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General introduction 

From the first generation of vehicles, including a few comfort driving assistance options, to 

semi-automated driving features like automatic emergency braking or lane keep assistance, the 

driving assistance products have been continuously improved in the past few decades. 

Nowadays, the brand-new vehicles include ultrasonic sensors, camera, Radar and Lidar to 

ensure object detection all around the car under any conditions, paving the way for a full 

autonomous driving. To detect potential threat, the automotive radar emits a high-frequency 

electromagnetic wave which is reflected on the surrounding objects. Then, the radar sensor 

receives and analyses the reflected signals to calculate the speed, range and direction of the 

obstacles. With its ability to detect distant targets under harsh visibility conditions, the 77 GHz 

automotive radar plays a key role in driving safety. 

 Millimeter-wave frequencies enable a better circuit integration and good radar resolution 

on the target speed and range. This is also a challenge for circuit designers who must deal with 

stringent requirements especially on the receiver front-end. The main challenge is the trade-off 

between noise and linearity. An automotive radar must cope with multiple signal reflections 

that desensitize the receiver if its linearity is not high enough. At the same time, a too high 

noise level limits the receiver distant targets detection. These requirements are not easily 

compatible because a high-gain low noise amplifier will improve noise performances but will 

degrade linearity, as the mixer that follows will be saturated earlier. Consequently, the mixer 

design is important to find a good trade-off between noise and linearity. 

First 77 GHz radar receivers were manufactured with SiGe BiCMOS processes benefiting 

from the high transition frequency and high breakdown voltage of Hetero-junction Bipolar 

Transistors. Good results have been achieved with active-mixer-based architectures, but these 

technologies suffer from high power consumptions, limited integration capacity and large 

production cost. More recently, the scaling down of CMOS processes makes CMOS a good 

candidate for 77 GHz circuit design, especially when cost target requires single chip solutions. 

The literature related to CMOS radar receivers highlights that receivers based on BiCMOS 

architectures show poor performances. The aim of this work is to demonstrate that 
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performances of 77 GHz CMOS receivers can be enhanced using CMOS specific technics, 

such as sampling and the use of high-speed digital gates. In this work, two innovative radar 

receiver architectures based on the sampling mixer principle are proposed. The first one shows 

that this principle can be extended to millimeter-wave frequencies to benefit from a very good 

noise/linearity trade-off. The second architecture uses this principle to convert a 77 GHz RF 

signal by using a 26 GHz LO frequency thus simplifying the LO distribution chain of the 

receiver. 

The background of this study is presented in the chapter 1. First, the automotive radar 

application is introduced by explaining the 77 GHz radar operating principle and design 

specificities. Then the 28-nm FD-SOI CMOS technology used for the integrated RF circuit 

design in this work is presented. Finally, the different existing CMOS radar receiver design 

solutions will be presented and discussed to highlight the more appropriate architecture for the 

integration of a 77 GHz radar receiver in a 28-nm FD-SOI CMOS technology. The chapter 2 

describes the sampling mixer principle and the implementation of a 77 GHz sampling mixer 

based on a new 77 GHz LO pulse shaper. The measurement setup and associated measured 

performances are reported at the end of this chapter and validate the interest of this new mixer 

topology. Then, a sub-sampling mixer topology allowing to down-convert an RF signal around 

77 GHz using a 26 GHz LO frequency is detailed in the chapter 3. Measured performances 

confirm the good capabilities of the sub-sampling principle. The chapter 4 draws the conclusion 

of this study by showing the implementation of the proposed sampling-based mixers with a 

low noise amplifier in 77 GHz front-ends. These receiver architectures are compared with the 

state of the art highlighting the strengths and weaknesses of the proposed solutions. All the 

results of this study demonstrate that using sampling down-conversion can be the good choice 

to address millimeter-wave frequency applications. 
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Chapter 1 The 77 GHz radar for automotive 

applications  

1.1 Introduction 

The acronym RADAR stands for “RAdio Detection And Ranging”. In a radar sensor, an 

electromagnetic wave is generated and emitted by an antenna. Then, this signal is reflected by 

the surrounding objects and received by the radar sensor. Analysing the properties of the 

reflected signals allow to detect surrounding objects and calculate their speed, range and 

direction.  

In the past few decades, the growing concern about driving safety is challenging the 

automotive industry with the need of very efficient driving assistance products. Therefore, 

Automotive manufacturers started to include radar sensors into their vehicles. The first 

generation of cars integrating radar sensors only benefited from a few comfort options as 

adaptive cruise control and parking assist [1, p. 17]. From the first cars including these features, 

the driving assistance has been continuously evolving to reach different level of automation. 

Nowadays, new cars benefit from a lot of new features as for example self-parking, blind spot 

detection or emergency braking [2],[3]. This partial driving automation paves the way for a full 

autonomous driving in the coming years. To reach this level of automation, a full coverage 

detection around the car is required [3] as described in Figure 1-1. To cover every angle around 

the car more radar sensors will be required in the next car generations. Furthermore, as each 

kind of sensor has its strengths and weaknesses, the automotive radar must be combined with 

other driving safety sensors to be able to prevent crashes under any conditions. 
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Figure 1-1: Detection coverage in the next generation of cars. 

1.2 The radar among the driving assistance sensors 

The object detection for driving safety generally relies on four different detection principles: 

Ultrasound, radar, camera and lidar [4]. The advantages and drawback of each kind of sensor 

([3], [5]) are summarized in the Table 1-1. 

Table 1-1:Comparison of automotive detection sensors. 

 Ultrasound Camera Radar LiDAR 

Strengths 

• Range detection • Object recognition • Range/speed 

detection 

• Weather immunity 

• Range/speed detection 

• Accuracy 

Weaknesses 

• Limited range 

• No speed 

detection 

• Limited range/ 

no speed detection 

• Weather 

• Ghosts target • Weather 

 

Cost Low low moderate High 

Ultrasonic sensors are the best solution for close objects detection as they are well mastered 

and low cost, but they are too sensitive to weather and have a too limited range to address other 

applications. Nowadays, the use of camera for automotive application is widespread as they 
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are low cost, easy to implement and can recognize colours and objects. Nevertheless, cameras 

are very sensitive to weather and cannot efficiently assess the speed and range of a target. With 

its ability to detect the range, speed and direction of a distant target under any weather 

condition, the radar sensor plays a key role in driving safety. The weaknesses of radar sensors 

are the potential wrong detection caused by ghost targets [6] and cost which remains 

significantly higher than ultrasound sensors or cameras. Finally, Lidar sensors based on the 

laser detection are also able to detect the range, speed and direction of a target and have the 

best accuracy among automotive sensors. Lidar sensors are not currently widespread because 

of production cost. To reach the next level of driving automation, a combination of these 

detection principles will be used. With its substantial benefits, the radar sensors will play a key 

role in driving safety in the upcoming years.  

1.3 Basics of the automotive radar 

To assess the distance to surrounding objects, the radar sensor must be able to generate and 

transmit a high frequency signal, and then must be able to receive the reflected signal and to 

perform its analysis. The Figure 1-2 is a simplified block diagram of an automotive radar 

transceiver showing the required functions. 

 

Figure 1-2: Simplified block diagram of an automotive radar transceiver. 
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A radar transceiver includes an oscillator to generate a high-frequency signal which is 

amplified by the transmitter and emitted by an antenna. Then the reflected signal is received 

by the reception antenna. The receiver down-converts the frequency of the received signal from 

millimeter-wave frequencies to a few MHz to be able to digitize this signal. The signal 

generated by the oscillator is also used in the receiver to perform the frequency translation. 

Finally, the received signal is converted into a digital information by the Analog-to-Digital 

Converter (ADC). The signal processing on the digital side allows the extraction of all the 

information required for the driving assistance.  

The radar emitter also modulates the emitted signal. As a result, a radar sensor can emit 

different kinds of signal. The simplest signal waveforms used for radar detections are the pulsed 

and the continuous waveforms. The first one allows to easily calculate the target range by 

analysing the time of flight while the second one is suited to detect the target speed by analysing 

the doppler frequency shift. However, range detection using a continuous wave and speed 

detection using a pulsed waveform are difficult [1, p. 10 to 15]. To be able to compute the 

target speed and range at the same time, more elaborate modulations are needed. 

1.4 The FMCW modulation  

The most popular frequency modulation in automotive radars is the Frequency Modulated 

Continuous Wave (FMCW). This modulation based on a sine wave with a linear frequency 

variation versus time is described in Figure 1-3. Different patterns of frequency variation versus 

time can be used for FMCW, but the saw-tooth shape depicted in Figure 1-3 is the more used 

for automotive application [7], [8]. This figure shows the time-domain transient waveform of 

the modulated carrier as well as the frequency shift over time. The FMCW modulation is very 

simple compared to the modulation used in communication systems and allows to easily 

compute the target speed and range at the same time. Figure 1-3 (b) shows the frequency 

variation versus time for both emitted and received modulated signals. 
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Figure 1-3: Magnitude and frequency variations over time of sawtooth shaped FMCW signal 

The comparison of the two signals gives access to the time between the emitted and received 

modulation patterns Ts and to the Doppler frequency shift fd. The information on Ts allows to 

compute the target distance while the fd gives access to the target speed [1, p. 14]. When several 

receivers are implemented in a radar module, comparing the phase shift between the signal 

received by each receiver allows to compute the direction of the target [9]. 

Considering a FMCW modulation with a linear frequency variation between f1 and f2, the 

modulation bandwidth (B) is f1 - f2 and the modulated carrier (fc) is (f1 - f2)/2. In a FMCW 

modulation the range resolution is proportional to 1/B while the speed resolution is proportional 

to 1/fc [1, p. 14],[7], [8]. As a result, a high frequency carrier associated to a wide modulation 

bandwidth is required to provide an accurate radar detection.  

1.5 Frequency band allocation 

As previously stated, the FMCW modulation principle requires a high modulation carrier 

frequency and a large bandwidth to benefit from a high accuracy. Furthermore, the radar 

transceivers must emit in unlicensed frequency bands to avoid interferences with 

communication devices. The organizations in charge of the frequency allocation in Europe and 

USA respectively the European Telecommunications Standards Institute (ETSI) and the 
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Federal Communications Commission (FCC), have dedicated a specific band for automotive 

radar application. This frequency band is located between 76 GHz and 81 GHz [10]. As 

efficient and cost-effective integrated circuits design was difficult to achieve at such high 

frequencies until recently, the FCC and ETSI had allocated temporary frequency bands around 

24 GHz to let enough time to manufacturers to get proper 77 GHz radar transceivers. 

Nowadays, the development of 77 GHz radar products is well mastered and the 24 GHz 

frequency band will not be available after the first quarter of 2022. The definitive spectrum 

allocated to automotive radars is depicted in Figure 1-4. 

 

Figure 1-4: Allocated frequency spectrum for automotive radar. 

The 76-81 GHz automotive radar frequency band is divided in two parts with different 

specifications. The first one between 76 GHz and 77 GHz is dedicated to the long-range radar 

which is in front of the car for adaptive cruise control. In this frequency band an important 

emitted power is allowed to be able to reach distant targets thus providing a high detection 

range (up to 250m) [1, p. 18]. The band between 77 GHz and 81 GHz is dedicated to the 

short-range radar which does not need high power to cover a short range (<30m) but requires 

a large bandwidth to reach a fine range resolution.  

As a conclusion, the unlicensed band around 77 GHz allocated to automotive radar 

application appears as an ideal choice providing a fine accuracy detection thanks to an high 

frequency carrier and a large modulation bandwidth. Nevertheless, using a such high frequency 

is also a challenge for circuit designers who must face stringent requirements especially on the 

receiver front-end (LNA+mixer). The next sections will describe the 77 GHz radar receiver 

architecture and the associated design constraints. 
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1.6 Automotive radar receiver architecture 

As previously stated, the role of the radar receiver is to convert an RF frequency received 

by the antenna around 77 GHz to a low enough Intermediate Frequency (IF) (a few MHz) to 

enable the signal digitization by an ADC. The different functions needed in a conventional 

radar receiver architecture serving this purpose are described in the Figure 1-5. 

 

Figure 1-5: Conventional Radar receiver architecture. 

The first stage of a radar receiver is generally a Low Noise Amplifier (LNA) which amplifies 

the weak received signal without degrading too much the Signal to Noise Ratio (SNR). Then 

the mixer down-converts the received RF signal around 77 GHz to a few MHz one by using 

the 77 GHz signal from the Local Oscillator (LO). After the frequency conversion, the signal 

centered at the IF frequency is amplified by Variable Gain Amplifiers (VGA) to ensure a 

voltage swing of constant magnitude at the input to the ADC. 

1.7 Requirements on the receiver design 

To ensure driving safety, 77 GHz radar receivers must be able to detect distant targets 

without being too sensitive to multiple signal reflections. Origins of the performance 

requirements for the radar receiver noise and linearity are illustrated in Figure 1-6. 
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Figure 1-6: Illustration of performance requirements for automotive radar receivers. 

The power reflected by a distant target (the car in Figure 1-6) is generally very weak and 

can be too close to the receiver noise floor to be properly detected. As a result, a too high 

Noise Figure (NF) in a radar receiver will limit its ability to detect distant targets. 

On the other hand, a signal reflected by a close target or a large vehicle (a truck in Figure 

1-6) is resulting in an important power level at the receiver input. If the receiver is not linear 

enough, harmonics due to the distortion or intermodulation products with other reflected 

signals can be generated. Because the differentiation between these parasitic spurious and 

signals related with distant targets (the car in Figure 1-6), can be difficult, the non-linearity of 

the receiver can lead to wrong detections. 

Thus, the most important metrics in a radar receiver are the NF representing the receiver 

ability to keep a good SNR and the 1-dB Input Compression Power (ICP1dB) traducing the 

receiver linearity. Nevertheless, a good NF is not easily compatible with a high ICP1dB. The 

mixer, with its highly non-linear behavior, is the main limiting stage regarding the receiver 

linearity. As a result, a high-gain LNA improves noise performances but also degrades 

linearity, as the mixer is exposed to higher voltage swing for the same power received by the 

antenna. On the other hand, limiting the LNA gain enhances the linearity, but in agreement 
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High linearity 
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with the Friis theorem, noise contributions of the blocks following the mixer (VGA, Filter, 

ADC) are increased. 

As a conclusion, the balance in gain repartition in the different stages is the key to find the 

best trade-off between noise and linearity, while preserving cost (area) and power consumption. 

The analysis of existing CMOS radar receivers coming later in this chapter will give a detailed 

illustration of this aspect. The mixer linearity, which can force to limit the LNA gain, is 

essential in the overall chain performance. Consequently, it is the main topic addressed in this 

manuscript. 

1.8 Evolution in automotive radar 

First works on 77 GHz automotive radars were reported between 1995 and 2000. At that 

time, only III-V technologies were efficient enough to address such high frequencies. 

Consequently, the first reported integrated transceivers for 77 GHz radar applications were 

manufactured using Ga-As processes [11].  

Some years later, the increase in the performances of SiGe processes became good 

candidates to design millimeter-wave integrated circuits. With lower production costs, silicon 

processes were more appropriate than III-V processes for consumer applications. First SiGe 

BiCMOS circuits for automotive radar have been published around 2005 [12]–[14]. Then, these 

processes were selected to manufacture the first 77 GHz radar products. 

As already stated, the first generation of cars integrating 77 GHz radar only included a few 

radar sensors. More radar sensors and a more advanced signal processing will be required in 

the upcoming years to cover every angle around the car and enable a semi-automated driving. 

The analysis performed in [15] shows that CMOS technologies, while offering too poor 

millimeter-wave performances in the early 2000s, have been continuously scaled down to 

finally reach high enough transition frequencies (ft) to allow 77 GHz circuits design. With a 

better circuit integration and lower production costs, CMOS processes seem now far more 

appropriated than BiCMOS technologies to design the next generation of 77 GHz radar 

transceivers. CMOS processes will enable the Radar sensor multiplication in a car without 
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leading to prohibitive costs. It will also make easier the signal processing co-integration with 

the transceiver. 

1.9 28-nm FD-SOI CMOS technology description 

The 28-nm FD-SOI technology developed by STMicroelectronics has been selected for this 

work. This process offers Fully Depleted Silicon On Insulator (FD-SOI) CMOS transistors 

with a 28-nm minimum transistor gate length. With nm-scaled CMOS transistors benefiting 

from ft and  fmax higher than 300 GHz this technology is well suited for low power millimeter-

wave frequencies integrated circuits design [16]. 

1.9.1 FD-SOI CMOS transistor 

The main specificity of this technology is the FD-SOI CMOS transistor. A cross section of 

a FD-SOI CMOS transistors is described in Figure 1-7.  

 

Figure 1-7: FD-SOI CMOS transistor cross section. 

In FD-SOI technologies, the ultra-thin buried oxide layer (25-nm) present under the CMOS 

transistor channel offers many benefits. The manufacturing process is simpler than a 

conventional bulk process as fewer masks are required [16]. The electrical performances are 

also improved. As the transistor channel is insulated with this buried oxide, current leakages 

are reduced and the electrostatic channel control becomes easier. 
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An important feature resulting from the channel insulation by the buried oxide is the body 

biasing. In a conventional bulk process, there is not much flexibility to set the transistors body 

voltage. For a PMOS on a bulk substrate, Vbody must remain above Drain and Source voltages, 

to keep Drain-to-body diode reverse-biased. This is generally achieved by either connecting 

body to VDD or to Source. For the NMOS, unless the transistor is insulated by a triple well, the 

body is tied to bulk and thus to ground. In FD-SOI technologies, a voltage can be applied under 

the transistor channel (Figure 1-7) to provide an additional channel control. This way, the body 

access acts as a second gate at the back of the transistor channel. As a result, applying a voltage 

to the transistor body allows to change the transistor threshold voltage (Vth). The insulation of 

the conducting channel also makes possible to use N or P type doping below the transistor 

leading to different nominal Vth values. This principle is used in the 28FDSOI technology to 

propose 4 different CMOS transistor “flavours” [16] as described in Figure 1-8. 

 

Figure 1-8: different transistor flavours proposed in 28FDSOI and their Body-bias characteristic. 

As described Figure 1-8 using the same type of doping for the conducting channel and under 

the box offers CMOS transistors with low nominal Vth value (NLVT and PLVT). Moreover, 

using the opposite doping leads to CMOS transistors with regular Vth nominal value 

(NRVT and PRVT). These different configurations offer four transistor flavours. For each 

transistor type, the Vth value can be tuned around the nominal value with the body biasing by 

setting the voltage applied to the hybrid zone (Vbody). This technology exhibits a quite high 

body factor (~85 mV/V) enabling a large Vth tuning range. This body biasing capability in 

FD-SOI technologies provides new design opportunities by controlling the CMOS 

transistors Vth. 
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The high-speed CMOS transistors have a thin gate oxide and operate under a nominal VDD 

value around 1V. The 28FDSOI process also offer LVT and RVT CMOS transistors with a 

thick gate oxide able to operate under 1.5 V or 1.8 V nominal VDD value. Nevertheless, thick 

gate oxide transistors exhibit lower ft and fmax. 

1.9.2 Metal stack 

The 28FDSOI technology provides different metal stack configurations. The selected 

configuration is described in Figure 1-9.  

 

Figure 1-9: 28FDSOI 8 metal levels stack. 

The metal stack includes 8 metal layers and an “Alucap” top level. The metal layers M1 to 

M6 are quite thin (100 nm) and are often used for active components routing. Thicker 

metallization are available from the top metal layers (IA and IB) with the alucap LB. They are 

used for passive structures such as inductances or transmission lines as they are less resistive 

than underneath layers. These higher levels are also less sensitive to parasitic coupling to the 

ground plane or substrate. 
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1.9.3 Passive components 

MIM and MOM capacitors are available for RF designs with the 28FDSOI technology. The 

MIM capacitors are located between the two thick metal layer (IA and IB) and show a 

capacitance density around 20 fF/μm². The MOM capacitors are implemented from metal 

layers M1 to M6 and offer a capacitance density around 6 fF/μm². As the MIM capacitors option 

requires additional masks, MOM capacitors with an RF compliant layout should be preferred 

for low-cost RF design.  

The 28FDSOI also provides different kinds of resistors. A P+ doping poly-silicon resistor 

with a 439 Ω/square density is preferred for RF design as it lead to the best RF performances. 

1.10 77 GHz radar receiver architectures 

Many different architectures of millimeter-wave receiver front-ends related to 77 GHz 

CMOS radar receivers have been published so far in the literature. The main differences 

between existing solutions come from the mixer topology used to down-convert the 77 GHz 

RF signal. Since the choice made in the mixer topology have a strong impact on the overall 

receiver design, the main existing configurations are discussed and compared in this section. 

The goal is to find the more suitable architecture to design a 77 GHz radar receiver in a 28-nm 

FD-SOI CMOS technology. 

1.10.1 Radar receivers based on active mixers 

First silicon 77 GHz radar receivers were manufactured with SiGe BiCMOS processes 

benefiting from the high transition frequency and high breakdown voltage of Hetero-junction 

Bipolar Transistors (HBT). The more spread 77 GHz BiCMOS receiver architecture is based 

on the Gilbert Cell [17] described in Figure 1-10. 
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Figure 1-10: Conventional double-balanced Gilbert cell. 

The gilbert cell is an active mixer topology stacking a differential RF transconductance 

amplifier and a double-balanced mixing stage loaded by resistors thus allowing to design 

extremely compact mixers. In the Gilbert cell, some conversion gain is provided by the RF 

transconductance and resistors. Therefore, this kind of mixer does not always require a LNA. 

The main drawback of the gilbert cell is the linearity which remains limited by two factors. 

The first contributor to the linearity degradation in Gilbert cells is the RF transconductance 

stage as the HBT differential pair can handle a very limited input voltage swing (a few Ut) 

without saturating. Furthermore, using three vertical stages (transconductance, mixing cell and 

loads) results in a low voltage headroom for each stage thus restraining the output voltage 

swing. 

The conventional Gilbert cells is implemented in the first generation of BiCMOS 77 GHz 

receiver demonstrator as in [18]. In this work, the proposed mixer operates under a 2.5 V supply 

showing a good trade-off between noise and linearity. Nevertheless, the work in [19]–[21] 

demonstrates a better linearity by using a folded topology or removing the RF transconductance 

of the Gilbert cell. This approach seems to be the most suitable for the design of BiCMOS 

77 GHz radar receivers and lead to very high performances on the noise/linearity trade-off in 

[19]–[21]. 
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As architectures based on active mixers translates into high performances with BiCMOS 

processes, active topologies have been firstly implemented in 77 GHz CMOS receiver test 

chips. The Table 1-2 summarizes the performances of the existing CMOS radar receivers 

relying on active mixers ([22]–[26]) and compares them to their BiCMOS counterpart. 

Table 1-2: performances of Gilbert-cell-based 77 GHz receiver front-ends in silicon technologies. 

Ref Tech Topology 
Gain  

[dB] 

ICP1dB 

[dBm] 

NFSSB 

[dB] 

VDD 

[V] 

Pdc 

[mW] 

[18] 
130-nm 

BiCMOS 
Gilbert cell 15 -13 13.8 2.5 335 

[19] 
130-nm 

BiCMOS 

Gilbert cell mixing 

stage only 
16 -2 11-12 3.3 200 

[21] 
180-nm 

BiCMOS 
Folded Gilbert cell 21.5 -5 10.8 3.3 70 

[22] 
65-nm 

CMOS 
Gilbert cell 11.8 -18* 12.9 1.2 8 

[23] 
28-nm 

CMOS 

2-stage LNA  

+ 

 Gilbert cell mixing 

stage  

18 (LNA) 

2 (mixer) 
-30* 12 NA 68 

[24] 
65-nm 

CMOS 

3-stage LNA  

+ 

 folded Gilbert cell  

31.6 (Rx) 

5 (mixer) 

-37 (Rx) 

-20* (mixer) 
8.8 1 61 

[25] 
65-nm 

CMOS 

3-stage LNA  

+ 

 folded Gilbert cell 

11 -15 8 1 22 

[26] 
65-nm 

CMOS 

3-stage LNA 

(Tunable gain)  

+ 

 Gilbert cell mixing 

stage 

18/66 (Rx) 

4 (Mixer) 
-7/-31 26/11 1 31 

*estimated   

Compared to the HBT of the SiGe processes the CMOS transistors have a lower voltage 

handling capabilities and lower gm at high frequencies. Therefore, the comparison between the 

work in [22]–[26] and 77 GHz BiCMOS Gilbert cells highlights that a satisfying trade-off 

between noise and linearity cannot be reached with CMOS receivers based on active mixers. 

As a result, CMOS active mixers do not appear as the right choice for 77 GHz radar receiver. 
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1.10.2 Radar receivers based on passive mixers 

Even if CMOS transistors are not as efficient as HBT for active mixer topologies, they 

perform very well as switches. As a result, double-balanced passive mixers using four 

cold-biased CMOS transistors operating as switches are widespread in CMOS receiver design. 

Furthermore, CMOS processes scaling down drastically improves the performances of the 

CMOS switches. As the channel ON-state resistor ron of the transistor is proportional to the 

W/L ratio while the gate capacitance is proportional to W×L, decreasing L while keeping the 

same ron results in a significantly lower gate capacitance. Reducing the gate capacitance 

improves the CMOS switches performance by allowing the transistors to quickly switch 

between ON and OFF states. 

Passive mixers are chosen for their good linearity and zero DC power consumption. Since 

the passive mixers high linearity allows to implement more gain on the LNA while keeping a 

suitable ICP1dB for the radar application, they appear as a good alternative to active mixers 

regarding noise performances of the receiver. Furthermore, as no DC current passes through 

the mixing transistors, passive mixers are also less sensitive to the 1/f noise than active mixers. 

On the other hand, passive mixers bring significant conversion losses thus requiring a LNA at 

the receiver input to avoid a receiver NF degradation. 

Passive mixers can be used in voltage or current mode depending on LNA and baseband 

amplifier topologies. Both operating modes are presented here below. When the passive mixer 

is implemented in a receiver between a low noise RF amplifier and an IF amplifier (IFA) 

showing respectively a low output impedance and a high input impedance (Voltage amplifier), 

the mixer operates in voltage mode (Figure 1-11). 
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Figure 1-11: Receiver architecture based on a voltage mode passive mixer. 

When the same passive mixer is implemented between a RF low noise transconductance 

amplifier (LNTA) and an IF transimpedance amplifier (TIA) the input RF voltage is turned 

into a current by the first stage, passes through the mixer and is converted back to a voltage by 

the IF TIA. This operating principle is described in Figure 1-12 and is called current mode. A 

proper current transfer in the mixer requires a high output impedance for the RF LNTA while 

the IF TIA must present a low input impedance. 

 

Figure 1-12: Receiver architecture based on a current mode passive mixer. 

Both operating modes have strengths and weaknesses. In the voltage mode mixer, the 

condition for maximizing the voltage transfer and thus the conversion gain is:  
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|𝑍𝑜𝑢𝑡𝐿𝑁𝐴
| +  𝑟𝑜𝑛 ≪  𝑍𝑖𝑛𝐼𝐹𝐴

 (1-1) 

This requirement is quite easy to fulfil as the IFA input impedance is in the range of tens of 

kΩ. For the current mode mixer, the condition to ensure a good current transfer through the 

mixer is: 

|𝑍𝑜𝑢𝑡𝐿𝑁𝑇𝐴
| ≫ 𝑟𝑜𝑛 + |𝑍𝑖𝑛 𝑇𝐼𝐴

| (1-2) 

This requirement is harder to fulfil because a low ron requires a large mixing transistor which 

can be hard to drive. In addition, a low TIA input impedance is hard to reach above a few MHz. 

Not meeting this requirement would results in extra conversion losses. On the other hand, using 

current rather than voltage in a millimeter-wave receiver can be very helpful to deal with the 

low supply voltage of the nm-scaled CMOS process. As using a current mode mixer results in 

a low voltage swing at the input of the mixer, the RF transconductance is less sensitive to 

voltage saturation coming with the low voltage supply. The low voltage swing at the input and 

output of the mixer also keeps the mixing transistor VDS close to 0 V increasing the mixer 

linearity.  

Both operating modes are present in the literature related to 77 GHz radar receivers. 

Receivers in [27], [28] rely on current mode passive mixers an exhibit excellent trade-offs 

between noise and linearity. In [27] a 1-stage LNA is used rather than a 2-stage LNA (as done 

in [28]) leading to a lower front-end gain. The reduced front-end gain is compensated by the 

higher gain of the IF TIA operating under a high voltage supply (1.8V vs 0.8V for RF blocks) 

to preserve the overall linearity. This strategy allows to reach a better ICP1dB at the cost of a 

higher NF. Voltage mode passive mixers are developed in [8] and [29] also showing a high 

linearity and a good NF. The work in [29] push the strategy used in [27] further by removing 

the LNA to propose a passive mixer first receiver showing an excellent linearity with a low 

NF. References [8], [27]–[29] present the best published 77 GHz CMOS radar receivers when 

considering the trade-off between noise and linearity. The performances of the receiver 

front-ends presented in this section are summarized in the following table: 
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Table 1-3: performances of passive mixer-based 77 GHz CMOS receiver front-ends. 

Ref Tech Topology 
Gain 

[dB] 

ICP1dB 

[dBm] 

NFSSB 

[dB] 

VDD 

[V] 

Pdc 

[mW] 

[28] 
40-nm 

CMOS 

LNTA +  

current mode passive 

mixer  

+ TIA 

17 -7.4 8.7 1.8 NA 

[8] 
65-nm 

CMOS 

LNA + 

voltage mode passive 

mixer 

 + IFA 

26.2 -8.5 15.3 1 78 

[27] 
22-nm 

FD-SOI 

Common gate LNA 

+  

current mode passive 

mixer  

+ TIA 

16 -3.5 12.8 
0.8/1.8 

(RF/Baseband) 
NA 

[29] 
28-nm 

CMOS 

Voltage mode passive 

mixer first 

+ IFA 

15 -5 9 1.8 100 

As passive mixers exhibit conversion losses, they are generally implemented with a LNA 

and/or an IFA in a whole front-end, whereas the Gilbert cell can be used in a standalone 

configuration. Therefore, standalone passive mixers are not represented in the publications 

related to the 77 GHz radar application making their performances hard to assess. Nevertheless, 

the performances of the 77GHz CMOS receivers reported in Table 1-3 demonstrate that using 

a passive mixer to design a 77 GHz radar receiver with nm-scaled CMOS processes appears as 

the right choice. As passive mixers rely on the CMOS transistor switching behaviour, which is 

the strength of nm-scaled CMOS processes, this approach allows to take the best from those 

technologies. It can be noticed that using a low front-end gain is the key to get a good linearity. 

If this gain is not high enough to prevent a too high noise contribution from the baseband VGA, 

an IF amplifier with a moderate NF can be used to compensate the low front-end gain. As 

CMOS processes generally offer thick gate oxide CMOS transistors with a higher breakdown 

voltage than RF transistors at the cost of a lower ft the IF amplifier can operate on a higher 

voltage supply than for RF blocks as in [27]. This way, more gain can be introduced before the 

VGA without degrading the ICP1dB. This approach combined with the use of passive mixers 

seems to be the best way to design a high performances CMOS radar receiver. 
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1.10.3 Radar receivers based on sub-harmonic mixers 

All receiver architectures presented in previous sections are using a 77 GHz LO signal to 

drive the mixer. Implementing a 77 GHz Voltage Controlled Oscillator (VCO) is not the 

preferred solution for radar systems, because of the difficulties to design the VCO itself. 

Conventional radar architectures use a 38.5 GHz VCO followed by a frequency doubler and 

high consumption 77 GHz drivers ([26], [28]). Sometimes higher frequency multiplication 

factors as a tripler in [27] or a sextupler in [24] are implemented to relax the design complexity 

of the VCO and LO distribution chain. At the scale of a full radar chip including several 

receivers, this approach is a bit complex and results in extra power consumption and circuit 

area, as frequency multipliers rely on active blocks (push-push structures or equivalent) 

followed by LC tanks. The use of sub-harmonic mixers, using a LO frequency submultiple of 

the RF frequency (fLO≈fRF/n, with n a natural integer), opens the way to get rid of multipliers. 

This solution has already been considered for the first generations of 77 GHz CMOS radar 

receivers ([30], [31]). The performances of the sub-harmonic receivers in [30], [31] are 

summarized in the following table:  

Table 1-4: performances of sub-harmonic mixer-based 77 GHz CMOS receiver. 

Ref Tech 
fRF/fLO 

[GHz] 
Topology 

Gain 

[dB] 

ICP1dB 

[dBm] 

NFSSB 

[dB] 

VDD 

[V] 

Pdc 

[mW] 

[30] 
65 nm  

CMOS 
78 / 39 

5-stage LNA + 

×2 sub-harmonic 

Gilbert cell mixing 

stage 

16 (Rx) 

6.2 

(Mixer) 

-20 (Rx) 

-10.2*(mixer) 
13 1.2 28.5 

[31] 
65 nm  

CMOS 
78 / 39 

2-stage LNA + 

×2 sub-harmonic 

folded Gilbert cell 

14.5 

(Rx) 

2 

(Mixer) 

-16.2 (Mixer) 

-28 (Rx) 
10.5 1.5 57 

*estimated 

[30], [31] are the only existing works on 77 GHz CMOS sub-harmonic receivers. They are 

both based on ×2 CMOS sub-harmonic Gilbert cells which show limited performances 

compared to conventional solutions. However, the prospect of a simpler LO chain for 77 GHz 

radar transceiver let this approach appear as promising. Therefore, 77 GHz sub-harmonic 

receiver architectures will be considered in the chapter 3.  
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1.11 Conclusion 

The main existing solutions for a 77 GHz radar receiver architecture have been discussed in 

this section. This discussion highlights that even if receivers based on active Gilbert cells show 

very good performances with BiCMOS technologies, active mixers are not suited for advanced 

CMOS technologies. On the other hands, CMOS passive mixers take advantages of the strength 

of CMOS processes leading to far better performances. Therefore, using passive mixer 

topologies appears as the best solution to design a 77 GHz radar receiver in 28-nm FD-SOI 

CMOS technology. The literature related to 77 GHz radar receivers also puts forward that a 

sub-harmonic mixer-based architecture is a solution to reduce the burden of the LO distribution 

chain in term of area and consumption. This solution thus proposes a better 

Noise/Linearity/Consumption/Area trade-off. This promising approach has not demonstrated 

state of the art performances yet but we strongly believed that, associated to an optimal mixer 

design, it can be the right choice for radar architectures. The purpose of this thesis is to 

demonstrate this statement.
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Chapter 2 Design of a 77 GHz sampling passive 

mixer in 28-nm FD-SOI CMOS technology 

2.1 Introduction 

The state of the art presented in the previous chapter highlights that high performances are 

reached with passive mixers that provide high linearity and zero DC consumption [8], [27], 

[28]. The discussion on the noise/linearity trade-off in radar receivers (chapter 1) also puts 

forward that, as their high linearity allows to implement more gain on the LNA while keeping 

a good ICP1dB, they are also a good alternative to active mixers from the noise point of view. 

As these topologies rely on cold CMOS transistors used as switches, they allow to take the best 

from the recent nm-scaled CMOS processes. Thus, using passive mixers in a 28FDSOI radar 

receiver at 77 GHz appears as the best solution. First, this chapter presents the conventional 

CMOS voltage passive mixers operating principle highlighting their benefits and drawbacks. 

Then a new 77 GHz sampling mixer topology showing better performances is proposed. The 

aim of this chapter is to present a new solution enabling the use of sampling mixers at 

millimeter-wave frequencies. This solution is integrated in a 28FDSOI technology for an 

experimental validation of reachable performances. 

2.2 Conventional CMOS passive mixers 

As previously stated, CMOS passive mixers are well suited to design highly linear receivers 

with low power consumption. As, they use cold CMOS transistors, they are also particularly 

appropriated to nm-scaled CMOS processes, like 28FDSOI, because transistors of these 

technologies can behave as very good switches. The following section will introduce the 

operating principle of the conventional CMOS passive mixer and put forward its strengths and 

weaknesses.  
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2.2.1 Operating principle  

As discussed in the chapter 1, the conventional CMOS passive mixer can operate in current 

mode [27], [28] or voltage mode [8] depending on the impedance presented by the previous 

and following stages. This thesis focuses on sampling passive mixers relying a hold capacitor 

to store a sampled voltage value at the output of a voltage mode mixer. Therefore, the current 

mode passive mixer operating principle will not be detailed here-after. 

The principle of a conventional double-balanced voltage mode CMOS passive mixer is 

depicted in Figure 2-1. When compared to its single ended counterpart, it can be noticed that 

the double-balanced topology provides a good harmonic rejection and translates into a better 

conversion gain [32], [33, Ch. 6].  

 

Figure 2-1: Conventional voltage double-balanced passive mixer. 

As the high load impedance 𝑅𝐿  results into a high mixer input impedance (≈ RL) the voltage 

transfer from an input voltage source with RS far lower than Zin is maximised. The mixer is 

acting as a proper voltage conveyor. The conventional voltage passive mixer is usually driven 

by a sinusoidal local oscillator waveform or a 50% duty cycle square wave [32], as described 

in Figure 2-1. The shape of the LO signal is depending on frequencies. It can be square when 

LO frequency is low enough, whereas it can be only sinusoidal at high LO frequency. In these 

conditions, the mixer output voltage is VRF (RF+ - RF-) in the first half of the LO period and -VRF 

in the other half. The result is the conversion of the input signal at RF frequency to the output 

one at the Intermediate Frequency. The voltage conversion Gain (Gcv), linearity and noise 

figure NF of a conventional passive mixer will be discussed in the following sections. 
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2.2.2 Passive mixer conversion gain 

Considering all mixing CMOS transistors M1,2,3,4 as voltage-controlled switches, with a ron 

ON-state resistance, the voltage conversion gain of the passive mixer of Figure 2-1 is [32]:  

𝐺𝐶𝑣 =
2

𝜋
.

𝑅𝐿

𝑅𝐿 + 𝑟𝑜𝑛 + 𝑅𝑠
  (2-1) 

The theorical maximum value of this conversion gain Gcv is reached for an ideal voltage 

matching (Rs far lower than Zin and ron far lower than RL) and is equal to 2/π (≈ -4 dB).  

2.2.3 Noise in passive mixer 

The main noise contributor in CMOS passive mixer is the thermal noise in the channel of 

the mixing transistors. The ron ON-state resistance produces thermal noise which is converted 

to the mixer output. For this kind of mixer, the output voltage noise spectral density is [34]: 

𝑉𝑛𝑡ℎ
2 = 8𝐾𝑇𝑟𝑜𝑛 (2-2) 

In (2-2) K is the Boltzmann constant and T the ambient temperature. This result is easily 

understandable because a conventional CMOS passive mixer is driven by a 50% duty cycle LO 

waveform, and there is always a conductive path with two series ron between the input and the 

output.  

The second important noise contribution is inherent to mixer principle. As the mixer 

converts RF signals from fLO ± fIF to fIF, the noise in both RF frequency bands is added a fIF.  

If we consider that the conversion gain is the same for both bands, the input noise is doubled 

when only one input frequency band is used.  

Taking into account these contributions, the voltage passive mixer Single Side-Band Noise 

Figure (NFSSB) is: 

𝑁𝐹𝑆𝑆𝐵 =
Vnmix 

2

4𝐾𝑇𝑅𝑠. GCv
2 . 𝛼2

       𝑤𝑖𝑡ℎ  𝛼 = |
𝑍𝑖𝑛

𝑍𝑖𝑛 + 𝑅𝑠
| (2-3) 

𝑁𝐹SSB =
 8𝐾𝑇𝑟𝑜𝑛 + 2. (4𝐾𝑇𝑅𝑠. 𝐺𝐶𝑣

2 . 𝛼2)

4𝐾𝑇𝑅𝑠. 𝐺𝐶𝑣
2 . 𝛼2

= 2 +
 8𝐾𝑇𝑟𝑜𝑛

4𝐾𝑇𝑅𝑠. 𝐺𝐶𝑣
2 . 𝛼2

(2-4) 
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In (2-4), Gcv, Zin and Vnmix are respectively the voltage conversion gain, the input impedance 

and the output noise voltage of the mixer, and Rs is the series impedance of the input RF source. 

Expression (2-4) shows that the minimum value of 𝑁𝐹𝑆𝑆𝐵 is 3 dB, when the mixer is noiseless. 

The additional noise resulting from the mixer depends on the 𝑟𝑜𝑛 resistance and the conversion 

gain: NFSSB increases with the ron and decreased with Gcv.  

2.2.4 Passive mixer linearity 

The linearity of a passive mixer depends on the switching time of mixing transistors. Fast 

switching from the OFF-state to the ON-state provides a good linearity [35]. As presented 

before (Figure 2-1), passive mixer can operate either with square or sinusoidal LO waveforms. 

The conversion gain stays the same for both situations. However, square LO waveforms with 

sharp rising and falling edges allow a faster switching, which translate into a better linearity.  

2.2.5 Conventional CMOS passive mixer for millimeter-wave receivers 

As discussed in chapter 1, with its 0 DC power consumption in the mixer core and high 

linearity, the conventional CMOS passive mixer is a good candidate to comply with the strong 

linearity requirement on radar receivers. Nevertheless, the low conversion gain of passive 

mixer is a main drawback regarding noise performances of the overall receiver. As already 

stated, the inherent upper limit of a passive mixer conversion gain is -4 dB, when the mixer is 

driven with a 50% duty cycle LO signal. Since the LNA gain is limited for receiver linearity 

purpose, the implementation of a passive mixer can lead to a low gain front-end. Finally, as the 

baseband variable gain amplifier exhibits a quite high input voltage noise [36], this low front-

end gain has a strong impact on the NF of the receiver.  

This issue is addressed in the next section showing how the conversion gain of the passive 

mixer can be improved while its good linearity is kept, by using a sampling passive mixer. 

2.3 Sampling passive mixer principle 

Passive mixer topologies based on the sampling principle can be considered to benefit from 

the advantages of passive mixer while enhancing the value of conversion gain. This section 
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presents the sampling down-conversion principle and its comparison with conventional passive 

mixer principle detailed earlier. 

2.3.1 Using sampling for down-conversion 

At low frequencies, the use of sampling for frequency down-conversion as in [37] is wide 

spread. The sample and hold circuit performing the frequency conversion relies on a switch 

and a capacitor as described in Figure 2-2. The switch is closed for a very short time for 

sampling the input voltage. Then the hold capacitor stores the sampled value while the switch 

is open. In an ideal sampling operation, every RF signal close to a sampling frequency 

harmonic (n.fLO) is translated at an fIF of |fRF-n.fLO| by the sampling aliasing. This frequency 

translation is illustrated in Figure 2-2 for n = 1.  

 

Figure 2-2: Sampling down-conversion principle. 

The sampling can be interesting for down-conversion, because it allows a theoretically 

lossless frequency down-conversion with a LO frequency equal to fRF/n close to the RF 

frequency (n=1) or close to an harmonic sub-multiple of the RF frequency. In this last situation, 

the only limitation to the frequency conversion results from the low pass filtering which is 

induced by the ON-state switch resistance and the hold capacitor.  

IF

LO

RF

RFIF

Frequency domain

LO

IF RF

Time domain

Times 

Times 

Voltage

Voltage

Voltage

aliasing

freq



Chapter 2 Design of a 77 GHz sampling passive mixer in 28-nm FD-SOI CMOS technology 

 

38 

 

2.3.2 Sampling passive mixer operating principle 

The conventional passive mixer operating principle described earlier can be improved by 

introducing the sampling operation. This way, the conversion gain is enhanced and a 

sub-harmonic conversion is possible as well. In order to turn the mixer into a voltage sampler, 

a low duty cycle square wave must be applied as the LO signal and the IF outputs must be 

loaded with a capacitance. This principle is developed in a double-balanced configuration in 

Figure 2-3. As in a sample and hold circuit, transistors are used as switches that are closed for 

a very short time for sampling the input voltage. The hold capacitors 𝐶𝐻 store the sampled 

values when all switches are open.  

 

Figure 2-3: Double-balanced sampling mixer. 

At IF frequencies, the mixer acts as a low-pass CH/gc network where gc is the mean channel 

conductance of transistors M1,2,3,4 over the LO period. Because of the passive mixer 

transparency regarding impedances, this network results in a high RF input impedance ([38], 

[39]) around each odd LO harmonics. A proper voltage conversion is enabled as soon as source 

impedance Rs is low enough (<< |Zin|).  

2.3.3 Sampling mixer conversion gain 

With a proper input voltage source and considering that 𝑀1,2,3,4 are conducting for a time 

τon equal to D.TLO, the voltage conversion gain of a sampling mixer is calculated as:  

𝐺𝑐𝑣 =
1

2
𝑠𝑖𝑛𝑐 (

𝑓𝑅𝐹

𝑓𝐿𝑂
. 𝐷) (1 − 𝑒

−𝑗𝜋
𝑓𝑅𝐹
𝑓𝐿𝑂 )   𝑤ℎ𝑒𝑟𝑒 𝑠𝑖𝑛𝑐(𝑥) =

𝑠𝑖𝑛(𝜋𝑥)

𝜋𝑥
(2-5) 
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The gain calculation method is similar as in [40]. According to (2-5), 𝐺𝑐𝑣 increases when 

the duty cycle D gets lower and tends toward 1 as D tends to 0. This formula also illustrates 

that with double-balanced structure, only RF signals around odd LO harmonics are down 

converted. 

The conversion gain of a fundamental sampling mixer (n = fRF/fLO = 1) for different duty 

cycles is illustrated in Figure 2-4. This figure shows that the 2/π conversion gain limitation of 

a conventional CMOS voltage passive mixer can be broken with a sampling mixer, which 

conversion gain can ideally reach the value of 1 for very small LO duty cycles.  

 

Figure 2-4: Conversion gain of a fundamental sampling mixer vs the LO signal duty cycle. 

2.3.4 Noise in sampling mixer 

The conversion gain around each odd LO harmonic coming with the sampling behavior has 

an impact on the sampling mixer noise. The main noise contributors in sampling mixers are 

similar as in conventional passive mixers. The input noise aliasing described in [37] and the 

𝑟𝑜𝑛 thermal noise of the mixing transistors converted around  fLO and its harmonics remain the 

two main noise contributions to the mixer output noise. However, as sampling mixer presents 

a higher conversion gain than conventional passive mixer, the output voltage noise spectral 

densities are different. The output voltage noise spectral density due to the input noise 

conversion around LO harmonics can be calculated as [41]: 

𝑁𝑎𝑙𝑖𝑎𝑠 = 2. ∑ 𝑁𝑖𝑛(𝑛. 𝑓𝐿𝑂). 𝐺𝑐𝑣
2 (𝑛. 𝑓𝐿𝑂). 𝛼2 

(𝑛. 𝑓𝐿𝑂) 

𝑛

𝑤𝑖𝑡ℎ  𝛼(𝑛. 𝑓𝐿𝑂) = |
𝑍𝑖𝑛(𝑛. 𝑓𝐿𝑂)

𝑍𝑖𝑛(𝑛. 𝑓𝐿𝑂) + 𝑅𝑠
| (2-6) 
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In (2-6) Nin(n.fLO) represents the voltage noise spectral density at the mixer input around 

each LO harmonic. Each LO harmonics output noise contribution is multiplied by 2 because 

of the image frequency band. 

To compute the output voltage noise spectral density added by the mixer, all  ron thermal 

noise conversions around LO harmonics must be added [42]:   

𝑁𝑡ℎ𝑜𝑢𝑡
= 2. 𝑁𝑅 . ∑ 𝐺𝑐𝑣

2 (𝑛. 𝑓𝐿𝑂)    𝑤𝑖𝑡ℎ 𝑁𝑅 = 2𝐾𝑇𝑟𝑜𝑛 

∞

−∞

(2-7) 

NR is the two-sided noise spectral density of the mixing transistor 𝑟𝑜𝑛 resistance. A factor 2 

is added in (2-7) as the ron resistance of each differential path (RF+ and RF-) of the 

double-balanced mixer must be considered. Including the Gcv expression of (2-5) in the 

calculation of the sum in (2-7) gives the following one-sided thermal noise spectral density: 

𝑁𝑡ℎ𝑜𝑢𝑡
=

4𝐾𝑇𝑟𝑜𝑛

𝐷
(2-8) 

The calculation steps leading to this result are similar as in [42] and are given in annex. The 

equation (2-8) shows that the mixer thermal noise increases when the duty cycle D is decreased. 

This result is consistent with the increase of the conversion gain around fLO and its harmonics.  

If the mixer added thermal noise and the input noise conversion are only considered, the 

sampling mixer NFSSB is: 

𝑁𝐹𝑆𝑆𝐵 =
Vnmix 

2

𝑁𝑖𝑛(𝑓𝑅𝐹). 𝐺𝑐𝑣
2 (𝑓𝑅𝐹). 𝛼(𝑓𝑅𝐹)2

       𝑤𝑖𝑡ℎ 𝛼(𝑓) = |
𝑍𝑖𝑛(𝑓)

𝑍𝑖𝑛(𝑓) + 𝑅𝑠
| (2-9) 

=
𝑁𝑡ℎ𝑜𝑢𝑡

+ 𝑁𝑎𝑙𝑖𝑎𝑠

𝑁𝑖𝑛(𝑓𝑅𝐹). 𝐺𝑐𝑣
2 (𝑓𝑅𝐹). 𝛼(𝑓𝑅𝐹)2

  (2-10) 

In (2-9) and (2-10), Nin(fRF).Gcv²(fRF).α²(fRF) is the input RF frequency band converted noise. 

Except for the wideband applications, the input noise outside the fRF band is filtered by a narrow 

band matching network or LNA. Consequently, the input noise conversion for RF bands 

corresponding to LO harmonics becomes negligible. In this case, Nalias become equal to 

2.Nin(fRF).Gcv²(fRF).α²(fRF)  and the overall NF can be written as:  

𝑁𝐹𝑆𝑆𝐵 = 2 +

 4𝐾𝑇𝑟𝑜𝑛

𝐷
𝑁𝑖𝑛(𝑓𝑅𝐹). 𝐺𝑐𝑣

2 (𝑓𝑅𝐹). 𝛼(𝑓𝑅𝐹)2
 (2-11) 
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Since the converted thermal noise has a 1/D variation while Gcv has a sinc(n.D) variation (2-

5), (2-11) shows that NFSSB reach his lower value for the minimum of: 

𝑓(𝐷) =
1

𝐷. 𝑠𝑖𝑛𝑐2(𝑛. 𝐷)
 (2-12) 

The function in (2-12) is plotted for n ratio of 1 and 3 in the Figure 2-5. 

 

Figure 2-5 :plot of the f(D) function. 

It can be noticed that the minimum NFSSB value depends on the ratio between fRF and fLO. 

For example, when fRF is close to fLO (n=1), the lower is reached when D is around 35%. When 

fRF is close to 3fLO (n=3), the optimal NFSSB value is reached with D around 12%. When D is 

set to this optimal value, the sampling mixer provides better NFSSB than a conventional passive 

mixer (which is the case where D=50%). In addition, using a sampling mixer increases the 

conversion gain of the front-end before the baseband amplification. As a result, the baseband 

amplification noise contribution is lowered, thus improving the overall NFSSB of the receiver. 

2.3.5 Sampling mixer linearity 

Like in a conventional CMOS passive mixer, the sampling mixer linearity is a strength. As 

this kind of mixer is intended to be driven by a low duty cycle LO signal, sharp rising and 

falling edges are needed. Hence, sampling passive mixer is highly linear thanks to fast 

transitions from OFF-state to ON-state [35]. 
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2.3.6 Previous works on high frequency sampling passive mixers 

To sum up, the sampling principle allows the design of highly linear passive mixer while 

the conventional passive mixer conversion gain limitation is overcome. Benefits of this mixing 

operation have already been demonstrated at lower frequencies. In [43], a sampling mixer in 

the IMS band at 2.4 GHz is implemented to take advantage of low consumption and good 

conversion gain. In addition, [43] shows that sampling mixer can also be used to benefit from 

a good I/Q isolation, since low duty cycle LO prevents overlapping between I/Q paths. 

This principle is extended at higher frequencies in [44]. In this work, a sampling mixer has 

been implemented around 20 GHz with a 130 nm CMOS technology, demonstrating the 

interest of this principle for millimeter-wave receiver. 

The good performances of nm-scaled CMOS processes, as the 28 nm FD-SOI, let the 

sampling passive mixer appear as a possible option for the conversion of a 77 GHz RF signal. 

However, the 77 GHz pulsed LO signal generation is critical. Therefore, next section deals 

with a new 77 GHz pulse shaper and its implementation into a sampling passive mixer. 

2.4 Low duty cycle LO signal and frequency limitations 

As previously stated, passive mixer driven into a sampling operation by a low duty cycle 

LO signal can reach high performances in terms of consumption, gain, noise figure and 

linearity. Nevertheless, the generation of such an LO signal is a challenge at high frequency.  

2.4.1 High frequency low duty cycle LO signal 

The generation of a proper low duty cycle square wave is quite difficult at high frequencies 

because it requires many harmonics that cannot be generated or managed. Main frequency 

limitations come from too low transistor ft and parasitic elements. For example, the Figure 2-6 

shows an ideal 77 GHz 25% duty cycle LO square signal and its resulting spectrum. Figure 2-6 

puts forward that generating a LO signal with sharp falling and rising edges requires a 

significant voltage magnitude around many harmonics. Therefore, such a LO waveform is 

difficult to create with CMOS transistors ft around 300 GHz. 
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Figure 2-6: 77 GHz 25% duty cycle square signal in time and frequency domains. 

2.4.2 CMOS low duty cycle signal generation at millimeter-wave 

frequencies 

The more spread solution to generate low duty cycle signals is based on logic gates. At low 

frequency, the generation of non-overlapping low duty cycle clock for interleaved track and 

hold or N path mixer or filter is well mastered. Thanks to nm-scaled CMOS processes, these 

approaches based on logic gates have been extended to high frequencies.  

 

Figure 2-7: (a) Four non-overlapping clock generator based on D-latch divider (b) Four non-overlapping 

clock generator based on a passive network (c) Variable low duty cycle signal generator. 

Different ways to generate a low duty cycle signal from a few GHz to 30 GHz are depicted 

in Figure 2-7. Circuits of Figure 2-7.a and Figure 2-7.b generate four 25% non-overlapping 

clocks often required for N path or I/Q mixers. Figure 2-7.a describes a quite conventional 

method to generate 25% duty cycle clock used in [43] at 2.45 GHz. In this circuit a D-latch 

divider by 2 generates four 50% duty cycle square waves with 0°, 90°, 180°, 270° phase shifts. 

These signals are then combined with XOR gates to generate low duty cycle signals.  
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Figure 2-7.b is used in [45] and presents a quite similar operating principle. However, this 

circuit operates up to 30 GHz. As a 60 GHz D-latch divider design would be critical or would 

result in a very high DC power consumption, this divider is replaced by a passive network. 

This network generates 4 phase shifted sinusoidal signals which are turned into square wave 

by buffers. Finally, the four non-overlapping clocks are generated by four transmission gates. 

Finally, a simple approach to generate low variable duty cycle signal is depicted in Figure 

2-7.c. With this method a sinusoidal signal is turned into a square signal with inverters. Then 

two time-delayed square signals are created and combined by an AND gate.  

Even if all these low duty cycle LO signal generators, based on CMOS logic gates, are 

reported up to 30 GHz, it seems difficult to extend their operation up to 77 GHz with the 

available nm-scaled CMOS processes. The logical gates exhibit a too poor gain value in the 

millimeter-wave range to reach all required harmonic amplitudes for the LO voltage on a 

capacitive load (mixing transistor gate). As a result, another solution must be found for the 

generation of a low duty cycle LO signal in the range of 77 GHz. 

2.5 Non-Linear Transmission Lines for millimeter-wave pulse 

shaping 

An interesting solution to overcome active device frequency limitations is to use passive 

non-linear devices with very high cut-off frequencies to create the harmonics required for a 

pulsed signal. This idea is illustrated by a Non-Linear Transmission Line (NLTL) based on 

varactors [46], which turns a sine wave into a pulsed periodic signal (Figure 2-8). 

 

Figure 2-8: NLTL operating principle. 

The pulse shaping comes from the varactor non-linearities. The NLTL characteristic 

impedance and the propagation constant of the signal in a NLTL are: 
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𝑍𝑁𝐿𝑇𝐿 = √
𝐿

𝐶𝑣𝑚𝑒𝑎𝑛

 𝑎𝑛𝑑 𝛾𝑁𝐿𝑇𝐿 =  j. ω√𝐿. 𝐶𝑣(𝑉) (2-13)  

In (2-13), Cvmean is the average capacitance of varactors. As the sinusoidal propagation 

constant is different for the lower and the upper part of the sine, the outgoing signal is distorted, 

and the sine is finally turned into a pulsed waveform.  

For a proper 77 GHz LO pulse shaping, the NLTL exhibits quite large length ([46]) and an 

input impedance lower than 50 Ω. As the required varactor capacitance tends to decrease the 

NLTL characteristic impedance, the NLTL brings a lower input impedance than mixing 

transistor gates. As providing a high voltage swing on a low input impedance requires a 

significant power, the LO voltage swing amplitude is a bit limited and an additional driving 

stage is necessary resulting in an extra consumption. At the scale of a whole radar transceiver 

chip with multiple Rx and Tx, NLTL extra consumption and size make its implementation 

quite difficult. To overcome these limitations, a new pulse shaper architecture inspired from 

NLTL has been designed and it is presented in the following sections. 

2.6 A new 77 GHz pulse shaper architecture 

A new pulse shaper architecture is presented in Figure 2-9, which is convenient for 

millimeter-wave application. This architecture is inspired from the NLTL operating principle. 

From this circuit the input sine is amplified and turned into a pulsed waveform at the same 

time. The common-source transistor (Mamp) brings the linear amplification of the LO input 

signal while the pulse shaping comes from the 𝐿𝐶𝑣 resonator. The Mamp transistor sizing is 

W/L = 36 µm/30 nm. A NMOs transistor (Mvar) with a W/L of 25µm/1µm is chosen to 

implement the varactor Cv. This choice is explained later.  
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Figure 2-9: Pulse shaper topology. 

The impedance of the resonator is varying in time as 𝐶𝑣 capacitance value depends on the 

LOout voltage. These impedance changes make LOout phase and magnitude alternatively 

increase and decrease over the LO period to create this pulsed waveform. The varactor Cv(V) 

characteristic must be as abrupt as possible to reach sharp rising and falling edges [47] and thus 

getting a low pulsed signal duty cycle. L and Cv(V) values are chosen to get a mean resonance 

frequency as: 

𝑓0𝐿𝐶
=

1

2𝜋√𝐿. 𝐶𝑣𝑚𝑒𝑎𝑛

 ≈ 77 𝐺𝐻𝑧 (2-14) 

As the pulse shaper output is directly connected to the mixing transistor gates it is thus 

charged by a quite high impedance. A proper LO voltage swing can be delivered without a 

prohibiting DC power consumption. This structure is also very compact. Therefore, this 

topology is well suited to nm-scaled CMOS designs. 

2.7 Pulse shaper implementation 

2.7.1 NMOS Varactor implementation 

In the pulse shaper, a NMOS transistor is used as varactor because of its abrupt Cv(V) curve. 

The layout of this NMOS varactor is described in Figure 2-10. The chosen sizing leads to a 

varactor capacitance ranging between 20 fF and 90 fF.  
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Figure 2-10: Layout of the NMOS varactor. 

In FD-SOI technologies, the body effect is high (~ 85mV/V) making possible to tune the Vth 

by changing the body voltage Vtune. As shown in Figure 2-11, this property can be used to shift 

the varactor Cv(V) characteristic. This feature is used to tune LO waveform and to find the best 

trade-off between LO peak magnitude and duty cycle 

 

Figure 2-11: Cv(V) of the varactor for different body voltages. 

 

2.7.2 Stability  

As the varactor capacitance Cv(V) is driven by the output voltage swing of the pulse shaper, 

only using a small signal S-parameter analysis to simulate the input reflection coefficient of 

the pulse shaper is not sufficient. A large signal S-parameter simulation combining an harmonic 

balance simulation to consider the output voltage swing and a small signal S-parameter 

simulation computing the S11 is performed. Small and large signal S-parameter analysis results 
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reported in Figure 2-12 show that an inductive degeneration helps keeping the pulse shaper S11 

below 1 by neutralizing the output signal feedback coming from the parasitic capacitances of 

the transistor Mamp. Therefore, this inductive degeneration is necessary to ensure the pulse 

shaper stability. A 20-pH inductance is implemented on the source of each transistor in 

common source configuration of the pulse shaper (Mamp in Figure 2-9) to guaranty the pulse 

shaper stability.  

 

Figure 2-12: Pulse shaper input impedance with and without inductive degeneration. 

Finally, the stability of this circuit is checked by applying current pulses on the input and 

DC supply ports and simulating the pulse shaper transient response. 

2.7.3 LO input matching 

An LO input balun is used to provide a differential 77 GHz LO signal to the pulse shaper 

and for the 50 Ω matching of the LO port. Each output of the LO balun are connected to a 

single-ended pulse shaper (Figure 2-9). The implemented balun has a 75 μm external diameter 

and both primary and secondary coils have a 4 μm metal strip width. The upper thick metal 

levels (alucap and IB) are used to avoid losses coming with series resistances. Matching 

capacitances C1 of 40 fF and C2 of 15 fF are set for enabling a proper 50 Ω matching. The whole 

matching network of the LO port is depicted in Figure 2-13.a 
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Figure 2-13: (a) LO input network (b) magnitude of LO port reflection coefficient. 

A large signal S-parameter simulation is performed to extract the LO port reflection 

coefficient (Figure 2-13.a). The result of this simulation is reported in Figure 2-13.b showing 

a S11  lower than -16 dB over the 76-81 GHz frequency band. 

2.8 Generated LO pulsed waveform 

A transient simulation of the standalone pulse shaper is performed after the modelling of all 

layout parasites with momentum or Post Layout Simulation (PLS) extracts. Output voltage 

waveforms are depicted in Figure 2-14 for an input LO power of 0 dBm and different varactor 

tuning voltages (Vtune). Using this tuning voltage allows to find the best trade-off between the 

mixer linearity and conversion gain. A Vtune of 1V leads to the sharpest rising and falling edges 

and will provide the best mixer linearity. Nevertheless, this waveform shows the higher LO 

duty cycle. On the contrary a Vtune of 5V will give the lower LO duty cycle to benefit from the 

best conversion gain but the rising and falling edges are significantly softened. The best 

trade-off on mixer performances will be reached with a Vtune of 3V. In this configuration, the 

power consumption of the 77 GHz LO pulse shaper is 10 mW under a 1V supply. 
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Figure 2-14: Pulse shaper output waveforms for different 𝑉𝑡𝑢𝑛𝑒. 

With dimensions of devices presented in Figure 2-9 and a Vtune of 3V, the pulse shaper 

generates a 1.4 Vp-p  pulsed LO waveform with a duty cycle DLO of 33%. This value of DLO 

appears to be the best performance that can be reached, because of limitations introduced by 

the non-negligible layout parasite influence at 77 GHz. Nevertheless, this LO pulsed waveform 

still improves mixer performances compared to a sinusoidal LO drive. 

To check the reliability of the transistors of the pulse shaper under voltage conditions of 

Figure 2-14, the VDS and VGS have been monitored. Because VGS is low (no current) when VDS 

is high, transistors do not enter into high Hot Carrier Injection and stay in a safe operating area.  

All in all, this new pulse shaper topology appears quite promising to generate low duty cycle 

LO signals at millimeter-wave frequencies. The next sections present the implementation of 

this circuit into a 77 GHz sampling mixer prototype in 28FDSOI technology. 

2.8.1 Layout description 

The Figure 2-15 shows the layout of the balanced pulse shaper implemented on the 77 GHz 

sampling mixer test chip in 28FDSOI. 
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Figure 2-15: (a) 3D view of the pulse shaper layout (b) Pulse shaper implemented in the 28FDSOI test chip. 

An input passive balun is used to feed the balanced LO pulse shaper where the single-ended 

pulse shaper of Figure 2-9 is duplicated to address both LO phases. 

The LC resonator 75-pH inductor of both pulse shapers is tied to a common VDD supply. 

Figure 2-16 describes the VDD supply decoupling strategy for the pulse shaper. 

 

Figure 2-16: Decoupling strategy for the pulse shaper. 

As the inductive parasitic elements of the VDD supply path can lead to a degradation of the 

LO waveform or potential oscillations, a proper decoupling must be implemented as close as 

possible to the pulse shaper. Four 150-fF MOM capacitors using M2 to M6 metal levels are 

used to connect the VDD access to the ground plane. This decoupling ensures a low impedance 

of the VDD supply bus at millimeter-wave frequencies. Extra decoupling capacitors are 
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implemented between the pulse shaper and the VDD supply pad to get an efficient decoupling 

at lower frequencies. 

2.9 Sampling mixer core implementation 

2.9.1 Mixing transistor and hold capacitor sizing 

The mixing transistor sizing is essential to get a good noise/linearity trade-off. As already 

stated, sharp LO pulse rising and falling edges are needed to get the best linearity from the 

sampling mixer. However, mixing transistors present a capacitive load to the output of the pulse 

shaper, which tends toward a low impedance at high frequencies. Consequently, the LO pulse 

edges can be softened, and the linearity decreased. Lowering the width of mixing transistors 

helps keeping sharp LO edges. On the other hand, increasing the width helps to reach a low NF 

by lowering the ON-state resistor ron of transistors. A trade-off must be found as illustrated in 

Figure 2-17.  

 

Figure 2-17: Noise and linearity performances vs mixing transistors gate width. 

Figure 2-17 shows the noise/linearity variations versus transistor width when conversion 

gain is kept constant. It can be noticed that widths between 10 μm et 20 μm give the best trade-

off. The mixing transistor sizing of 15 µm / 30 nm has been selected. 

Finally, to ensure a good sampling, each IF amplifier input provides a high resistive 

impedance (10 kΩ) in parallel with the CH/gc lowpass network (gc is the mean channel 

conductance of M1,2,3,4 ). The CH value is set to 300 fF to have a discharge time constant RIF.CH 

far higher than 1/fLO to properly store sampled value. With a CH of 300 fF, the gc/(2πCH) cut-
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off frequency is higher than the IF amplifier bandwidth so CH does not limit the bandwidth of 

the circuit. 

2.9.1.1 Layout of the sampling mixer core 

Figure 2-18 depicts the layout of the sampling mixer core, including mixing transistors, the 

300-fF hold capacitors and DC supplies. The Thick metal levels IA and IB are used for RF and 

LO signals to limit losses, while the thin metal level M6 is used for IF frequencies around 20 

MHz. Source and gate DC voltages applied on the mixing transistors (respectively VSmix/VGmix) 

are provided by way of 10 kΩ resistors. 

 

Figure 2-18: Sampling mixer core layout. 

The VSmix DC value is set to 0.6 V to properly bias the IF OP-amp followers. To have a sharp 

ON/OFF transition, the LO signal has to make VGS crossing Vth when LO signal slope is 

maximum. The DC value of pulse shaper output (1V) is too high to comply with this condition. 

DC blocking capacitors have been added so that LO DC voltage can be adjusted using VGmix. 

The choice of VGmix is illustrated on Figure 2-19. 
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Figure 2-19: Mixing transistor biasing. 

After the DC block, the LO waveform is centered on VGdc which is equal to VSdc + ΔVdc. 

Setting the half magnitude of pulses close to the mixing transistor Vth requires a VGdc around 

0.75V for the gate bias voltage. 

2.9.2 RF input matching 

As the sampling mixer exhibits a quite high input impedance, a RF balun with a 1:2 turns 

ratio is necessary to present a 50 Ω impedance at the RF port. The external diameter of this RF 

input balun (Figure 2-20) is around 50 μm. Like for the LO balun, upper metal levels are used. 

The primary and secondary metal strip widths are respectively 4 μm and 2 μm. Two parallel 

10-fF matching capacitors are implemented at the output of the RF balun. The 25-fF 

capacitance of the signal pad, which is part of the GSG pattern integrated for RF probing, is 

used as input matching capacitance. In this way, no de-embedding of RF pads will be required 

when characterizing this circuit. 

 

Figure 2-20: RF port matching network. 
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As the mixer is a non-linear device, the LO signal cannot be considered as a small signal to 

compute the mixer S11. Consequently, a large signal S-parameter simulation is performed. The 

simulated RF input reflection coefficient for different fLO is reported in Figure 2-21. The 

simulation shows a good RF matching for fLO in the range of 76-81 GHz. 

 

Figure 2-21: RF input reflection coefficient. 

2.10 Standalone mixer simulated performances 

All simulation results presented in this section involve a global layout modelling using 

momentum and a PLS extract. Moreover, in order to assess the benefits of sampling, a 

sinusoidal and a pulsed LO waveform of same magnitude are used to drive the mixer. The 

pulsed 77 GHz LO waveform is generated by the LO pulse shaper presented earlier, with a 

0-dBm input power. 

2.10.1 Gain and linearity 

The harmonic balance simulation results, with RF and LO frequencies respectively set to 

77.02 GHz and 77 GHz are reported in Figure 2-22. Simulated voltage conversion gain 

compressions are reported for both LO waveforms. 

-40

-35

-30

-25

-20

-15

-10

-5

0

75 76 77 78 79 80 81 82

R
F 

ac
ce

ss
 S

1
1

 [
d

B
]

RF frequency [GHz]

LO frequency = 81 GHz

LO frequency = 80 GHz

LO frequency = 79 GHz

LO frequency = 78 GHz

LO frequency = 77 GHz

LO frequency = 76 GHz



Chapter 2 Design of a 77 GHz sampling passive mixer in 28-nm FD-SOI CMOS technology 

 

56 

 

 

Figure 2-22: Voltage conversion gain compression curves. 

When the mixer is driven by a sinusoidal waveform, the conversion gain is around 

2/π (-4 dB), which corresponds to the theorical gain of a conventional voltage passive mixer. 

For the sampling mixer driven by the pulsed LO waveform, the conversion gain is now -1 dB. 

In good agreement with the sampling mixer principle, this simulation shows that the low duty 

cycle pulsed LO waveform significantly improves the conversion gain. 

This pulsed LO waveform also presents sharper falling and rising edges than a sine, which 

leads to a better linearity. This improvement is validated by simulations, since the input -1 dB 

compression voltage V-1dB is 1.55 Vp-p for the pulsed waveform and 1.1 Vp-p for the sine wave. 

This compression point is expressed as a voltage because the use of power is not relevant here, 

considering the high Zin of the mixer. However, an equivalent power compression point in a 50 

Ω system can be derived considering that V-1dB voltage is delivered to a 50 Ω load. For pulsed 

and sinusoidal LO waveforms, these equivalent ICP1dB are +7.8 dBm and +5.2 dBm, 

respectively. This result proves that turning a sine into a pulsed waveform improves the 

linearity when the LO voltage amplitude is kept constant. It is welcomed since the linearity of 

mixers is decreasing with the scaling down of CMOS processes as the transistor breakdown 

voltage reduction is limiting the maximum LO voltage amplitude that can be applied. 

2.10.2  Noise 

A harmonic balance-based non-linear noise simulation has been performed as well. The 

NFSSB when using a 50 Ω RF source is plotted in Figure 2-23, and an enhancement of 1.3 dB 
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can be noticed for a pulsed LO signal. Once again, the sampling mixer appears as a favourable 

alternative to the sine driven passive mixer.  

 

Figure 2-23: Simulation results for mixer 𝑁𝐹SSB. 

In addition, it must be reminded that another positive sampling mixer contribution on noise 

is resulting from a higher front-end gain which limits the important baseband noise contribution 

into the receiver noise budget. 

As a summary, these simulations show that sampling mixer exhibits better performances 

than conventional sine driven passive mixers, thanks to the LO pulse shaping. The voltage 

conversion gain is increased by 3 dB, the ICP1dB by 2.6 dB and the NFSSB is reduced by 

1.3 dB.  

2.11 IF Operational amplifier followers  

An operational amplifier (OP-amp) in a follower configuration is implemented on both 

outputs of the mixer. These output buffers are isolating the mixer from the measurement setup 

with a unitary gain while providing a high input impedance in parallel with the hold capacitor 

of the mixer core. Using an output stage with a unitary gain prevents any de-embedding of 

measurements to reach the mixer gain. The linearity of this output stage must be also higher 

than the mixer linearity not to impact measurements. 
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2.11.1 Operational amplifier design 

The schematic of the IF OP-amp is given in Figure 2-24. This amplifier is based on a 

conventional topology with a PMOS common source output stage, for increasing the open loop 

gain. The OP-amps are used as followers (OUT connected to IN- and IN+ to one mixer output).  

 

Figure 2-24: OP-amp schematic. 

Gate length of 100-nm and 150-nm are used for lowering the 1/f noise. Amplifying stages 

are biased by way of a current mirror. RFCF feedback is implemented on the output stage to 

provide at least 50° of phase margin. The aim is to ensure a good stability whatever process 

variations are. Finally, decoupling capacitors Cd are implemented on the VDD and Iref DC 

supplies.  

These OP-amp output buffers are biased under a 1.5 V VDD to get the required linearity. 

Reliability issues are prevented using thick gate oxide transistors with higher breakdown 

voltages. The Vth of transistors is adjusted from the body voltage set to VDD or to GND. The 

layout of one OP-amp in a follower configuration is depicted in Figure 2-25. The represented 

circuit area is 105µm×100µm. 
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Figure 2-25: OP-amp follower layout. 

2.11.2 Open loop analysis 

The stability of OP-amps designed for the output stage is checked from simulation of the 

open loop configuration (no feedback on the inverting input IN-). A small signal simulation 

taking into account all parasitic elements of the layout is performed to compute the open loop 

gain and the input/output phase shift. Results of this simulation are reported in Figure 2-26.  

 

Figure 2-26: OP-amp open loop performances. 
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capacitive load representing an oscilloscope probe input capacitance. Under these conditions, 

this circuit exhibits an open loop gain of 64 dB with a 56° phase margin. 

2.11.3 Closed loop performances 

The OP-amp is implemented and simulated in the follower configuration (The OP-amp 

inverting input IN- tied to the output). The harmonic balance and noise simulation results are 

reported in Figure 2-27. 

 

Figure 2-27: OP-amp closed loop performances. 

Each IF output stage exhibits a 0 dB gain and a 1.5 nV/√hz input-referred noise voltage at 

30 MHz. The gain compression occurs for input voltages beyond 1.2 Vp-p. Since the voltage on 

each mixer IF output is around 0.6 Vp-p at the mixer 1 dB compression point, these buffers 

appear linear enough to keep the whole circuit linearity. Power consumption of each OP-amp 

is 7.5 mA on the 1.5 V voltage supply. 

2.12 77 GHz sampling mixer test chip 

The architecture of the test chip for the standalone 28FDSOI 77 GHz sampling mixer is 

depicted in Figure 2-28.a. A picture of the manufactured chip is given in Figure 2-28.b. The 

circuit area is 0.83 mm × 0.68 mm. 
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Figure 2-28: (a) RF mixer block diagram (b) manufactured chip. 

Differential 77 GHz signal synthesizers are not available. Consequently, as for the LO 

signal, an input passive balun providing differential RF signals and performing a 50Ω matching 

is implemented on the RF port. This balun exhibits a 8.2 dB voltage gain corresponding to the 

voltage transformation ratio. To be able to measure the 77 GHz mixer with perpendicular RF 

probes, a 300μm line must be inserted between the LO balun and the LO GSG pads to separate 

both RF probes. 

Following sections are dealing with the measurement setup used for the characterization of 

this 77 GHz sampling mixer demonstrator and with the presentation of measurement results.  

2.13 Millimeter-wave measurement setup 

2.13.1 Measurement bench description 

The 77 GHz prototypes have been measured at the LAAS-CNRS laboratory. The available 

millimeter-wave RF-probe measurement bench is based on commercial WR-12 waveguide 

components operating in the 60-90 GHz frequency band. The LO and RF chain are set up 

around a Süss Microtech PM8 probe station. Figure 2-29 is a picture of the whole 

millimeter-wave measurement bench. 
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Figure 2-29: 60-90 GHz RF-probe measurement bench. 

The RF and LO signal chains rely on dedicated mechanical supports manufactured at the 

laboratory to adapt the PM8 station to the mixer measurement specific configuration. These 

mechanical supports and the micro-positioners are moving simultaneously to avoid constraint 

on motions of the RF probes.  

2.13.2 Gain and linearity measurement setup 

2.13.2.1 RF and LO chain description 

The Figure 2-30 presents the photograph of the 60-90 GHz RF or LO chain based on WR-12 

waveguide components. 

 

Figure 2-30: 60-90 GHz RF/LO chain. 
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RF or LO signal generation chain is fed by a RF signal synthesizer operating up to 15 GHz. 

These chains include a x6 multiplier to generate 60-90 GHz signals, an isolator ensuring a 50 

Ω matching and a voltage-controlled attenuator providing an accurate control of the RF chain 

output power. Straight and “S” WR-12 are used to connect RF and LO chains to 150 μm GSG 

probes. In this configuration each chain can deliver a RF power up to 2 dBm at the plane of the 

RF probe tips. 

2.13.2.2 Conversion gain and linearity measurement 

The setup for conversion gain and linearity measurements is described in Figure 2-31. RF 

and LO signals around 77 GHz are applied by GSG RF probes laid down on the RF and LO 

ports of the die. IF output signals around 20 MHz are then measured with an oscilloscope and 

the mixer voltage conversion gain is calculated considering RF signal chain power calibration. 

IF output signals are measured for several positions of the RF chain attenuator, and the mixer 

ICP1dB is computed from this set of measures. 

 

Figure 2-31: Conversion gain and linearity measurement setup. 

2.13.2.3 Calibration of the RF and LO chains  

The knowledge of the RF and LO chain output power for each attenuator position is required 

to perform an accurate conversion gain measurement. However, directly measuring the 

delivered power at the output of the RF probes is impossible. Thus, the calibration method 

described in Figure 2-32 is used. 
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Figure 2-32: RF and LO chains calibration method. 

The first calibration step consists in measuring the available power (PRF-1) at the attenuator 

output with a R&S NRP-Z58 thermal power sensor for all attenuator positions. Then, both RF 

and LO probes are placed on a calibration standard “through” corresponding to a short 50 Ω 

line between both probes and the power at the 2nd probe output PRF-2 is measured (Step 2). By 

neglecting the losses of the through-standard, the losses of a single RF probe can be calculated 

as:  

𝐿𝑝𝑟𝑜𝑏𝑒𝑠 =
𝑃𝑅𝐹−1− 𝑃𝑅𝐹−2

2
(2-15)   

Finally, the step 3 is similar to step 1 and provides the available power (PLO-1) at the 

attenuator output for the LO chain. The RF and LO power delivered to the Device Under Test 

(DUT) is calculate as: 

𝑃𝑅𝐹 = 𝑃𝑅𝐹−1 − 𝐿𝑝𝑟𝑜𝑏𝑒𝑠 and  𝑃𝐿𝑂 = 𝑃𝐿𝑂−1 − 𝐿𝑝𝑟𝑜𝑏𝑒𝑠 (2-16) 

2.13.3 Noise measurement setup 

For the noise measurement setup, the LO power is provided by the same LO chain as in the 

previous configuration while an ELVA-1 WR-12 RF noise source is directly connected to the 

RF port. This configuration is detailed in Figure 2-33. 

 

Figure 2-33: Noise measurement setup. 
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The IF output noise power is measured using an Agilent E4440A spectrum analyzer. As the 

measured circuits do not have enough gain, a Printed Circuit Board (PCB) noise measurement 

amplifier must be added before the spectrum analyzer to increase the measured noise floor. 

Otherwise, the measured noise level may be too close to the analyzer noise floor to be 

accurately measured. This amplifier is also used to recombine the IF output differential signals 

thus avoiding difficulties coming from differential NF measurements. This noise measurement 

amplifier is described in Figure 2-34. 

 

Figure 2-34: Noise measurement amplifier.  

The designed noise measurement board includes a Coilcraft PWB-3010 transformer for 

differential to single-ended conversion and two AD8099 OP-amp amplifying stages. When 

both stages are used, this amplifier provides around 42 dB of voltage gain associated with a 4.5 

dB NF over a 50 MHz frequency range. 

2.13.4 PCB test board and chip mounting 

For its characterization, the chip is reported and wire-bonded on a PCB test board supporting 

DC supplies and IF outputs. RF and LO signals are applied by way of 60-90 GHz GSG RF 

probes. The designed PCB test board and the chip integration are shown in Figure 2-35. The 

sampling mixer circuit presented in this chapter is implemented with other circuits designed 

for this PhD work in a 28FDSOI test chip. As circuits smaller than 1mm×1mm cannot be sawed 

from the wafer to be reported on the PCB, implementing several circuits on a test chip is 

necessary. Distributed in the four quarters of the test chip, each circuit has the same DC pad 

and IF output pattern. Consequently, a single PCB design can be used to measure all the 

prototypes. When reported on the PCB, test chips only need to be rotated by 90° to choose the 

circuit to be under test. 
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Figure 2-35: PCB test board and chip mounting.  

2.14 77 GHz sampling mixer measurement results 

2.14.1 Conversion gain and linearity 

The voltage conversion gain of the sampling mixer is reported in Figure 2-36, for an RF 

frequency between 76 and 81 GHz and compared with simulated data. The pulse shaper 

varactors body voltage Vtune leading to the best simulated performances was selected for the 

measurements. RF and LO frequencies are both set from 76 GHz to 81 GHz in order to keep 

fIF constant at 20 MHz. These measurements are performed with a 0-dBm LO input power and 

include the RF input balun performances.  The measured Gcv varies between 7 dB and 8.5 dB 

in the fRF range 76-81 GHz showing a good agreement with simulations. 

 

Figure 2-36: measured Gcv variations vs fRF. 
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The voltage conversion gain compression obtained from a varying RF input power is plotted 

in  Figure 2-37. RF and LO frequencies are respectively set to 78.02 GHz and 78 GHz. The 

extracted Gcv and ICP1dB are respectively 7.5 dB and -1.5 dBm. 

 

Figure 2-37: Gcv vs the input RF power at 78 GHz. 

The simulated voltage transformation ratio of the RF input balun is considered to extract its 

contribution from the measured Gcv and ICP1dB. In these conditions, the 𝐺𝑐𝑣
 becomes -0.7 dB 

and an input -1 dB compression voltage (V1dB) is 1.37 Vp-p. Voltage is used here to express the 

mixer compression point as it is more relevant for a high Zin block. This voltage is equivalent 

to an ICP1dB of + 6.7 dBm in a 50 𝛺 system. 

2.14.2  Noise figure 

2.14.2.1 IF output follower stage noise measurement 

The Noise Figure is measured using the cold source method [48]. The RF noise source in 

OFF mode is used as a 50 Ω resistance at room temperature TR (≈ 297 °K). The noise power at 

the circuit output (Nout) is amplified by the noise measurement amplifier (2.12.3) and measured 

with a spectrum analyzer. Finally, the NF is calculated as: 

𝑁𝐹 =
𝑁𝑜𝑢𝑡

𝑘. 𝑇𝑅 . 𝐺𝑐𝑣
2

(2-17) 

The OP-amp follower output buffer is only used to isolate the mixer from the measurement 

setup and must not be considered in the mixer performance. Consequently, it has been 

characterized in a standalone configuration to extract its noise contribution from the mixer NF 
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measurement. Its measured input-referred noise (Vn in) in the fIF range 1-30 MHz is reported in 

Figure 2-38.  

 

Figure 2-38: 𝐼𝐹 output stage input-referred noise versus fIF. 

The measured value at an IF frequency of 20 MHz is 2.9 nV/√Hz. This noise contribution 

can be extracted from overall NFSSB measurements. Removing this noise contribution gives: 

𝑁𝐹𝑆𝑆𝐵𝑚𝑖𝑥
= 𝑁𝐹𝑆𝑆𝐵𝑚𝑒𝑎𝑠

−
𝑣𝑛𝑖𝑛

2

𝑘. 𝑇𝑟 . Rs. 𝐺𝑐𝑣
2

(2-18) 

2.14.2.2 Mixer noise measurement 

The Measurements of the NFSSB of the sampling mixer in the 𝑓𝑅𝐹 range 76-81 GHz with an 

IF frequency of 20 MHz are reported in Figure 2-39. These measurements were also performed 

using the cold source method and include the noise of the IF buffer which will be extracted 

later. The NFSSB is measured between 10.5 dB and 13 dB a in the fRF range 76-81 GHz in good 

agreement with simulations.  

 

Figure 2-39: sampling mixer NFSSB versus fRF. 
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Finally, Figure 2-40 shows the 𝑁𝐹𝑆𝑆𝐵  with a LO frequency of 78 GHz and an IF frequency 

range up to 30 MHz. An increase of the NFSSB for fIF below 20 MHz can be noticed, due to the 

IF OP-amp 1/f noise. The measured value of N𝐹𝑆𝑆𝐵 is 12.3 dB at 20 MHz. The measured NFSSB 

of the sampling mixer at 20 MHz becomes equal to 9.1 dB after removing the noise contribution 

of the OP-amp follower. 

 

Figure 2-40: sampling mixer NFSSB at an fRF of 78 GHz. 

2.15 Performance summary and conclusion 

Sampling mixer measured performances after the RF balun and IF output buffer 

de-embedding are summarized on Table 2-1. Because of time constraints, only one sample of 

this circuit was measured. 

Table 2-1: Sampling mixer measured performances. 

𝒇𝑳𝑶 

[GHz] 

𝒇𝑰𝑭 

[MHz] 

𝑮𝒄 

[dB] 

ICP1dB 

[dBm] 

NFSSB 

[dB] 

PLO 

[dBm] 

𝑷𝒅𝒄 

[mW] 

78 20 -0.7 +6.7 9.1 0 
10  

+ 23* 
* IF output follower consumption 

These measurements demonstrate that the implementation of the proposed LO pulse shaper 

results into a sampling mixer which exhibits a good conversion gain associated with a high 

linearity. Moreover, these results highlight that sampling mixers allow to break the voltage 

conversion gain limitation of 2/π which applies for conventional sine driven passive mixers.  

To conclude, in this chapter, a new sampling mixer, operating at millimeter-wave 

frequencies, is proposed. The discussion puts forward that driving the mixer with a low duty 
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cycle LO signal, in association to a capacitive load, creates a sampling behaviour improving 

the conversion gain and the linearity, when compared with sine driven mixer. Nevertheless, the 

generation of a low duty cycle signal at 77 GHz is a critical point. As a solution, an innovative 

77 GHz pulse shaper able to turn the LO signal into a pulsed waveform is introduced. The 

implementation of the LO pulse shaper within a double-balanced passive mixer in a 28-nm FD-

SOI CMOS technology validates this new sampling mixer topology. According to these results, 

this sampling mixer appears as a good candidate to satisfy automotive radars stringent 

requirements.  

As standalone passive mixers are not presented in the literature related to CMOS 77 GHz 

radar receivers, a meaningful comparison between this sampling mixer and other solutions is a 

bit difficult. However, this sampling mixer topology implementation with a LNA in a 77 GHz 

front-end will be presented in chapter 4. The performances of the full radar front-end will help 

to provides a proper comparison with others 77 GHz radar receivers. 



Chapter 3 Design of a 77 GHz passive sub-sampling mixer in 28-nm FD-SOI CMOS technology 

 

71 

 

Chapter 3 Design of a 77 GHz passive sub-sampling 

mixer in 28-nm FD-SOI CMOS technology 

3.1 Introduction 

The 77 GHz sampling mixer presented in the chapter 2 proves that the sampling principle 

can be efficiently extended to millimeter-waves. Nevertheless, implementing a 77 GHz LO 

chain to drive the mixer is not straightforward as it generally requires a 38.5 GHz VCO, 

frequency doublers and highly consuming 77 GHz amplifying stages.  

To avoid this complexity, a solution could be found by replacing fundamental mixers with 

sub-harmonic mixers that use a LO frequency sub-multiple of the RF frequency (fRF/n with n a 

natural integer). This solution has already been considered for the first generations of 77 GHz 

radar receivers [30], [49]. However, as sub-harmonic passive mixers often result in prohibitive 

conversion losses, high-frequency architectures mostly rely on sub-harmonic active mixers. At 

lower frequencies, passive sub-sampling mixers as in [37] are widespread and are characterized 

by low conversion losses and good linearity. The aim of this chapter is then to evaluate the 

feasibility of this concept at millimeter frequencies on a recent CMOS FDSOI technology node 

through the design of a ×3 sub-sampling passive mixer operating at 77 GHz.  

First, this chapter introduces the sub-sampling mixer principle, which is a particular case of 

the sampling mixer principle presented in the chapter 2. Then, the proposed topology is detailed 

with a focus on the 26 GHz LO signal shaping method. Finally, the implementation of this 

mixer with the 28-nm FD-SOI CMOS technology is described and measurement results 

validating this work are given. 
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3.2 Existing topologies of millimeter-wave sub-harmonic mixers 

Sub-harmonic mixers are generally used to avoid difficulties due to the high frequency LO 

generation or to address frequency bands above transistors limits (ft). This section describes the 

main sub-harmonic mixer topologies found in the literature within millimeter-wave CMOS 

receivers. 

3.2.1 Active Gilbert cell-based sub-harmonic mixers. 

Most of active sub-harmonic mixers encountered at millimeter-wave frequencies are based 

on the widespread Gilbert mixer topology [30], [49]. The operation of the sub-harmonic Gilbert 

cell is depicted in Figure 3-1. Each mixing transistor used in a conventional Gilbert cell is 

replaced by two paralleled transistors as in Figure 3-1.a (M1 and M2). These two paralleled 

transistors act as a frequency doubler embedded in the Gilbert cell mixing core. M1 and M2 

need to be driven by two LO voltages featuring the same frequency fLO and magnitude but with 

opposite phases. By setting the transistors gate voltage as described in Figure 3-1.b 

(respectively in blue and red), M1 and M2 are alternatively conducting at 2fLO frequency. This 

way M1 and M2 act as a single mixing transistor operating with an equivalent 2fLO drive, as 

illustrated in Figure 3-1.b (grey waveform). 

 

Figure 3-1: (a) Sub-harmonic Gilbert cell operating principle (b) LO waveforms. 
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An example of double-balanced ×2 sub-harmonic Gilbert cell employing this principle is 

drawn in Figure 3-2. [50] demonstrates that this principle can be extended to a ratio n (fRF/fLO) 

higher than 2 by paralleling n transistors. In this case, n LO phases will be required to drive a 

single balanced mixer and 2n for a double-balanced mixer. 

  

Figure 3-2: Example of conventional x2 Sub-harmonic Gilbert cell. 

The advantage of these actives topologies is their ability to provide a conversion gain which 

can be helpful to keep a good NF at receiver level. However, Figure 3-1.b shows that the 

magnitude of the equivalent 2fLO drive is significantly lower that the magnitude of the signals 

LO1/2. It often results into a poor linearity degrading the overall receiver performances. The 

extension of this principle to n values higher than 2 is also difficult as a circuit generating the 

2n LO phases is required. 

3.2.2 Passive subharmonic mixers 

Only a few passive subharmonic mixers are represented among the published 

millimeter-wave CMOS receivers. The more spread approach to design sub-harmonic passive 

mixers is to use cascaded passive mixers core driven by time delayed LO signals. In [51] and 

[52], this approach is used to convert a RF frequency of 24 GHz by using a 12 GHz LO signal 

as depicted in Figure 3-3. 

The Figure 3-3 shows that when two cascaded double-balanced CMOS passive mixers are 

driven by LO signals with a 90° phase shift, the whole operates exactly as a double-balanced 

CMOS passive mixer driven by a fictive 2fLO LO signal. The LO waveforms represented in 
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Figure 3-3.b illustrate the behaviour of the whole mixer. The main advantage of this topology 

is that the conversion gain remains equal to - 4 dB regardless of the n ratio between RF and LO 

frequencies. This solution also benefits from a better linearity than active subharmonic Gilbert 

cells. As the conventional passive mixer described in chapter 2, this kind of mixer can operate 

in a current or a voltage mode depending on the load impedance value defined between IF ends. 

 

Figure 3-3: (a) Sub-harmonic passive mixer (b) LO waveforms. 

In [53] this principle is extended to four cascaded mixers to reach frequencies around 

80 GHz. However, passive subharmonic mixers also require 2n LO phases. In addition, the 

conversion gain degradation due to the error between the LO phases and the transistors 

ON-time increases with n. Using more cascaded mixers will also lead to higher ron on the signal 

path bringing more converted thermal noise at the mixer output. 

3.2.3 Low-frequency sub-sampling mixers 

As previously discussed in chapter 2, at lower frequencies, the use of sub-sampling mixers 

with important n ratio as in [37] is well mastered. This principle translates into low conversion 

losses and good linearity without requiring a growing number of LO phases when the n ratio 

increases, its implementation towards millimeter frequencies is tempting. The following 

section demonstrates its feasibility to down-convert a 77 GHz signal using a LO signal n time 

lower than fRF, thus relaxing the constraints on the LO distribution chain. 
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3.3 Sub-sampling mixer operating principle 

The sub-sampling mixer is based on the operating principle of the sampling mixer presented 

in chapter 2, with a ratio n greater than 1. As a result, sub-sampling can be used to design a 

sub-harmonic passive mixer exhibiting a high linearity, a low conversion loss and requiring 

less LO phases than the topologies previously described. 

However, using sub-sampling mixers to lower the LO frequency increases the constraints on 

the LO pulse shape compared to a fundamental sampling mixer (n=1). This difficulty is 

illustrated in Figure 3-4 which shows the sub-sampling mixer conversion gain for different odd 

n ratios. Even n ratios are not represented as the double-balanced configuration of this topology 

rejects RF signals around even LO harmonics resulting in a zero conversion gain. The more n 

increases the more D must be kept low to keep a decent conversion gain. As low duty cycle 

LO signals are hard to generate at high frequencies, the possible choices for the ratio n are 

limited.  

 

Figure 3-4: Conversion gain of the sub-sampling mixer on the right calculated for perfect switches. 

Using a low duty cycle also affects the noise conversion. As described in chapter 2, such a 

mixer converts the noise present around each odd LO harmonic and the overall thermal noise 

added by the mixer follows a 1/D trend. Consequently, lowering D to get a decent conversion 

gain in sub-sampling mode results in a higher NF than for n = 1. Nevertheless, the input noise 

around the odd LO harmonics is generally filtered by the previous stages so only the input 

noise around 77 GHz and the thermal noise added by the mixer must be considered.  

The most reasonable ratio n appears to be 3 to design a sub-sampling mixer operating at 

77 GHz. This configuration corresponds to a LO frequency of 26 GHz and a duty cycle that 
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should be less than 20 %. These characteristics appear to be accessible to advanced nm-scale 

CMOS processes such as the 28-nm FD-SOI. The following section discusses the design of a 

26 GHz LO pulse shaper based on logic gates. 

3.4 26 GHz LO pulse shaper based on logic gates 

3.4.1 Pulse shaper architecture 

The architecture of the proposed differential pulse shaper is summarized in Figure 3-5. The 

differential driving of the mixer requires the generation of two pulse trains shifted by 180° with 

respect to each other. In each pulse shaper, two inverter chains A/C and B/D integrating a 

different number of stages are used to create square waveforms with the required time delay. 

This time delayed square signals are then turned into a pulsed signal by the AND gate. This 

solution provides a high LO voltage swing from 0 V to VDD to the mixer. High driving voltages 

maximizes mixer linearity. 

 

Figure 3-5: 26 GHz logic gates differential pulse shaper architecture. 

This approach leads to quite low duty cycles but appears sensitive to process variations. 

Figure 3-4 shows that the conversion gain of a sub-sampling mixer with n = 3 quickly changes 

with the duty cycle. Process variations can significantly change the propagation delay of logic 

gates. As it turns into duty cycle fluctuations, it can lead to an important degradation of the 

conversion gain. As a solution, a LO duty cycle tuning capability is provided by the circuit. In 

FD-SOI technologies the body voltage can be used to tune the threshold voltage Vth of the 
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transistors. In each inverter, applying a tuning voltage Vtune at the NMOS transistor body 

and -Vtune at the PMOS transistor body creates a Vth shift resulting in a different inverter time 

delay. Finally, changing the delay between the square signals before the AND gate directly 

changes the LO signal duty cycle. Opposite values of tuning voltages are chosen for the inverter 

chains A and B to increase the duty cycle tuning range. 

3.4.2 Pulse shaper implementation 

The logic gates used in this 26 GHz pulse shaper are described in Figure 3-6. The layout of 

the whole differential pulse shaper is shown in Figure 3-7.  

 

Figure 3-6: (a) Tunable delay inverter, (b) AND gate. 

As the transistor gate capacitances limit the high-frequency gain of complex logic gates, 

gate length is set to the minimum value (30 nm) in the inverter chains. However, the width Wp 

and Wn of the transistors are not constant. The LO pulse shaper layout in Figure 3-7 shows that 

the transistor size is progressively increased along the inverter chains. This way, current 

capability of each inverter is progressively increased to ensure a proper driving of the loading 

stage gate capacitance.  
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Figure 3-7: 26 GHz LO pulse shaper Layout. 

To provide similar 𝑉𝑡ℎ in the inverters, PMOS gate width Wp is chosen between 2 Wn and 

3 Wn. As in the 77 GHz pulse shaper presented in the chapter 2, decoupling capacitors 

connected between VDD and ground are implemented as close as possible to the logic gates. 

Finally, a 10 kΩ resistor is implemented between the input and the output of the first inverter 

of each chain. The resistive feedback on this stage set the DC voltage of the inverters input to 

VDD/2 without needing an additional DC voltage reference.  

The inverter chains are connected to a NAND gate followed by an inverter to create the 

required AND gate (Figure 3-6.b). As for the previous stages, transistors sizes are adjusted to 

deliver enough current to the mixing transistors gate capacitances without presenting a too low 

capacitive impedance to the inverter chains. As PMOS transistors Vth are higher than NMOS 

ones, each body access is tied to the ground. Thus, PMOS Vth decreases to reduce the gap 

between both Vth values. 

3.4.3 Generated LO waveforms 

The pulse shaper DC power consumption is 36 mW under a 1.2V VDD. The value chosen for 

this voltage is the result of a trade-off between the LO swing required to optimize the linearity 

of the mixer, the circuit power consumption and transistors reliability. In an inverter the 

transistors never experience high VGS and high VDS at the same time making it less sensitive to 

Hot Carrier Injection, even with 1.2V supply voltage. Figure 3-8 shows the output voltages of 

the A and B inverter chains (Figure 3-5). 

Inverters chains

AND gates

Decoupling
capacitors
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Figure 3-8: Inverter chains output for different 𝑉𝑡𝑢𝑛𝑒. 

Transient simulation results of the 26 GHz LO pulse shaper are reported in Figure 3-8 and 

Figure 3-9. This simulation takes into account the parasitic effects due to the layout. Layout 

modelling includes momentum and a PLS extractions. In Figure 3-8, solid line and dot line 

waveforms correspond respectively to the minimum and the maximum time delay between A 

and B output signals. The maximum achievable time delay variation Δtmax (Δta + Δtb) is equal 

to 7.9 ps (0.2fLO) and is obtained with Vtune varying in the range of -1V to +1V.   

The AND gate output voltage of one side of the pulse shaper for a LO frequency of 26 GHz 

is given for different values of Vtune in Figure 3-9. The tunable delay observed between the 

inverter chain output voltages results into a 19%-33% duty cycle tuning range without 

decreasing the LO voltage swing under 1.1V. When duty cycles are set under 19%, the LO 

swing becomes limited by the logic gates rise and fall times. 

 

Figure 3-9: AND gates output for different 𝑉𝑡𝑢𝑛𝑒.  
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This duty cycle is computed as DLO = τhalf/TLO with τhalf the pulse width at half magnitude. 

The duty cycle can be different depending on the pulse magnitude level considered to compute 

the pulse width τ. As a result, fixed Vtune the duty cycle of the mixer conductance can be 

adjusted by changing the pulse level relatively to the mixing transistors Vth. This strategy can 

be used to adjust the mixer conversion gain with a fixed LO signal.  

3.5 Sub-sampling mixer core implementation 

3.5.1.1 Mixer core implementation 

The sizing of the mixing transistors and its hold capacitors being very similar to the circuit 

described in chapter 2, it will not be detailed here. As for the sampling mixer, the mixing 

transistors geometry is 15 µm / 30 nm and the value of the hold capacitors is 300 fF. 

 

Figure 3-10: (a) Sampling mixer core layout, (b) detail of the manufactured chip. 

Figure 3-10.a depicts the layout of the sub-sampling mixer core including the mixing 

transistors, the 300 fF hold capacitors and the DC supplies. The logic gates are also represented. 

This architecture allows to implement the pulse shaper very close to the mixer core avoiding 

LO signal degradation and leading to a very compact sub-sampling mixer. 

As in chapter 2, the DC voltage on the source/drain of the mixing transistors (VSmix) is set 

close to 0.6V to bias the IF stage while the LO waveform is centered on 0.6V (VDD/2). The 

biasing strategy of the mixing transistors is described in Figure 3-11. 

Hold capacitors

Mixing
transistors

Pulse shaper
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RF-

LO-LO+
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Circuit area:  90 μm x 63 μm



Chapter 3 Design of a 77 GHz passive sub-sampling mixer in 28-nm FD-SOI CMOS technology 

 

81 

 

 

Figure 3-11: (a) Mixing transistor biasing (b) Body bias voltage setting. 

To avoid losses, no coupling capacitance has been inserted in the LO path. This mean that 

transistor switching voltage must be close to VDD/2. Actually, the switching point is close to 

0.9V (VSmix + Vth). Hence, body bias is used to bring this value as close as possible to 0.6V as 

illustrated on Figure 3-11. 

3.5.2 RF and LO input matching 

The RF input balun for the sub-sampling mixer has a 1:2 turns ratio and has a quite similar 

sizing as the RF input balun of the sampling mixer seen in chapter 2. Therefore, it will not be 

detailed here. The simulated RF input reflection coefficient is reported in Figure 3-12. 

 

Figure 3-12: RF input reflection coefficient for several LO frequencies. 

The large signal harmonic balance simulation shows the RF matching for fLO in the range of 

76-81 GHz. This mixer has a good RF matching between 76 and 78 GHz but its input 

impedance makes it difficult to match over the whole band. Nevertheless, the S11 remains lower 

than -14 dB between 76 and 81 GHz. 

t0

VDD = 1.2 V

VSmix

Switching point

(Vb = 0V) Body bias

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

-5 -4 -3 -2 -1 0 1 2 3 4 5

LV
T 

N
M

O
S 

tr
es

h
o

ld
 v

o
lt

ag
e 

[V
]

Body voltage [V]

Required value

LO signal

Switching point

(Vb ≈ 4 V)

(a) (b)



Chapter 3 Design of a 77 GHz passive sub-sampling mixer in 28-nm FD-SOI CMOS technology 

 

82 

 

The input impedance of the 26 GHz LO pulse shaper is high because of the very small gate 

capacitances brought by the first inverter stages. A parallel 50 Ω resistor is attached to the 

ground plane on each input of the balanced LO pulse shaper to provide impedance matching. 

A 0.9 pF capacitor is implemented as DC block between the 50 Ω resistors and the ground 

plane. This matching network is described in Figure 3-13.a. This configuration was preferred 

to a single 100 Ω resistors between both inputs of the pulse shaper to set the differential and 

common mode impedance at the same time. Only setting the differential mode would provide 

a proper LO matching but would results into a high common mode impedance. This 

uncontrolled common mode impedance could lead to oscillations in the pulse shaper. 

 

Figure 3-13: LO access matching (a) schematic (b) layout (c) LO access input reflection coefficient. 

Figure 3-13.b shows the simulated LO input reflection coefficient. This broadband matching 

network leads to a proper RF matching up to 50 GHz thus covering the required 25 – 27 GHz 

frequency band for LO signal. 

3.5.3 Standalone mixer simulated performances 

3.5.3.1 Gain and linearity 

Harmonic balance simulations including global layout modelling using momentum and PLS 

extractions have been carried out using an RF frequency of 78.02 GHz, a LO signal of 26 GHz 

and an IF frequency of 20 MHz to extract the performances of the mixer. The simulated voltage 

conversion gain of the circuit as a function of RF input level is plotted in Figure 3-14. The duty 

cycle of the pulse shaper and the body voltage of the mixing transistors was tuned to find the 

best trade-off between conversion gain and linearity. Under these conditions, the sub-sampling 

mixer shows a simulated conversion gain of -3.5 dB. The input-referred 1 dB compression 

voltage is 0.9 Vp-p. As in chapter 2, voltage is preferred to express the input compression point 

considering the high Zin of the mixer. An equivalent ICP1dB of +3 dBm is derived. 
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Figure 3-14: Voltage conversion gain compression curve. 

This result shows that the sub-sampling principle can be used effectively used at 

millimeter-wave frequencies to design passive mixers using a LO frequency tree times lower 

than the RF frequency while benefiting from good linearity and an attractive conversion gain. 

Even if these performances are lower than the ones obtained with the sampling mixer in 

chapter 2, the chapter 4 will demonstrate that they remain suitable for the radar application. 

They also appear as very attractive when compared with other 77 GHz sub-harmonic mixers.  

3.5.3.2 Noise 

A non-linear noise simulation has been performed as well. The NFSSB involving a 50 Ω RF 

source is plotted in Figure 3-15 with a LO frequency of 26 GHz and an IF frequency swept 

from 1 MHz to 25 MHz.  

 

Figure 3-15: Sub-sampling mixer 𝑁𝐹SSB. 

At an IF frequency of 20 MHz, the NFSSB is 13.3 dB. As expected, the sub-sampling mixer 

exhibits a lower conversion gain compared to the sampling mixer in chapter 2 due to the 
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frequency translation of noise around the odd LO harmonics. Nevertheless, when compared to 

others sub-harmonic mixers, this solution exhibits a good compromise between conversion 

gain, linearity, noise and the n ratio. 

3.5.4 77 GHz sub-sampling mixer test chip 

The architecture of the test chip for the standalone 28FDSOI 77 GHz sub-sampling mixer 

is depicted in Figure 3-16.a. A microphotograph of the manufactured chip is given in Figure 

3-16.b. The whole circuit area represented in Figure 3-16.a is 0.81 mm × 0.54 mm. 

 

Figure 3-16: (a) mixer block diagram, (b) manufactured chip microphotograph. 

As for the sampling mixer described in the chapter 2, a passive balun is added to provide a 

differential excitation of the mixer from the single-ended RF port and to improve its impedance 

matching. The balun exhibits a voltage gain of 8.1 dB at 78 GHz corresponding to the voltage 

transformation ratio. In this configuration, the required 26 GHz differential LO signal will be 

created externally using a 4-port PNA-X network analyzer source. 

(a) (b)
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3.6 Sub-sampling mixer topology with co-integrated AND gates 

3.6.1 Overcoming the frequency limitation of the LO pulse shaper 

The 77 GHz sub-sampling mixer presented in the previous sections exhibits good 

performances thanks to the pretty low LO signal duty cycles reached with the logic gate pulse 

shaper. However, these duty cycles are a bit limited by the AND gate that represents the main 

limiting element. Because of its complexity, it limits the rise and fall times of the entire pulse 

shaper. This frequency limitation can be noticed on the LO voltage waveforms of Figure 3-9 

when the duty cycle gets lower than 20%. To overcome this limitation, the AND function has 

been merged with the mixer core. This solution is presented in Figure 3-17 and the 

sub-sampling mixer core based on this idea is drawn in Figure 3-18. It will be referred as 

version 2 in the following. 

 

Figure 3-17: Co-integration of the AND function to the mixer core. 

 

Figure 3-18: double-balanced sub-sampling mixer embedding the AND function within the mixer core. 
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The main behaviour of this second version does not change compared to the previously 

described circuit. Here, LO2 is a new LO signal and represents the delayed version of LO1. As 

an example (Figure 3-18), transistors M1 and M5 are both open only when LO1+ and LO2+ are 

simultaneously at the high state. This operation is equivalent to a single transistor driven with 

a pulsed LO signal with a duty cycle D of TLO1+∩TLO2/TLO where TLO1+∩TLO2 is the intersection 

time of LO1+ and LO2+. This innovative approach suppresses the AND gate and its transition 

times to reach lower duty cycles. As a result, only inverter chains are needed to generate the 

required LO waveforms. Nevertheless, since two series transistors are involved in each branch 

of the mixer, this topology presents a higher ron increasing the thermal noise.  

Figure 3-19 shows the single-ended version of the LO signal shaper associated with this 

sub-sampling mixer. The sizing of the inverters is similar to the previous version and the AND 

gates have been removed. In this configuration, the time delayed square signals at the output 

of the inverter chains (Figure 3-8) are directly applied to the gates of the mixing transistors.  

 

Figure 3-19:(a) single ended LO signal shaper (b) Signal shaper layout. 

3.6.2 Mixer core implementation 

Figure 3-20.a shows the layout of the sub-sampling mixer while Figure 3-20.b is a picture 

of the sub-sampling mixer with the RF input balun and the GSG pad. The mixer core layout 

and area are similar as for the version 1. The only difference is the two additional connections 

between the LO signal shaper and the mixer core with the embedded AND gates. 

Inverter
chains
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Figure 3-20: (a) Sub-sampling mixer core layout with LO signal shaper (b) Manufactured chip. 

The sizing of the mixing transistors follows the same approach as for the other mixers 

studied. However, getting rid of the AND gates allow to increase the size of the transistors in 

the last inverters of the chains while exhibiting the same DC current consumption as for the 

pulse shaper in the version 1. As a result, the last inverter stages of this signal shaper provide 

square LO signals with sharper rising and falling edges than with the AND gates. We can now 

afford to use larger mixing transistors, which consequently have higher gates capacitances 

without detrimental effects on the linearity of the mixer. Larger transistors also mean lower ron 

and thermal noise. The optimal geometry was found with a W/L ratio of 20μm/30nm. 

The two mixing transistors connected in series finally benefit from a specific arrangement 

described in Figure 3-21. The interleaved layout of Figure 3-21.b is preferred over the 

conventional approach of Figure 3-21.a The interleaved layout merges the drain of the 

transistor T1 with the source of T2 to remove the parasitic capacitors and resistances associated 

with the connection to the first metal level (M1) between T1 and T2. The layout of the 

interleaved mixing transistors implemented in the sub-sampling mixer is depicted in Figure 

3-22 with the whole metal stack. 
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Figure 3-21: (a) Conventional layout for series transistors (b) Interleaved layout. 

 

Figure 3-22: mixing transistor layout and 3D view. 

3.6.3 RF input matching 

The balun used to match the RF input is a bit different from those implemented in the 

previous mixers. Using two series mixing transistors rather than one increases the parasitic 

capacitances lowering the mixer RF input impedance. A balun with a 1:1 turns ratio was found 

to optimize the impedance matching. 

The layout of the RF input of the mixer and its associated balun is drawn in Figure 3-23. 

The external diameter of the balun is around 70 μm. The width of the primary and secondary 

inductors are set to 4 μm. An input matching capacitance of 35 fF built using a MOM capacitor 

along with the GSG pad capacitance is employed. Two output matching capacitances of 40 fF 

are used.  
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Figure 3-23: layout of the RF access matching network. 

The large-signal harmonic balance simulation has been performed on the sub-sampling 

mixer to compute the RF matching for LO frequencies in the range of 76-81 GHz. These results 

are reported in Figure 3-24. The implemented RF balun provides a 4.8 dB voltage gain due to 

its voltage transformation ratio and a S11 lower than -15 dB is observed all over the 76-81 GHz 

frequency band. The LO matching is unchanged compared to the previous version. 

 

Figure 3-24: RF return losses plotted for several LO frequencies comprised between 25.33 and 27 GHz. 

3.6.4 Standalone mixer simulated performances 

3.6.4.1 Gain and linearity 

The harmonic balance simulation results, with RF and LO frequencies respectively set to 

78.02 GHz and 26 GHz are reported in Figure 3-25. This mixer and the previous version of 

sub-sampling mixer are simulated in the same configuration.  
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Figure 3-25: voltage conversion gain compression curves for version 1 and 2. 

The simulated voltage conversion gain of the standalone sub-sampling mixer is depicted in 

Figure 3-25 and compared with the first version of the sub-sampling mixer. Under these 

conditions, the sub-sampling mixer with the AND gates embedded within the mixer core 

presents a conversion gain of -2.5 dB which is 1 dB higher than in the version 1. Its 

input-referred 1 dB compression voltage V-1dB is of 0.9 Vp-p for an equivalent ICP1dB of 

+3 dBm. This value is identical to the previous version.  

3.6.4.2 Noise 

A harmonic balance-based non-linear noise simulation has been performed as well. The 

NFSSB extracted form a 50 Ω RF source is plotted in Figure 3-26 for both versions of the mixer. 

 

Figure 3-26: Sub-sampling mixer 𝑁𝐹SSB and comparison to version 1 

The second version of sub-sampling mixer exhibits a NFSSB of 14.4 dB at a 20 MHz IF 

frequency. As expected, the higher ron resistance due to the cascade of the two mixing 

transistors increases the amount of thermal transposed in frequency. This increase is translated 

into a NFSSB 1.1 dB higher than in the version 1. The performances of both versions of the 77 

GHz sub-sampling mixer are summarized in Table 3-1. 
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Table 3-1: Simulated performances of the sub-sampling mixers. 

Version 
𝒇𝑹𝑭 

[GHz] 

𝒇𝑳𝑶 

[GHz] 

Gc 

[dB] 

ICP1dB 

[dBm] 

NFSSB 

[dB] 

PDC 

[mw] 

1 78 26 -3.5 +3 13.3 36 

2 78 26 -2.5 +3 14.4 36 

The better conversion gain of the version 2 of the mixer confirms that the AND gates in the 

mixer core turn into a lower LO duty cycle. On the other hand, this approach requires more 

mixing transistors leading to a higher NFSSB.  

3.7 Mm-wave measurement setup 

The measurement setup is quite similar to the one introduced in chapter 2. The Figure 3-27 

and Figure 3-28 shows the two setups, respectively for conversion gain and linearity 

measurements and for noise measurements. 

 

Figure 3-27: Sub-sampling mixer test setup for gain and linearity measurements. 

 

Figure 3-28: Sub-sampling mixer test setup for noise measurement. 
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WR-12 waveguide components are still used at 77 GHz on the RF access but the 26 GHz 

differential LO signal is provided by a 4-port 67 GHz PNA-X. This vector network analyzer 

includes two internal sources with relative phase and magnitude control capabilities used to 

directly apply a differential LO signal to the sub-sampling mixer test chip. 

3.8 Measurement results of the 77 GHz sub-sampling mixers  

3.8.1 Conversion gain and linearity 

3.8.1.1 Sub-sampling mixer version 1 

The voltage conversion gain of the first version is reported in Figure 3-29 for an RF 

frequency between 76 and 81 GHz and compared with simulated data. The RF and LO 

frequencies are swept from 76 GHz to 81 GHz and 25.33 GHz to 27 GHz respectively with a 

constant IF frequency of 20 MHz. The measurements are performed at a 0 dBm LO input power 

and plotted data include the contribution of the RF balun. Under these conditions, the inverter 

chains consume 32 mW at a 1.2 V supply. 

As explained previously, the delay defined between chains of LO inverters, and therefore 

the duty cycle with which the mixer operates, can be adjusted. The data displayed comes from 

the setting which maximizes the conversion gain at 78GHz. Changing this setting to get the 

best performance for each frequency would have taken too much time. 

The measured Gcv varies between 3.7 dB and 6.8 dB in the fRF range 76-81 GHz showing a 

good agreement with simulations. The variations observed on Gcv are mainly due to a 

fluctuating voltage transformation ratio in the input balun.  
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Figure 3-29: Gcv vs fRF of the sub-sampling mixer version 1. 

The voltage conversion gain compression obtained from a varying RF input power is plotted 

in Figure 3-30. RF and LO frequencies are respectively set to 78.02 GHz and 26 GHz. The 

extracted Gcv and ICP1dB are respectively 5.1 dB and -5.3 dBm. The sub-sampling mixer core 

performances are extracted by de-embedding the input RF balun from measurements. In these 

conditions, the Gcv becomes equal to -3 dB with an ICP1dB of + 2.8 dBm. 

 

Figure 3-30: Gcv vs the input RF power at 78 GHz (sub-sampling mixer version 1). 

3.8.1.2 Sub-sampling mixer version 2 

The measurements of the second version of the sub-sampling mixer were performed using 

the same approach as for the first version. The results are reported in Figure 3-31. The Gcv is 

measured between 2.7 dB and 3.5 dB a in the fRF range 76-81 GHz and shows a good agreement 

with simulations. 
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Figure 3-31: Gcv vs 𝑓𝑅𝐹  (sub-sampling mixer version 2). 

The voltage conversion gain compression obtained from a varying RF input power is plotted 

in Figure 3-32. RF and LO frequencies are respectively set to 78.02 GHz and 26 GHz. The 

extracted Gcv and ICP1dB are respectively 2.7 dB and -1.5 dBm. The mixer core performances 

are extracted by de-embedding the input RF balun from measurements. In these conditions, the 

Gcv becomes equal to -2.1 dB with an ICP1dB of + 3.3 dBm. 

 

Figure 3-32 Gcv vs the input RF power at 78 GHz (sub-sampling mixer version 2). 

3.8.2 Noise figure 

3.8.2.1 Sub-sampling mixer version 1  

As for the sampling mixer presented in chapter 2, the NFSSB is measured using the cold 

source method. In both sub-sampling mixers exhibit a higher 1/f noise than expected. To 

remove the contribution of the 1/f noise to the NFSSB, the measurements have been carried out 

in the range 76-81 GHz with an IF frequency of 30 MHz rather than 20 MHz as in the chapter 2.  
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The results are reported in Figure 3-33. These measurements include the noise contribution of 

the input balun and the IF output stage. The NFSSB is measured between 17.9 dB and 23 dB a 

in the fRF range 76-81 GHz. and appears always higher than the simulated values.  

 

Figure 3-33: NFSSB vs fRF (sub-sampling mixer version 1). 

Finally, Figure 3-34 shows the NFSSB with a LO frequency of 26 GHz and an IF frequency 

range up to 30 MHz. The measured values of NFSSB are far higher than the simulated values at 

low frequencies highlighting an important 1/f noise. The discrepancies between the measured 

and simulated NF values will be discussed in a dedicated section at the end of this chapter. 

 

Figure 3-34: NFSSB at a fRF of 78 GHz (sub-sampling mixer version 1). 

The measured value of NFSSB at an IF frequency of 30 MHz is 17.9 dB. When the noise 

contribution of the output stage is removed from this measurement, the NFSSB of the mixer 

considering input balun losses becomes equal to 16.9 dB. 
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3.8.2.2 Sub-sampling mixer version 2 

The measurements of the NFSSB of the second sub-sampling mixer version versus the RF 

frequency are reported in Figure 3-35. The NFSSB is measured between 18.1 dB and 18.8 dB a 

in the fRF range 76-81 GHz in good agreement with simulations.  

 

Figure 3-35: NFSSB vs fRF (sub-sampling mixer version 2). 

Finally, Figure 3-36 shows the NFSSB with a LO frequency of 26 GHz and an IF frequency 

range up to 30 MHz. The difference between measured and simulated values in the flicker noise 

is still present with this version. Nevertheless, the measured values are getting close to the 

simulated ones starting from 20 MHz. The measured NFSSB value at an IF frequency of 30 MHz 

is 18.4 dB. After removing the noise contribution of the output stage, the NFSSB of the mixer 

with the input balun is 16.8 dB. 

 

Figure 3-36: NFSSB at a fRF of 78 GHz (sub-sampling mixer version 2). 
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3.8.3 Performance summary and conclusion 

The Table 3-2 sums up the measured performances for both versions of the sub-sampling 

mixers. 

Table 3-2: Measured performances of the sub-sampling mixers. 

Version 
fRF/fLO 

[GHz] 

𝑮𝒄 

[dB] 

ICP1dB 

[dBm] 

NFSSB 

[dB] 

𝑷𝒅𝒄 

[mW] 

1 78/26 -3 +2.8 16.9 32 + 23* 

2 78/26 -2.1 +3.3 16.8 32 + 23* 

* IF output follower consumption 

These measurements demonstrate the interest of the sub-sampling mixer topology to 

efficiently convert a millimeter-wave RF signal while involving a LO frequency approximately 

three times lower than the RF one. Both versions show very low conversion losses for passive 

mixers and a high linearity. The obtained NFSSB are higher than in the sampling mixer presented 

in the chapter 2 (fRF≈fLO) due to the noise aliasing effects present around the LO harmonics 

where a frequency conversion path exists. This noise aliasing effect remains the main drawback 

of sub-sampling and conventional sub-harmonic mixers. 

The second version embedding the AND function inside the mixer core to remove the 

external AND gates show the best performances as the lower achievable duty cycles allow 

better conversion gains with a similar linearity.  

As standalone sub-harmonic mixers are not widespread in the literature related to CMOS 77 

GHz radar receivers, a meaningful comparison between this sub-sampling mixer and other 

solutions is difficult. However, both versions of this mixer topology were also co-integrated 

with a LNA to build front-ends that will be presented in chapter 4. The full radar front-end 

performances will help to provide a proper comparison with others 77 GHz radar receivers.  
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3.8.4 Discrepancies between simulated and measured NF for sub-sampling 

mixers 

The NF measurements of both versions of the sub-sampling mixer in the previous sections 

show some differences with simulated values. Two distinct kinds of discrepancies can be 

noticed.  

3.8.4.1 Differences between measured and simulated NF at low IF 

frequencies 

The first discrepancy is common to both versions of the mixer and is related to low 

frequency noise. In Figure 3-34 and Figure 3-36 showing the mixer NFSSB at a fixed fLO of 

26 GHz and a fIF range up to 30 MHz, the measured NF is far higher than the simulated values 

at low frequencies highlighting an extra 1/f noise.  

As this issue is common to both sub-sampling mixers and did not occur with the sampling 

mixer in chapter 2, the differences between de measured and simulated values can be explained 

by a high phase noise of the LO signal introduced by the logic gates. When converted by the 

mixer, this LO signal phase noise will result in a high low frequency noise. In [54], the 

influence of various noise sources on a CMOS inverter is discussed showing that the noise 

coming from the inverter input, voltage supply and ground access is significantly amplified 

resulting in an important output jitter. As at least five inverters are included in each inverter 

chain of the proposed LO signal shaper, the amplification of the noise coming from the LO 

source, voltage supply and ground can explain the high low frequency noise reported in Figure 

3-34 and Figure 3-36. The simulation results compared with measurements do not consider the 

noise of the LO input source and potential noise coming from the DC power supply or the 

ground access of the 26 GHz LO signal shaper. Therefore, the simulated low frequency noise 

could have been underestimated. 

3.8.4.2 Differences between measured and simulated NF at 30 MHz 

The second main difference with simulation is only related to the version 1 of the 

sub-sampling mixer. In Figure 3-33 the measured values of the NFSSB for a fIF of 30 MHz and 
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different fLO are higher than the simulated values in the 76-81 GHz fRF frequency range. This 

difference is not correlated with the low frequency noise discrepancy discussed earlier as the 

IF frequency of 30 MHz is high enough to avoid the influence of the low frequency noise. 

As previously stated, the duty cycle tunning setting was performed to maximize the 

conversion gain at fRF of 78 GHz. The measured conversion gain of the version 1 of the 

sub-sampling mixer reported in Figure 3-29 shows a good agreement with simulation. 

Nevertheless, the LO pulsed signal generated in the version 1 of the mixer cannot be monitored 

when measuring the circuit, the good agreement between the measured and simulated 

conversion gain only ensures that the LO duty cycle is close to the expected value. 

 The LO pulse shaper simulated output waveforms for different duty cycle tunning setting 

(Figure 3-9) highlights that the AND gates frequency limitation leads to a decrease of the LO 

swing for duty cycle lower than 20%. A LO pulsed signal with a similar duty cycle than the 

simulated waveform and a lower voltage swing would results in a higher mixing transistor ron 

resistance of the mixing transistors with the same measured and simulated conversion gain. As 

the load impedance of the mixer is far higher than the mixing transistors ron an increase of the 

ron will not significantly degrades the conversion gain. As a result, a lower LO voltage swing 

at the AND gates output resulting in a higher ron value would increase the NFSSB of the mixer 

without a significant difference between the measured and simulated conversion gain 

explaining the differences between measured and simulated values. 

In the version 2 of the mixer, removing the AND gates avoid the decrease of the LO signal 

swing for the low duty cycle. This characteristic can explain why these discrepancies between 

measured and simulated NFSSB values at a fIF of 30 MHz only occur for the version 1 of the 

sub-sampling mixer.  
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Chapter 4 Sampling-based 77 GHz radar receivers 

in 28-nm FD-SOI CMOS technology 

4.1 Design of a 77 GHz automotive radar receiver  

4.1.1 Introduction 

Two mixer topologies based on the sampling principle were introduced in the previous 

chapters. The chapter 2 demonstrates that sampling generally used in RF architectures can be 

extended to millimeter-wave frequencies to design passive mixers benefiting from a high 

linearity associated to very low conversion losses. Then, the chapter 3 demonstrates that using 

careful design, especially for the LO circuitry to convert a 77 GHz RF signal by using a 26 

GHz LO frequency, simplifies the LO distribution chain. 

To assess the benefits of both sampling-based solutions in a 77 GHz automotive radar 

receiver, the proposed mixers have been implemented together with a LNA in a 77 GHz 

receiver front-ends.  On top of that, CMOS 77 GHz radar receivers are widely present in the 

literature allowing to compare this implementation with other solutions. 

In this chapter, the selection of a LNA suitable for the front-ends and its implementation 

with the mixers are detailed. Then measurement results of the different receivers are described. 

Finally, the proposed architectures will be compared with the state of the arts of 77 GHz radar 

receivers highlighting their strengths and weaknesses.  

4.1.2 Noise and linearity of a RF receiver 

 To get the best overall receiver performance from the proposed mixers, the LNA must be 

sized properly. As discussed in chapter 1, the choice of the LNA gain is essential get a good 

noise/linearity trade-off. To choose the right LNA gain the overall receiver NF and ICP1dB 

must be calculated from the specifications of the different receiver stages. The following 
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section deals with the receiver ICP1dB and NF calculation and the choice of the LNA 

implemented in the 77 GHz receiver front-ends. 

4.1.2.1 Overall receiver NF calculation 

The Friis formula [55] allows to express the NF of a receiver as a function of the gain and 

NF of the different stages. The conventional version of the Friis formula is: 

𝑁𝐹𝑅𝑋 = 𝑁𝐹1 +
𝑁𝐹2 − 1

𝐺𝑃1
+ ⋯ +

𝑁𝐹𝑛 − 1

𝐺𝑃1 × 𝐺𝑃2 × … × 𝐺𝑃𝑛
 (4-1) 

This equation considers n 50 Ω matched stages where 𝑁𝐹𝑛 and 𝐺𝑃𝑛 are the NF and the power 

gain of the nth stage. As the proposed sampling mixers does not have a 50 Ω input impedance, 

a version of the FRIIS formula using the voltage gain, the input and output impedance and the 

noise voltage spectral density is preferred. Furthermore, as the 2nd receiver stage is a mixer, the 

noise conversion around each LO harmonics and in the image bands must be considered. The 

Friis formula considering n stages without assuming a 50 Ω matching between the stages is 

given in [33]. Using this formula while taking into account the multiple noise conversions in 

the sampling mixer leads to the NFSSB described in Figure 4-1. 

 

Figure 4-1: NFSSB of the receiver. 

 

LNA output noise converted by the mixer around eachNoise added by 

the mixer

Receiver Noise Figure

Image RF band
noise folding
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The NFSSB expressed in Figure 4-1 considers the resistive noise added by the mixer and 

every noise conversion around the LO harmonics. As the LNA implemented in the 77 GHz 

receivers is narrow band, the LNA output noise around other LO harmonics than 77 GHz is 

filtered. As a result, the LNA output noise converted by the mixer around each n.fLO ≠ fRF is 

negligible compared to the noise in the RF frequency band. In addition, as the receiver input is 

matched to 50 Ω and as the mixers tend to present a quite high input impedance at fRF, 

β1(fRF) ≈ 0.5  and β2(fRF) ≈ 1. Hence, the formula in Figure 4-1 can be simplified as follow: 

𝑁𝐹𝑆𝑆𝐵 = 2. 𝑁𝐹𝐿𝑁𝐴 +
𝑉𝑛𝑚𝑖𝑥

2

1
4 . 4𝑘𝑇𝑅𝑠. 𝐺𝐿𝑁𝐴

2 . 𝐺𝑚𝑖𝑥
2

 (4-2) 

This equation will be used to choose the right LNA gain to satisfy the noise/linearity 

trade-off on the receiver considering the LNA NF and performances of the mixers. 

4.1.2.2 Overall receiver ICP1dB calculation 

The output and input 1-dB compression points of the receiver can be calculated from the 

LNA and mixer compression points and gains with a similar approach as for the NF. In [56], 

an equation close to the FRIIS formula is used to calculate the receiver OCP1dB: 

1

𝑂𝐶𝑃1𝑑𝐵
=

1

𝑂𝐶𝑃1𝑑𝐵𝑚𝑖𝑥
+

1

𝑂𝐶𝑃1𝑑𝐿𝑁𝐴. 𝐺𝑝𝑚𝑖𝑥

 (4-3) 

In this formula, the OCP1dB are power value expressed in watts. When powers are 

expressed in dBm and gains in dB the ICP1dB can easily be obtained with the relation: 

𝑂𝐶𝑃1𝑑𝐵 = 𝐼𝐶𝑃1𝑑𝐵 + (𝐺𝐿𝑁𝐴 + 𝐺𝑚𝑖𝑥 − 1) (4-4) 

These relations will be used with the FRIIS formula for NF to choose LNA gain knowing 

the LNA OCP1dB and the mixers performances. 

4.1.3 Description of the 77 GHz LNA  

For time constraints, and because it was not the focus of this PhD work, it has been decided 

to use an existing LNA. Obviously having a specific LNA designed to match the sampling 
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mixers performances would allow to have a better noise/linearity trade-off. Using an already 

existing and measured LNA was also a way to secure the overall front-end performances. 

The LNA presented in [57] was designed by STMicroelectronics with the 28-nm FD-SOI 

technology and exhibits at the same time low noise and high linearity. So, a version of this 

LNA with minor modifications was chosen for the receiver implementation. 

4.1.3.1 LNA architecture 

In the LNA presented in [57] each stages is based on the architecture presented in Figure 

4-2. A balanced topology is used to improve the linearity and meet the radar stringent 

requirements. Transformers are used at the input and output of each stage to provide at the 

same time a good matching and DC isolation between stages. Gate-source capacitors are 

combined to degeneration inductors to find the best compromise between matching, noise 

optimum impedance and stability. 

 

Figure 4-2: LNA stage architecture. 

Each stage has around 4-dB of voltage gain when both input and output are 50 Ω matched. 

As multiple identical stages can be stacked to get the required gain, the Friis formula on NF 

and ICP1dB will be used to find the right number of stages to implement in the 77 GHz 

receivers. 

4.1.3.2 LNA performances 

In [57] 2 stages and 6 stages versions of this LNA are described. The simulation and 

measurement results are described in the Table 4-1. 
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Table 4-1: LNA measured and simulated performances in [57]. 

Number 

of stages 

Gain  

[dB] 

𝑵𝑭 

[dB] 

ICP1dB 

[dBm] 

BW 

[GHz] 

Pdc 

[mw] 

2 7.3*/6.5 5.1*/4.6 -2.4*/-3 20*/17 8.7*/8.7 

6 23.1*/21.5 5.7*/5.5 -22*/-18.8 6.5*/6.5 25*/25 

      * Simulated performances 

4.1.3.3 Layout of a LNA stage 

The Figure 4-3 shows the layout of one stage of the LNA. The different elements of the 

schematic in Figure 4-2 are clearly visible in the layout. The thickest metal levels (Alucap, IA, 

IB) are used to design the transformers. Multiple similar stages can be stacked by using the 

output transformer for the interstage. The area of a LNA stage is approximatively 

210μm ×125μm. 

 

Figure 4-3: Layout of one stage of the LNA.  

4.1.4 Choice of the number of LNA stages 

The formulas on NF and ICP1dB presented earlier will be used in this section to calculate 

the receiver noise and linearity performances for different LNA gains. This approach allows to 

quickly assess the performances of the receivers knowing the LNA performances and the 

Input

Transformer

Output

Inductive 
degeneration

Transistor with
gate-source capacitor
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simulated performances of the three different mixers. As simplifications are made to keep this 

calculation simple, these results will only be used to get approximative value of the receiver 

ICP1dB and NF to find the optimal number of LNA stages. The receiver front-ends will then 

be implemented and simulated for more accurate results. 

There is no voltage drop at LNA output because the mixer Zin is far higher than the 50 Ω 

Zout of the LNA. Therefore, the LNA voltage gain is 6 dB higher than with a 50 Ω load. 

Considering that each LNA stage has 4 dB of voltage gain, the LNA voltage gain in this 

configuration will be: 

𝐺𝑣𝐿𝑁𝐴
= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑔𝑒𝑠 × 4 𝑑𝐵 + 6 𝑑𝐵 (4-5)  

The approximate values of the receiver performances calculated from the simulated values 

of the mixers for different number of LNA stages are plotted in Figure 4-4. 

 

Figure 4-4: Choice of the LNA number of stages based on the Friis formula. 

As the automotive radar application requires a highly linear front-end, the chosen ICP1dB 

target on the receiver is around -10 dBm. The NF should be kept as low as possible while 

satisfying the linearity constraint. Relying on the performance estimation of the receivers in 

Figure 4-4, using a 2-stages LNA with a 14 dB gain seems to be the best compromise. It enables 

to get a good noise/linearity trade-off with the three designed mixers with the same LNA. The 

performances estimated with this approach are summed up in Table 4-2. 
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Table 4-2: Receivers estimated performances. 

 

4.2 77 GHz receiver based on a sampling mixer 

4.2.1 Receiver architecture 

The architecture of the test chip including the low noise amplifier presented earlier and the 

77 GHz sampling mixer described in chapter 2 is depicted in Figure 4-5.a. A picture of the 

manufactured chip is given in Figure 4-5.b.  

 

Figure 4-5: (a) Receiver block diagram (b) manufactured chip. 

In this receiver the input balun of the LNA converts the single-ended RF input signal into 

a differential signal. As in the previous design the RF GSG pad capacitance is used for the 

(a) (b)

Mixer implemented with 

the LNA 

Gain 

[dB] 

ICP1dB 

[dBm] 

NFSSB 

[dB] 

DC Power 

[mW] 

Sampling mixer 13 -7.7 8.6 19 

Sub-sampling mixer V1 10.5 -11.6 9.6 45 

Sub-sampling mixer V2 11.5 -11.6 10 45 
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matching of the RF access to avoid pad de-embedding. The Figure 4-6 is a focus on the 

receiver layout highlighting the different receiver blocks. 

 

Figure 4-6: Focus on the receiver layout. 

4.2.2 Receiver measurement results 

4.2.2.1 Conversion gain and linearity 

The simulated gain repartition in the receiver with the RF and LO frequencies respectively 

set to 77.02 GHz and 77 GHz is reported in the following table: 

Table 4-3: Simulated gain repartition in the receiver. 

Receiver gain 

[dB] 

Input matching gain 

[dB] 

LNA gain 

[dB] 

Mixer gain 

[dB] 

11.5 -0.9 13.9 -1.5 

The LNA gain is close to the expected value and the mixer conversion gain is quite similar 

as in chapter 1. As the output stage relies on two OP-amp followers with a 0 dB gain. Thus, 

this stage is not considered in the gain repartition of the receiver.  The input of the LNA presents 

a resistive input impedance around 40 Ω. Therefore, the input 50 Ω RF source delivers less 

voltage than expected at the input of the LNA leading to the following matching network gain: 

𝐺𝑀 = 2.
𝑍𝑖𝑛𝐿𝑁𝐴

50+𝑍𝑖𝑛𝐿𝑁𝐴

≈ −1 𝑑𝐵 (4-6)  

Mixer 
core

LNA

Pulse shaper

RF

LO

IF+

IF-

IF followers

Circuit area: 640 μm  360 μm 
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In the (4-6) the factor 2 is explained by the fact that 50 Ω voltage sources use a 2Vin input 

voltage swing to actually deliver a Vin voltage swing at the input of the LNA because of the 

voltage drop due to the 50 Ω source impedance. 

Measurements of the RF voltage conversion gain Gcv of the receiver based on the sampling 

mixer presented in the chapter 2 in the 𝑓𝑅𝐹 range 76-81 GHz are reported in Figure 4-7. The 

receiver was measured under the same conditions as the sampling mixer in chapter 2. The LNA 

consumes 10 mW on a 1V supply. The Gcv is measured between 9.5 dB and 11.5 dB in the fRF 

range 76-81 GHz.  

 

Figure 4-7: Gcv vs fRF 

The voltage conversion gain compression obtained from a varying RF input power is plotted 

in Figure 4-8. RF and LO frequencies are respectively set to 77.02 GHz and 77 GHz. The 

extracted 𝐺𝑐𝑣
 and ICP1dB are respectively 11.4 dB and -7.4 dBm. Figure 4-8 shows a good 

agreement between the measured and simulated conversion gain at 77 GHz.  

 

Figure 4-8: Gcv vs the input RF power at 77 GHz. 
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4.2.2.2 Noise Figure 

Measurements of the NFSSB of the receiver in the fRF range 76-81 GHz are reported in Figure 

4-9. The NFSSB is measured between 10.3 dB and 12.2 dB in the fRF range 76-81 GHz.  

 

Figure 4-9: NFSSB versus fRF 

Finally, Figure 4-10 shows the NFSSB with a LO frequency of 77 GHz and an IF frequency 

range up to 30 MHz. The measured value at 20 MHz of NFSSB is 10.3 dB in good agreement 

with simulation. When the noise contribution of the output stage (IF followers) is removed 

from this measurement, the NFSSB of the receiver is 8.9 dB. 

 

Figure 4-10: 𝑁𝐹𝑆𝑆𝐵 at 𝑓𝑅𝐹 = 77 𝐺𝐻𝑧 
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4.2.2.3 Performance summary and conclusion 

The Table 4-4 sums up the measured performances of the receiver based on the sampling 

mixer  (chapter 2). In the following sections, this receiver will be called receiver 1. 

Table 4-4: Receiver measured performance. 

𝒇𝑳𝑶 

[GHz] 

𝒇𝑰𝑭 

[MHz] 

𝑮𝑹𝒙 

[dB] 

ICP1dB 

[dBm] 

NF 

 [dB] 

𝑷𝒅𝒄 

[mW] 

77 20 11.4 -7.4 8.9 
10 (LNA) + 

10 (LO shaping) 

The implementation of the sampling mixer with a LNA in a 77 GHz front-end results into a 

good trade-off between noise and linearity associated to a low power consumption. A detailed 

comparison between this solution and other radar receivers will be provided later in this 

chapter. 

4.3 77 GHz receivers based on sub-sampling mixers 

4.3.1 Receiver architecture 

The architecture of the test chip including the low noise amplifier with the 77 GHz 

sub-sampling mixers described in chapter 3 is depicted in Figure 4-11.a. A picture of the 

manufactured chip is given in Figure 4-11.b.  

 

Figure 4-11: (a) Receiver block diagram (b) manufactured chip. 

 

(a) (b)
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The RF access matching is the same as in the previous receiver and the 26 GHz differential 

LO signal is directly applied to the GSGSG pads with RF probes. The Figure 4-12 is a focus 

on the receiver layout highlighting the different receiver blocks. It can be noticed that the logic 

gate LO shaper is more compact than the 77 GHz LO shaper in the previous receiver. 

 

Figure 4-12: Focus on the receiver layout. 

4.3.2 Measurement results of the receivers 

4.3.2.1 Conversion gain and linearity 

4.3.2.1.1 Receiver based on the sub-sampling mixer with AND gates 

The simulated gain repartition in the receiver based on the sub-sampling mixer using AND 

gates for the LO signal shaping (version 1 in chapter 3) with the RF and LO frequencies 

respectively set to 77.02 GHz and 25.66 GHz is reported in the following table: 

Table 4-5: Simulated gain repartition in the receiver. 

Receiver gain 

[dB] 

Input matching gain 

[dB] 

LNA gain 

[dB] 

Mixer gain 

[dB] 

8.7 -0.8 13.5 -4 
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core

LNA

Pulse shaper
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Measurements of the Gcv of this receiver are reported in Figure 4-13. The receiver was 

measured under the same conditions as the sub-sampling mixer in chapter 3. The Gcv is 

measured between 6 dB and 9.4 dB a in the fRF range 76-81 GHz. As previously stated in the 

chapter 3, the duty cycle setting was performed for a RF frequency of 78 GHz and kept 

unchanged for the other RF frequencies. 

 

Figure 4-13: Gcv vs fRF. 

The voltage conversion gain compression obtained from a varying RF input power is plotted 

in Figure 4-14. RF and LO frequencies are respectively set to 77.02 GHz and 25.66 GHz. The 

extracted Gcv and ICP1dB are respectively 8.9 dB and -11 dBm.  

 

Figure 4-14: Gcv vs the input RF power at 77 GHz. 
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4.3.2.1.2 Receiver based on the sub-sampling mixer with co-integrated 

AND gates 

The simulated gain repartition in the receiver based on the sub-sampling mixer 

co-integrating the AND gates to the mixer core (version 2 in chapter 3) with the RF and LO 

frequencies respectively set to 77.02 GHz and 25.66 GHz is reported in the following table: 

Table 4-6: Simulated gain repartition in the receiver. 

Receiver gain 

[dB] 

Input matching gain 

[dB] 

LNA gain 

[dB] 

Mixer gain 

[dB] 

9.7 -0.6 13.3 -3 

Measurements of the Gcv of this receiver are reported in Figure 4-15. The Gcv is measured 

between 7.9 dB and 9.5 dB in the fRF range 76-81 GHz.  

 

Figure 4-15: Gcv vs fRF. 

The voltage conversion gain compression obtained from a varying RF input power is plotted 

in Figure 4-16. RF and LO frequencies are respectively set to 77.02 GHz and 25.66 GHz. 
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Figure 4-16: Gcv vs the input RF power at 77 GHz. 

4.3.2.2 Noise Figure 

4.3.2.2.1 Receiver based on the sub-sampling mixer with AND gates 

Measurements of the NFSSB of the receiver based on the sub-sampling mixer using AND 

gates for the LO signal shaping in the fRF range 76-81 GHz are reported in Figure 4-17. The 

NFSSB is measured between 12.6 dB and 13.1 dB below 78 GHz and increases up to 23 dB for 

a fRF of 81 GHz. This discrepancy has already been noticed and discussed for this mixer in a 

standalone configuration in the chapter 3. 

 

Figure 4-17 :  NFSSB versus fRF. 

Finally, Figure 4-18 shows the NFSSB with LO frequency of 25.66 GHz and an IF 

frequency range up to 30 MHz. The measured value of NFSSB at a fIF of 30 MHz is 13.2 dB. 
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When the noise contribution of the output stage is removed from this measurement, the NFSSB 

of the receiver is 11.9 dB. 

 

Figure 4-18: NFSSB at a fRF of 77 GHz. 

4.3.2.2.2 Receiver based on the sub-sampling mixer with co-integrated 

AND gates 

Measurements of the NFSSB of the receiver based on the sub-sampling mixer co-integrating 

the AND gates to the mixer core in the 𝑓𝑅𝐹 range 76-81 GHz are reported in Figure 4-19. The  

𝑁𝐹𝑆𝑆𝐵 is measured between 12.6 dB and 15.6 dB in the fRF range 76-81 GHz.  

 

Figure 4-19 NFSSB versus fRF. 

Finally, Figure 4-20 shows the NFSSB with a LO frequency of 25.66 GHz and an IF 

frequency range up to 30 MHz. The measured value of NFSSB at an IF frequency of 30 MHz is 

12.6 dB. When the noise contribution of the output stage is removed from this measurement, 

the NFSSB of the receiver is 11.5 dB. 
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Figure 4-20: NFSSB at a fRF of 78 GHz. 

4.3.2.3 Performance summary and conclusion 

The Table 4-7 sums up the measured performances of both receivers including the 77 GHz 

sub-sampling mixers described in chapter 3. The receiver based on the sub-sampling mixer 

using the AND gates for the LO shaping is referred as receiver 2 while the second version 

relying on co-integrated AND gates is called receiver 3. 

Table 4-7: Receivers measured performance. 

 fRF / fLO 

[GHz] 

𝒇𝑰𝑭 

[MHz] 

𝑮𝑹𝒙 

[dB] 

ICP1dB 

[dBm] 

NF 

 [dB] 

𝑷𝒅𝒄 

[mW] 

Receiver 2 78 / 26 30 8.9 -11 11.9 
10 (LNA) + 

32 (LO shaping) 

Receiver 3 78 / 26 30 9.4 -12.1 11.5 
10 (LNA) + 

32 (LO shaping) 

The implementation of both sub-sampling mixers in 77 GHz front-ends demonstrates that 

sub-sampling principle allows to use a 26 GHz LO frequency to converts a 77 GHz RF signal 

with a very decent noise/linearity trade-off when compared to the receivers 1 (Table 4-4). As 

already discussed in the chapter 3, the measurement of the receivers confirms that the 

co-integration of the AND gates to the mixer core allows to overcome their frequency 

limitation thus leading to a better front-end gain. A detailed comparison between this solution 

and other radar receivers will be provided later in this chapter. The opportunity to simplify the 

radar receiver architecture regarding to the 26 GHz LO frequency will be discussed in this 

comparison. 
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4.4 Comparison between the proposed sampling-based receivers 

and the state of the art 

The performances of the sampling-based receivers described in this chapter are summarized 

and compared with the state of the art of 77 GHz radar receivers in the Table 4-8. The receiver 

including the sampling mixer presented in chapter 2 is referred as receiver 1 (Rx 1). The 

receivers based on the version 1 of the sub-sampling mixer (chapter 3) using true AND gates 

for the LO pulse shaping is called receiver 2 (Rx 2). Finally, the receiver relying on the 2nd 

version of the sub-sampling mixer co-integrating the AND function to the mixer core is called 

receiver 3 (Rx 3). This table compares this work with 77 GHz radar receivers based on active, 

passive and sub-harmonic active mixers covering the existing solutions. As explained in 

chapter 1, the key performances in a radar front-end are noise and linearity. Therefore, Figure 

4-21 highlights the trade-off between ICP1dB and NFSSB for this work and all references in 

Table 4-8. The specifications on ICP1dB and NF for a radar receiver are discussed in [21], 

[28]. According to [21], [28], an ICP1dB target around -10 dBm is high enough to cope with 

multiple signal reflections faced by radar sensors. In [5], the maximum receiver NF to ensure 

a 250m detection range is estimated as 14 dB. Therefore, the nominal NF values targeted in 

[21], [28] are around 10 dB. The green, orange and red areas in Figure 4-21 represents these 

specifications on the noise and linearity of the radar receivers. 

 

Figure 4-21: Trade-off between ICP1dB and NFSSB in 77 GHz receivers. 
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Table 4-8: Comparison with the state of the art. 

 Ref 
CMOS 

node 

fRF/fLO 

[GHz] 

GRx 

[dB] 

ICP1dB 

[dBm] 

NFSSB 

[dB] 

Area 

[mm²] 

VDD 

[V] 

Pdc 

[mW] 

Passive 

sampling 

mixer 

(This work) 

Rx 1 

28-nm 

FD-SOI 

CMOS 

78 / 78 11.4 -7.4 8.9 Rx 0.23 1 20$ 

Passive 

sub-sampling 

mixer 

(This work) 

Rx 2 78 / 26 8.9 -11 11.9 Rx 0.23 
1 /1.2 

(LNA/LO) 
42 

Rx 3 78 / 26 9.4 -12.1 11.5 Rx 0.23 
1 /1.2 

(LNA/LO) 
42 

Passive mixer 

[28] 
40-nm  

CMOS 
78 / 78 17 -7.4 8.7 

Rx 1.67* 

LO 0.81* 
1.8 NA 

[8] 
65-nm  

CMOS 
78 / 78 26.2 -8.5 15.3 

Rx 0.15* 

LO 0.36* 
1 

Rx 78 

LO 49 

[27] 
22-nm  

FD-SOI 
78 / 78 16 -3.5 12.8 NA 

0.8/1.8 

(RF/Baseband) 
NA 

[58] 

28-nm 

FD-SOI 

CMOS 

78 / 78 33 -23.5 8.2 0.96 1 
Rx 27 

LO 11$ 

[59] 
40-nm  

CMOS 
78 / 78 30.8 -22.3 9 Rx 0.4* 

1.1/1.8 

(RF/Baseband) 
42$ 

[29] 
28-nm 

CMOS 
78 / 78 15 -5 9 Rx 0.1 1.8 100$ 

Active mixer 

[24] 
65-nm  

CMOS 
78 / 78 31.6 -37 8.8 

Rx 0.88* 

LO 0.13* 
1 

Rx 61 

LO 22 

[25] 
65-nm  

CMOS 
78 / 78 11 -15 8 Rx 0.23 1 22$ 

[26] 
65-nm  

CMOS 
78 / 78 18/66 -7/-31 26/11 

Rx 0.3* 

LO 0.4* 
1 

Rx 31 

LO 58 

Sub-harmonic 

active mixer 

[31] 
65 nm  

CMOS 
78 / 39 14.5 

-16.2 

(Mixer) 

-28(Rx) 

10.5 0.58 1.5 57 

[30] 
65 nm  

CMOS 
78 / 39 16 -20 13 2.33 1.2 28.5 

Notes 

* Estimated area for 1 Rx and the associated LO path 

 (If the LO path is common for several Tx/Rx the LO area is divided by the number of Tx/Rx) 

$ additional LO blocks required (multipliers or/and LO drivers) 

The NF are supposed SSB if not specified in the paper 
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The state of the art described in Figure 4-21 and Table 4-8 put forwards that best 

noise/linearity trade-off are obtained with receivers based on passive mixers. The receivers in 

[27], [28] and [29] show at the same time a high linearity and low NFSSB. As the receiver 

linearity strongly depends on the LO voltage amplitude the receiver in [28] and [29] relies on 

an higher supply voltageto benefit from a high linearity. Another strategy is used in [27] where 

the single stage LNA results in a low front-end gain ensuring a high linearity on a 0.8 V supply 

voltage. The low front-end gain is compensated by the IF TIA gain without degrading the 

linearity by taking advantage of the high baseband voltage supply (1.8V vs 0.8V for RF 

blocks). This strategy allows to reach the best ICP1dB of this comparison by degrading a little 

bit the NFSSB. In [29] this concept is pushed further by removing the LNA to implement a 

passive mixer first receiver where all the gain comes from an IF LNA showing one of the best 

performances of this comparison. As in [28] and [27] this receiver operates under a 1.8V supply 

to implement a high linearity IF amplifier and provides a high LO voltage swing resulting into 

a quite high DC consumption. 

The solution proposed in this work with the receiver 1 relies on a sampling mixer showing 

at the same time a high linearity with low conversion losses on a 1V voltage supply. Using a 

pulsed LO waveform keeps the transistors in a safe area without sacrificing the linearity, which 

is a major challenge considering the low breakdown voltages of nm-scaled CMOS processes. 

As a result, the receiver 1 benefits from similar performances as in [28] under a lower voltage 

supply. Compared to [27], using a 2 stages LNA with a higher front-end gain results in a better 

NFSSB and a lower ICP1dB. The measurements results of the standalone sampling mixer 

(chapter 2) with the RF input balun allows to estimate the performances which could be reached 

with a passive sampling mixer first approach as in [29]. By using a low noise IF voltage 

amplifier to compensate for the limited gain of the sampling mixer with the RF input balun (~8 

dB) a similar gain as in [29] could be achieved with a ICP1dB of -1.5 dBm and a NFSSB of 9.5 

dB (estimated for a IFA input noise voltage of 1 nV/√hz). As in [28], [27] and [29] the IF LNA 

should use a 1.5V or 1.8V baseband voltage supply to amplify the mixer output signal without 

degrading the receiver linearity. Even if this approach appears as a good solution, the input 

impedance of the sampling mixer or voltage mode passive mixer as in [29] is quite high and 

depends on the LO signal magnitude and shape. Consequently, ensuring a good 50 Ω matching 

at the receiver input over the 76-81 GHz frequency band under any conditions is difficult. 
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Using at least a single stage LNA as in [27] to ensure a less sensitive wideband matching of 

the receiver input seems to be more appropriate to design a reliable receiver than a mixer first 

approach. This comparison demonstrates that thanks to the high performances of the proposed 

sampling mixer, the receiver 1 represents with [27], [28] and [29] the best trade-offs between 

noise and linearity of the state of the arts. By operating under a 1V supply this front-end also 

exhibits a low power consumption. 

 In this work the IF amplifier is only used as a buffer to isolates the circuit from the 

measurement setup and was not optimized to enhance the receiver performances. The previous 

discussion on a potential sampling mixer first approach show that a good prospect for this work 

would be to implement a low noise IF amplifier with a high linearity providing more gain 

before the rest of the baseband amplification as in [27], [28] and [29]. As the sampling mixer 

operates in voltage mode, implementing an IF LNA which does not degrade the linearity would 

require a higher voltage supply than for the RF block (1.5V or 1.8V). Using a current mode 

mixer can be a good solution to avoid high voltage swing at the IF amplifier input and enhance 

the receiver linearity while providing a high gain with an IF TIA. Nevertheless, the sampling 

principle is inherent to voltage mode mixer which use a hold capacitor to store the sampled 

voltage value. A current mode approach would not allow to benefit from the sampling 

behaviour. Another prospect for this work could be to find a solution to enable current mode 

sampling mixer by using an inductor to store the sampled current value. 

The comparison of the receivers in Table 4-8 shows that CMOS radar receiver front-ends 

have a low power consumption compared to 77 GHz SiGe front-ends as in [20]. Nevertheless, 

in the receiver 1 and  [58], [59], [29], [59] an additional frequency multiplier and/or LO driver 

are required. The receivers in [8], [24] and [26] include the LO frequency multiplier and LO 

drivers with the RF front-end giving access to the consumption and the silicon area dedicated 

to the LO distribution chain. Comparing the works in [8], [24] and [26] allow to estimate that 

a conventional 77 GHz LO distribution chain consumes around 40 mW and represents a 0.3 

mm² silicon area which is comparable to the consumption and area of the associated receiver. 

Hence, using a conventional LO distribution chain can sometime double or triple the receiver 

consumption and area leading to a significant impact at the scale of a full radar transceiver chip 

including several receivers.  
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As a solution, the receivers 2 and 3 (this work) and the receivers in [31] and [30] are 

respectively based on sub-sampling and sub-harmonic mixers which uses a LO frequency 

sub-multiple of the RF frequency (fLO≈fRF/n with n a natural integer). The receivers based on 

this principle do not require an additional LO distribution chain which drastically simplifies 

the picture. The receivers 2 and 3 can use a 26 GHz VCO without requiring a frequency tripler 

and 77 GHz LO drivers. The sub-sampling mixers are also very compact as they do not require 

inductors. Consequently, the proposed receivers based on sub-sampling mixers save DC power 

and silicon area while keeping decent performances when compared to conventional radar 

receivers. The comparison between the receivers 2 and 3 and radar receivers based on sub-

harmonic Gilbert cells in [31] and [30] highlights that using sub-sampling mixers lead to better 

overall performances with a higher ratio between fRF/fLO. 

4.5 Conclusion 

This chapter presents the implementation of the proposed sampling and sub-sampling 

mixers with a LNA to create 77 GHz radar receiver front-ends with the 28-nm FD-SOI CMOS 

technology. The receiver 1 exhibits noise and linearity performances aligned with best 

published results while bringing significant power consumption reduction. The implementation 

of sub-sampling mixers in the receivers 2 and 3 demonstrates that the sub-sampling allows to 

use a 26 GHz LO frequency to converts a 77 GHz RF signal with a penalty (3 dB for the NF 

and 3-4 dB for the compression point).  As a result, this approach significantly simplifies the 

LO distribution chain of the receivers, saving area and reducing power consumption. To 

conclude, this chapter highlights that using the sampling principle results in high performances 

or allows to drastically simplify the architecture of 77 GHz radar receivers. Therefore, using 

sampling-based receivers appears as a solution to get the best from nm-scaled CMOS processes 

at millimeter-wave frequencies. 
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General conclusions 

In the last decade, driving assistance products have continuously been improved to reach a 

high level of automation in recent vehicles. The next generation of cars will ensure driving 

safety by providing a full detection coverage around the car. The 77 GHz automotive radar is 

the only one able to assess the range, speed and direction of a target under bad weather 

conditions. Consequently, it will be essential to enhance driving assistance products. As more 

radar sensors associated to an advanced signal processing will be necessary to reach the next 

steps of driving automation, the CMOS technologies are preferred for the design of the next 

generation of integrated radar transceiver. CMOS technologies benefit from a lower production 

cost and a better circuit integration allowing to integrate a part of the signal processing in the 

transceiver chip. Nevertheless, the design technics used for the first transceiver chips in 

BiCMOS technologies are no longer relevant to design millimeter-wave CMOS receivers. The 

aim of this work is to demonstrate that using the sampling principle which is an approach 

inherent to CMOS processes will lead to high performance 77 GHz radar receivers. 

In the chapter 1, the 77 GHz automotive radar and the associated design requirements are 

presented. The main existing solutions to design a 77 GHz radar receiver are then discussed 

highlighting that even if receivers based on active Gilbert cells showed very good performances 

with BiCMOS technologies, active mixers are not very appropriates to CMOS radar receiver 

design. Analysing the trends in the literature related to 77 GHz CMOS receiver design shows 

that using passive mixer topologies appears as the best solution to design a 77 GHz radar 

receiver in 28-nm FD-SOI CMOS technology. Some works on sub-harmonic mixers also put 

forwards that this approach can be promising to propose simpler 77 GHz radar receiver 

architectures by reducing the complexity of a 77 GHz LO distribution chain. 

The chapter 2 introduces the sampling mixer principle and a new sampling mixer, operating 

at mm-wave frequencies, is proposed. The discussion puts forward that driving the mixer with 

a low duty cycle LO signal, in addition to a capacitive load, creates a sampling behaviour 

improving the conversion gain and linearity when compared with a 50% duty cycle driven 

mixer. Nevertheless, the generation of a low duty cycle signal at 77 GHz is a critical point. As 
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a solution an innovative 77 GHz pulse shaper able to turn the LO signal into a pulsed waveform 

is proposed. The implementation of the LO pulse shaper and a double-balanced passive mixer 

in a 28-nm FD-SOI CMOS technology validates this new sampling mixer topology combining 

a good conversion gain with a high linearity. According to these results, using sampling for 

down-conversion seems to be the right approach to take the best from nm-scaled CMOS 

processes. The proposed principle will still be valid for next CMOS nodes, with a preference 

of FD-SOI which enable some adjustments. This work has been accepted for the IMS 2022 

conference. 

The chapter 3 investigate the opportunity to use the sub-sampling principle to convert a RF 

signal around 77 GHz by using three times lower LO frequency thus simplifying the 77 GHz 

receiver LO distribution chain. A 3x sub-sampling mixer topology relying on digital gates for 

the LO pulse shaping is proposed. Two versions of this topology are presented and 

implemented in 28-nm FD-SOI CMOS. An innovative solution consisting in the co-integration 

of the AND function with the mixer core is used in the second version to overcome the 

frequency limitation due to the complexity of the AND gates. The measurement results prove 

that using sub-sampling allows to convert a 77 GHz by using a 3x lower LO frequency while 

keeping decent performances when compared to the sampling mixer designed in the chapter 2. 

Digital pulse shaping technics will take advantage of CMOS gate scaling and, once again 

FD-SOI will allow fine performance tuning. This implementation has been presented to SiRF 

2022 and has been submitted for ESSCIRC 2022. 

The chapter 4 draws the conclusion of this work by presenting the implementation of the 

proposed sampling and sub-sampling mixers with a LNA in 77 GHz radar receiver front-ends 

with the 28-nm FD-SOI CMOS technology. The receiver based on the sampling mixer 

proposed in the chapter 2 exhibits a very good trade-off between noise and linearity with a low 

power consumption. The implementation of sub-sampling mixers presented in the chapter 3 in 

receiver front-ends demonstrates that the sub-sampling allows to use a 26 GHz LO frequency 

to converts a 77 GHz RF signal while keeping a decent noise/linearity trade-off when compared 

to other solutions. As a result, this approach significantly simplifies the LO distribution chain 

of the receivers, saving area and reducing power consumption.  
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To conclude, this works highlights that using the sampling principle results in high 

performances or allows to drastically simplify the architecture of 77 GHz radar receivers. 

Consequently, using sampling-based receivers is a good approach to take advantage from the 

strengths of nm-scaled CMOS processes at millimeter-wave frequencies. This thesis work 

shows some important prospects. In a first step, to master the sub-sampling design technic, 

analysis of the 1/f noise simulation vs measurement discrepancies is needed. In a second step, 

working on calibration is important. On each implementation, body biasing capability has been 

used to fine tune performances (mainly DC). Dedicated procedure and hardware are needed to 

bring this demonstrator to a product maturity.
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Annex: Sampling mixer thermal noise calculation 

To compute the output voltage noise spectral density added by the sampling mixer, all ron 

thermal noise conversions around LO harmonics must be added:   

𝑁𝑡ℎ𝑜𝑢𝑡
= 2. 𝑁𝑅 . ∑ 𝐺𝑐 

2(𝑛. 𝑓𝐿𝑂)    𝑤𝑖𝑡ℎ 𝑁𝑅 = 2𝐾𝑇𝑟𝑜𝑛 

∞

−∞

(𝐴-1) 

The calculation of the summation of the sampling mixer conversion gain around each LO 

harmonic is detailed here below: 

∑ 𝐺𝑐𝑖

2

−∞<𝑖<∞ 

= ∑
1

2
. 𝑠𝑖𝑛𝑐2(𝑖𝐷)

−∞<𝑖<∞ 

(1 − 𝑒−𝑗.𝜋.𝑖)  = ∑ 𝑠𝑖𝑛𝑐2(𝑖𝐷)

−∞<𝑖<∞
𝑖≠𝑝𝑎𝑖𝑟

 
(A-2) 

= 2. ∑ 𝑠𝑖𝑛𝑐2(𝑖𝐷)

1<𝑖<∞
𝑖≠𝑝𝑎𝑖𝑟

= 2.
1

2
[∑ 𝑠𝑖𝑛𝑐2(𝑖𝐷) + ∑(−1)𝑖+1𝑠𝑖𝑛𝑐2(𝑖𝐷)

∞

𝑖=1

∞

𝑖=1

] (A-3) 

Both sum of the decomposition proposed in (A-3) will be calculated separately: 

∑ 𝑠𝑖𝑛𝑐2(𝑖𝐷)

∞

𝑖=1

=
1

(𝜋𝐷)2
∑

1 − cos(2𝜋𝐷𝑖)

2𝑖2

∞

1

=
1

2(𝜋𝐷)2
[∑

1

𝑖2
− ∑

cos(2𝜋𝐷𝑖)

𝑖2

∞

−∞

∞

1

] (A-4) 

The calculation of both sum in (A-4) is provided in [60]: 

∑
1

𝑖2

∞

1

=
𝜋2

6
(A-5) 

 

∑
cos(2𝜋𝐷𝑖)

𝑖2
=

𝜋2

6
−

2𝜋2𝐷

2
+

(2𝜋𝐷)2

4
 

∞

−∞

(A-6) 

 

Using these results in (A-4) gives: 
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∑ 𝑠𝑖𝑛𝑐2(𝑖𝐷)

∞

1

=
1

2(𝜋𝐷)2
[
𝜋2
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− (
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-

2𝜋2𝐷

2
+

(2𝜋𝐷)2

4
)] =

1

2
. (

1

𝐷
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The second sum in (A-3) is calculated as: 

∑(−1)𝑖+1𝑠𝑖𝑛𝑐2(𝑖𝐷)

∞

𝑖=1
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1
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∞
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1
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[∑(−1)𝑖+1
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𝑖2
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𝑖2

∞

−∞

∞

1
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According to [60]: 

∑(−1)𝑖+1
1

𝑖2

∞

1

=
𝜋2

12
 (A-10) 

∑(−1)𝑖+1
cos(2𝜋𝐷𝑖)

𝑖2
=  

∞

−∞

𝜋2

12
 − (𝜋𝐷)2 (A-11) 

Finally: 
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When combining (A-7) and (A-13) the sum in (A-3) can be calculated: 

∑ 𝑠𝑖𝑛𝑐2(𝑖𝐷)
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As a conclusion: 
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𝑁𝑡ℎ𝑜𝑢𝑡
= 2. 𝑁𝑅 . ∑ 𝐺𝑐 
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To calculate the one-sided noise spectral density, (A-16) is multiplied by a factor 2 giving: 

𝑁𝑡ℎ𝑜𝑢𝑡
=
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