied to standard
benchmarks related to classification problems [GS00a, GS00b, HS97b, HS96,
Hoc95], and more recently to signal forecasting problems [RA01, GS00a].

A key issue in neural network (NN) design is determining the number
of hidden units required to perform input/output mapping with satisfactory
performance. In recent years, attempts have been made to build neural
networks incrementally in an automatic way. The techniques used to solve
this problem are called constructive or growing methods.

Growing methods are designed to automate the process of determining
the network topology, by modifying both the weights and connectivity of the
network during learning. Thus, these methods eliminate the need to guess
the network size what makes the use of NNs more user—friendly.

Throughout this work we have performed experiments using LSTM net-
works extended with growing abilities, which we call GLSTM. Four methods
of training growing LSTM has been compared. GLSTM has been applied
to a forecasting problem in a biomedical domain, where the input/output
behavior of five controllers of the Central Nervous System (CNS) control
has to be modelled. We have compared growing LSTM results against those
reported in [JC97, BVA9S| using other NN approaches and our previously
work applying conventional LSTM [RAO01] to the task at hand.

In the following section we discuss about the most important dynamic
input/output approaches in the field of neural networks. Subsequently, in
section 3 we give an introduction to growing methods for NNs. In section 4
we describe the LSTM architecture. In section 5 we introduce the growing
LSTM approaches. In section 6 we show the case of study. In section 7
the experimental methodology used is described. In section 8 the obtained
results are presented. Finally, some conclusions are given in section 9.

2 Dynamic Input/Output Neural Networks

Dynamic input /output NNs provides de possibility to process time-varying
information, i.e., the network can learn dynamic input-output mapping in-
stead of static mapping as in feedforward NNs.

The following subsections summarize the key ideas of the most popular
NN architectures dedicated to process time-varying data.

2.1 Time-Delay Neural Networks

The non recurrent architectures commonly used in prediction and tempo-
ral association tasks are named Time-Delay Neural Networks (TDNNs) and
were first applied by [WHH*89, KL90].

The memory in a TDNN is implemented as a so called tapped delay
line. A tapped delay line is a sequence of elements that represent several
consecutive values of the same unit, each with a different delay in time steps.
They are also called delay elements and are often denoted by z~!, which is
the transfer function of such an element in the z-space.

Hence, an TDNN can be thought as a Multi-layer perceptron (MLP) in
which each input unit is replaced by a tapped delay line that stores past
values. In other words, the output of a layer is buffered several time steps
and then forward propagated to the next layer (see Figure 1).

The main disadvantage of this architecture is the limited past history
horizon thereby preventing modelling of arbitrary long time dependencies
between inputs and desired outputs. It is also difficult to set the number of
delay elements which must be chosen in advance and may not represent the
existing time correlation in the sequence.

Therefore, TDNNs could result inappropriate if arbitrarily large sequences
having important events distant in the past sequence are used; on the other
hand, if the window length required is known but large, then the big number
of inputs units (and their respective weights) can demand a great number of
training examples to reach an optimal generalization performance.

TDNNSs, as any feedforward net, can be trained by a variety of methods
of which standard backpropagation is the most usually used. A more sophis-
ticated and powerful training algorithm (that is referred to as TDNN-AC) is
given by coupling a conjugate gradient optimization method with an anneal-
ing scheme that allows the exploration of several local minima during the
training phase. Another, completely different TDNN model, is the Time-
delay Heterogenous Neural Network (TD-HNN) [BVA98] which is trained by
a genetic algorithm.

Output

M second layer
hidden neurons

N first layer
hidden neurons

Input sequence

Figure 1: TDNN representation: All output activations in a given layer are
buffered several time steps and then propagated to the next layer.

2.2 Recurrent Neural Networks

In the last fifteen years, Recurrent Neural Networks (RNNs) have been
widely studied. The motivation to explore this kind of architecture is its
capacity to learn from examples how to process spatio-temporal data (i.e.,
signals and sequences that has a spatial or temporal dimension) in three basic
ways [HKP91]:

e Sequence Recognition and Classification: the net produces a particular
output pattern once the whole input sequence is seen.

e Sequence Reproduction and Prediction: the net can generate the rest
of a sequence when it sees part of it.

e Temporal Association: the net will produce an output sequence in re-
sponse to a specific input sequence.

It is necessary to distinguish the recurrent neural nets that can solve these
tasks, which do not have any weight restriction, from those such as Hopfield
nets and other recurrent architectures with symmetric weights, whose dy-
namic converges to a fixed point and hardly deal with these three tasks
mentioned [HKP91].

Recurrent Neural Networks can be classified into three main classes: par-
tially, fully and locally RNNs, which are discussed in the following subsec-
tions.

2.2.1 Partially Recurrent Neural Networks

Partially recurrent neural networks [HKP91] are mainly feedforward nets
that include feedback connections to a set of units called context units. A
context unit is basically an input unit that receives information from the
network units activations at the previous time step [Elm90] and them feed it
in the next time step. The context units do not perform any signal compu-
tation, only act as memories.

In these models, the recurrent connections to context layer use fixed
weights (set to 1.0), which are not adapted during learning. So, the re-
currence lets the network remember signals from the past, but does not
appreciably complicate the training [HKP91]. Hence, this kind of RNNs is
still being trained by conventional back-propagation methods (as multi-layer
perceptron) and, thus, does not include recurrence terms in the learning rule.

Examples of these models are Jordan [Jor86] and Elman [EIm90] recurrent
neural networks (the latter also called Simple Recurrent Network or SRN).
These models are able to learn simple tasks that only need very short-term
memory, since their training algorithm does not accomplish a real gradient
descent calculation with respect to the weights, but rather makes only an
approximation, which is based on not considering the terms originated by
the influence of the weights in previous time steps (truncated gradient).

Output Units

Hidden Units

Input Units

(a) (b)

Figure 2: Elman (a) and Jordan (b) recurrent neural networks.

Figure 2 illustrates Elman and Jordan architectures. As it can be seen, in
the former NN the recurrence is restricted from the hidden layer to context
layer, whereas in the latter the context layer has a self-recurrent connection
in addition to the feedback connection, in this case, from output layer.

Another partially RNNs that have shown great results are the NARX
networks [LHG96, HG95|. These networks, as the Jordan model have limited
feedback connections which come only from the output units, but they also
include time delays for inputs and outputs.

2.2.2 Fully Recurrent Neural Networks

To improve the behavior of partially recurrent nets, fully recurrent neural
networks, also called Single Layer Recurrent Neural Networks (SLRNNs),
together with gradient-descent based algorithms that correctly calculate the
real gradient of the error were proposed.

Fully RNNs make use of global recurrences and in that way do not impose
any conditions on the way the units of a net are connected. Thus, more
general networks are allowed, where every unit might be connected to all
other units, including or not itself. The network has an input layer consisting
of some external inputs (the network inputs) and feedback activations of all
the units, together with a single processing-layer of computation units (some
of them are output units with target values at some time steps). These
networks offer the highest computation power. It can be shown, that such a
network can model any non-linear dynamical system with arbitrary accuracy
[FN93, LNG95].

The two main gradient-based learning approaches for SLRNNs are Real-
Time Recurrent Learning (RTRL) [WZ89] and Back-Propagation Through
Time (BPTT) [WP90]. BPTT algorithm is an extension of the standard
back-propagation algorithm. It may be derived by unfolding the temporal
operation of the network at the time steps 1,2,...,T into a layered feedfor-
ward network with 7" stages of computation, the topology grows by one layer
at each time step. Figure 3 illustrates the diagram of the unfolded network.

While BPTT uses the backward propagation of error information to com-
pute the error gradient, an alternative approach is to propagate gradient in-
formation forward. This leads to the RTRL learning algorithm which derives
its name from the fact that adjustments are made to the synaptic weights
of a fully connected recurrent network on-line, that is, while the networks
continues to perform its signal processing function.

The above methods were the firstly studied for general fully RNNs and
more recently other algorithms have been presented. We can emphasize
among them the Time-Block RTRL algorithm [Sch92a], which calculates the
gradient by updating the weight influence forward at each p time steps and
back propagating the error at each block of p steps.

If n is the number of units in a SLRNN, the time complexity per time step
of these methods (BPTT, RTRL and Time-Block RTRL) is O(n?), O(n*) and

x(0) x(1) x(2) x(3) x(T)

1) 1) n2) 1(3) (T

Figure 3: Back-Propagation through time. Each connection in the network
is assumed to have a delay of one time step.

O(n?), respectively, where the first (BPTT) needs a space proportional to
the length of the longest sequence in the training set.

The SLRNNs are classified according to their units’ connectivity (i.e.,
according to how the weights are combined with external inputs and feedback
activations), which can be of first— [WP90] or second—order [GMC*92]. The
second order SLRNN has a greater power of representation due to the fact
that they can represent any finite state machine whereas the first cannot
[GGCY94, AS95]. However, it is possible to increase a first order SLRNN
by adding a feedforward output layer (or even several layers, where the last
one is an output layer) so that the resulting architecture, denominated first-
order Augmented Single Layer RNN (ASLRNN), has the same capacity of
representation and learning as a second order SLRNN [AS95, Alq97]. The
ASLRNNs can be trained by using back-propagation for the feedforward
layer combined with any of the three algorithms mentioned previously for
the recurrent layer [Alq97].

Other discrete-time RNNs have been proposed in the literature, such as
the Recurrent Cascade Correlation network [Fah91], the DOLCE architecture
[DM93] and the Manolios-Fanelli network [MF94]. An interesting review of
different RNN architecture can be found in [Cn98§].

2.2.3 Locally Recurrent Neural Networks

A network is called locally recurrent, when no feedback connections be-
tween different units exist. This condition causes the overall behavior of the

network to be feed forward and makes the leaning procedure less complex.
A typical example of a locally recurrent neural network is the focused
MLP [Moz89, FGS92] which is showed in Figure 4. It is called focused
because there are only self feedback loops. This avoids the backpropagated
error to disperse over several units, but keeps it "focused” on a single unit.

Figure 4: Focused MLP with self feed back at all hidden units.

Feedbacks are necessary when a long and complex temporal dynamics is
required. Fully recurrent networks are general but difficult to train [BT94].
An alternative approach able to process temporal signals is to use units with
local temporal memory and processing capabilities. This kind of units is
used mainly in feedforward NN architectures, since all time processing is
concentrated in the neurons rather than in the recurrent feedback links.

Lapedes and Farber [LF87] introduced a new neuron model, where the
synapses with constant weights were substituted by linear transference func-
tion. Their synapses functions are basic FIR (Finite Impulse Response) like
filters, where all poles are located in the origin. In fact, this model has no
feedback links, so it is still a pure feedforward NN, however it was the basis
for future structures.

Back and Tsoi [BT91] generalized the Lapedes and Faber structure and
introduced a new architecture called Infinite Impulse Response MLP (IIR-
MLP). IIR-MLP can be considered as a nonlinear extension of the linear
adaptive IIR filter. The FIR and IIR-MLP networks are similar to the stan-
dard MLP except each synapse is replaced by FIR and ITR2 filters respec-
tively. IIR-MLP can exhibit better capabilities, due to the prewired forget-
ting behaviour (typical of locally recurrent networks) [CUP97] especially for
digital signal processing problems, for which, in the case of stability, a for-
getting behaviour [FGS92] is usually required. Thus, Tsoi and Back [BT94]
called this architectures Locally Recurrent Globally Feedforward (LRGF)
neural networks. The LRGF net is a generalization and unification of many
kinds of NN models that were developed independently.

Vries and Principe [VP92] proposed an architecture named Gamma Model

7

which is obtained by replacing the weights of a standard MLP with Gamma
filters. This is accomplished in a way similar to FIR and IIR-MLPs. The
gamma memory contains as special cases the context unit [Jor86] and the
tap delay line as used in TDNN [WHH*89]. However, the gamma memory
is also a special case of the generalized feedforward filters where which leads
to the gamma functions as the tap signals.

The local output feedback was also studied by many authors such as
Poddar and Unnikrishnan [PU91|, Gori et al. [GBMS89], Tsoi and Back
[BT94]. For information about locally recurrent NNs taxonomy see [BT94,
NRRP*93, Moz93|.

2.3 Summary

Even though RNNs are fascinating from a theoretical point of view and
can be applied to several interesting problems (speech recognition, language
translation, time series and dynamic systems prediction, musical composi-
tion, non linear control, signal processing and compression), in practice they
have some drawbacks, where the most important one is the vanishing gradi-
ent problem.

In principle, and differently from time-delay nets, the RNNs should be
able to capture long-term dependencies (i.e., decisions that depends on events
that occurred in the distant past). However, it has been shown that this
does not happen as it was expected. The reasons were theoretically analyzed
concluding that the error signal flowing backwards in time in gradient-based
algorithms (e.g., BPTT and RTRL [Pea95]) tend to either, blow up or vanish
[HS97a, HS97b]. In the first case, that can happen, for example, if a linear
activation function is used [AJ94], the weights oscillate and its magnitude
grows exponentially leading to the net instability and error overflowing. In
the second case, that is more usual, if a sigmoid activation function is used, for
example, the gradient magnitude decreases exponentially in time, preventing
the net from learning long-term dependencies and from reaching the optimal
task performance.

To resolve the vanishing gradient problem different alternatives have been
proposed. Mozer introduced time constants that influence the changes in the
units’ activation; however these constants should be adjusted carefully to
capture the long-term dependencies [Moz92]. Schmidhuber has proposed
hierarchical recurrent nets that slice and compress an input sequence adap-
tively, but they can only connect big jumps of time if the intermediate sub-
sequence is predictable in a local way (in time), and in addition, they are
also too sensitive to noise [Sch92b]. Lin et al. [LHG96] defined the NARX
nets, that is an extension of time-delay nets where some output delays are

fed back; this net, if trained with BPTT, allows to soothe the vanishing gra-
dient problem by providing short cuts for propagating the error backwards
[LHG96, SHGI7].

More recently, Hochereiter and Schmidhuber presented a recurrent ar-
chitecture, denominated Long Short—-Term Memory (LSTM), designed to
overcome error back-flow problems, as vanishing gradient [HS97a, HS97h].
This architecture, within its gradient descent training algorithm, facilitates
a constant error flowing in time by using special activation units. According
to [Hoc95] LSTM has the same update complexity per time step as BPTT,
Le., O(n?).

We are interested in the LSTM recurrent net for several reasons; first of all
because of its recurrent nature and its particular features, that, in principle,
adapts better to a signal forecasting problem, second because LSTM has
been shown to outperform some RNNs architecture when applied to long-
term tasks [HS97b] and finally, due to the fact that this architecture is rather
recent and still not totally explored. In §4 we describe the LSTM architecture
in more detail.

3 Neural Networks Growing Methods

The need to fix the size and topology of a network before its training
phase is one the most important practical problems when using common NN
approaches. Therefore, the use of incremental growing methods that adapt
the net parameters automatically are seen as a practical way of making the
use and configuration of neural networks less complex.

To that end, growing methods attempt to reach a suitable network topol-
ogy by starting the training phase with a very small network which will be
adapted, according to the task at hand, by adding units during the training
process aiming to obtain an optimal performance.

In the latest years a great deal of effort has been directed towards finding
efficient growing algorithms for determining the weights and topology of a
neural network [RM99, KY97, Smi93]. In the following subsections we review
the main growing methods used in feedforward and recurrent nets.

3.1 Feedforward Neural Networks
3.1.1 Dynamic Node Creation

The Dynamic Node Creation (DNC) method [Ash89] was developed to
add nodes to the hidden layer of the network during training. After a new
node is added with this procedure, the whole network is trained with standard

9

backpropagation algorithm until the desired mapping is learned or another
unit needs to be added. A new hidden unit is added when the average error
curve begins to flatten out too quickly. The new unit receives complete
connections from the inputs, and is connected to all outputs, and its weights
are initialized with small random values. A more sophisticated method in
order to train the network that uses sophisticated nonlinear least squares and
quasi-Newton optimization techniques can be found in [Bel94].

3.1.2 Projection Pursuit

Projection Pursuit (PP) is a family of optimization methods that ap-
peared in the statistics literature. Its name is derived from the fact that the
data are projected onto several interesting directions, which are selected to
maximize a certain objective function. This notion of interesting projections
is motivated by an observation that for most high-dimensional data clouds,
most low-dimensional projections are approximately normal [DF84]. Hence,
a projection is less interesting the more nearly normal it is. In general, given
a random variable X, the methods based in PP search for a linear projection
A optimizing an objective function Q(F,), where F is the distribution of
the random variable A - X. By changing the objective function Q(F,), the
particular PP methods are obtained.

PP generalizes classical methods such as principal components and dis-
criminant analysis. As a drawback, they use to be high-demanding on compu-
tation time. Due to this computational cost, and to the interest in getting an
ordered set of projections, the stepwise methods are very attractive. As par-
ticular case of function approximation, Projection Pursuit Regression (PPR)
[FS81] estimates the conditional expectation of a random variable Y € R
given X € R! by means of a sum of ridge functions

N
EYIX =7 = /(@) = Y g(a" - 9)
j=1
as follows (the @;’s act as the frequencies). Suppose that the first n —1 terms

of the approximation have been determined. That is, the vectors @; and the
functions g;, 1 < j < n — 1 have been calculated. Let

n—1
1 (B) = f(Z) = for (B) = F(&) =D gi(a;" - 7)
j=1
be the residue at step n — 1. Find @, and g, such that ||r,_;(Z) — gn(a;" - Z7)||
is the minimum. This process is repeated until the residue is smaller than a

user-defined threshold.

10

An NN that implements PPR is the Projection Pursuit Learning Network
(PPLN). An PPLN is modelled as a one hidden layer MLP that learns neuron
by neuron, and layer by layer cyclically after all the training patters are
presented [HRM194]. An incremental neural network algorithm that is very
similar to PPR is the Incremental linear quasiparallel algorithm, presented
in [KB95].

Several methods with the same underlying ideas than PP have appeared
in the area of Signal Processing. Among then we can highlight the Matching
Pursuit algorithm, which is described in [MZ93] as an algorithm that decom-
poses any signal into a linear expansion of waveforms that are selected from
a redundant dictionary of functions.

3.1.3 Cascade Correlation

In the field of Neural Networks the most used growing method is the
Cascade Correlation (CC) [Fah90]. CC combines two key ideas. The former
is the cascade architecture, in which hidden units are added only one at a
time. The newly added hidden units receives inputs from the input layer as
well as from the previously added hidden units. The latter is the learning
algorithm, which create and installs the new hidden units.

Initially, the network contains only inputs, output units, and the con-
nections between them. The single layer of connections is trained using the
Quickprop algorithm [Fah91] (a version of back-propagation) to minimize the
error of the training set. When the level of the error stops decreasing, the
performance of the network is evaluated. If the performance is good enough,
the learning ends. Otherwise, a new hidden unit is added to the network in
an attempt to reduce the residual error.

Before adding a new hidden unit, a pool of candidate units is tested, such
that each of these units receives weighted connections form the network’s
inputs and from any hidden units already present in the net, but their output
activations are not yet connected to the output units. Then, weights of each
candidate unit are adjusted to maximize the correlation between the unit’s
output and the residual error signal of the network. When the correlation
scores stop improving, the candidate unit with the best correlation is selected
as the new hidden unit, the weights associated with its incoming connections
are frozen, and only the weights of the output units are re-trained, including
those from the new hidden unit. The process of adding a new hidden unit
and re-training the output layer is repeated until the error is small enough.
Different versions of CC can be found in [Pre97] and [LR96].

11

3.1.4 Orthogonal Methods

In [GAPI8] a sequential orthogonal approach to the building and training
of single hidden layer neural networks is described. When adding a unit,
the new information introduced by this unit is caused by that part of its
output vector which is orthogonal to space spanned by the output vectors
of previously added hidden units. In this context, a vector is an element
of RT, where T is the number of patterns. The Gram-Schmidt method is
used to form a set of orthogonal bases for the space spanned by the output
vectors of the hidden units. Hidden units weights w, are found through
optimization (gradient descent) of ||E,—1 — A\yRy(wy)||, where E,_; is the
network error with the previously added hidden units. Output layer weights
An are obtained from the Least Square (LS) regression. When the training
procedure is finished, output layer weights need to be recalculate. Output
layer weights are determined through orthogonal LS using the Gram-Schmidt
orthogonalization results obtained at each step.

With the same underlying ideas, [CCG91] proposed a learning procedure
for RBF Networks based on the Orthogonal Least Squares method in which
the use of gradient descent is not necessary, because the frequencies are
selected from the dataset. Although the coefficients are recalculated when
the training finishes, the frequencies are obtained again approximating the
residue at the previous step with only one term (one frequency), exactly the
same as in PPR. Other versions of this algorithm can be found in [GY00]
and [SKO00].

3.1.5 SAOCIF

Sequential Approximating with Optimal Coefficients and Interacting Fre-
quencies (SAOCIF) [RA02], is a sequential method that combines two key
ideas. The first one is the optimization of the coefficients (or output layer
weights), which provide the linear part of the approximation. The second one
is the flexibility to choose the frequencies (or hidden layer weights), which
provide the non-linear part.

Concerning the architecture needed to implement SAOCIF, it must present
the following characteristics.

e It must be feedforward architecture with a hidden layer of units (in-
cluding both MLPs with one hidden layer and RBFNs).

e There are no restrictions about the dimension of the input and the
output. There will be so many as the target function have. If there

12

are several outputs, the total inner products must be calculated as the
summation of the individual inner products of every output.

e There is no restriction about the biases in the hidden units. The biases
can be treated as part of the frequencies.

e The output units cannot have biases.

e There is no restriction about the activation functions in the hidden
units. In particular, they can be sines, cosines, sigmoidal functions,
gaussian functions, wavelets, etc. Obviously, different units have dif-
ferent activation functions.

e The output units must have a linear activation function.

As can be seen, the restrictions only refer to the output units. The biases
are not a real problem, since they can be considered as frequencies with a
simple transformation. Hence, the only real restriction in the output units is
the linear activation function. An algorithm to construct an approximation
based on SAOCIF using FNNs is proposed in [RA02]. Since the frequency
goodness does not depend on the norm of its associated vector, the range of
weights to look for candidate frequencies may be as large as desired. The
strategy to select the candidate frequency is probably the most important
part of the algorithm. SAOCIF has been trained using three different strate-
gies. In the first one, the frequencies are selected at random. In the second
one (called Input strategy), the frequencies are selected from the points in the
dataset (as often in RBF's, but not exclusively) in a deterministic manner: for
every hidden unit to be added, every point in the training set is tested as a
candidate frequency. The third one is a more sophisticated strategy from the
field of Evolutionary Algorithms, where a population of frequencies evolves
driven by a Breeder Genetic Algorithm (BGA) with the squared error as the
fitness function.

3.2 Recurrent Neural Networks
3.2.1 Recurrent Cascade Correlation

Recurrent Cascade-Correlation (RCC) [Fah91] is an architecture that
adds recurrent operation to the Cascade-Correlation architecture. There-
fore, some changes were needed in order to make the two models fit together.

As commented before, in the CC architecture new hidden units are added
one by one, and are frozen once they are added to the network. Therefore, the
insertion of the outputs from new hidden units back into existing hidden units

13

as new inputs would not be appropriate since this concept would certainly
be violated. On the other hand, the network must be able to form recurrent
loops if it is to retain state for an indefinite time. So, to solve that, in RCC
each of the hidden and candidate units is provided with a single weighted
self-recurrent link that feeds back its own activation value on the previous
time step, as can be seen in Figure 5.

>
/11

Figure 5: Candidate or hidden unit with a self-recurrent link.

That self-recurrent link is trained along with the unit’s other input weights
to maximize the correlation of the candidate with the residual error. If the
recurrent link adopts a strongly positive value, the unit will function as a
flipflop, retaining its previous state unless the other inputs force it to change;
if the recurrent link adopts a negative value, the unit will tend to oscillate
between positive and negative outputs on each timestep unless the other in-
puts hold it in place; if the recurrent weight is near zero, then the unit will
act as a gate of some kind.

When a candidate unit is added to the active network as a new hidden
unit, the self-recurrent weight is frozen, along with all the other weights.
Each new hidden unit is in effect a single state variable in a finite-state
machine that is built specifically for the task at hand.

3.2.2 Parallel-modular RCC

As an alternative to the original RCC architecture, [KTA95] introduced
the Parallel-modular RCC that is trained with natural connectionist glue,
which is a concept for modularity and scaling in large phonemic neural net-
works [AW90, KI1.90]. This approach aim to provide an improvement to the
recognition rates for tasks involving large numbers of features to be learned.

Parallel-modular RCC differs from RCC in the way of structuring the
net. That is, to train the cascade—correlation network with large training

14

sets, Fahlman [Fah91] proposed to divide the training set into a series of
short ”lessons”, and train them one after the other, going from the simplest
to the most complicated one. Then retrain the network with all the samples
in a single training set. The retraining is done in the same way each les-
son was trained, that is, keeping the incoming connections of the previously
installed hidden units frozen, as well as their respective selfrecurrent links.
The groups of hidden units generated during the training of each lesson grow
in a cascaded fashion one on top of the other. When the network is finally
retrained with the complete training set, one last group of hidden units is
created. These groups of hidden units are referred in Parallel-modular RCC
as units modules.

By altering the connections of the original RCC, interrupting the cascade
and locating every new module parallel to the previous ones, with no con-
nections between the modules, the cascaded RCC is transformed into the
Parallel RCC. In that way, each module becomes totally independent from
the activation of the others.

This is done in order to concentrate the "knowledge” about a group of
patterns in a module, instead of distributing it across the whole network.
The modules are connected in parallel, in contrast to the completely cascaded
structure of the original RCC.

3.2.3 GNARL

Another more recent effort attempting to learn weights and topology of
neural nets is the work of Angeline [ASP94]. The GNARL Algorithm, which
stands for GeNeralized Acquisition of Recurrent Links, is an evolutionary
algorithm that non-monotonically constructs recurrent networks to solve a
given task. The name GNARL reflects the types of networks that arise
from a generalized network induction algorithm performing both structural
and parametric learning. In that way, GNARL evolves neural networks using
structural levels of mutations for topology selection as well as simultaneously
evolving the connection weights through mutation.

Thus, instead of having uniform or symmetric topologies, the resulting
networks have “gnarled” interconnections of hidden units which reflect con-
straints inherent in the task. The input and output nodes, as in other neural
nets, are considered to be provided by the task and are immutable by the
algorithm. The number of hidden nodes varies from 0 to a user-supplied
maximum.

15

4 LSTM Recurrent Neural Network

LSTM [Hoc95, HS97a] belongs to a class of recurrent networks that has
time-varying inputs and targets. That is, points in the time series or input
sequence are presented to the network one at a time. The network can be
asked to predict the next point in the future or classify the sequence or to
perform some dynamic input/output association. Error signals will either be
generated at each point of the sequence or at the end of the sequence.

4.1 LSTM Structure

A fully connected LSTM architecture is a three-layer neural network com-
posed of an input layer, a hidden layer and an output layer. The hidden layer
has a feedback loop to itself, i.e., at time step t of a sequence with n time
steps, presented to the network, the hidden layer receives as input the acti-
vation values of the input layer and the activation values of the hidden layer
at time step t — 1. Figure 6 illustrates a LSTM with a fully connected hidden
layer consisting of two memory blocks, each one consisting of two cells. The
LSTM showed has an input dimension of two and an output dimension of
one. Only a limited subset of connections are shown.

gl

Memory Block I “‘

Cell 1 Cell 2 Cell 1 Cell 2

p
’/ Forget Gate

Output Gate

Figure 6: Example of LSTM net consisting of 4 inputs units, 1 output unit
and 2 memory blocks of size 2. Only a limited subset of connections are
shown.

The basic unit in the hidden layer is known as a memory cell block. A
memory cell block (Figure 7) consists of S memory cells and three multiplica-
tive gates, called the input gate, output gate and forget gate. Each memory

16

cell has at its core a recurrently self-connected linear unit called Constant
Error Carousel (CEC), whose activation is called the cell state. The CECs
solve the vanishing error problem: in the absence of a new input or error sig-
nals to the cell, the CEC’s local error back flow to remains constant, neither
growing nor decaying. Input and output gates regulate write and read access
to a cell whose state is denoted S.. The CEC is protected from both flowing
activation and backward flowing error by the input and output gates respec-
tively. When gates are closed (activation around zero), irrelevant inputs and
noise do not enter the cell, and the cell state does not perturb the remainder
of the network. The forget gate feed the self-recurrent connection with its
output activation and is responsible for do not allow the internal state values
of the cells grow without bound by resetting the internal states S. as long
as it needs. In addition to the self-recurrent connection, the memory cells
receive input from input units, other cells and gates.

\ yc/

output gating h yout

output squashing h(s c)

-
<= Wou — netout
\

output gate

y? S W, — pet
= Y T ne ¢
forget gate

n
y —
S W _— net,

input gate

72!

s yP+gy

memorizing and forgetting

input gating g yln
input squashing g(netc)

PEAN
net,

Figure 7: The standard LSTM cell with a recurrent self-connected connection
(CEC) and its respective gates.

While the cells are responsible for maintaining information over long pe-
riods of time, the responsibility for deciding what information to store, and
when to apply that information lies with the input and output gate units,
respectively.

A single step involves the update of all units (forward pass) and the
computation of error signals for all weights (backward pass). Input gate

17

activation ™ and output gate y°“ are computed as follows:

netin, () = Y Winmy™(t = 1), Y™ (t) = fin, (netm, (1)). (1)

netout]- (t> = Z woutjmym (t - 1)7 youtj (t) = foutj (netoutj (t)) (2)

where y™ (t) denotes the activation of the input gate at time ¢ and y°“ (¢)
denotes the activation of the output gate at time t.

The wj, is the weight on the connection from unit m to unit j. The
summation indices m may stand for input units, memory cells, or even con-
ventional hidden units if there are any. All these different types of units may
convey useful information about the current state of the net.

The forget gate activation y¥i(t) is calculated like the other gates above:

nete, (1) = 3 womy™(t = 1), yP(0) = fo, ety (D). (3)

Here, net,; is the input from the network to the forget gate. For all gates,
the squashed function f is the logistic sigmoid with range [0,1].

The internal state of the memory cell S.(t) is calculated by adding the
squashed, gated to the input to the state at the previous time step ch (t—1),

(t>0):

Ses () = 9 (£)Ses (t — 1) + 5™ (1) glmetey (1)), (4)

where j indexes memory blocks, v indexes memory cells in block j, such that
c¢j denotes the v-th cell of the j-th memory block. The cell initial state is
given by Ser(0) = 0.

The cell’s input squashing function ¢ used is a sigmoid function with
range [—1, 1]. The cell output y¢ is calculated by squashing the internal state
S. via the output squashing function A and then multiplying (gating) it by
the output gate activation y°“.

or (1) = 475 () h(s.s (1)). (5)

Here we used the identity function as output squashing function h.

18

Lastly, assuming a layered network topology with a standard input layer,
a hidden layer consisting of memory blocks, and a standard output layer, the
equations for the output units k are:

nete(t) = Y wimy™(t —1), y*(t) = fulneta (1)), (6)

where m ranges over all units feeding the outputs units. As squashing func-
tions fi we again use the logistic sigmoid, range [0,1].

4.2 Learning

During the learning phase the input gate scales the activation value flow-
ing into the cell before it has the opportunity to change the internal state
S, of the CEC. The activation value of the CEC is worked through a sig-
moid step function before it is scaled by the output multiplication gate and
is produced as the output signal of the cell. The output gate and the output
non-linearity h, first scale an error signal arriving into a cell unit, before it
is allowed to flow into the CEC. Error signals trapped within a cell’s CEC
cannot change - but different error signals flowing into the cell via its output
gate may get superimposed. Error signals will be scaled again before they
are allowed to run out of the CEC to make an update to the weights coming
into the cell. Essentially, the multiplicative gate units open and close access
to constant error flow through the CEC.

LSTM’s backward pass [HS97b] is basically a fusion of slightly modi-
fied truncated back-propagation through time (BPTT) [WP90], which is ob-
tained by truncating the backward propagation of error information, and a
customized version of RTRL [RF87] which properly takes into account the al-
tered (sigma-pi-like) dynamics caused by input and output gates (see details
in [HS97D)).

Output units use BPTT; output gates use a truncated version of BPTT.
However, weights to the cells and forget gates use a truncated version of
RTRL. Truncation means that all errors are cut off once they leak out of a
memory cell or gate, although they do serve to change the incoming weights.
The effect is that the CECs are the only part of the system through which
errors can flow forever. So, the error signals flowing out of the CEC and the
multiplicative gates are truncated after they are used to update the incoming,
weighted connections.

LSTM’s learning algorithm is local in space and time; its computational
complexity per time step and weight is O(1), that means O(n?) where n
is the number of hidden units if we measure the complexity per time step.
This is very efficient in comparison to the RTRL algorithm. The time step

19

complexity is essentially that of BPTT, but unlike BPTT, LSTM only needs
to store the derivatives of the CEC’s, this is a fixed-size storage requirement
independent of the sequence length.

5 Growing LSTM

Aiming to improve the learning abilities of LSTM neural net, in this work
deals with a version of LSTM where the network topology is incrementally
adapted by the addition of new memory blocks. We call this version Growing
LSTM (GLSTM).

In growing algorithms, many heuristics can be used to guide the search in
the possible solution space. An important problem is how to set the weight
connections of a newly added block. LSTM starts training with just one
memory block and grows by inserting blocks, one at time, on the hidden
layer in two basic ways: cascade and fully connected, that we discuss in the
subsequent subsections.

In both architectures, each new memory block receives a connection from
each of the network’s original inputs. However the connections that comes
from other blocks changes according to the architecture used. Every new
block has the same number of cells than the first initial block and does not
change after it has been added.

5.1 Cascaded Growing LSTM

As commented in §5.1, in cascade architectures, the new units are added
one at a time and each new unit receives inputs from every preexisting units
and also from itself. So, carrying out this concept on LSTM, each new
memory block in addition to have a self-connect connection will also receives
a link from each of the network’s original inputs and also from every memory
cell on preexisting blocks, as can be seen in Figure 8.

In this work, the cascade weights arriving and leaving from the memory
blocks were frozen in two different ways. In the first one, all the preexisting
weights in the whole net were frozen, leaving only the new block weights to
be trained. In the second way, previous weights were frozen except for those
of the output units, that remained trainable.

Figure 8 illustrates these two configurations. In both, it can be supposed
that there exist just two memory blocks (MB1 and MB2) and a new memory
block (MB3) will be added.

For the first configuration (Figure 8(a)), the weights arriving at already
existing blocks (MB1 and MB2) are kept frozen (solid lines) and those arri-

20

(a) (b)

Figure 8: Cascade growing. Whereas in (a) all preexisting weights are frozen,
in (b) only weights arriving at already existing blocks are frozen, letting the
hidden-output weights free.

ving at new memory block (MB3) are trained repeatedly (dashed lines).
The output unit weights are configured in a similar way. In the second
configuration (Figure 8(b)) the same procedure is carried out, but now all
hidden-output weights are modified during subsequent training.

A third configuration , not shown in the figure, is not to freeze any weight
in the net, so the preexisting weight connections still can be trained further
after the addition of a new memory block.

5.2 Fully Connected Growing LSTM

In addition to the fact that the new memory block receives connections
from every preexisting blocks, as occurs in cascade architecture, in fully
connected architectures the preexisting blocks also receives weight connec-
tions from each new added block.

As can be seen in Figure 9 no weight in the net is frozen during training,
since every cell of each memory block receives new connections after adding
a new block.

6 Case of Study

The human cardiovascular system is composed of the hemodynamical
system and the Central Nervous System (CNS) control. In this work we try
to model the latter by capturing its input/output dynamic behavior.

The CNS generates the regulating signals for the blood vessels and the

21

Figure 9: Fully GLSTM.

heart, and it is composed of five controllers: the heart rate controller (HRC),
the peripheric resistance controller (PRC), the myocardiac contractility con-
troller (MCC), the venous tone controller (VTC), and the coronary resistance
controller (CRC). A simplified diagram of the cardiovascular system is shown
in Figure 10. All of these controllers are single-input/single-output (SISO)
systems driven by the same input variable, namely the carotid sinus pressure.
Although the Carotid Sinus Pressure is not easily measurable, it can be ex-
tracted from the differential equation model describing the hemodynamics of
the cardiovascular system [Val93]. The five output variables of the controller
models are not even amenable to a physiological interpretation, except for
the heart rate controller variable, which is the inverse heart rate, measured
in seconds between beats.

Whereas the structure and functioning of the hemodynamical system are
well known and a number of quantitative models, mostly based on differential
equations, have been developed, the functioning of the central nervous system
control is of high complexity and still not completely understood. Although
some differential equation models for the central nervous system have been
postulated [SR69, SS74, Hyn70], these models are not accurate enough, and
therefore, the use of other modelling approaches like neural networks may
offer an interesting alternative for capturing the behavior of the CNS control
[LK90].

7 Experimental Methodology

Temporal pattern recognition involves processing of patterns that evolve
over time. The appropriate response at a particular point in time depends

22

Central Nervous System Control

Hemodynamical
Heart Rate Controller System
yocardiac Contractility
Controller Heart

Peripheric Resistance
Controller

Circulatory Flow
Mechanisms

Venous Tone
Controller

Carcrid Sinus
Blood Pressure

Coronary Resistance
Controller

Figure 10: Simplified diagram of the cardiovascular system model, composed
of the hemodynamical system and the CNS control.

not only on the current input, but potentially on all the previous inputs.
Following the strategy used to carry out the prediction of output signals of
CNS are described.

7.1 Prediction Strategy

Prediction tasks involve the use currently available input and output
points are used to predict a future output point,i.e., given two finite sequences
z(1),x(2),x(3),...,z(t) of input signal values and y(1),y(2),y(3), ..., y(t—1)
of output signal values, predict the value y(t — 1 4+ T') of the output signal.

To prepare the data conveniently, we have replaced the original target
output y(t) by the difference between the y(t) output value and the previous
value y(t—1) multiplied by a scaling factor fs, so that the target is calculated
as ty(t) = fsx (y(t) —y(t — 1)) = Ay(t) * fs. fsscales Ay(t) between —1
and 1.

Stepwise and iterated predictions are made. In single-step prediction the
network predicts the next output point, y(t), after being fed with the current
input z(t) and the last known value of the output, y(t — 1). In this case,
T = 1. It should be noted that, both the inputs and the desired response are
provided from the known training points.

23

S —) N
/’t =~
\y(t-l))_>

o LsT™ G

x(t) —»

Figure 11: Setup for the output signals.

During iterated prediction with 7" = n the output is clamped to the
y—input and the predicted values are fed back n times, i.e. the y—input
samples are progressively substituted by the output of the network. This
closed loop system is illustrated in Figure 11.

7.2 The Data

The data used in the training and test phases are composed of the five
controllers mentioned in §6: HRC, PRC, MCC, VTC and CRC, that were
recorded with a sampling rate of 0.12 seconds from simulations of a purely
differential equation model. Figure 12 illustrates the input and output signals
used in the training phase for the HRC controller.

0a 0g
if] 0g
& o7 or
E o5 = g
E 05 E 05
il i}
5 B
£ 0z & 03
E 0z £ 02
01 04
1] oo
i 1] 1] o] 1200 1500 1 A0 F0) 1200 1500
Samples(T0 12 =0) SarplesT=012 =0

Figure 12: Carotid sinus pressure and Heart rate control signal.

This model had been tuned to represent a specific patient suffering from
coronary arterial obstruction, by making the four different physiological vari-
ables (right auricular pressure, carotid pressure, coronary blood flow, and
heart rate) of the simulation model agree with the measurement data taken
from the patient.

The training set consists of 1,500 data points for each controller. Each
trained network was validated by using it to forecast six data sets that had

24

not been employed in the learning process. Each one of these six test sets (for
each controller), with a size of 300 points each, contains signals represent-
ing specific morphologies, allowing the validation of the model for different
system behaviors.

7.3 Experimental Setup

The LSTM network architecture used is made up of an input layer with 2
inputs units, an output layer with 1 output unit and a hidden layer consisting
of memory cell blocks of size 1.

A new memory block is added to the hidden layer when the previous
configuration has been trained at least 1000 epochs and the mean of the
error in the last 10 epochs has not improved the previous error mean.

After preliminary experiments, the bias weights for input and output
gates in successive blocks were fixed as: —0.5, —1.0, —1.5, and so forth.
The initialization of output gates pushes initial memory cells activations
towards zero, whereas that of the input gates prevents memory cells from
being modified by incoming inputs. As training progresses, the biases become
progressively less negative, allowing the serial activation of cells as active
participants in the network computation.

The forget gates were initialized with symmetric positive values: +0.5 for
the first block, 4+1.0 for the second, +1.5 for the third, and so forth. The bias
initialization must be positive in this case, since it prevents the cells from
forgetting everything [GS00al, i.e., when positive signal is used the gates are
open what means that no gates are used.

For the cell’s input squashing function ¢ different configurations were
used, depending on the controller. More specifically, for the HRC and CRC
training sets the antisymmetric logarithm function [Alq97] was used, whereas
for VI'C, MCC and PRC controls g was the logistic sigmoid in [—1,1]. As
regard to the output squashing function h and the activation function of the
output unit were, they fixed as the linear identity function.

The error measure is given by the normalized mean square error (NMSE),
in percent, between the predicted output value and the target value, ,:

~

Gvar

where t is the variance of ¢, defined as:

tg = Eltg(t)] — {Elty(t)]}* (8)

Guar

25

Cascade Cascade Cascade
Fully Freezing Not-Freezing | Trainable-Out
Train L Test Train [Test Train L Test Train [Test

HRC | 4.85 3.99 3.09 4.11 3.26 4.15 2.11 3.27
PRC 0.12 0.69 0.13 0.66 0.17 1.33 0.09 0.61
MCC | 0.39 1.11 0.14 0.99 0.11 1.02 0.09 0.98
VTC | 0.08 0.96 0.10 0.96 0.18 1.05 0.08 0.96
CRC | 0.22 0.37 0.11 0.35 0.18 0.38 0.09 0.26
Av. 1.35 1.42 0.71 1.41 0.78 1.58 0.48 1.21

Table 1: Average of three trials NMSE errors (in percent) for training and
test sets of each controller using different growing architectures.

During training, the above NMSE error is used to determine when to
finish the learning process, as explained earlier.

8 Results

In this section, two kinds of analysis are carried out. In the former, com-
parisons among different growing architectures are made and in the latter,
LSTM’s results obtained throughout the present study are showed and com-
pared with those reported in previous studies on the same task using neural
net approaches.

After some preliminary experiments, the number of epochs chosen to stop
training was 5000 for HRC, MCC and VTC controllers, 2500 for PRC and
2000 for CRC control. The learning rate has been changed according to the
dataset to be learned, but, in essence, it took on values from 0.01 to 0.025.
The momentum parameter for each controller was 0.0 for HCR, PRC and
CRC training sets and 0.5 for VI'C and MCC training sets.

Table 1 displays the outcomes obtained by each controller on the training
and test sets using the different growing architectures and configurations (see
§5). Fully stands for fully connected growing without freezing weights. In
order to investigate the effects of freezing weights, we tested three different
choices for cascade growing LSTM. Cascade Freezing refers to the config-
uration illustrated by Figure 8(a), Cascade Not-Freezing refers to growing
cascaded without freezing any weights, and Cascade Trainable-Out refers to
Figure 8(b) scheme. The results showed are the average of three different
training trials using different initial random weights.

As it can be seen, the results achieved by Cascade Trainable-Out is far bet-
ter than those obtained by the other configurations. From now on, GLSTM
outcomes achieved uses this configuration.

26

In the second part of the experiments, the outcomes accomplished in
[RAO1], which applies LSTM to the task at hand, are used as a baseline
to illustrate GLSTM improvements on LSTM. In [BVA98] four different ap-
proaches were performed over the task at hand, where three of them are
TDNNs [KL90, HKP91] that differ in the training method used: a standard
backpropagation algorithm (TDNN-BP), a hybrid procedure composed by
repeated cycles of simulated annealing coupled with conjugate gradient algo-
rithm (TDNN-AC), and a genetic algorithm (TD-HNN). This last network
uses indeed a different neuron model based on a similarity computation. The
other one is a RNN approach, an ASLRNN net, similar to Elman’s SRN net,
except that is trained by a true gradient descent algorithm that does not
truncate error propagation backwards in time.

Concerning to stepwise prediction results, Table 2 shows the average
NMSE errors (in percent) of each of the above mentioned architectures
against those yielded by GLSTM. For each controller, three different train-
ing trials using different random weight initialization in the range [—0.1,0.1]
were carried out. Each trial was applied to the six test sets associated with
the controller.

TD-HNN TDNN-BP | TDNN-AC ASLRNN LSTM GLSTM

Train‘ Test Train| Test Train] Test Train| Test Train] Test | Train | Test
HRC | 0.11 | 0.18| 1.15 | 1.52| 0.15 | 0.13| 1.63 | 1.91| 2.16 | 3.41| 2.11 | 3.27
PRC | 0.09 | 0.12]| 0.94 | 1.27]| 0.26 | 0.14| 0.84 | 1.10| 0.25 | 0.65| 0.09 | 0.61
MCC | 0.03 | 0.06| 0.81 | 1.33| 0.09 | 0.08| 0.71 | 1.18 | 0.19 | 1.04| 0.09 | 0.98
VvTC | 0.03 | 0.06| 0.81 | 1.33| 0.09 | 0.08 | 0.71 | 1.18| 0.19 | 1.01| 0.08 | 0.96
CRC | 0.10 | 0.11| 0.47 | 0.66| 0.03 | 0.04| 0.41 | 0.53| 0.18 | 0.31| 0.09 | 0.26
Av. 0.07 | 0.11| 0.84 | 1.22| 0.12 | 0.09| 0.86 | 1.18| 0.59 | 1.28 | 0.48 | 1.21

Table 2: Average NMSE errors (in percent) for step-wise prediction on train-
ing and test sets.

In order to compare the long-term prediction results, where the whole
test set is attempted to be predicted (7" = 300), Table 3 shows the average
NMSE errors for different dynamic input/output architectures of three inde-
pendent training trials for the six test sets of each controller. As can be seen,
GLSTM clearly outperforms those results achieved by ASLRNN, TDNN-BP
and LSTM.

Next, the prediction results achieved by LSTM and GLSTM are displayed.
Figure 13 shows the error curve of LSTM trained with 1, 2 and 3 memory
blocks and LSTM trained with growing methods (GLSTM). The black points
showed in the graph indicate the epoch in which a new memory block was
added to the net. As it can be observed, GLSTM finds a certain stability

27

| L TDNN-BP [ASLRNN [LSTM [GLSTM |

Data Set 1 24.31 28.25 32.81 25.52

Data Set 2 7.47 8.62 28.66 21.36

HRC | Data Set 3 13.48 16.77 28.40 19.52
Data Set 4 6.87 8.16 23.25 19.23

Data Set 5 32.12 38.24 31.70 24.73

Data Set 6 7.86 9.80 27.86 33.96
Average Error 15.35 18.31 28.78 24.05
Data Set 1 58.15 50.07 12.30 6.68

Data Set 2 17.80 16.11 17.29 6.55

PRC | Data Set 3 41.56 36.89 12.15 6.53
Data Set 4 29.09 26.97 7.15 35.00

Data Set 5 34.73 38.54 21.15 71.47

Data Set 6 21.22 18.40 14.22 5.48
Average Error 33.76 31.16 14.04 21.95
Data Set 1 41.72 55.83 27.48 17.16

Data Set 2 20.92 17.18 42.88 26.26

MCC | Data Set 3 40.22 35.60 26.26 17.60
Data Set 4 39.80 42.08 14.44 33.88

Data Set 5 34.32 36.87 16.15 19.27

Data Set 6 27.20 23.38 30.91 20.01
Average Error 34.04 35.16 26.35 22.36
Data Set 1 41.68 54.25 27.01 11.36

Data Set 2 20.90 16.93 35.43 9.99

VTC | Data Set 3 40.22 35.68 10.16 10.02
Data Set 4 39.80 41.86 14.58 32.37

Data Set 5 34.41 36.77 15.50 40.19

Data Set 6 27.22 23.12 29.90 9.41
Average Error 34.04 34.77 22.02 18.89
Data Set 1 147.73 148.65 3.70 6.67

Data Set 2 28.35 36.17 4.63 15.75

CRC | Data Set 3 84.35 83.75 3.00 4.29
Data Set 4 4.69 4.49 5.48 6.59

Data Set 5 56.20 58.50 72.29 44.01

Data Set 6 12.32 11.16 2.99 4.64
Average Error 55.69 57.12 14.73 13.65

Table 3: Average NMSE errors of the CNS controller models inferred by
TDNN-BP, ASLRNN, LSTM and GLSTM.

28

by adding memory blocks incrementally and keeping previous hidden-layer
weights frozen.

(GLSTM vs. LSTM)

——
[STM VB ——— |
LSTM 2MB

; LSTM 3MB a
e e . NG +-GLSTM————— 1

NMSE

o= Mwh OO N®
T T T T T T T

I I I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
epochs

Figure 13: GLSTM vs. LSTM prediction.

The stepwise prediction of the HRC output signal on two part of the
training set are illustrated in Figure 14. Where, figures (a) and (c) regard to
LSTM prediction, whereas figures (b) and (d) represent GLSTM prediction.
The target output signal is shown as dashed line and the predicted signal as
solid line.

Stepwise and long-term iterated prediction versus the true output signal
from test set 1 of the same controller are showed in Figure 15. As can be
seen, GLSTM could capture the signal oscillation better than LSTM.

29

HRC Train Set

0.75

0.5 H

NMSE

0.25

300

150
Sample Rate (Ts=0.12sec.)

(a) LSTM prediction of first 300 points.

HRC Train Set

0.75 -

05 |

NMSE

0.25

1 I
i ,
i i [
Il i i
i i
i | i i
o i i
| i i
il 3 i !
i i i i
i NN
h ! L ! I !
IRVERVIRNE] Al
NRYRVIRY YRV
<\ R
Y i N

100

150
Sample Rate (Ts=0.12sec.)

HRC Train Set

(b) GLSTM prediction of first 300 points.

300

05 |

NMSE

0.25

-0.25 -

,
i |
C oo i |
[A
B g
[i
[S !
A !
il !
i i
i i
i i
T
i |
H Yy
i IRYIRY
TRV i !
[T iU A oA
uok el LU i
i K SERUR AR B

1200

-0.5

1000

1050
Sample Rate (Ts=0.12sec.)

HRC Train Set

I
1100

(¢) LSTM prediction (from 900 to 1200 points).

0.75 -

05 |

NMSE

-0.25 ¥

1
1150

1200

-0.5
900

1050
Sample Rate (Ts=0.12sec.)

1
1100

(d) GLSTM prediction (from 900 to 1200 points).

Figure 14: Prediction of the HRC training signals using LSTM and GLSTM.

HRC Test Set 1

300
300
300

I
250
T

i
i
i
i
i
i
g
I
250
I
250

i
i
i
0.12sec.)

0

HRC Test Set 1
T
i
i
i
i
i
i
i
i
|
150

HRC Test Set 1
HRC Test Set 1

Sample Rate (Ts=0.12sec.)

Iterated prediction of the next 300 points using LSTM.

Sample Rate (Ts=0.12sec.)

b) GLSTM stepwise prediction.

!

P

i
Sample Rate (Ts:

(a) LSTM stepwise prediction.

wwwwwwwwwwwwwwww S o = o Ty o s o
o == 412 = = 438 - I S 18 . 18

50

- = e \\., _ I\Um

)

C
|
L

Sample Rate (Ts=0.12sec.)

Iterated prediction of the next 300 points using GLSTM.
300) using LSTM and GLSTM.

Prediction of the HRC test set 1 for stepwise prediction and

)

-0.5

(

-0.5

(d

Figure 15

i

terated prediction (77

9 Conclusions

The need to fix the size and topology of a network before its training phase
is one of the most important practical problems when using common neural
network approaches. Therefore, the use of incremental growing methods that
build the network automatically are seen as a practical way of making the
use of neural networks less complex. This is specially desirable in the case of
recurrent neural networks, where the topology can be extremely complex.

Most of the previous work on NN growing methods has dealt with feed-
forward NNs and only a few techniques have been proposed for some partic-
ular types of recurrent NNs. In this work, we have studied the incremental
construction of the LSTM net, which is maybe the more powerful RNN archi-
tecture proposed so far. Some different alternatives have been identified and
tested on a signal forecasting task concerning the learning of models for the
Central Nervous System Control. These include cascade and fully connected
hidden layers as well as different levels of freezing previous weights in the
cascade case.

It has been shown that, in addition to remove the need to fix the number of
hidden units in advance, the growing LSTM can yield a better performance
both in the training and test phases. Moreover, the behavior of the error
minimization during the training phase appears to be more stable when using
Growing LSTM with frozen weights.

Nevertheless, the experiments carried out here need to be complemented
with new studies on many other different problems. In addition, the final
objective of our work is not only to build LSTM nets incrementally, but rather
to develop a methodology for the incremental construction of recurrent NNs
for prediction tasks that can combine LSTM units (memory blocks) with
other RNN architectures or even with Time-Delay Neural Networks. The
underlying idea is to build a RNN as simplest as possible for a given problem
and only adding more sophisticated elements (such as LSTM memory blocks)
in a parsimonious way when strictly required to improve the approximation
and /or generalization performance.

32

References

[AJ94]

[Alq97]

[AS95]

[Ash&9]

[ASP94]

[AW90]

[Bel94]

[BTY1]

[BTY4]

[BVA9S|

R. Alquézar and Sopena J.M. Effect of Unbounded Activa-
tion Functions on Learning Performance of Recurrent Networks.
Technical Report 1C-DT-9402, Institut de Cibernetica, UPC-
CSIC, Barcelona, 1994.

R. Alquézar. Symbolic and Connectionist Learning Techniques
for Grammatical Inference. PhD thesis, Technical University of
Catalonia, 1997.

R. Alquézar and A. Sanfeliu. An Algebraic Framework to Rep-
resent Finite-state Machines in Single Layer Recurrent Neural
Networks. Neural Networks, 7(5):931-949, 1995.

T. Ash. Dynamic Node Creation in Backpropagation Networks.
Connection Science, 1(4):365-375, 1989.

P.J. Angeline, G.M. Saunders, and J.B. Pollack. An Evolu-
tionary Algorithm that Constructs Recurrent Neural Networks.
IEEE Transactions on Neural Networks, 5(1):54-64, 1994.

K. Shikano A. Waibel, H. Sawai. Consonant Recognition by
Modular Construction of Large Phonemic Time-Delay Neural
Networks. In Proc of the Int. Conf. on Acoust, Speech, and
Signal Processing, volume S3.9, pages 112-115, 1990.

M.G. Bello. Enhanced Training Algorithms, and Integrated
Training/Architecture Selection for Multilayer Perceptron Net-
works. [EEE Transactions on Neural Networks, 3(6):864-875,
1994.

A.D. Back and A.C. Tsoi. FIR and IIR Synapses, a Neural
Net Architecture for Time Series Modelling. Neural Networks,
3:375-385, 1991.

A.D. Back and A.C. Tsoi. Locally Recurrent Globally Feedfor-
ward Networks, a Critical Review of Architectures. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 5(2):229~
239, 1994.

L. Belanche, J.J. Valdés, and R. Alquézar. Fuzzy Heterogeneous
Neural Networks for Signal Processing. In Proc. of Int. Conf. of
Artificial Neural Network, 1998.

33

[CCGO1]

[Cn9g]

[CUPY7]

[DF84]

[DMO3]

[EIm0]

[Fah90]

[Fahol]

[FGS92]

[FNO3]

[FS81]

S. Chen, C.F.N. Cowan, and P.M. Grant. Orthogonal Least
Squares Learning Algorithm for Radial Basis Function Net-
works. [EEE Transactions on Neural Networks, 2(2):302-309,
1991.

M.A. Castano. Redes Neuronales Recurrentes para Inferencia
Gramatical y Traduccion Automdtica. PhD thesis, Technical
University of Valencia, 1998.

P. Campolucci, A. Uncini, and F. Piazza. A new IIR-MLP
Learning Algorithm for on-line Signal Processing. In Proc. of

the Int. Conf. of Acoustic Speech and Signal Processing, Munich,
1997.

P. Diaconis and D. Freedman. Ansymptotics of Graphical Pro-
jection Pursuit. The Annals of Statistics, 12:793-815, 1984.

S. Das and L. Mozer. A Connectionist Symbol Manipulator that
Induces Rewrite Rules in Context-free Grammars. In S. Lucas,
editor, Proc. of the 1st Int. Colloguium on Grammatical Infer-
ence: Theory Applications and Alternatives, Essex, UK, 1993.
IEEE Press.

J.L. Elman. Finding Structure in Time. Connection Science,
14(1):179-211, 1990.

Fahlman, S.E. and Lebiere, C. The Cascade-correlation Learn-
ing Architecture. Advances in Neural Information Processing
Systems, 2:524-532, 1990.

Fahlman, S.E. The Recurrent Cascade-correlation Architecture.
Advances in Neural Information Processing Systems, 3:190-196,
1991.

P. Frasconi, M. Gori, and G. Soda. Local Feedback Multilayered
Networks. Neural Networks, 4:120-130, 1992.

K. I. Funahashi and Y. Nakamura. Approximation of Dynamical
Systems by Continuous Time Recurrent Neural Networks. IFEFE
Transactions on Neural Networks, 6:801-806, 1993.

J.H. Friedman and W. Stuetzle. Projection Pursuit Regression.
Journal of American Statistical Association, 3:817-823, 1981.

34

[GAPOS]

[GBMS9)]

[GGCY4]

[GMC*92]

[GS00a]

[GSO0D]

[GY00]

[HGY5)

[HKPO1]

[Hoc95]

A H. Gee, S.V.B. Aiyer, and R.W. Prager. A Sequential Learn-
ing Approach for Single Hidden Layer Neural Networks. Neural
Computation, 11:65-80, 1998.

M. Gori, Y. Bengio, and R.D. Mori. A Learning Algorithm
for Capturing the Dynamic Nature of Speech. In Proc. of the

Int. Joint Conf. on Neural Networks, volume 2, pages 417-423,
Como, Italy, 1989.

M.W. Goudreau, C.L. Giles, and S.T. Chakradhar. First-order
vs. Second-order Single Layer Recurrent Neural Networks. IEEFE
Transactions on Neural Networks, 5(3):511-513, 1994.

C.L. Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun, and
Y.C. Lee. Learning and Extracting Finite State Automata with

Second-order Recurrent Neural Networks. Neural Networks,
4:393-405, 1992.

F.A. Gers and J. Schmidhuber. Applying LSTM to Time Se-
ries Predictable Through Time-Window Approaches. Technical
Report 22-00, IDSTA, 2000.

F.A. Gers and J. Schmidhuber. Recurrent Nets that Time and
Count. In Proc. of the Int. Joint Conf. on Neural Networks,
page 273, Como, Italy, 2000.

J.B. Gomm and D.L. Yu. Selecting Radial Basis Function Net-
work Centers with Recursive Orthogonal Least Squares Train-

ing. In IEEFE Transactions on Neural Networks, volume 11,
pages 306-314, 2000.

B.G. Horne and C.L. Giles. An Experimental Comparison of
Recurrent Neural Networks. In Advances in Neural Information
Processing Systems, volume 7, pages 697-704, Cambridge, MA,
1995. MIT Press.

J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory
of Neural Computation. Addison Wesley, Redwood City, CA,
1991.

Hochereiter, S. and Schmidhuber, J. Long Short—Term Memory.
Technical Report 207-95, FKI, 1995.

35

[HRM*94]

[HS96]

[HS974a]

[HS97D)]

[Hyn70]

7C97)

[Jor86]

[KB95]

[KL9O]

[KTA95]

J.N. Hwang, S.R. Ray, M. Maechler, D. Martin, and J. Schimert.
Regression Modelling in Backpropagation and Projection Pur-
suit Learning. IEEFE Transactions on Neural Networks, 5(3):54—
64, 1994.

S. Hochereiter and J. Schmidhuber. Bridging Long Time Lags
by Weight Guessing and Long Short-Term Memory. In F. L.
Silva, J. C. Principe, and L. B. Almeida, editors, Frontiers in
Artificial Intelligence and Applications, volume 37, pages 65—72,
Amsterdam, Netherlands, 1996. IOS Press.

S. Hochereiter and J. Schmidhuber. Long Short-Term Memory.
Neural Networks, 9:1681-1726, 1997.

S. Hochereiter and J. Schmidhuber. LSTM can Solve Hard
Long Time Lag Problems. In M. C. Mozer, M. I. Jordan, and
T. Petsche, editors, Advances in Neural Information Processing
Systems, volume 9, pages 473479, Cambridge, MA, 1997. MIT
Press.

P.W. Hyndman. A Digital Simulation of the Human Cardiovas-
cular System and its use in the Study of Sinus Arrhythmia. PhD
thesis, Imperial College, University of London, 1970.

A. Nebot J. Cueva, R. Alquézar. Experimental Comparison of
Fuzzy and Neural Network Techniques in Learning Models of
the Central Nervous System Control. In Proc. of IEUFIT97,
1997.

M.I. Jordan. Serial Order: A Parallel Distributed Processing
Approach. Technical Report 86-04, Institute of Cognitive Sci-
ence, University of California, 1986.

V. Kurkova and B. Beliczynski. Incremental Approximation by
one-Hidden-Layer Neural Networks. In Proc. of the Int. Conf.
on Neural Networks, volume 2, pages 505-510, Perth, Australia,
1995.

G. Hinton K. Lang, A. Waibel. A TimeDelay Neural Network
Architecture for Isolated Word Recognition. Neural Computa-
tion, 3:23-34, 1990.

I. Kirschning, H. Tomabechi, and J.I. Aoe. A Parallel Recurrent
CascadeCorrelation Neural Network with Natural Connectionist

36

[KY97]

[LF87]

[LHGY6]

[LK90]

[LNGY5]

[LR96)]

[MF94]

[Moz89]

[Moz92]

[Moz93]

Glue. In Proc. of the Int. Conf. on Neural Networks, volume 2,
pages 953-956, Perth, Australia, 1995.

T.Y. Kwok and D.Y. Yeung. Constructive Algorithms for Struc-
ture Learning in Feedforward Neural Networks for Regression

Problems. In IEEFE Transactions on Neural Networks, volume 8,
pages 630-645, 1997.

A. Lapedes and R. Faber. Nonlinear signal processing using
neural networks and system modelling. Technical Report LAUR-
262, Los Alamos National Laboratory, Los Alamos, 1987.

T. Lin, B.G. Horne, and C.L. Giles. Learning Long-term De-
pendencies is not as Difficult with NARX Recurrent Neural Net-

works. In [IEEE Transactions on Neural Networks, volume 6,
pages 1329-1338, 1996.

A. Law and D. Kelton. Simulation Modelling and Analysis. Mc-
Graw Hill, New York, 1990.

J. Liang, P.N. Nikiforuk, and M.M. Gupta. Approximation of
Discrete-time State-space Trajectories using Dynamic Recurrent
Neural Networks. In IEEFE Transactions on Automatic Control,
volume 40, pages 266-1270, 1995.

E. Littman and H. Ritter. Learning and Generalisation in Cas-
cade Network Architectures. Neural Networks, 8:1521-1539,
1996.

P. Manolios and R. Fanelli. First-order Recurrent Neural Net-
works and Deterministic Finite State Automata. Neural Net-
works, 6:1155-1173, 1994.

M.C. Mozer. A Focused Backpropagation Algorithm for Tem-
poral Pattern Recognition. Complex Systems, 3:349-381, 1989.

M.C. Mozer. Induction of Multi-scale Temporal Structure. Ad-
vances in Neural Information Processing Systems, 5:275-282,
1992.

M.C. Mozer. Neural Net Architectures for Temporal Sequence
Processing. Predicting the Future and Understanding the Past,
15:243-264, 1993.

37

[MZ93]

[NRRP*93]

[Peads|

[Pre97]

[PUY1]

[RAO1]

[RA02]

[RFS7]

[RM9Y]

[Sch92a]

S.G. Mallat and Z. Zhang. Matching Pursuits with Time-
Frequency Dictionaries. In IEEE: TSP, volume 41, pages 3397—
3415, 1993.

O. Nerrand, P. Roussel-Ragot, L. Personnaz, G. Dreyfus, and
S. Marcos. Neural Networks and Nonlinear Adaptive Filter-
ing: Unifying Concepts and New Algorithms. Neural Networks,
5:165-199, 1993.

B.A. Pearlmutter. Gradient Calculations for Dynamic Recur-
rent Neural Networks: A Survey. IEEE Transactions on Neural
Networks, 6(5):1212-1228, 1995.

L. Prechelt. Investigation of the CasCor Family of Learning
Algorithms. Neural Computation, 10:885-896, 1997.

P. Podar and K. P. Unnikrishnan. Nonlinear Prediction of
Speech Signals using Memory Neuron Networks. Neural Net-
works for Signal Processing I, pages 885-896, 1991.

S. Ribeiro and R. Alquézar. A Comparative Study on a Signal
Forecasting Task applying Long Short-Term Memory (LSTM)
Recurrent Neural Networks. In VI Simpdsio Ibero-Americano
de Reconhecimento de Padroes, pages 487-495, Florianopolis,
Brazil, 2001.

E. Romero and R. Alquézar. A New Incremental Method for
Function Appoximation using Feed-forward Neural Networks.
In Proc. of the Int. Joint Conf. on Neural Networks, Honolulu,
Hawaii, 2002.

A. J. Robinson and F. Fallside. The utility driven dy-
namic error propagation network. Technical Report CUED/F-
INFENG/TR.1, Engineering Department, Cambridge Univer-
sity, 1987.

R.D. Reed and R.J Marks. Neural Smithing: Supervised Learn-
ing in Feedforward Artificial Neural Networks. MIT Press, Cam-
bridge, MA, 1999.

J. Schmidhuber. A Fixed Size Storage O(n?®) Time Complex-
ity Learning Algorithm for Fully Recurrent Continually running
Networks. Neural Networks, 4(2):243-248, 1992.

38

[Sch92b]

[SHGY7]

[SK00]

[Smi93]

[SR69]

[8S74]

[Val93]

[VP92]

[WHH*89]

[WP9O]

J. Schmidhuber. Learning Complex, Extended Sequences us-
ing the Principle of History Compression. Neural Networks,
4(2):208-214, 1992.

H.T. Siegelmann, B.G. Horne, and C.L. Giles. Computational
Capabilities of Recurrent NARX Neural Networks. In [FEFE
Transactions on Systems, Man and Cybernetics, volume 26,
pages 208-216, 1997.

O. Stan and E. Kamen. A Local Linearized Least Squares Al-
gorithm for Training Feedforward Neural Networks. In [EEFFE
Transactions on Neural Networks, volume 11, pages 487495,
2000.

F.J. Smieja. Neural Network Constructive Algorithms: Trading
Generalisation for Learning Efficiency Circuits. Systems and
Stgnal Processing, 12:331-374, 1993.

M.F. Snyder and V.C. Rideout. Computer Simulation Studies
of the Venous Circulation. In IEEE Transaction on Biomedical
Engineering, volume 16, pages 325-334, 1969.

H. Suga and K. Sagawa. Instantaneous Pressure-volume Rela-
tionships and their Ratio in the Excised, Supported Canine Left
Ventricle. Circulation Research, 53:117-126, 1974.

M. Vallverda. Modelado y Simulacion del Sistema de Control
Cardiovascular en Pacientes con Lesiones Coronarias. PhD the-
sis, Technical University of Catalonia, 1993.

B.C. de Vries and J.C. Principe. The Gamma Model - A New
Neural Network Model for Temporal Processing. Neural Com-
putation, 5:565-576v, 1992.

A. Waibel, T. Hanazawa, G. Hinton, K. Shiano, and K. Lang.
Phoneme Recognition using Time-Delay Neural Networks. In
IEEFE Transactions on Acoustics, Speech and Signal Processing,
volume 37, pages 328-339, 1989.

R.J. Williams and J. Peng. An Efficient Gradient-based Algo-
rithm for on-line Training of Recurrent Network Trajectories.
Neural Networks, 2:491-501, 1990.

39

[WZ89] R.J. Williams and D. Zipser. A Learning Algorithm for Contin-
ually Running Fully Recurrent Neural Networks. Neural Net-
works, 2(1):270-280, 1989.

40

