271 research outputs found

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Hybrid Controller based on Null Space and Consensus Algorithms for Mobile Robot Formation

    Get PDF
    This work presents a novel hybrid control approach based on null space and consensus algorithms to solve the scalability problems of mobile robot formation and improve leader control through multiple control objectives. In previous works, the training of robots based on the null space requires a rigid training structure based on a geometric shape, which increases the number of agents in the formation. The scheme of the control algorithm, which does not make formation scalability possible, must be changed; therefore, seeking the scalability of training based on null space is a challenge that could be solved with the inclusion of consensus algorithms, which allow the control structure to be maintained despite increasing or decreasing the number of robot followers. Another advantage of this proposal is that the formation of the followers does not depend on any geometric figure compared to previous works based on the null space; this new proposal does not present singularities as if the structure is based on geometric shape, the latter one is crucial since the formation of agents can take forms that cannot be achieved with a geometric structure, such as collinear locations, that can occur in many environments. The proposed hybrid control approach presents three tasks: i) leader position task, ii) leader shape task, and iii) follower formation task. The proposed algorithm is validated through simulations, performing tests that use the kinematic model of non-holonomic mobile robots. In addition, linear algebra and Lyapunov theory are used to analyze the stability of the method. Doi: 10.28991/ESJ-2022-06-03-01 Full Text: PD

    Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators

    Full text link
    This paper presents a solution based on dual quaternion algebra to the general problem of pose (i.e., position and orientation) consensus for systems composed of multiple rigid-bodies. The dual quaternion algebra is used to model the agents' poses and also in the distributed control laws, making the proposed technique easily applicable to time-varying formation control of general robotic systems. The proposed pose consensus protocol has guaranteed convergence when the interaction among the agents is represented by directed graphs with directed spanning trees, which is a more general result when compared to the literature on formation control. In order to illustrate the proposed pose consensus protocol and its extension to the problem of formation control, we present a numerical simulation with a large number of free-flying agents and also an application of cooperative manipulation by using real mobile manipulators

    Coordinated multi-robot formation control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    A Survey on Passing-through Control of Multi-Robot Systems in Cluttered Environments

    Full text link
    This survey presents a comprehensive review of various methods and algorithms related to passing-through control of multi-robot systems in cluttered environments. Numerous studies have investigated this area, and we identify several avenues for enhancing existing methods. This survey describes some models of robots and commonly considered control objectives, followed by an in-depth analysis of four types of algorithms that can be employed for passing-through control: leader-follower formation control, multi-robot trajectory planning, control-based methods, and virtual tube planning and control. Furthermore, we conduct a comparative analysis of these techniques and provide some subjective and general evaluations.Comment: 18 pages, 19 figure

    Virtual Coordination in Collective Object Manipulation

    Get PDF
    Inspired by nature, swarm robotics aims to increase system robustness while utilizing simple agents. In this work, we present a novel approach to achieve decentralized coordination of forces during collective manipulation tasks resulting in a highly scalable, versatile, and robust solution. In this approach, each robot involved in the collective object manipulation task relies on the behavior of a cooperative ``virtual teammate\u27 in a fully decentralized architecture, regardless of the size and configuration of the real team. By regulating their actions with their corresponding virtual counterparts, robots achieve continuous pose control of the manipulated object, while eliminating the need for inter-agent communication or a leader-follower architecture. To experimentally study the scalability, versatility, and robustness of the proposed collective object manipulation algorithm, a new swarm agent, Δρ is introduced which is able to apply linear forces in any planar direction. Efficiency and effectiveness of the proposed decentralized algorithm are investigated by quantitative performance metrics of settling time, steady-state error, path efficiency, and object velocity profiles in comparison with a force-optimal centralized version that requires complete information. Employing impedance control during manipulation of an object provides a mean to control its dynamic interactions with the environment. The proposed decentralized algorithm is extended to achieve a desired multi-dimensional impedance behavior of the object during a collective manipulation without inter-agent communication. The proposed algorithm extension is built upon the concept of ``virtual coordination\u27 which demands every agent to locally coordinate with one virtual teammate. Since the real population of the team is unknown to the agents, the resultant force applied to the manipulated object would be directly scaled with the team population. Although this scaling effect proves useful during position control of the object, it leads to a deviation from the desired dynamic response when employed in an impedance control scheme. To minimize such deviations, a gradient descent algorithm is implemented to determine a scaling parameter defined on the control action. The simulation results of a multi-robot system with different populations and formations verify the effectiveness of the proposed method in both generating the desired impedance response and estimating the population of the group. Eventually, as two case studies, the introduced algorithm is used in robotic collective manipulation and human- assistance scenarios. Simulation and experimental results indicate that the proposed decentralized communication- free algorithm successfully performs collective manipulation in all tested scenarios, and matches the performance of the centralized controller for increasing number of agents, demonstrating its utility in communication- limited systems, remote environments, and access-limited objects

    A novel coordination framework for multi-robot systems

    Get PDF
    Having made great progress tackling the basic problems concerning single-robot systems, many researchers shifted their focus towards the study of multi-robot systems (MRS). MRS were shortly found to be a perfect t for tasks considered to be hard, complex or even impossible for a single robot to perform, e.g. spatially separate tasks. One core research problem of MRS is robots' coordinated motion planning and control. Arti cial potential elds (APFs) and virtual spring-damper bonds are among the most commonly used models to attack the trajectory planning problem of MRS coordination. However, although mathematically sound, these approaches fail to guarantee inter-robot collision-free path generation. This is particularly the case when robots' dynamics, nonholonomic constraints and complex geometry are taken into account. In this thesis, a novel bio-inspired collision avoidance framework via virtual shells is proposed and augmented into the high-level trajectory planner. Safe trajectories can hence be generated for the low-level controllers to track. Motion control is handled by the design of hierarchical controllers which utilize virtual inputs. Several distinct coordinated task scenarios for 2D and 3D environments are presented as a proof of concept. Simulations are conducted with groups of three, four, ve and ten nonholonomic mobile robots as well as groups of three and ve quadrotor UAVs. The performance of the overall improved coordination structure is veri ed with very promising result

    Swarm robotic systems: ypod formation with analysis on scalability and stability

    Get PDF
    Aquesta tesi se central en la formació d’eixams, on s’estudia el comportament coordinat d’un grup de robots per formar un patró quan s’observa a nivell global. En aquest sentit, la formació de la forma general és un dels problemes actuals en d’intel·ligència d’eixams artificials. En aquesta tesi s’introdueix una nova formació en forma de Y, la qual presenta una gran quantitat d’aplicacions en comparació amb altres tècniques de formació. Per exemple, la formació en Y es pot aplicar com a formació estratègica per totes les escales, presenta facilitat per canviar de forma i grandària a més de resoldre els problemes de redundància, d’autoorganització i autoreparació. L’objectiu principal d’aquesta tesi és aconseguir la formació en Y d’un eixam de robots. La implementació de dita formació únicament s’ha dut a terme mitjançant un entorn de simulació tot i que se han tingut en compte diferents aspectes que es podrien donar en una implementació real. El disseny del control de l’eixam per a diferents eixos s’ha realitzat a partir d’un model capaç de predir el comportament global de l’eixam, de la definició del temps d’establiment i l’aplicació de tècniques de localització de pols. Per controlar l’eixam en forma Y en termes d’orientació i el seu moviment com un bloc, s’han combinat el controlador lineal proposat, amb funcions límit i l’ajust d’alguns paràmetres per simulació. Els paràmetres s’han escollit per la formació desitjada i segons les constants definides per l’usuari. En comparació amb altres treballs, la solució proposta és simple, computacionalment eficient i tant per models d’eixams centralitzats com descentralitzats.Esta tesis se centra en la formación de enjambres, donde se estudia el comportamiento coordinado de un grupo de robots para formar un patrón cuando se observa a nivel global. En este sentido, la formación de la forma general es uno de los problemas actuales en la inteligencia de enjambres artificiales. En esta tesis se introduce una nueva formación en forma de Y, la cual presenta una gran cantidad de aplicaciones en comparación con otras técnicas de formación. Por ejemplo, la formación en Y se puede aplicar como formación estratégica para todas las escalas, presenta facilidad para cambiar de forma y tamaño además de resolver los problemas de redundancia, de auto-organización y auto-reparación. El objetivo principal de esta tesis es conseguir la formación en Y de un enjambre de robots. La implementación de dicha formación se ha llevado a cabo únicamente mediante un entorno de simulación aunque se han tenido en cuenta diferentes aspectos que se podrían dar en una implementación real. El diseño del control del enjambre para diferentes ejes se ha realizado a partir de un modelo capaz de predecir el comportamiento global del enjambre, de la definición del tiempo de establecimiento y la aplicación de técnicas de localización de polos. Para controlar el enjambre en forma de Y en términos de orientación y movimientos del enjambre como un bloque, se han combinado el controlador lineal propuesto, funciones límite y el ajuste de algunos parámetros por simulación. Los parámetros se han escogido para la formación deseada y según las constantes definidas por el usuario. En comparación con otros trabajos, la solución propuesta es simple, computacionalmente eficiente, y tanto para modelos de enjambres centralizados como descentralizados.The context of this work is the innovative young filed of swarm robotics. Particularly, in this thesis focused on swarm formation, which is important in swarm robotics too since coordinated behaviour of a group of robots to form a pattern when viewed globally. In this regard, global shape formation is one of the ongoing problems in artificial swarm intelligence. In nature, it is performed for various purposes, and search and rescue swarms could be used in disaster areas .In robotics phenomena, there exist various shape formations in the literature, but in this thesis, introduced new shape formation Y-Pod, which has vast applications compare to other formation techniques. In the discussion of our research journey, me and my supervisor discussed about various shape formations but finally exploit new shape formation Y-Pod and when we think about it, arise some questions ,why Y-Pod swarm formation and what it will serve, so in our casual discussion some important advantages are identified, those are : The Y-Pod can be utilized for formation strategy on all scales, Global shape formation, when viewed globally, Changes shapes, Easy to expand, overcome the redundancy problems and Self-organized and self-repair problems. The main objective of the proposed approach is to form a Y-pod formation of swarm robots. As well as we keep in our mind for real robot performance task, but the original work is delivered in simulation based environment only. Several parameters that significantly define the resulting behavior. We have proposed system equilibrium parameters with settling time and pole based problems, to control the swarm system in various axis an accurate model will predict the global behavior of the Y-Pod swarm formation based on the mathematical identified parameters. The proposed linear controller, limiting functions and simulation tuned parameters are combined to control Y-Pod swarm formation in terms of orientation, and swarm movement as a whole. Parameters are chosen based on desired formation as well as user defined constraints. This approach compared to others, is simple, computationally efficient, scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade
    corecore