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Abstract

Having made great progress tackling the basic problems concerning single-robot

systems, many researchers shifted their focus towards the study of multi-robot

systems (MRS). MRS were shortly found to be a perfect fit for tasks considered to

be hard, complex or even impossible for a single robot to perform, e.g. spatially

separate tasks. One core research problem of MRS is robots’ coordinated motion

planning and control. Artificial potential fields (APFs) and virtual spring-damper

bonds are among the most commonly used models to attack the trajectory plan-

ning problem of MRS coordination. However, although mathematically sound,

these approaches fail to guarantee inter-robot collision-free path generation. This

is particularly the case when robots’ dynamics, nonholonomic constraints and

complex geometry are taken into account.

In this thesis, a novel bio-inspired collision avoidance framework via virtual shells

is proposed and augmented into the high-level trajectory planner. Safe trajectories

can hence be generated for the low-level controllers to track. Motion control is

handled by the design of hierarchical controllers which utilize virtual inputs. Sev-

eral distinct coordinated task scenarios for 2D and 3D environments are presented

as a proof of concept. Simulations are conducted with groups of three, four, five

and ten nonholonomic mobile robots as well as groups of three and five quadrotor

UAVs. The performance of the overall improved coordination structure is verified

with very promising results.
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İHA, Dört-Rotor Sanal Kabuklar

Özet

Tek robotlu sistemlerin temel problemlerini çözme konusunda kaydedilen büyük

ilerlemeler ile birlikte, birçok araştırmacı odağını, çoklu robot sistemleri (ÇRS)

çalışmalarına kaydırdı. Hemen ardından, ÇRS’lerin, tek bir robotun yapması zor,

karmaşık veya imkansız olduğu sayılan bazı görevler için mükemmel bir seçim

olduğu tespit edildi örnek: mekansal olarak ayrı görevler. Bir grup robotun ko-

ordineli hareketinin planılaması ve kontrolü, ÇRS’lerin temel bir araştırma prob-

lemidir. ÇRS’lerin yörünge planlama probleminin çözümüne yönelik en sık kul-

lanılan modeller arasında yapay potansiyel alanları ve sanal yay-damper bağları

yer almaktadır. Bu metotlar matematiksel olarak sağlam sayılsa da, ürettikleri yol-

lar, robotlar arası çarpışmaların engellendiğini garanti etmemektedir. Bu durum

özellikle de robotların dinamikleri, holonomik olmayan kısıtlamaları ve karmaşık

geometrileri dikkate alındığında geçerlidir.

Bu tezde, sanal kabukları kullanarak robotlar arası çarpışmayı önleyen yeni ve

biyo-ilhamlı bir sistem sunulmaktadır. Bu sistem yüksek seviyeli yörünge plan-

layıcıya entegre edilmiştir. Bu sayede, düşük seviyeli kontrollerin izleyebileceği

güvenli yörüngeler üretilebilmektedir. Robotların hareket kontrolü, tasarlanan

hiyerarşik sanal girişler tabanlı kontroller ile sağlanmıştır. Kavram kanıtlama

sürecinde kullanılan, iki ve üç boyutlu ortamlarda çeşitli koordineli görev senary-

oları sunulmuştur. Üç, dört, beş ve on holonomik olmayan mobil robot grupları

ile üç ve beş quadrotor İHA grupları üzerinde simülasyonlar gerçekleştirilmiştir.

Geliştirilen genel koordinasyon yapısının performansı, ümit verici sonuçları ile

doğrulanmıştır.
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Chapter 1

Introduction

A single-robot system contains only one individual robot that is able to model

itself, perceive its environment and model their mutual interactions [1]. Soon af-

ter reaching a satisfactory level of individual stationary robots usage in industry,

the interest towards mobile robots began to increase. Furthermore, advances in

electronics and consequently the increased computational capacity pushed towards

the notion of autonomy in mobile robots. Along with other factors, this led to the

emergence of autonomous mobile robots (AMRs) research field. AMRs can be cat-

egorized into three main groups: unmanned ground vehicles (UGVs), unmanned

marine vehicles (UMVs), also known as autonomous underwater vehicles (AUVs),

and unmanned aerial vehicles (UAVs). Since Shakey [2], the first general-purpose

mobile robot platform, several individual robot projects had been developed and

become well-known such as ASIMO [3], BigDog [4] and PR-2 [5].

(a) (b) (c)

Figure 1.1: Well-known single-robot projects: (a) ASIMO, (b) BigDog and
(c) PR-2

1



Introduction 2

AMRs are suited for tasks that are considered to be dull, dirty and dangerous

for humans. Despite that single-robot systems have shown a relatively strong

performance, some tasks are too hard, complex or even impossible for it to perform.

On one hand, this might be due to robot-dependent factors such as its power

limitations, locomotion mechanism and design constraints. On the other hand, it

relates to the task nature itself, e.g. spatially separate tasks such as surveillance,

air-ground combat, area coverage and exploration missions.

Instead of designing a highly sophisticated and expensive single robot, research

community was attracted to the idea of using cheaper and simpler robot groups

that can accomplish exactly the same tasks cooperatively [6]. Accordingly, re-

searchers from various disciplines gradually shifted their focus from the ordinary

single-robot systems towards multi-robot systems (MRS) along with their versatile

applications and interesting challenges.

Research efforts investigating MRS began as early as the 1990s and have been

rapidly growing ever since. A series of group robot projects have been lunched

such as GOFER [7], CEBOT [8], M+ [9] and ASyMTRe [10]. MRS can be effective

in tasks such as exploration, search and rescue, unknown and partially known

environments’ mapping, reconnaissance remote sensing, hazard identification and

removal. In practice, MRS already made its way to industrial and commercial use,

e.g. Warehouse UGV robots and goods delivery network by drone UAVs as can

be shown in Fig. 1.2.

(a) (b)

Figure 1.2: Industrial and commercial-use MRS: (a) Amazon’s warehouse
robots, (b) Cargo delivery by drone
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MRS can have several potential advantages over single-robot systems:

• Better overall system performance, with task execution time and total energy

consumption as evaluation metrics [11, 12].

• Wider spatial distribution.

• Enhanced flexibility, reliability, scalability [13] and versatility.

• Cost efficiency; when a single complex expensive robot that is compared to

a group of simple cheap group of robots can do exactly the same task.

The term coordinated motion denotes the motion of a MRS’s robots to accomplish

a predefined task in coordination. The motion of each robot member is depen-

dent on the motion of others in the group. In addition, coordination inherently

assumes moving in some desired formation. The necessary formation varies ac-

cording to the coordinated task [14]. Despite remarkable research developments in

the area, numerous challenges remain. These challenges include designing appro-

priate coordination strategies, inter-robot communication, relative state sensing

and estimation, control paradigms appropriate to real-time systems, fusion of dis-

tributed sensors data, task allocation, path planning, formation maintenance and

obstacle avoidance.

One essential problem of interest is the inter-robot collisions. Motion in forma-

tion levels up the risk of collisions especially while constructing the formation or

while interacting with other elements in the environment. The autonomous robots

forming the group must avoid collisions with each other without sabotaging the

overall mission. Despite the existence of several mathematical models that are

sound and complete in the sense that the robots converge to the predetermined

goal, this turns out to be one of the non-trivial problems [15]. The robots should

change their path to avoid collisions even if this will introduce some delay in the

coordinated task achievement.



Introduction 4

1.1 Problem Formulation

We hereby explain the coordinated task that will be used hereinafter as a perfor-

mance criteria for our different test bed robot implementations.

The task encompasses a group of n autonomous mobile robots, namely, R1, R2, . . .

Ri, . . . , Rn and an object, G, that will be considered as a goal modeled as a point

at its center of mass. The coordinated task scenario can be divided into three

sub-tasks summarized as follows:

1. Robots R1, R2, . . . Ri, . . . , Rn converge to a circular formation of a prede-

fined radius dG positioned around the goal G point regardless of the initial

configuration of both robots and goal.

2. The robots will move in a coordinated fashion i.e. maintaining a predefined

mutual distances dR, hence forming a triangular mesh, while approaching G.

3. Generated trajectories for the robots need to be safe. Contact/overlap be-

tween two or more robots should not be allowed during the execution of the

coordinated task, i.e. inter-robot collisions must be avoided.

Initial configuration is assumed to be a priori given including initial positions of

the robots and the stationary goal’s position. Robots are also assumed to commu-

nicate their positions and velocities by some communication protocol or perception

capabilities. The design of such protocol is not trivial as will be discussed later in

detail, but it is out of the scope of this work.

Fig. 1.3 illustrates a 2D homogeneous robots based example of the task in its

three phases. One possible realistic application is the task of surrounding an

enemy target by a group of homogeneous/heterogeneous robots to prevent it from

escaping and force it to surrender. Moreover, higher complexity tasks can be

partitioned into a group of simple sequential tasks some of which is the the one

proposed here.
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(a)

(b)

(c)

Figure 1.3: Coordinated task scenario (a) Initial configuration, (b) Approach-
ing goal in a coordinated manner and (c) accomplishing the task
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1.2 Thesis Contributions

The contributions of this thesis can be summarized as follows:

• A novel framework inspired by animal swarms in nature to solve the collision

avoidance problem of MRS is proposed. Virtual shells concept is established

and utilized as its mathematical model. The newly elaborated coordination

structure is proved to guarantee the online generation of collision-free tra-

jectories for every individual robot member of the group by means of various

computer simulations.

• An algorithm motivated by rigid body elastic collisions is developed as a

solution to the collision response sub-problem. Additionally, an alternative

abstract algorithm that necessitate less communication requirements on the

expense of efficiency is also developed. Both algorithms are analyzed in

detail and compared for different collision scenarios.

• Position and attitude trajectory controllers for nonholonomic UGV robots’

low-level motion control are designed using virtual inputs hierarchical control

approach.

• Results are successfully verified in simulation environment for two distinct

MRS setups; (2D) including groups of three, four, five and ten nonholonomic

mobile robots, and (3D) with groups of three and five quadrotor UAVs.



Introduction 7

1.3 Thesis Outline and Organization

The remainder of the thesis is organized as follows:

Chapter 2 provides a literature survey on multi-robot coordination and formation

control including the commonly utilized configurations. It also gives a background

on some well-known mathematical models used to solve coordination problem as

well as a brief review on the collision avoidance problem.

A planner scheme for reference trajectory generation of multi-robot systems is

adopted from previous works in the literature, briefly explained and customized for

this thesis contribution means inn Chapter 3. The used model is first established

for 2D, and then extended to 3D MRS with the help of polynomial trajectories.

Chapter 4 introduces the kinematic model of nonholonomic mobile robots and

the kinematics and nonlinear dynamic model for the quadrotor UAVs. Hierarchical

control is developed for the position and attitude of each of the two models using

virtual inputs control concept.

In Chapter 5, The concept of virtual shells upon which the contributed collision

avoidance framework is built, is unfolded. Shell’s geometry, collision detection and

collision response sub-problems are formulated and discussed in detail. Elastic col-

lision (EC) model and light beam reflection (LBR) model are proposed, formulated

and analysed.

Chapter 6 presents the simulation results of the proposed framework. Rich set

of scenarios are established and carried out in simulation environment on groups

of three, four, five and ten nonholonomic robots as well as groups of three and

five quadrotor UAV. Different collision scenarios are particularly emphasized, and

controller’s performance is verified by means of desired vs. actual state graphs

and Root Mean Square Error (RMSE) evaluation. Scenario-based comments are

made to discuss the achieved results.

Thesis is concluded with several remarks in Chapter 7 and possible future re-

search directions are indicated.



Chapter 2

Literature Survey and

Background on Multi-Robot

Coordination

In a multi-robot systems, the development of models systematically describing

the motion of each robot member as well as the group as a whole is non-trivial.

Researchers from different disciplines have been putting efforts recently towards

tackling this problem in particular [16–20].

This chapter outlines various architectures developed in the literature to attack this

problem. These theoretical classifications are coupled with mathematical tools and

models that fulfill its conditions and objectives of coordinated motion. We review

some of the most widespread models, namely, artificial potential fields (APFs) and

virtual spring-damper bonds as a basis for the coordination framework.

Finally, collision avoidance sub-problem is briefly reviewed. Various attempts to

tackle this problem in the literature are particularly emphasized to elaborate on

and contribute into in chapter 5.

8
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2.1 Coordination Configurations

We present the major coordination paradigms that should be considered while

formulating the problem. This includes centralized, decentralized decision making

configurations and virtual structure abstraction. We briefly review efforts in the

literature utilizing such configurations in multi-robot coordination tasks.

Other configurations are also available but are not reviewed as they are out of

scope for this thesis, e.g., graph theory based coordination [21], [22], [23] and non

cooperative systems’ coordination via robotic herders [24, 25] .

2.1.1 Centralized Systems

Centralized systems are a natural extension from single robot systems. In cen-

tralized decision-making control scheme, one or more of the robots are considered

to have leadership status i.e. designated as leader(s), having global information

about the environment. Leaders can communicate main navigation information to

other robots but they cannot receive information from them. On the other hand,

other so-called follower robots can transmit and receive data. Such configuration

is called a leader(s)-follower(s) formation control [26, 27].

A direct shortcoming of such architecture is its lack of robustness against dynamic

environments and failures. Its ultimate dependence on the leader makes it prone

to system failures whenever the leader is defected [19]. Nevertheless, among many

advantages of such scheme, one should bring up its ability to be modeled as a

whole in an exact fashion, thus making globally optimal plans producible [28].

Different versions of this scheme have been presented in the literature [29]. This

includes Leader-Obstacle Configuration, where the follower robot performs some

self-behaviors such as avoiding obstacles in its sensing region while still following

the leader, thus having a decentralized theme on follower level.

Original works in multi-robot systems utilizes leader-follower configuration. For

instance, nonholonomic mobile robots motion coordination is investigated in [30]
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using leader-follower configuration combined with virtual robot and reference tra-

jectory generation concept. In this work, leader provided position and heading

information while its velocity state was estimated using a designated observer.

Followers track the reference trajectories using integral back-stepping controller.

As regarding collision avoidance and obstacle avoidance sub-problems, authors

integrate a fuzzy logic based algorithm by sensing the relative distance between

follower robots and obstacles.

In [31], a leader-follower formation control approach for AUVs is proposed. Due to

underwater communication constraints, only leaders’ positions are sent to followers

and reference trajectories are generated with respect to a predefined distance.

Back-stepping control and Lyapunov analysis is performed to ensure trajectory

tracking.

Dierks et al. proposed a quadrotor UAVs composed MRS coordination method

based on spherical coordinates in [32]. The aim is for the follower UAV to track

its leader at a desired separation, incidence angle and a bearing. Moreover, neural

network (NN) based control law that learns the dynamics of UAV is presented.

Stability of the formation for unmodeled disturbance such as aerodynamic friction

is proved via Lyapunov theory.

Trajectory tracking and flight formation for quadrotor UAVs is tackled in [33]

and a solution based on leader-follower scheme is proposed. Time scale based

control separation is made where translational dynamics are controlled using a

sliding mode controller, while desired orientation is maintained using a linear PD

controller. A third controller is designed for the follower to solve the formation

problem in horizontal plane.
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2.1.2 Decentralized Systems

Decentralized control approaches can be further divided into two categories: hier-

archical and distributed. Distributed decentralized architecture is inspired by the

behaviors of animals, where every stimuli has its corresponding response (behav-

ior) [34]. Flocking birds, schooling fish and bees are examples of group members

working in high coordination with others in their group achieving a task without

depending on online orders from some high-level “leader” [16]. In robotics, the

same approach is used to control MRS autonomously, in coordination and without

the need for a global control over the system.

(a) (b)

Figure 2.1: Decentralized animal swarms: (a) flocking birds, (b) ant swarm

An objective in a decentralized multi-robot system is decomposed into independent

sub-problems. For the system to achieve that goal objective, each individual in the

system needs to follow some local rules in order to accomplish every sub-problem

accordingly. These rule bundles apply simultaneously on robot-level and have

parallel access on its perception mechanisms. One shortcoming is that, on the

contrary to centralized systems, agents cannot predict group’s overall behavior

with only the local information in hand. Consequently, some group behaviors

cannot be controlled.

Research efforts in this field revealed that, there are many coordinated motion

tasks that can be done more efficiently and robustly using decentralized multi-

robot systems [14]. Its scalability, parallelism, robustness and computational effi-

ciency together with other properties motivated further work.
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In [35] for example, authors implement a decentralized control on three autonomous

robots to navigate with a triangle formation and maintain it while avoiding ob-

stacles at the same time. They consider non-linear dynamical systems and use

attracting and repelling vector fields as the mathematical tool to achieve system’s

objective. Li et al. [36], propose an algorithm for AUVs MRS that uses poten-

tial field layers for tasks such as formation control and obstacle avoidance in an

uncertain environment.

Ghose et al. proposed altitude and heading angle consensus for leaderless but

connected nonlinear UAV swarm [37]. It is based on several sliding mode con-

trollers. Authors also present sliding mode control-based autopilots that allow

for individual members to fly independently. They prove asymptotic stability for

the controllers and autopilots as well as system’s insensitivity to disturbances and

parameter variations while controlled.

Through out the rest of this thesis, we adopt distributed decentralized architecture

in our multi-robot system. This is due to its appealing attributes that includes

but are not restricted to:

• An individual robot failure in a decentralized system does not necessarily

terminate the overall mission, unlike the case in centralized systems.

• Decentralized systems are proved to outclass centralized systems in partic-

ular tasks of interest such as area coverage, exploration, surveillance and

search and rescue activities [38].

• Decentralized systems usually are of a low cost when compared to centralized

versions carrying out the same objective [39].

A thorough comparison between centralized leader-follower configuration and de-

centralized schemes in [19, 39–41].
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2.1.3 Virtual Structure Configuration

Virtual structure configuration implies treating the formation as a rigid body in

the sense that it has its own reference frame. Positions of robots in this virtu-

ally synthesized structure are defined as position vectors measured from reference

frame’s origin e.g. geometrical center of the formation. Assuming reference point

has its own offline or online planned trajectory, desired trajectory for each robot in

the structure can be easily found by simple vector combinations. Motion controller

is then responsible of guarantee desired trajectories tracking [42].

In [43], Nijimeijer et al. tackle the problem of formation control for unicycle

mobile robots. Virtual structure controller that uses mutual coupling between

individual robots is designed as it makes it more robust against perturbations in

comparison with leader-follower configuration. Similarly, in [44], authors propose

a virtual structure formation for UAVs in 3D space with corresponding tracking

approaches. UAVs can track desired formations even when the structure moves

slower than their minimum speed. To minimize the risk of crashing while con-

structing a formation they utilize deconfliction controller.

A recent work by Schwager et al. [45] combines different concepts to achieve an

agile coordination and collision avoidance for a swarm of quadrotor UAVs. Au-

thors use Virtual Rigid Body (VRB) abstraction to plan trajectories for formation

maintenance and transitioning between different formations. Virtual structure

concept was integrated with differential flatness based feedback control for every

quadrotor to track its trajectory in the formation. This allowed the swarm to be

teleoperated as if it was a single quadrotor eventually causing the framework to be

scalable for an arbitrary number of quadrotors. Multiple layered potential fields

were implemented to perform tasks such as static obstacle collision avoidance,

quadrotor collision avoidance and formation hold. They performed a successful

200 quadrotors swarm simulation and physically implemented their algorithms

with formations of 5 quadrotor UAVs.
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2.2 Mathematical Modeling Approaches

Coordination paradigms are implemented with the assistance of different mathe-

matical models. They enforce robot-level local rules in such a way that the nec-

essary behavior(s) are implemented. Two of the widely-used mathematical tools,

among many others, are artificial potential fields and virtual viscoelastic forces.

We briefly go over the basis of these tools as a preliminary other work in this

thesis. We also cite example works and express existing limitations.

2.2.1 Artificial Potential Fields (APFs)

This concept was first introduced in 1986 by Khatib et al. [46] as a real-time

obstacle avoidance algorithm. It is based on synthesizing circular virtual potential

fields around robots, obstacles and goal all considered as points. Robots in the

system are supposed to navigate following the global velocity vector field. Robot(s)

navigation with the help of potential fields has been extensively used by researchers

[45, 47–49].

As Vlantis et al. did in their work [49], consider a test robot Ri of state vector Xi

modeled as a single integrator in a n-dimensional workspace. Its model can then

be mathematically described as : Ẋi = u (2.1)

where Ẋi is robot’s velocity vector and u is the input. For a robot to navigate, it

only needs to equate its velocity input to the negative gradient (steepest descent)

of the resultant artificial potential field function:

u = −OΨnet (2.2)

where Ψnet is the net potential field function. We call it net/resultant as we use

APFs in layers to perform different tasks (behaviors):

Ψnet = λ1Ψ1 + λ2Ψ2 + · · ·+ λkΨk (2.3)
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where each Ψk represents either an attracting or a repelling potential field layer

aiming at some intended behavior and λk is the corresponding weight. Behaviors

means different coordinated task objectives: target (goal) attraction or neighbor-

ing robots, obstacles and environment boundaries repulsion respectively.

One can define each potential function as:

Ψk == fk(·)(|Xi −Xj|) (2.4)

where fk(·) is a suitably defined function satisfying fk(r)→ 0 as r → 0, and Xj is

the position of the other object; a target, an obstacle or another robot [47]. Figure

2.2 shows a single robot simulation results using potential fields.
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Figure 2.2: Artificial potential fields navigation implementation using a single
robot

One major drawback of APFs is the presence of a local minima that might trap

the robot. Many attempts to solve this problem has been made in the literature

e.g. using world transformations, offline scenario dependent weight tuning and

using minima free complex functions [50]. As a conclusion, despite its soundness,

intuitive design and wide use, it is rarely used as it is. Typically, it is integrated

with other technique.



Literature Survey and Background on Multi-Robot Coordination 16

2.2.2 Virtual Viscoelastic Bonds

Virtual springs-dampers is an intuitive idea of synthesizing virtual bonds between

two or more objects for coordinated motion purposes. Springs-dampers have been

used to model the connection between two or more masses; thus, adding elastic and

viscous friction characteristics to that connection. This concept is used in many

robotic fields: flexible robots [51], robotic manipulators [52], vibration modeling

and suppression [53] and most importantly, in our context, multi-robot coordina-

tion path planning, formation maintenance and obstacle avoidance [54–56].

It uses external forces to shape a desired path for each robot in the swarm. Con-

sidering a simple double integrator dynamic model for a test robot Ri of mass mi

miẌi = Fnet (2.5)

where Ẍi is the acceleration of the robot Ri. Newton’s second law, implies that∑
Fext = ma thus the motion of this robot is governed by the net force acting on

it. As a planner, one can synthesize virtual forces that act on the robot and make

their combination to be equal to Fnet:

Fnet = F1 + F2 + · · ·+ Fk (2.6)

As a result, robot Ri will be forced follow a trajectory, that will be my virtual

reference trajectory to be tracked by the controller.

We think of these Fk forces to be either a spring force that works on maintaining

an equilibrium distance between the robot and goal, obstacle or another robot’s

position, or a viscous damping force in which robot’s velocity seek to converge to

a reference velocity being either zero in the case of goal approaching or another

robot’s velocity when a coordinated motion of the group is being imposed [54].
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2.3 Collision Avoidance

While robots are in motion trying to achieve a predefined task, it is crucial to han-

dle cases where they collide. Two steps are generally necessary to avoid collisions:

• Collision Detection

• Collision Response

Collision response is also called “collision resolution” in the context of fields other

than robotics e.g. computer graphics [57].

Even robust algorithms for multi-robot systems encounter the challenge of colli-

sions. Both potential fields and virtual bonds are presumably capable of generating

collision-free paths but in practice it is not the case. The problem even gets more

complicated when nonholonomic constraints, nonlinear dynamics and complex ge-

ometries comes into the picture [54]. This is why many researchers augment these

mathematical models with other algorithms thus eliminating collisions.

For instance, nonholonomic mobile robots’ inter-robot collisions and obstacle avoid-

ance sub-problems in [30] were solved by integrating a fuzzy logic based algorithm

via sensing the relative distance between follower robots and obstacles. In an an-

other work [36], authors indicate some disadvantages of obstacle avoidance using

potential fields such as the creation of bigger avoidance radii and propose a region

separation based technique to solve the problem.

Moreover, in order for the virtual spring-damper connections to guarantee inter-

robot collisions-free paths for scenarios as in [56], a parameter tuning process of

spring/damper coefficients is needed. This can be done by increasing the rigidity

and decreasing flexibility of the bonds eventually negatively affecting coordinated

motion quality, convergence speed to formation and possibly task completion.

Gulec et al. [54], emphasized this problem and augmented his virtual spring-

damper based coordination model with an additional online collision avoidance

algorithm utilizing the idea of Virtual Collision Prediction Region (VCPR).



Chapter 3

High-Level Planner: Reference

Trajectory Generation

The coordination framework have two levels interacting in a hierarchical way as

depicted in Fig. 3.1. First, virtual reference trajectories are generated for every

robot Ri in the group. Trajectories are designed such that they fulfill the formerly

defined coordinated motion task. Physical robots then have to track their desired

paths via designated controllers synthesized based on robot’s kinematic and dy-

namic models. This chapter explains the planner level, whereas controller synthesis

is explained in Chapter 4. We first establish the structure for 2D environments

clarifying its component models, we then extend it to 3D setups.

Figure 3.1: Hierarchical coordination structure
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3.1 Virtual Point Masses

Since we are in the prior level of the planner, one smart abstraction comes from

noting that we need not to consider complex, nonholonomic or nonlinear models.

Thus, we choose to model reference trajectory generation system’s robots as virtual

point masses m1,m2, . . .mi, . . . ,mn. For the model to mimic real-life scenarios we

add a viscous friction term to the model limiting velocity profiles of the generated

trajectories. For every virtual mass mi the dynamic model is:

miẌi + biẊi = Fnet (3.1)

where bi is mi’s friction coefficient and Ẍi, Ẋi are its acceleration and velocity

vectors respectively. The motion of each point mass is completely driven by the

net force Fnet acting on it. Fnet can be treated as the linear combination of multiple

distinct forces:
Fnet = F1 + F2 + · · ·+ Fk (3.2)

Note that point masses model is holonomic, this approach relaxes the nonholo-

nomic constraint. Thus, forces in action can move mi in any direction. On the

other hand, orientation is not defined. However, physical robots’ controllers gen-

erally need a desired orientation to track. Thus, reference orientation will be

obtained from the velocity profile of the virtual mass.

3.2 Virtual Spring-Damper Forces

We follow a decentralized distributed coordination configuration while establishing

the system. The interest is to implant a bundle of local rules in every individual

virtual mass in such a way that both: its own motion, and the group as whole will

exhibit the intended behaviors. These rules will be mathematically interpreted as

virtual forces F1, F2, . . . , Fk composing Fnet. These forces should depend on the

virtual mass’s parameters (position, velocity, mass) as well as other masses.

In this section, we design the necessary and sufficient virtual forces Fk for the

generated trajectory to fulfill the coordinated motion problem. We synthesize two
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layers of virtual spring-damper bonds as presented in previous works [54, 56, 58].

Viscoelastic forces connecting rigid bodies come in pairs. Spring force, virtual in

our case, is responsible for maintaining a predefined distance that the connected

bodies converge to elastically. On the other hand, virtual damper force will rigidly

connect them so that they move together, i.e. level their velocity vectors to a

common one. Together, they establish a foundation for the coordinated motion

and formation control of rigid bodies.

3.2.1 Layer 1: Mass-Mass Virtual Forces

The coordinated motion of the virtual masses and their formation control are

achieved in this layer with pairs of virtual spring-damper connections. While de-

veloping the necessary forces for these sub-tasks we assume that every mi perceives

and tries to coordinate only with its two Nearest Neighbors, a concept first intro-

duced by Vicsek et al. in 1995. For instance, mi does not form any virtual bond

with mj3 as in Fig. 3.5.

A virtual force F1 acting on mi is then designed as follows:

F1 = −
[
kR(di→j1 − dR) + cR((Ẋi − Ẋj1))·ui→j1

]
ui→j1

−
[
kR(di→j2 − dR) + cR((Ẋi − Ẋj2))·ui→j2

]
ui→j2 (3.3)

where · denotes a dot product of vectors, kR and cR are spring-damper coefficients,

respectively, ui→j1 and ui→j2 are unit vector from mi to mj1 , mj2 while di→j1 and

di→j2 are their corresponding distances. Ẋi, Ẋj1 and Ẋj2 are the velocity vectors

of mi and mj1 , mj2 respectively, dR is the distance to be maintained between mi

and mj1 , mj2 .

F1 is a combination of a virtual spring-damper forces due to mj1 and another pair

due to mj2 . Therefore, mi always try to maintain a distance dR between itself and

each neighbor mass but at the same time its motion is affected by its neighbors

velocity vectors magnitude and direction, i.e. it moves with them.
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Figure 3.2: Virtual bonds between mi and its two nearest neighbors mj1 ,mj2

When three masses close to each other are connected with virtual bonds, they

mutually act on each other with F1. We, eventually, achieve the uniform triangle-

shaped formation with their motion also connected as depicted in Fig. 3.3.

Figure 3.3: Layer1: three virtual masses mutually connected by virtual bonds

When every mass is acted upon by this force considering its two neighbor robots,

the group will eventually converge to a triangular mesh formation composed of

fundamental groups of three masses in a triangle shape. The developed structure

is thus modular and can be scaled to n number of virtual masses consequently,

to n robot. For the sake of clarity, we restrict our system description to its most

elemental module, three virtual masses. We show the scalability property perfor-

mance with simulations in Chapter 6.
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3.2.2 Layer 2: Mass-Goal Virtual Forces

This layer is intended to force each mass mi to converge to a predefined distance

around the goal G. A virtual spring-damper pair is attached between the virtual

mass mi and the goal G as in Fig. 3.4.

Figure 3.4: Layer2: Separate spring-damper bonds between masses and G

For this purpose, A force F2 is synthesized as the combination of pair of spring-

damper virtual forces as follows:

F2 = −
[
kG(di→G − dG) + cG(Ẋi·ui→G)

]
ui→G (3.4)

where · denotes a dot product of vectors, kG and cG are spring-damper coefficients,

respectively, ui→G is the unit vector from mi to G while di→G is the distance

between them. Ẋi = [ẋi, ẏi]
t is the velocity vector of mi and dG is the distance to

be maintained around G.

F2 acts independently on each mi, its spring force component attracts it towards

a distance dG from G. Damper force component, however, have an equilibrium

velocity of zero; thus, it decreases mi’s velocity while approaching until it is even-

tually rested on the desired spot defined by spring force.
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Uniform Formation around G

The development above guarantees the convergence of every mass mi to a distance

dG from G. However, in order for the formation to lie perfectly on a circle of radius

dG centered at G, the formation distance between approaching robots dR have to

be a function of dG derived from simple trigonometry. This is an unnecessary

constraint as it will limit our choice to one possible dR. We bypass it using the

approach proposed in [54] in which an adaptable model parameter laws are trig-

gered whenever a mass mi enters a concurrent circular region defined by a radius

dbreak. We are therefore free to select desired dR during goal approaching phase,

While a strict value denoted by dR
′ depending on dG and n, the number of virtual

masses, is applied as the robots reach dbreak region.

Robots’ inter-distance necessary for a uniform circular formation is changed after

passing dbreak to dR
′ according to the following trigonometric relation:

dR
′ = dG

√
2(1− cos(2π/n)) (3.5)

Spring coefficient, kG, is also changed to smaller value of kG
′ thus relaxing the

Figure 3.5: Uniform circular formation of masses around G

connections in an aid to the formation process. Authors in [54] develop a sigmoid

function to guarantee a smooth continuous transition:

kRobots = kR
′ +

kR − kR′

1 + eα (dG
′− di→G + γ)

(3.6)



High-Level Planner: Reference Trajectory Generation 24

Figure 3.6 illustrates the final configuration where both layers are combined con-

structing the high-level planner.

Figure 3.6: Full virtual spring-damper forces scheme

When Fnet in acting on mi is equal to F1 + F2, equation 3.1 becomes:

miẌi + biẊi = F1 + F2 (3.7)

The resultant set of
[
Xi, Ẋi, Ẍi

]
obtained from each mi model are the desired ref-

erence trajectories for every corresponding robot Ri. As for the desired orientation

profile, it can be easily derived from velocity vector components Ẋi:

θi = arctan

(
ẏi
ẋi

)
(3.8)

Collision Avoidance

Unfortunately, the previous formulation alone is not sufficient to generate collision-

free paths and implicit solutions are impractical and scenario-dependent as dis-

cussed in details in Chap. 2. We establish our proposed scenario-independent

collision avoidance framework, develop its mathematical representation and inte-

grate it with this virtual spring-damper based scheme later in Chap. 5. As a result,

the enhanced overall coordination framework successfully performs all sub-tasks

of the formulated problem.
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3.3 Extension to 3D Environments

The previous models were developed for 2D workspace. Despite that we can easily

extend them to higher dimensions workspaces, it might not be the most fitting

solution. For example, for a heterogeneous MRS of UGVs and UAVs working

together, UGVs will have upward force component which is not feasible. Instead,

we append a suitable desired trajectory for z dimension for each robot Ri that

encompasses the set
[
Zi, Żi, Z̈i

]
to have a full 3D trajectories. By this abstraction,

the whole coordination and formation control process happens on xy horizontal

plane, and the Z trajectory have the sole responsibility of smoothly lifting the

UAVs to the desired elevation as depicted in Fig. 3.7. Obvious shortcoming of

this methodology is not benefiting from the spatial versatility of the 3D space for

different mid-air 3D formations.

For that purpose, we use the concept of polynomial trajectory generation [59].

Figure 3.7: 3D spring-damper connections configuration

3.3.1 Polynomial Trajectory Generation

The quadrotor UAV’s dynamic model is proved to be deferentially flat. Moreover,

all four times continuously differentiable, known as C4, paths are proved to be

dynamically feasible with the proper controller design [60].
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We design a quintic (5th order) polynomial trajectory for two main reasons: It

is four times continuously differentiable, and we can select initial and final points

positions, velocities and accelerations:

P = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0 (3.9)

We define our desired initial and final z axis positions’ parameters [zi, żi, z̈i, zf , żf , z̈f ]

together with initial and final time values [ti, tf ]. The polynomial trajectory’s co-

efficients can then be found by:



a5

a4

a3

a2

a1

a0


=



ti
5 ti

4 ti
3 ti

2 ti 1

5ti
4 4ti

3 3ti
2 2ti 1 0

20ti
3 12ti

2 6ti 2 0 0

tf
5 tf

4 tf
3 tf

2 tf 1

5tf
4 4tf

3 3tf
2 2tf 1 0

20tf
3 12tf

2 6tf 2 0 0



−1

·



zi

żi

z̈i

zf

żf

z̈f


(3.10)

Our Z trajectory profile is simply P , and we can get Ż, Z̈ from differentiating it

accordingly.



Chapter 4

Low-Level Motion Control:

Physical Robots Modeling and

Control

The planner-generated trajectories need to be tracked by the physical robots in

order to achieve the coordinated task. This is non-trivial since the planned trajec-

tories are holonomic, however, almost non of the physical robots are. Moreover,

the produced dynamically feasible paths was not particularly emphasized, thus

a proper synthesis is needed for different kinematic and dynamic model. In this

chapter, the modeling and control of two different robot types who will be used

as a validation test bed in this thesis: nonholonomic mobile robots and quadrotor

type UAV.

4.1 Nonholonomic UGV

Nonholonomic robots are among the most used robot models especially in MRS

coordination context. This is because they are low-cost and abundantly available

in the market. The nonholonomic constraint indicates restrictions on directions

of motion. This restriction complicates the mathematical representation of the

27
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system and consequently synthesis. The control for such type of robots is well-

investigated in the literature [61–63]. In this subsection, unicycle type nonholo-

nomic mobile robots model is reviewed and a hierarchical scheme is developed

using virtual inputs in order for the robots to track their trajectories.

4.1.1 Kinematic Model for UGVs

The well established kinematic model for unicycle robot can be given in terms of

its linear and angular speeds by

ẋ = u1cosθ

ẏ = u1sinθ (4.1)

θ̇ = u2

where x and y represents the earth frame Cartesian coordinates of robot’s center

of gravity, θ is its angle with respect to the horizontal axis. u1 and u2 are linear

and angular speed inputs, v and ω, through which we will control it. A unicycle

UGV is illustrated in Fig. 4.1. u1 and u2 are directly connected with robot’s right

and left wheels’ velocities uR and uL respectively. This relation is given by

u1 = 1
2
(uR + uL)

u2 = 1
2l

(uR − uL) (4.2)

Figure 4.1: Variables of interest of a unicycle UGV
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4.1.2 Control

As can be observed from eq. 4.2, the model has two inputs, namely u1 and u2

that we can work on to control three output states constructing the pose of it

[x y θ]′. This type of systems is known in control theory as underactuated system

the control of which is considerably hard.

4.1.2.1 Virtual Inputs Hierarchical Control

In order for the nonholonomic UGV to track a desired trajectory [Xd, Yd]
′, we

use a cascaded control scheme in which an outer loop control position states and

produce desired orientation angle for the inner loop to control as depicted in Fig.

4.2. It decomposes the problem into two sub-problems: First, assuming holonomic

dynamics track the trajectory. Then, since in practice dynamics does not allow

for such behavior, calculate the necessary attitude of the system and ensure it is

being followed.

Figure 4.2: Hierarchical control scheme for nonholonomic UGV

Position Control

Position control bears the responsibility of generating the desired attitude desired

values of the attitude , while following a feasible trajectory. The position is de-

signed by using the first two equations of eq. 4.2. The virtual control inputs

approach aims at forcing the errors, the difference between true and desired val-

ues, to converge to zero by means of cascaded PIDs. We first define position errors
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and then differentiate to get error dynamics

ex = xd − x, ey = yd − y

ėx = ẋd − ẋ, ėy = ẏd − ẏ (4.3)

When we equate our defined virtual inputs to the first derivatives of x and y, the

following relations from error dynamics are obtained

µx = ẋd − ėx

µy = ẏd − ėy

We then define our virtual inputs by PID means to regulate errors and their

derivatives by

µx = ẋd +Kpxex +Kix

∫ t

0

exdt+Kdx ėx

µy = ẏd +Kpyey +Kiy

∫ t

0

eydt+Kdy ėy (4.4)

Finally, from eq. 4.2 we have

µx = u1cosθ

µy = u1sinθ (4.5)

With simple analytical manipulation, u1 input and desired reference angle θd are

found as follows

u1 =
√
µ2
x + µ2

y

θd = arctan

(
µy
µx

)
(4.6)
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Attitude Control

Attitude control regulates the orientation error to zero also using a PID -based

virtual input for its angular velocity. We define error, error dynamics and virtual

input for attitude as follows

eθ = θd − θ

ėθ = θ̇d − θ̇

µθ = θ̇d +Kpθeθ +Kiθ

∫ t
0
eθdt+Kdθ ėθ (4.7)

We need to find θd derivative to utilize it in attitude error dynamics. This can be

done analytically by differentiating both sides of eq. 4.6 and the following relation

is obtained

θ̇d =
µ̇yµx − µyµ̇x
µ2
x + µ2

y

(4.8)

Finally, µθ virtual input is equated to θ’s derivative and the second input is fully

defined by

u2 = µθ (4.9)

With the proper tuning of gains, namely Kpx , Kix , Kdx , Kpy , Kiy , Kdy Kpθ , Kiθ

and Kdθ nonholonomic mobile robot tracks its desired trajectory.

4.2 Quadrotor UAV

Quadrotor is a rotary-wing underactuated UAV. In the following section, the kine-

matics and dynamics of the quadrotor are provided. These models enable us to

describe the motion of a quadrotor with respect to its inputs. Besides that, a

synthesis using the virtual inputs concept is performed for the quadrotor UAV to

track the trajectories produced by the 3D extended planner.
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Figure 4.3: Coordinate systems for environment with a quadrotor UAV

4.2.1 Quadrotor’s Kinematics and Dynamic Model

In order to describe kinematics and dynamics of a quadrotor we define two refer-

ence frames, the earth inertial frame (E frame) and body-fixed frame (B frame).

Translational dynamics will be represented by a system of equations expressed in

Earth frame, while attitude dynamics’ system is expressed in Body frame. We use

superscript to denote the frame with respect to which the parameter is defined.

We define linear position ΓE and angular position ΘE of the quadrotor in Earth

frame. While in body frame we have defined linear velocity vB and angular veloc-

ity ωB, rotor forces FB and torques τB. Generalized position of the quadrotor is

given as

ξ =
[
ΓE ΘE

]T
=
[
X Y Z φ θ ψ

]T
(4.10)

Generalized velocity is

v =
[
V B ωB

]T
=
[
u v ω p q r

]T
(4.11)
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The orientation of the body frame with respect to the earth frame is expressed

with a rotation matrix RΘ which is obtained by post-multiplying the three basic

rotation matrices according to ZYX conversion

RΘ =


cψcθ −sψcφ + cψsθsφ sψsφ + cψsθcφ

sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ

−sθ cθsφ cθcφ


where ck = cos k, sk = sin k, and tk = tan k. We can relate derivative of a

generalized position to the generalized velocity in the body frame as in eq. 4.12.

where generalized JΘ is composed of 4 sub-matrices

ξ̇ = JΘv (4.12)

JΘ =

 RΘ 03×3

03×3 TΘ

 (4.13)

TΘ in eq. (4.13) refers to the transfer matrix defining the relation between the

angular velocities in the E and those ones in the body-fixed frame B.

TΘ =


1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ


The generalized velocity vector is

ζ =
[
Γ̇E ωB

]T
=
[
Ẋ Ẏ Ż p q r

]T
(4.14)

The dynamics of the system in matrix form is

MH ζ̇ + CH (ζ) ζ = GH +OH (ζ) Ω + EH (ξ) Ω2 (4.15)

where H is the hybrid frame from appending vectors from body frame and earth

frame, ζ̇ is the quadrotor generalized acceleration vector, MH is the system’s

inertia matrix, CH is Coriolis-centripetal matrix, GH is the gravitational vector
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in H frame, OH (ζ) is the gyroscopic propeller matrix. The third contribution

considers the forces and torques directly produced by the main movement inputs.

We can rearrange eq. (4.15) to isolate the derivative of the generalized velocity

vector ζ̇ with respect to the H frame

ζ̇ = M−1
H

(
−CH (ζ) ζ +GH +OH (ζ) Ω + EH (ξ) Ω2

)
(4.16)

Finally, plugging the described matrices eq. (4.16) can be written as a hybrid

system of equations

Ẍ = (sinψ sinφ+ cosψ sin θ cosφ)
U1

m

Ÿ = (− cosψ sinφ+ sinψ sin θ cosφ)
U1

m
(4.17)

Z̈ = −g + (cos θ cosφ)
U1

m

ṗ =
IY Y − IZZ

IXX
qr − JTP

IXX
qΩ +

U2

IXX

q̇ =
IZZ − IXX

IY Y
pr − JTP

IY Y
pΩ +

U3

IY Y
(4.18)

ṙ =
IXX − IY Y

IZZ
pq +

U4

IZZ

where

Ω2
1 =

1

4b
U1 −

1

2bl
U3 −

1

4d
U4

Ω2
2 =

1

4b
U1 −

1

2bl
U2 +

1

4d
U4

Ω2
3 =

1

4b
U1 +

1

2bl
U3 −

1

4d
U4 (4.19)

Ω2
4 =

1

4b
U1 +

1

2bl
U2 +

1

4d
U4

Eqs. 4.18 represents the translational dynamics which is underactuated since only

one input for the system should drive three outputs states. Attitude dynamics,

however, are represented by eqs. 4.17 and is fully actuated.
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4.2.2 Control

The overall 6 DOF underactuated, highly nonlinear and coupled system’s control

is non-trivial. In this subsection, synthesis for quadrotors is briefly explained.

4.2.2.1 Virtual Inputs Hierarchical Control

Cascaded s for position and attitude are synthesized using virtual inputs approach.

scheme is illustrated in Fig. 4.4.

Figure 4.4: Hierarchical control scheme for quadrotor type UAV

Position Control

Position control block is a low-frequency outer loop control where it assumes being

a holonomic ball that can go whenever it wants and plan the tracking trajectory

accordingly. Outputs of this block are control input U1 and desired angles that

will make it possible for the previous assumption to hold.

Starting from translational dynamics (4.18) where U1 is the control input, errors

can be defined as

eX = Xd −X

eY = Yd − Y

eZ = Zd − Z (4.20)
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Then, error dynamics is found as

ėX = Ẋd − Ẋ ⇒ ëX = Ẍd − Ẍ

ėY = Ẏd − Ẏ ⇒ ëY = Ÿd − Ÿ (4.21)

ėZ = Żd − Ż ⇒ ëZ = Z̈d − Z̈ (4.22)

Equating virtual inputs to position dynamics, we define

Ẍ = µX

Ÿ = µY

Z̈ = µZ (4.23)

Thus, error dynamics in the Equation (4.21) becomes

ëX = Ẍd − µX

ëY = Ÿd − µY

ëZ = Z̈d − µZ (4.24)

Position control of the vehicle is reduced to the control of a double integrator

through the following virtual controls:

µX = Ẍd +Kp,XeX +Kd,X ėX +Ki,X

∫
eXdt

µY = Ÿd +Kp,Y eY +Kd,Y ėY +Ki,Y

∫
eY dt

µZ = Z̈d +Kp,ZeZ +Kd,Z ėZ +Ki,Z

∫
eZd (4.25)
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Using simple trigonometric relations the virtual controls are transformed to desired

roll φd and pitch angles θd.

φd = arcsin

sin (ψd)µX − cos (ψd)µY√
µ2
X + µ2

Y + (µZ + g)2


θd = arcsin

 cos (ψd)µX + sin (ψd)µY

cos (φd)
√
µ2
X + µ2

Y + (µZ + g)2

 (4.26)

Yaw angle ψ is assumed to be some fixed value ψd, and total thrust in terms of

the virtual inputs is given by

U1 = m

√
µ2
X + µ2

Y + (µZ + g)2

Attitude Control

Attitude control is a high-frequency inner loop that works towards fulfilling the

high-level position ’s requirements of roll φ, pitch θ (yaw angle is fixed ψd=ψ)

such that appropriate torque signals responsible for steering the quadrotor in the

desired direction are synthesized.

Errors in attitude angles can be defined as

eφ = φd − φ

eθ = θd − θ

eψ = ψd − ψ (4.27)

Virtual inputs for the angular position are designed as PIDs therefore we get the

equation for roll control

φ̈ = φ̈d +Kp,φeφ +Kd,φėφ +Ki,φ

∫
eφdt (4.28)
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where the control input U2 is designed as

U2 = IXX

(
φ̈d +Kp,φeφ +Kd,φėφ +Ki,φ

∫
eφdt

)
(4.29)

In a similar way we obtain the expression for U3 and U4

U3 = IY Y

(
θ̈d +Kp,θeθ +Kd,θėθ +Ki,θ

∫
eθdt

)
U4 = IZZ

(
ψ̈d +Kp,ψeψ +Kd,ψėψ +Ki,ψ

∫
eψdt

)
(4.30)

where Kp, Kd and Ki are proportional, derivative and integral controller gains

respectively.



Chapter 5

Collision Avoidance Framework

via Virtual Shells

Collision avoidance is one of the central problems in the coordinated motion of

a group of autonomous mobile robots. As discussed in chapter 2, many decen-

tralized coordination models including APFs and virtual spring-damper bonds,

although mathematically sound, do not guarantee collision-free paths and require

either scenario-dependent offline parameter tuning or the aid of computationally

costly algorithms. The problem gets even more complicated when kinematic and

dynamic constraints of the robots are taken into account. Nonholonomic robots,

for example, cannot arbitrarily change their orientations, thus decreasing their

probability of maneuvering a predicted collision. In this chapter, an intuitive

framework, inspired by fish schools in nature, to detect and avoid collisions online

is proposed. Although the algorithm is extendable to environment’s static/dy-

namic obstacle avoidance, we restrict our discussion to inter-robot collisions as a

performance criterion.

The newly proposed collision avoidance framework eliminates geometry complex-

ities of robots of different sizes, shapes or dynamics. Moreover, it decomposes the

problem into 2 sub-problems:

• Collision Detection.

• Collision Response.

39
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Figure 5.1 shows the proposed framework integrated into the planner block, hence

enhancing the overall scheme by successfully eliminating collisions during coordi-

nation.

Figure 5.1: Enhanced hierarchical coordination framework

5.1 Virtual Shells

Virtual Shells concept is inspired by the allowable smooth and harmless collisions

in some types of animal swarms in nature e.g. fish schools Fig. 5.2(a), where

the small scale, flexible bodies and force damping medium reduces the risk to

zero. Instead of the common concept of “preventing collisions”, we propose the

concept of “allowable safe collisions” as in bumper cars Fig. 5.2(b). It is based on

transferring collisions from the physical robots level, which might cause hardware

damage and task failure, to the level of virtually synthesized shells with predefined

geometry enveloping the robots.

After a collision is detected, an action/response necessary to escape collision is

triggered. This response is a reference trajectory modification through a velocity
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(a) (b)

Figure 5.2: (a) school of fish in oceans, (b) bumper cars in amusement parks

update according to some law. The low-level controller bears the responsibility

for aligning the core physical robot at the center of the moving shell.

This framework is extendable and can be implemented in both 2D and 3D multi-

robot environments. Figure 5.3 illustrates the concept of virtual shells for different

sample robots.

(a) (b)

Figure 5.3: Virtual shells enveloping heterogeneous robots: (a) 2d environ-
ment case and (b) 3d environment case.

There are three main considerations to note regarding the proposed framework,

most of which are affected by perception and communication constraints of the

system. They can be summarized as:

• Shell Geometry

• Collision Detection

• Collision Response using Velocity Update Laws
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5.2 Shell Geometry

Choosing the virtual shell’s geometry is crucial in the sense that it directly affects

the collision detection law. Simplifying complex robots’ geometries is one of this

framework’s objectives. Therefore, highly symmetric shell geometry is undoubt-

edly preferred. Figure 5.4 suggests two possible shell geometries based on the

aforementioned criteria, namely a circle and an ellipse. In 3D workspaces, these

suggested shapes become a sphere and an ellipsoid.

Figure 5.4: Highly symmetric shell examples in 2d: (a) circle and (b) ellipse

As a proof of concept, throughout the rest of this thesis, we restrict our discussion

of shell geometry to the highly symmetric circular form (spherical in 3D). We

define a circular virtual shell Ωi(r) of radius r, enveloping robot Ri centered at Xi

and having a velocity vector Vi as depicted in figure 5.5.

Figure 5.5: Virtual Shell Ωi(r), for the robot, Ri
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Radius r of the shell is predefined offline, and can be assigned taking many factors

into consideration including:

• Environment geometrical constraints

• Average operating speed

From which one can infer and synthesize a simple radius assigning law. In our

simulations we arbitrarily choose r for experimentation, granted that it satisfies

r ≤ βL, where β is a safety factor and L is the radius of the circumscribed circle

of the robot.

5.3 Collision Detection

Unlike a large number of algorithms in the literature based on beforehand robot-

level collision “prediction” [54],[64],[65], the proposed framework shifts the problem

to virtual shells-level collision “detection”. This is made possible due to the safety

offset inherent to the virtual shell.

For a circular virtual shell Ωi(ri) enveloping robot Ri, a collision is detected with

another circular virtual shell Ωj(rj) enveloping robot Rj in the cases of contact

or overlapping between the shell-pair, i.e., the distance between their centers is

smaller or equal to the sum of their radii as depicted in figure 5.6.

Figure 5.6: Collision of Ωi(ri) with Ωj(rj) is detected due to contact

A flag is triggered whenever ‖Xi −Xjk‖ ≤ (ri + rjk) is satisfied indicating which

shell-pair is colliding. We assume single collision at a time for the sake of simplicity,
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in case of simultaneous multiple collisions, we give response priority according to

the magnitude of the collision.

The case becomes more complex when considering ellipse/ellipsoid shaped shells

or a combination of them. Nevertheless, necessary conditions for such cases can be

derived analytically and built upon for a more efficient collision avoidance. This is

true as it can compensate for the nonholonomic constraint, something that circular

shell cannot do. This is considered to be a future work in this thesis.

Algorithm 5.1 Circular/Spherical Shell Collision Detection

Require: Robot Ri perceives its n nearest neighbors Rj1 , Rj2 . . .Rjn

procedure Collision Detection(ri,rj1 . . . rjn)
Initialize Flag array
Calculate ‖Xi −Xj1‖. . . ‖Xi −Xjn‖
for k from 1 to n do

if ‖Xi −Xjk‖ ≤ (ri + rjk) then
Flag(k)← true

else
Flag(k)← false

end if
end for
Return Flag

end procedure

where (Xi, Xj1 . . . Xjn) are robots’ position vectors in earth frameE and (ri, rj1 . . . rjn)

are their corresponding shells’ radii respectively.

5.4 Collision Response

After a collision flag flag(k) is triggered true, the robot of study, Ri, needs to act

based on an algorithm hence, safely avoiding the collision with Rjk not sabotaging

the main task of coordinated motion. Possible responses in the literature are dis-

cussed in chapter 2. We hereby propose two “physical phenomena inspired” online

algorithms that modify reference trajectory’s velocity profile, hence producing an

improved collision-free reference trajectory for the low level controller to track.
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5.4.1 Elastic Collision (EC) Algorithm

Elastic collision of two rigid bodies is a well-formulated physical phenomenon

where the involved objects separate after collision with no deformations or energy

loss, e.g., billiard balls. The system of colliding objects form an isolated system

and both total kinetic energy and total linear momentum are conserved, i.e. the

coefficient of restitution will equal one.

Figure 5.7: Elastic collision of two rigid bodies in 2d: (a) before collision and
(b) after collision

We model the collision between two virtual shells Ωi(ri) and Ωj(rj) as an elastic

collision between two rigid bodies of masses mi and mj corresponding to their core

robots. Post-collision velocity law is used the necessary and sufficient action to

modify robot’s reference trajectory generated by the planner online, thus avoiding

the collision.

5.4.1.1 Post-Collision Velocity Law Derivation

For two colliding shells Ωi(ri) and Ωj(rj) with center position vectors Xi, Xj and

velocity vectors Ẋi, Ẋj respectively, we review the derivation for 1D, 2D and 3D

cases as follows:
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1D case

This case is a backbone for higher order case derivations, since the velocity change

in an elastic collision is restricted to its components on the radial axis, i.e., the one

connecting the centers of the two rigid bodies passing through the collision point.

In this case, center position and velocity vectors become scalars, thus simplifying

the algebra for derivation:

Conservation of momentum: miẊi +mjẊj = miẊ
′
i +mjẊ

′
j

Conservation of kinetic energy: 1
2
miẊi

2
+ 1

2
mjẊj

2
= 1

2
miẊ ′i

2
+ 1

2
mjẊ ′j

2

Combining these two equations and performing some algebraic manipulations we

get post-collision velocities for circular shell Ωi(ri) as follows:

Ẋ ′i =
Ẋi(mi −mj) + 2mjẊj

mi +mj

(5.1)

where mi, mj are the masses of the robots Ri, Rj positioned at the centers of the

colliding virtual shells Ωi(ri) and Ωj(rj) respectively.

Figure 5.8: Virtual shells elastic collision model (1D): (a) before collision and
(b) after collision

There is no need to calculate Ẋ ′j as every robot in our decentralized system is

considered to be Ri from its perspective. By the same token, its two perceived

nearest neighbors are considered to be Rj1 and Rj2 .

When mi = mj, eq. 5.1 becomes Ẋ ′i = Ẋj indicating that for the collision of

similar masses objects (shells) velocities after collision are simply exchanged.
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2D case

In this case, as already mentioned, tangential component of the velocities remains

unaltered while radial component can be found using the one-dimensional collision

formula:

Ẋ ′ir =
Ẋir(mi −mj) + 2mjẊjr

mi +mj

, Ẋ ′it = Ẋit (5.2)

We then return the scalar values of radial and tangential velocities into their vector:

~̇ ′Xir = Ẋ ′ir.
~Ur , ~̇ ′Xit = Ẋ ′it.

~Ut (5.3)

Then we finally reconstruct the complete two dimensional velocity vector in earth

frame E by adding the radial and tangential components:

~̇ ′Xi = ~̇ ′Xir + ~̇ ′Xit (5.4)

where ~Ur and ~Ut are the radial axis and tangential axis unit vectors respectively.

Figure 5.9: Virtual shells elastic collision model (2D): (a) before collision and
(b) after collision
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3D case

This case is a further extension from 1D case in a similar manner to 2D case

derivation. Consequently, velocity update laws are driven exactly the same way

as in 2D case. The difference is that we will have two perpendicular tangential

axes where velocity components remains unchanged instead of one, as depicted in

figure 5.10.

Figure 5.10: Virtual shells elastic collision model (3D): (a) before collision
and (b) after collision

5.4.2 Light Beam Reflection (LBR) Algorithm

The elastic collision model assumes a high-level of communication in-between the

colliding robots in order to get the velocity information of the other robot. This is

consistent with the general coordination scheme as virtual spring-damper bonds

also require such information. However, this might be difficult to implement in

practice. One possible solution is to add a planner agent that have global infor-

mation, yet this will decrease the system’s robustness.
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Perception based solutions, like observers, are also valid. Where robot can esti-

mate the velocity of the robot due to which a collision was detected. However,

estimation accuracy and hardware cost are considerable issues. We propose an

alternative abstract algorithm inspired by the light beam reflection physical phe-

nomenon where the light is considered as a ball hitting a rigid wall of infinite

mass. This algorithm does not necessitate the perception and communication

requirements that the aforementioned algorithm do.

When Ri detect a collision due to Rj, Ri is considered to hit a wall Wj with an

inclination coincident to the tangential axis of collision. The change after collision

is simply a reflection in direction of the radial component of Ri robot’s velocity.

The velocity of the other robot is not taken into consideration as discussed earlier:

Ẋ ′in = −µ.Ẋin , Ẋ ′it = Ẋit (5.5)

where µ is a pre-tuned magnitude scale factor by the planner. The final velocity

vector ~̇ ′Xi is found in a similar steps as in eqs. 5.3 and 5.4. An illustrative two

dimensional scenario is depicted in figure 5.11

Figure 5.11: Virtual shells light beam reflection model (2D)
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A disadvantage of this algorithm is being relatively less efficient, e.g., a head to

tail collision scenario will force the robot to turn back which will affect the overall

coordinated motion due to existing virtual spring-damper connections.

Algorithm1 Algorithm2

Communication Requirements Intensive Minimal

Computational Complexity Relatively Complex Simple

Execution Time Shorter Longer

Task Fitness Better Fit Inefficient

Table 5.1: A comparison between elastic collision and light beam reflection
algorithms

5.4.3 General Velocity Update Algorithm

Since collision response is separated from collision detection, other algorithms can

be utilized in the future. The newly obtained velocity is applied to Ri’s reference

trajectory’s velocity for a Thold time until the flag is no longer triggered hence the

collision is avoided. Regardless of the selected method, the proposed process is

now as follows:

Algorithm 5.2 Collision Response: Post-Collision Velocity Update

Require: COLLISION DETECTION algorithm implemented

procedure COLLISION RESPONSE(Flag, ~̇Xi . . . ~̇Xjn)
for k from 1 to n do

if Flag(k) = 1 then . if Collision with robot Rjk is detected
for Thold period of time do . hold post-collision velocity for Thold

~̇Xi ← ~̇ ′Xi

end for
else . if no Collision was detected

~̇Xi ← ~̇Xi . do not change reference velocity profile
end if

end for
return ~̇Xi

end procedure

The algorithm assumes that no more than one collision is happening at the same

sample time. Successive collisions can happen, and it is the planners choice to

choose Thold accordingly.



Chapter 6

Simulation Results and

Discussion

Computer simulations and animations were carried out to test the performance of

the developed scheme; both for “coordinated motion planning and control” part

of chapters 3, 4 and for “collision avoidance framework” part of chapter 5.

All simulations were performed in Matlab/Simulink environment. In these sim-

ulations, an MRS was considered for a coordinated task defined by a circular

formation of its robots around the goal point. The framework is tested in 2D

environments using groups of three, four, five and ten nonholonomic UGVs. Ad-

ditionally, it is tested in 3D environments using groups of three and five quadrotor

UAVs. Several functionally distinct scenarios were first established, then imple-

mented and followed by a brief discussion.

While performing simulations, controller errors and environment disturbances are

crucial factors that need to be compensated for. This particularly valid for colli-

sion detection sub-problem as the controller is never ideal and cannot 100% follow

the reference trajectory thus causing lead/lag in the response. We overcome these

factors by routing our feedback path from the actual poses instead of the refer-

ence ones as depicted in Fig. 6.1. The essential problem of inter-robot collisions

avoidance is, therefore, solved in an online manner.

51
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Figure 6.1: Enhanced hierarchical coordination framework block diagram

6.1 2D Workspace implementation

The virtual masses used in simulations are all set as mi = 1 [kg]. Physical nonholo-

nomic UGV robots’ dimensions are 64 ∗ 32 [mm] while their masses are equal to

those of the virtual masses used for reference trajectory generation. Virtual shells

Ωi(ri)s’ radii were set to ri = 55 [mm] according to a safety factor of β ' 1.5.

THold is set to a small value of 0.05 [sec]. Controller values are fixed to kp = 23,

ki = 3 and kd = 0, as a result of gain adjustment process on a single non holonomic

robot.

Some system’s parameters are showed in Tab. 6.1. Their suitable values were

determined experimentally according to the performance of successive simulations

on a single quadrotor UAV. They will be hold fixed during the following simulation

scenarios unless otherwise indicated. Some other parameters, however, will be

scenario-dependent and tabulated separately.
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Parameter Value Reference Equation
b 1 3.1
kR 16 3.3
cR 5 3.3
kG 15 3.4
cG 10 3.4
kR
′ 9 3.6

α 2 3.6
γ 1 3.6

Table 6.1: Simulation parameters

6.1.1 Coordinated Motion Simulations

We first simulate an MRS of three robots, the basic module in the system, illus-

trating main operational behaviors of the reference trajectory planner, collision

avoidance framework and designed controllers. Then, it is followed by simulations

on groups of four and five robots where the modular design is verified to some

extent. Finally, in order to inspect the overall structure’s potential and collision

avoidance model’s robustness, we simulate a group of ten nonholonomic robots in

two realistic swarm scenarios.

In each scenario, important frames from the coordinated motion animation are

emphasized, e.g. collision detected, collision avoided, formation obtained . . . The

x mark indicates the goal point G while the black dashed circle around it is dG

circle, where the robots are supposed to uniformly form around G. The most outer

cyan colored circle is dbreak circle, where kR smoothly transform into dR
′.

Robots are originally distinguished by their shell’s and orientation vector’s color.

When a robot Ri detects a collision due to another robot Rj, its face color changes

to Rj’s color. We first implement elastic collision model and then repeat the

simulation with the alternative collision response model of light beam reflection.

For the sake of compactness, we compare and comment on their performance

in detail under scenario 2 and 3, and then select one to use in the following

next scenarios. Controllers performance is also verified in the form of desired vs.

controlled state graphs.
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Scenario 1

In this scenario, the operation of the coordination scheme without triggering the

collision avoidance framework is demonstrated. The robots are initially placed

inline with sparse distances away from the goal where X1 = [−4 4]′, X2 = [0 4]′

and X3 = [4 4]′. Conservative values for some parameters were deliberately

assigned to avoid collision situation, e.g. large approaching inter-robot distances

with rigid enough virtual damper to escape from collision scenarios. Scenario-

dependent parameters of the simulation are mentioned in Tab. 6.2.

Parameter Value
G (0 − 2)
dG 1.5
dbreak 2
dR 2
cR 7

Table 6.2: Scenario-1: modified parameters

As it can be observed from animation’s snapshots in Fig. 6.2, robots first approach

each other and move in a coordinated fashion towards G. Once they’ve passed

dbreak circle, they spread around the dG circle in a preparation for achieving the

desired uniform formation around G.

Scenario 2

The simulation was run for a group of three robots placed around the goal with one

robot closer than the other two robots X1 = [0 4]′, X2 = [−4 −4]′, X3 = [4 −4]′

and G = [0 − 1]′. We demonstrate a single head-to-head collision case to test

the proposed framework. Fig. 6.3 represents snapshots from the animation done

using EC model, while Fig. 6.4 is constructed using LBR model. In either case,

the collision is first detected and then successfully avoided without sabotaging the

overall mission.
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Figure 6.2: Scenario-1: (a) initial configuration, (b) coordinated motion, (c)
spreading out after dbreak and (d) uniform formation

EC model based avoidance, Fig. 6.3, is more aware to its core robot’s mass,

velocity vector and similarly colliding robot’s mass and velocity vector. Thus, more

reasonable behavior was expected on the expense of communication requirements.

Since colliding robots have identical masses, the post-collision velocity values re-

duce from eq. 5.1 to simply an exchange radial components of their velocity vectors

eventually escaping collision status .
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Figure 6.3: Scenario-2E: (a) initial config., (b) h-to-h collision detection, (c)
collision avoidance (EC model) and (d) uniform formation

With LBR model, Fig. 6.3, longer convergence time is needed as obvious in the

controllers’ state graphs, Fig. 6.9. This is due to the unnecessary large bounce

from each robot at the collision. Nevertheless, the coordinated task was achieved

and the formation was constructed with the only difference being the execution

time. As a conclusion, in similar head-to-head collision scenarios, the difference

between the two models is evaluated to be tolerable.
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Figure 6.4: Scenario-2R: (a) initial config., (b) h-to-h collision detection, (c)
collision avoidance (LBR model) and (d) uniform formation

Scenario 3

A head-to-tail collision scenario is investigated to further compare the two re-

sponse algorithms. We place the robots and the goal on the main diagonal of the

workspace: X1 = [−4 4]′, X2 = [−1 1]′, X3 = [4 − 4]′ and G = [1.5 − 1.5]′. For

demonstration purposes, we relax cR to 1. The two robots on the same side with

respect to goal, mimic a simple platooning motion situation.
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Figure 6.5: Scenario-3E: (a) initial config., (b) h-to-t collision detection, (c)
collision avoidance (EC model) and (d) uniform formation

Robot R1, in red, accelerates due to forces from other members of the group and

goal attraction. Thus, it gains a high velocity that is then damped but not before

a collision scenario emerge. With elastic collision model Fig. 6.5, the hitting robot

slows down while pushing the robot in front along their radial axis. Soon after

the collision is escaped, the robots continue following their planned trajectory and

surround the goal.

Despite that the formation was constructed and the task was achieved in both

scenarios, the LBR model exhibits an inefficient behavior of turning the colliding

robots backwards as shown in Fig. 6.6.
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Figure 6.6: Scenario-3R: (a) initial configuration, (b) H-to-T collision detec-
tion, (c) collision avoidance (LBR model) and (d) uniform formation

A perception-based solution can be proposed to recognize the type of collision (h-

to-h or h-to-t) and accordingly preventing the robot who’ve been hit from behind

from activating its response. However, such solutions will negatively affect its

major advantage of lower communication needs.

Before moving to four, five and ten robots’ simulations, controllers performance

is presented by the means of desired vs. controlled state curves for each of the

aforementioned scenario [1-3]:
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Figure 6.7: Scenario-1: position and orientation tracking performance (a) R1,
(b) R2 and (c) R3

Error R1 R2 R3

ex (m) 0.0017 0.0080 0.0174

ey (m) 0.0038 0.0009 0.0285

eθ (rad) 0.0261 0.2403 0.1641

Table 6.3: Scenario-1: RMS errors with virtual inputs controllers
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Figure 6.8: Scenario-2E: position and orientation tracking performance (a)
R1, (b) R2 and (c) R3

Error R1 R2 R3

ex (m) 0.0244 0.0147 0.0347

ey (m) 0.0034 0.0168 0.0398

eθ (rad) 0.1171 0.1376 0.2183

Table 6.4: Scenario-2E: RMS errors with virtual inputs controllers
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Figure 6.9: Scenario-2R: position and orientation tracking performance (a)
R1, (b) R2 and (c) R3

Error R1 R2 R3

ex (m) 0.0177 0.0183 0.0291

ey (m) 0.0025 0.0251 0.0363

eθ (rad) 0.1712 0.1258 0.1733

Table 6.5: Scenario-2R: RMS errors with virtual inputs controllers
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Figure 6.10: Scenario-3E: position and orientation tracking performance (a)
R1, (b) R2 and (c) R3

Error R1 R2 R3

ex (m) 0.0103 0.0030 0.0321

ey (m) 0.0025 0.0030 0.0287

eθ (rad) 0.1712 0.0537 0.1541

Table 6.6: Scenario-3E: RMS errors with virtual inputs controllers
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Figure 6.11: Scenario-3R: position and orientation tracking performance (a)
R1, (b) R2 and (c) R3

Error R1 R2 R3

ex (m) 0.0107 0.0072 0.0322

ey (m) 0.0150 0.0042 0.0288

eθ (rad) 0.2157 0.2188 0.1539

Table 6.7: Scenario-3R: RMS errors with virtual inputs controllers
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Scenario 4

In this scenario, four robots are aligned horizontally on the top while the goal is on

the bottom of the workspace. From now on, we utilize EC model and only show

frames from motion’s animation. System’s parameters are the same as scenario 3

except for the initial robot positions and goal position.

Two instances of collisions happened between robots as depicted in Fig. 6.12.

First, a collision is detected and avoided between blue and green robots’ shells,

Then, red and magenta colored robots also undergo a safe collision of their shells.

Despite successfully working, modular structure of the system was not fully clear

due to low number of robots.

Scenario 5

Five robots are used for further investigating scalability property of the system.

As the number of the robots increased, we relax goal conditions in terms of dG

circle radius around the goal, so that the robots can fit in. System’s modified

parameters can be found in Tab. 6.8. The robots are distributed along the edges

of the 2D environment, while the goal is seated in the southeast corner of it.

Parameter Value
dG 2
dbreak 3
dR 2
kR 20
cR 4

Table 6.8: Scenario-5: modified parameters

Triangular mesh formed by the two nearest neighbors approach is very clear in

this scenario, Fig. 6.13. This result is promising for large scale swarms of robots.

Another important notice is that this scenario would have ended with four defected

robots out of 5, if it was not for the collision avoidance framework. In this case

of multiple-collisions, framework choose the response with the highest magnitude,

thus responding to first to the more possibly crucial collision.
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Figure 6.12: Scenario-4: (a) initial config., (b) coordination dominance, (c)
1st collision avoidance, (d) 2nd collision avoidance, (e) virtual bonds relaxation,

and (d) uniform square formation
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Figure 6.13: Scenario-5: (a) initial config., (b) multiple-collision detection,
(c) all collision avoided, (d) G approaching while forming triangular mesh for-

mation, (e) relaxing bonds (d) uniform pentagon formation
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Scenario 6

Ten robots are used to mimic realistic swarm scenarios and test system’s perfor-

mance accordingly. Robots are uniformly distributed on a line to the north of the

workspace, with the goal at the most south of it. This scenario is analogical to

real-life swarm tasks where generally robot group initially start from near base

stations and head towards the goal. Few system parameters where modified to

adapt with the large number, Tab. 6.9.

Parameter Value
dG 3
dbreak 4
cR 4

Table 6.9: Scenario-6: modified parameters

Due to large number of successive collisions per robot, we use a bar graph to inter-

pret collision data. A total of 36 collisions was detected and avoided with robots in

the middle being exposed to the largest number of collisions Fig. 6.17. The trajec-

tory profile in Fig. 6.14 indicates how the coordinated motion switches between

the approaching phase, where coordination forces are dominant, and formation

construction phase, where goal convergence and formation distance maintenance

forces are dominant.

Scenario 7

As a final bench scenario, ten robots in a platoon formation along the main diag-

onal of the workspace are intended to surround a goal in its sight. Initial configu-

ration is shown in Fig. 6.14

A worm motion-similar successive expansions and shrinkage occur in coordination

phase. Large number of collisions are avoided Fig. 6.17, thus enabling the robots

to start form their triangular module formations with their nearest neighbors.

Generated trajectories shows a smooth transition from the platooning state to the

new coordination state. Thus, this task can be stitched to other tasks to perform

an overall mission e.g. moving from one neighbor to another in platoons and then

surrounding a fire to extinguish it.
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Figure 6.14: Scenario-6: (a) initial config., (b) coordinated motion, (c)
multiple-collisions detected, (d) collisions avoided, (e) decagon uniform forma-

tion achieved and (d) robots’ trajectories
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Figure 6.15: Scenario-7: (a) initial config. (b) coordination forces dominant
(c) 1st collision avoidance (d) 2nd collision avoidance (e) relaxing bonds (d)

uniform square formation



Simulation Results and Discussion 71

1 2 3 4 5 6 7 8 9 10

Robot [Ri]

0

2

4

6

#
 c

o
ll
is

io
n

s
 a

v
o

id
e
d

Figure 6.16: Scenario-6: Ri vs. number of avoided collisions
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Figure 6.17: Scenario-7: Ri vs. number of avoided collisions

The results of the simulations for the proposed collision avoidance framework

embedded in the general coordination structure with three, four, five and ten

robots are all satisfactory as discussed earlier. Scalability, robustness and scenario-

independence was positively verified.
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6.2 3D Workspace implementation

The simulations were carried out for groups of three and five quadrotor Type

UAVs. In a similar approach to the previous section, we first demonstrate the

operation of system’s components, then move to a more realistic and challenging

scenarios. In the following simulations, virtual masses are all set to mi = 0.8 [kg],

quadrotors’ have identical dynamic parameter values, arm length of the quadrotor

is l = 0.3 [m] and accordingly virtual shells Ωi(ri)s’ radii were set to ri = 1.2 [m]

with a high safety factor β considering its high operating speeds. However, size

of the quadrotor in the following snapshots of the simulations does not reflect

its real size, we enlarge it to be one sixth of the cubic workspace side length for

flight characterization visualization purposes. Controller values, obtained experi-

mentally, are the same for the controllers of all quadrotors Tab. 6.10. Moreover,

virtual reference trajectory generation systems parameters are set in Tab. 6.11,

any scenario-based modifications for parameters will be explicitly stated.

Gains X Y Z φ θ ψ

Kp 3.2 4.1 4 3.1 7 3

Ki 0.001 0.001 0.001 0 0 0

Kd 5 5 7 5.5 15 7

Table 6.10: Quadrotor position and attitude controller gains

Parameter Value

b > 10

kR 9

cR 3

kG 15

cG 4

kR
′ 2

α 10

γ 1

Table 6.11: Simulation parameters
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Scenario 1

We first consider a collision-free scenario of a group of three quadrotors surround-

ing the goal at relatively close distances Q1 = [5 0 0], Q2 = [−5 5 0] and

Q3 = [−5 − 5 0]. The goal is fixed above the robots 5 meters on top of workspace

origin, G = [0 0 5]. dG is set to 3, dR = 2.5 and dbreak = 4. Planner’s produced

trajectories together with the controller actual ones are shown in Fig. 6.31.

(a) (b)

(c) (d)

Figure 6.18: 3D scenario-1: (a) reference trajectories, (b) actual trajecto-
ries, (c) reference trajectories’ projection on xy plane, (d) actual trajectories’

projection on xy plane
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Initial configuration in space is as illustrated in the animation snapshots of Fig.

6.32. The quadrotors take off and try to reach each other coordination forces

dominance, while elevating towards G’s altitude. Once entered dbreak circle, bonds

relaxes and the final formation is achieved.

(a) (b)

(c) (d)

Figure 6.19: 3D scenario-1 (a) initial config., (b) approaching G in coordina-
tion, (c) spreading pre-formation , (d) final uniform formation around

Tracking performance is visualized in 6.20. An important notice is the pertur-

bations in tracking planner’s trajectory. One major reason is the smoothness of

the reference trajectories. Despite having the Z component of the trajectory as a

quintic polynomial smooth, the xy horizontal plane trajectories are not guaranteed

to be so. This problem is bypassed by suitable planner parameters adjustment.
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Figure 6.20: 3D scenario-1: position and orientation tracking performance (a)
Q1, (b) Q2 and (c) Q3
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Scenario 2

We test collision avoidance framework by introducing a scenario where two quadro-

tors were lunched by relatively far station to group with the third member who

detected the goal. As for system’s modified parameters, Q1 = [−9 4 0], Q2 =

[−9 − 4 0], Q3 = [3 0 0], dG = 2, dbreak = 3, cR = 3 and kG = 5.

(a) (b)

(c) (d)

Figure 6.21: 3D scenario-2: (a) ref. traj., (b) actual traj., (c) ref. trajectories’
projection on xy plane, (d) actual trajectories’ projection on xy plane

A collision is detected and successfully avoided around t = 10 [sec] between the Q1

and Q2. Quadrotor control performance presented in Fig. 6.23 shows an error cusp

at the collision occurrence indicating controller’s effort to track the spontaneous

change of desired trajectory to avoid the collision.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.22: 3D scenario-2 (a) initial config., (b) collision detection: perspec-
tive view, (c) collision detection: top view, (d) collision avoided using EC model,

(e) relaxing bonds after dbreak and (f) achieving task formation
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(a)

(b)

(c)

Figure 6.23: 3D scenario-2: position and orientation tracking performance (a)
Q1, (b) Q2 and (c) Q3
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Scenario 3

A realistic scenario of three quadrotors trying to reach and explore a target from

a distance of 10 [m] is investigated. Similar system parameters as the previous

scenario are being used.

(a) (b)

(c) (d)

Figure 6.24: 3D scenario-3: (a) ref. traj., (b) actual traj., (c) ref. trajectories’
projection on xy plane, (d) actual trajectories’ projection on xy plane

Multiple collisions through out the full trajectory is demonstrated in this scenario

where two sequential collisions occur. Virtual mass model of the high-level planner

was fed by the newly calculated post-collision velocity and an online change of de-

sired path is achieved. Finally, controller sufficiently tracks the modified trajectory

thus avoiding collisions. To conclude, simulations with three quadrotors exhibited

satisfactory results with the condition that the trajectory is smooth enough.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.25: 3D scenario-3 (a) initial config., (b) 1st collision detection: top
view, (c) collision avoided, (d) 2nd collision detected: perspective view, (e) 2nd

collision detected: top view and (f) achieving task formation
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(a)

(b)

(c)

Figure 6.26: 3D scenario-3: position and orientation tracking performance (a)
Q1, (b) Q2 and (c) Q3
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Scenario 4

We investigate system’s overall performance and modular structure with five quadro-

tor UAVs group. This scenario mimics scenario 1, with the exception of increased

collision potential due to increased number of robots. Planned and followed tra-

jectories are depicted in Fig. 6.27 below:

(a) (b)

(c) (d)

Figure 6.27: 3D scenario-4: (a) ref. traj., (b) actual traj., (c) ref. trajectories’
projection on xy plane, (d) actual trajectories’ projection on xy plane

Quadrotors are embedded with a function to determine the two nearest neighbors

and virtually bond with them. Therefore, they move in two groups towards each

other and towards the target in approaching phase. A collision is avoided and the

strict formation are relaxes as perpetration to achieve the final formation.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.28: 3D scenario-4 (a) initial config., (b) collision detection: perspec-
tive view, (c) collision detection: top view, (d) collision avoided, (e) spreading

along dG circle and (f) mission accomplishment
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(a)

(b)

(c)

Figure 6.29: 3D scenario-4: position and orientation tracking performance (a)
Q1, (b) Q2 and (c) Q3
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(a)

(b)

Figure 6.30: 3D scenario-4 (contd.): position and orientation tracking perfor-
mance (a) Q4 and (b) Q5
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Scenario 5

In the final scenario, a simulate a group of five quadrotors, three of which are

clustered near each other 10 meters away from the goal.

(a) (b)

(c) (d)

Figure 6.31: 3D scenario-5: (a) ref. traj., (b) actual traj., (c) ref. trajectories’
projection on xy plane, (d) actual trajectories’ projection on xy plane

The transition from the initial state of sparsely distanced quadrotors to formation

state at a suitable execution time and compact formation size produces risk of

collision, especially for robots with constraints and non linear dynamics. Quadro-

tors, in this scenario, follow their hyperbolic cylinder shaped motion profile but

undergo a collision while doing so. Collision is then avoided successfully without

negatively affecting the overall task.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.32: 3D scenario-5 (a) initial config., (b) collision detected: perspec-
tive view, (c) collision detected: top view, (d) collision avoided, (e) spreading

along dG circle and (f) mission accomplishment
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Figure 6.33: 3D scenario-5: position and orientation tracking performance (a)
Q1, (b) Q2 and (c) Q3
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Figure 6.34: 3D scenario-5 (contd.): position and orientation tracking perfor-
mance (a) Q4 and (b) Q5

To sum up, the proposed framework led to successful achievement of the formu-

lated coordination problem in different scenarios and utilizing different dynamic

robots in 2D and 3D. Sustained performance was witnessed for groups includ-

ing more than three robots. Collision avoidance framework was able to limit the

collisions to virtual shells thus safely avoid it for the physical robot. Single and

multiple, sequential and parallel collision scenarios proved its robustness for aver-

age operating speed environments. Virtual inputs based control showed adequate

performance under no external disturbances. Further concluding remarks are to

be summarized in Chapter 7.



Chapter 7

Conclusions and Future Work

7.1 Concluding Remarks

In this thesis, a structure for MRS decentralized coordination has been developed.

A novel online collision avoidance framework is proposed and integrated to the

overall coordination structure. Both nonholonomic UGVs, and quadrotor type

UAVs were taken into consideration as test beds for the framework. Several dis-

tinct scenarios were implemented in 2D and 3D simulation environments to inspect

the functionality and performance of system’s different blocks.

A high-level planner based on two layers of virtual viscoelastic bonds is introduced

as a reference trajectory generation step. Together with the newly proposed colli-

sion avoidance algorithm, safe paths fulfilling coordinated motion sub-tasks defined

in 1.1 are obtained. The framework was also extended to 3D workspace scenarios

using polynomial trajectory generated altitude profile.

Desired trajectories tracking by physical robots was performed using model-based

synthetic controllers. Virtual inputs approach based control is designed for both

nonholonomic UGV and quadrotor UAV robots. Position and attitude controllers

working in a hierarchical manner were implemented as the low-level motion control.

Reference attitude angles are computed by utilizing the dynamic inversion method

and they are used by the attitude controllers. Controller parameters were tuned

90
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based on successive simulation results and their performance evaluation had been

verified with simulations.

The collision avoidance framework, inspired by fish schools in nature, utilized the

concept of virtual shells for collision detection and response. It allowed for safe

collisions on the shell level so that the enveloped real robots’ collisions are dodged.

Two intuitive collision response algorithms were proposed and compared based

on efficiency and communication criteria. Simulations verified that EC model,

algorithm 1, is more efficient in terms of minimizing the change in the desired

trajectory and thus worrying less about problems such as longer execution periods

and unfeasible parts of the trajectories. On the other hand, LBR model, algorithm

2, needs less communication but on the expense of negatively affecting generated

trajectories due to its blindness in scenarios including head-to-tail collisions and

high operating velocities.

For 3D workspace implementation, generated trajectory smoothness is a major

challenge. Trajectories were extended from horizontal plane derivation, which

is based on holonomic point masses for abstraction. Thus, it was hard for the

controllers to follow considering the nonlinear, coupled and underactuated nature

of quadrotor UAVs. This problem was overcome by increasing viscous friction

coefficient, thus slowing down the overall planned path together with similar logic

parameter tuning.

The results of the simulations for the proposed framework with three, four, five and

ten nonholonomic robots are all satisfactory in terms of task-oriented generated

trajectories, controller performance and collision avoidance mechanism. Moreover,

simulations for three and five quadrotor UAVs coordinated motion exhibited sat-

isfactory results. In all scenarios, coordinated task was achieved. Simulations

showed a consistent success of the collision avoidance algorithm across the in-

creased number of robots in the system which is promising for the modular and

autonomous nature of the system.
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7.2 Future Work

While establishing different models and algorithms in this thesis, the focus was on

the coordination structure as a whole and the particular problem of collision avoid-

ance. However, an important factor such as communication got minor attention,

as classified out of scope, and assumed to reliably exist. Efforts could be made on

constructing communication protocols in favor of minimizing the bandwidth load

of the system.

The collision avoidance scheme can be extended to static and dynamic obstacles.

Shell’s shape could be further optimized depending on robots’ geometry as well.

For instance, elliptical/ellipsoidal shells can be utilized to better represent non-

holonomic robots while still preserving a high level of simplicity and abstraction

in both collision detection and response. On the other hand, collision response al-

gorithms, other than those proposed in this work, can be developed in the future.

Many parameters in the environment e.g. spring-damper coefficients, controller

gain constants, were set based on simulation results in a trail-and-error manner.

Learning-based techniques could further tune theses parameters for a satisfactory

performance in different working scenarios.

Finally, as a natural extension of this work, we plan on the physical implementa-

tion of the proposed coordination scheme. Although different 2D and 3D robot

models were covered, the proposed framework implementation could be extended

to heterogeneous MRS. Different dynamical robot models can be included together

with those already studied to furthermore investigate its robustness, e.g. biped

robots, snake robots etc. Once implemented, tasks such as surveillance, border

patrol, area coverage, visual shows, search, rescue and others can be performed

with the aid of the proposed framework.
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