1,949 research outputs found

    SMART Cables for Observing the Global Ocean: Science and Implementation

    Get PDF
    The ocean is key to understanding societal threats including climate change, sea level rise, ocean warming, tsunamis, and earthquakes. Because the ocean is difficult and costly to monitor, we lack fundamental data needed to adequately model, understand, and address these threats. One solution is to integrate sensors into future undersea telecommunications cables. This is the mission of the SMART subsea cables initiative (Science Monitoring And Reliable Telecommunications). SMART sensors would “piggyback” on the power and communications infrastructure of a million kilometers of undersea fiber optic cable and thousands of repeaters, creating the potential for seafloor-based global ocean observing at a modest incremental cost. Initial sensors would measure temperature, pressure, and seismic acceleration. The resulting data would address two critical scientific and societal issues: the long-term need for sustained climate-quality data from the under-sampled ocean (e.g., deep ocean temperature, sea level, and circulation), and the near-term need for improvements to global tsunami warning networks. A Joint Task Force (JTF) led by three UN agencies (ITU/WMO/UNESCO-IOC) is working to bring this initiative to fruition. This paper explores the ocean science and early warning improvements available from SMART cable data, and the societal, technological, and financial elements of realizing such a global network. Simulations show that deep ocean temperature and pressure measurements can improve estimates of ocean circulation and heat content, and cable-based pressure and seismic-acceleration sensors can improve tsunami warning times and earthquake parameters. The technology of integrating these sensors into fiber optic cables is discussed, addressing sea and land-based elements plus delivery of real-time open data products to end users. The science and business case for SMART cables is evaluated. SMART cables have been endorsed by major ocean science organizations, and JTF is working with cable suppliers and sponsors, multilateral development banks and end users to incorporate SMART capabilities into future cable projects. By investing now, we can build up a global ocean network of long-lived SMART cable sensors, creating a transformative addition to the Global Ocean Observing System

    Survivable and disaster- resilient submarine optical-fiber cable deployment

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Internete olan mevcut sosyal ve ekonomik bağlılık ve servis kesintileri nedeni ile oluşan önemli miktardaki tamir masrafları ile ağ kalımlılığı günümüzde telekomünikasyon ağ dizaynının önemli bir parçası olmuştur. Ayrıca, denizaltı fiber optik kabloların depremler gibi doğal afetlere veya insan-yapımı afetlere karşı zayıf olduğu da herkesçe kabul edilmiş bir gerçektir. Afete dayanıklı bir denizaltı kablo yerleştirilmesi, bir yada daha fazla kablo afet nedeni ile koptuğunda ağ servislerini yeniden eski haline getirmek için ağ operatörünün maliyetlerini (yolculuk maliyeti, kapasite kayıp maliyeti ve hasar gören kablonun tamir maliyeti) azaltabilir. Bu çalışmada afet-farkındalı denizaltı fiber optik kabloları yerleştirme problemini araştırdık. Kablolar için bir yol/rota seçerken yaklaşımımız toplam beklenen kayıp maliyetini, denizaltı fiber kabloların afetler nedeni ile zarar görebileceğini de düşünerek, bütçe ve diğer kısıtlamalar altında minimize etmeyi hedefler. Yaklaşımımızda afetle ilişkisiz arızaların ana kablonun yanında bir de yedek kablo sağlanarak üstesinden gelindiğini varsaydık. Önce basitçe bir su kütlesi (deniz/okyanus) tarafından ayrılmış iki kara parçası üzerine yerleştirilmiş iki düğümün olduğu bir senaryoyu düşündük. Daha sonra problemi formüle edebilmek için afet bölgelerinden sakınacak şekilde eliptik kablo şeklini dikkate aldık. En nihayetinde problem için, bu durumda yaklaşımımızın potansiyel faydalarını gösteren sayısal örneklerle desteklediğimiz bir Tamsayı Lineer Programlama formülasyonu ürettik. Bununla birlikte problemi daha pratik hale getirmek için, farklı kara parçalarına yerleşmiş çoklu düğümlerin örgüsel bir ağ topolojisini, düzenli şekillere sahip olmayan kabloları, deniz altındaki ortamın topografisini de dikkate aldık. Bu problemi de ifade etmek için sayısal örneklere birlikte bir Tamsayı Lineer Programlama sunduk. Sonuç olarak, pratik durumu düşünerek bir örnek durum incelemesi üzerinde yaklaşımımızı mevcut kablolama sistemleri ile kıyaslayarak teyit ettik. İki durumda da, sonuçlar bize %2-%11 oranında bir yerleştirme maliyeti artışı karşılığında beklenen maliyeti %90-%100 arasında azaltabileceğimizi gösterdi.With the existing profoundly social and economic reliance on the Internet and the significant reparation cost associated with service interruption, network survivability is an important element in telecommunication network design nowadays. Moreover, the fact that submarine optical-fiber cables are susceptible to man-made or natural disasters such as earthquakes is well recognized. A disaster-resilient submarine cable deployment can save cost incurred by network operators such as the capacity-loss cost, the cruising cost and the repair cost of the damaged cables, in order to restore network service when cables break due to a disaster. In this study, we investigate disaster-aware submarine fiber-optic cable deployment problem. While selecting a route/path for cables, our approach aims to minimize the total expected cost, considering that submarine optical-fiber cables may break because of natural disasters, subject to deployment budget and other constraints. In our approach, we assume disaster-unrelated failures are handled by providing a backup cable along with primary cable. In the simple case we consider a scenario with two nodes located on two different lands separated by a water body (sea/ocean). We then consider an elliptic cable shape to formulate the problem, which can be extended to other cable shapes, subject to avoiding deploying cable in disaster zones. Eventuaaly, we provide an Integer Linear Programming formulation for the problem supported with illustrative numerical examples that show the potential benefit of our approach. Furthermore, in order to make the problem more practical, we consider a mesh topology network with multiple nodes located on different sea/ocean, submarine optical- fiber cables of irregular shape, and the topography of undersea environment. Eventually, we provide an Integer Linear Programming to address the problem, together with illustrative numerical examples. Finally, we validate our approach by conducting a case study wherein we consider a practical submarine optical-fiber cable system susceptible to natural disasters. In this case, we compare our approach against the existing cable system in terms of deployment cost and reduction in expected cost. In either case results show that our approach can reduce expected cost from 90% to 100% at a slight increase of 2% to 11% in deployment cost of disaster-unaware approach

    HUGO:The Hawaii Undersea Geo-Observatory

    Get PDF
    The Hawaii Undersea Geo-Observatory, HUGO, was installed with the intent of supplying infrastructure for researchers interested in studies of undersea volcanism and associated phenomena at Loihi, the newest volcano of the Hawaiian chain. Much like an astronomical observatory, HUGO is a facility where scientists can perform experiments while sharing resources with others. The main components of HUGO are the shore station, supplying power to the observatory and recording data; the main cable-an electro-optical cable connecting the shore station to the summit of Loihi; the Junction box-the power distribution and data collection center on Loihi; multiplexing (mux) nodes-secondary distribution points; and experiments supplied by scientists. HUGO can potentially supply electrical power, command capability and real-time data service to more than 100 instruments connected and removed on the ocean floor by submersible or ROV. HUGO was installed on October 11, 1997, but the main cable developed an electrical short circuit to sea water on April 26, 1998, and a new cable must be obtained and installed before routine operations can continue. Despite the failure, several important tasks have been accomplished, including: 1) the successful small-ship lay of the 47-km electro-optical cable from the Island of Hawaii to the summit of Loihi submarine volcano; 2) installation and servicing of the Junction box; 3) successful operation of electro-optical connectors on the ocean floor by submersible; 4) installation and removal of experiments on the ocean floor; 5) transmission of power and commands from shore to experiments installed at HUGO; 6) transmission of high-rate, high-fidelity data from the summit of Loihi to shore in real time; and 7) recording of volcanic, earthquake, biological, ocean wave and ship noises for a period of three months. This paper provides a general description of the HUGO system and its history of operation

    Obsea: a decadal balance for a cabled observatory deployment

    Get PDF
    The study of the effects of climate change on the marine environment requires the existence of sufficiently long time series of key parameters. The study of these series allows both to characterize the range of variability in each particular region and to detect trends or changes that could be attributed to anthropogenic causes. For this reason, networks of permanent cabled observation systems are being deployed in the ocean. This paper presents a balance of a decade of activity at the OBSEA cabled observatory, as an example of ocean monitoring success and drawbacks. It is not the objective of this article to analyze the scientific and technical aspects already presented by the authors in different publications (Table 4). We will evaluate the overall experience by retracing the different steps of infrastructure deployment and maintenance, focusing on routines for in situ control, damages experienced, breakdowns and administrative constraints by local administrations. We will conclude by providing a set of guidelines to improve cabled observatories scientific outreach, societal projection, and economic efficiency. As a result of this work, a 10-years dataset has been published in Pangaea that is available for the community.Peer ReviewedPostprint (published version

    Science requirements and the design of cabled ocean observatories

    Get PDF
    The ocean sciences are beginning a new phase in which scientists will enter the ocean environment and adaptively observe the Earth-Ocean system through remote control of sensors and sensor platforms. This new ocean science paradigm will be implemented using innovative facilities called ocean observatories which provide unprecedented levels of power and communication to access and manipulate real-time sensor networks deployed within many different environments in the ocean basins. Most of the principal design drivers for ocean observatories differ from those for commercial submarine telecommunications systems. First, ocean observatories require data to be input and output at one or more seafloor nodes rather than at a few land terminuses. Second, ocean observatories must distribute a lot of power to the seafloor at variable and fluctuating rates. Third, the seafloor infrastructure for an ocean observatory inherently requires that the wet plant be expandable and reconfigurable. Finally, because the wet communications and power infrastructure is comparatively complex, ocean observatory infrastructure must be designed for low life cycle cost rather than zero maintenance. The origin of these differences may be understood by taking a systems engineering approach to ocean observatory design through examining the requirements derived from science and then going through the process of iterative refinement to yield conceptual and physical designs. This is illustrated using the NEPTUNE regional cabled observatory power and data communications sub-systems

    Submarine Cable Security and International Law

    Get PDF
    In this article the revolution in fiber optic submarine cable communications is placed in context with the world’s growing dependence upon critical submarine cable infrastructure. Emphasis is placed on the development of international law designed to protect submarine cables and in particular those articles in the United Nations Law of the Sea Convention that foster and safeguard the freedom to lay and repair submarine cables. Special focus is applied to the status of international submarine telecommunication cables in cases of intentional actions that damage or destroy them and the State practice and customary international law that generally classifies submarine cables as legitimate military targets by belligerents. The article highlights the importance of increasing submarine route diversity and amending the SUA conventions to provide protection to international submarine cable systems. The concept and need of allowing cable ships to be exempt from belligerent attack in wartime is also analyzed
    corecore