1,289 research outputs found

    A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas

    Get PDF
    In this paper, we present the receiver and the on-chip antenna sections of a fully integrated 77-GHz four-element phased-array transceiver with on-chip antennas in silicon. The receiver section of the chip includes the complete down-conversion path comprising low-noise amplifier (LNA), frequency synthesizer, phase rotators, combining amplifiers, and on-chip dipole antennas. The signal combining is performed using a novel distributed active combining amplifier at an IF of 26 GHz. In the LO path, the output of the 52-GHz VCO is routed to different elements and can be phase shifted locally by the phase rotators. A silicon lens on the backside is used to reduce the loss due to the surface-wave power of the silicon substrate. Our measurements show a single-element LNA gain of 23 dB and a noise figure of 6.0 dB. Each of the four receive paths has a gain of 37 dB and a noise figure of 8.0 dB. Each on-chip antenna has a gain of +2 dBi

    mm-Wave Silicon ICs: Challenges and Opportunities

    Get PDF
    Millimeter-waves offer promising opportunities and interesting challenges to silicon integrated circuit and system designers. These challenges go beyond standard circuit design questions and span a broader range of topics including wave propagation, antenna design, and communication channel capacity limits. It is only meaningful to evaluate the benefits and shortcoming of silicon-based mm-wave integrated circuits in this broader context. This paper reviews some of these issues and presents several solutions to them

    Millimeter-Wave Super-Regenerative Receivers for Wireless Communication and Radar

    Get PDF
    Today’s world is becoming increasingly automated and interconnected with billions of smart devices coming online, leading to a steep rise in energy consumption from small microelectronics. This coincides with an urgent push to transform global energy production to green energies, causing disruptions and energy shortages, and making the case for efficient energy use ever more pressing. Two major areas where high growth is expected are the fields of wireless communication and radar sensors. Millimeter-wave frequency bands are planned for fifth-generation (5G) and sixth-generation (6G) cellular communication standards, as well as automotive frequency-modulated continuous wave (FMCW) radar systems for driving assistance and automation. Fast silicon-based technologies enable these advances by operating at high maximum frequencies, such as the silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) technologies. However, even the fastest transistors suffer from low and energy expensive gains at millimeter-wave frequencies. Rather than incremental improvements in circuit efficiency using conventional approaches, a disruptive revolution for green microelectronics could be enabled by exploring the low-power benefits of the super-regenerative receiver for some applications. The super-regenerative receiver uses a regenerative oscillator circuit to increase the gain by positive feedback, through coupling energy from the output back into the input. Careful bias and control of the circuit enables a very large gain from a small number of transistors and a very low energy dissipation. Thus, the super-regenerative oscillator could be used to replace amplifier circuits in high data rate wireless communication systems, or as active reflectors to increase the range of FMCW radar systems, greatly reducing the power consumption. The work in this thesis presents fundamental scientific research into the topic of energy-efficient millimeter-wave super-regenerative receivers for use in civilian wireless communication and radar applications. This research work covers the theory, analysis, and simulations, all the way up to the proof of concept, hardware realization, and experimental characterization. Analysis and modeling of regenerative oscillator circuits is presented and used to improve the understanding of the circuit operation, as well as design goals according to the specific application needs. Integrated circuits are investigated and characterized as a proof of concept for a high data rate wireless communication system operating between 140–220 GHz, and an automotive radar system operating at 60 GHz. Amplitude and phase regeneration capabilities for complex modulation are investigated, and principles for spectrum characterization are derived. The circuits are designed and fabricated in a 130 nm SiGe HBT technology, combining bipolar and complementary metal-oxide semiconductor (BiCMOS) transistors. To prove the feasibility of the research concepts, the work achieves a wireless communication link at 16 Gbit/s over 20 cm distance with quadrature amplitude modulation (QAM), which is a world record for the highest data rate ever reported in super-regenerative circuits. This was powered by a super-regenerative oscillator circuit operating at 180 GHz and providing 58 dB of gain. Energy efficiency is also considerably high, drawing 8.8 mW of dc power consumption, which corresponds to a highly efficient 0.6 pJ/bit. Packaging and module integration innovations were implemented for the system experiments, and additional broadband circuits were investigated to generate custom quench waveforms to further enhance the data rate. For radar active reflectors, a regenerative gain of 80 dB is achieved at 60 GHz from a single circuit, which is the best in its frequency range, despite a low dc power consumption of 25 mW

    Energy efficiency of mmWave massive MIMO precoding with low-resolution DACs

    Full text link
    With the congestion of the sub-6 GHz spectrum, the interest in massive multiple-input multiple-output (MIMO) systems operating on millimeter wave spectrum grows. In order to reduce the power consumption of such massive MIMO systems, hybrid analog/digital transceivers and application of low-resolution digital-to-analog/analog-to-digital converters have been recently proposed. In this work, we investigate the energy efficiency of quantized hybrid transmitters equipped with a fully/partially-connected phase-shifting network composed of active/passive phase-shifters and compare it to that of quantized digital precoders. We introduce a quantized single-user MIMO system model based on an additive quantization noise approximation considering realistic power consumption and loss models to evaluate the spectral and energy efficiencies of the transmit precoding methods. Simulation results show that partially-connected hybrid precoders can be more energy-efficient compared to digital precoders, while fully-connected hybrid precoders exhibit poor energy efficiency in general. Also, the topology of phase-shifting components offers an energy-spectral efficiency trade-off: active phase-shifters provide higher data rates, while passive phase-shifters maintain better energy efficiency.Comment: Published in IEEE Journal of Selected Topics in Signal Processin

    Développement d'une architecture innovante de récepteur radar à 77 GHz et démonstration en CMOS 28 nm FDSOI

    Get PDF
    Grâce à sa capacité à détecter des cibles éloignées malgré une mauvaise visibilité, le radar automobile à 77 GHz joue un rôle important dans l'aide à la conduite. L'utilisation des fréquences millimétriques offre une bonne résolution et une importante capacité d'intégration des circuits. C'est aussi un défi car il faut satisfaire un cahier des charges exigeant sur le bruit et la linéarité du récepteur. Les technologies SiGe BiCMOS ont été les premières utilisées pour la conception de récepteurs radar à 77 GHz. De bons résultats ont été obtenus en se basant sur des architectures utilisant des mélangeurs actifs. Cependant l'utilisation des technologie BiCMOS se traduisait par une consommation élevée, une faible capacité d'intégration et des coûts de production importants. Récemment, l'intégration des procédés CMOS menant à l'augmentation des fréquences de transition rend ces technologies plus attractives pour les applications nécessitant un faible coût et la cointégration de plusieurs fonctions au sein d'une même puce. La littérature sur les récepteurs radars en technologie CMOS à 77 GHz montre que les architectures inspirées par les technologies BiCMOS ne sont pas pertinentes pour cette application. Le but de cette thèse et de montrer que l'utilisation de techniques propres aux technologie CMOS comme l'échantillonnage et l'utilisation de portes logiques permet d'obtenir de très bonnes performances. Dans ce travail, deux nouvelles architectures de récepteurs radars basées sur le principe d'échantillonnage sont proposées. La première architecture est basée sur un mélangeur passif échantillonné qui permet d'obtenir un très bon compromis bruit/linéarité. La seconde exploite les propriétés des mélangeurs sous-échantillonnés afin utiliser une fréquence d'OL trois fois inférieure à la fréquence RF offrant ainsi de très intéressantes simplifications au niveau de la chaîne de distribution du signal d'OL du récepteur. Le contexte de cette étude est expliqué dans le 1er chapitre qui présente les exigences de conception liées à l'application radar et fourni une analyse de l'état de l'art des récepteurs à 77 GHZ. Le chapitre suivant décrit le principe de fonctionnement et l'implémentation d'un mélangeur échantillonné à 77 GHz en technologie CMOS 28- nm FDSOI. Une topologie de mélangeur sous-échantillonné utilisant une fréquence d'OL de 26 GHz pour convertir des signaux RF autour de 77 GHz est ensuite détaillée dans le chapitre 3. Le chapitre 4 conclut cette étude en détaillant l'intégration des mélangeurs étudiés dans les chapitres précédents avec un amplificateur faible bruit dans différents récepteurs radars. Ces architectures de récepteurs basées sur l'échantillonnage sont ensuite comparées entre elles et avec l'état de l'art montrant ainsi leurs avantages et inconvénients. Les résultats de cette comparaison confirment l'intérêt des techniques d'échantillonnage pour la conversion de fréquence dans le cadre de l'application radar.With its ability to detect distant targets under harsh visibility conditions, the 77 GHz automotive radar plays a key role in driving safety. Using mm-wave frequencies allow a good range resolution, a better circuit integration and a wide modulation bandwidth. This is also a challenge for circuit designers who must fulfill stringent requirements especially on the receiver front-end. First 77 GHz radar receivers were manufactured with SiGe BiCMOS processes benefiting from the high transition frequency and high breakdown voltage of Hetero-junction Bipolar Transistors (HBT). Good results have been achieved with active-mixer-based architectures, but these technologies suffer from high power consumptions, limited integration capacity and large production cost. More recently, the scaling down of CMOS processes (coming together with the increase of the transition frequency of the transistors) makes CMOS a good candidate for 77 GHz circuit design, especially when cost target requires single chip solutions. The literature related to CMOS radar receivers highlights that receivers based on BiCMOS architectures generally show poor performances. The aim of this work is to demonstrate that using CMOS specific technics such as sampling and the use of high-speed digital gates should enhance the performance of the receivers. In this work, two innovative radar receiver architectures based on the sampling principle are proposed. The first one shows that this principle can be extended to millimeter wave frequencies to benefit from a very good noise/linearity trade-off. While the second one uses this principle to converts a 77 GHz RF signal by using a 26 GHz LO frequency thus simplifying the LO distribution chain of the receiver. The background of this study is introduced in the chapter 1 presenting the design trade-off related to the 77 GHz radar receiver and provides a review of the existing solutions. The following chapter describes the sampling mixer principle and the implementation of a 77 GHz sampling mixer in 28-nm FDSOI CMOS technology. Then, a sub- sampling mixer topology allowing to convert an RF signal around 77 GHz using a 26 GHz LO frequency is detailed in the chapter 3. The chapter 4 draws the conclusion of this study by showing the implementation of the two proposed sampling-based mixers with a low noise amplifier in 77 GHz front ends. These receiver architectures are compared with the state of the art highlighting the strengths and weaknesses of the proposed solutions. The results of this study demonstrates that using sampling for down conversion can be convenient to address millimeter-wave frequency applications

    A 1.2 V and 69 mW 60 GHz Multi-channel Tunable CMOS Receiver Design

    Get PDF
    A multi-channel receiver operating between 56 GHz and 70 GHz for coverage of different 60 GHz bands worldwide is implemented with a 90 nm Complementary Metal-Oxide Semiconductor (CMOS) process. The receiver containing an LNA, a frequency down-conversion mixer and a variable gain amplifier incorporating a band-pass filter is designed and implemented. This integrated receiver is tested at four channels of centre frequencies 58.3 GHz, 60.5 GHz, 62.6 GHz and 64.8 GHz, employing a frequency plan of an 8 GHz-intermediate frequency (IF). The achieved conversion gain by coarse gain control is between 4.8 dB–54.9 dB. The millimeter-wave receiver circuit is biased with a 1.2V supply voltage. The measured power consumption is 69 mW

    Design and Analysis of Low-power Millimeter-Wave SiGe BiCMOS Circuits with Application to Network Measurement Systems

    Get PDF
    Interest in millimeter (mm-) wave frequencies covering the spectrum of 30-300 GHz has been steadily increasing. Advantages such as larger absolute bandwidth and smaller form-factor have made this frequency region attractive for numerous applications, including high-speed wireless communication, sensing, material science, health, automotive radar, and space exploration. Continuous development of silicon-germanium heterojunction bipolar transistor (SiGe HBT) and associated BiCMOS technology has achieved transistors with fT/fmax of 505/720 GHz and integration with 55 nm CMOS. Such accomplishment and predictions of beyond THz performance have made SiGe BiCMOS technology the most competitive candidate for addressing the aforementioned applications. Especially for mobile applications, a critical demand for future mm-wave applications will be low DC power consumption (Pdc), which requires a substantial reduction of supply voltage and current. Conventionally, reducing the supply voltage will lead to HBTs operating close to or in the saturation region, which is typically avoided in mm-wave circuits due to expectated performance degradation and often inaccurate models. However, due to only moderate speed reduction at the forward-biased base-collector voltage (VBC) up to 0.5 V and the accuracy of the compact model HICUM/L2 also in saturation, low-power mm-wave circuits with SiGe HBTs operating in saturation offer intriguing benefits, which have been explored in this thesis based on 130 nm SiGe BiCMOS technologies: • Different low-power mm-wave circuit blocks are discussed in detail, including low-noise amplifiers (LNAs), down-conversion mixers, and various frequency multipliers covering a wide frequency range from V-band (50-75 GHz) to G-band (140-220 GHz). • Aiming at realizing a better trade-off between Pdc and RF performance, a drastic decrease in supply voltage is realized with forward-biased VBC, forcing transistors of the circuits to operate in saturation. • Discussions contain the theoretical analysis of the key figure of merits (FoMs), topology and bias selection, device sizing, and performance enhancement techniques. • A 173-207 GHz low-power amplifier with 23 dB gain and 3.2 mW Pdc, and a 72-108 GHz low-power tunable amplifier with 10-23 dB gain and 4-21 mW Pdc were designed. • A 97 GHz low-power down-conversion mixer was presented with 9.6 dB conversion gain (CG) and 12 mW Pdc. • For multipliers, a 56-66 GHz low-power frequency quadrupler with -3.6 dB peak CG and 12 mW Pdc, and a 172-201 GHz low-power frequency tripler with -4 dB peak CG and 10.5 mW Pdc were realized. By cascading these two circuits, also a 176-193 GHz low-power ×12 multiplier was designed, achieving -11 dBm output power with only 26 mW Pdc. • An integrated 190 GHz low-power receiver was designed as one receiving channel of a G-band frequency extender specifically for a VNA-based measurement system. Another goal of this receiver is to explore the lowest possible Pdc while keeping its highly competitive RF performance for general applications requiring a wide LO tuning range. Apart from the low-power design method of circuit blocks, the careful analysis and distribution of the receiver FoMs are also applied for further reduction of the overall Pdc. Along this line, this receiver achieved a peak CG of 49 dB with a 14 dB tunning range, consuming only 29 mW static Pdc for the core part and 171 mW overall Pdc, including the LO chain. • All designs presented in this thesis were fabricated and characterized on-wafer. Thanks to the accurate compact model HICUM/L2, first-pass access was achieved for all circuits, and simulation results show excellent agreement with measurements. • Compared with recently published work, most of the designs in this thesis show extremely low Pdc with highly competitive key FoMs regarding gain, bandwidth, and noise figure. • The observed excellent measurement-simulation agreement enables the sensitivity analysis of each design for obtaining a deeper insight into the impact of transistor-related physical effects on critical circuit performance parameters. Such studies provide meaningful feedback for process improvement and modeling development.:Table of Contents Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of symbols and acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Technology 7 2.1 Fabrication Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 SiGe HBT performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 B11HFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 SG13G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.4 SG13D7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Commonly Used Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Grounded-sidewall-shielded microstrip line . . . . . . . . . . . . . . . . . . 12 2.2.2 Zero-impedance Transmission Line . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3.1 Active Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3.2 Passive Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Low-power Low-noise Amplifiers 25 3.1 173-207 GHz Ultra-low-power Amplifier . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Topology Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Bias Dependency of the Small-signal Performance . . . . . . . . . . . . . 27 3.1.2.1 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.2.2 Bias vs Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.2.3 Bias vs Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.2.4 Bias vs Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.3 Bias selection and Device sizing . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3.1 Bias Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3.2 Device Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.4 Performance Enhancement Technologies . . . . . . . . . . . . . . . . . . . 41 3.1.4.1 Gm-boosting Inductors . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.4.2 Stability Enhancement . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.4.3 Noise Improvement . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.5 Circuit Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.5.1 Layout Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.5.2 Inductors Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.5.3 Dual-band Matching Network . . . . . . . . . . . . . . . . . . . 48 3.1.5.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 72-108 GHz Low-Power Tunable Amplifier . . . . . . . . . . . . . . . . . . . . . . 55 3.2.1 Configuration, Sizing, and Bias Tuning Range . . . . . . . . . . . . . . . . 55 3.2.2 Regional Matching Network . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2.1 Impedance Variation . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2.2 Regional Matching Network Design . . . . . . . . . . . . . . . . 60 3.2.3 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Low-power Down-conversion Mixers 73 4.1 97 GHz Low-power Down-conversion Mixer . . . . . . . . . . . . . . . . . . . . . 74 4.1.1 Mixer Design and Implementation . . . . . . . . . . . . . . . . . . . . . . 74 4.1.1.1 Mixer Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1.1.2 Bias Selection and Device Sizing . . . . . . . . . . . . . . . . . . 77 4.1.1.3 Mixer Implementation . . . . . . . . . . . . . . . . . . . . . . . . 79 4.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.2.1 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 Low-power Multipliers 87 5.1 General Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2 56-66 GHz Low-power Frequency Quadrupler . . . . . . . . . . . . . . . . . . . . 89 5.3 172-201 GHz Low-power Frequency Tripler . . . . . . . . . . . . . . . . . . . . . 93 5.4 176-193 GHz Low-power ×12 Frequency Multiplier . . . . . . . . . . . . . . . . . 96 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6 Low-power Receivers 101 6.1 Receiver Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 LO Chain (×12) Integrated 190 GHz Low-Power Receiver . . . . . . . . . . . . . 104 6.2.1 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.2 Low-power Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.3.1 LNA and LO DA . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.3.2 Tunable Mixer and IF BA . . . . . . . . . . . . . . . . . . . . . 111 6.2.3.3 65 GHz (V-band) Quadrupler . . . . . . . . . . . . . . . . . . . 116 6.2.3.4 G-band Tripler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.2.4 Receiver Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.5 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7 Conclusions 133 7.1 Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Bibliography 135 List of Figures 149 List of Tables 157 A Derivation of the Gm 159 A.1 Gm of standard cascode stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 A.2 Gm of cascode stage with Lcas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 A.3 Gm of cascode stage with Lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 B Derivation of Yin in the stability analysis 163 C Derivation of Zin and Zout 165 C.1 Zin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.2 Zout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D Derivation of the cascaded oP1dB 169 E Table of element values for the designed circuits 17

    Millimeter-Wave MMICs and Applications

    Get PDF
    As device technology improves, interest in the millimeter-wave band grows. Wireless communication systems migrate to higher frequencies, millimeter-wave radars and passive sensors find new solid-state implementations that promise improved performance, and entirely new applications in the millimeter-wave band become feasible. The circuit or system designer is faced with a new and unique set of challenges and constraints to deal with in order to use this portion of the spectrum successfully. In particular, the advantages of monolithic integration become increasingly important. This thesis presents many new developments in Monolithic Millimeter-Wave Integrated Circuits (MMICs), both the chips themselves and systems that use them. It begins with an overview of the various applications of millimeter waves, including a discussion of specific projects that the author is involved in and why many of them demand a MMIC implementation. In the subsequent chapters, new MMIC chips are described in detail, as is the role they play in real-world projects. Multi-chip modules are also presented with specific attention given to the practical details of MMIC packaging and multi-chip integration. The thesis concludes with a summary of the works presented thus far and their overall impact on the field of millimeter-wave engineering.</p
    • …
    corecore