262 research outputs found

    Wideband CMOS low noise amplifiers

    Get PDF
    Modern fully integrated receiver architectures, require inductorless circuits to achieve their potential low area, low cost, and low power. The low noise amplifier (LNA), which is a key block in such receivers, is investigated in this thesis. LNAs can be either narrowband or wideband. Narrowband LNAs use inductors and have very low noise figure, but they occupy a large area and require a technology with RF options to obtain inductors with high Q. Recently, wideband LNAs with noise and distortion cancelling, with passive loads have been proposed, which can have low NF, but have high power consumption. In this thesis the main goal is to obtain a very low area, low power, and low-cost wideband LNA. First, it is investigated a balun LNA with noise and distortion cancelling with active loads to boost the gain and reduce the noise figure (NF). The circuit is based on a conventional balun LNA with noise and distortion cancellation, using the combination of a common-gate (CG) stage and common-source (CS) stage. Simulation and measurements results, with a 130 nm CMOS technology, show that the gain is enhanced by about 3 dB and the NF is reduced by at least 0.5 dB, with a negligible impact on the circuit linearity (IIP3 is about 0 dBm). The total power dissipation is only 4.8 mW, and the active area is less than 50 x 50 m2 . It is also investigated a balun LNA in which the gain is boosted by using a double feedback structure.We propose to replace the load resistors by active loads, which can be used to implement local feedback loops (in the CG and CS stages). This will boost the gain and reduce the noise figure (NF). Simulation results, with the same 130 nm CMOS technology as above, show that the gain is 24 dB and NF is less than 2.7 dB. The total power dissipation is only 5.4 mW (since no extra blocks are required), leading to a figure-of-merit (FoM) of 3.8 mW1, using 1.2 V supply. The two LNA approaches proposed in this thesis are validated by simulation and by measurement results, and are included in a receiver front-end for biomedical applications (ISM and WMTS), as an example; however, they have a wider range of applications

    HIGH PERFORMANCE CMOS WIDE-BAND RF FRONT-END WITH SUBTHRESHOLD OUT OF BAND SENSING

    Get PDF
    In future, the radar/satellite wireless communication devices must support multiple standards and should be designed in the form of system-on-chip (SoC) so that a significant reduction happen on cost, area, pins, and power etc. However, in such device, the design of a fully on-chip CMOS wideband receiver front-end that can process several radar/satellite signal simultaneously becomes a multifold complex problem. Further, the inherent high-power out-of-band (OB) blockers in radio spectrum will make the receiver more non-linear, even sometimes saturate the receiver. Therefore, the proper blocker rejection techniques need to be incorporated. The primary focus of this research work is the development of a CMOS high-performance low noise wideband receiver architecture with a subthreshold out of band sensing receiver. Further, the various reconfigurable mixer architectures are proposed for performance adaptability of a wideband receiver for incoming standards. Firstly, a high-performance low- noise bandwidthenhanced fully differential receiver is proposed. The receiver composed of a composite transistor pair noise canceled low noise amplifier (LNA), multi-gate-transistor (MGTR) trans-conductor amplifier, and passive switching quad followed by Tow Thomas bi-quad second order filter based tarns-impedance amplifier. An inductive degenerative technique with low-VT CMOS architecture in LNA helps to improve the bandwidth and noise figure of the receiver. The full receiver system is designed in UMC 65nm CMOS technology and measured. The packaged LNA provides a power gain 12dB (including buffer) with a 3dB bandwidth of 0.3G – 3G, noise figure of 1.8 dB having a power consumption of 18.75mW with an active area of 1.2mm*1mm. The measured receiver shows 37dB gain at 5MHz IF frequency with 1.85dB noise figure and IIP3 of +6dBm, occupies 2mm*1.2mm area with 44.5mW of power consumption. Secondly, a 3GHz-5GHz auxiliary subthreshold receiver is proposed to estimate the out of blocker power. As a redundant block in the system, the cost and power minimization of the auxiliary receiver are achieved via subthreshold circuit design techniques and implementing the design in higher technology node (180nm CMOS). The packaged auxiliary receiver gives a voltage gain of 20dB gain, the noise figure of 8.9dB noise figure, IIP3 of -10dBm and 2G-5GHz bandwidth with 3.02mW power consumption. As per the knowledge, the measured results of proposed main-high-performancereceiver and auxiliary-subthreshold-receiver are best in state of art design. Finally, the various viii reconfigurable mixers architectures are proposed to reconfigure the main-receiver performance according to the requirement of the selected communication standard. The down conversion mixers configurability are in the form of active/passive and Input (RF) and output (IF) bandwidth reconfigurability. All designs are simulated in 65nm CMOS technology. To validate the concept, the active/ passive reconfigurable mixer configuration is fabricated and measured. Measured result shows a conversion gain of 29.2 dB and 25.5 dB, noise figure of 7.7 dB and 10.2 dB, IIP3 of -11.9 dBm and 6.5 dBm in active and passive mode respectively. It consumes a power 9.24mW and 9.36mW in passive and active case with a bandwidth of 1 to 5.5 GHz and 0.5 to 5.1 GHz for active/passive case respectively

    CMOS Design of Reconfigurable SoC Systems for Impedance Sensor Devices

    Get PDF
    La rĂĄpida evoluciĂłn en el campo de los sensores inteligentes, junto con los avances en las tecnologĂ­as de la computaciĂłn y la comunicaciĂłn, estĂĄ revolucionando la forma en que recopilamos y analizamos datos del mundo fĂ­sico para tomar decisiones, facilitando nuevas soluciones que desempeñan tareas que antes eran inconcebibles de lograr.La inclusiĂłn en un mismo dado de silicio de todos los elementos necesarios para un proceso de monitorizaciĂłn y actuaciĂłn ha sido posible gracias a los avances en micro (y nano) electrĂłnica. Al mismo tiempo, la evoluciĂłn de las tecnologĂ­as de procesamiento y micromecanizado de superficies de silicio y otros materiales complementarios ha dado lugar al desarrollo de sensores integrados compatibles con CMOS, lo que permite la implementaciĂłn de matrices de sensores de alta densidad. AsĂ­, la combinaciĂłn de un sistema de adquisiciĂłn basado en sensores on-Chip, junto con un microprocesador como nĂșcleo digital donde se puede ejecutar la digitalizaciĂłn de señales, el procesamiento y la comunicaciĂłn de datos proporciona caracterĂ­sticas adicionales como reducciĂłn del coste, compacidad, portabilidad, alimentaciĂłn por baterĂ­a, facilidad de uso e intercambio inteligente de datos, aumentando su potencial nĂșmero de aplicaciones.Esta tesis pretende profundizar en el diseño de un sistema portĂĄtil de mediciĂłn de espectroscopĂ­a de impedancia de baja potencia operado por baterĂ­a, basado en tecnologĂ­as microelectrĂłnicas CMOS, que pueda integrarse con el sensor, proporcionando una implementaciĂłn paralelizable sin incrementar significativamente el tamaño o el consumo, pero manteniendo las principales caracterĂ­sticas de fiabilidad y sensibilidad de un instrumento de laboratorio. Esto requiere el diseño tanto de la etapa de gestiĂłn de la energĂ­a como de las diferentes celdas que conforman la interfaz, que habrĂĄn de satisfacer los requisitos de un alto rendimiento a la par que las exigentes restricciones de tamaño mĂ­nimo y bajo consumo requeridas en la monitorizaciĂłn portĂĄtil, caracterĂ­sticas que son aĂșn mĂĄs crĂ­ticas al considerar la tendencia actual hacia matrices de sensores.A nivel de celdas, se proponen diferentes circuitos en un proceso CMOS de 180 nm: un regulador de baja caĂ­da de voltaje como unidad de gestiĂłn de energĂ­a, que proporciona una alimentaciĂłn de 1.8 V estable, de bajo ruido, precisa e independiente de la carga para todo el sistema; amplificadores de instrumentaciĂłn con una aproximaciĂłn completamente diferencial, que incluyen una etapa de entrada de voltaje/corriente configurable, ganancia programable y ancho de banda ajustable, tanto en la frecuencia de corte baja como alta; un multiplicador para conformar la demodulaciĂłn dual, que estĂĄ embebido en el amplificador para optimizar consumo y ĂĄrea; y filtros pasa baja totalmente integrados, que actĂșan como extractores de magnitud de DC, con frecuencias de corte ajustables desde sub-Hz hasta cientos de Hz.<br /

    A MOSFET-only wideband LNA exploiting thermal noise canceling and gain optimization

    Get PDF
    Dissertação apresentada na Faculdade de CiĂȘncias e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia ElectrotĂ©cnica e de ComputadoresIn this thesis a MOSFET-only implementation of a balun LNA is presended. This LNA is based on the combination of a common-gate and a common-source stage with canceling of the noise of the common-gate stage. In this circuit, resistors are replaced by transistors, to reduce area and cost, and minimize the e ect of process and supply variations and mismatches. In addition we obtain a higher gain for the same voltage drop. Thus, the LNA gain is optimized, and the noise gure(NF) is reduced. We derive equations for the gain, input matching, and NF. The performance of this new topology is compared with that of a conventional LNA with resistors. Simulation results with a 130 nm CMOS technology show that we obtain a balun LNA with a peak 20.2 dB gain (about 2 dB improvement), and a spot NF lower than 2.4 dB. The total power consumption is only 4.8 mW for a bandwidth wide than 5 GHz

    Design of broadband inductor-less RF front-ends with high dynamic range for G.hn

    Get PDF
    System-on-Chip (SoC) was adopted in recent years as one of the solutions to reduce the cost of integrated systems. When the SoC solution started to be used, the final product was actually more expensive due to lower yield. The developments in integrated technology through the years allowed the integration of more components in lesser area with a better yield. Thus, SoCs became a widely used solution to reduced the cost of the final product, integrating into a single-chip the main parts of a system: analog, digital and memory. As integrated technology kept scaling down to allow a higher density of transistors and thus providing more functionality with the same die area, the analog RF parts of the SoC became a bottleneck to cost reduction as inductors occupy a large die area and do not scale down with technology. Hence, the trend moves toward the research and design of inductor-less SoCs that further reduce the cost of the final solution. Also, as the demand for home networking high-data-rates communication systems has increased over the last decade, several standards have been developed to satisfy the requirements of each application, the most popular being wireless local area networks (WLANs) based on the IEEE 802.11 standard. However, poor signal propagation across walls make WLANs unsuitable for high-speed applications such as high-definition in-home video streaming, leading to the development of wired technologies using the existing in-home infrastructure. The ITU-T G.hn recommendation (G.9960 and G.9961) unifies the most widely used wired infrastructures at home (coaxial cables, phone lines and power lines) into a single standard for high-speed data transmission of up to 1 Gb/s. The G.hn recommendation defines a unified networking over power lines, phone lines and coaxial cables with different plans for baseband and RF. The RF-coax bandplan, where this thesis is focused, uses 50 MHz and 100 MHz bandwidth channels with 256 and 512 carriers respectively. The center frequency can range from 350 MHz to 2450 MHz. The recommendation specifies a transmission power limit of 5 dBm for the 50 MHz bandplan and 8~dBm for the 100 MHz bandplan, therefore the maximum transmitted power in each carrier is the same for both bandplans. Due to the nature of an in-home wired environment, receivers that can handle both very large and very small amplitude signals are required; when transmitter and receiver are connected on the same electric outlet there is no channel attenuation and the signal-to-noise-plus-distortion ratio (SNDR) is dominated by the receiver linearity, whereas when transmitter and receiver are several rooms apart channel attenuation is high and the SNDR is dominated by the receiver noise figure. The high dynamic range specifications for these receivers require the use of configurable-gain topologies that can provide both high-linearity and low-noise for different configurations. Thus, this thesis has been aimed at researching high dynamic range broadband inductor-less topologies to be used as the RF front-end for a G.hn receiver complying with the provided specifications. A large part of the thesis has been focused on the design of the input amplifier of the front-end, which is the most critical stage as the noise figure and linearity of the input amplifier define the achievable overall specifications of the whole front-end. Three prototypes has been manufactured using a 65 nm CMOS process: two input RFPGAs and one front-end using the second RFPGA prototype.El "sistema en un chip" (SoC) fue adoptado recientemente como una de las soluciones para reducir el coste de sistemas integrados. Cuando se empezĂł a utilizar la soluciĂłn SoC, el producto final era mĂĄs caro debido al bajo rendimiento de producciĂłn. Los avances en tecnologĂ­a integrada a lo largo de los años han permitido la integraciĂłn de mĂĄs componentes en menos ĂĄrea con mejoras en rendimiento. Por lo tanto, SoCs pasĂł a ser una soluciĂłn ampliamente utilizada para reducir el coste del producto final, integrando en un Ășnico chip las principales partes de un sistema: analĂłgica, digital y memoria. A medida que las tecnologĂ­as integradas se reducĂ­an en tamaño para permitir una mayor densisdad de transistores y proveer mayor funcionalidad con la misma ĂĄrea, las partes RF analĂłgicas del SoC pasaron a ser la limitaciĂłn en la reducciĂłn de costes ya que los inductores ocupan mucha ĂĄrea y no escalan con la tecnologĂ­a. Por lo tanto, las tendencias en investigaciĂłn se mueven hacia el diseño de SoCs sin inductores que todavĂ­a reducen mĂĄs el coste final del producto. TambiĂ©n, a medida que la demanda en sistemas de comunicaciĂłn domĂ©sticos de alta velocidad ha crecido a lo largo de la Ășltima dĂ©cada, se han desarrollado varios estĂĄndares para satisfacer los requisitos de cada aplicaciĂłn, siendo las redes sin hilos (WLANs) basadas en el estĂĄndar IEEE 802.11 las mĂĄs populares. Sin embargo, una pobre propagaciĂłn de señal a travĂ©s de las paredes hacen que las WLANs sean inadecuadas para aplicaciones de alta-velocidad como transmisiĂłn de vĂ­deo de alta definiciĂłn en tiempo real, resultando en el desarrollo de tecnologĂ­as con hilos utilizando la infraestructura existente en los domicilios. La recomendaciĂłn ITU-T G.hn (G.9960 and G.9961) unifica las principales infraestructuras con hilos domĂ©sticas (cables coaxiales, lĂ­nias de telĂ©fono y lĂ­nias de electricidad) en un sĂłlo estĂĄndar para la transmisiĂłn de datos hasta 1 Gb/s. La recomendaciĂłn G.hn define una red unificada sobre lĂ­nias de electricidad, de telĂ©fono y coaxiales con diferentes esquemas para banda base y RF. El esquema RF-coax en el cual se basa esta tesis, usa canales con un ancho de banda de 50 MHz y 100 MHz con 256 y 512 portadoras respectivamente. La frecuencia centra puede variar desde 350 MHz hasta 2450 MHz. La recomendaciĂłn especifica un lĂ­mite en la potencia de transmisiĂłn de 5 dBm para el esquema de 50 MHz y 8 dBm para el esquema de 100 MHz, de tal forma que la potencia mĂĄxima por portadora es la misma en ambos esquemas. Debido a la estructura de un entorno domĂ©stico con hilos, los receptores deben ser capaces de procesar señales con amplitud muy grande o muy pequeña; cuando transmisor y receptor estĂĄn conectados en la misma toma elĂ©ctrica no hay atenuaciĂłn de canal y el ratio de señal a rudio mĂĄs distorsiĂłn (SNDR) estĂĄ dominado por la linealidad del receptor, mientras que cuando transmisor y receptor estĂĄn separados por varias habitaciones la atenuaciĂłn es elevada y el SNDR estĂĄ dominado por la figura de ruido del receptor. Los elevados requisitos de rango dinĂĄmico para este tipo de receptores requieren el uso de topologĂ­as de ganancia configurable que pueden proporcionar tanto alta linealidad como bajo ruido para diferentes configuraciones. Por lo tanto, esta tesis estĂĄ encarada a la investigaciĂłn de topologĂ­as sin inductores de banda ancha y elevado rango dinĂĄmico para ser usadas a la entrada de un receptor G.hn cumpliendo con las especificaciones proporcionadas. Una gran parte de la tesis se ha centrado en el diseño del amplificador de entrada al ser la etapa mĂĄs crĂ­tica, ya que la figura de ruido y linealidad del amplificador de entrada definen lĂĄs mĂĄximas especificaciones que el sistema puede conseguir. Se han fabricado 3 prototipos con un proceso CMOS de 65 nm: 2 amplificadores y un sistema completo con amplificador y mezclador.Postprint (published version

    Reconfigurable Receiver Front-Ends for Advanced Telecommunication Technologies

    Get PDF
    The exponential growth of converging technologies, including augmented reality, autonomous vehicles, machine-to-machine and machine-to-human interactions, biomedical and environmental sensory systems, and artificial intelligence, is driving the need for robust infrastructural systems capable of handling vast data volumes between end users and service providers. This demand has prompted a significant evolution in wireless communication, with 5G and subsequent generations requiring exponentially improved spectral and energy efficiency compared to their predecessors. Achieving this entails intricate strategies such as advanced digital modulations, broader channel bandwidths, complex spectrum sharing, and carrier aggregation scenarios. A particularly challenging aspect arises in the form of non-contiguous aggregation of up to six carrier components across the frequency range 1 (FR1). This necessitates receiver front-ends to effectively reject out-of-band (OOB) interferences while maintaining high-performance in-band (IB) operation. Reconfigurability becomes pivotal in such dynamic environments, where frequency resource allocation, signal strength, and interference levels continuously change. Software-defined radios (SDRs) and cognitive radios (CRs) emerge as solutions, with direct RF-sampling receivers offering a suitable architecture in which the frequency translation is entirely performed in digital domain to avoid analog mixing issues. Moreover, direct RF- sampling receivers facilitate spectrum observation, which is crucial to identify free zones, and detect interferences. Acoustic and distributed filters offer impressive dynamic range and sharp roll off characteristics, but their bulkiness and lack of electronic adjustment capabilities limit their practicality. Active filters, on the other hand, present opportunities for integration in advanced CMOS technology, addressing size constraints and providing versatile programmability. However, concerns about power consumption, noise generation, and linearity in active filters require careful consideration.This thesis primarily focuses on the design and implementation of a low-voltage, low-power RFFE tailored for direct sampling receivers in 5G FR1 applications. The RFFE consists of a balun low-noise amplifier (LNA), a Q-enhanced filter, and a programmable gain amplifier (PGA). The balun-LNA employs noise cancellation, current reuse, and gm boosting for wideband gain and input impedance matching. Leveraging FD-SOI technology allows for programmable gain and linearity via body biasing. The LNA's operational state ranges between high-performance and high-tolerance modes, which are apt for sensitivityand blocking tests, respectively. The Q-enhanced filter adopts noise-cancelling, current-reuse, and programmable Gm-cells to realize a fourth-order response using two resonators. The fourth-order filter response is achieved by subtracting the individual response of these resonators. Compared to cascaded and magnetically coupled fourth-order filters, this technique maintains the large dynamic range of second-order resonators. Fabricated in 22-nm FD-SOI technology, the RFFE achieves 1%-40% fractional bandwidth (FBW) adjustability from 1.7 GHz to 6.4 GHz, 4.6 dB noise figure (NF) and an OOB third-order intermodulation intercept point (IIP3) of 22 dBm. Furthermore, concerning the implementation uncertainties and potential variations of temperature and supply voltage, design margins have been considered and a hybrid calibration scheme is introduced. A combination of on-chip and off-chip calibration based on noise response is employed to effectively adjust the quality factors, Gm-cells, and resonance frequencies, ensuring desired bandpass response. To optimize and accelerate the calibration process, a reinforcement learning (RL) agent is used.Anticipating future trends, the concept of the Q-enhanced filter extends to a multiple-mode filter for 6G upper mid-band applications. Covering the frequency range from 8 to 20 GHz, this RFFE can be configured as a fourth-order dual-band filter, two bandpass filters (BPFs) with an OOB notch, or a BPF with an IB notch. In cognitive radios, the filter’s transmission zeros can be positioned with respect to the carrier frequencies of interfering signals to yield over 50 dB blocker rejection

    Low Voltage Low Power Analogue Circuits Design

    Get PDF
    DisertačnĂ­ prĂĄce je zaměƙena na vĂœzkum nejbÄ›ĆŸnějĆĄĂ­ch metod, kterĂ© se vyuĆŸĂ­vajĂ­ pƙi nĂĄvrhu analogovĂœch obvodĆŻ s vyuĆŸitĂ­ nĂ­zkonapěƄovĂœch (LV) a nĂ­zkopƙíkonovĂœch (LP) struktur. Tyto LV LP obvody mohou bĂœt vytvoƙeny dĂ­ky vyspělĂœm technologiĂ­m nebo takĂ© vyuĆŸitĂ­m pokročilĂœch technik nĂĄvrhu. DisertačnĂ­ prĂĄce se zabĂœvĂĄ prĂĄvě pokročilĂœmi technikami nĂĄvrhu, pƙedevĆĄĂ­m pak nekonvenčnĂ­mi. Mezi tyto techniky patƙí vyuĆŸitĂ­ prvkĆŻ s ƙízenĂœm substrĂĄtem (bulk-driven - BD), s plovoucĂ­m hradlem (floating-gate - FG), s kvazi plovoucĂ­m hradlem (quasi-floating-gate - QFG), s ƙízenĂœm substrĂĄtem s plovoucĂ­m hradlem (bulk-driven floating-gate - BD-FG) a s ƙízenĂœm substrĂĄtem s kvazi plovoucĂ­m hradlem (quasi-floating-gate - BD-QFG). PrĂĄce je takĂ© orientovĂĄna na moĆŸnĂ© zpĆŻsoby implementace znĂĄmĂœch a modernĂ­ch aktivnĂ­ch prvkĆŻ pracujĂ­cĂ­ch v napěƄovĂ©m, proudovĂ©m nebo mix-mĂłdu. Mezi tyto prvky lze začlenit zesilovače typu OTA (operational transconductance amplifier), CCII (second generation current conveyor), FB-CCII (fully-differential second generation current conveyor), FB-DDA (fully-balanced differential difference amplifier), VDTA (voltage differencing transconductance amplifier), CC-CDBA (current-controlled current differencing buffered amplifier) a CFOA (current feedback operational amplifier). Za Ășčelem potvrzenĂ­ funkčnosti a chovĂĄnĂ­ vĂœĆĄe zmĂ­něnĂœch struktur a prvkĆŻ byly vytvoƙeny pƙíklady aplikacĂ­, kterĂ© simulujĂ­ usměrƈovacĂ­ a induktančnĂ­ vlastnosti diody, dĂĄle pak filtry dolnĂ­ propusti, pĂĄsmovĂ© propusti a takĂ© univerzĂĄlnĂ­ filtry. VĆĄechny aktivnĂ­ prvky a pƙíklady aplikacĂ­ byly ověƙeny pomocĂ­ PSpice simulacĂ­ s vyuĆŸitĂ­m parametrĆŻ technologie 0,18 m TSMC CMOS. Pro ilustraci pƙesnĂ©ho a ĂșčinnĂ©ho chovĂĄnĂ­ struktur je v disertačnĂ­ prĂĄci zahrnuto velkĂ© mnoĆŸstvĂ­ simulačnĂ­ch vĂœsledkĆŻ.The dissertation thesis is aiming at examining the most common methods adopted by analog circuits' designers in order to achieve low voltage (LV) low power (LP) configurations. The capability of LV LP operation could be achieved either by developed technologies or by design techniques. The thesis is concentrating upon design techniques, especially the non–conventional ones which are bulk–driven (BD), floating–gate (FG), quasi–floating–gate (QFG), bulk–driven floating–gate (BD–FG) and bulk–driven quasi–floating–gate (BD–QFG) techniques. The thesis also looks at ways of implementing structures of well–known and modern active elements operating in voltage–, current–, and mixed–mode such as operational transconductance amplifier (OTA), second generation current conveyor (CCII), fully–differential second generation current conveyor (FB–CCII), fully–balanced differential difference amplifier (FB–DDA), voltage differencing transconductance amplifier (VDTA), current–controlled current differencing buffered amplifier (CC–CDBA) and current feedback operational amplifier (CFOA). In order to confirm the functionality and behavior of these configurations and elements, they have been utilized in application examples such as diode–less rectifier and inductance simulations, as well as low–pass, band–pass and universal filters. All active elements and application examples have been verified by PSpice simulator using the 0.18 m TSMC CMOS parameters. Sufficient numbers of simulated plots are included in this thesis to illustrate the precise and strong behavior of structures.

    Inductorless LNA and Harmonic-rejection Mixer for Wideband Direct-conversion Receiver

    Get PDF
    In this master thesis, combinations of noise-canceling LNA and harmonic-rejection mixers are investigated and compared to find an optimal inductorless receiver front-end for low-band (600-960MHz) FDD LTE-A network. The work was carried out in a modem development project at Ericsson Modems, Lund. Three receiver versions with different harmonic rejection techniques are compared in terms of noise figure (NF) and power consumption and the receiver with 6 LO phases is selected for optimization. The LNA combines noise cancellation for matching stage and nonlinearity cancellation for output stages so both low noise figure and high linearity are achieved. The final circuit show great potential for FDD LTE-A system with support up to 3 aggregated carriers for higher bandwidth. Low NF at 1.62 dB after the LNA and 1.75 dB after the mixer are observed from 0.4-1GHz. The LNA IIP2 is above 12 dBm and robust with process and temperature. Gain switching with possible reduction of 6 and 12 dB is integrated and the LNA linearity is not significantly suffered by low gain. Input return loss (S11) is better than -12dB regardless of gain, number of carriers and temperature (-30 – 110°C). Inductorless operation saves a lot of chip area and avoid dead package area, which then save cost and make the solution competitive.This master’s thesis done at Ericsson Modem aimed to investigate an inductorless receiver front-end for low-band LTE-A user terminals. The circuit combined noise-canceling technique and push-pull stage for LNA and harmonic-rejection technique for mixer, so three main issues of inductorless operation are solved. The issues include LNA noise and linearity, and noise folding effect caused by 3rd harmonics of LO signals

    ACTIVE INDUCTOR BASED LOW PHASE NOISE VOLTAGE CONTROLLED OSCILLATOR

    Get PDF
    This paper proposed a fully MOS-based voltage-controlled oscillator (VCO) with tuning range and low phase noise, replacing the most often used NMOS-based inductor-capacitor tank arranged in cross-coupled topology with a high-Q active inductor. This study mainly focuses on VCO design using a MOS-based active inductor and is implemented and verified using UMC 180nm CMOS technology. The proposed VCO is resistorless and consists of an active inductor, two MOS capacitors, and the buffer circuits. The fundamental principle of this MOS-based VCO concept is to use MOS based inductor to replace the passive inductor, which is an active inductor that gives less area and low power usage. At 1 MHz frequency offset, the phase noise achieved by this proposed configuration is -102.78dBc/Hz. In the proposed VCO architecture, the frequency tuning range is 0.5GHz to 1.7GHz. This VCO design can accomplish this acceptable tuning range by altering the regulating voltage from 0.7V to 1.8V. This suggested architecture of proposed VCO design has the power consumption of 9mW with a 1.8V supply voltage. The suggested VCO has been shown to be a good fit for low-power RF circuit applications while preserving acceptable performance metrics
    • 

    corecore