51 research outputs found

    Design and evaluation of dynamic policy-based flow redirection for multihomed mobile netwotks

    Get PDF
    This paper presents the design, implementation and evaluation of a solution for dynamic redirection of traffic flows for multihomed mobile networks. The solution was developed for a mobile user that disposes of a Personal Area Network (PAN) with a Personal Mobile Router (PMR), in order to achieve Always Best Connected(ABC) service by distributing flows belonging to different applications among the most appropriate access networks. Designed in a modular way for a NEMO based mobility and multihoming support, the proposed flow redirection solution can be easily coupled with and controlled by dynamic traffic policies that come from advanced network intelligence, according to the currently available network resources and user and application requirements. A prototype implementation was validated and assessed on a testbed as proof-of-concept

    Multihomed mobile network architecture

    Get PDF
    IP mobility ensures network reachability and session continuity while IPv6 networks are on the move. In the Network Mobility (NEMO) model, the potential for NEMO Mobile Routers (MRs) to interconnect and extend Internet connectivity allows the formation Nested NEMO networks. With MANEMO, nested MRs can be efficiently interconnected in a tree-based structure with Internet access being maintained via a designated Gateway. However, this only supports single-homed Internet connectivity. With the span of wireless access technologies and the popularity of multi-interfaced devices, multihoming support in this scenario becomes critical. A Nested Mobile Network with heterogeneous available Internet access options would allow better overall network performance and optimal utilisation of available resources. In this paper, we present the Multihomed Mobile Network Architecture (MMNA), a comprehensive multihomed mobility solution. It provides a multihoming management mechanism for Gateway Discovery and Selection on top of a multihomed mobility model integrating different mobility and multihoming protocols. It enables a complex nested multihomed topology to be established with multiple gateways supporting heterogeneous Internet access. The results demonstrate that the proposed solution achieves better overall throughput, load sharing, and link failure recovery

    Delay-centric handover in SCTP

    Get PDF
    The introduction of the Stream Control Transmission Protocol (SCTP) has opened the possibility of a mobile aware transport protocol. The multihoming feature of SCTP negates the need for a solution such as Mobile IP and, as SCTP is a transport layer protocol, it adds no complexity to the network. Utilizing the handover procedure of SCTP, the large bandwidth of WLAN can be exploited whilst in the coverage of a hotspot, and still retain the 3G connection for when the user roams out of the hotspot’s range. All this functionality is provided at the transport layer and is transparent to the end user, something that is still important in non-mobile-aware legacy applications. However, there is one drawback to this scenario - the current handover scheme implemented in SCTP is failure-centric in nature. Handover is only performed in the presence of primary destination address failure. This dissertation proposes a new scheme for performing handover using SCTP. The handover scheme being proposed employs an aggressive polling of all destination addresses within an individual SCTP association in order to determine the round trip delay to each of these addresses. It then performs handover based on these measured path delays. This delay-centric approach does not incur the penalty associated with the current failover-based scheme, namely a number of timeouts before handover is performed. In some cases the proposed scheme can actually preempt the path failure, and perform handover before it occurs. The proposed scheme has been evaluated through simulation, emulation, and within the context of a wireless environment

    IP Flow Mobility support for Proxy Mobile IPv6 based networks

    Get PDF
    The ability of offloading selected IP data traffic from 3G to WLAN access networks is considered a key feature in the upcoming 3GPP specifications, being the main goal to alleviate data congestion in celular networks while delivering a positive user experience. Lately, the 3GPP has adopted solutions that enable mobility of IP-based wireless devices relocating mobility functions from the terminal to the network. To this end, the IETF has standardized Proxy Mobile IPv6 (PMIPv6), a protocol capable to hide often complex mobility procedures from the mobile devices. This thesis, in line with the mentioned offload requirement, further extends Proxy Mobile IPv6 to support dynamic IP flow mobility management across access wireless networks according to operator policies. In this work, we assess the feasibility of the proposed solution and provide an experimental analysis based on a prototype network setup, implementing the PMIPv6 protocol and the related enhancements for flow mobility support. *** La capacità di spostare flussi IP da una rete di accesso 3G ad una di tipo WLAN è considerata una caratteristica chiave nelle specifiche future di 3GPP, essendo il principale metodo per alleviare la congestione nelle reti cellulari mantenendo al contempo una ragionevole qualità percepita dall'utente. Recentemente, 3GPP ha adottato soluzioni di mobilità per dispositivi con accesso radio basato su IP, traslando le funzioni di supporto dal terminale alla rete, e, a questo scopo, IETF ha standardizzato Proxy Mobile IPv6 (PMIPv6), un protocollo studiato per nascondere le procedure di mobilità ai sistemi mobili. Questa tesi, in linea con la citata esigenza di spostare flussi IP, estende ulteriormente PMIPv6 per consentire il supporto alla mobilità di flussi tra diverse reti di accesso wireless, assecondando le regole e/o politiche definite da un operatore. In questo lavoro, ci proponiamo di asserire la fattibilità della soluzione proposta, fornendo un'analisi sperimentale di essa sulla base di un prototipo di rete che implementa il protocollo PMIPv6 e le relative migliorie per il supporto alla mobilità di flussiope

    Programmable overlays via OpenOverlayRouter

    Get PDF
    Among the different options to instantiate overlays, the Locator/ID Separation Protocol (LISP) [7] has gained significant traction among industry and academia [5], [6], [8]–[11], [14], [15]. Interestingly, LISP offers a standard, inter-domain, and dynamic overlay that enables low capital expenditure (CAPEX) innovation at the network layer [8]. LISP follows a map-and-encap approach where overlay identifiers are mapped to underlay locators. Overlay traffic is encapsulated into locator-based packets and routed through the underlay. LISP leverages a public database to store overlay-to-underlay mappings and on a pull mechanism to retrieve those mappings on demand from the data plane. Therefore, LISP effectively decouples the control and data planes, since control plane policies are pushed to the database rather than to the data plane. Forwarding elements reflect control policies on the data plane by pulling them from the database. In that sense, LISP can be used as an SDN southbound protocol to enable programmable overlay networks [5].Peer ReviewedPostprint (published version

    SIGMA: A mobility architecture for terrestrial and space networks.

    Get PDF
    Internet Protocol (IP) mobility can be handled at different layers of the protocol stack. Mobile IP has been developed to handle mobility of Internet hosts at the network layer. Mobile IP suffers from a number of drawbacks such as the requirement for infrastructure change, high handover latency, high packet loss rate, and conflict with network security solutions. As an alternative solution, a few transport layer mobility protocols have been proposed in the context of Transmission Control Protocol (TCP), for example, MSOCKS and TCP connection migration. In this dissertation, a S&barbelow; eamless I&barbelow; P-diversity-based G&barbelow; eneralized M&barbelow; obility Architecture (SIGMA) is described. SIGMA works at the transport layer and utilizes IP diversity to achieve seamless handover, and is designed to solve many of the drawbacks of Mobile IP. It can also cooperate with normal IPv4 or IPv6 infrastructure without the support of Mobile IP. The handover performance, signaling cost, and survivability issues of SIGMA are evaluated and compared with those of Mobile IP. A hierarchical location management scheme for SIGMA is developed to reduce the signaling cost of SIGMA, which is also useful to other transport layer mobility solutions. SIGMA is shown to be also applicable to managing satellite handovers in space. Finally, the interoperability between SIGMA and existing Internet security mechanisms is discussed

    End-to-end mobility for the internet using ILNP

    Get PDF
    This work was partially funded by the Government of Thailand through a PhD scholarship for Dr Phoomikiattisak.As the use of mobile devices and methods of wireless connectivity continue to increase, seamless mobility becomes more desirable and important. The current IETF Mobile IP standard relies on additional network entities for mobility management, can have poor performance, and has seen little deployment in real networks. We present a host-based mobility solution with a true end-to-end architecture using the Identifier-Locator Network Protocol (ILNP). We show how the TCP code in the Linux kernel can be extended allowing legacy TCP applications that use the standard C sockets API to operate over ILNP without requiring changes or recompilation. Our direct testbed performance comparison shows that ILNP provides better host mobility support than Mobile IPv6 in terms of session continuity, packet loss, and handoff delay for TCP.Publisher PDFPeer reviewe

    LTE Optimization and Resource Management in Wireless Heterogeneous Networks

    Get PDF
    Mobile communication technology is evolving with a great pace. The development of the Long Term Evolution (LTE) mobile system by 3GPP is one of the milestones in this direction. This work highlights a few areas in the LTE radio access network where the proposed innovative mechanisms can substantially improve overall LTE system performance. In order to further extend the capacity of LTE networks, an integration with the non-3GPP networks (e.g., WLAN, WiMAX etc.) is also proposed in this work. Moreover, it is discussed how bandwidth resources should be managed in such heterogeneous networks. The work has purposed a comprehensive system architecture as an overlay of the 3GPP defined SAE architecture, effective resource management mechanisms as well as a Linear Programming based analytical solution for the optimal network resource allocation problem. In addition, alternative computationally efficient heuristic based algorithms have also been designed to achieve near-optimal performance

    Intégration et gestion de mobilité de bout en bout dans les réseaux mobiles de prochaine génération

    Get PDF
    Résumé - Pendant les dix dernières années, l'utilisation des systèmes de communication sans fil est devenue de plus en plus populaire tant chez les entreprises que chez les particuliers. Cette nouvelle tendance du marché est due, en grande partie, à la performance grandissante des réseaux mobiles qui concurrencent davantage les réseaux filaires en termes de bande passante, de coût et de couverture. Toutefois, cette catégorie de solutions sans fil est conçue pour des services spécifiques et utilise des technologies très variées. De plus, les usagers sont de plus en plus mobiles et requièrent des applications sensibles au délai (voix, multimédia, etc.). Dans ce nouveau contexte de mobilité, la prochaine génération des réseaux sans fil (4G) s'annonce comme l'ultime solution visant à satisfaire les exigences des usagers tout en tirant profit de la complémentarité des services offerts par les systèmes mobiles existants. Pour ce faire, la principale vocation de la future génération (4G) consiste en l'intégration et la convergence des technologies sans fil existantes et celles à venir. Cette intégration passe obligatoirement par l'utilisation du protocole IP (Internet Protocol) qui permet de cacher l'hétérogénéité des systèmes intégrés puisqu'il demeure l'unique couche commune à toutes les plateformes mobiles. Plusieurs solutions d'intégration ont été proposées dans la littérature. Celles-ci concernent des architectures d'intégration et des mécanismes de gestion de mobilité. Cependant, les approches proposées ne font pas l'unanimité et souffrent de plusieurs handicaps liés, en particulier, à l'interopérabilité et la garantie des relèves sans coupures.----------ABSTRACT During the last few years, the use of wireless systems is becoming more and more popular. This tendency can be explained by the fact that mobile technologies are gaining in performance in terms of bandwidth, coverage and cost compared to the traditional wired solutions. However, each mobile network is tailored for a specific type of services and users. Moreover, end users are expected to become more and more mobile and show an increasing interest to real-time applications. In these circumstances, the next generation of mobile networks (4G) appears to be the ultimate solution that will satisfy mobile user demands and take benefit of the existing wireless systems. Indeed, the future generation consists of integrating, in an intelligent manner, the existing/future wireless systems in a way that users can obtain their services via the best available network. This integration passes through the use of the Internet Protocol (IP) that will hide the heterogeneity pertaining to the integrated networks. To deal with this very important task, several solutions are available in the literature. The proposed approaches cover some basic topics such as interworking architecture and mobility management. Nevertheless, these proposals suffer from drawbacks relevant to the guarantee of QoS through heterogeneous technologies

    OSCAR: A Collaborative Bandwidth Aggregation System

    Full text link
    The exponential increase in mobile data demand, coupled with growing user expectation to be connected in all places at all times, have introduced novel challenges for researchers to address. Fortunately, the wide spread deployment of various network technologies and the increased adoption of multi-interface enabled devices have enabled researchers to develop solutions for those challenges. Such solutions aim to exploit available interfaces on such devices in both solitary and collaborative forms. These solutions, however, have faced a steep deployment barrier. In this paper, we present OSCAR, a multi-objective, incentive-based, collaborative, and deployable bandwidth aggregation system. We present the OSCAR architecture that does not introduce any intermediate hardware nor require changes to current applications or legacy servers. The OSCAR architecture is designed to automatically estimate the system's context, dynamically schedule various connections and/or packets to different interfaces, be backwards compatible with the current Internet architecture, and provide the user with incentives for collaboration. We also formulate the OSCAR scheduler as a multi-objective, multi-modal scheduler that maximizes system throughput while minimizing energy consumption or financial cost. We evaluate OSCAR via implementation on Linux, as well as via simulation, and compare our results to the current optimal achievable throughput, cost, and energy consumption. Our evaluation shows that, in the throughput maximization mode, we provide up to 150% enhancement in throughput compared to current operating systems, without any changes to legacy servers. Moreover, this performance gain further increases with the availability of connection resume-supporting, or OSCAR-enabled servers, reaching the maximum achievable upper-bound throughput
    corecore