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Abstract

Mobile communication technology is evolving with a great pace to offer richer

user experience and make an operator’s business more profitable at the same time.

The development of the Long Term Evolution (LTE) mobile system by 3GPP

is one of the milestones in this direction. 3GPP specifications for LTE mobile

systems serve as the high level standards leaving room for improvements by re-

searchers. This work highlights a few of such areas in the LTE radio access net-

work where the proposed innovative mechanisms can substantially improve overall

system performance. This includes a novel air interface scheduler design which

can coordinate with the core network entities to avoid imminent network conges-

tion. Another proposed air interface scheduling algorithm exhibits an adaptive

behavior and reacts to network load conditions in optimizing the scheduler oper-

ations. Similarly, packet queue management for buffers of the LTE air interface

scheduler is an important subject which has significant impact on user perceived

QoE and inter-site handover operations. The thesis discusses all these topics in

great detail and proposes practical solutions which are proven to be effective with

the help of simulation based analysis.

The advent of mobile devices with multiple radio interfaces has increased the

opportunity for users to stay connected through any available network type. This

makes operators realize that the integration of 3GPP networks (e.g., LTE, HSPA

etc.) and non-3GPP networks (e.g., WLAN, WiMAX etc.) is inevitable. This

integration would enable operators to offload the select user traffic from 3GPP

networks to the integrated WLAN networks with overlapped coverage. However,

it comes with the responsibility of the operators to actively manage the bandwidth

resources of the two network types in order to get most out of this integration. The

thesis addresses this issue in immense detail. For this purpose, a comprehensive

system architecture is developed as an overlay of the 3GPP defined SAE architec-

ture. The proposed architecture serves as a framework for implementing network

bandwidth resource management mechanisms. In addition, this work also pro-

poses several resource management mechanisms which can operate in conjunction

with the purported overlay system architecture. The performance of these mech-

anisms is evaluated using a heterogeneous network simulator, developed by the
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author in this work.

Another contribution of this thesis is the development of an analytical solu-

tion for the optimal network resource allocation problem. The proposed solution

is based on ‘Linear Programming’ which is a popular mathematical optimization

technique. With the help of simulation studies, the analytical solution is shown to

outperform other discussed resource management mechanisms in improving user

QoE and network capacity. In order to make resource allocation operations less

processing-intensive and more practical for real world products, alternative heuris-

tic based algorithms are also proposed in this work which can achieve near-optimal

performance.

The concepts, mechanisms, and the investigations presented in this work are

of great value to operators to carry out optimization of overall LTE network op-

erations in general and that of LTE radio network in particular. In addition, the

concept of user multihoming in heterogeneous networks along with the proposed

system architecture to support efficient resource management operations provide

an excellent framework for operators in performing traffic offloading. A number

of developed resource management mechanisms and their proven effectiveness, in

achieving user QoE enhancement and network capacity improvement, serve as a

motivation for operators to further exploit the hidden potential of integrated het-

erogeneous networks.



Kurzfassung

Mobile Kommunikationstechnik entwickelt sich mit großer Geschwindigkeit,

um eine besseres Nutzungserlebnis bereitzustellen und gleichzeitig das Geschäft

eines Netzbetreibers profitabler zu machen. Die Entwicklung das mobilen Long

Term Evolution (LTE)-Systems durch 3GPP ist einer der Meilensteine in dieser

Richtung. 3GPP-Spezifikationen für mobile LTE-Systeme dienen als Standards

auf einer hohen Ebene, die Platz für Verbesserungen durch Forscher lassen. Diese

Arbeit beleuchtet einige solcher Gebiete im LTE-Funkzugangsnetz, wo die vor-

geschlagenen innovativen Mechanismen das gesamte System-Leistungsverhalten

wesentlich verbessern kann. Dies schließt einen neuartigen Entwurf der Luft-

schnittstelle ein, die sich mit den Einheiten des Kernnetzes koordinieren kann,

um eine bevorstehende Überlastung des Netzes zu vermeiden. Ein anderer vor-

geschlagener Scheduling-Algorithmus für die Luftschnittstelle weist ein adaptives

Verhalten auf und reagiert auf Lastbedingungen durch Optimierung der Reaktion

des Schedulers. In ähnlicher Weise ist das Management der Paketwarteschlangen

für die Puffer der LTE-Luftschnittstelle ein wichtiges Thema, das wesentliche Aus-

wirkungen auf die vom Benutzer wahrgenommene QoE und Handover-Vorgänge

zwischen einzelnen Standorten hat. Die Arbeit diskutiert all diese Themen aus-

führlich und schlägt praktische Lösungen vor, deren Effektivität mit Hilfe von si-

mulationsbasierten Analysen bewiesen wird.

Die Einführung mobiler Geräte mit mehreren Funkschnittstellen hat Benutzern

zusätzliche Möglichkeiten gegeben, mit Hilfe jedes verfügbaren Netztypes verbun-

den zu bleiben. Dies führt dazu, dass Betreiber die Integration von 3GPP-Netzen

(z.B. LTE, HSPA usw.) und Nicht-3GPP-Netzen (z.B. WLAN, WiMAX) als un-

vermeidbar erkennen. Diese Integration würde es Betreibern ermöglichen, aus-

gewählten Benutzerverkehr von 3GPP-Netzen auf integrierte WLAN-Netze mit

überlappender Abdeckung umzuschichten. Allerdings ergibt sich aus der Verant-

wortung des Betreibers, die Bandbreiten-Ressourcen der zwei Netztypen aktiv zu

steuern, um den größten Nutzen aus dieser Integration zu erhalten. Die Arbeit be-

handelt diese Aspekte sehr ausführlich. Zu diesen Zweck wird eine umfassende

Systemarchitektur als Überlagerung der durch 3GPP definierten SAE-Architektur

entwickelt. Die vorgeschlagene Architektur dient als Framework zur Implemen-
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tierung von Mechanismen zum Ressourcen-Management von Netzbandbreite. Zu-

sätzlich schlägt diese Arbeit auch verschiedene Mechanismen zum Ressourcen-

Management vor, die in Verbindung mit der vorgesehenen überlagerten Systemar-

chitektur arbeiten können. Das Leistungsverhalten dieser Mechanismen wird mit

Hilfe eines vom Autor in dieser Arbeit entwickelten heterogenen Netzsimulators

bewertet.

Ein weiterer Beitrag dieser Arbeit ist die Entwicklung einer analytischen Lö-

sung für das Problem der optimalen Zuweisung von Netzressourcen. Die vorge-

schlagene Lösung basiert auf Linearer Programmierung, einem verbreiteten ma-

thematischen Optimierungsverfahren. Mit Hilfe der simulativen Untersuchun-

gen wird gezeigt, dass die analytische Lösung andere diskutierte Mechanismen

zum Ressourcenmanagement bei der Verbesserung der QoE und der Netzkapazität

übertrifft. Um Techniken für die Ressourcenzuweisung weniger verarbeitungsin-

tensiv und praxisnäher für reale Produkte zu gestalten, werden auch alternative

heuristische Verfahren in dieser Arbeit vorgeschlagen, die ein nahezu optimales

Leistungsverhalten erzielen können.

Die Konzepte, Mechanismen und Untersuchungen, die in dieser Arbeit gezeigt

werden, sind von großem Wert für Betreiber, um Optimierungen des gesamten

LTE-Netzbetriebes durchzuführen, insbesondere des LTE-Funknetzes. Zusätzlich

stellt das Konzept des Benutzer-Multihomings in heterogenen Netzen zusammen

mit der vorgestellten Systemarchitektur zur Unterstützung effizienten Resource-

managements ein hervorragendes Framework für Betreiber zur Durchführung von

Verkehrsumschichtung dar. Eine Anzahl entwickelter Mechanismen für das Res-

sourcenmanagement und deren bewiesene Effektivität beim Erreichen von Ver-

besserungen der Benutzer-QoE und der Netzkapazität dienen als Motivation für

Betreiber, das versteckte Potenzial integrierter heterogener Netze weiter auszu-

schöpfen.
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TH Time to transmit protocol header data of WLAN MAC & PHY

TRTS Duration of RTS control frame in IEEE 802.11 networks
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Ts Time required to transmit one packet excluding any collision and

back-off delays

TSIFS Duration of SIFS frame space in IEEE 802.11 networks

T̂s Extended value of Ts in a WLAN network of users with

different PHY data rate

T̃s Ts including back-off time

U A set of multihomed users

w j(t) Weight factor for cell j
Wmax Maximum value of contention window in IEEE 802.11 networks

Wmin Minimum value of contention window in IEEE 802.11 networks
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γtcp reorder buffer Size of TCP reordering buffer

δ Propagation delay of electromagnetic waves
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ζc Throughput to be allocated to a cell c as seen at Uu interface

ζ̃c Throughput to be allocated to a cell c as seen at TNL

θi Length of time slot assigned to a user i for exclusively transmission

κ̂ Sum of κc of cells having surplus throughput

κBET
c The TD priority term for ’Blind Equal Throughput’ scheduler

κPF
c The TD priority term for ’Proportional Fair’ scheduler

λ j Minimum aggregated data rate demand of a traffic flow destined to user j
Λ j Maximum aggregated data rate demand of a traffic flow destined to user j
μ Target occupancy for the PDCP buffer

μ̂ Difference of current and target PDCP buffer occupancy

ν̂ Overall surplus throughput of all cells in eNodeB;

νc Surplus from the allocated throughput to a cell c
ρ̃ Estimation of the effective cell throughput at TNL

ρ Measured cell throughput value at the RLC layer
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τ Probability that a node transmits in a randomly chosen slot time

φ j Path cost of WLAN access link in [sec/kbps] for user j
χ Binary variable; it represents the product of any two binary

ψ PDCP buffer occupancy reported by IE entity

Ωl Available resources on access network l
ωch

useri Downlink throughput of the user i using ’channel aware’ service decipline

ωch
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ω rr
AP Downlink throughput of WLAN access point using ‘round-robin’
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ω trr
useri Mean uplink throughput of the user i using ‘time round-robin’

service decipline



1 Introduction

This chapter provides a brief introduction of the Long Term Evolution (LTE) and

heterogeneous networks, which are the main topics of discussion in this thesis. It

also highlights the motivation for this work and lists the main technical contribu-

tions made by this thesis. In addition, it offers an overview of the thesis structure

along with the brief description of each chapter.

1.1 LTE and Heterogeneous Networks

The Long Term Evolution (LTE) of the Universal Mobile Telecommunication Sys-

tem (UMTS) is one of the latest milestones achieved in advancing series of mobile

telecommunication systems by the Third Mobile Generation Partnership Project

(3GPP). LTE is well positioned today, and is already meeting the requirements of

future mobile networks. LTE employs orthogonal frequency division multiplexing

(OFDM) as its radio access technology, together with advanced antenna technolo-

gies like multiple-input and multiple-output (MIMO), spatial multiplexing, and

beam-forming. The particular choice of OFDM technology not only helps LTE

fulfill the requirement for spectrum flexibility but also enables cost-efficient solu-

tions for very wide carriers with high peak rates. By making use of state-of-the-art

communication technologies, LTE achieves 3 to 4 time higher spectral efficiency

as compared to HSPA (Release 6) networks. This makes LTE an excellent choice

for the network operators because an efficient utilization of scare radio spectrum

resources brings twofold benefit. First, it enhances user Quality of Experience

(QoE) by satisfying application Quality of Service (QoS) requirements. Second, it

increases network capacity by serving more users within the available radio spec-

trum bandwidth.

In addition to LTE, 3GPP has also defined an IP-based, flat core network archi-

tecture. The architecture is based on an evolution of the existing 2G/3G core net-

work, with a particular focus on simplified operations, cost-efficient deployment

and the capability to support uptake of mass-market multimedia services. This

architecture, called Evolved Packet Core (EPC), eliminates the need for circuit-

switching by providing IP-based solutions for all types of voice, video, and data
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services. Owing to the fact that each service type has its own QoS demands, the

LTE-EPC has adopted an effective class-based QoS concept. This provides a foun-

dation for operators to offer service differentiation, depending on the type of ap-

plication or subscription. This work further exploits the potentials of LTE access

technology and proposes a few sophisticated mechanisms to enhance the overall

system performance.

It is not only the mobile telecommunication systems which have evolved to

offer LTE; the technology of handheld mobile devices has also made significant

advancements in the recent years. This has made mobile broadband subscrip-

tions to increase rapidly worldwide. Every year, hundreds of millions of users are

subscribing for mobile broadband services. This is because a number of broad-

band applications have been redesigned to substantially enhance user experience

by taking advantage of mobility support and large data rates of new access tech-

nologies. Such applications include social-networking (e.g., Facebook, Google+,

Twitter etc.), multi-player gaming, content sharing (e.g., Youtube, Cloud Storage

etc.), WebTV, video telephony, search engines etc. The traffic data generated by

rapidly increasing broadband subscribers due to use of the aforementioned appli-

cations is manifold higher in volume compared to pure voice traffic. The existing

3GPP mobile communication networks (e.g., HSPA and LTE) are already facing

difficulties to meet this high demand for wireless data. This has made users and op-

erators to rely onto Wireless Local Area Networks (WLAN) based on IEEE 802.11

set of standards. The modern WLANs are capable of offering very high data rates

but provide a small coverage area and limited mobility support. Therefore, they are

more suitable to areas with highly dense demand for high data rate wireless access

with limited mobility support. On the other hand, 3GPP networks are designed

to provide ubiquitous coverage through mobility support and therefore well suited

to areas with moderately dense demand for wireless access with high mobility. In

this way, WLAN and 3GPP networks can complement each other in making high-

speed Internet access a reality for a large population. This work discusses how the

integration of these two technology types can be realized, what benefits are possi-

ble for the users and operators from this integration, and what are the challenges

involved in the resource management of these heterogeneous networks. This work

also proposes several mechanisms for efficient resource management of heteroge-

neous networks and evaluates their performance with the help of simulation based

studies.
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1.2 Technical Contributions

The LTE air interface scheduler bears a significant importance in the LTE sys-

tem. It intelligently schedules the radio resources to deliver the required QoS to

the active radio bearers. The scheduling algorithms employed for this purpose

have a substantial impact on the performance of the individual base station and

on the overall LTE radio access network. The scheduler design must take differ-

ent considerations into account like service type, application QoS demands, and

throughput fairness among same user types etc. However, its operation remains

indifferent to the core network state. This work proposes an enhanced design of

the air interface scheduler which actively coordinates with core network in order to

efficiently allocate scarce radio resources. This coordination enables air interface

scheduler to foresee congestion situations in the core network and take appropriate

measures during the scheduling process to circumvent it. This keeps the network

in a stable state, enhances radio network coverage, and improves user QoE.

The LTE air interface scheduling is a complex process whose optimization must

involve certain compromises. For example, if a scheduling algorithm optimizes

the system capacity, it fails to offer throughput fairness among the users and vice

versa. Therefore, it remains a hard choice for network operators to choose the right

scheduling algorithm for a certain base station. This work relieves network oper-

ators by proposing an adaptive scheduling algorithm which dynamically changes

its behavior based on different network load conditions. This ensures an opti-

mized air interface scheduling operation in all situations without requiring human

intervention. In addition, this work also addresses the packet queue management

issues related to the LTE air interface scheduler. With the help of the proposed

mechanisms, not only the user QoE is improved for both uplink and downlink

communication but also the inter-site handover process for mobile users is ame-

liorated. The aforementioned enhancements of the LTE access interface have also

been published in the proceedings of several reputed scientific conferences, e.g.,

[TWG+13], [U. 12b], [U. 11b], [U. 11a], and [U. 12a].

WLAN access technology has been widely deployed in urban areas which allow

mobile devices to access the Internet as long as they remain in the limited coverage

of a WLAN access point. During the other times, these mobile devices automat-

ically connect to the 3GPP wide-area networks for the Internet access. Though

this strategy achieves the data offloading and helps alleviate congestions in 3GPP

networks, it allows a limited multi-access functionality. In order to fully exploit

multi-access functionality, WLAN access points must be integrated with the 3GPP

networks. With this integration not only a seamless mobility is achieved between

the two access technology types but it also opens opportunities for network oper-
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ators to optimize their network operations and enhance the user QoE. 3GPP has

already realized this potential performance gain and has published the standards to

allow integration of non-3GPP access technologies (i.e., WLAN, WiMAX etc.) to

the existing the 3GPP access technologies. This feature of the System Architecture

Evolution (SAE) was introduced in 3GPP release 8 standards.

Following the aforementioned 3GPP standards for integration, one can develop

heterogeneous wireless access networks where mobile devices are provided with

seamless mobility between 3GPP and non-3GPP networks, allowing a continuity

of existing sessions. However, this standard still limits the multihoming capability

of the users, i.e., they cannot access and use the two network types simultane-

ously. This work extends the 3GPP proposals to realize multihoming support for

mobile devices in wireless heterogeneous networks. In addition, this work also

discusses the problem of network resource allocation in integrated heterogeneous

wireless access networks. More specifically, this problem involves the network

decision of how much data rate should be served on each access link of a multi-

homed user. In order to address this problem, a comprehensive system architecture

is proposed to actively manage the traffic flows of the users in the heterogeneous

wireless network environments. This architecture overlays the 3GPP defined SAE

architecture and provides all necessary support to execute sophisticated procedures

related to efficient network traffic flow management of multihomed users. Based

on this architecture several network resource management mechanisms have been

proposed in this work, a few of them have also been published in [TZGTG12a],

[TZGTG12b], and [TZZ+12]. However, due to the utmost importance of network

resource allocation in integrated heterogeneous network, the investigations are ex-

tended in this area by developing analytical models of the air interface of WLAN

and LTE access technologies. These models pave the way to employ mathematical

optimization techniques like ‘Linear Programming’ in network resource allocation

problems. The performance of these mechanisms for optimized resource alloca-

tion is evaluated by their implementation and then integration into the developed

simulation model. These mechanisms are shown to offer a superior user QoE and

extended network capacity. Owing to the fact that Linear Programming based so-

lutions are processing-intensive, alternative heuristic based techniques for network

resource allocations are also developed within this work. A few details of this work

have been published in [TZTGG12] and [TGTG12].

The extensions of the SAE architecture proposed in this work to realize user

multihoming in heterogeneous networks have been validated through an imple-

mentation of a network simulator. For this purpose, the basic OPNET simula-

tion models of LTE [Zak12] and WLAN [OPN13] have been extensively evolved

by, e.g., incorporating a new WLAN channel model and the IETF’s proposed ex-
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tension of Mobile IPv6, as well as multi-interface mobile device models. The

simulation model also has a full implementation of the proposed overlay system

architecture required for resource management in heterogeneous networks. In ad-

dition, this work also contributes to the implementation of several popular user

QoE evaluation mechanisms to the OPNET simulation software. The resulted het-

erogeneous network simulator has been used to carry out a variety of simulation

based studies which served as proof-of-concept for the mechanisms proposed in

this work. The developed simulation model of integrated LTE and WLAN net-

works is also a valuable contribution of this work to the scientific research com-

munity. For example, it has been used to contribute a number of findings and

mechanisms in the ’Open Connectivity Service (OConS)’ work package of the

SAIL European project [Sp13]. Furthermore, the simulator is also in active use by

fellow researchers and institutions to extend the investigations in this field, e.g.,

[X. 12], [X. 13], [M. 10b], [M. 10a], [HWG+12], and [ZZU+11].

In addition to the above mentioned contributions, the author has also been in-

volved in a number of other research activities which are not discussed in this

thesis for the sake of brevity. Considering the fact that these activities belong to

the research field which is also shared by this work, it is worth mentioning them

here to further intrigue the interest of reader in this work. For example, the de-

tails about the test-bed implementation of user mobility mechanisms in heteroge-

neous networks along with the support of basic flow management can be found in

[U. 07b]. Aforementioned work also involved the development of a mechanism

which processes the link layer performance metrics to assist in making timely ver-

tical handovers [U. 07a]. Similarly, another study on performance evaluation of

PMIPv6 in real a test-bed environment can be accessed in [UIT+09]. The motiva-

tion behind this study was the fact that Proxy Mobile IPv6 (PMIPv6) has gained a

lot of attention due to its adoption in the 3GPP SAE architecture and its feasibility

in the mobility management of low-end user devices.

An interesting work on employing ‘Game Theory’ in user-centric network selec-

tion is available in [M. 10b]. The investigations in this work have been extended to

introduce a new concept of telecommunication network paradigm where users are

not bound to long term contracts with operators. Instead, the user service requests

are auctioned to competing operators through a third party platform [M. 10a].

No discussion about network performance, access interface selection, and re-

source management can be concluded without discussing the mechanisms of user

QoE evaluation. A work which explores state-of-the-art mechanisms of service

quality evaluation and extends them to develop a user satisfaction function for

use in network selection, has been carried out in [TKGTG11] and [KT11]. An-

other piece of work in this area has been published in [X. 12] and [X. 13], where
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the user-centric bandwidth resource management has been investigated. Moreover,

based on the aforementioned work, a comprehensive guide was prepared on the de-

velopment of simulation models for heterogeneous networks which was accepted

as a chapter in the book “Simulation in Computer Network Design and Modeling:

Use and Analysis” [TK12].

It is said, “Necessity is the mother of invention”. This proverb appeared to hold

when doing research on heterogeneous networks. As a result several inventions

were made on the course of developing efficient mechanisms for user multihom-

ing, robust mobility management, and network resource management. Seven of

these inventions have already been reported to the European Patent Office (EPO)

which are the in process to be recognized as patents, e.g., [TFG+11], [TGPU09b],

[TGP+09], [TGPU09a], [TGF+09], [TGF+10], and [TGU+10].

A cost effective network design is the key requirement to keep operators in busi-

ness. The link bandwidth of backhaul networks is an expensive commodity whose

optimal use guarantees the best cost-efficiency of the access network. Link dimen-

sioning is that particular task which determines the appropriate bandwidths for the

backhaul (or transport) network with the objective of maximizing the utilization of

the allocated transport resources while ensuring the QoS requirements of individ-

ual services. The author has contributed to an extensive research on LTE transport

network dimensioning carried out with collaboration of a leading industry partner

‘Nokia Siemens Networks, Germany’. The details of this work can be found in

[LTW+10b], [LTW+10a], [LBD+11], and [LTB+11]. An interesting extension of

this work can be accessed in [LLT+12] where the dimensioning is performed for a

transport network which is shared by LTE and HSPA networks.

In addition to dimensioning of transport network, the operators are also inter-

ested in defining minimum requirements of transport network QoS parameters

which can still meet target QoE of the end users. This involves research inves-

tigations in quantifying the impact of transport network impairments on the end

user QoE. A detailed simulation based study in this area has been performed by

the author as published in [TLL+11] and [LTL+11].

1.3 Thesis Overview

The thesis work is organized as follows: Chapter 2 provides an introduction to

wireless mobile communication history. After a brief introduction of first gener-

ation mobile systems, an overview of the system architecture of the most popu-

lar second generation mobile system, Global System for Mobile Communication

(GSM), is given. The discussion is extended to the Universal Mobile Telecom-
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munication System (UMTS) which is third generation mobile system. Then a

comprehensive discussion is carried out about the LTE mobile communication

system which is often referred to as the 3.5 generation mobile system. The discus-

sion encompasses the LTE standardization, motivations and targets, key features,

QoS management as well as overall system architecture including both the radio

access and core network of LTE. The topic is concluded with a short overview

of beyond-LTE technologies, i.e., LTE-Advanced. In addition to this, the most

widely used non-3GPP wireless access systems (i.e., IEEE 802.11 networks) are

also extensively discussed in this chapter with a special focus on the IEEE 802.11a

extension. The chapter is concluded with a description of possible approaches to

integrate 3GPP and non-3GPP wireless access networks.

Chapter 3 begins with a discussion which highlights the importance of simula-

tion techniques in the development of communication networks. Then a general

introduction is given about the OPNET network simulator, a tool used to build up

the simulation platform for the integrated LTE and WLAN networks in this work.

Afterwards, a step by step approach is adopted to explain the implementation of

important network entities in integrated heterogeneous network simulator using

the OPNET tool. Another section of the chapter has been dedicated to discuss var-

ious user traffic models which are used within the scope of this work. Finally, the

statistical evaluation methods used in simulation based studies of this thesis are

explained.

Chapter 4 presents various novel techniques to enhance the LTE radio access

network interface. This includes a special LTE air interface scheduler design which

can coordinate with the core network in order the circumvent uplink congestion sit-

uations. Another LTE air interface scheduling algorithm discussed in this chapter

is capable of dynamically changing its behavior in response to network load con-

ditions so that an optimal network operation is realized over time. In addition, the

problem of packet queue management for the LTE air interface is also addressed

in this chapter. This involves the feasibility discussion of the most popular queue

management schemes in the context of the LTE air interface scheduler. The per-

formance evaluation of each of these techniques is performed using the OPNET

based LTE network simulator.

Chapter 5 targets the design of a flow management system architecture which

can be used by network operators to manage the bandwidth resources of multi-

homed users in an environment of integrated heterogeneous networks. This dis-

cussion encompasses the description of functional entities of the system archi-

tecture, inter-entities communication, as well as its incorporation into the 3GPP

defined SAE architecture. Moreover, several techniques and mechanisms are also

developed in order to fully exploit the potential of user multihoming in integrated
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heterogeneous wireless access networks. The effectiveness of the proposed mech-

anisms is evaluated with the help of simulation studies. Their performance is also

compared against the default 3GPP proposed behavior of mobile users in inte-

grated LTE and WLAN networks.

Chapter 6 presents analytical solutions for optimized network resource alloca-

tion to multihomed users. For this purpose, the optimization technique ‘Linear

Programming’ is used whose introduction is given at the start of the chapter. The

proposed solution involves the analytical modeling of user network access links

which then leads to the formulation of the resource allocation problem in ‘Mixed

Integer Linear Programming’. Afterwards, the performance of the proposed ana-

lytical solution is assessed using simulation based studies. A computational com-

plexity analysis reveals that the proposed analytical solution is infeasible for real

world products because of its processing-intensive nature. This problem is ad-

dressed by proposing alternative solutions which are based on heuristic methods

and provide near-optimal performance without requiring large computational re-

sources.

Chapter 7 gives the overall conclusion of the work, highlights all the main points

and major achievements. Finally, an outlook concerning future work is given.



2 Mobile and Wireless Communication
Systems

Mobile and wireless systems and services have seen a remarkable development in

the last decades and have become an everyday commodity. Today, various types

of wireless communication systems are being deployed which are often distin-

guished by their coverage and services. For example, an around the globe coverage

can be provided using Satellite Communication Systems. A wide-area coverage

for pedestrian and vehicular users can be achieved by using the terrestrial cellu-

lar and micro-cellular networks often categorized under Wireless Wide-area Net-

works (WWAN). Wireless Local Area Networks (WLAN) offer high speed access

to communication networks supporting user mobility within a limited coverage,

e.g., in a campus, office building or in a café. Finally, Wireless Personal Area

Networks (WPAN) provide inter-connectivity to the devices centered around an

individual person’s workspace. Though all of the above mentioned wireless com-

munication systems are of importance, this work focuses on the most deployed

two network types (i.e., WWANs & WLANs) and their inter-connectivity.

Mobile communication technologies developed for WWAN are often divided

into generations. For example, analog mobile radio systems of the 1980s are the

1st generation (1G), the first digital mobile systems are the 2nd generation (2G),

and the first mobile systems handling broadband data are the 3rd generation (3G).

The Long Term Evolution (LTE) is often labeled as 3.9G and LTE-Advanced is

referred to as the fourth generation (4G). The first and second generation of mo-

bile communication technologies were developed locally in different regions of the

world without focusing much on the interoperability. From the second generation,

the task of developing mobile technologies has changed from being a regional con-

cern to becoming a global task involving thousands of participants tackled through

standards-building organizations such as the Third Generation Partnership Project

(3GPP).

As far as wireless local area networks are concerned, many systems based on

the proprietary technologies for air interfaces and communication protocols al-

ready existed when the first standard was introduced in Europe by ETSI (European

Telecommunications Standards Institute) in 1996. This standard, named the ‘high
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performance radio local area network’ or HIPERLAN, promised a data rate of

23.5Mbps operating in the 5.2GHz spectrum band. Later revisions of this standard

were capable of offering much higher data rates going up to 155Mbps. In parallel

to this, the IEEE 802.11 standardization group was established in 1997 which pro-

duced the first WLAN standard to provide 1 and 2Mbps aggregate rates. In 1998,

IEEE 802.11b working group enhanced the air interface to support data rates up to

11Mbps. During the same year, IEEE 802.11a introduced a new standard based on

orthogonal frequency division (OFDM) to provide data rates up to 54Mbps oper-

ating at 5GHz. Despite the better performance figures of HIPERLAN no products

were available in the market while many companies soon offered simple to im-

plement 802.11 compliant equipment. Due to the lack of available commercial

implementation further development of the HIPERLAN standard was stalled and

much of the work on HIPERLAN version 2 was included in the physical layer

specification of IEEE 802.11a.

As a brief outlook about WWANs and WLANs has been provided, this chapter

now further describes the background for the development of the LTE system from

WWANs and IEEE 802.11 based WLAN. First, an overview of the technologies

and mobile systems leading up to 3G will be given. Next, the system architecture

and performance specifications of LTE will be described. Then, IEEE 802.11

standards for WLANs will be discussed. Finally, the chapter will be concluded

with a discussion on interworking of WWANs and WLANs.

2.1 First Generation Mobile Systems

The first generation of mobile communication systems to see a large scale commer-

cial growth was introduced in the 1980s. Many countries developed and deployed

their individual first generation mobile systems based on Frequency Division Mul-

tiple Access (FDMA) and analog Frequency Modulation (FM) technology. For

example, the Nippon Telephone and Telegraph (NTT) system was the first oper-

ational analog mobile communication system. In 1981, the Nordic Mobile Tele-

phone (NMT) system was introduced in Scandinavia, and in 1983, Advanced Mo-

bile Phone System (AMPS) was started in United States as a trial. Other first

generation analog mobile systems include TACS, ETACS, C-450, RTMS, and Ra-

diocom 2000 in Europe and JTACS/NTACS in Japan. These systems were de-

signed only for voice application and were incompatible with one another so that

which roaming between countries was not possible.
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2.2 GSM

The second generation of mobile systems developed across the world was based on

digital communication technologies. These include the Global System for Mobile

communications (GSM) standards in Europe, IS-54 & IS-95 standards in USA,

and the Personal Digital Cellular (PDC) standard in Japan. With the help of dig-

ital technology the second generation mobile systems offered an opportunity to

increase the system capacity, to give an improved and consistent quality of ser-

vice, and to develop light weight and attractive handsets. Among all second gen-

eration mobile systems, GSM has been a real success in terms of its widespread

deployment and a well-defined system architecture that served as a basis for the

development of other systems both in 2G and 3G.

It was due to the deployment of GSM that pan-Europe roaming became a pos-

sibility in 1992. Being a digital system, GSM also came with the capabilities to

provide data services over the mobile communication networks. Though GSM

was originally intended to operate in the 900MHz band, a number of variants have

also been developed to operate in other frequency bands to meet the regional de-

ployment requirements outside Europe. Such measures helped GSM become the

most widely accepted standard supporting 4.4 billion subscribers in more than 230

countries in 2011 [Str13].

GSM uses the Gaussian Minimum Shift Keying (GMSK) modulation method

providing a typical over-the-air bit rate of 270kbps. Moreover, as its access method,

GSM employs a combination of Time Division Multiple Access (TDMA) and Fre-

quency Division Multiple Access (FDMA). The FDMA part involves the division

of available spectrum into frequency carriers of 200kHz. Each of these carrier fre-

quencies is then divided in time, using a TDMA scheme, into eight time slots. One

time slot is used by the mobile phone for transmission and one for reception.

There are two basic types of services offered through the GSM system, i.e., tele-

phony or tele-services and data or bearer services. Tele-services are mainly voice

services including voice calls, facsimile, short text message (i.e., SMS) etc. Data

services enable a GSM phone to receive and send data, e.g., to access the Inter-

net. Although the supported data rate of GSM is just 9.6kbps other enhancements

(discussed later in this section) can be used to provide much higher data rates.

2.2.1 System Architecture

Figure 2.1 gives an overview of the hierarchical system architecture of the GSM

system. The architecture is composed of three subsystems, the Radio Subsystem
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(RSS), the Network and Switching Subsystem (NSS), and the Operation Subsys-

tem (OSS) [Sch03].
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Figure 2.1: Functional architecture of the GSM system [Sch03].

a) Radio Subsystem (RSS)
The RSS comprises radio specific entities, e.g., the Mobile Station (MS) and

the Base Station Subsystem (BSS). The mobile station consists of hardware and

software necessary to access a GSM system as well as a Subscriber Identity Mod-

ule (SIM). The SIM stores the user data required for authentication and charging

mechanisms. The BSS is mainly responsible for maintaining a radio connection

to the mobile station. A GSM network may have many BSSs, each consisting of

a Base Station Controller (BSC) and a Base Transceiver Station (BTS). A BTS

houses the radio transceivers and handles the radio link protocols. It can serve

either a single cell or several cells using sectorized antennas. The size of a GSM

cell may range from 100m to 35km. One or more BTSs can be managed by a

BSC which handles the user handovers from one BTS to another, reserves radio

frequencies, and performs paging of the mobile station.

b) Network and Switching Subsystem (NSS)
The NSS contains a variety of different elements and is also termed core network

of the GSM system. It is responsible for several key operations and mechanisms,

e.g., handovers between different BSCs, worldwide localization of users, charging,
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accounting, and roaming of users between different network operators etc. The

main component in NSS is a Mobile Services Switching Center (MSC) which is a

high speed ISDN switch. An MSC often manages several BSCs in a geographical

region and is responsible for setting up connections to other MSCs and to the

BSCs. In addition, a gateway MSC also provides connection to external networks

like PSTN and ISDN.

The Home Location Register (HLR) and Visitor Location Register (VLR) help

the MSC provide call routing and roaming capabilities. The administrative infor-

mation of each subscriber and its last known location can found in the HLR which

helps route calls to the relevant base station. There is logically one HLR per GSM

network. The VLR contains the temporary information from the HLR required to

provide service to a subscriber currently located in a geographical area controlled

by the associated MSC of the VLR.

c) Operation Subsystem (OSS)
The OSS is connected to all entities of the NSS as well as to the BSCs. It is

used to monitor the overall system, control the traffic load of the BSS, and per-

form the maintenance activities. The OMC (Operation and Maintenance Center)

entity of OSS accesses other network entities via SS7 signaling and typically per-

forms the traffic monitoring, obtains the status reports from network entities as

well as participates in subscriber and security management tasks. A unit of OSS

named authentication center (AUC) takes care of subscriber authentication and ci-

phering of call data on the radio channels. The OSS also prevents calls from stolen,

unauthorized, or defective mobile stations using the information contained in the

Equipment Identity Register (EIR).

2.2.2 Data Service Enhancements

At the time when GSM was developed, the standard data rate of 9.6kbps available

for data services used to be considered adequate. However, with the rapid growth

of the Internet services like web browsing, email exchange and file download etc.,

this data rate became insufficient to meet these application demands. To improve

the data transmission capabilities of GSM, two enhancements were developed.

The first enhancement called High Speed Circuit Switched Data (HSCSD) com-

bines several traffic channels (each providing 9.6kbps) to increase the overall user

data rate. HSCSD is capable of providing up to 57.6kbps data rate. The second en-

hancement termed General Packet Radio Service (GPRS) is fully packet-oriented

which provides more powerful and flexible data transmission. Though GPRS can

offer data rates as high as 171.2kbps, typical data rates are 53.6kbps in downlink
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and 26.8kbps in uplink. GPRS was then further evolved to the EDGE technology.

The name EDGE stands for Enhanced Data for GSM Evolution and it supports

data transmission speeds up to 384kbps. Often referred as 2.5G system, EDGE

uses the 8 PSK modulation scheme to offer a significantly higher data rate than

GPRS.

2.3 UMTS

The standardization activities for the 3rd generation of mobile systems started in

ETSI in 1996. The Wideband Code Division Multiple Access (WCDMA) propos-

als from Europe and Japan were merged in early 1998 and came out as the 3G

standard for the European market termed Universal Mobile Telecommunication

Service (UMTS). A few months later standards-developing organizations from all

regions of the world founded the Third Generation Partnership Project (3GPP) in

order to solve the problem of maintaining parallel development of aligned spec-

ifications in multiple regions. Soon after, 3GPP introduced the initial release of

UMTS standards in 1996 which is referred to as release 99 or Rel-3. After Rel-

3, the work on Rel-4 and Rel-5 was started by 3GPP in the year 2000. Rel-4

was concluded in March 2001 with the introduced features like, QoS in the fixed

network including several execution environments (e.g., MExE, mobile execution

environment) and new service architectures. Rel-5 specified a new core network

to support IP-based multimedia services (IMS) as well as a high speed downlink

packet access (HSDPA) service. Rel-6 focused on Multiple Input Multiple Output

(MIMO) antennas, enhanced Multimedia Service (MMS), interworking with wire-

less LAN (WLAN), High Speed Uplink Packet Access (HSUPA), and many other

management features. Rel-7 which was released in 2007, introduced High Speed

Packet Access Evolution (HSPA+) service, improvements to QoS for realtime ap-

plications, and reduced the packet latencies.

UMTS uses Code Division Multiple Access (CDMA) as the multiple access

technology which offers numerous advantages over the schemes used in 2G sys-

tems that were predominantly TDMA based schemes. The most prominent fea-

ture of the CDMA scheme is the improved spectral efficiency due to the use of

Quadrature Phase Shift Keying (QPSK) as a modulation scheme. Theoretically, it

increases the spectral efficiency three to four times higher than that of the GSM

system. In addition, CDMA allows to use the same channel frequency in adja-

cent cells and an improved handover reliability by supporting a so called “soft

handover” mechanism. Furthermore, the use of spread spectrum and multiple

spreading codes for CDMA makes the transmission resistant to signal jamming,



2.3 UMTS 15

significantly reduces the chances of eavesdropping and allows flexible allocation

of resources.

In contrast to the GSM system, UMTS networks were not designed just for voice

but for a flexible delivery of any type of service where each new service does not

require particular network optimization. With such provisions UMTS networks

were capable of providing high data rates up to 384kbps in Rel-3 and beyond

2Mbps in Rel-5. The packet round trip time was reduced below 200ms, a seam-

less mobility was managed for data applications, quality of service support was

improved, simultaneous transmission of voice and data was made possible, and

interworking with existing GSM/GPRS networks was made feasible. Person-to-

person services of UMTS include voice telephony with wideband codec to improve

speech fidelity, video telephony using new multimedia architecture, an enhanced

SMS service termed MMS (Multimedia Messaging Service) which is capable of

delivering messages with embedded multimedia contents, Push-to-talk over Cel-

lular (PoC) service which is similar in nature to walkie-talkie, and Voice over IP

(VoIP) support which can also be complemented with streaming video, images,

content sharing, gaming etc. Content-to-person services of UMTS are web brows-

ing, content download (e.g., ringing tone, video clips, MP3 music etc.), Multime-

dia Broadcast Multicast Service (MBMS) as well as other multimedia streaming

services like web broadcasting, video streaming on demand etc.[HT04]

2.3.1 System Architecture

In order to meet the design targets, the UMTS network architecture was required

to provide significantly higher performance than that of the original GSM network.

However, owing to the fact that many networks had migrated through the use of

GPRS and EDGE, they already had the ability to carry data. Therefore, many of

the elements required for the UMTS network architecture were seen as a migration.

This substantially reduced the cost of implementing the UMTS network as many

elements were already in place or needed upgrading.

As depicted in Figure 2.2, the UMTS network comprises three interacting do-

mains: Core Network (CN), UMTS Terrestrial Radio Access Network (UTRAN)

and User Equipment (UE).

a) Core Network (CN)
The main function of Core Network (CN) is to provide switching and routing

for the user traffic as well as some network management functions. The basic

CN architecture for UMTS is based on the GSM network with GPRS and can

be further divided in circuit switched and packet switched domains. MSC, VLR,
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Figure 2.2: UMTS system architecture [HT04].

and gateway MSC are among elements of the circuit switched domain. The packet

switched domain includes elements like Serving GPRS Support Node (SGSN) and

Gateway GPRS Support Node (GGSN). Moreover, some network elements, like

EIR, HLR, and AUC are shared by both domains. SGSN functionality is similar to

that of MSC but is typically used for Packet Switched (PS) services. In the same

way, GGSN functionality is close to that of the gateway MSC but is related to PS

services.

b) UMTS Terrestrial Radio Access Network (UTRAN)

UTRAN consists of one or more Radio Network Subsystems (RNS). An RNS is

a sub-network within UTRAN comprising one Radio Network Controller (RNC)

and one or more base stations referred as Node-Bs. The Node-B contains the

transmitter and receiver to communicate with the UEs within the cell. The RNC

controlling one Node-B is responsible for the load and congestion control of its

own cells, and also executes the admission control and code allocation for new

radio links to be established in those cells.

c) User Equipment (UE)

The UE works as an air interface counter part of the Node-B and has two compo-

nents: Mobile Equipment (ME) and UMTS Subscriber Identity Module (USIM).

The ME is the radio terminal used for radio communication over the air interface.

The USIM is a smartcard that holds the subscriber identity, stores authentication

and encryption keys, and performs the user authentication.
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2.3.2 Data Service Enhancements

Similar to GSM, system enhancements also followed UMTS to achieve higher

data rates and improved system capacity. This includes HSDPA and HSUPA stan-

dards from 3GPP specifications of Rel-5 and Rel-6, respectively. The use of both

of these enhancements is often referred to as HSPA. HSPA increases the spectral

efficiency by using a higher order modulation scheme (16QAM) to achieve up to

14Mbps data rate in downlink and 5.8Mbps in uplink. Using a shorter Transmis-

sion Time Interval (TTI) (i.e., 2ms instead of 10ms in Rel-3), HSPA reduces the

packet round trip time and improves link adaptation to fast channel variations. In

addition, moving the packet scheduling function from RNC to Node-B along with

the adaptive coding and modulation enables the system to quickly respond to the

varying radio channel and interference conditions. Furthermore, Node-B based

Hybrid ARQ (HARQ) provides reduced retransmission round trip time and adds

robustness to the system by allowing soft combining of retransmissions.

An enhanced version of HSPA termed HSPA+ or Evolved HSPA was defined in

Rel-7 and Rel-8 of the 3GPP standards. Using HSPA+ the data transfer rates were

increased further to provide download speeds comparable with fixed broadband

lines. Some of the major HSPA+ features include up to 42Mbps data rate, Multi-

ple Input Multiple Output (MIMO) transmission, higher order modulation scheme

(64QAM), enhancements to layer 2 protocols, and faster call set-up time etc.

2.4 LTE

For many years, voice calls dominated the traffic in mobile communication sys-

tems. Though the growth of mobile data was initially slow, its use has been in-

creasing dramatically for the last few years. This is mainly due to widespread use

of smartphones which are more attractive and user friendly than their predecessors

and facilitate the creation of applications by third party developers. The result was

an explosion in number and use of mobile applications accompanied with flat rate

charging schemes that led to a situation where neither developers nor users were

motivated to limit their data consumption. Owing to their limited capacity, 2G and

3G networks soon started to become congested. This made network operators and

developers realize the demand of increase in system capacity.

Earlier generations of mobile communication systems were built only for cir-

cuit switched services. The first data services over GSM were provided by packet

based GPRS in a later addition. The demand of data services also influenced

the development of 3G which was based on circuit switched data with packet

switched services as an add-on. Provided that voice calls can be transported over
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packet switched networks (i.e., through VoIP), operators can move everything to

the packet switched domain and hence reduce their capital and operational expen-

diture. This encouraged the concept for an all IP network architecture for mobile

communication systems.

In 3G networks, the packet delays between network elements and across the air

interface are of the order of 100ms. This a is big hurdle in providing good quality

of experience to the users of VoIP and other real time interactive services. Thus

another driver was to reduce the latency in the network.

Maintaining the backward compatibility and incorporating the above described

features in the existing overly complex specifications for UMTS would have been

a cumbersome task. Therefore, a fresh start was required by the designers in order

to improve the system performance without the need to support legacy devices.

2.4.1 LTE Standardization

The 3G evolution continued in 2004, when 3GPP organized a workshop to ini-

tiate work on the Long-Term Evolution (LTE) radio interface. The aim was to

make LTE competitive over timescales of at least 10 years. Afterwards this task

was handled as a study item in a technical specification group of 3GPP for almost

six months. The result was a technical report approved in June 2005 which de-

fined the requirements or design targets for LTE. The main requirements included

higher data rate, enhanced cell edge coverage, lower latencies, improved system

capacity, and spectrum flexibility. An extensive study of different physical layer

technologies by a 3GPP working group suggested OFDM as the LTE radio access

technology. In December 2007, 3GPP approved first LTE specifications in its Rel-

8 standards. Work has since then continued on LTE with new features added in

each release. Figure 2.3 shows the way in which the new architecture has been

developed from that of UMTS.

In the new architecture, the Evolved Packet Core (EPC) replaces the packet

switched domain of UMTS while there is no equivalent to the circuit switched do-

main. This is because voice calls are supposed to be transported over EPC using

Voice over IP (VoIP). UTRAN in the UMTS network has been replaced by the

Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) which handles the

EPC’s radio communications with the user equipment. Actually, the new archi-

tecture was developed as part of two 3GPP work items, (i) System Architecture

Evolution (SAE), which covers the core network, and (ii) Long-Term Evolution

(LTE) which covers the radio access network, air interface, and user equipment.

Officially, the whole system is termed Evolved Packet System (EPS). However,
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Figure 2.3: Evolution of system architecture from UMTS to LTE [Cox12].

LTE has become the colloquial name for the whole system and is also being regu-

larly used in this way by 3GPP.

2.4.2 LTE Key Features

In the following a number of the LTE key features are discussed.

2.4.2.1 Enhanced Air Interface

LTE is built on an all-new radio access network based on OFDM (Orthogonal

Frequency-Division Multiplexing) technology with higher order modulation schemes

such as 64QAM. It also allows the use of MIMO and Beam Forming supporting

up to four antennas per station as the complementary radio techniques. In addi-

tion, LTE exploits highly sophisticated Forward Error Correction (FEC) schemes

like tail biting, convolution coding, and turbo coding etc. With all these enhance-

ments, LTE manages to provide up to five times higher throughput than that of-

fered by HSPA networks. This accounts for downlink and uplink peak data rates

of 100Mbps and 50Mbps, respectively, when operating in 20MHz spectrum allo-

cation. Moreover, LTE can support at least 200 mobile terminals in the active state

when operating in 5MHz spectrum allocation.

2.4.2.2 Spectral Efficiency

LTE substantially improves the spectral efficiency and cell edge coverage while

maintaining the same site locations. For example, spectral efficiency in the down-

link is targeted at 5 bps/Hz/cell and 2.5 bps/Hz/cell in the uplink. This implies
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a three to four times improvement over the HSPA technology. A better spectral

efficiency allows network operators to support more customers with the reduced

cost of delivery per bit.

2.4.2.3 Latency

LTE significantly reduces the transition times from idle and dormant states to the

active state. This means a transition time of less than 100ms from a camped state to

the active state and less than 50ms from dormant to the active state. Radio access

network latency is reduced to below 5ms under the unloaded condition for small

IP packets. This is four to five times less than the delays experienced in HSPA net-

works. These enhancements help LTE deliver a more responsive user experience

for interactive, real time service such as high quality audio/video telephony and

multi-player gaming etc.

2.4.2.4 Mobility

The E-UTRAN of LTE networks provides optimum performance for mobile speed

0–15km/h, whereas a slight degradation is permitted for higher speeds. For a speed

between 15 to 120km/h, LTE provides high performance and for speeds above

120km/h, the system is capable of maintaining the connection across the cellular

network. The maximum speed supported by LTE is 350km/h.

2.4.2.5 An All-IP Environment

LTE supports a ‘flat’ all-IP based core network with much simplified architecture

and open interfaces. This enables an improved interworking with other fixed and

non-3GPP wireless communication networks. A complete packet oriented net-

work also enables more flexible service provisioning.

2.4.2.6 Flexible Radio Planning

LTE can deliver optimum performance in a cell size of up to 5km radius. It is still

capable of delivering effective performance for cells of size up to 30km radius.

However, a limited performance should be expected for a cell with radius up to

100km. LTE can be deployed with scalable spectrum allocations, e.g., 1.25, 1.6,

2.5, 5, 10, 15, and 20MHz. It can operate in all 3GPP specified frequency bands

in paired and unpaired spectrum allocations. In this way, when deployed at higher

frequencies, LTE is attractive for strategies focused on network capacity. On the
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other hand, when operating at lower frequencies LTE provides ubiquitous cost-

effective coverage.

2.4.3 LTE Radio Access

The most important technologies used by LTE radio access include transmission

schemes, scheduling, and multi-antenna support as discussed in the following.

2.4.3.1 Transmission Schemes

For the LTE downlink, the Orthogonal Frequency Division Multiplexing (OFDM)

transmission scheme is used, while the uplink employs a single-carrier transmis-

sion based on DFT-Spread OFDM (DFTS-OFDM). The selection of the OFDM

scheme for LTE downlink transmission is due to its inherent high degree of ro-

bustness to frequency selective fading especially when used in conjunction with

spatial multiplexing. OFDM enables LTE to perform channel aware scheduling

with an additional degree of freedom by providing access to the frequency domain.

In addition, OFDM makes flexible resource allocation a possibility by varying the

number of OFDM sub-carriers used for transmission. Moreover, inherent prop-

erties of OFDM makes brodcast/multicast transmissions a simple task. Similarly,

the choice of DFTS-OFDMA as the LTE uplink transmission scheme is mainly be-

cause of its lower power requirements for transmission and straightforward chan-

nel equalization.

OFDM Transmission Scheme
OFDM is a broadband multi-carrier modulation method where the total band-

width is split into a large number of smaller and narrower bandwidth units termed

sub-carriers. OFDM offers superior performance and benefits over traditional

single-carrier modulation methods. This is because its sub-channels are of nar-

row bandwidths and therefore not vulnerable to frequency selective fading. This

property helps simplify equalization techniques.

The term Orthogonal Frequency Division Multiplexing is because of the fact

that two modulated OFDM sub-carriers xk1
and xk2

are mutually orthogonal over

the time interval mT ≤ t < (m+1)T , i.e.,∫ (m+1)T

mT
xk1

(t)x∗k2
(t)dt = 0 for k1 �= k2. (2.1)

where (·)∗ denotes the complex conjugate operator. The T is the per sub-carrier

modulation-symbol time and m is an OFDM symbol number [DPS11]. In this way,
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basic OFDM transmission can be seen as the modulation of a set of orthogonal

functions. Due to this property guard intervals between the sub-carriers are not

required which help increase the spectral efficiency of the system.

In case of OFDM transmissions, the ‘physical resource’ can be illustrated as a

time-frequency grid where each column corresponds to one OFDM symbol and

each row corresponds to one OFDM sub-carrier. This time-frequency grid is

shown in Figure 2.4.
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Figure 2.4: OFDM time-frequency grid where Nc represents the number of sub-carriers,

ak(m) is an OFDM symbol, and m is the symbol index.[DPS11].

OFDM can also be used as a multiple-access scheme, allowing simultaneous

frequency-separated transmissions to/from multiple mobile terminals. This im-

plies that in each OFDM symbol interval, different subsets of available sub-carriers

are used for transmission to/from different mobile terminals. This scheme is often

referred to as Orthogonal Frequency Division Multiple Access (OFDMA).

Single Carrier OFDMA Transmission Scheme
LTE uplink transmission is based on Single-Carrier FDMA (SC-OFDMA) which

is a modified form of OFDMA. It inherits all benefits of OFDMA with the addi-

tional advantage of low peak-to-average power ratio which makes it suitable for

uplink transmission by mobile terminals. This is because low peak-to-average

power ratio is a property desired to employ efficient power amplifiers in order to

save battery power of the mobile terminal.

SC-OFDMA is often viewed as a DFT-coded OFDM where time domain data

symbols are transformed to frequency domain by a Discrete Fourier Transform
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(DFT) before feeding them to the standard OFDM modulator. In a standard scheme

of OFDMA, each data symbol is carried on a separate sub-carrier. However, in

SC-OFDMA, multiple sub-carriers carry each data symbol due to mapping of the

symbol’s frequency domain samples to sub-carriers. Owing to the fact that each

data symbol is spread over multiple sub-carriers, SC-OFDMA offers frequency

diversity gain or spreading gain in a frequency selective channel. That is why

SC-OFDMA is also called frequency spread OFDM or DFT-spread OFDM.

2.4.3.2 Channel Aware Scheduling

The LTE transmission scheme dynamically shares the overall time-frequency re-

sources among the users. It is often termed shared-channel transmission where

the scheduler controls, for each time slot, to which users the different parts of the

shared resource should be allocated. The scheduler also performs the rate adap-

tation to determine the data rate to be used in each transmission. Thus, in deter-

mining the overall system performance the scheduler plays a key role. In order

to improve system capacity, the scheduler may also consider the channel condi-

tions in the scheduling decisions which is called channel aware scheduling. For

example, due to the use of OFDM, the scheduler has access to both the time and

frequency domains and therefore for each time instant and frequency region, it can

select the user with the best channel conditions, as shown in Figure 2.5. In prin-

ciple, a scheduled user can be allocated with an arbitrary combination of resource

blocks in 1ms scheduling intervals.

2.4.3.3 Fast Hybrid ARQ With Soft Combining

LTE uses fast hybrid ARQ with soft combining to allow mobile terminals request

retransmission of erroneously received data and to provide a way to control rate

adaptation implicity. Retransmissions are requested rapidly for each erroneously

received packet in order to minimize its impact on end user application perfor-

mance. Moreover, incremental redundancy is used as the soft combining strategy

where incorrectly received data blocks are buffered at the receiver instead of be-

ing discarded, and when the retransmitted block is received, the two blocks are

combined. In practice, multiple sets of coded bits are generated for the same set

of information bits. Each retransmission uses a different set of coded bits with

different redundancy versions generated by puncturing the decoder output. In this

way, at every retransmission the receiver gains extra information to perform the

decoding correctly.
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Figure 2.5: Downlink channel aware scheduling in the time and frequency domains

[DPS11]. The upper part of figure represents the user channel conditions in terms of SINR

measurements. The lower part shows the radio spectrum allocations along the time.

2.4.3.4 Multi-Antenna Transmission

The use of multi-antenna transmission techniques is the key feature of LTE in order

to achieve aggressive performance targets. LTE supports multiple antennas both

for uplink and downlink transmissions. Multiple transmit antennas at the base sta-

tion are employed for receive diversity and beam-forming to improve the received

SINR. Similarly, multiple receive antennas can be used to attain additional gains

in interference-limited situations if the antennas are used not only for the diversity

but also to suppress interference. In addition, multiple antennas at the transmitter

and receiver are used for ‘spatial multiplexing’ which helps create multiple par-
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allel channels in order to substantially improve data rates. Spatial multiplexing is

also termed multi-user MIMO.

2.4.4 Overall System Architecture

As mentioned earlier, in the evolution from third generation the overall system

architecture of both Core Network (CN) and Radio Access Network (RAN) was

revised, including a split of functionality between the two network parts. This

functional split allows different radio-access technologies to be served by the same

core network. The RAN is responsible for radio-related network functionalities in-

cluding scheduling, coding, radio transmission, and radio resource handling. The

core network or Evolved Packet Core (EPC) takes care of setting up end-to-end

connections, authentication, mobility management, billing and also other comple-

mentary functions to provide a complete mobile broadband network. Figure 2.6

depicts some of different node types from the overall system architecture.
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Figure 2.6: LTE overall system architecture.

2.4.4.1 Core Network

The main logical nodes of the core network (or EPC) are listed and described

below:

• PCRF: The Policy Control and Charging Rules Function is responsible for

detecting service flows and enforcing charging policy. The PCRF also pro-

vides the QoS authorization that specifies how a certain data flow will be

handled in accordance with the user’s subscription.
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• MME: The Mobility Management Entity is a control-plane node of EPC

which is responsible for establishment, maintenance, and release of bearers

as well as handling of security keys.

• HSS: The Home Subscriber Service keeps a database of subscriber infor-

mation, e.g., QoS profile, any access restrictions for roaming, identity of the

MME to which the user is attached or registered etc. The HSS may also

integrate the authentication center (AUC).

• PDN-GW: The Packet Data Network Gateway allocates the IP address to

the UEs, as well as, performs QoS enforcement and per flow-based charg-

ing in accordance to rules from PCRF. It also acts as mobility anchor for

interworking with non-3GPP access technologies like WiMAX, WLAN etc.

• S-GW: The Serving Gateway is a user-plane node which connects the EPC

to the RAN. The S-GW serves as a local mobility anchor for data bearers

when the UE moves between eNode-Bs as well as a mobility anchor for

other 3GPP access technologies such as GSM/GPRS, HSPA etc.

2.4.4.2 Radio Access Network

The access network of LTE called E-UTRAN, is a simple network of eNode-Bs.

Owing to the fact that there is no centralized controller in E-UTRAN, this archi-

tecture is said to be flat. An eNode-B is connected to the EPC by means of a S1

interface, more specifically to the MME by means of the S1 control-plane part (S1-

c), and to the S-GW by means of the S1 user-plane part (S1-u). It is allowed for

one eNode-B to be connected to multiple MMEs/S-GWs for the purpose of load

sharing and redundancy. Furthermore, the eNode-Bs are normally interconnected

with each other by means of the X2 interface which is mainly used to support

intra-LTE handovers.

In contrast to second and third generation mobile communication systems, the

radio controller function is integrated into eNode-B itself. This accounts for the

tighter integration between different protocol layers of RAN resulting in reduced

latency and improved efficiency. The advantage of having distributed control is

that the need for a highly reliable, processing intensive central unit is eliminated

which in turn avoids ‘single point of failure’. However, the disadvantage lies in the

fact that during the UE handover, all UE information together with any buffered

data must be transported using the X2 interface between the involved eNode-Bs.

Considering the fact that the eNode-B is a logical node, a typical implementation

of the eNode-B is a three sector site, where one base station handles transmission
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in three cells. Another common implementation involves one baseband processing

unit to which a number of remote radio heads are connected.

2.4.5 Protocol Architecture

Figure 2.7 shows the user-plane protocol architecture of the E-UTRAN together

with two nodes from core network. In downlink, the user data flow in the form of

IP packets has to pass through a number of protocol layers as described below:
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Figure 2.7: LTE user-plane protocol stack.

• PDCP: The Packet Data Convergence Protocol mainly performs the IP header

compression using the ROCH (Robust Header Compression) standard in or-

der to reduce the overhead of protocol header bits. For each radio bearer

there must be a PDCP entity which is also responsible for other functions

such as compression / decompression and ciphering / deciphering of the data

flow [3GP11c].

• RLC: The Radio Link Control provides services to the PDCP in the form

of radio bearers. Similar to PDCP there exists one RLC entity per radio

bearer which takes care of in-sequence packet deliveries to the upper layer,

necessary retransmissions as well as segmentation/reassembly [3GP10].

• MAC: The Medium Access Control layer offers its services to the RLC in

the form of logical channels. The MAC is primarily responsible for schedul-

ing of radio resources in uplink and downlink. In addition, it also handles

fast Automatic Repeat Request (i.e., HARQ) retransmissions. For each cell

the eNode-B maintains one MAC entity [3GP11b].
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• PHY: The Physical layer provides its services to the MAC in the form of

transport channels. It handles several typical physical layer functions which

include coding/decoding, modulation/demodulation etc.

A summary of functions can be seen in Figure 2.8 for radio interface protocols of

LTE in downlink communication.
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Figure 2.8: Detailed LTE downlink protocol architecture [DPS11].
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2.4.5.1 Medium Access Control (MAC)

The MAC layer should be seen as the lowest sub-layer in the Layer 2 of the E-

UTRAN protocol architecture. It accesses the services of physical layer through

transport channels and connects to RLC layer above through logical channels. In

this way, the MAC has to perform multiplexing/demultiplexing between logical

and transport channels. However, the most important functionality of the MAC

layer is scheduling of air interface resources in both uplink and downlink. A de-

tailed discussion about the MAC scheduling procedures will be carried out later in

this section. In addition, the MAC is also responsible for the transmit and receive

HARQ operations, QoS based prioritization of logical channels, medium access

control as well as various other control functions.

Logical Channels and Transport Channels
A logical channel is defined by the type of information it carries and is classified

as Control Logical Channel, which is used to transmit control data, or as Traffic

Logical Channel which carries user-plane data. The data from logical channels

are multiplexed into transport channels depending on how it should be transmitted

over the air. In other words, a transport channel is defined by how and with what

characteristics the information should be transmitted over the radio interface. The

data on a transport channel is organized into Transport Blocks of dynamic size. In

each Transmission Time Interval (TTI) up to two transport blocks are transmitted

over the radio interface if spatial multiplexing is employed or at most one transport

block in the absence of MIMO. A list of logical and transport channels is presented

in Table 2.1, however a detailed description can be found in [DPS11].

Table 2.1: A list of logical channels and transport channels [3GP11b].

Logical channels Transport channels
Broadcast Control Channel (BCCH) Broadcast Channel (BCH)

Paging Control Channel (PCCH) Paging Channel (PCH)

Dedicated Control Channel (DCCH) Downlink Shared Channel (DL-SCH)

Multicast Control Channel (MCCH) Multicast Channel (MCH)

Common Control Channel (CCCH) Uplink Shared Channel (UL-SCH)

Multicast Traffic Channel (MTCH) Random Access Channel (RACH)

Dedicated Traffic Channel (DTCH)

Hybrid ARQ
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As introduced earlier, LTE employs hybrid ARQ with soft combining to achieve

robustness against the transmission errors. Hybrid ARQ is part of the MAC layer,

while the soft combining is performed at the physical layer. Hybrid ARQ is not

applicable for broadcast transmissions and therefore only supported for uplink and

downlink shared channels, i.e., DL-SCH, UL-SCH.

The LTE hybrid ARQ protocol is based on multiple ‘stop and wait’ processes.

In order to minimize the overhead, a single bit is used to report ACK/NAK. There-

fore, timing of the ACK/NAK bit is used to determine the associated hybrid ARQ

process at the transmitter and receiver. The use of multiple parallel hybrid ARQ

processes may give rise to out-of-sequence data delivery as shown in Figure 2.9.

For example, transport block 5 was successfully decoded before transport block 3,

which required retransmission. Hence, the MAC layer must take care of proper

reordering of data using the sequence numbers before performing de-multiplexing

into the logical channels.

The hybrid ARQ mechanism may occasionally fail to deliver error free data

blocks to the RLC due to erroneous feedback signalling, for example, a NAK is

incorrectly interpreted as an ACK. Though the probability of having such inci-

dents are of the order of 1% [Dah07], it is too high for TCP based services which

virtually require error-free delivery of TCP packets. In order to avoid retransmis-

sions at higher layers which cause excessive delays and performance degradation,

another data integrity check is performed at the RLC layer. The necessary retrans-

missions may also be carried out after this integrity check when operating in ‘RLC

Acknowledged Mode (RLC-AM)’.

Figure 2.9: Multiple hybrid-ARQ processes [Dah07].

Scheduling
The scheduling function of the MAC layer controls the assignment of uplink

and downlink time-frequency resources dynamically. The basic time-frequency
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resource unit in the scheduler is called ‘resource block’ which spans 180kHz in the

frequency domain and 1ms in the time domain. In each, 1ms scheduling interval,

the scheduler allocates resource blocks to one or more terminals together with

specifying the transport block size, the modulation and coding scheme as well

as the antenna mapping for MIMO transmissions. In LTE, uplink and downlink

scheduling decisions can be taken independent of each other.

Owing to the fact that 3GPP has not specified any scheduling strategy, numerous

scheduler designs have been proposed by the research community. The goals of

most schedulers is to improve the spectral efficiency by exploiting the channel vari-

ations between the mobile terminals and schedule the transmissions accordingly.

The use of OFDM allows LTE downlink schedulers to take advantage of channel

variations in both time and frequency domain (see Figure 2.5). The possibility of

exploiting frequency domain channel variations, in addition to time domain vari-

ations, bears a significant importance in order to support the larger bandwidths of

LTE where frequency selective fading turns out to be a major problem. The down-

link scheduler relies on channel-quality reports from mobile terminals to incorpo-

rate channel conditions in the scheduling decisions. The channel-quality report,

termed Channel Quality Indicator (CQI), has its basis in the measurement on the

downlink reference signals and conveys not only the instantaneous channel qual-

ity in frequency domain but also the information regarding spatial multiplexing

mechanism. Moreover, as LTE supports QoS aware scheduling, it implies that a

high performance scheduler should also consider the buffer status and priorities of

individual bearers in the scheduling decisions.

In contrast to the LTE downlink, where the scheduling decisions are taken per

radio bearer basis, the uplink scheduling decision is taken per mobile terminal ba-

sis. For every TTI, the uplink scheduler at eNode-B assigns the time-frequency

resources to the mobile terminal and also determines the transport format (e.g.,

transport block size, modulation and coding scheme etc.) which shall be used by

the mobile terminal. As the scheduler already has the knowledge about the trans-

port format of mobile terminal’s transmission, it eliminates the need for outband

control signalling from the mobile terminal to the eNode-B. This is beneficial from

the coverage viewpoint as the transmission of outband control information with

higher reliability requires significantly more resources compared to the transmis-

sion of user-plane data.

In principle, the uplink scheduler can also take the channel conditions of mobile

terminals into account. However, estimating the uplink channel quality is not as

simple as for the downlink. This is because, in downlink all mobile terminals

share the same reference signal transmitted by the eNode-B for channel quality

estimation purpose. In uplink, this reference signal must be transmitted by all



32 2 Mobile and Wireless Communication Systems

mobile terminals to allow the eNode-B, to estimate the channel quality. Though

the transmission of such a reference signal is supported by LTE, it comes at the

cost of overhead. An overview of downlink and uplink scheduling mechanisms

can be seen in Figure 2.10
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Figure 2.10: An overview of the downlink and uplink scheduling [Dah07].

2.4.6 LTE Mobility

LTE supports mobility not only within LTE but also to other networks of 3GPP

and non-3GPP technologies. As far as intra-LTE mobility is concerned, there are

two types of handover procedures for UEs in active mode, i.e., handover using the

X2 link and the handovers using the S1 link. Typically, the X2-based handover

procedure is preferred for inter-eNode-B handover, however, if there is no X2 link

between the two eNode-Bs then an S1-based handover is triggered.

2.4.6.1 X2-based Handovers

The X2-based handover procedure has been shown in Figure 2.11. In this case,

based on measurement reports from the UE, the source eNode-B determines the

target eNode-B and also queries the target eNode-B if it has sufficient resources to

accommodate the UE. After successful completion of this phase, the target eNode-

B sets aside the radio resources before the UE is commanded to start the actual

handover procedure. In addition to this negotiation, the two eNode-Bs have to

make necessary arrangements to avoid data loss during the handover. This is be-

cause, in LTE, data buffering in downlink occurs at the PDCP and RLC layers of
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the eNode-B’s E-UTRAN protocol stack. Therefore, once the handover decision

is taken, the source eNode-B must forward the buffered data to the target eNode-B

through a mechanism called ‘Buffer Forwarding’. It is up to the source eNode-B to

decide which data of which traffic type would be forwarded, e.g., it may forward

the data belonging to non-realtime traffic (lossless handover) and no forwarding

for realtime traffic data (seamless handover).

If the source eNode-B selects the seamless handover mode for a bearer, it re-

quests the target eNode-B to establish a GTP tunnel over the X2 interface in order

to perform downlink data forwarding. On receiving the acknowledgement mes-

sage, it starts forwarding the freshly arriving data from the S-GW toward the tar-

get eNode-B in parallel to sending the handover trigger to the UE over the radio

interface. The forwarded data is then delivered to the UE by the target eNode-B

as soon as the radio bearer is established between the UE and the target eNode-B.

In order to support in-sequence delivery of packets to the UE, the target eNode-B

first delivers the packets received over the X2 interface and then delivers the pack-

ets received over its S1 interface. The end of the forwarding of data over the X2

interface is signaled to the target eNode-B using special packets termed as ‘End

Markers’.

In case, the source eNode-B selects the lossless handover mode for a bearer, it

has to additionally forward the buffered data over the X2 interface before forward-

ing the freshly arriving data from the S-GW. The buffered data includes the PDCP

packets that are buffered locally because they have not yet been delivered to the

UE. These packets are forwarded along with their sequence number assigned by

the PDCP layer. In this way, PDCP sequence numbers are continued at the target

eNode-B, which helps the UE to reorder packets to ensure in-sequence delivery of

packets to the higher layers. The rest of the procedure is the same as described for

the seamless handover mode.

2.4.6.2 S1-based Handovers

In some situations the X2-based handover is not possible, e.g., because there is no

X2 connectivity to the target eNode-B or an error is indicated by the target eNode-

B after an unsuccessful attempt of X2-based handover, or it is dynamically learned

by the source eNode-B using the ‘status transfer’ procedure. In these situations, the

source eNode-B initiates the handover process by sending control messages over

the S1-MME reference point. The handover procedure in this case is very similar

to that of X2-based handover, except the involvement of the MME in relaying the

handover signaling between the source eNode-B and target eNode-B. Furthermore,

in S1-based handovers, the target eNode-B needs not to inform the MME to switch
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Figure 2.11: Steps of the X2-based handover procedure in LTE [NCG13].

the user traffic path at S-GW from source eNode-B to the target eNode-B, as MME

is already aware of the handover. In addition, data forwarding has to be performed

between the source eNode-B and target eNode-B via the S-GW because of the

unavailability of the direct forwarding path.

2.4.7 LTE Quality of Service

Generally speaking, Quality of Service (QoS) involves the data delivery between

two nodes with certain constraints on latency, error rate, jitter, and bit rate etc. In

LTE, an end-to-end class based QoS architecture has been defined based on data

flows and bearers as shown in Figure 2.12. Data flows are mapped to bearers so

that an end-to-end QoS in the LTE network is provided via an EPS bearer which

itself relies on the services of its constituent bearers i.e., Radio, S1, and S5/S8

bearers. Table 2.2 shows the QoS information for EPS bearers which must be

supported by the network nodes. In order to achieve complete end-to-end QoS, the

support of external bearers is also required which is not within the scope of LTE

standards.

Owing to the fact that network services are usually classified into realtime ser-

vices and non-realtime services, the bearers are also classified into two categories

based on their offered QoS. These two bearer types are ‘GBR’ (Guaranteed Bit

Rate) and ‘non-GBR’ bearers. As the name implies, a GBR bearer guarantees to

offer a minimum bit rate for which the dedicated transmission resources are per-

manently allocated during the bearer establishment or modification. GBR bearers
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Figure 2.12: LTE bearer architecture [36.11].

are suitable to provide services like voice and video telephony. In contrast to this,

non-GBR bearers do not guarantee a minimum bit rate and therefore are used to

support applications such as web browsing, FTP file transfer, email etc.

In order to meet intended QoS requirements at the radio interface, each bearer

is assigned a class identifier (i.e., QCI) and an ‘Allocation and Retention Priority

(ARP)’ at the eNode-B. Each QCI is characterized by priority, packet delay budget,

and acceptable packet loss rate. 3GPP has standardized a number of QCIs which

ensures the uniform traffic handling behavior throughout the network irrespective

of the equipment manufacturers. The set of standardized QCIs and their QoS

requirements are provided in Table 2.2.

The ARP of the bearer is used in relative prioritization and preemption decisions

such as in call admission control and new bearer establishment requests. However,

an established bearer’s ARP has no influence on bearer-level packet forwarding

treatment (e.g., scheduling policy, queue management policy, rate control policy

etc.). Instead, such packet forwarding treatments must be determined by the other

bearer-level QoS parameters such as QCI, GBR etc.

2.5 Beyond LTE

The evolution of mobile communication systems did not stop after the develop-

ment of the LTE network and the eyes turned towards the next development, that

is, the true 4G technology named LTE-Advanced. The proposal of LTE-Advanced

was submitted as a candidate 4G system to ITU-T in 2009 which was approved

and later on its standardization was finalized by 3GPP in April 2011. The key

requirements of LTE-Advanced are listed below:
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Table 2.2: LTE standardized QCIs and their parameters [3GP12].

Bearer type QCI Priority Packet delay Packet error Example services
budget (ms) loss rate

GBR

1 2 100 10−2 Conversational voice

2 4 150 10−3 Conversational video

(live streaming)

3 3 50 10−3 Real time gaming

4 5 300 10−6 Non-conversational

video (buffered streaming)

non-GBR

5 1 100 10−6 IMS signaling

6 6 300 10−6 Video (buffered streaming)

7 7 100 10−3

Voice,

video (live streaming),

interactive gaming

8 8 300 10−6 TCP based (e.g., www,

9 9 300 10−6 e-mail, chat, FTP, p2p)

• Peak data rate of 1Gbps for downlink and 500Mbps for uplink.

• 30bps/Hz and 15bps/Hz as the peak spectral efficiency for downlink and

uplink, respectively. This is 3 times greater than that of LTE.

• Less than 50ms transition time from Idle to Connected state and less than

5ms radio network delay for individual packet transmissions.

• Scalable bandwidth and spectrum aggregation with transmission bandwidths

up to 100MHz in downlink and uplink. The spectrum aggregation allows

non-contiguous spectrum to be used.

• Backward compatibility with the existing LTE standards. This implies that

LTE user terminals should be supported in an LTE-Advanced networks.

• Enhanced cell edge coverage which provides two times higher user through-

put than that of LTE.

• The mobility and coverage requirements are the same as mentioned for LTE

in 3GPP Rel-8 standard.

In order to fulfill the above mentioned requirements, LTE-Advanced makes use

of several recently developed cutting-edge technologies. Over the next subsections

an overview of a few of the LTE-Advanced key technologies is provided.
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2.5.1 Carrier Aggregation

LTE-Advanced targets 1Gbps as the downlink data throughput which cannot be

achieved with 20MHz bandwidth despite significant improvements in the spectral

efficiency. The only way to achieve the higher data rates is to increase the overall

spectrum bandwidth available to the system. Though LTE-Advanced allows to use

up to 100MHz bandwidth, it is difficult to find a contiguous frequency band of this

size. In many areas only small bands are available which are of smaller size such

as 10MHz. As a result LTE-Advanced has to rely on carrier aggregation, a tech-

nique of ‘bonding’ together separate frequency bands. To an LTE terminal, each

component frequency band appears as an individual LTE carrier, while an LTE-

Advanced terminal, using the carrier aggregation, can exploit the total aggregated

bandwidth. See Figure 2.13 for a graphical representation of three types of carrier

aggregation.

Band A Band B

Band A Band B

Band A Band B

Type (a)

Type (b)

Type (c)

Figure 2.13: Three types of carrier aggregation. Type (a) and (b) represent intra-band car-

rier aggregation with contiguous and non-contiguous components, respectively. Type (c)

represents inter-band carrier aggregation.

2.5.2 Enhanced Uplink Multiple Access

LTE is based on SC-FDMA which requires carrier allocation across a contigu-

ous block of spectrum and hence prevents the scheduling flexibilities inherent in

pure OFDM. LTE-Advanced adopts clustered SC-FDMA which is similar to SC-

FDMA but allows non-contiguous groups of sub-carriers to be allocated for trans-

mission by a single UE. This enables uplink frequency-selective scheduling and

consequently improves the uplink spectral efficiency while maintaining the back-

ward compatibility with LTE.



38 2 Mobile and Wireless Communication Systems

2.5.3 Enhanced Multiple Antenna Transmission

According to 3GPP Rel-8 standard, LTE supports a maximum of four spatial layers

of transmission in downlink (4x4 MIMO) and a maximum of one spatial layer per

UE (1x2 MIMO) in uplink. LTE-Advanced supports downlink transmission using

up to eight spatial layers and the UE supports up to four transmitters allowing the

possibility of up to 4x4 MIMO transmission in uplink. This significantly improves

the single user peak data rate and helps achieve the target spectral efficiency.

2.5.4 Coordinated Multipoint

Coordinated multipoint (CoMP) is an advanced variant of MIMO which promises

improved data rates, cell-edge throughput, and system performance in both high

load and low load scenarios. CoMP is essentially a range of different techniques

that enable the dynamic coordination of transmission and reception over a variety

of different base stations. In CoMP, a number of geographically separated eNode-

Bs dynamically coordinate to achieve joint scheduling and transmission as well

as joint processing of the received signals. In this way, a UE at the cell-edge can

be served by two or more eNode-Bs turning the inter-cell interference into useful

signals to enhance the coverage at the cell-edge.

2.5.5 Relaying

Relaying is mainly used to improve urban or indoor throughput, to add dead zone

coverage, and to extend coverage in rural areas. Relaying in LTE-Advanced is

different from conventional repeaters which just re-broadcast the signal. A relay

delivers much more by receiving the actual transmission, demodulating and decod-

ing the data, applying error correction, etc. and then retransmitting a new signal.

As a result, the signal quality is significantly enhanced by the use of an LTE re-

lay. Typically, the UEs communicate with the relay node which in turn wirelessly

communicates with a donor eNode-B (see Figure 2.14).

2.5.6 Self Organizing Network

LTE self-organizing and self-optimizing network (SON) enhancements substan-

tially simplify and automate many tasks related to radio planning and operation &

maintenance (O&M). The main aspects of SON are as follows [Agi11]:

• Self configuration: With SON, a range of specific events (e.g., introducing a

new femto-cell) can be automated using the O&M interface and the network

management module.
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Figure 2.14: Relaying in LTE-advanced.

• Self optimization: SON recursively strives for an optimized network setting

with the help of continuous analysis of environmental data such as UE and

eNode-B measurements.

• Self healing: SON is capable of recovering from exceptional events trig-

gered by unusual circumstances, e.g., dramatic changes in interference con-

ditions, or a ping pong situation in which a UE continuously switches be-

tween macro and femto cells.

2.6 IEEE 802.11 Networks

802.11 belongs to the IEEE 802 family of standards for Local Area Network

(LAN) technologies. The LAN technologies mainly encompass the lowest two

layers of the OSI (Open Systems Interconnection) reference model, i.e., data link

layer (MAC) and physical (PHY) layer. Figure 2.15 shows various components of

the 802 family and their relationship with the OSI reference model. It is obvious

from the figure that the members of the 802 family are assigned an identifica-

tion number which is appended to the family number (i.e., ‘802’) and separated

by a dot. For example, 802.1 specifies the management features of the network,

802.2 specifies the common link layer, termed as Logical Link Control (LLC) layer

which can be employed by lower layer LAN technology, 802.3 is a standard re-

lated to Ethernet LAN technology, 802.5 is the specification for the Token Ring

etc. In the same way, 802.11 is just another link layer technology that provides its

services to the 802.2 LLC layer to allow mobile network access using radio waves.

The primary goal of the 802.11 standard was the design of a wireless LAN tech-

nology which is simple and robust. The MAC layer should be able to support

various physical layers, each of which exhibits different medium sense and radio

transmission characteristics. Initially, Infra-red and spread spectrum radio trans-



40 2 Mobile and Wireless Communication Systems
80

2.
1

M
an

ag
em

en
t

802.3
MAC

802.2 Logical Link Control (LLC)

802.3
PHY

802.5
MAC

802.5
PHY

802.11 MAC

802.11
FHSS PHY

802.11
DSSS PHY

802.11a
FHSS PHY

802.11b
DSSS PHY

802.11g
ERP PHY

Physical 
layers

Data link 
layers

FHSS: Frequency Hopping Spread Spectrum,          DSSS: Direct Sequence Spread Spectrum,          ERP: Extended-Rate PHY

Ethernet Token Ring WLAN

Figure 2.15: IEEE 802 family components and their place in the OSI reference model

[Gas05].

mission techniques were chosen as the physical layer candidates. In addition, the

aim was that WLAN should provide built-in power management functions to save

battery power and it should be able to operate worldwide. This is the reason why

the ISM (Industrial, Scientific and Medical) band, which is reserved internation-

ally as license free spectrum, was chosen for the radio transmissions. The standard

targeted 1Mbps data rate as mandatory and 2Mbps as optional.

2.6.1 System Architecture

In the 802.11 standard, the term station (STA) is used for a node which is equipped

with a wireless LAN interface or adapter. The stations are arranged in logical

groups called Service Sets. A Basic Service Set (BSS) is a group of stations which

communicate with one another via a specialized station known as an Access Point

(AP). In this system architecture, which is called infrastructure-based architecture,

the stations in a BSS do not communicate directly with one another. Instead, they

rely on the AP to forward their communication to the destination stations (See

Figure 2.16). The AP connects the stations insides its coverage to the Distribution

System (DS) which is a backbone network providing access to external networks

such as the Internet. In common practice, an AP connects to the DS using a wired

link, however, the 802.11 specification leaves the potential for this link to be wire-

less.

In infrastructure mode, multiple BSSs can be connected to the same DS to form

an Extended Service Set (ESS). In an ESS a station can move between two APs

without interrupting an ongoing connection using the roaming feature of 802.11

(See Figure 2.17).
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Figure 2.16: Infrastructure based (BSS) and ad-hoc based (IBSS) system architectures.
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Figure 2.17: Connection of BSSs to form an Extended Service Set (ESS).

The 802.11 standard also supports another system architecture referred to as

ad-hoc based architecture where the stations communicate directly without requir-

ing the presence of any AP. A group of stations operating in ad-hoc mode form

an Independent Basic Service Set (IBSS) as shown in Figure 2.16. The ad-hoc

mode communication is useful when no WLAN infrastructure is available, e.g., in

outdoor meetings or in natural disaster scenarios.

2.6.2 Protocol Architecture

The protocol architecture specified by the 802.11 standard has been shown in Fig-

ure 2.18. The standard covers the MAC and PHY layers. The MAC layer is re-

sponsible for medium access, fragmentation and reassembly of user data frames,

as well as, for the data encryption. The physical layer is further divided into two

sublayers which are not specified in the OSI reference model: the Physical Layer

Convergence Protocol (PLCP) and Physical Medium Dependent sublayer (PMD).

The PLCP sublayer provides a carrier sense signal and a transmission technology
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independent common service access point (SAP) to the PHY layer. PMD sublayer

takes care of encoding/decoding of signals.
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Figure 2.18: IEEE 802.11 protocol architecture and management.

The 802.11 standard also specifies management layers and the station manage-

ment entity in the protocol architecture. The MAC management handles the roam-

ing of a station between the access points, facilitates the association of a station

to an access point, performs power management to save battery power, controls

the authentication mechanism, encryption, and synchronization of a station with

respect to an access point. The PHY management mainly supports the channel

tuning and maintains the Management Information Base (MIB). The station man-

agement entity interacts with both aforementioned management layers to control

frequency channel selection and to adjust the transmission power as well as to carry

out additional higher layer functions, e.g., control of bridging and interaction with

the distribution system in the case of an access point.

2.6.3 Physical Layer

The initial revision of 802.11 was released in 1997 which standardized three phys-

ical layer technologies: Frequency Hopping Spread Spectrum (FHSS), Direct Se-

quence Spread Spectrum (DSSS) and Infrared light (IR). The standard specified

the 2.4GHz ISM band and a radio spectrum of 22MHz for the transmissions when

using FHSS and DSSS schemes. The transmission power was limited to 100mW

in order to reduce interference to other communications taking place in the same

ISM band. The standard also defined two data rates at the physical layer, i.e., 1

and 2Mbps.

A few months later, an extension of 802.11 standard, termed 802.11b, was pub-

lished which offered enhanced data rates of 5.5 and 11Mbps using the DSSS

scheme. In the earlier standard, DSSS used BPSK (Binary Phase Shift Keying)
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and QPSK (Quadrature Phase Shift Keying) modulation schemes for 1 and 2Mbps

data rates, respectively. The modulation scheme proposed for 802.11b was also

QPSK but the higher data rates were achieved by reducing the spreading factor in

DSSS.

The 2.4GHz ISM bands are heavily in use by non-802.11 traffic. In 1999, the

802.11 working group released another extension, 802.11a, which operates in the

5GHz ISM band. This frequency band has far fewer non-802.11 devices which

reduces the interference and helps achieve higher data rates. 802.11a is based on

the Orthogonal Frequency Division Multiplexing (OFDM) transmission scheme

which has been explained in Section 2.4.3.1. Using the same radio spectrum size

as in 802.11 and 802.11b, but using higher order modulation schemes data rates

of up to 54Mbps are supported in 802.11a. The new modulation schemes include

16QAM (Quadrature Amplitude Modulation) and 64QAM.

In 2001, 802.11a products were commercially available but the users still had

a desire to obtain higher data rates while retaining the backward compatibility

with the installed 802.11b infrastructure. This resulted in the 802.11g standard

which uses OFDM in the 2.4 GHz ISM band and offers a bit rate comparable to

802.11a. Due to lower operating frequency, 802.11g networks have better coverage

compared to that of 802.11a networks. Most of the physical layer specifications of

802.11g are built on existing work of 802.11b with slight modifications in order to

provide backwards compatibility.

In response to growing market demand for higher performance WLAN, the task

group IEEE 802.11n was formed in 2004. The new standard, released in 2009,

improves upon the previous 802.11 standards by introducing Multi-Input Multi-

Output (MIMO) technology. The OFDM technology used for 802.11a/g proved to

be resilient against the multi-path nature of the channel and, therefore, also adopted

for 802.11n. The final system is categorized as a MIMO-OFDM system. 802.11n

mandates the interoperability with the legacy 802.11a/g systems and can operate

both in 20 and 40MHz bandwidth. With four transmit antennas and 40MHz band-

width a maximum data rate of 500Mbps can be achieved at the physical layer.

Another flexibility feature of 802.11n is its capability to operate in both 2.4GHz

and the less crowded 5GHz ISM bands.

Other mentionable 802.11 variants include 802.11ac and 802.11ad which are

currently under development. 802.11ac will use wider bandwidths up to 160MHz,

up to eight MIMO antennas, and higher order modulation schemes like 256QAM.

802.11ad is a tri-band WLAN which will operate in 2.4, 5, and 60GHz ISM bands

and provide a maximum throughput of 7Gbps.
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2.6.3.1 802.11a PHY

The 802.11a uses an OFDM transmission scheme with 52 sub-carriers (48 data

and 4 pilot) that can be modulated using BPSK, QPSK, 16QAM, or 64QAM. All

sub-carriers are modulated with the same modulation scheme and the duration of

each modulation symbol is independent of the selected modulation scheme. In this

way, within one OFDM symbol duration, b ·C bits can be transmitted when C sub-

carriers are used and each sub-carrier transports one modulation symbol carrying

b bits.

In order to minimize the interference several operating channels have been stan-

dardized in 802.11a. These channels start from 5GHz and have 20MHz spac-

ing. In reality the occupied bandwidth of a channel is only 16.6MHz instead of

20MHz. This is because 802.11a defined 64 sub-carriers each of size 20MHz/64 =

312.5kHz. However, only 52 sub-carriers are used in practice and the rest 12 sub-

carriers are reserved for other purposes. In 5GHz ISM bands, there are of the 12

channels available which can support interference-free operation of overlapping

802.11a cells.

For the transmission of a PHY PDU, the first step is to perform data scram-

bling which evens the distribution of 0 and 1 bits and after which a Forward Error

Correction (FEC) based on convolution coding is employed. The use of FEC in-

troduces redundancy in the transmission to make it resilient against bit errors. The

amount of added redundancy can be quantified with the help of a ‘coding rate’

which is a ratio of number of data bits to the number of code bits. 802.11a defines

three coding rates which are as follows: 1
2 , 2

3 , and 3
4 . Combinations of modulation

schemes and coding rates produce different data rates at the physical layer as listed

in Table 2.3

Table 2.3: Physical layer data rates and dependent parameters for 802.11a.

Data Rate Modulation Coding Coded bits Coded bits Data bits
(Mbps) rate per per OFDM per OFDM

sub-carrier symbol symbol

6 BPSK 1/2 1 48 24

9 BPSK 3/4 1 48 36

12 QPSK 1/2 2 96 48

18 QPSK 3/4 3 96 72

24 16-QAM 1/2 4 192 96

36 16-QAM 3/4 4 192 144

48 64-QAM 2/3 6 288 192

54 64-QAM 3/4 6 288 216
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The data delivered from the MAC layer (MAC PDU) is considered as a payload

of the PHY PDU (PPDU) which has to go through the scrambler and convolution

encoder before the transmission as described earlier. The basic structure of the

PPDU for 802.11a is shown in Figure 2.19. The ‘PLCP preamble’ consists of

12 symbols and is used for frequency acquisition, synchronization and channel

estimation. The ‘signal’ contains the control information required by the physical

layer, e.g., the 4bit ‘rate’ field determines the modulation scheme, the ‘length’ field

indicates the payload size in bytes, the ‘parity’ bit represents the even parity of the

first 16bits, and the 6 ‘tail’ bits are always set to zero. The ‘data’ field contains

user data and a ‘service’ subfield which helps synchronize the descrambler of the

receiver. In addition, the ‘tail’ bits are used to reset the encoder and the ‘pad’ bits

may be used so that the PPDU can be mapped to an integer number of OFDM

symbols.

rate
4 bits

reserved
1 bit

length
12 bits

parity
1 bit

tail
6 bits

service
16 bits

payload
variable 

tail
6 bits

pad
variable

PLCP preamble
12 symbols

Signal
1 symbol

Data
Variable number of symbols

PLCP header

6 Mbps 6, 9, 12, 18, 24, 36, 48, or 54 Mbps

Figure 2.19: IEEE 802.11a physical layer PDU format.

2.6.4 Medium Access Control Layer

The MAC layer has to support several tasks including roaming, authentication,

power control etc. However, the most important task is the control of medium

access so that a station transmits only if the radio channel is free. IEEE 802.11

standard specifies three MAC access mode. The mandatory basic access based

on a version of CSMA/CA is provided by the Distributed Coordination Function

(DCF) and contention-free service is provided by the Point Coordination Function

(PCF). Between the free-for-all of the DFC and the precision of the PCF there is

a third mode termed as Hybrid Coordination Function (HCF). The contention-free

services of PCF are supported only in infrastructure networks, however, DCF and

HCF may be employed in any network. As illustrated in Figure 2.20 both PCF and

HCF are built on top of DCF.
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Figure 2.20: IEEE 802.11 MAC coordination functions [Gas05].

For all access modes, several parameters for controlling the waiting time and

priorities of medium access have been defined. Inter-frame spacing is one of

these parameters which plays a vital role in coordinating access to the transmission

medium. 802.11 defines four different types of inter-frame spaces, three of which

are used to determine medium access. As a part of collision avoidance mecha-

nism of the 802.11 MAC, the stations delay their transmission until the medium

is sensed idle. Once the medium is free, the stations have to wait a certain period

of time before they can take hold of the channel. This time period is determined

by the inter-frame spaces. Selecting an inter-frame space of a shorter time period,

the high priority traffic takes hold of the channel before low priority traffic has a

chance to try. An inter-frame space represents a fixed amount of time independent

of the transmission speed.

Figure 2.21 shows the relationship between different types of inter-frame spaces.

Short Inter-Frame Space (SIFS) is used for the highest priority control traffic,

such as acknowledgements of data packets or polling responses. PCF Inter-Frame

Space (PIFS) is used by the PCF during contention-free operation. For example,

an access point polling other nodes has to wait PIFS for medium access. DCF

Inter-Frame Space (DIFS) represents the longest time period which is used by

contention-based services to access the medium. Stations may have immediate

access to the medium if it has been free for a time period longer than the DIFS.

Finally, Extended Inter-Frame Space (EIFS) is used only when an error is encoun-

tered in frame transmission. The values of inter-frame spaces is defined in relation

to ‘slot time’. Slot time is derived from the PHY dependent parameters such as

medium propagation delay, transmitter delay etc.
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Figure 2.21: Medium access and inter-frame spaces.

2.6.4.1 Basic DCF with CSMA/CA

The mandatory basic access mechanism of 802.11 is based on a random access

scheme with carrier sense and collision avoidance through random backoff. This

scheme is termed Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).

In this scheme, if the medium remains idle for at least the duration of DIFS, a node

can access the medium immediately. However, if the medium is sensed as busy af-

ter DIFS duration, the node enters a contention phase. In this phase the node

chooses a ‘random backoff time’ within the ‘contention window’ and defers the

medium access for this random amount of time. After this period of time, if the

medium is still busy then the node has lost this cycle and has to wait for the next

chance, i.e., until the medium is idle again for at least DIFS duration. However,

if the medium is sensed idle after the random time period is elapsed, the node can

access the medium immediately. The purpose of randomized waiting time before

accessing the medium is to avoid that all stations access the medium at the same

time resulting in a collision situation.

Such a basic CSMA/CA scheme is considered as unfair because of the following

reasons. Each node gets the equal probability of accessing the medium irrespective

of the overall time this node has already waited for the transmission. To help this

situation, 802.11 introduced a ‘backoff timer’. With this modification, each node

chooses a random waiting time and continuously senses the medium. If a certain

node senses the medium as busy during its random waiting time, it stops its backoff

timer, waits for the medium be free again for DIFS and resumes its backoff timer.

In this way the deferred stations do not select a randomized backoff time again,

but continue to count down. The stations that have already waited for a long time

get advantage over the stations that have just entered the contention phase.

The randomized backoff time is measured in terms of the earlier mentioned slot

times. The contention window starts with a size of 7 slots and on each collision its

value doubles up to a maximum of 255 slots. This algorithm is called ‘exponential

backoff’ and has been used in IEEE 802.3 standard for Ethernet.

Figure 2.22 shows a sender accessing the medium and sending unicast data in

the basic DCF access mechanism. On successfully receiving the data, the receiver
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answers directly with an acknowledgement (ACK) after SIFS time duration. The

reception of the ACK at the receiver ensures the correct reception of a frame on the

MAC layer, which is particularly important in error-prone wireless connections.

In case no ACK is received, the sender has to retransmit the frame. But now the

sender has to compete for the medium access as described earlier. After a limited

number of retransmissions, the MAC layer aborts the operation and reports the

failure to the higher layers.

Time

data

ACK

SIFS

data

DIFS

Contention window

Slot time

Sender

Receiver

Other 
stations

Figure 2.22: Unicast data transmission in IEEE 802.11 using basic DCF access mechanism

with CSMA/CA.

2.6.4.2 DCF with RTS/CTS Extension

The basic DCF access mechanism suffers from the ’hidden terminal problem’.

This problem occurs if one station can receive two others, but those stations can-

not receive each other. The two stations may sense the medium idle, send a frame,

and cause a collision at the receiver in the middle. To overcome this situation,

802.11 extends the basic DCF access mechanism by introducing two additional

control packets: Request To Send (RTS) and Clear To Send (CTS). The use of

RTS/CTS is illustrated in Figure 2.23. After receiving the medium access, the

sender issues RTS control packet which includes information about the intended

receiver of the data transmission and its duration. Every node receiving this RTS

sets its Network Allocation Vector (NAV) based on the information contained in

the RTS. The NAV determines the earliest time at which the stations can try to

access the medium again. The intended receiver of the data transmission answers

with a CTS control message which also contains similar information about upcom-

ing data transmissions and helps stations adjust their NAV. Now all stations within

receiving distance around the sender and receiver are aware of the imminent data

transmission and hence the medium is reserved exclusively for that data transmis-
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sion. Finally, the sender sends the data and receives the ACK if the transfer was

correct. This concludes the transmission and stations can start competing for the

medium access again.
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data
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Contention window

NAV (RTS)
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Figure 2.23: Unicast data transmission in IEEE 802.11 using DCF access mechanism with

RTS/CTS extension.

2.6.4.3 Point Coordination Function (PCF)

The PCF access mechanism can be used to offer time-bounded services where a

guarantee of maximum access delay is required. The aforementioned two access

mechanisms can offer only ‘best effort’ service due to the involved contention

phase and random backoff timer. Using PCF, an access point controls the medium

access of its associated stations through polling. The access point splits the ac-

cess time into ‘super frame’ periods which comprise a contention-free period and

a contention period. The contention period is used for the two access mechanisms

based on DCF as presented above. During the contention-free period the access

point sends downstream data to the first station. This station has to reply immedi-

ately after SIFS, otherwise, the access point can poll the next station after waiting

for PIFS. This cycle continues until all stations are polled. Finally, the access

point issues an end-marker to indicate the end of the contention-free period. Af-

terwards, the contention period may start. Alternating periods of contention-free

service and contention-based service repeat at regular intervals, which are called

the contention-free repetition interval.

2.6.4.4 Hybrid Coordination Function (HCF)

Within HCF there are two channel access mechanisms: Enhanced Distributed

Channel Access (EDCA) and HCF Controlled Channel Access (HCCA). With
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EDCA, a station with higher priority traffic waits a little less before transmitting

as compared to a station with low priority traffic. To achieve this 802.11 has intro-

duced a shorter Arbitrary Inter-Frame Space (AIFS) for high priority traffic. The

HCCA works in a similar as the PCF with the difference that here contention-free

period can be initiated at almost anytime during a contention period. This kind of

contention-free period is termed Controlled Access Phase (CAP). Moreover, HCF

also defines the Traffic Class (TC) and the Traffic Streams (TS) to provide respec-

tive Quality of Service (QoS). The access point with HCF support, maintains a

summary of the queue lengths of each TC of each station. This information helps

the access point determine which stations will be allocated transmission opportu-

nities during the contention-free period. Finally, the access point polls the stations

according to their traffic class priority in the same way as described above for the

PCF access mechanism.

2.6.4.5 MAC Frame Format

Figure 2.24 shows the basic structure of the IEEE 802.11 MAC frame format. The

two byte long ‘frame control’ field contains several sub-fields used for control,

power management, and security mechanisms. The ‘duration’ field indicates the

channel busy time used to adjust the NAV value of stations in the access mecha-

nism with RTS/CTS. There are four address fields each of which can hold a MAC

address of 48 bit size. The significance of these address fields is determined using

the information in the ‘Frame control’ field. The ‘sequence control’ field holds the

frame sequence number in order to avoid duplicate frames. A 32bit checksum is

included in ‘CRC’ field and the user data of an arbitrary length is inserted in the

‘data’ field of the frame.

Frame 
control Duration Address

1
Address

2
Address

3
Sequence 

control
Address

4 Data CRC

2 2 6 6 6 2 6 0-2312 4 bytes

Figure 2.24: IEEE 802.11 MAC frame structure.

2.7 3GPP Networks–WLAN Interworking

WLAN and 3GPP wireless access technologies (i.e., WWANs) may be seen to

compete but in reality they complement each other. For example, WLANs are

suitable for providing hotspot coverage where very high data rate wireless services
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are required in a small area with limited mobility. Such deployments of WLAN

to offer hotspot coverage have emerged in dense populated areas including restau-

rants, hotels, convention centers, railway stations, airports, etc. On the other hand,

3GPP access technologies are designed to support wide coverage and high mobil-

ity and therefore well suited to the areas with low-density of demands for wireless

services requiring high mobility. Intuitively, an integration of these two types of

access technologies can bring significant advantages in providing wireless multi-

media and other high data rate services to large populations. In a simple use case,

a user terminal can take advantage of these integrated heterogeneous networks by

accessing high bandwidth data services where WLAN coverage is offered, while

accessing 3GPP based wide area networks at the other places. However, in order to

offer an effective heterogeneous network access, the proposed solution must pro-

vide seamless mobility between the access technologies allowing the continuity of

ongoing sessions.

In general there are three approaches to integrate WLAN with 3GPP access net-

works. Considering 3G networks as an example, their interworking with WLAN

is illustrated in Figure 2.25 and described as follows.

• Mobile IP approach: This approach which is also called loose coupling, in-

troduces ‘Mobile IP’ to manage the mobility of a user terminal between two

network types. In Mobile IP, a user terminal connects to a visited network

and establishes a connection to the home network using IP-over-IP tunnel-

ing. To all corresponding hosts, this user terminal appears to be in the home

network even when it does handover from one visited network to another. A

detailed overview of Mobile IP can be found in [C. 96] and [PJA04]. This

approach requires the Mobile IP mechanism implemented in the user termi-

nal as well as in some of the network entities. The benefit of this approach

lies in its support for all IP network types where one network can evolve

without interfering the integration architecture. The drawback is the delay

involved in Mobile IP control signaling during the handover.

• Gateway approach: In this approach, a logical node termed Gateway, con-

nects two wireless access networks. The information between two networks

is always exchanged through the Gateway. The Gateway is responsible for

inter-conversion of signalling and assists in handover procedures by for-

warding the packets of roaming users. This approach allows independent

operation of two networks and a seamless inter-system roaming without ex-

cessive handover delays introduced by Mobile IP.

• Emulator approach: This is also called tight coupling approach. This ap-
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proach views WLAN as an access stratum in 3G networks just like another

Serving GPRS Support Node (SGSN). All packets routing and forwarding

as well as the handovers are carried out by a 3GPP core network. Though

this approach offers reduced packet loss and delay during the handover, it

lacks the flexibility due to tight coupling and requires both networks to be

owned by the same operator. Another drawback is the potential bottleneck

at the Gateway GPRS Support Node (GGSN) through which all traffic to the

Internet must be routed.
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(a) Architecture of the Mobile IP approach

(b) Architecture of the gateway approach

(c) Architecture of the emulator approach

Figure 2.25: Integration of WLAN with 3G networks [Gar07].

2.7.1 Integration in SAE

As discussed earlier in Section 2.4, 3GPP introduced an evolved core network

architecture termed System Architecture Evolution (SAE) in Rel-8. An important

feature of SAE is the standardization of system architecture to integrate non-3GPP

access technologies, e.g., WLAN, WiMAX, etc. in 3GPP networks. In fact, the

architecture design described in [3GP11a], allows the interconnection with just

about any access technology whether it is wireless or fixed. This has been achieved

by making the access to the PDN gateway generic so that a terminal’s association
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to the network, access to general IP services as well as other network features

like user subscription management, billing, encryption, policy control, and VPN

connections can be made independent of the access technology.

SAE also takes care of seamless user mobility during the handovers between

different access technology types. Two possible mobility management options

are using either ‘host-based’ or ‘network-based’ Mobile IP. Host-based mobility

means that the user terminal implements Mobile IP functionality and IP tunnels

are established between the user terminal and the PDN gateway across the access

network. Network-based mobility means that there are Mobile IP aware entities in

the access network which assist the mobility by acting on behalf of the user ter-

minal. The benefit of the host-based approach is that it can work with any access

network as long as the user terminal supports the Mobile IP functionality. On the

other hand, the network-based approach simplifies the user terminal implementa-

tion but requires the support of Mobile IP functions in the network itself.
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Figure 2.26: Integration of 3GPP and non-3GPP technologies in the SAE architecture

[3GP11a].

At the time of integration, the network operator has to decide whether the access

technology to be integrated is ‘trusted’ or ‘un-trusted’ in terms of network secu-

rity. Generally speaking, an un-trusted access includes any network type that is

not under direct control of the operator (e.g., public hotspot, office WLAN etc.) or
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a network which does not provide sufficient security like authentication, encryp-

tion, etc. Trusted access networks are usually operator owned WLAN or WiMAX

networks which support over-the-air encryption and authentication methods.

Figure 2.26 represents the integration architecture proposed by 3GPP [3GP11a].

It can be seen that non-3GPP technologies are integrated with 3GPP technologies

through one of the three interfaces (S2a, S2b, S2c) provided by SAE. The descrip-

tion of the each interface is as follows:

• S2a - provides the integration path between the trusted non-3GPP IP net-

works and 3GPP networks. In this case the mobility is handled by the

network-based mobility solution, i.e., Proxy MIPv6 [GLD+08].

• S2b - provides the integration path between the un-trusted non-3GPP IP

networks and 3GPP networks. In this case also the mobility is handled by

the network-based mobility solution. The S2b interface is connected to the

un-trusted access network via a new logical node called evolved Packet Data

Gateway (ePDG). The user terminals exchange the traffic with the ePDG in

a secure way over the encrypted tunnels. This creates a logical association

between the ePDG and the user terminals termed SWu interface. The ePDG

then connects to the PDN gateway using the S2b interface. Another interface

of the ePDG, called SWm, connects it to the 3GPP AAA server. It is used to

fetch authentication, authorization, and accounting related parameters from

the AAA server in order to support IPsec [KS05] tunnel setup between the

ePDG and the user terminals.

• S2c - provides the integration path between both trusted and un-trusted non-

3GPP IP networks and 3GPP networks. In this case the mobility is handled

by the host based mobility solution, i.e., Dual Stack MIPv6 [H. 09]. This

implies an overlay solution which does not require any specific support from

the underlying access network.

This work follows 3GPP’s proposal for integration of non-3GPP access tech-

nologies into the SAE architecture. For the purpose of the simulation based study

of such 3GPP compliant heterogeneous networks, the next chapter discusses the

development of a simulation environment, where LTE and 802.11a networks are

integrated.
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3.1 Introduction

Network designers and developers are constantly being challenged to satisfy the

user demands of high performance networking capabilities. In order to keep up

with the demands, service providers are expanding their networks, network re-

searchers are developing revolutionary communication technologies, and equip-

ment manufacturers are rapidly improving the performance of their devices. This

fast evolution has brought the whole communication network industry to a com-

plex landscape of ever growing complexity of communications protocols and their

large scale deployments.

There are several available tools and feasible methods which a network engineer

can use to perform research and development in the area of communication net-

works. They include mathematical analysis, prototype implementation in a test-

bed, modeling and simulation, as well as, other hybrid simulation approaches.

Mathematical analysis based modeling has the advantage of usually solving the

problems faster than the simulations. However, mathematical analysis based mod-

eling cannot be used to evaluate end-to-end communication network path unless

a decomposition is carried out via Kleinrock’s assumption of independence or the

problem is solved using hop-by-hop single system analysis. Both of these ap-

proaches demand a significant amount of development time to achieve an exact

modeling of the system. Even so, a slight complexity in network protocol oper-

ation can bring large scale modeling difficulties and loss of accuracy. Therefore,

researchers have to rely on approximate models obtained through reducing the

original generic model to a typical and representative analytical path [Kle75].

Prototype implementation in a test-bed provides insight on feasibility of a pro-

posed protocol or algorithm to an actual situation by considering the aspects of

both real world and protocols. However, there are several disadvantages to this

approach, like, the ability to emulate only small scale scenarios, significantly high

cost of hardware as well as other real world difficulties and hardware engineering

problems.
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Network simulation is a technique where network behavior is modeled either by

computing the interaction between network entities with the help of mathematical

relations or playing back the captured data composed of observations from a real

network. The network model based on discrete event simulations can be used to

study large scale networks in a realistic and extremely accurate way. The broad

applicability of discrete event simulations to real world problems and its ability

to evaluate network behavior to a desired level of details makes it a favorite tool

for network researchers and engineers. The main disadvantage involved in the

study of network modeling through simulations is the requirement of computing

power which, in many cases, increases rapidly with the scale of the investigated

networks and the required level of modeling details. In some cases mathematical

analysis can be used along with the simulations for faster speed without losing

much accuracy. Such techniques are typically called hybrid simulations [LY12].

Owing to the above mentioned facts, network modeling through simulations

turns out to be the most appropriate method for investigations of this work. Al-

though there are many popular discrete event network simulators like NS [NS-13],

OMNET++ [Env13], NetSim [Net13] etc. but a distinct place belongs to OPNET

[OPN13]. The reason is OPNET’s well documented and rich library of already

developed and tested simulation models of common network entities and proto-

cols. This helps considerably shorten the development cycle of custom simulation

environment. Though OPNET is a commercial tool but an academic license can

be obtained for free. The modeling concepts discussed in this chapter consider

OPNET Modeler as a network simulation tool; however, the provided guideline is

general enough to be used in conjunction with any other discrete event simulator.

The rest of this chapter has been organized as follows: Section 3.2 provides

the general introduction to the OPNET modeler which also serves as a prereq-

uisite towards the better understanding of the tool. A reference heterogeneous

network architecture is discussed in Section 3.3 and its implementation details are

described in Section 3.4 . An overview of user traffic models is given in Section 3.5

and finally, Section 3.6 details the common techniques used to perform statistical

analysis of the simulation output data.

3.2 OPNET Modeler

OPNET Modeler is a commercial product that provides network modeling and

simulation tools. An advanced user friendly graphical interface, objected oriented

and hierarchical modeling approach, and comprehensive tools for analysis and

debugging are among the salient features of the OPNET Modeler. It also provides
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a programming interface to integrate external object files, 3rd party libraries, and

other simulation tools like MATLAB etc. With the passage of time, the OPNET

Modeler has evolved to incorporate more and more features in order to support

new protocols, devices, and applications. Its model library consists of hundreds

of protocols and vendor device models which can work together following the

plug-and-play principle.

The user interface of OPNET Modeler consists of several types of editors. For

example, the Project Editor is used to construct the topology of a communica-

tion network model, configure network entities, run the simulations, and view the

results. The Node Editor creates the internal structure of the model of network

entities (e.g., computers, routers, base stations etc.), specifies the configuration at-

tributes as well as available statistics. The device models, which are called node

models in OPNET terminology, can be instantiated as node objects in a network

domain. A node model may consist of several types of modules. Each module

represents some particular functions of the node’s operation and they can be ac-

tive concurrently. The modules within a node model may communicate with each

other with the help of several types of connections, e.g., Packet Streams, Statistic

Wire, or Logical Association.

At node level the internal description or functionality of a module is not visi-

ble. The behavior of these modules can be specified using the Process Editor by

going one step down in the hierarchy. The modeling of a module inside a node is

performed using process models which are instantiated as independent processes

that execute both general communications and data processing functions. They

can represent functionality that would be implemented both in hardware and in

software. For example, modeling of a protocol stack inside a node can be carried

out with the help of several process models each representing the functionality of

one protocol layer.

A process model inside the Process Editor is seen as a finite state machine using

state transition diagrams to model a certain behavior. The states of the process

and the transitions between them are depicted as graphical objects. Each finite

state contains C language code to express processing tasks which are performed

immediately after entering this state, or immediately before leaving the state. Fig-

ure 3.1 provides a graphical overview of the aforementioned editors in the OPNET

simulator.

In addition, there are also a number of other editors in the OPNET Modeler

to create communication links, packet formats, interface control information etc.

Further information about the OPNET Modeler can be obtained using product

documentation which comes along with the software installation package.
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Project Editor Node Editor 
Process Editor C/C++ Code 

Figure 3.1: OPNET Modeler editors.

3.3 Simulation Framework

The main objective behind the development of this simulation model is to ana-

lyze, evaluate and study several aspects of the heterogeneous wireless networks

which include end user application performance, air interface performance, and

the transport network performance. To be able to achieve the above targets, two

types of network access technologies are selected; LTE from 3GPP networks and

IEEE 802.11a from non-3GPP networks. Selection of IEEE 802.11a standard is

just for the sake of an example and the discussion holds for other WLAN stan-

dards too, like, IEEE 802.11b/g/n etc. Integration of these two access technologies

is performed following 3GPP proposal [3GP11a] of integrating non-3GPP access

technologies to existing 3GPP networks. This proposal has been discussed in Sec-

tion 2.7.1 and shown in Figure 2.26.

The following section explains the steps of developing a heterogeneous network

simulator according to 3GPP specifications, where two types of access technolo-

gies coexist. The integration of the two network types is performed using the

S2c interface of the Packet Data Network Gateway (PDN-GW) as shown in Fig-

ure 2.26. Figure 3.2 shows the reference architecture for the target simulation

environment where two access networks namely LTE and WLAN are connected

to a common core network of the operator.

Though the 3GPP SAE architecture enables mobile users to roam seamlessly
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Figure 3.2: Reference architecture for simulation model.

between 3GPP and non-3GPP access technologies, it does not support the user

multi-homing, i.e., simultaneous user connection to more than one access network.

In order to investigate the achievable advantages through the support of user multi-

homing, the existing SAE architecture is extended by adopting some of the IETF

(Internet Engineering Task Force) standards. A brief overview of these extensions

and the process to incorporate them in the SAE architecture is also outlined in the

following section.

3.4 Simulation Model

The simulation model of the LTE access technology used in this study has been

developed in a collaboration with other colleagues [Wee11] [Zak12]. It includes

the detailed modeling of E-UTRAN and Evolved Packet Core (EPC) with particu-

lar focus on the important features and functionalities of the nodes and protocols.

Figure 2.7 shows the LTE user-plane protocol structure which has been followed to

develop the LTE simulator. The protocols are categorized into three groups: radio

(Uu), transport, and user terminal protocols. The radio (Uu) protocols include peer

to peer protocols such as PDCP, RLC, MAC and PHY between the UE entity and

the eNode-B entity. The PDCP, RLC and MAC (including the air interface sched-

uler) layers are modeled in detail according to the 3GPP specifications. However,

as the PHY (physical) layer is not the focus of this study, therefore, it is modeled in

full detail. Nevertheless, the effect of the radio channels and PHY characteristics
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are modeled at the MAC layer in terms of user data rate performance.

The SAE (or LTE transport) network is based on all-IP technology, i.e., no ATM

links. The user-plane transport protocols are implemented for both the S1 interface

(i.e., the interface between the eNode-B and the S-GW) and the X2 interface (i.e.,

the interface between the eNode-Bs) according to 3GPP specification. The S1/X2

interface mainly includes the user-plane protocols such as GTP, UDP, IP and layer

2 (L2) protocols. Gigabit Ethernet is used as the layer 2 protocol in this simulation

model. Moreover, UE mobility has been modeled using simple mobility models

such as the random directional and random way point models.

The simulation model for IEEE 802.11 access technologies is readily available

from the OPNET Standard Model Library. The only shortcoming of this model is

the inability to adapt the PHY data rate according to user channel conditions. This

issue will be addressed further later in this section. Some of the device models

required to realize the reference architecture are also imported from the OPNET

Standard Model Library without any modification, e.g., WLAN access point, ap-

plication server, Ethernet links, IP Routers, and the Home Agent (HA). However,

large scale modifications were needed in the models of the following network enti-

ties in order to carry out the integration of the two access technologies and realize

multi-homing support for users:

• Mobile node or User Equipment (UE),

• e-NodeB (eNB),

• Serving Gateway (S-GW) and

• Packet Data Network Gateway (PDN-GW).

The next subsections describe and discuss the modeling details of the above men-

tioned network entities.

3.4.1 UE Node Model

This simulation environment provisions the UE as a multi-interface terminal, which

enables users to be associated with both WLAN and LTE simultaneously. Figure

3.3 shows the protocol stack for developing such a UE node, it further indicates the

respective protocols of each interface, e.g., PDCP, RLC, MAC, and PHY layers for

the LTE interface, and ARP, MAC, and PHY for the WLAN interface. The OP-

NET UE node model shown in Figure 3.3 is actually a modified node model of the

Mobile IPv6 capable mobile device from the OPNET model library. The original
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node model can perform network access only through WLAN. The LTE proto-

col stack has been added by the author to enable simultaneous access to WLAN

and LTE networks. The implementation details about the LTE protocol layers are

available in [Wee11] [Zak12], whereas the protocol layer entities for the WLAN

access technology are used from the standard OPNET model library.
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Figure 3.3: UE protocol stack (left) and OPNET UE node model (right).

The standard OPNET modeling of the WLAN MAC protocol does not consider

the effect of the received signal strength on the transmission data rate of physi-

cal layer (PHY). This implies that the PHY data rate of a UE is configured as a

static attribute which does not change dynamically based on a user’s received sig-

nal strength. This does not correctly reflect the behavior of a user device in the real

world. In order to eliminate this shortcoming, the user received signal strength is

computed based on its distance to the access point and the transmission power con-

figuration on the associated access point. This information is used in conjunction

with the ‘free space path loss formula’ to compute the signal to interference (SIR)

value at the UE. The SIR value is then mapped to a corresponding PHY data rate

according to Table 3.4.1. This PHY data rate value is used to determine the trans-

mission speed between that user and its associated access point. The PHY data

rate value for each user is computed periodically after the reevaluation of received
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SIR value. This allows adapting the PHY data rate of a mobile UE during the

simulation time. Using this modification access point coverage is seen available

within an area of approximately 100m radius.

Another deficiency encountered in the standard OPNET model library was its

lack of support for Mobile IPv6 (MIPv6) capable multihomed device. In order to

overcome this shortcoming, a sub-layer “OconS” is introduced between the ARP

(Address Resolution Protocol) and the IP layer. One of its functionalities is to

make the IP layer believe that in addition to WLAN there exists another network

interface (i.e., LTE). In this way, the IP layer assigns an IPv6 address to each

active network interface of the UE. The “OconS” entity is also responsible for

receiving IP packets from two network interfaces and forwarding them to the IP

layer during the downlink communication. While in uplink communication this

entity can decide through which network interface a packet will be transmitted

based on the source IP address. These decisions are part of the flow management

functionality which are discussed in greater detail in Chapter 5.

Table 3.1: Minimum receiver sensitivity requirements to achieve a certain PHY data rate for

802.11a[Gas05].

PHY data rate (Mbps) 6 9 12 18 24 36 48 54

Minimum receiver -82 -81 -79 -77 -74 -70 -66 -65

sensitivity (dBm)

As stated earlier, the OPNET model library implements only the basic MIPv6

functionality. This implies that a mobile node may have several care-of addresses

but only one, called the primary care-of address, can be registered with its home

agent and the correspondent nodes. In order to achieve multihoming, this basic

support has been extended according to the IETF RFC for multiple care-of ad-

dress (MCoA) registration[WDT+09]. This enables the user to register the care-of

addresses from all of its active network interfaces with its home agent. As a part

of the heterogeneous network architecture, it has been assumed that the user never

attaches to its home network, and both LTE and WLAN networks are seen as for-

eign networks by the user. Therefore, a user configures one IPv6 care-of address

when it is in the coverage of LTE and still another care-of address is obtained when

WLAN access is available. The care-of address configuration at the UE is facili-

tated by enabling the eNode-B and the WLAN access point to respond to the UE’s

router solicitation message with an appropriate router advertisement reply. This

helps the UE to perform stateless auto-configuration of an IPv6 address on the re-

spective network interface. More information about stateless auto-configuration of
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an IPv6 address can be accessed from [TNJ07].

Though above mentioned MCoA extension enables a user to register multiple

care-of addresses with its home agent, the user cannot communicate over the two

network interfaces simultaneously. This is because MCoA recommends using

only that single care-of address which has been most recently registered/refreshed.

This calls for the need of another MIPv6 extension namely Flow Binding Sup-

port [G. 10] that permits the UE to bind one or more traffic flows to a care-of

address. A traffic flow, in this extension, is defined as a set of IP packets matching

a traffic selector [TGSM11]. Traffic selectors help identify the flow to which a

particular packet belongs through the matching of the source and destination IP

addresses, transport protocol number, the source and destination port numbers and

other fields in IP and higher-layer headers. Traffic selector information is carried as

a sub-option inside the new mobility option “Flow Identification Mobility Option”

introduced by the flow binding support extension.

The implementation of the aforementioned MIPv6 extensions has been incor-

porated through a patch to the “mobile ip” protocol entity in the UE and home

agent OPNET node models. In this way, a user is enabled not only to use all of

its active network interfaces simultaneously but also to assign a certain traffic flow

to the desired network interface. Depending upon the scenario configuration user

traffic flows can either be switched from one network interface to another or one

traffic flow can be split into two sub-flows carried to the user over the two network

interfaces. This will be discussed in greater detail in section 5.2.

3.4.2 eNode-B Node Model

Figure 3.4 shows the eNode-B architecture as implemented in the OPNET simu-

lator. The eNode-B has two interfaces, (i) the LTE Uu interface which provides

wireless network access to the users and (ii) an Ethernet based network interface

towards the serving gateway which resides in the core network of the operator.

Two static IPv6 addresses are configured on these two network interfaces of the

eNode-B. As a part of the realization of the multihoming functionality, the LTE

Uu network interface not only responds to user router solicitation messages but

also transmits the router advertisement messages periodically.

The eNode-B operates two protocol stacks, one for each of its network inter-

faces. The LTE protocol stack implements PDCP, RLC, MAC and PHY layers

according to the 3GPP specification. In the transport protocol stack, three proto-

col layers, i.e., UDP, IP, and Ethernet are taken from the OPNET standard model

library. However, the GTP-U entity has been implemented by the author to es-



64 3 Simulator for Heterogeneous Network Access Technologies

Tr
an

sp
or

tP
ro

to
co

ls

LTE
U

u
Protocols

(U
u
interface

to
U
E
)

gtp

udp

ip_encap

ip

cpu

rip

pdcp

rlc

mac

phy

eTPS

ARP0

mac0

PDCP

RLC

MAC

PHY

GTP-U

UDP

IP

Ethernet

LTE
U

u
Protocols

Tr
an

sp
or

tP
ro

to
co

ls
(S
1
in
te
rfa
ce
to
S
-G
W
)

S1 interface to S-GW Uu interface to UE

lte_tx_0 lte_rx_0eth_rx_0eth_tx_0

Figure 3.4: eNB protocol stack (left) and OPNET eNB node model (right).

tablish the GTP tunnel over UDP between the eNode-B and the serving gateway

following 3GPP recommendations [3GP08].

In uplink communication, an IP packet from the PDCP protocol entity is encap-

sulated in GTP and is sent to the UDP layer. At the UDP layer, the GTP packet

acts as the payload of a UDP datagram which is forwarded to the IP layer. The IP

packets carrying these UDP datagrams are then routed in the transport network up

to the serving gateway. In downlink communication, the GTP-U receives the GTP

packets from the UDP layer. After processing the GTP headers, the de-capsulated

IP packets are forwarded to the PDCP layer.

3.4.3 Serving Gateway (S-GW) Node Model

According to the 3GPP specifications, the serving gateway is mainly responsible

for creation, deletion, and modification of bearers for individual users connected

to the Evolved Packet System (EPS). These functions are performed based on per

PDN connections for each UE. In this way, the S-GW provides the local anchor

functionality for a single terminal for all of its bearers and manages them towards

the PDN gateway.

The S-GW has two network interfaces, (i) S1 interface towards the eNode-B

and, (ii) S5 interface towards the PDN gateway. From a traffic routing viewpoint,
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Figure 3.5: Serving gateway protocol stack (left) and the OPNET node model (right).

the S-GW serves as an end-point for two GTP tunnels; one from the eNode-B and

the other from the PDN gateway. The “relay” entity in the OPNET node model

(see Figure 3.5) of the S-GW receives IP packets from the PDN gateway (downlink

traffic) and eNode-B (uplink traffic). The received packets are then forwarded to

the respective GTP tunnel based on the destination address of the packet (which is

either the UE care-of address or the application server address).

3.4.4 PDN Gateway (PDN-GW) Node Model

Figure 3.6 depicts the user plane transport protocols of the PDN gateway (PDN-

GW) and its implementation as a node model in OPNET. The PDN-GW is a central

entity for connecting the external IP networks through the SGi interface, 3GPP net-

works through S5, and non-3GPP networks through interface S2a/b/c. However,

within the scope of this implementation, only the trusted non-3GPP networks with

host-based mobility are considered. As evident from Figure 3.6 (right side), other

than the aforementioned three interfaces, there exists still another interface which

is linked with the home network of the UE. As the UE is always associated with

LTE/WLAN networks and never attaches with its home network, it implies that

the UE is always in a foreign network.

The “OconS” entity in the OPNET node model of the PDN-GW plays an impor-
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Figure 3.6: PDN gateway protocol stack (left) and OPNET PDN gateway node model

(right).

tant role in proper routing of the traffic according to protocol stack requirements of

each network interface. In downlink direction, IP packets coming from the home

agent are destined to one of UE’s two care-of addresses. This destination address

determines whether this packet will be delivered to the user over the LTE or WLAN

access network. If the destination address belongs to the LTE network, the IP pro-

tocol entity forwards it to the “OconS” entity. This packet is then forwarded to the

“relay” entity which encapsulates it in the GTP tunnel with destination end-point

at S-GW. These encapsulated packets are then sent by UDP to the IP protocol en-

tity. The IP protocol entity sees these encapsulated packets destined to the S-GW

and forwards them to the “OconS” entity which lets them leave the node through

the S5 interface towards S-GW.

Similarly in uplink direction, the user traffic coming from S-GW reach the IP

protocol entity via the “OconS” entity. Owing to the fact that the PDN-GW is the

end-point of the GTP tunnel, these packets are forwarded to the upper layers after

the packet header removal process. Eventually, these packets reach the “relay”

entity in the form of original IP packets as sent by the UE. These packets have the

home agent as their destination address because of being encapsulated in the IP-

over-IP tunnel as a part of MIPv6 functionality. The “relay” entity sends them to

the “OconS” entity so that they can be forwarded to IP protocol entity for further

routing to the home agent.

There is no GTP tunnel established on the S2c interface between the PDN-GW

and the WLAN access points. Therefore, IPv6 packets destined to the care-of
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address of the UE are simply routed to the access point using the Ethernet link.

Similarly, uplink traffic coming from access points is received by the IP protocol

entity and routed to the home agent without any further handling.

The home agent is connected to the PDN-GW through the IP link and is the

anchor point for all MIPv6 communication. As the “route optimization” option of

MIPv6 is not used here, all uplink and downlink traffic routes through the home

agent on its way to the destination. This is required to perform flow management

as explained in Section 5.2. In downlink direction, the traffic from the application

server or correspondent node (CN) is received by PDN-GW at the SGi interface.

This traffic is destined to the home addresses of the respective UEs and therefore

routed to home agent. The home agent performs IPv6 encapsulation of these pack-

ets in order to tunnel them to a care-of address of the UE. The encapsulated packets

are then sent to the PDN-GW from where they are routed to the UE through either

LTE or WLAN as explained above. In uplink direction, UE sent IPv6 encapsulated

traffic reaches the home agent via the PDN-GW. These packets are de-capsulated

by the home agent and then forwarded to the PDN from where they are routed to

the application server.

3.4.5 Sub-flow Aggregation

In multi-path communication packets may arrive out of order at the destination

[EM02]. Real time applications usually deploy a play-out (or de-jitter) buffer

which is mainly intended to eliminate the jitter associated with packet delays.

However, it also performs packet reordering if the packets arrive within the time

window of play-out buffer length. In this way, real time applications face no prob-

lem when receiving out of order packets in multi-path communication. This holds

as long as delay of each involved network paths is less than the play-out buffer

length γde-jitter buffer.

On the other hand, TCP based applications are very sensitive to packet re-

ordering. This is because an out-of-sequence packet can lead TCP to overestimate

the congestion of the network. This, in turn, causes a substantial degradation in ap-

plication throughput and network performance [LG02]. A literature survey shows

that there are several proposals to make TCP robust against packet re-ordering,

e.g., [FMMP00], [LG02], [S. 03], [FY02], [M. 03], [LK00]. However, the anal-

ysis and implementation of such schemes are currently not within the focus of

this research work. Instead a simple TCP re-ordering buffer is implemented at

the receiver which is very similar in functionality to a play-out buffer. Simulation

analysis shows that the re-ordering buffer length of such a play-out buffer must

be less than the TCP protocol timeout value. In this work, a feasible value of re-



68 3 Simulator for Heterogeneous Network Access Technologies

ordering buffer length γtcp reorder buffer found to fall in a range from 50 to 300ms.

Further details about TCP re-ordering buffers will be provided in Chapter 5.

3.5 User Traffic Models

The tasks of designing a communication network or performance optimization of

an existing network involves the efforts to maximize capacity, minimize latency,

and offer high reliability using limited bandwidth resources. The main factors that

affect the performance of any communication network are packet end-to-end de-

lay, packet loss, and throughput. In order to design high performance networks and

guarantee user application performance the detailed analysis of the above factors is

a crucial step. Often the foremost step in such an analysis is the study of the traffic

demands on the network. As a consequence, the types of traffic models used to

understand the flow of user traffic in the network and their ability to depict the re-

alistic characteristics of the network bear fundamental importance. Traffic models

not only enable a network designer to make assumptions about the networks being

designed based on the past experience but also enable prediction of performance

for future requirements. They are of paramount importance in network architec-

ture comparisons, network resource allocations, and the performance evaluation of

protocols.

This section describes the traffic models used to carry out simulation studies in

this work. This includes the traffic models for Voice over IP (VoIP), File Transfer

Protocol (FTP), Hypertext Transfer Protocol (HTTP), and Video Streaming appli-

cations.

3.5.1 FTP Model

The users in the OPNET simulator can use FTP applications in order to transfer

a file. Two basic commands for file transfer are modeled, i.e., GET and PUT.

The GET command triggers a file download from the application server to a user.

The PUT command initiates file upload from a user to the application server. The

model does not implement separate control and data channels. For each file trans-

fer a new TCP connection is opened which is used to transfer the data as well as

the control commands. The two main parameters of an FTP session are:

• File size: Size of a file being transferred in bytes.

• Inter-request time: Time between subsequent file requests in seconds.
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Figure 3.7: FTP application modeling.

Owing to the fact that the FTP protocol uses TCP as an underlying transport pro-

tocol, it is important to list the main modeling parameters of the TCP model.

• TCP flavor: New Reno with fast recovery and fast retransmit enabled.

• Maximum segment size (MMS): 1300Byte. This is to avoid packet seg-

mentation at the IP layer.

• TCP receive window size: 1MByte. The window scaling option is enabled.

• Duplicate ACK threshold: Number of consecutive duplicate ACKs after

which Fast Retransmit will trigger a retransmission. The default value of 3

is used for this purpose.

• Maximum ACK delay: Maximum time in seconds that TCP waits after

receiving a segment before sending an ACK. The default value is 200 ms.

3.5.2 HTTP Model

The HTTP application models web browsing uses TCP as a default transport pro-

tocol. A web page contains text in HTTP format as well as embedded image/video

objects. When a user downloads a web page from an application server, it results

in opening multiple TCP connections for downloading the inline objects embed-

ded in the page. Once the whole page is downloaded, the user needs time to read

the page, before the next request is made. This time is called user reading time.

The model can follow HTTP version 1.0 & 1.1 specifications with the important

parameters listed below:

• Main object size: Size of web page in bytes excluding inline objects.

• Embedded objects size: Size of the object in bytes embedded in a page.

• Number of embedded objects: Number of inline objects contained in a

page.
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• Reading time: Time between end of a page download and start of the next

page download.

The default values of the TCP model parameters described above under FTP model

also hold for HTTP model.
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Figure 3.8: HTTP application modeling.

3.5.3 VoIP Model

The VoIP application models a virtual channel between a user and the application

server over which digitally encoded voice signals are transported. The voice data

can be encoded using one of several supported encoding schemes. VoIP packets

are transported over the UDP protocol using the Real-Time Protocol (RTP). The

voice communication is modeled using ON/OFF periods. An ON period models a

voice spurt followed by an OFF period representing the silence period.
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Figure 3.9: VoIP application modeling.

The VoIP model supports narrowband as well as wideband codecs. The main

difference between the two codec types is the sampling rate of the voice signal. In

narrowband encoding the voice signal is sampled at 8kHz, resulting in an effective

voice pass-band of about 200 to 3300Hz. Wideband voice codecs offer double the

sample rate, providing an effective pass-band of 50 to 7000Hz. As a result, wide-

band codec can achieve higher voice call fidelity at the expense of computational

processing power.
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The important parameters of the VoIP model are as follows:

• Silence and talk spurt lengths

• Encoder scheme: The supported codecs include G.711 [IT88], G.729a

[IT12], GSM EFR [72699] and G.722.2 [IT03b]

• Voice frames per packet: Number of encoded voice frames packed in a

single RTP/UDP packet.

• Compression delay and decompression delay: Specifies the delays in

compressing a voice packet at the source and decompressing the voice packet

at the destination.

• De-jitter buffer size: It is also referred to as play-out delay. This is the

amount of time a packet could be delayed at the destination in order to min-

imize packet delay variations. The default value of the static de-jitter buffer

size is taken as 50ms.

3.5.4 Video Model

The popular video codecs rely on complex algorithms in order to provide bet-

ter visual quality while keeping the demands of hardware processing power and

bandwidth resources to a minimum level. This makes it extremely difficult, if not

impossible, to model video streaming traffic using stochastic processes. That’s

why in this work, a trace from video communication over a real IP network is used

to generate video traffic in simulations. For this purpose, a reference video clip

encoded with the MPEG-4 codec with a certain bit rate and resolution is selected.

The video clip is then transmitted over the IP network using a video streaming

software (like VLC media player [Pla13]) and the IP packets are captured using a

packet sniffing tool like Tcpdump [Ana13]. This helps generate a trace file con-

taining the size of all transmitted packets and their inter-arrival time. Figure 3.10

shows a graphical representation of such a trace file.

In the OPNET simulation environment, this trace file can be used to generate

video traffic with the same characteristics as the reference video streaming traffic

in the real IP network. These video packets are transported to the receiver over the

UDP protocol. Table 3.2 lists two video applications used in this work.

3.6 Statistical Analysis of Simulation Output Data

In order to study the behavior of a simulated system properly and draw valid con-

clusions about its performance an appropriate analysis of simulation output data
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Application name Codec Resolution Mean bit rate Frame rate

Skype video MPEG-4 640x480 512kbps 30 fps

Live News video MPEG-4 720x480 1Mbps 30 fps

Table 3.2: Video application models.
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Figure 3.10: Packet size and packet inter-arrival time analysis of 30 second long ‘Skype

video’ clip.

is of utmost importance. This is because typically a simulation model is driven

through the time using random samples from probability distributions. Therefore,

runs of the simulation yield the estimates of system performance which are them-

selves random variables and, hence, subject to sampling error. This leads to a

situation where a significant probability exists that erroneous inferences may be

made about the system under investigation. Such a situation can be avoided by

using state-of-the-art techniques to statistically analyze simulation output data as

described in this section.

3.6.1 Confidence Interval

Let’s assume X1,X2,X3, ...,Xn are the independent identically distributed random

variables with finite population mean μ and finite population variance σ2. The
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goal here is to estimate μ and σ2. An estimator θ̂ is unbiased for the parameter θ
if E(θ̂) = θ . In our case sample mean X(n) of the random variables is an unbiased

point estimator for μ so that

X(n) =
1

n

n

∑
j=1

Xj

s2(n) =
1

n−1

n

∑
j=1

(Xj −X(n))2

where s2 is sample variance and an unbiased estimator for σ2 [AM07]. Now the

problem is to assess how close the estimator X(n) is to μ . This is because X(n)
has a certain value of variance Var[X(n)] which could lead to a situation that on

one simulation run X(n) may be close to μ while on another it may have large

difference from μ . This problem can be resolved if a confidence interval is com-

puted for μ which helps assess the accuracy of X(n) as an estimator of μ . In other

words, confidence interval estimation quantifies the confidence (probability) that

μ falls within an interval whose boundaries are calculated using appropriate point

estimates.

The first step in computing a confidence interval is to estimate Var[X(n)]. Con-

sidering the fact that Xj’s are independent and identically distributed Var[X(n)]=σ2/n
which leads to an unbiased estimator of Var[X(n)] as

V̂ar[X(n)] =
s2(n)

n

Now if the Xj’s are normally distributed random variables then a 100(1−α)%
confidence interval for μ is as follows

X(n)± tn−1,1−α/2

√
s2(n)

n

where tn−1,1−α/2 is the upper 1−α/2 critical value for a t-distribution [Sta13]

with n−1 degrees of freedom . Hence it can be claimed that the above computed

confidence interval contains μ with the probability (1−α).

If the Xj’s are not normally distributed, the actual coverage of a confidence

interval can be less than the desired coverage 1−α . However, the central limit

theorem guarantees that if the sample size n is sufficiently large then the actual

coverage will be close to 1−α [Law83].
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3.6.2 Types of Simulations

There are two types of simulations with respect to output analysis:

1. Terminating simulations: A terminating simulation model starts in a spe-

cific state and is run until a termination point TE when a predefined event E
occurs. TE may be a random variable itself. Such models are used to study

short time system dynamics within a system’s natural time horizon. The

output process is not expected to achieve a steady state behavior. Therefore,

any measure of performance estimated from output data explicitly depends

on the initial system state. In general, the initial conditions in these simula-

tions are set to represent the initial conditions for the corresponding system.

An example is the simulation of a computer network starting from idle state

until n jobs are served.

2. Steady-state simulations: A steady-state simulation model has no natural

event E for termination and could be potentially run forever. Such models

are used to study the long-term behavior of the system. A performance

measure of a system is called a steady-state parameter if it is a characteristic

of the equilibrium distribution of an output stochastic process [LK91]. The

value of a steady-state parameter does not depend upon the initial conditions.

An example is the simulation of a continuously operating IP network router

where the objective is the estimation of mean queue length or mean queuing

delay experienced by the packets. The simulation studies presented in this

work follow steady-state simulation model.

Though in steady-state simulations long-run system behavior is of particular inter-

est, initial system conditions may exert bias on long-term system statistics. Two

most common ways to eliminate biasing effect are as follow

(a) To start statistics collection after an initial period of system warm-up, namely,

after the biasing effect of the initial conditions decays substantially. The prob-

lem in this case is to determine an accurate system warm-up time until when

simulation output data should be truncated. If the output data is truncated too

early, a significant bias could still exist in the remaining data. On the other

hand, truncating it too late could lead to the waste of valid observations. In

literature several procedures have been proposed to determine an adequate

length of system warm-up time [LK91] [CS92] [Fis72] [GAM78] [Wel81].

(b) To run a simulation for a very long time so that the biasing effect becomes

imperceptible. This is a rather simple way to control biasing effect which may
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yield point estimators with lower mean squared error compared to the esti-

mators obtained through above described method [Fis72]. The only problem

with this approach is that an excessive simulation run might be required before

which biasing effects are rendered negligible.

3.6.3 Steady-State Analysis

A number of methods have been developed to estimate steady-state system param-

eters which include Batch Means, Independent Replications, Standardized Time

Series, Spectral Analysis, and Regeneration Cycles. Keeping the primary focus on

the estimation of steady-state mean value of a discrete-time simulation output pro-

cess, the most frequently used methodologies are Batch Means and Independent

Replications as discussed in the following [Ban98].

3.6.3.1 Batch Means

The simplicity of computation and effectiveness of the batch means method makes

it a popular way to estimate the steady-state mean and variance. The method is

based on the idea of splitting one long simulation run into a number of contigu-

ous non-overlapping batches and using sample means of these batches to produce

point or interval estimators. As an example, consider a vector of observations

(X1,X2,X3, ....Xn) of a system parameter obtained from an enormously long simu-

lation run. Now splitting this vector into non-overlapping contiguous batches each

of length m would generate the following b batches so that n = b ·m
Batch 1: X1,X2,X3, ...Xm

Batch 2: Xm+1,Xm+2,Xm+3, ...X2m

Batch 3: X2m+1,X2m+2,X2m+3, ...X3m
...

Batch b: X(b−1)m+1,X(b−1)m+2,X(b−1)m+3, ...Xbm

for i = 1,2,3, ...b, the ith batch mean is given by

Yi =
1

m

b

∑
j=1

X(i−1)m+ j

Similarly the batch means estimator for variance is calculated as follows

Var[Yi] =
1

b−1

b

∑
i=1

(Yi − Ȳb)
2
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where Ȳb is the grand sample mean, i.e.,

Ȳb =
1

b

b

∑
i=1

Yi

The only problem in applying the batch means method in practice is the right

choice of batch size m. If m is small, the batch means Yi can have high correlation.

Alternatively making m of very large results in only a few batches b and potential

problems with the application of central limit theorem to compute the confidence

interval. A number of proposals have been made to compute the smallest batch

size which can pass the test of statistical independence, e.g., see [Fis72] [SA97].

3.6.3.2 Independent Replications

The problems of possible correlation among the batch means can be avoided by the

method of independent replications. In this method, M independent replications

of the system simulation are run. Each replication starts in the same state and uses

a portion of random number stream that is different from the portions used to run

the other replications. Assuming Xi1,Xi2,Xi3, ...,XiN , as the output data obtained

from replication i, the sample means are given by

Yi =
1

N

N

∑
j=1

Xi j i = 1,2,3, ...M

In this way M approximately independent sample means can be obtained whose

estimator for variance is calculated as shown below

Var[Yi] =
1

M−1

M

∑
i=1

(Yi − ȲM)2

where the grand sample mean ȲM is given by

ȲM =
1

M

M

∑
i=1

Yi

Owing to the fact that each replication should be started properly, the biasing

effects must be handled carefully as explained earlier in this section.

The estimators for the variance and sample means obtained from batch means or

the independent replication method can be used to compute the confidence interval

as discussed in the beginning of this section.
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The OFDMA based air interface of LTE delivers the flexibility and increased spec-

tral efficiency required by the next generation of high-speed, all-IP mobile net-

works. The air interface scheduler is, therefore, a key component of the LTE

access technology which intelligently schedules the radio resources to deliver re-

quired QoS to the active radio bearers. The algorithms employed by the air in-

terface scheduler for this purpose have a significant impact on the performance

of the individual base station and overall LTE radio access network. These algo-

rithms have not been standardized by 3GPP, leaving an opportunity for vendors to

craft them according to the requirements of specific deployment and usage scenar-

ios. Though numerous MAC scheduling schemes have already been proposed in

scientific literature, this work highlights two important performance optimization

aspects of MAC scheduling which have not been well addressed by the research

community. Section 4.1 and 4.2 of this chapter are dedicated to these enhance-

ments of the MAC scheduler.

A detailed discussion about the LTE protocol stack has been made in Chapter 2.

It has already been explained that the PDCP, RLC, and MAC layers together con-

stitute layer-2 of the LTE air interface. The RLC entity resides between the PDCP

layer and the MAC sub-layer in the LTE protocol stack. It reformats PDCP PDUs,

referred to as segmentation and concatenation process, to fit the size required by

the MAC layer transport block. The size of transport block is determined by the

MAC scheduler considering the bandwidth requirements, distance, power require-

ments, modulation scheme, and type of application. Owing to the fact that RLC

buffers are of limited capacity, the user data is mainly held in PDCP buffers and

delivered to RLC on demand. In this way, packet queues at PDCP layer act as

the main buffer for LTE air interface. An analysis of MAC scheduler operation

indicates that a large performance gain may be realized by proper management

of buffers at the PDCP layer. In section 4.3 of this chapter some simple buffer

management techniques are discussed as candidates for deployment at the PDCP

layer.
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4.1 Coordinated Uplink Radio Interface Scheduling

In LTE the bandwidth demands of time varying user traffic cannot always be ful-

filled by the transport networks either due to their limited capacity or because of the

inaccuracies involved in the bandwidth dimensioning process. This often creates a

congestion situation in the transport network which could substantially degrade the

system performance. In this work, a novel congestion control scheme is introduced

for the LTE uplink which functions based on the coordination between transport

network interface and LTE radio interface capacities. The proposed mechanism

preferably operates at the eNode-B where two network interfaces are monitored in

order to efficiently minimize the congestion situations.

The overall performance of a wireless access network is found to be particu-

larly sensitive to the uplink congestion in the transport network. This is because

a congested transport uplink leads to excessive packet delays and packet losses

which have to be recovered by the higher layer protocols (e.g., TCP) through re-

transmissions. If the congestion is not properly controlled, it results not only in

poor user QoE but also in the wastage of radio resources and the UE’s limited

battery power consumed in transmissions over the air interface. To mitigate the

adverse effects of transport congestion, this work introduces a novel mechanism,

termed back-pressure coordination. The back-pressure manager operates between

the radio and transport schedulers and manages the resources of the both networks.

In order to avoid the congestion, the back-pressure manager sanctions only a suffi-

cient amount of traffic from the radio interface which can be carried over the band-

width limited transport links. This strategy brings gain in twofold manner: first,

it circumvents the congestion at transport uplink and helps achieve the end-to-end

target QoS. Second, it saves the UE power and radio resources which otherwise

would be wasted in retransmitting packets dropped due to congestion in the trans-

port network. In order to avoid transport network congestion, the back-pressure

manager manages the resources of traffic only from non-GBR bearers. Whereas,

GBR bearer traffic is always provided with the required resources so that its strict

QoS demands can be fulfilled.

An overview of the uplink back-pressure coordination scheme is given in Fig-

ure 4.1. The figure shows three main components: a set of uplink MAC schedulers

for three cells, an uplink transport scheduler with DiffServ capabilities, and a back-

pressure manager unit which coordinates between the two schedulers. The back-

pressure manager processes input signals from both schedulers and adaptively es-

timates the maximum allowed data rate per cell over the radio interface. In order

to achieve the objective of simulating the most realistic behavior of networks, the

processing/transmission delays of different entities are taken into account. The
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Figure 4.1: Overview of coordinated uplink radio scheduling.

individual delay components considered for this study are listed below and also

shown in Figure 4.2.

• d1: Signaling & processing delay of conveying the congestion indication /

release event information from the transport scheduler to the back-pressure

manager. In addition to these triggers, the transport scheduler also sends the

other information, e.g., the transport link capacity available for non-GBR

traffic. The mean value of this delay component is assumed to be 5ms based

on the observations in real world networks.

• d2: Signaling & processing delay of requesting “TD Priority Term (de-

scribed later)” and “individual cell throughput” from MAC scheduler by

the back-pressure manger. The mean value of d2 set as 8ms considering the

measurements in real world networks.

• d3: Signaling & processing delay of sending TD priority term and cell

throughput info to back-pressure manager by the MAC scheduler which has

a mean value of 10ms as experienced in real world networks.

• d4: Signaling & processing delay of sending allocated cell throughput infor-

mation to the MAC scheduler by the back-pressure manager. It also includes

delay for sending updated MAC grants to the UEs by the MAC scheduler,

as well as, the UE processing delays. The mean value of this delay element

is considered as 12ms based on real world network experiments.
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Figure 4.2: Exchange of control signaling by the back-pressure manager.

4.1.1 DiffServ Scheduler Implementation

The structure of the DiffServ transport scheduler is shown in Figure 4.3. The traffic

data coming from the radio interface for different services is identified and clas-

sified into the following PHB queues; (i) conversational voice traffic is directed

to ‘Voice (GBR)’ PHB, (ii) real time streaming video traffic is handed over to

‘Streaming (GBR)’ PHB queue, and (iii) rest of the traffic, e.g., FTP, HTTP etc.

is received by ‘non-GBR’ or ‘Best Effort (BE)’ PHB queue. Voice and streaming

video traffic belongs to the GBR traffic class and, therefore, has a higher priority

over the non-GBR traffic. Following the the common practice of traffic prioritiza-

tion, the conversational voice traffic is attributed with a strict priority and assigned

to the EF PHB queue. Moreover, the streaming user traffic is assigned to any

PHB queue with higher priority than that of the non-GBR user traffic. However,

any other traffic prioritization scheme can also be configured depending upon the

specific service requirements.

Due to service prioritization, mainly the lowest priority non-GBR or best effort

(BE) traffic suffers from the bandwidth limitation imposed by the transport net-

work. Often, when the transport uplink gets congested, the buffer occupancy of

BE PHB queue grows rapidly leading to packet drops. Therefore, the transport

congestion in uplink direction can be easily identified by monitoring the buffer

occupancy of BE PHB queue. For this purpose, two suitable threshold values of

buffer occupancy are configured which help identify congestion indication and

congestion release events. For example, when the buffer filling level surpasses the

upper threshold, it implies a congestion situation and when it goes below the lower

threshold, it gives an indication of congestion release. Although it is logical for

the back-pressure manager to act only when the congestion is detected, but it can
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Figure 4.3: Structure of the DiffServ transport scheduler for uplink.

be also be kept operational during other times. This is because, it will not restrict

the radio interface capacity until there exists an actual congestion in the transport

network.

As service discipline, a Weighted Round Robin (WRR) scheduler has been used

along with a strict priority scheduler for voice PHB. The Egress rate of the trans-

port uplink scheduler can be controlled with the help of a bandwidth shaping func-

tion. However, in this study the traffic shaping rate is fixed to a pre-configured

value during the whole simulation time.

4.1.2 Congestion Control Algorithm

The congestion control algorithm used by the back-pressure manager is shown

in Table 4.1 in the form of pseudocode. In order to operate according to this

algorithm, the back-pressure manager gathers the following pieces of information

from the transport scheduler and the MAC scheduler.

a) Available capacity for non-GBR traffic
The available capacity Cn-GBR for non-GBR bearer traffic at the transport sched-

uler is estimated from the measured egress rate of voice PHB Evoice
r and video PHB

Evideo
r as follow:

Cn-GBR =CS1UL −Evoice
r −Evideo

r (4.1)

where CS1UL is uplink bandwidth of last-mile S1 link.

Depending on the offered traffic load, the S1 uplink capacity is shared between

GBR and non-GBR bearers according to their assigned priority. The GBR traffic
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transmission often has on-off nature and uses the uplink capacity only when data

is available at the PHB queues. During the other times, this capacity is used by

the traffic of non-GBR bearers. Therefore, in the transport congestion situation an

accurate estimation of available S1 uplink capacity for traffic of non-GBR bearers

is important. To achieve this, the mean egress rate of GBR traffic is measured reg-

ularly at the transport scheduler. Using this information the capacity available to

non-GBR traffic Cn-GBR is then computed with the help of equation 4.1. The value

of Cn-GBR is sent to the back-pressure manager periodically (e.g., every 10ms) by

the transport scheduler.

b) TD Priority Term
In order to calculate the throughput allocation for each cell, the back-pressure

manager requires a TD priority term from the MAC scheduler. This term repre-

sents the QoS share information of the active bearers over the radio interface. This

term is computed based on the type of the time domain scheduler deployed in the

radio interface scheduling. The TD priority term κc is calculated per cell basis for

non-GBR bearers and is given as follows:

For ‘Proportional Fair’ (PF) time domain scheduler

κPF
c = ∑

i
R̂i ·Qk,i (4.2)

And for ‘Blind Equal Throughput’ (BET) time domain scheduler

κBET
c = ∑

i
Qk,i (4.3)

here i is the index of non-GBR bearers of QoS class k in a cell c. R̂i is the in-

stantaneous achievable data rate based on the channel quality or CQI value of the

corresponding UE being served with bearer i. Qk,i is the QoS weight which repre-

sents the relative priority of the respective bearer i of class k in the MAC schedul-

ing function. It can be noted that κPF
c includes both the channel quality and QoS

weight of the traffic class whereas the κBET
c relies only on the QoS weight.

c) Average radio cell throughput
An important piece of information required by the back-pressure manager from

the radio interface side is the mean cell throughput. This throughput value is mea-

sured at the RLC layer to exclude any HARQ retransmissions of the MAC layer

and, therefore, it is also called effective cell throughput. A bearer’s throughput

measured at the RLC layer differs from its measurement at the transport network

link (TNL). This is due to different protocol overheads at the radio and transport
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network interfaces. For the use of the back-pressure manager, the effective cell

throughput at the radio interface must be determined from the transport point of

view by considering all relevant transport protocol headers.

Owing to the fact that all radio bearers terminate at the PDCP layer and all

pertaining cell information of the traffic is lost at this point, a direct measurement

of the cell throughput is unfeasible at TNL. Therefore, the throughput change ρOH

due to TNL protocol overhead bits has to be estimated mathematically at the RLC

layer for each cell. The estimated value of ρOH is then added to the measured

cell throughput value ρ at the RLC layer to get an estimation of the effective cell

throughput ρ̃ at TNL, i.e.,

ρ̃ = ρ +ρOH (4.4)

MAC layer
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PDCP layer GTP layer

UDP layer

HGTP

HGTP HUDP
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HMACHRLCHPDCP

IP layer

Ethernet 
layer

  Radio Interface    S1/X2 interface  
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Cell throughput at transport 
network interface

Uplink data packets

Figure 4.4: An overview of cell throughput estimation process. The protocol headers of a

packet are shown for different layers of protocol stacks at the radio and transport network

interfaces.

The estimation of ρOH involves the implementation of two counters for non-

GBR traffic at the RLC layer. Within a certain time period T , one of the counters

is used to count the number of RLC PDUs NRLC received from the MAC layer and

the other counter monitors the number of PDCP PDUs NPDCP sent to the PDCP

layer after the reassembly process at the RLC layer. Considering the size of the

PDCP PDUs, NPDCP consists of two components: i) NPDCPL , number of packets

with a large size which cause IP fragmentation at the IP layer, and ii) NPDCPS ,

number of packet with small size and need not to be fragmented at the IP layer.

The protocol overhead OH at the transport network interface is computed for each
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packet based on its size as given below:

OHS = HGT P +HUDP +HIP +HET H , and (4.5)

OHL = HGT P +HUDP +2 ·HIP +2 ·HET H ; (4.6)

where H with a protocol name as its subscript represents the number bits of that

protocol header. Finally, the value of ρOH is computed as follows

ρOH =
NPDCPL ·OHL +NPDCPS ·OHS −NRLC ·HRLC −NPDCP ·HPDCP

T
(4.7)

Figure 4.4 elaborates the process of ρOH estimation. It shows the point where

the cell throughput ρ is measured at the radio interface. It also explains how ρ
differs at the transport network interface due to the protocol overheads.

Operation of the algorithm
On receiving the required information from the radio interface scheduler and

transport scheduler, the back-pressure manager computes the throughput alloca-

tion for non-GBR traffic of each cell by executing the instructions shown in Ta-

ble 4.1. The throughput allocation value ζ̃ for a cell determines the bandwidth

share of its non-GBR traffic from the limited transport link capacity. Using this

information the MAC scheduler restricts the uplink radio capacity for non-GBR

traffic accordingly in order to circumvent the transport congestion situations.

The algorithm listed in the execution section of Table 4.1 is rather simple. In the

first line, it is specified that the basic throughput share of a cell from the available

uplink capacity Cn-GBR is proportionate to its traffic load which is indicated by its

TD priority term. The rest of the instructions outline the procedure of redistributing

the surplus throughput fairly. Surplus throughput ν is in-excess throughput from

the basic allocated share which will be left unused by the cell. A positive value

of ν implies that the measured throughput amount less than the allocated basic

throughput share of the cell. Such a situation may occur if the cells of an eNB are

unevenly loaded with the user traffic.

At line 3, the surplus throughput ν is computed for each cell. Positive values of

ν are summed at line 4 to get the total surplus throughput of the system. Heavi-

side function H(·) is used here to ensure that the negative values are disregarded

in the summation process. At line 5, TD priority terms of the needy cells are

added up for later use at line 10. The FOR loop, at line 6, redistributes the overall

surplus throughput ν̂ among the needy cells in proportion to their traffic load or

TD priority term. It may happen that the redistribution again results in some sur-

plus throughput, therefore, the process at lines 3–12 is repeated until all surplus
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Table 4.1: Pseudocode for algorithm implemented at back-pressure manager

Given
S A set of all cells in the eNB

Cn-GBR Uplink capacity available to non-GBR traffic at eNB transport scheduler

κc TD priority term of a cell c; ∀c ∈ S
ρc Mean throughput of a cell c as seen at Uu interface; ∀c ∈ S
ρ̃c Mean throughput of a cell c as seen at TNL ; ∀c ∈ S
ρOH

c Difference of ρc and ρ̃c due to protocol overheads for a cell c; ∀c ∈ S
ΔSM Safety margin value

Define variables
ζc Throughput to be allocated to a cell c as seen at Uu interface; ∀c ∈ S
ζ̃c Throughput to be allocated to a cell c as seen at TNL; ∀c ∈ S
νc Surplus from the allocated throughput to a cell c;∀c ∈ S
ν̂ Overall surplus throughput of all cells in eNB;

κ̂ Sum of κc of cells having surplus throughput i.e., νc > 0;∀c ∈ S
Execute
1. SET ζ̃c to

(
Cn-GBR · (κc/∑c∈S κc)

)
; ∀c ∈ S

2. REPEAT

3. SET νc to (ζ̃c − ρ̃c); ∀c ∈ S

4. SET ν̂ to (∑c∈S H(νc) ·νc)

5. SET κ̂ to (∑c∈S(1−H(νc)) ·κc)

6. FOR ∀i ∈ S

7. IF ζ̃i ≥ ρ̃i THEN

8. SET ζ̃i to ρ̃i

9. ELSE

10. ADD (ν̂ · (κi/κ̂)) to ζ̃i

11. ENDIF

12. ENDFOR

13. UNTIL ν̂ > 0 OR ζ̃c = ρ̃c;∀c ∈ S

14. SET ζc to
(

ζ̃c − (ρOH
c /ρ̃c) · ζ̃c

)
; ∀c ∈ S

15. SET ζc to (ζc ·ΔSM) ; ∀c ∈ S
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throughput is consumed or no needy cell is found. At this point, the throughput

share of each cell ζ̃ at TNL becomes available. However, the MAC scheduler still

needs to know how much this throughput will amount at the radio interface. At

line 14, an estimation of TNL protocol overhead is subtracted from ζ̃ to obtain ζ ,

the throughput share of a cell at the radio interface. Finally, the effect of a pre-

defined safety margin value is added to ζ . As mentioned earlier, ζ represents the

cell capacity only for the non-GBR traffic. The GBR traffic is not affected by the

back-pressure manager.

The safety margin is a unit less multiplicative factor. A value of safety margin

less than 1.0 reduces the allowed cell throughput from the allocated throughput

share. Similarly a value of the safety margin greater than 1.0 implies that more

data traffic is being accepted from the radio interface than the calculated share. In

this way, the safety margin value provides an additional control to fine tune the

radio interface capacity which in turn helps regulate the buffer occupancy of the

BE PHB queue in the transport scheduler.

The back-pressure manager periodically sends the computed cell throughput

shares to the radio scheduler in order to limit the non-GBR traffic over the radio

interface. The radio scheduler imposes the cell throughput share value as the maxi-

mum cell throughput for non-GBR traffic and allocates the MAC grants to the UEs

accordingly. Limiting the radio interface capacity not only avoid the transport net-

work congestion but also helps users with bad channel conditions to transmit with

lower modulation and coding schemes (MCS) which are more robust against the

transmission errors.

4.1.3 Simulation Scenarios and Results

The simulation analysis presented in this work can be divided into three stages.

First of all, the implementation of the proposed algorithm is verified with simple

configurations and the configuration values to obtain an optimum performance are

discovered. In the second analysis, a modification in the back-pressure algorithm

is suggested which makes it usable in various system load conditions. Finally,

the modified algorithm is tested in an environment where the eNode-B cells are

unevenly loaded and it is shown that scarce S1 uplink bandwidth resources are

distributed fairly among the cells in proportion to their offered traffic load.

Table 4.2 lists the LTE simulator configuration parameters used to get the results

presented in this work. Distribution of the users with respect to their running

applications is shown in Table 4.3. Each user accesses one application at a time.

The VoIP users generate traffic flows both in uplink and downlink to mimic full

duplex voice conversation.
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Figure 4.5: An overview of the considered simulation scenario in the OPNET simulator.

Table 4.2: Simulation configurations for coordinated uplink radio interface scheduling

Parameter Configurations

User Profile Definition
Number of active users 30 per cell (3 cells per eNode-B)

FTP traffic model File size: constant 5MBytes , Inter-request time: exp(45) sec

VoIP traffic model
GSM EFR codec (12.2kbps) [72699], Call length: 90sec

Inter-arrival time: exp(30) sec

HTTP traffic model
Number of pages per session: 5, Inter-arrival time: exp(12) sec

Average page size: constant 100KB

User Mobility model Random direction (50km/h)

TCP configuration new Reno, receive window size 64KB, MSS: 1460Byte

Network Configuration
Total Number of PRBs 50 PRBs (10MHz spectrum)

MAC scheduler
Time domain: Proportional Fair

Frequency domain: Round Robin

Maximum scheduled user 6 users per TTI

S1 link type Ethernet 100BaseX (100Mbps)

RED parameters for DiffServ PHB queue size: 512KB; Queue filling thresholds–min:33%,

uplink transport scheduler max:100%; maximum discard probability: 20%

Congestion detection Congestion indication at 80% of PHB queue filling

threshold parameters Congestion release at 20% of PHB queue filling

Simulation run time 2000 seconds
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Table 4.3: User distribution for simulation analysis 1 and 2.

Number of UEs/cell – downlink Number of UEs/cell – uplink

QCI 1 QCI 8 QCI 9 QCI 1 QCI 8 QCI 9
10 VoIP 10 HTTP 2 FTP 10 VoIP none 8 FTP

4.1.3.1 Simulation Analysis 1

In this simulation analysis the performance of the back-pressure algorithm is stud-

ied using different values of the safety margin. Due to the fact that there exists

a certain signaling/processing delay in the information collection process of the

back-pressure manager, there could be some time lag in the computation of the

S1 uplink capacity available to the non-GBR traffic of the cells. Therefore, in this

analysis the offered load to the S1 link of limited capacity is tuned using a range of

safety margin values from 0.95 to 1.20. Moreover, the congestion control mecha-

nism of the back-pressure manager is kept activated irrespective of the congestion

detection/release triggers received from the transport scheduler. This is because

a simulation study of the system shows that frequent congestion detection/release

triggers could lead to unstable system states. For example, when the system is in

the congestion state the PHB queue buffer occupancy increases and activates the

congestion detection trigger. In response to this, the back-pressure manager con-

trols the congestion and brings the buffer occupancy down to the lower threshold

value. This generates the congestion release trigger and makes the back-pressure

manager stop all traffic regulation. If the offered traffic load remains unchanged

then after a short period of time the buffer occupancy again surpasses the upper

threshold leading to a new congestion detection trigger. This cyclic behavior con-

tinues and, as a result, the buffer occupancy fluctuates between the two threshold

values. Further study of this behavior reveals that such oscillations can be rectified

if the congestion control mechanism of the back-pressure manager is always kept

functional regardless of the congestion detection/release triggers. This strategy

not only stabilizes the system but also help regulate the uplink traffic preemptively

before the transport network fully enters in congestion state.

Figure 4.6(a) shows how the buffer occupancy of the BE PHB queue varies

against different values of safety margin and also when the proposed algorithm

is not used, i.e., CC:off. In the CC:off case, the Random Early Detection (RED)

[FJ93] scheme performs the buffer management at the DiffServ scheduler. The

details of the RED scheme will be described in Section 4.3.2. During the con-

gestion situations the RED scheme discards a large number of packets transmitted

by the UEs in uplink. For example, with the current configuration of RED pa-
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Figure 4.6: Mean buffer occupancy of BE PHB queue and uplink throughput for different

safety margin values.

rameters and offered load approximately 12 IP packets are discarded per second.

These losses have to be recovered by the upper layer protocols (e.g., TCP) through

the retransmissions. As a consequence, the battery power of the UE as well as the

radio interface capacity is wasted. The proposed mechanism avoids the packet dis-

cards during the congestion and keeps the BE PHB buffer occupancy at the lowest

possible level to enhance the system performance.

The role of the safety margin factor can also be studied both in Figure 4.6(a)

and Figure 4.6(b). The safety margin provides a fine control on the BE PHB buffer

occupancy level. This control is important because of the fact that too low buffer

occupancy could cause buffer under-runs while too high buffer occupancy could

lead to packet drops. Therefore, an appropriate value of the BE PHB queue buffer

occupancy must be achieved by tuning safety margin value. Figure 4.6(a) indicates

that using the safety margin value of 1.20 (which allows 20% more traffic from

radio interface than the available capacity at transport network) could lead to a

full buffer situation. On the other hand, an interesting observation can be made

from Figure 4.6(b) that with the lower values of safety margin the available uplink

transport capacity cannot be utilized as much as in the CC:off case. For example, a

safety margin value of 0.90 makes uplink transport carry 10% less traffic compared

to the CC:off case just because of buffer under-runs. Therefore, it is expected that

lower values of safety margin can degrade uplink application performance. This
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effect can be observed in Figure 4.7.

Figure 4.7 shows the performance of uplink and downlink applications. One

can observe the application performance for different values of safety margin and

compare them against the case when the congestion control mechanism is not used,

i.e., CC:off. As far as the FTP uplink performance is concerned, the CC:off case

provides the lowest mean file upload time by fully utilizing the available uplink

transport network capacity. The safety margin value of 1.20 delivers the FTP up-

link performance close to the best case while all other investigated values of safety

margin degrade user experience of file upload. On the other hand, the performance

of downlink applications, i.e., HTTP/FTP is superior for nearly all safety margin

values compared to CC:off case. The safety margin value of 1.20 represents the

only scenario where downlink application performance is worse than the CC:off

case. This is because all safety margin values except 1.20 create lower buffer occu-

pancy as compared to CC:off case. Relatively high safety margin values make the

BE PHB queue buffer occupancy increase and hence TCP acknowledgement pack-

ets have to wait longer in the queue leading to additional delays in file download.

Studying the presented results, the safety margin value of 1.10 can be considered

as the best choice which provides a considerable gain in downlink application per-

formance at the cost of negligible degradation in uplink application performance.
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Figure 4.7: FTP and HTTP application performance for different values of safety margin.
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4.1.3.2 Simulation Analysis 2

It can be inferred from previous simulation analysis that the buffer under-runs of

the BE PHB queue at the uplink transport scheduler could be avoided by care-

fully regulating the safety margin value. However, the problem is to determine an

appropriate value of the safety margin for each scenario. Owing to the fact that

an optimum value of safety margin depends on the current carried traffic load, the

feasible safety margin value should be selected automatically in response to the of-

fered traffic load level. This can be achieved by defining a range of safety margin

values against a range of buffer occupancy threshold levels. An operative value

of the safety margin is then determined by linear interpolation between the two

boundary values in response to the buffer filling level. For example, when there is

low buffer occupancy, a large safety margin value should be used to allow more

traffic from the radio interface and vice versa.

In the above proposed modification of algorithm, buffer occupancy serves an

indication of congestion level in the network. However, a literature survey reveals

that buffer occupancy alone cannot always be used as a measure of the congestion

level at a network interface [J. 05]. Therefore, it is not recommended to regulate

the safety margin using bare buffer occupancy values. This issue is resolved by

devising a sophisticated approach that considers the egress rate of the transport

scheduler for the BE PHB queue along with its buffer occupancy. In other words,

allow high buffer occupancy when egress rate is high so that buffer under-runs can

be avoided and keep buffer occupancy low when egress rate is small to circumvent

the buffer overflows and the excessive queuing delays. A ratio of buffer occupancy

level and egress rate, termed as effective buffer filling level, can be defined as

below

Effective buffer filling level =
Buffer occupancy (bits)

Egress rate (bps)
(4.8)

Effective buffer filling level or EBFL is measured in units of second and it hints

at the maximum queuing delay experienced by a packet in the PHB queue. The

safety margin value varies linearly with the effective buffer filling level as indicated

below:

Safety margin ∝ f (effective buffer filling level) (4.9)

In this simulation analysis different value ranges for EBFL are studied while

keeping the range of the safety margin value fixed, i.e., 0.9–1.5. Moreover, the

uplink bandwidth shaping rate is reduced from 11Mbps to 10Mbps in order to

evaluate the system performance at an even higher level of transport network con-

gestion.
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Figure 4.8 shows the mean buffer occupancy and the uplink throughput for three

different value ranges of the EBFL. It is noticed that the EBFL values can be used

to achieve the desired level of PHB queue buffer occupancy. Moreover, with the

help of this new approach buffer under-runs are eliminated and full capacity of

uplink transport network is utilized for all three investigated EBFL value ranges.

As a result, it can be expected that the FTP uplink performance will no longer be

compromised due to buffer under-runs.
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Figure 4.8: Mean buffer occupancy of BE PHB queue and uplink throughput for several

EBFL values.

Figure 4.9 shows the performance of uplink and downlink applications in the

system. As anticipated the FTP uplink performance is almost identical for all

cases. In addition, the back-pressure manager avoids the packet losses which, oth-

erwise, might be encountered due to high buffer occupancy and hence saves UE

battery power. Moreover, lower PHB queue buffer occupancy by the congestion

control mechanism also helps improve the downlink application performance as

shown in Figure 4.9(b). It can be noticed that the HTTP application benefits more

from low buffer occupancy and shorter round trip time compared to the FTP down-

link application. This is because of small object sizes (100KB) which download

completely during the TCP slow start phase. In slow start phase, shorter round

trip time improves user throughput significantly higher compared to the conges-

tion avoidance phase. Moreover, it can be seen that FTP uplink performance is

not affected by the shorter TCP round trip time. This is due to the reason that up-
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link Uu interface capacity has been limited by MAC scheduler to avoid transport

network congestions. The best choice of the EBFL value range can be accredited

as 5–30msec. In principle this choice is independent of the offered traffic load as

shown in the next subsection.
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Figure 4.9: FTP and HTTP application performance for different values of effective buffer

filling level.

4.1.3.3 Simulation Analysis 3

In this subsection the performance of the back-pressure manager will be evaluated

when the three cells of the eNode-B are unevenly loaded with uplink user traffic.

With the help of this analysis it will be shown that the proposed congestion control

algorithm distributes transport network bandwidth resources among all the cells in

proportion to their carried traffic load. Table 4.4 shows the distribution of FTP up-

link users in three cells of eNode-B for the investigated scenarios. Apart from the

FTP uplink users, each cell has 10 VoIP users who are generating both uplink and

downlink traffic. UEs with HTTP and FTP downlink application are not included

in this investigation. The S1 uplink capacity is still limited to 10Mbps. Moreover,

based on the findings of previous simulation analyses, the following parameter set-

tings are used for the back-pressure manager: Effective buffer filling thresholds of

(5–30msec) with safety margin value thresholds (0.9–1.5).

Figure 4.10 shows the FTP uplink performance as experienced by the users in

the three cells of the eNode-B. It can be seen that the FTP file upload time is inde-
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Table 4.4: Number of FTP uplink users in the three cells of the eNode-B.

Cell 1 Cell 2 Cell 3

Scenario 3a 10 10 10

Scenario 3b 8 14 8

Scenario 3c 6 14 10

pendent of the user traffic load in the cells. A similar statement can also be made

for the number of completed file uploads per user. Hence it proves that the pro-

posed algorithm fairly distributes the limited transport bandwidth resources among

the cells of the eNode-B in accordance to their traffic demands. For example, when

cells are equally loaded they receive the equal share of the transport bandwidth re-

sources and when the cells are offered with unequal traffic load they are provided

with the proportional share of the S1 link capacity.

Scenario 3a Scenario 3b Scenario 3c
0

20

40

60

80

100

120

140

160

180

200

M
ea

n 
Fi

le
 U

pl
oa

d 
Ti

m
e 

(s
ec

)

FTP Uplink Performance

cell 1 cell 2 cell 3

(a)

Scenario 3a Scenario 3b Scenario 3c
0

2

4

6

8

10

12

14

16

18

20

M
ea

n 
nu

m
be

r o
f u

pl
oa

de
d 

fil
es

Number of File Uploads Per User

cell 1 cell 2 cell 3

(b)

Figure 4.10: FTP uplink application performance when the eNode-B cells are unevenly

loaded with user traffic.

It can be concluded from the study of simulation results that the proposed mech-

anism performs an effective congestion control and enhances the system perfor-

mance in several ways. For example, it saves battery power of UEs by avoiding

the packet drops of uplink traffic at the congested transport network, it brings per-

formance gain to user applications, and it also improves the system stability in

congestion situations. In addition it was also revealed that the uplink congestion



4.2 Adaptive Fair Radio Interface Scheduling 95

at the last mile can adversely affect the downlink application performance by de-

laying the higher layer acknowledgements in the uplink direction. The proposed

algorithm also completely mitigates such adverse effects and helps achieve the

sustainable system performance under the variable traffic load conditions.

The back-pressure mechanism is effective only for the uplink communication.

The next section discusses an adaptive radio MAC scheduling algorithm which

does not explicitly coordinate with the transport network but conforms its behav-

ior to the air interface load and can be used both for the uplink and downlink

communications.

4.2 Adaptive Fair Radio Interface Scheduling

The LTE packet scheduler is in charge of scheduling bandwidth resources among

the users by following one of the specific policies to meet system performance

targets. These targets may include, e.g., maximizing cell throughput, providing

fairness of service among the users or guaranteeing the required QoS etc. Ev-

ery packet scheduling scheme or policy has certain merits and demerits, e.g., if a

scheme tries to maximize the cell throughput, it compromises the fairness among

the users. Similarly if another scheme emphasizes fairness among users, it fails

achieve the maximum cell throughput. Owing to the fact that the selection of

the packet scheduling scheme belongs to those configurations which must be se-

lected during the network planning phase, the network operator has to select one

of the available schemes exclusively. In this study, an adaptive packet scheduling

approach is introduced which dynamically changes its behavior based on system

requirements. Though the downlink shared channel is taken as a reference, the

proposed scheme is also valid for the uplink transmissions.

There are numerous research studies which focus on different aspects of the

packet scheduling schemes in LTE. For example, QoS aware packet schedulers for

OFDMA are discussed in [NH06] and [F.R04]. [ A.07] and [P. 08] introduce a

packet scheduling framework for LTE where the resource allocation procedure is

decoupled into a time and a frequency domain scheduler. They also present a study

where different scheduling schemes are used in both time and frequency domain

to control fairness among users. In [Y. 11] authors have presented a modified

proportional fair scheduler for an enhanced QoS service aware scheduling in LTE.

However, they do not address the service fairness issues among the users in a

certain QoS class. A study which is closely related to this work can be found in

[G. 08]. It introduces a metric weighting based on the number of users in the cell

to control resource assignment in the frequency domain scheduler.
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In the following, background information of LTE scheduling is presented after

which the proposed scheduling scheme is discussed in section 4.2.1 and 4.2.2.

4.2.1 LTE Packet Scheduler

As mentioned earlier, the LTE packet scheduling refers to the process of dividing

and allocating bandwidth resources among users who have data to be transmitted

at the air interface. In LTE the resource scheduling is performed every Transmis-

sion Time Interval (TTI) which amounts to 1ms. This work follows the decoupling

principle of the LTE packet scheduling procedure as suggested in [P. 08]. In this

way, every TTI the time domain scheduler performs user identification, QoS classi-

fication and bearer prioritization. Then at the frequency domain scheduler selected

users are served with a certain number of resources. In the following further details

about the two schedulers are given.

4.2.1.1 Time Domain Scheduler

The time domain (TD) scheduler is responsible for selecting a subset of active

users in a cell for transmission in a TTI. The selection criteria involve a priority

metric which may be based on service preferences, current user channel conditions

(i.e., CQI) as well as other user throughput and packet delay constraints related to

QoS requirements. In the following three basic schemes used for user prioritization

and selection are introduced.

a) Blind Equal Throughput
The Blind Equal Throughput (BET) scheduler which is also called ‘Fair Sched-

uler’ provides throughput fairness among all active users regardless of their chan-

nel conditions. To achieve this property, the BET scheduler uses a priority metric

which considers history values of average user throughput. This priority metric is

calculated for a user i as follows

MBET
i =

1

Ri(t)
(4.10)

here Ri(t) is the past average throughput of user i. The moothed value of Ri(t) is

computed using a weighted moving average formula, e.g.,

Ri(t) =
1

T
·Ri(t)+(1− 1

T
) ·Ri(t −1)

here Ri(t) is the instantaneous value of user received goodput at the MAC layer

excluding any HARQ retransmissions. It should be noted that the value of Ri(t)
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is taken as zero for that TTI during which user i is not scheduled despite being a

candidate for scheduling. Moreover, the value of Ri(t) is only updated during the

times when user i is active.

It is clear from equation 4.10 that the BET scheduler prioritizes those users

whose average throughput has been lower in the past. Following this scheme the

users with lower average throughput will be scheduled until they achieve the same

throughput as the other users in the cell. This implies that users with bad channel

conditions are allocated more resources compared to the users with good channel

conditions. Consequently, throughput fairness among the users is achieved at the

expense of spectral efficiency. That is why, the BET scheduler cannot attain as

high cell throughput as achieved by other channel aware schedulers.

Practically, throughput fairness is not always required for all users in the system.

Instead, fairness is desirable among a set of users belonging to a certain QoS class.

Most commonly, the BET scheduler can be adapted for a system with multiple QoS

classes by introducing QoS weight factors (Q) in the priority metric. This scheme

is called weighted fair queuing. The priority metric now takes the following form

MBETqos
i =

1

Ri(t)
·Qk (4.11)

here Qk is the priority weight associated to a certain QoS class k to which user i be-

longs. In this way, the resources are shared among the QoS classes in proportion to

their associated weights while the users within a certain QoS class still experience

the throughput fairness.

b) Maximum Throughput Scheduler
In LTE, the user channel quality can be estimated from the CQI (Channel Qual-

ity Indicator) reports which are periodically sent by the user equipment to the base

station through control messages. With the help of CQI reports, the packet sched-

uler can predict the maximum achievable throughput for the respective user. This

information can be used in the priority metric to prioritize users with good chan-

nel conditions over the users with bad channel conditions. This helps in achieving

high spectral efficiency and hence high cell throughput. The packet scheduler

which works according to this principle is called Maximum Throughput (MaxT)

scheduler. The priority metric for the MaxT scheduler is given as follows

MMaxT
i = R̂i(t) (4.12)

here R̂i(t) is the instantaneous achievable data rate based on channel quality or CQI

value of user i. Though the MaxT scheduler is capable of delivering the highest

possible cell throughput, it comes at the expense of fairness. This is because users
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with bad average channel conditions are selected less often and, therefore, they

achieve lower throughput compared to the users with good channel conditions.

c) Proportional Fair Scheduler
Both the BET and the MaxT schedulers operate on two extremes of fairness

and spectral efficiency. In practice an intermediate solution is required which lies

between these extremes so that it exploits the good channel conditions while still

providing a certain degree of fairness among the users. Such a trade-off behavior

can be achieved with the help of the Proportional Fair (PF) scheduler. The priority

metric for the PF scheduler is obtained by combining the priority metrics of BET

and MaxT scheduler, i.e.,

MPF
i =

R̂i(t)
Ri(t)

(4.13)

The philosophy behind the PF scheduler is to weigh the MaxT priority metric with

the inverse of past average throughput so that the users with bad channel conditions

get a bit higher priority when they suffer from low throughput.

4.2.1.2 Frequency Domain Scheduler

The frequency domain (FD) scheduler allocates resources (number of PRBs) to

the users provided by the TD scheduler. Theoretically, it is possible for the FD

scheduler to use those scheduling schemes which have been discussed for the time

domain scheduler. However, in order to avoid implementation complexities in real

hardware a simple resource distribution scheme like Round Robin is employed in

the frequency domain scheduling. As an outcome of the Round Robin scheme, the

available PRBs are evenly distributed among the n selected users. Usually there

exists an upper limit on the number of users N which can be served in a TTI.

Therefore, if the time domain scheduler prepares a list of users with n > N, only

the first N users in the prioritized list are served in a TTI leaving the rest of the

users un-served.

4.2.2 Adaptive Fair Scheduler

In practice, if the radio interface is not congested, a network operator prefers the

BET scheduler to achieve high fairness and enhance the cell coverage. On the

other hand, in congestion situations the proportional fair scheduler is favored in

order to increase spectral efficiency by compromising fairness. As far as system

load in wireless networks is concerned, it changes dynamically with time due to

several reasons like user mobility patterns, time varying user traffic profiles, and
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channel conditions etc. This may give rise to events when offered traffic load is

low and the packet scheduler has more than enough radio bandwidth resources to

serve that load. Such situations can also be encountered when a bottleneck appears

in the transport network due to which small traffic load is observed at the radio in-

terface. The proposed Adaptive Fair scheduler has been designed to assess such

situations and behave accordingly. It evaluates the radio interface congestion level

and acts as a BET scheduler if no or light congestion is detected and operates as a

PF scheduler otherwise. The adaptive fair scheduler is also called coordinated ra-

dio interface scheduler because it coordinates with the transport and radio interface

congestion to determine its behavior. The scheduler has been designed in a way

that instead of making abrupt changes in its behavior between PF and BET sched-

ulers, Adaptive Fair scheduler gradually shifts based on the perceived congestion

level. An overview of such a behavior is shown in Figure 4.11. In this figure the

fairness level is determined from the ratio of maximum value and minimum value

among the active user throughput values in the cell. In this way, perfect fairness is

achieved when this ratio has a value equal to 1.
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Figure 4.11: Operation range of the proposed adaptive fair scheduler. The solid curve repre-

sents the hypothetical cell throughput for different scheduler behaviors. The curve with the

dotted line shows service fairness level among the users in terms of maximum user through-

put to minimum user throughput ratio. Large values of this ratio indicate lower fairness.

The adaptive fair scheduler is proposed to work as a time domain scheduler for

LTE. The priority metric for the AF scheduler is shown below:

MAF
i = w j(t) ·MBET

i +(1−w j(t)) ·MPF
i (4.14)
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substituting the values of MBET and MPF in the above equation:

MAF
i = w j(t) · 1

Ri(t)
+(1−w j(t)) · R̂i(t)

Ri(t)
(4.15)

where

w j(t) =

{
max(w j(t −1)+Δw,1) if Δw ≥ 0,

min(w j(t −1)+Δw,0) if Δw < 0

and

Δw = w j(t)−w j(t −1)

here w j(t) is the weight factor for a cell j which represents the congestion level

at the radio interface of the respective cell. Its value range is from 0 to 1. For

example, w j(t) = 0 means that cell j is in a sever congestion and w j(t) = 1 implies

that the cell is undergoing a mild congestion or it is not congested at all. There are

several possible ways to determine the weight factor based on the radio interface

congestion level. This works follows the idea of estimating the radio congestion

level in a cell by observing the PDCP buffer occupancy of all active users in the

cell.

It has already been discussed in section 4.1.3.2 that buffer occupancy alone can-

not always be used as a measure of the congestion level at a network interface.

For example, consider a situation where several TCP users are being served in a

cell. If the TCP window size is small there will be no large buffer occupancy at

the eNode-B PDCP buffers despite actual radio congestion. Similarly, if users a

have large TCP window size a large buffer occupancy can be observed regardless

of the fact that the users are experiencing high throughput and there is no radio

congestion.

An alternative approach of estimating radio interface congestion is to use the

packet waiting time of the PDCP buffer queue instead of the bare queue occupancy

level values. This packet waiting time is defined as Effective Buffer Filling Level

(EBFL) which is calculated by dividing the total buffer occupancy with the total

average cell throughput, in a way similar to equation 4.8, i.e.,

EBFL =
Total PDCP buffer occupancy

Average cell throughput
(4.16)

Two threshold values of EBFL are used corresponding to the congestion level:

The lower threshold value which maps to w j = 1 represents no or a very light

congestion level and the upper threshold value mapped to w j = 0 indicates a severe
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Figure 4.12: Linear mapping of EBFL values to the weight factor (w j) values.

congestion. This can be seen in Figure 4.12 where the EBFL value is used to obtain

the weight factor through the linear mapping.

It should be noted that the EBFL value is computed for each cell at the eNode-B.

This means that the total buffer occupancy in the numerator of equation 4.16 is ob-

tained by adding the PDCP buffer occupancy of all active users in the correspond-

ing cell. Similarly the average throughput, shown in the denominator, is calculated

by summing up the average throughput values of individual users, i.e.,

Average throughput of cell j = ∑
i ∈Uj

Ri(t)

where Uj is a set of active users attached to cell j.

4.2.3 Simulation Scenario and Results

Figure 4.13 shows an overview of the simulation scenario in OPNET. The system is

populated with 10 users running FTP download application. In order to highlight

the effects of the Adaptive Fair scheduler on system performance, the users are

classified into two groups. Each group consists of 5 users and the user mobility is

disabled so that the users remain stationary during the whole simulation time. One

group of the users is located near the eNode-B and hence has good channel quality.

The second group of users is placed very far from the eNode-B at 200m distance

and, therefore, suffers from bad channel quality. The simulation configuration

parameters are shown in Table 4.5.

The user FTP application has been configured in a way that the users download

files one after the other without any time gap. Therefore a large traffic load is

observed in the system which brings the radio interface to the congested state. The

transport network links (i.e., Ethernet links between serving-GW and eNode-B) are
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Figure 4.13: Overview of the considered simulation scenario in the OPNET simulator.

of 1Gbps capacity which is sufficient to carry the generated traffic load. Therefore,

the only bottleneck in the system exists at the radio interface.

Table 4.5: Configurations for simulation scenario of Adaptive Fair scheduler.

Parameter Configurations

Total Number of PRBs 50 PRBs (10MHz spectrum)

Number of users
5 users near the eNB at a distance of 50m and the other 5 users are

placed near the cell boundary, i.e., at 200m distance from eNB.

MAC scheduler
Time domain: BET, PF and Adaptive Fair

Frequency domain: Round Robin

Maximum number of
6 users per TTI

scheduled user

EBFL thresholds
Lower threshold: 50msec

Upper threshold: 200msec

User mobility model none. Users are static.

User application FTP file download

FTP traffic model
FTP File size: constant 10MByte. Continuous file downloads

one after the other without time gap.

Simulation run time 2000 seconds

The congestion level at the radio interface is controlled by the throughput band-

width shaping function at the last-mile router (i.e., Router in Figure 4.13). With

the help of the bandwidth shaping function the amount of downlink traffic on the

S1 link can be controlled in order to tune the radio interface congestion level. In
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this simulation setup the traffic shaping rate at the bandwidth shaping function has

been varied to get a range of values (from 0 to 1) for the weight factor (w).

Figure 4.14(a) shows the mean downlink user throughput when the BET sched-

uler is used. The throughput values have been shown for user groups with good

and bad channel conditions at different radio congestion levels represented by w.

It should be remembered that the lower the value of w, the lower the radio interface

congestion level. Moreover, as evident from equation 4.10 and 4.13, the w factor

has no direct influence on the behavior of the BET and PF scheduler. Instead the

w factor values on the x-axis of Figure 4.14 just represent different radio conges-

tion levels at which performance of these two schedulers can be compared with

the adaptive fair scheduler. It can be noticed in the Figure 4.14(a) that the the user

throughput is not affected by the radio interface congestion which is an expected

behavior of the BET scheduler. Hence, the users experience similar throughput

regardless of their channel quality for all radio congestion levels.

Figure 4.14(b) shows the performance of the proportional fair scheduler in terms

of the mean downlink user throughput. With the proportional fair scheduler users

always manage to achieve high throughput when they have good channel condi-

tions. Even during the transport network congestion, TCP tries to get higher data

rates for users with better channel conditions until the packet drops happen due

to congestion. TCP packet drops trigger the TCP timeout event and hence TCP

has to undergo the slow-start phase. Such packet drops are avoided in this sim-

ulation setup by employing a large buffer for the bandwidth shaping function at

the last-mile router. Due to this reason, users with good channel conditions can

attain higher data rates compared to the users with bad channel condition despite

the transport network bottleneck.

Figure 4.15 shows the behavior of the proposed Adaptive Fair scheduler. It can

be seen that during the times when the radio interface has a high offered traffic load

(i.e., small values of w), the adaptive fair scheduler behaves more like proportional

fair scheduler. This helps users to exploit good channel quality to enhance overall

cell throughput by compromising the fairness. As soon as the bottleneck shifts

towards the transport network. it relieves the radio interface congestion and con-

sequently the value of w increases more towards 1. This makes the adaptive fair

schedule to act more like a BET scheduler to provide throughput fairness among

the users.

The mean cell throughput values can be seen in Figure 4.16 for three types of

time domain schedulers. It can be observed that the adaptive fair scheduler con-

forms with the radio interface congestion situation by providing high cell through-

put when the radio interface is exposed to a high traffic volume. However, when

there are access resources available at the radio interface, user throughput fairness
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Figure 4.14: Mean per user throughput values for BET and PF time domain scheduler.
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Figure 4.15: Mean per user throughput values for adaptive fair time domain scheduler.

is preferred by adapting to the BET scheduler behavior.

The discussion on simulation results concludes that the Adaptive Fair scheduler

can dynamically change its behavior in response to system load conditions. The

proposed scheduler is intelligent enough to precisely evaluate the radio interface

congestion level and adapt the system demands. During the time when radio inter-

face acts as a bottleneck due to scarce radio bandwidth resources, it enhances the

spectral efficiency by tending towards Proportional Fair scheduler. At other times

when radio interface is not congested, it provides throughput fairness among the
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Figure 4.16: Mean per cell throughput values for three types of time domain schedulers.

users at the expense of radio resources through the use of Blind Equal Through-

put scheme. The simplicity of Adaptive Fair scheduler in terms of implementation

makes it suitable for deployment in real systems.

So far two enhancements related to the air interface scheduling has been dis-

cussed in this chapter. The next topic is about the packet queue management for

the air interface scheduler. The following section discusses some popular queue

management schemes which can be employed in this regard.

4.3 PDCP Buffer Management Schemes

Ever increasing data rate demands of the user applications can easily bring LTE

air interface to a congested state despite its high efficiency. In other words, there

could be situations when the instantaneous data rate available on the air interface is

smaller than the data rate available on the transport network. This leads to buffer-

ing at the PDCP layer in the eNode-B, when referring to downlink communication.

On the one hand, this buffering is a blessing that it provides flexibility to the MAC

scheduler so that the instantaneous data rate at the air interface can be varied in

order to adapt to user current radio channel conditions and get advantage of multi

user diversity. On the other hand, if the data rate provided by the air interface fails

to catch up with the data rate from transport network for a long period, it results in

a large amount of buffered data accumulation. Too high PDCP buffer occupancy,

in turn, causes longer queuing delays before the data can be transmitted over the air

interface. Long queuing delays then lead to large packet end-to-end delays produc-
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ing adverse effects for both the realtime and the non-realtime applications. This

is because, realtime applications have strict requirements on end-to-end packet

delay which must be fulfilled to achieve acceptable user Quality of Experience

(QoE). For example, conversational VoIP demands mouth-to-ear delay to be less

than 150ms in order to achieve transparent interactivity. Similarly, user QoE for

TCP based non-realtime applications is also greatly influenced by the end-to-end

packet delay as shown by the following equation

TCP throughput <
MSS
RT T

· 1√
PLR

(4.17)

where MSS is the maximum TCP segment size, RT T is the TCP segment round

trip time and PLR is the packet loss rate [M. 97].

PDCP buffer occupancy also plays an important role in the handover process

(see Section 2.4.6 for details about the LTE handover process). During inter

eNode-B handovers, when the connection is interrupted from the source eNode-B

and again made at target eNode-B, the data to UE is buffered at the source eNode-B

and forwarded to target eNode-B over the S1/X2 interface. There are two con-

stituents of this data: i) the contents of PDCP buffer at the beginning of handover

event and, ii) new incoming data from S-GW until the destination of data deliv-

ery path is switched from source eNode-B to the target eNode-B. The larger the

PDCP buffer contents, the higher will be the S1/X2 traffic volume. This large

traffic volume which must be transported within a short period of time consumes

expensive transport network bandwidths in addition to extending the handover de-

lays [3GP08].

In the fixed internet, a typical action of a router is to drop packets when the

data rate demand of an application exceeds the available data rate in a part of

the network. This gives the application a hint about the network congestion in

reaction to which it tries to adapt to the available network capacity by reducing the

transmission rate. For example, TCP reduces its transmit window size on detecting

the packet loss, thus adapting to the available rate. Similarly, other applications

like VoIP or video streaming can detect the packet loss via RTCP (Real Time

Transport Control Protocol) feedback, and can adjust to the network conditions

accordingly.

In order to allow the above mechanisms to work for LTE and to avoid exces-

sive delays, a buffer management scheme is required at the PDCP layer. This

scheme should keep buffer occupancy to a minimum level needed to achieve the

optimum end-to-end application performance. This work investigates two buffer

management schemes which can be used to control PDCP buffer occupancy in

an effective manner to optimize the end-to-end performance. The first scheme is
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a packet waiting time based discard mechanism which is also recommended by

3GPP standards. The second scheme is based on the well-known Random Early

Detection (RED) mechanism. In addition, the performance of a simple tail drop

scheme is also compared with that of the two aforementioned buffer management

schemes.

4.3.1 Discard Timer

In this scheme, a maximum limit is imposed on the waiting time of a packet in a

queue. Packets are time stamped upon their arrival in the queue. The waiting time

of packets is continuously monitored and those packets, for which the maximum

limit of waiting time is exceeded, are discarded. With the help of this scheme a

precise upper bound on queuing delay can be achieved.

At the PDCP layer this scheme is implemented using a packet queue of large

capacity. At the inlet, incoming IP packets from the higher layer are enqueued

without any discard. However, when the data is requested by lower layers, typi-

cally, at the MAC scheduling events, the queuing delay of each forwarded packet

is ensured to be less than the maximum threshold by discarding older packets. This

mechanism is applied independently on each bearer’s PDCP buffer. Figure 4.17

elaborates how the discard timer algorithm functions.
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Figure 4.17: Discard timer based buffer management.
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4.3.2 Random Early Detection (RED)

The basic idea behind random early detection is to detect incipient congestion

and notify the end hosts, allowing them to reduce their transmission data rates

before queues in the network overflow. For this purpose, an implementation of

RED continuously monitors the average queue length; when it exceeds beyond

a threshold, incoming packets are randomly dropped with a certain probability

irrespective of the fact that there still exists room for more packets. With this

strategy, the dropping of packets serves as an early notification conveyed to the

source to reduce its transmission rate.

The RED algorithm itself consists of two main parts: average queue size estima-

tion and the decision of whether an incoming packet should be dropped or buffered.

The average queue occupancy is computed using a low pass filter with exponential

weighted moving average. The average queue occupancy gavg is then compared

with two threshold values, a minimum threshold gmin and a maximum threshold

gmax. As long as the average queue occupancy is less than the minimum threshold

all incoming packets are simply enqueued and no drop takes place. When average

queue occupancy grows beyond the minimum threshold but remains less than the

maximum threshold, some of the incoming packets are dropped randomly follow-

ing a certain probability pa, termed ‘drop probability’. If the congestion continues

growing and the average queue occupancy exceeds the maximum threshold, all

incoming packets are dropped to avoid persistently full queues. This behavior has

been depicted in Figure 4.18(a).
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Figure 4.18: Drop probability profile of RED and Tail Drop based schemes.

The drop probability pa is calculated as a function of average queue occupancy

gavg as follows:
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pa =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if gavg ≤ gmin

pmax · gavg −gmin

gmax −gmin
if gmin < gavg ≤ gmax

1 otherwise

(4.18)

The advantage of the RED approach is that it prevents massive packet loss due

to sudden bursts of traffic. This is because the occupancy of the queue stays closer

to a moving average and not to the capacity. Therefore, space typically exists to

accommodate the traffic bursts. Another advantage of RED is its ability to alleviate

the TCP synchronization issue, a phenomenon associated with TCP sessions. In

this phenomenon a massive traffic loss triggers the TCP back-off mechanism due

to which all sessions enter the initial state of TCP slow start and then all start to

ramp up their congestion windows simultaneously. As a result, for a sufficient

amount of time the related link remains under-utilized.

The random nature of packet dropping in RED helps provide a fair resource

allocation among the traffic flows to a certain extent. This is because RED drops

packet randomly, the probability that a packet is dropped from a particular traffic

flow is roughly proportional to that flow’s share of bandwidth at that link. As

high bandwidth flows send large number of packets to the queue, it provides more

candidates for random dropping, thus penalizing them in proportion. A precise

fairness, however, cannot be guaranteed with RED.

4.3.3 Tail Drop

The strategy behind ’Tail Drop’ is very simple: if queue length is less than max-

imum threshold gmax, enqueue the incoming packet; otherwise drop it. Usually

the maximum threshold gmax is set equal to the maximum queue capacity. In Fig-

ure 4.18(b) the drop probability profile has been shown for the tail drop scheme. It

is illustrated that the drop probability pa is always zero unless the queue occupancy

greaches the gmax value, in which case the probability jumps straight to 1.

Though this approach has been in use for many years, it has some drawbacks,

e.g., TCP synchronization, lockouts, and full queue. The TCP synchronization

issue has been explained under the RED discussion previously. The Lockout is a

situation when a small fraction of traffic flows receives a large proportion of the

bandwidth which leads to an unfair allocation of the link resources. The Full queue

indicates very large queue occupancy which causes significantly high end-to-end

packet delay and jitter.



110 4 LTE Access Interface Enhancements

4.3.4 Simulation Scenarios

Table 4.6 lists the LTE simulator configuration parameters and user traffic mod-

els. It can be noticed that the LTE transport network (S1 link) has been assigned

with sufficient capacity to carry offered traffic volume. The only bottleneck for

traffic exists at the radio interface in the downlink direction. The mean offered

traffic volume at radio interface amounts to approximately 18Mbps. The mean ra-

dio interface capacity with random user movements in the simulations is observed

to be ≈15Mbps/cell with the instantaneous value peaks going as high as 22Mbps.

Higher offered traffic load than the available radio interface capacity gives rise to

severe congestion at the radio interface which leads to high PDCP buffer occu-

pancy. In contrast to downlink, the offered traffic load in uplink has been kept

fairly small to avoid any congestion at uplink radio interface.

The VoIP traffic is carried over Guaranteed Bit Rate (GBR) bearers and FTP/HTTP

traffic makes use of Non-Guaranteed Bit Rate (nGBR) bearers. Owing to the

higher priority of GBR over nGBR traffic, the VoIP traffic will not be affected by

the congestion. This way, only FTP/HTTP traffic has to suffer from the bottleneck

at the radio interface.

In this study two types of traffic mixtures have been considered. Though the

amount of offered traffic load is kept the same, the difference lies in the priority

assignments of user traffic at the MAC scheduler. Both types of traffic mixtures

will be used in analyzing the performance of buffer management schemes. The

details of the set of simulation scenarios which use these traffic mixtures are given

below.

(a) Prioritizing HTTP users over FTP users: Table 4.7 lists the user distribution

with respect to the applications. The highest MAC priority (i.e., QCI 1) has

been attributed to the VoIP traffic which is carried over GBR bearers. More-

over, HTTP users have been assigned higher MAC priority (QCI 8) compared

to that of FTP users (QCI 9). This reflects one of the typical MAC priority as-

signment schemes for user traffic in the real world. It ensures in-time delivery

of delay sensitive VoIP packets and low waiting time of web page downloads

at the expense of high waiting time for FTP users.

(b) Mixing HTTP and FTP users in the same priority class: In this configuration

HTTP and FTP users are mixed together in both priority classes, i.e., QCI 8

& QCI 9. This is another commonly found priority assignment scheme for

the user traffic. It mimics the real world scenario where, for example, the

premium users are always assigned to a higher priority class compared to the

basic users. VoIP users are, however, still kept in the highest priority class of
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Table 4.6: Configurations for simulation scenarios of PDCP buffer management.

User Profile Definition
Number of active users 60 users per cell

Number of cells per eNB 1

FTP traffic model
File size: constant 5MByte

Inter-request time: exp(45) sec

VoIP traffic model

GSM EFR codec (12.2kbps)

Call length: 90sec

Inter-arrival time: exp (50) sec

HTTP traffic model

Number of pages per session: 5

Average page size: constant 100KByte

Inter-arrival time: exp (12) sec

User mobility model Random direction (50km/h)

Network Configuration
Total number of PRBs 50 (10MHz spectrum)

LTE MAC scheduler Round Robin

Relative priority of QCI 8 to QCI 9 5:1

User handover disabled

S1 link capacity 100Mbps (Ethernet 100BaseX)

Simulation run time 2000sec

Discard timer value 120–1300msec

RED parameters pmax=5%, gmin=33%, gmax=100%

per bearer PDCP buffer capacity 30 – 100KByte

QCI 1 due the strict end-to-end packet delay requirements. Table 4.8 lists the

user distribution for such a configuration of the user traffic.

Table 4.7: Distribution of users with respect to applications – Simulation scenario I.

Number of UE/cell – downlink Number of UE/cell – uplink

QCI 1 QCI 8 QCI 9 QCI 1 QCI 8 QCI 9
20 VoIP 20 HTTP 14 FTP 20 VoIP none 6 FTP

Table 4.8: Distribution of users with respect to applications – Simulation scenario II.

Number of UE/cell – downlink Number of UE/cell – uplink

QCI 1 QCI 8 QCI 9 QCI 1 QCI 8 QCI 9
20 VoIP 12 HTTP + 6 FTP 8 HTTP + 8 FTP 20 VoIP 2FTP 4 FTP
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4.3.5 Simulation Results

The analysis of simulation results can be divided into two parts to address the

discussion of two configurations of the user traffic. For each configuration, the

performance of the buffer management schemes namely RED, discard timer, and

tail drop is studied. The effectiveness of each buffer management scheme is eval-

uated through various KPIs (Key Performance Indicators). These KPIs include

PDCP buffer occupancy, number of packet discards, TCP one way delay, HTTP

and FTP download time, number of successful FTP/HTTP sessions etc.

a) Prioritizing HTTP users over FTP user
Figure 4.19 gives an overview of shared PDCP buffer occupancy observed at

the eNode-B for a few of the investigated configurations of the buffer management

schemes. It can be noticed that when shared PDCP buffer size is virtually un-

limited and no buffer management is performed, the occupancy can grow as large

as 1.8MByte. This total occupancy is actually the sum of buffer occupancies by

all active users. This suggests that maximum PDCP buffer capacity requirements

for this particular scenario are 1.8MByte for the given TCP configuration and the

limitation of buffer capacity below this value would cause packet drops. It is also

evident from the figure that limiting the per bearer buffer capacity using any buffer

management scheme, the buffer occupancy can be effectively controlled. It is im-

portant to mention that PDCP buffer occupancy value is actually determined by

the TCP window size and the number of active parallel TCP sessions.

Table 4.9 shows several simulation statistics including PDCP packet drop ratios.

In the tail drop scheme these packet discards are caused by buffer overflow, in

RED these discards happen when buffer occupancy exceeds the minimum thresh-

old (gmin) value, and in the discard timer these packets are dropped if their waiting

time surpasses the configured threshold timer value. The packet drop ratio pre-

sented in the table mainly belongs to QCI 9 traffic class. This is because a majority

of the discarded packets belong to QCI 9 priority class and a very few discards are

seen for QCI 8 traffic. The reason for this behavior is five times higher priority of

QCI 8 over the QCI 9 priority class as well as the low buffer capacity demand of

QCI 8 traffic due to small sized HTTP pages. VoIP traffic which is mapped to the

highest priority of QCI 1 experiences no packet loss in any simulation scenario.

When the PDCP shared buffer capacity is not limited, no packet drop is ob-

served. As soon as the limitation on buffer capacities are imposed the packet drop

ratio increases sharply. For example, reducing shared buffer capacity to half from

100 to 50KByte causes the packet drop ratio to increase up to two times, both for

tail drop and RED schemes. For the discard timer scheme, 30% decrease in timer
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Figure 4.19: The shared PDCP buffer occupancy for different buffer management schemes.

The figure shows CDF curves of shared buffer occupancy. In case of discard timer, buffer

occupancy has been shown for 700ms and 1000ms timer values. For the RED and tail drop,

the buffer occupancy has been shown for per bearer buffer capacity values set as 50KB and

100KB.

value brings about two folds increase in packet drop ratio.

Figure 4.19 shows that RED as the PDCP buffer management scheme can achieve

lower PDCP buffer occupancy as compared to that of tail drop for an identical per

bearer buffer capacity value. For example, with a per bearer buffer capacity of

100KByte 44% more reduction in total shared PDCP buffer occupancy is ob-

served as compared to the tail drop case. For 50 and 30KByte buffer limitation

cases, RED achieves respectively 78% and 85% reduction in total shared PDCP

buffer occupancy as compared to the case with unlimited per bearer buffer capac-

ity. On the other hand, the tail drop scheme could only achieve 65% and 80%

reduction in total shared buffer occupancy for similar per bearer buffer limitation
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Table 4.9: Statistic values of simulation results when prioritizing the HTTP users over the

FTP users.

Per bearer PDCP buffer PDCP TCP one FTP file HTTP page

PDCP buffer occupancy packet way delay – download download

limitation (KB) drop ratio FTP DL (sec) time (sec) time (sec)

Mean Mean Mean Mean SD. Mean SD.

NoLimit 1320 0.000% 1.497 89.93 57.88 0.66 0.08

Tail drop
100KByte 857 0.315% 1.020 92.86 58.19 0.65 0.07

50KByte 462 0.701% 0.596 94.41 60.64 0.66 0.09

30KByte 264 1.007% 0.396 92.63 59.51 0.66 0.11

RED
100KByte 480 0.247% 0.660 89.94 59.68 0.66 0.07

50KByte 290 0.489% 0.426 94.72 58.54 0.78 0.66

30KByte 196 0.867% 0.260 92.62 58.49 0.89 0.93

Discard timer
1000 msec 481 0.797% 0.497 90.02 55.21 0.66 0.07

700 msec 381 1.289% 0.357 90.50 61.12 0.66 0.07

500 msec 316 1.577% 0.276 93.43 59.21 0.67 0.20

300 msec 210 1.888% 0.165 96.62 62.63 0.66 0.10

200 msec 149 2.341% 0.126 94.37 59.25 0.67 0.37

120 msec 90.1 2.250% 0.084 84.15 78.70 0.66 0.19

values. This is because the tail drop scheme discards packets when the buffer is

fully occupied, but RED starts discarding PDCP packets with a certain probability,

as soon as the buffer occupancy reaches the minimum threshold gmin, i.e., 33%. It

is also interesting to note that the performance of RED with 100KByte per bearer

buffer capacity is comparable to the tail drop case with 50KByte per bearer buffer

capacity, and the discard timer case with 1000msec threshold value. These three

cases attain the PDCP buffer occupancy and packet drop ratio in a similar range

although their policies of packet discarding are quite different. For example, the

tail drop scheme discards incoming packets when the queue is full, discard timer

discards older packets in the buffer and RED discards randomly some of the in-

coming packets when the minimum threshold is reached. Application KPIs will

help decide which of these policies is more friendlier to TCP.

Table 4.9 shows several configurations of the discard timer and the correspond-

ing performance values. It is observed that reducing the discard timer value brings

lower PDCP buffer occupancy but the corresponding magnitude of the packet drop

ratio increases. This high packet drop ratio is expected to aggravate TCP perfor-
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mance. Owing to the fact that one PDCP packet carries one TCP segment in its

payload, each PDCP packet discard will make TCP perform a retransmission. The

higher the packet loss rate, the more the TCP retransmissions. For each TCP seg-

ment loss, TCP has to invoke its ARQ mechanism which reduces TCP throughput

and hence increases file download completion time. Furthermore, in situations

where the packet drop rate grows very high some TCP connections may not be

able to recover leading to connection abort.

Though the limitation of the maximum shared PDCP buffer capacity causes

packet drops, it also helps achieve the shorter TCP round trip time. This effect

can be seen in Table 4.9 under ’TCP one way delay’ statistic. From equation 4.18,

it is evident that reducing TCP segment delay provides boost to TCP through-

put. Therefore limiting the maximum shared buffer capacity, on the one hand,

degrades TCP throughput due to packet losses, but on the other hand, it enhances

TCP throughput performance by reducing TCP segment delay. The overall gain or

loss in TCP performance is then decided by the combined impact of the two fac-

tors. In current simulation scenario, the resulting impact can be seen by the HTTP

and FTP file download time as presented in Table 4.9. The best HTTP and FTP

application performance is achieved when no limitation is imposed on maximum

shared PDCP buffer size. Though buffer management schemes help achieve the

low buffer occupancy, no considerable improvement in user QoE perception is ob-

served. RED with 100KByte and discard timer with 1000msec provides the best

performance, i.e., achieving 63% reduction in PDCP buffer occupancy without no-

ticeable increase in HTTP/FTP file download time. It can be seen that a 120msec

discard timer case attains ≈6 sec reduction in mean FTP download time compared

to the baseline case. (Baseline case refers to the scenario with no buffer limitation

and no buffer management). However, Figure 4.20 explains the rationale behind

this achievement; the number of FTP file downloads has been decreased signifi-

cantly compared to the baseline case. The reduced number of FTP file downloads

is due to TCP connection aborts in response to huge packet discards. This phe-

nomenon can also be seen for other buffer limitation cases, i.e., the number of FTP

file downloads decrease along with increase in packet drop ratio. The number of

HTTP page downloads are, however, almost identical for all scenarios which is

because of high priority of QCI 8 traffic and the fewer associated packet discards.

Simulation results showed that VoIP users experience the best MOS value of 4.5

in all simulation scenarios. The reason behind this is the highest priority (QCI 1)

assigned to VoIP traffic and no associated packet discards.

From the KPIs presented in this discussion, it can be concluded that RED with

100KByte buffer limitation and discard timer with 1000msec timer value provides

a considerable reduction in PDCP buffer occupancy without significantly affecting
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Figure 4.20: Number of successful sessions of FTP and HTTP users in downlink direc-

tion. The figure shows total number of completed HTTP and FTP file downloads for each

scenario.

HTTP/FTP application performance. If further reduction in PDCP buffer occu-

pancy is desired RED with 50KByte or a discard timer with 700msec & 500msec

can be considered. They provide PDCP buffer occupancy reduction at the expense

of marginal increase in HTTP/FTP file download time. However, the tail drop

scheme failed to provide a good balance of PDCP buffer occupancy reduction and

HTTP/FTP application performance as seen for the other two schemes.

b) Mixing HTTP and FTP users in the same priority class

Figure 4.21 shows CDF curves of PDCP buffer occupancy for some configura-

tions of the investigated buffer management schemes. The maximum value of the

PDCP buffer occupancy goes as high as 1.7MByte when the buffer capacity is not

limited. Using buffer management schemes with appropriate configuration param-

eters reduces both the mean and maximum buffer usage. However, the effect of

these buffer management schemes on end user QoE is to be determined. For this

purpose statistical results of simulations have been presented in Table 4.11 & 4.10.

Table 4.10 lists the important KPIs belonging to QCI 8 traffic while QCI 9 related
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simulation results have been shown in Table 4.11. The statistical value of “PDCP

buffer occupancy” for all active users in the cell have been listed in Table 4.10 and

have been reproduced in Table 4.11 for the ease of reference.
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Figure 4.21: The shared PDCP buffer occupancy for different buffer management schemes.

The figure shows CDF curves of shared buffer occupancy. In case of discard timer, buffer

occupancy has been shown for 1000ms and 1300ms timer values. For the RED and tail drop,

the buffer occupancy has been shown for per bearer buffer capacity values set as 50KB and

100KB.

Table 4.10 shows that the impact of buffer management schemes is trivial on

the QoE of QCI 8 users. The packet discards are minor until per bearer PDCP

buffer space is limited to a very small value. As explained earlier, this is because

of higher priority of QCI 8 over QCI 9 traffic. Mean HTTP/FTP file download

time values with buffer limitation are very close to that of baseline case. Although

the limitation of buffer capacity makes TCP one-way delay shorter but this perfor-

mance gain is nullified by the associated packet discards. Discard timer scheme
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Table 4.10: Statistic values of simulation results – QCI 8.

Per bearer PDCP buffer PDCP TCP one FTP file HTTP page

PDCP buffer occupancy packet way delay – download download

limitation (KB) drop ratio FTP DL (sec) time (sec) time (sec)

Mean Mean Mean Mean SD. Mean SD.

NoLimit 1060 0.000% 0.233 19.69 4.58 0.71 0.12

Tail drop
100KByte 743 0.104% 0.228 19.70 4.22 0.70 0.12

50KByte 440 0.275% 0.156 20.54 4.43 0.72 0.15

30KByte 271 1.598% 0.095 20.89 4.18 0.76 0.54

RED
100KByte 469 0.000% 0.138 19.70 4.25 0.69 0.10

50KByte 303 0.140% 0.087 20.47 4.24 0.72 0.68

30KByte 220 0.490% 0.064 21.76 3.90 1.02 1.06

Discard timer
1300 msec 420 0.000% 0.232 19.74 4.41 0.71 0.12

1000 msec 385 0.000% 0.233 19.71 4.72 0.69 0.12

700 msec 317 0.003% 0.237 19.81 4.34 0.70 0.12

500 msec 276 0.008% 0.231 19.86 4.44 0.68 0.09

300 msec 200 0.105% 0.194 19.91 4.66 0.69 0.10

200 msec 147 0.272% 0.141 20.59 4.54 0.70 0.24

120 msec 82.1 0.690% 0.087 19.26 4.67 1.01 1.04

with 1300msec and 1000msec threshold values provides up to 64% reduction in

buffer occupancy without tangible impact on HTTP/FTP file download time. RED

buffer management scheme, with 100KByte buffer limitation, also performs well

by providing 55% reduction in buffer occupancy. However, the tail drop scheme

is seen to be the least efficient among the three schemes.

The number of successful HTTP/FTP file downloads for QCI 8 traffic have

been shown in Figure 4.22. Excluding the discard timer scheme with 200msec

& 120msec threshold configurations the number of file downloads for all cases

are identical to one another. Very large packet drop ratios caused by the afore-

mentioned discard timer threshold values make some TCP connections abort and

hence the overall count of file downloads decreases.

It was observed in the previous part of the simulation result discussion that the

effect of the PDCP buffer limitation is more severe on QCI 9 traffic than on QCI

8 traffic. Therefore, overall system performance must be judged by QCI 9 traf-

fic KPIs. Table 4.11 shows the statistical results of simulations for QCI 9 traffic.

As expected the magnitude of both packet drop ratio and “TCP one way delay” is
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Table 4.11: Statistic values of simulation results – QCI 9.

Per bearer PDCP buffer PDCP TCP one FTP file HTTP page

PDCP buffer occupancy packet way delay – download download

limitation (KB) drop ratio FTP DL (sec) time (sec) time (sec)

Mean Mean Mean Mean SD. Mean SD.

NoLimit 1060 0.000% 3.430 166.69 91.84 5.45 6.31

Tail drop
100KByte 743 0.383% 2.323 170.01 84.81 5.35 6.11

50KByte 440 0.765% 1.384 175.03 79.24 5.90 7.10

30KByte 271 1.535% 1.003 186.55 83.30 4.81 7.30

RED
100KByte 469 0.338% 1.560 168.74 72.03 5.64 6.68

50KByte 303 0.665% 1.210 172.09 85.87 5.98 6.33

30KByte 220 1.533% 0.770 193.04 91.16 6.35 7.55

Discard timer
1300 msec 420 2.221% 0.610 170.16 83.39 5.98 6.07

1000 msec 385 2.439% 0.509 174.23 85.21 6.44 10.5

700 msec 317 2.589% 0.387 165.00 103.0 5.65 5.02

500 msec 276 2.571% 0.221 176.88 101.8 6.50 6.50

300 msec 200 3.090% 0.258 230.22 171.2 4.45 5.07

200 msec 147 3.615% 0.201 236.71 138.8 8.00 71.4

120 msec 82.1 3.248% 0.164 235.54 172.5 6.45 35.2

much higher than that for QCI 8 traffic. This phenomenon leads to long HTTP/FTP

file download times. For example, considering the baseline case, the mean down-

load time of HTTP/FTP file is almost 8 times higher for QCI 9 than that of QCI

8 traffic. Another important observation is the magnitude of standard deviation

of HTTP/FTP file download time. Due to severe congestion and large number of

packet discards these standard deviation values for QCI 9 are higher than that of

QCI 8 traffic. In general, small values of the discard timer lead to very high val-

ues of standard deviation of file download time. This implies a non-uniform QoE

will be perceived by users in the cell, i.e., some users will experience very short

download time while others will have to wait longer for the file download. Such a

system behavior is not preferred by network operators and, therefore, any parame-

ter settings of buffer management schemes which lead to this consequence should

be discouraged.

Comparing the performance of the three buffer management schemes in terms of

HTTP/FTP KPIs reveals that RED with 100KByte and discard timer with 1300msec

threshold perform optimal in providing significant reduction of PDCP buffer oc-
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cupancy at the cost of minor increase in HTTP/FTP download time. The tail drop

scheme with 100KByte buffer limitation provides identical user QoE as delivered

by the other two schemes however it requires up to 43% higher PDCP buffer oc-

cupancy. Further reduction in PDCP buffer occupancy can be achieved by RED

with 50KByte and discard timer with 1000msec threshold at the expense of up

to 4.4% performance degradation in FTP performance compared to baseline case.

The number of HTTP/FTP file downloads for RED with 100KByte & 50KByte as

well as for discard timer with 1300msec & 1000msec thresholds are seen in the

same range as exhibited by the baseline case.

As far as the VoIP users are concerned, they again experience no packet loss in

any of the simulation scenarios. Therefore, all VoIP users enjoy the best score of

4.5 as a perceived MOS value in all simulation scenarios.

As conclusion it can be claimed that LTE system having arbitrarily large mem-

ory space for PDCP buffers produces very high buffer occupancy which could

make system perform suboptimal during the inter eNode-B handovers. On limit-

ing the PDCP buffer capacity without proper buffer management schemes leads

to packet drops, i.e., the tail drop phenomenon. According to simulation re-

sults, though lower PDCP buffer occupancy is achieved by the tail drop scheme, it

severely degrades user application performance. On the other hand, it is observed

that when the RED & discard timer buffer management schemes are used, a sig-

nificant reduction in buffer occupancy is achieved without tangible effect on user

QoE.

The optimal configuration parameters of RED and the discard timer schemes

depend on several factors, e.g., the user application type, traffic mixture and con-

gestion level in the system. This fact has also been observed in other investigations

related to this study [U. 11b] [U. 11a] [U. 12a]. In such circumstances although a

single optimal configuration for a buffer management scheme cannot be provided

but a range of feasible values can be specified to facilitate the tuning of these

parameters in achieving close-to-optimal system performance. The study of simu-

lation results with different offered traffic loads and traffic mixtures suggests two

ranges for discard timer thresholds, i.e., 700–1300msec and 300–700msec for sce-

narios with high radio interface congestion and slight radio interface congestion,

respectively. The optimal performance for RED buffer management schemes can

be realized by a capacity limitation in the range of 50–100KByte.
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Figure 4.22: Number of successful sessions of FTP and HTTP users in the downlink direc-

tion. The figure shows total number of completed file downloads for each scenario.





5 User QoE Enhancement using
Multihoming

This chapter highlights the importance of multihoming in wireless heterogeneous

network to enhance user QoE and improve the network performance. It discusses

state-of-the-art multihoming solutions and stresses the need of a traffic flow man-

agement mechanism to control bandwidth resources of the integrated networks.

Based on the requirements of multihoming in heterogenous networks, a compre-

hensive flow management architecture is also developed which is compatible with

3GPP proposed SAE architecture. In addition, several mechanisms are proposed

to facilitate the bandwidth resource management of multihomed users.

5.1 Multihoming

The term ‘Multihoming’ refers to a node with more than one attachment point to

the network. Multihoming is realized either through the configuration of multi-

ple IP addresses on a single network interface of a node, or more commonly, by

installing multiple network interfaces on a single node each assigned with an IP

address. Traditionally, the use of multihoming was desired to add reliability and

redundancy to the network connection to ensure continuous operation during con-

nectivity outages or other network failures. While increased resilience and avail-

ability still remains the primary objective of multihoming, an increasing interest is

being observed in exploiting other benefits from multiple network connections. In

particular, multihoming can be leveraged for improving the performance and ca-

pacity of wide-area networks, lowering bandwidth costs, and optimizing end user

QoE.

Multihoming can be implemented at host or site level. A host with two or more

independent connections to the Internet is called a multihomed host. These con-

nections may or may not belong to the same Internet Service Provider (ISP). Typ-

ically, a multihomed host is capable of detecting connection failures and moves

the established communications from the failed path to one of the other working

paths. In addition, the multihomed host can also make use of available network
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paths based on a certain policy, e.g., to perform load balancing. This be will dis-

cussed in further detail in Section 5.2. In a manner similar to multihomed hosts,

a site can also maintain two or more independent connections to the Internet and

this called a multihomed site. A ‘site’ in this context is an entity autonomously op-

erating a network using IP, and in particular, determining the addressing plan and

routing policy for that network [ABG03]. A multihomed site makes use of multi-

homing service to guarantee fault tolerant and reliable connectivity to its host.

5.1.1 State-of-the-art

A measurement based analysis to quantify benefits of multihoming by Akella et.

al. [A. 03] reveals that a potential performance gain beyond 40% can be achieved

by employing properly planned multihoming. This multitude of potential benefits

has kept multihoming a research subject during the past years. The main hurdles

in realizing multihoming are proper routing, load balancing across multiple paths,

and to maintain TCP/UDP sessions through cut-overs. Though a wide range of

solutions were proposed, scalability and avoiding huge routing table have been the

main concerns in this area. The identifier-locator separation techniques are widely

assumed to be a solution to such problems and have been greatly explored in the

proposed solutions.

Identifier-locator separation can be implemented in several different ways, e.g.,

splitting the IP address space into two portions where one portion represents end-

host identifiers and the other portion is used as wide-area locators. Hosts use iden-

tifiers as source and destination addresses in the packets, and the border routers

encapsulate these packets with an outer header which contains locators. This ap-

proach is generically called ‘map-and-encapsulate’. Other proposed schemes in-

clude geographically based address prefixes, transport protocols with multihoming

support (e.g., Stream Control Protocol (SCTP) [R. 07], Multipath TCP (MPTCP)

[FRHB12] etc.), and introducing an additional level of identifier above the IP ad-

dress like HIP (Host Identity Protocol) [MN06].

As far as standardization is concerned, a large number of proposals have been

under discussion to cover different classes of solutions. After a long review pro-

cess, SHIM6 (Site Multihoming by IPv6 Intermediation) [NB09] came out as a

standard solution for multihoming in IPv6 networks. Other mentionable proposals

which are still active include LISP (Locator/ID Separation Protocol) [FFML12],

ILNP (Identifier Locator Network Protocol) [AB12], MPTCP, NAT66 (IPv6-to-

IPv6 NAT) [WB11], and HIP. Over the next paragraphs some of the aforemen-

tioned multihoming proposals are described briefly.
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SHIM6 is a host-centric solution which inserts a ‘shim’ on top of the IP routing

sub-layer and beneath the IP endpoint sub-layer. In this scheme IPv6 addresses

are used both as identifier and locator. The IPv6 address which is used to initialize

the connection, plays the role of identifer during the whole communication life.

This identifier is called ULID (Upper Layer ID) and is used by the shim layer in

performing mapping to locators. The failure detection and recovery process of

SHIM6 remains independent and transparent to higher protocol layers.

HIP is another host-based solution which makes use of the identity/locator split

approach and offers end-to-end mobility and multihoming. HIP inherits some se-

curity features by employing the public key component of the private-public key

pair as the host identifier. In networks that implement HIP, all occurrences of

IP addresses in applications are replaced with the host identifier. This results in

decoupling of the transport layer from the Internet layer in TCP/IP that allows a

mobile host to preserve its transport layer connections upon movement. The host

identity can also be used for looking up the current location of a host because it is

supposed to be a long-term identifier.

MPTCP improves resource utilization and failure tolerance by using multiple si-

multaneous paths between multihomed peers while still maintaining the backward

compatibility with the traditional TCP. MPTCP can be considered as an add-on

set of features on top of TCP which starts like regular TCP but if extra paths ex-

ist, additional TCP connections are created. Though MPTCP distributes the traffic

load between working paths using TCP-like mechanisms, to an application layer

it appears to be a single TCP connection.

SCTP is a message oriented, reliable transport protocol with inherent support

for multihoming. In SCTP one of the paths is selected as the primary path and the

rest become secondary paths. In case the primary path fails for whatever reason, a

secondary path is chosen and utilized. When the primary path becomes available

again, the communication can be moved back without the application being aware

of any issue. In addition, SCTP also allows multiple simultaneous data streams

within a single connection or association. For example, web page images can be

transmitted together with the web page text.

5.1.2 Relation to Mobility Management

Multihoming and mobility management are closely related and can be used in

a complementary fashion. Mobility management refers to a functionality which

allows a mobile user terminal to maintain the same IP address as the terminal

changes its attachment from one network to another network. In other words, mo-

bility concerns redirection to previously unknown IP addresses while multihoming
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describes a node’s ability to redirect packets between multiple IP addresses that it

has configured simultaneously [ORCTV].

There are two mobility management approaches: ‘reactive mobility manage-

ment’ and ‘proactive mobility management’. Reactive mobility management is

considered as a response to link layer handover. Though the sophisticated pro-

tocols based on the reactive approach claim to reduce performance degradation

during the handover, there is an inherent minimum latency for the user traffic to

be redirected to the new network attachment point. This is because it always takes

one round trip propagation time to register a new IP address with the mobility

management entity in the network and get the first redirected packets at the new

IP address. During this process, the packets in flight toward the old IP address are

lost.

The proactive mobility management approach substantially improves the han-

dover performance by anticipating the imminent handover and preparing for it at

the right time. It requires a user terminal to monitor related link layer character-

istics of a network connection to foresee impending handover, obtain a new IP

address from the target access network, and register it with the mobility manage-

ment entity in the network before initiating a link layer handover. In this way,

a ‘make-before-break’ strategy is followed which prevents excessive delays and

packet losses during the handover. The cross-layer interaction and network in-

formation retrieval requirements of both proactive and reactive approaches can

be satisfied using the IEEE 802.21 standard for Media Independent Handovers or

other mechanisms like [U. 07a] developed by the author.

5.1.3 Selected Multihoming Solution

A number of research studies can be found making use of cross-layer techniques

and soft handover to optimize handover cost in terms of packet delay and loss in

heterogeneous networks. For example, Song and Jamalipour [SJ05] describes an

intelligent scheme of vertical handover decisions in selecting the best handover

target from the several candidate heterogeneous networks. Several other proposals

have been made to improve the performance of cellular and 802.11 networks. Song

et. al. [W. 07],[SJZS06] has discussed admission control schemes to improve the

performance of integrated networks. Fei and Vikram [YK07] proposes a service

differentiated admission control scheme based on semi-Markov chain which is

although very accurate but has high computational complexity. [SZ05] provides

an efficient alternative based on moment generating function but at the price of

accuracy. Similarly, Zhai et. al. [H. 05] has shown that by controlling the collision

probability with the help of input traffic rate of users, the maximum throughput can
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be achieved by keeping 802.11 network in non-saturated state. Other studies are

focused on developing solutions for load balancing in the integrated heterogenous

networks. Such a proposal can be found in [LS03], [SZC07] where policy based

load balancing framework has been presented to effectively utilize the aggregated

resources of loosely coupled cellular/WLAN network. In contrast of these studies,

the goal of this work to explore the practical limits of achievable performance in

a heterogeneous network scenario. For this purpose, cross-layer techniques are

employed in order to go down to the MAC layer functionalities of involved access

technologies. Through a coordination of IP and MAC layers, this work aims is

to maximize the spectral efficiency of network bandwidth resources and fulfill the

application QoS requirements at the same time. The proposed solution not only

adapts to dynamic load conditions of the access networks but also conforms to time

varying channel conditions of the mobile users. Considering the aforementioned

factors into account, here the capabilities of user multihoming are exploited in

order to achieve system wide optimized performance and improved user QoE.

In the context of this research work where user multihoming should be assisted

by the network entities and the correspondent hosts are oblivious of user mobility, a

simplified solution is desirable. Preferably, the proposed solution should make use

of already existing mobility management functions and provide the multihoming

capabilities as an add-on. For example, consider the reference network architecture

presented in Chapter 3 which is based on SAE standards for integration of LTE and

WLAN networks. In such a heterogeneous network, Mobile IP has already been

chosen as a standard mobility management protocol. Though 3GPP has not yet

standardized multihoming support in heterogeneous networks, a solution based on

a natural extension of Mobile IP already exists.

Mobile IP, in its pure form, delivers mobility service to a user terminal moving

from one visited network to another. Even if the terminal has multiple active net-

work interfaces, only one of them has to be chosen to work with Mobile IP. This

restriction is lifted by the Multiple Care-of Address (MCoA) [WDT+09] extension

to Mobile IPv6 which enables a user terminal to register all of its active network

interface addresses as care-of addresses with its home agent. However, for com-

munication purposes only one of these care-of addresses is used and the rest are

considered as backup. In this way, the MCoA extension introduces a limited multi-

homing support on top of Mobile IPv6 while maintaining backward compatibility.

This support is further enhanced by another IETF proposed standard and extension

to MCoA [G. 10], which allows a mobile terminal to use all of its network associ-

ations simultaneously. This level of multihoming support fulfills the prerequisite

to perform adaptive flow management operation as discussed in Section 5.2.

Based on the scenario configuration in host-based mobility management, an im-



128 5 User QoE Enhancement using Multihoming

plementation of Mobile IP and the aforementioned extensions may be required

both at the mobile terminal and at its correspondent host (e.g., when using the

‘route optimization’ option of mobile IPv6). However, in this work the route opti-

mization option is not the focus, therefore, it is mandatory only for the home agent

and mobile terminals to implement the mobility management and multihoming

functionality.

At this point, it is worth mentioning that the use of other multihoming ap-

proaches (discussed in Section 5.1.1) in conjunction with Mobile IP should not be

ruled out. There are several proposals about complementing Mobile IP with well-

known multihoming approaches, e.g., see [BGMA07]. On concept level these

proposals are completely in line with the discussions and findings made in this

work.

5.2 Flow Management

A multihomed user is assumed to make efficient use of aggregated bandwidth re-

sources available from its multiple network attachments. This particular task is

discussed under the subject of Flow Management. In flow management, differ-

ent traffic flows are directed to different network interfaces based on a certain set

of policies. Such a policy has generally a wide scope encompassing, e.g., QoS

requirements of user applications, service costs of access networks, traffic load

balancing, network path security etc. The execution of these flow management

policies relies on a set of traffic flow handling options which are described as fol-

lows:

• Flow distribution: In this option a particular traffic flow is assigned to a

certain network attachment or path based on the associated policy. For ex-

ample, TCP based traffic flows, like FTP file or email download do not have

stringent QoS demands and, therefore, may be directed to a WLAN path

while QoS sensitive realtime applications like, VoIP may use the LTE net-

work.

• Flow splitting: In flow splitting, the packets belonging to one large traffic

flow are distributed among the different network paths in order to speed up

the transmission using aggregated bandwidth. In this case, the receiver of

traffic flows or some other entity in the network must be responsible for

reordering the packets received over multiple paths. An example could be

a user watching a HD video stream of a football match who distributes the

traffic flow over the WLAN and HSDPA network paths.
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• Flow multi-casting: In order to add redundancy and reduce overall trans-

mission errors, a single traffic flow may be duplicated over multiple network

paths so that each path carries the complete traffic flow. This is performed

by multi-casting a traffic flow to multiple global IP addresses of the receiv-

ing host. This option is useful, to reduce overall transmission errors through

added redundancy, in a scenario where a mobile terminal has multiple at-

tachments to wireless access networks with high bit error rate.

• Flow dropping: In a certain situation where a mobile terminal lacks suffi-

cient bandwidth resources, a less important traffic flow may be discarded in

the access network instead of forwarding it to the terminal. For example, a

video call can be transformed into a audio call when the access link quality

is not good enough.

In the context of aforementioned reference architecture for heterogeneous net-

works where multihoming is realized using Mobile IPv6 and its extensions, the

execution entity of the flow management function should be logically located at

the home agent for downlink traffic and at the user terminal for uplink traffic. This

execution entity translates the flow management policy into requests supported by

Mobile IPv6 and its extensions. In turn, the respected functions of Mobile IPv6 en-

force the required traffic handling to achieve the desired effects. Figure 5.1 depicts

the above described traffic handling options of flow management in the context of

Mobile IPv6.
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Figure 5.1: Different options of traffic flow handling when performing flow management

in heterogeneous networks.

Flow management has the potential to achieve a multitude of network perfor-

mance and management gains, a few of which are described in the following.
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• Flow management allows a mobile terminal to exploit the bandwidth of

available network paths. More importantly, it can utilize the specific access

technology links in accordance with their characteristics to get maximum

benefit out of them. This feature is the main topic of discussion in this work.

• Flow management can be oriented to add reliability and redundancy to a

traffic flow by duplicating the data packets over two or more network paths

so that better QoE can be achieved even in bad channel conditions.

• Flow management can cut the monetary costs of access network usage for

a mobile user, e.g., the users can devise a policy to download email attach-

ments or podcasts only through a free hotspot access in order to reduce the

usage of expensive wide-area network access.

• Flow management can also help enforce security measures both for the users

and network operators. A simple policy can direct security sensitive data

over a trusted link so that additional encryption (e.g., through the IPSec

protocol) is not required to secure the transmission.

• Today, the Internet cloud applications offer high quality contents (e.g., HD

movie rentals through on-demand video streaming, apps with large databases,

cloud data storage etc.) which, in turn, demand high QoS specifications.

Sometimes a mobile terminal cannot meet these QoS requirements for dif-

ferent reasons. In such situations, flow management can bundle together

the available bandwidth resources from several network paths to provide an

application with a service of required QoS.

• Flow management offers an effective tool to perform network offloading or

load balancing of the network traffic.

• Flow management allows network operators to optimally assign bandwidth

resources to their users in order to improve their QoE as well as to enhance

overall network capacity.

It is common practice to categorize flow management functions based on the fact

whether the policies/decisions are made by the network operator or by the end user.

In ‘network-centric flow management’, the network operator alone is in-charge of

bandwidth resource management operations performed using the policies of flow

management. Though the end users can inform the network operator about their

preferences, the final decision has to come from the network operator. Usually,

such flow management policies or decisions are dynamically derived based on

user and network operator’s preferences as well as the measurements collected at



5.3 Flow Management System Architecture 131

different metering points in the network and at the user terminal. Such measure-

ments may include the traffic load in a certain part of a network, uplink/downlink

channel conditions for a user, number of users attached to the base station or ac-

cess point, buffer occupancy of the router queue, available battery power of a user

terminal, geographical location of a user etc.

It is also possible that an end user solely controls the flow management opera-

tions. This is called ‘user-centric flow management’. In this case, the user terminal

may request certain information from the associated networks which may facili-

tate dynamic flow management policies. It is completely up to the network opera-

tor’s disposal which kind of information can be offered to the end user. Although

user-centric flow management gives end users complete freedom to manage their

bandwidth resources but due to the lack of network information this might not be

an optimal solution. For example, consider users who want to switch their ongo-

ing video call from the LTE network to a freely available WLAN network. But

they are not sure whether the WLAN can deliver the QoS required for this call due

to the fact that the load on that network and its capacity is unknown. In contrast

to this, network-centric flow management can exploit wider information including

that which a network operator does not want to publicize. Therefore, network-

centric flow management has the potential to perform optimal resource utilization

of bandwidth resources available to an end user. This would create a win-win sit-

uation both for end users whose preferences are considered in flow management

decisions, and for the operators who manage to satisfy their customer’s require-

ments with improved resource utilization. Owing to these advantages, this work

focuses on enhancing user QoE by using network-centric flow management. The

next section lays the foundations of a comprehensive system architecture which

can be overlaid on the SAE architecture to support both user-centric and network-

centric flow management.

5.3 Flow Management System Architecture

An extension to the SAE architecture for the integration of heterogeneous access

technologies has been discussed in Section 5.1.3. The extension was intended to

enable multihoming support for users. The evolution is continued and another

add-on is being presented in this section. The proposed architecture has been

developed under the framework of the SAIL project[Sp13][Ser13] and brings flow

management capabilities to the network as explained in Section 5.2. Once the flow

management is realized, this work will make effective use of its features, e.g., to

offload a congested network, to improve network resource utilization by exploiting
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the user and channel diversity, and to enhance the end user QoE. Considering the

time-varying channel quality of access links and user traffic demands, the proposed

system is designed to react and adapt to these variations in order to continuously

deliver optimized performance. In general, most of the actions envisaged within

the scope of this system architecture can be characterized in three basic phases,

i.e.,

1. Collection of information from network entities and the user terminal.

2. Taking appropriate decisions based on the collected information.

3. Enforcing the decisions by instantiating suitable mechanisms.

Although these three phases, most of the time, are invoked iteratively, but it is

also possible for them to follow a different pattern depending on the collected

information and the outcome of decision processes.

5.3.1 Functional Entities

Based on the above identified three phases, this system architecture defines three

functional entities each of which is dedicated to an individual action phase. These

entities are assumed to be independent of, and abstracted from OSI layers or any

protocol. This component-based system architecture is easy to develop and offers

great flexibility in terms of deployment and integration with most of the existing

network architectures. The functional entities are described as follows:

• Information Management Entity (IE): This entity is used to collect useful

information which is required to make important decisions. This informa-

tion may include traffic load on a certain network link, signal strength at

the user-terminal or base station, buffer occupancy of a router queue etc.

In addition to technical parameters, this entity can also offer other dynamic

information, e.g., the user preferences, user’s feedback about QoE etc. In

order to keep the implementation of IEs simple, they are not assumed to

be intelligent; rather they can only perform straightforward processing tasks

on the gathered information like filtering, aggregation, abstraction etc. The

IEs can be either implemented in dedicated devices such as meters, or they

can be hosted on existing network elements like routers, access points, base-

stations, gateways, user-terminals etc. Decision making entities can retrieve

the required piece of information from an IE by sending a direct request

or by subscribing to it. In case of subscription, the IE sends the particular

information automatically to the subscribed decision making entity based
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on the type of subscription, e.g., on the occurrence of an event, periodical

transmission of certain pieces of information etc.

• Decision Making Entity (DE): A DE is the most intelligent part of this

system architecture. It makes use of information available from the IEs

to take a decision in accordance with pre-defined policies. Examples of

such decisions are: association to a certain access network, vertical han-

dover hints, change in a service treatment, grant or deny user access to a

service/network etc. Typically, in 3GPP networks, the decisions are taken

in one centralized location in the network. However the possibility of a dis-

tributed decision mechanism cannot be ruled out. A DE undertakes policies

from user/operator preferences about the QoE, security, costs, QoS guaran-

tees, network resource allocation etc.

• Execution and Enforcement Entity (EE): The decisions made by a deci-

sion making entity are conveyed to the relevant EE for execution and en-

forcement. Although in some cases DE and EE may be hosted on the same

device, but generally EEs are more distributed in the network to facilitate the

execution of a decision involving several network elements, e.g., a handover

has to be performed in collaboration with access points, routers, database

servers, user-terminal etc.

The provision of allowing each of these functional entities to be placed on one

or distributed over serval network elements enables to support different configura-

tions, topologies, and scenarios. Moreover, as some of the functionalities have to

be implemented at different layers, the architecture facilitates the use of modern

cross-layer optimization techniques.

5.3.2 Inter-Entity Communication

Table C.1 lists a number of control interfaces designed for inter-entity communica-

tion purposes. With help of these bi-directional interfaces an entity can communi-

cate with any other entity of the same or different type. However, a direct interface

between IE and EE entities has not been foreseen which is because of their dif-

ferent functional designations. Moreover, in order to enable communication with

external functional entities (e.g., different OSI layers, mobility management func-

tion, user interface etc.) a control interface (OEXT ) has been proposed.

Pertaining to system performance demands, ease-of-deployment objectives, or

requirements to implement certain functionality, it is possible to distribute func-

tional entities across several network elements so that their inter-communication
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Table 5.1: Control interfaces for inter-entity communication.

Interface Description

ODD Interface between two Decision Making entities

OII Interface between two Information Management entities

OEE Interface between two Execution & Enforcement entities

ODI Interface between Decision making entity and Information Management entity

ODE Interface between Decision Making entity and Execution & Enforcement entity

OEXT Control interface to an external functional entity

is realized using the above mentioned interfaces. In this case, the information ex-

change between different network elements hosting these functional entities must

be coordinated using an Inter-Node Communication (INC) function. Some func-

tionalities of the INC comprise the compatibility identification of the commu-

nicating entities, the possible conversion of inter-node messages, generic secu-

rity/authentication services etc.

The ODI interface between DE and IE entities comprises the following mes-

sages:

• Configure IE request: This message type will be used by a DE to configure

the operation of an IE as well as to subscribe to necessary pieces of infor-

mation. This includes various performance parameter notifications and the

procedures to collect that information, e.g., mean value of a user’s channel

quality indicator or peak traffic load on a certain link in core network, etc.

As part of the subscription request, this message contains either the time pe-

riod value during which the requested piece of information is collected and

sent to the subscriber or the description of an event (e.g., a threshold value)

which triggers the transmission of information. This is a proactive way of

gathering information. This message may also be used to configure an IE to

send certain information to another IE.

• Configure IE response: This is response of the IE to a ‘Configure IE re-

quest’ message which contains the status of the requested operation.

• Information request: This is a reactive way of requesting a certain piece of

information to which IE should respond immediately.

• Information notification: This message is used by an IE to send the re-

quested information to the DE or another IE. This information may come as

a response to an ‘Information request’ or subscription performed by ‘Con-

figure IE request’.
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• Notification response: This is an optional acknowledgement message which

may be sent by the receiver of the ‘Information notification’ message.

The interface between DE and EE (ODE ) is used to exchange two types of mes-

sages described in the following.

• Execution request: A DE uses this message type to covey its decision to an

EE in order to execute and enforce it. Typical examples of these decisions

are: modifications in routing table, connection attempt to an access network

etc.

• Execution response: This message is sent by the EE to inform the DE about

the status of the requested operation.

The interface between peer IEs comprises Information Exchange messages

which may be used in special situations where a coordination is required between

various IEs in order to collect and send the requested information to a DE. Sim-

ilarly, another message which is exchanged by peer EEs over the (OEE ) interface

is called Execution Exchange. This message is intended to help EEs enforce a

particular decision of the DE which requires performing certain actions at more

than one point in the network.

5.3.2.1 Information required by DE

In general information needed by a DE to make a decision can be structured as

follows:

• Resources: There is two types of resources, i.e., network resources and user

terminal resources. Network resources are essentially described in term of

attributes which reflect the capacities and capabilities of the nodes and links.

Such attributes of a network are specific to its technology and composition.

Examples of such attributes are bandwidth capacity of link, noise rise and

HS-DSCH codes in an access HSPA network, number of PRBs in LTE ac-

cess network, data rate available from a WLAN access point etc. Likewise,

user terminal resources may be described by attributes, e.g., battery power,

available network interfaces etc.

• Context: It refers to relevant constraints for a decision process, e.g., geo-

graphical location, type of service, time of day etc. A context-aware decision

is expected to help optimized system performance.
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Figure 5.2: An example of flow management architecture overlaid on 3GPP SAE

architecture.

• Requirements: The requirements can be from the perspective of a user or an

application. From an application point of view such requirements can be re-

lated QoS demands like minimum throughput, maximum end-to-end packet

delay, jitter, losses etc. Likewise, from user perspective these requirements

can be related to service cost or pricing and expected QoE.

• Policies: The policies driving a decision can either be from a user’s or an op-

erator’s viewpoint. The users describe their preferences in terms of policies,

e.g., save battery power, minimize the monetary cost of a service, preferred

interface for an application etc. From the operator’s perspective policies can

be used to perform load balancing in the networks, to select the suitable

network access for user to fulfill application QoS demands, to minimize the

network operation cost or energy consumption etc.
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5.3.3 Overlaying on SAE Architecture

Figure 5.2 shows an example, how flow management functional entities can be

hosted on network elements of the SAE architecture. The network shown in the fig-

ure integrates heterogeneous access technologies both from 3GPP (i.e., UMTS/HSPA

and LTE) and non-3GPP (i.e., IEEE 802.11 or WLAN) standards. The complete

network is owned by one network operator who controls the operation of all access

technologies. The base stations of the aforementioned two 3GPP access technolo-

gies co-exist at a certain site and individually serve three cells of that site. The

access coverage of WLAN APs is distributed in the area and overlaps with the

coverage of 3GPP access technologies. The geographical location of these WLAN

APs is decided by the network operator as a part of the network planning task and

is beyond the scope of this work. However, the main purpose of these WLAN APs

is to provide a means for traffic offload. Owing to the fact that today’s mobile de-

vices can simultaneously connect to WLAN as well as to one of the 3GPP access

technologies; this creates a scenario for users to benefit from multihoming when

being in the coverage of WLAN APs.

The Mobility Anchor (MA) is responsible for mobility management of the users

using one of the 3GPP supported protocols such as DSMIPv6, Proxy MIPv6 etc.

As a part of mobility management, the MA is required to act as the intermediate

destination through which all multihomed user traffic has to pass. This provides

MA with a possibility to control downlink traffic on each network path of a multi-

homed user. This also makes the MA the most suitable network element to execute

downlink flow management decisions by hosting an EE entity on it. A DE entity

is also being hosted on the MA which will be called DEn for ease of reference. All

network-centric flow management decisions are mainly taken by the DEn entity.

In principle, DEn can be located anywhere in the network, but in order to avoid

additional signaling traffic and involved delays, hosting it on the MA is highly

recommended. In addition to making decisions for network-centric flow manage-

ment, DEn may also assist user-centric flow management operations.

Another DE entity is hosted on the user-terminal that is in charge of user-centric

flow management in addition to assisting network-centric flow management oper-

ations. This DE entity will be referred to as DEu hereafter. As all uplink flows

originate from the user-terminal, it is an ideal place to control uplink traffic on

various network paths of a multihomed user. This also justifies the hosting of an

EE entity on the user terminal with the help of which flow management decisions

related to uplink traffic are enforced.

Other than the above described DE and EE entities, almost all network elements

host one IE entity, e.g., at base stations, WLAN APs, gateways, and RNCs. The
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user terminal also hosts an IE entity. All of these IE entities gather the pieces

of information required by the DEs. Typically, DEs subscribe to IEs for certain

information which is transmitted periodically.

An important aspect of network-centric flow management is the network re-

source grouping. As 3GPP access technologies manage their network resources

per cell basis, therefore flow management also aggregates all network bandwidth

resources available in a cell both from WLAN and 3GPP access technologies when

performing resource allocation. The resource allocation process will be further ex-

plained later in this chapter and also in Chapter 6.

5.3.4 Flow Management Architecture Implementation for Simulator
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Figure 5.3: Network-centric flow management architecture for the heterogenous network

simulator developed in Chapter 3.

Figure 5.3 presents the network-centric flow management architecture to be used

in conjunction with the heterogeneous network simulator where LTE and WLAN

access networks are integrated together as per 3GPP standard. The DEn entity

takes all flow management decisions. These decisions are executed locally using

the ODE interface to EE entity. The decisions to be executed at user terminal are

propagated via the ODD interface to the DEu which enforce them using the local

EE entity.

Within the focus of the heterogeneous network simulator, the IE entity at the

user terminal is basically used to obtain user preferences and QoS related informa-

tion. The IE entities in the network are mainly used to retrieve the measurements

of packet delays and losses in the transport network, i.e., on the Ethernet links
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which connect the PDN-GW (or S-GW) with the eNode-B and WLAN APs. An

accurate measurement of packet loss in the network is performed with the help

of the GTP protocol [3GP08]. The GTP protocol is used to tunnel traffic from

PDN-GW to eNode-B and WLAN APs. GTP packet header has a 16-bit field that

uniquely identifies this packet and allows detection of loss. Moreover, packet de-

lays for both uplink and downlink traffic are measured using the One Way Active

Measurement Protocol (OWAMP) [STK+06].

OWAMP has been designed as a high precision mechanism to measure one-

way delay in networks. In OWAMP, small test packets are sent from the sender

to the receiver. The test packet carries a sequence number and a time-stamp to

reflect packet sent time. At the receiving end, one-way delay is computed from

the difference of sent time and the receive time of the test packet. It is clear that

the operation of OWAMP requires that clocks of both the sender and the receiver

to be synchronized. A very accurate time source can be made available to hosts

participating in OWAMP operation using the Global Positioning System (GPS)

(accurate to approx. 10ns), CDMA-based time sources (accurate to approx. 10μs),

or through the Network Time Protocol (NTP) primary time servers (accurate to

approx. 1ms). The inaccuracy within OWAMP measurements itself is estimated

to be in the range of 55–60μs.

OWAMP is also called ‘one-way ping’ in contrast to standard ping which pro-

vides round trip delay. However, the use of OWAMP is more favored as it provides

more insights by measuring uplink and downlink packet delays separately. Such

information can be used to tune performance of applications which rely on round

trip time (e.g., TCP) and also those rely on one-way delay (e.g., video streaming).

In addition to delay and loss assessments, per bearer PDCP buffer occupancy

is measured by the IE entity hosted on eNode-B and an overall MAC buffer oc-

cupancy by the IE entity hosted on the WLAN AP. This provides an indication of

downlink radio interface congestion for the users of both access technologies. In

the core network, the IE entities hosted on the S-GW and the PDN-GW provides

router queue buffer occupancies to help estimate downlink transport network con-

gestion. Similar measurements are also performed at the uplink transport network

interfaces of the eNode-B and WLAN AP.

The algorithms and policies used by the DEn in making decisions will be dis-

cussed in more detail in the next sections of this chapter. Typical examples of these

decisions are: when a particular user terminal should attach or de-attach to WLAN

access network and how much traffic should be directed to each network path for

uplink and downlink communication of a multihomed user. The decisions related

to the association with the WLAN access network are executed at the user terminal

via the DEu entity. The decisions regarding traffic distribution have to be executed
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both at home agent and at user terminal.

5.4 Downlink Flow Management

The most important piece of information in deciding appropriate network path(s)

for a multihomed user is the knowledge of user application demands and available

capacity of access links. Based on this knowledge, the DEn can make efficient

use of available resources following any policy of resource utilization. The esti-

mation of user access link capacity is therefore an important task which should be

executed with the greatest possible accuracy. The higher the precision of capacity

estimation, the more efficient will be the resource utilization. Alternatively, with-

out estimation of link capacity, loading it with an arbitrary amount of user traffic

would either lead to link under-utilization causing wastage of resources or over-

utilization which causes excessive queuing delays and buffer overflows. Both of

these situations will result in user QoE degradation. In this section, a few methods

for access link capacity are devised both for WLAN and LTE access technologies

in downlink.

5.4.1 Capacity Estimation of WLAN Access Link

Legacy WLAN (IEEE 802.11 a/b/g) provides no QoS when scheduling user traffic.

Essentially, there is only a single queue in a WLAN AP where all incoming traffic

is received, held, and then transmitted over the air to the users in a “First Come

First Serve” (FCFS) manner. That is why overall throughput of a WLAN AP and

that of the users being served is highly variable based on the number of active

users in the system, their offered traffic load as well as their channel conditions. In

order to estimate the link capacity of the user, the most commonly used techniques

require data traffic to flow between the user terminal and WLAN AP. Using test

data flows for this purpose causes bandwidth overheads. And if this measurement

has to be based on actual user traffic flows, it brings two disadvantages. First,

this cannot be employed for a user terminal that has just attached to a WLAN

AP and has not yet received any data. Second, the variations in link capacity

cannot be captured unless user traffic floods the link, e.g., with TCP based FTP

file downloads.

This work proposes a novel way of managing WLAN bandwidth resources in an

efficient way which also provides an accurate estimation of downlink user capacity.

This approach relies on the following pieces of information to operate: number

of active users attached to the WLAN access point and their PHY data rate at a

particular time instance. This information is always available at a WLAN AP and
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can be accessed via a hosted IE entity. Assume there are N active users attached

to a WLAN AP which are being served in a round-robin manner in downlink.

Consider ti as the time required to transmit one complete IP packet of size di bits

to a user i. The value of ti is computed based on the user’s current PHY data rate,

IP packet size, and MAC/PHY protocol overhead bits. In such a scenario, the

throughput of user i denoted by ω rr
useri can be estimated as follows.

ω rr
useri =

di

∑N
i=1 ti

. (5.1)

Similarly the access point throughput ω rr
AP is given by

ω rr
AP =

∑N
i=1 di

∑N
i=1 ti

, (5.2)

The assumption that the access point serves users in a round-robin manner can

be realized by controlling downlink user traffic sent to a WLAN AP by home

agent. It has been discussed earlier that home agent acting as a mobility anchor,

receives all downlink user traffic from the application server and then tunnels it to

the users over their network paths. In other words, the EE entity at the home agent

is capable of distributing user traffic over their available network paths through a

kind of traffic shaping. If DEn decides to send an equal amount of downlink traffic

to all active users of a WLAN AP, the MAC queue will hold an equal amount of

data from all users. Owing to the fact that the WLAN AP transmits data in a FCFS

manner, in the long run users will receive an equal amount of data. Hence, this can

be seen as if WLAN AP is scheduling users in round-robin manner.

The round robin way of scheduling WLAN resources, however, does not make

an optimum use of the resources. This point can be elaborated with following

example. Consider a single active user attached to a WLAN access point who is

receiving a UDP flow comprises a fixed IP packet size of d bit. Assuming 54Mbps

PHY data rate, the user experiences a throughput of d
t54Mbps

where t54Mbps is the

time to transmit one packet. As soon as another user with 6Mbps PHY data rate

(who is also receiving a similar UDP flow) associates to the same access point,

the overall access point throughput now amounts to 2d
t54Mbps+t6Mbps

. Considering

a basic channel access mechanism of 802.11a t6Mbps 
 5.6 · t54Mbps which implies

that joining of the second user reduces the overall access point throughput by 70%.

This is because round-robin is a fair scheme which gives equal chance of medium

access to all active users irrespective of their channel conditions.

One way to help in this situation is by performing resource management in such

a manner that it provides users with medium access time in proportion to their
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PHY data rate values. In other words, the users are given equal shares of the time

slices so that the users with the higher PHY data rate can transmit more packets

as compared to the users with the lower PHY data rate. This scheduling effect can

be achieved in the above example if 6 packets from the first and 1 packet from the

second user traffic flow are sent to WLAN access point. This is because the first

user can receive 5.6 packets in a time period required by the second user to receive

one packet. It implies that the DEn should assign a traffic shaping rate for the

first user which is 5.6 times higher than that of the second user. This will enhance

the overall system throughput by 196% compared to simple round-robin scheme.

This has been illustrated graphically in Figure 5.4 where the round-robin scheme

is compared with the currently proposed ‘channel aware’ scheme.

Packet queue at MAC MAC scheduler Packet queue at MAC MAC scheduler

Round Robin Approach Channel Aware Approach

bit/sec3.02throughput
54546 MbpsMbpsMbps t
d

tt
d bit/sec6.0

6
7throughput

54546 MbpsMbpsMbps t
d

tt
d

Packet from user with 54Mbps 
PHY data rate which requires a 
transmission time of t54Mbps sec

Packet from user with 6Mbps 
PHY data rate which requires a 
transmission time of t6Mbps sec

d: Size of a packet from 
both user types  in bits

MbpsMbps tt 546 6.5

Figure 5.4: Quasi-packet-scheduling of downlink user traffic at WLAN access point.

Throughput is computed for WLAN access point in downlink.

It should be clear that the overall system performance gain in the channel aware

scheme comes at the cost of reduction in throughput of the second user. However,

the scheme is fair enough to give users their system throughput share in proportion

to their PHY data rate while considerably improving the overall system through-

put. The achievable system throughput gain strictly depends on the PHY data

rates of the active users. For example, in a scenario where the users have the same

PHY data rate, the channel aware scheme cannot bring any additional gain over the

round-robin scheme. Nevertheless, the performance of the channel aware scheme

will always be equal to or greater than that of the round-robin scheme.

In order to compute the throughput of a system following the channel aware

scheme, assume ri as the achievable data rate for a user who is the only active user

associated to the access point. The ri actually reflects the channel conditions or

PHY data rate of the user i. This is because ri =
di
ti

, where ti is the actual time
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taken by user i to transmit a packet of size di bits with a certain PHY data rate.

Now consider that more users join this access point so that the total number of

active users becomes N and all users are receiving a similar traffic flow comprising

the same packet size of d bit. In this case, a user i’s the share from the overall

throughput should be in proportion to his achievable data rate ri. The fraction of

the share which has a range (0,1], is denoted by ei such that

ei =
ri

∑N
i=1 ri

. (5.3)

In this way, the overall system throughput ωch
AP will be computed as follows

ωch
AP =

∑N
i=1 ei ·di

∑N
i=1 ei · ti

(5.4)

and the throughput of user i is given by

ωch
useri

=
ei ·di

∑N
i=1 ei · ti

(5.5)

The above described schemes of scheduling WLAN bandwidth resources are

just two examples. In general other scheduling schemes can also be developed and

imposed as a policy at the DEn entity.

5.4.2 Capacity Estimation of LTE Access Link

The LTE MAC scheduler relies on very complex algorithms and mechanisms to

make efficient use of the available bandwidth resources while fulfilling the QoS

demands of different services. Therefore, the individual user’s throughput and

overall cell throughput in LTE continuously varies due to several time variable

factors like, channel conditions of all users, QoS requirements of the user traf-

fic, behavior of congestion control and resource allocation algorithms, user traffic

pattern, cell load level etc.

This work introduces a simple but effective way to estimate available user down-

link capacity for the LTE access link. It has been discussed in Chapter 2 and 4

that downlink user traffic is mainly buffered in the PDCP buffers of the eNode-B

before transmission over the air interface. Each bearer of a user has a dedicated

queue at the PDCP layer to buffer the incoming traffic data. When scheduled by

MAC scheduler for transmission, this data flows down to the RLC layer. After

doing the required processing like segmentation, encapsulation etc., the RLC and

MAC layers forward the data to the physical layer for transmission over the air
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interface. Considering this process, if the IE entity hosted on the eNode-B reports

the mean throughput of a bearer’s data flowing from PDCP to RLC layer along

with its mean PDCP buffer occupancy, an accurate estimation of time varying link

capacity can be carried out. This process is explained in the following.

A target is set for the maximum packet queuing delay γ̆ for the PDCP buffer of

a bearer. This value is multiplied by the bearer throughput h reported by the IE

entity to obtain a target occupancy μ for the PDCP buffer of that bearer. To start

this process, the DEn initially decides to send a small amount of traffic load ε for

the user bearer and monitors the reported throughput h as well as the PDCP buffer

occupancy value ψ . This helps DEn adjust the target PDCP buffer occupancy μ so

that

μ = h · γ̆ (5.6)

At the next time instant, if the IE entity reports the PDCP buffer occupancy as

ψ , the additional data required to achieve target buffer occupancy μ is given as

μ̂ = μ −ψ = h · γ̆ −ψ (5.7)

Assuming that the IE entity periodically sends reports of ψ and h every t sec-

onds, the deficiency in buffer occupancy should be equalized within t seconds.

This will require a stepwise increase in the existing traffic load ε by an amount of
μ̂
t so that the adjusted value of traffic load ε̂ to be sent over the LTE path will be

ε̂ = ε +
μ̂
t

(5.8)

This cycle continues and the LTE link capacity of a user’s bearer is adaptively

adjusted every t seconds using equations 5.6 to 5.8. The basic principle of this

mechanism lies in the fact that the PDCP buffer occupancy of a bearer reflects

congestion level at the air interface. The DEn entity always tries to maintain a

buffer occupancy of μ for a bearer and any change in that occupancy indicates the

tendency of either an increase or a decrease in the bearer throughput. For example,

when bearer throughput reduces due to some reason (e.g., cell overload or bad

channel conditions) the egress data rate from PDCP buffer becomes lower than the

ingress data rate which makes the PDCP buffer occupancy grow. The opposite is

true when the bearer throughput increases. Such a change is reflected in μ̂ through

ψ which, in turn, adjusts the traffic load ε̂ on the link.

In case of realtime traffic, the value γ̆ is determined by the de-jitter length

γde-jitter buffer which is the length of de-jitter buffer in units of seconds. When deal-

ing with TCP based non-realtime traffic, the TCP re-order timer γtcp reorder buffer
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value should be employed as explained in Section 3.4.5. As far as, the value of

t is concerned, the simulation study shows that a value in the range of 10–50 ms

serves the purpose.

5.4.3 Simulation Scenarios and Results

In order to evaluate the performance of heterogeneous networks which support si-

multaneous use of multiple interfaces of the user terminal, this section relies on

simulation based studies of the system. Owing to the fact that 3GPP has stan-

dardized the integration of WLAN & LTE access networks without multi-homing

support and that the 3GPP standard has been extended in this work to enable user

terminals to exploit multi-homing and flow management features, there are two

main scenarios to be compared against each other. The user terminals in 3GPP

defined heterogeneous network can perform seamless vertical handovers (HO) be-

tween the WLAN and LTE access networks but they cannot use the two network

paths simultaneously. This will be referred to as “3GPP HO” scenario. The de-

fault resource utilization policy in “3GPP HO” scenario is that the user terminals

communicate through the LTE network when they are away from WLAN AP and

execute a handover to the WLAN network as soon as they are found to be in its

coverage. Whereas, the second scenario will be referred to as “Multi-P” where

user terminals can exploit the flow management features. In this scenario, the user

terminals which are in the overlapped coverage of the LTE and WLAN access

networks may simultaneously make use of two network paths. The distribution

of user traffic over the two network paths is mainly managed by the DEn entity

of the flow management architecture. During the time when the user terminals

are not in the access coverage of WLAN, they have only the LTE access link to

communicate.

As the 3GPP standard does not allow the simultaneous use of multiple accesses,

this shortcoming poses a serious implication during the vertical handover. This

is because when a user terminal executes a handover from one access network to

another, the user data buffered in different elements (e.g., router, base station etc.)

of the previous network could be lost. For example, LTE keeps the received IP

packets mainly at the PDCP layer while WLAN keeps the data buffering at the

MAC layer queue before transmission over the air interface. When a user executes

a vertical handover, Mobile IPv6 registers the new care-of address with the home

agent and, therefore, the data arriving at the old care-of address is discarded. IP

packets lost in this way have to be recovered by the upper layers through retrans-

missions. This behavior leads to application performance degradation both for

TCP and UDP based services.
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In the “Multi-P” scenario, through the multi-homing support, the user terminals

are enabled to use the WLAN access when being in its coverage and also keep

the LTE connection alive at the same time. This avoids any potential data loss

in the LTE network. However, there could be a problem when a mobile user’s

connectivity to the WLAN access network is lost all of a sudden by moving out

of the coverage. This could leave some packets buffered in the WLAN access

network which will be eventually lost. In order to minimize such losses, the DEn
entity considers a user terminal’s WLAN connectivity active only when its PHY

data rate is 9 Mbps or higher. This is because when a mobile user terminal’s PHY

data rate happens to be 6 Mbps, it implies that the user has walked to the edge of the

WLAN access coverage which could be an indication that loss of WLAN access

link is imminent. As the DEn entity does not send new traffic data over the WLAN

network for such users, it gives them a chance to receive the buffered data at the

WLAN AP before the actual loss of the link happens. Moreover, in contrast to the

“3GPP HO” scenario, the “Multi-P” approach can control the buffered data at the

base station with the help of γde-jitter buffer and γtcp reorder buffer parameters. Hence,

keeping the buffered data to a minimal level helps minimize data loss.

In order to conduct this simulation base study, two simulation setups are inves-

tigated. The first simulation setup is intended to show the advantages of using

the “Channel Aware” approach over the “Round-Robin” approach of the WLAN

resource management. This setup is composed of five FTP users who are down-

loading files one after the other using only the WLAN access link. In the absence

of any resource management function a TCP connection would buffer data at the

access point equal to its windows size. This implies that all users will have the

same number of IP packets buffered at the MAC queue of the access point which

resembles to a situation created by the “Round-Robin” approach. In this way, it

can be claimed that “Round-Robin” approach also represents the “3GPP HO” sce-

nario where user traffic is not shaped according to any resource allocation function

like flow management.

The second setup represents a mixed user traffic case where 23 users are access-

ing a number of services commonly found in daily life, e.g., VoIP, FTP, HTTP,

News video streaming as well as Skype video calls. It can be noticed that this sec-

tion focuses only on downlink communication and therefore uplink applications

are not considered here. The users move within one LTE eNode-B cell which has

access coverage overlap with two WLAN access points as shown in Figure 5.6.

Other simulation configurations can be seen found in Table 5.2.

Simulation Setup 1: FTP User Traffic
Figure 5.5 shows the FTP downlink performance as experienced by users in the
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Figure 5.5: FTP downlink performance comparison between “Round-Robin” and “Channel

Aware” resource management approaches in WLAN.

first simulation setup. There are five FTP downlink users who are moving within

the coverage of a WLAN access point. The users perform FTP file download

through the WLAN access without using LTE connectivity. Figure 5.5(a) shows

the mean value of per user downlink throughput at the IP layer, Figure 5.5(b)

shows the mean file download time, and Figure 5.5(c) compares the mean number

of successful FTP file downloads by a user in one simulation run. The error bars

on bar plot represent 95% confidence interval values.

It can be seen that by using the “Channel Aware” approach for resource man-

agement, a throughput gain of ≈20% can be achieved. This gain is not as much as

shown in Figure 5.4 where one of the ideal situations was presented. As explained

earlier, the gain is realized by exploiting the good channel conditions of users in the

presence of users with bad channel conditions. However, if the users have similar

channel conditions then the “Channel Aware” scheme cannot bring much addi-

tional gain. As the channel conditions of mobile users are changing continuously

in the simulation, the users appear to have similar channel conditions. As a result,

the “Channel Aware” approach was able to improve the access point throughput

by ≈20% which is still a substantial pay-off.

Simulation Setup 2: Mixed User Traffic
In this setup, the system is populated with users who generate a rich traffic mix-

ture as shown in Table 5.2. Figure 5.7 shows a comparison of FTP downlink ap-



148 5 User QoE Enhancement using Multihoming

Profile Application Mobility 
User database 

Application 
Server 

PDN-GW 

Serving-GW 

Home Agent 
eNode-B 

Router2 

WAP1 

WAP2 

Router1 

Figure 5.6: Simulation scenario setup in the OPNET simulator. The large circular area

shows the coverage of LTE and two smaller circular areas represent the WLAN network

coverage. The user movement is restricted to the rectangular area.

plication performance for two scenarios, i.e., without multihoming (“3GPP-HO”)

and with multihoming (“Channel Aware”). Mean downlink throughput measured

at the IP layer has been depicted for each user in Figure 5.7(a). The error bars rep-

resent the 98% confidence interval value. It is evident that users in the “Channel

Aware” scenario manage to achieve ≈6% higher throughput compared to that of

users in “3GPP-HO” scenario. This is much less than the value seen in previously

discussed setup of FTP users in WLAN network. This can be attributed to the

presence of realtime traffic which is a hurdle in achieving higher performance for

“Channel Aware” scheme. The reason is that “Channel Aware” relies on exploit-

ing good channel conditions of the users. A user with good channel conditions is

offered an opportunity to receive a large amount of data to increase spectral effi-

ciency. If this user is receiving TCP based flow like FTP, then the TCP data rate

can adapt itself to the available link capacity. However, if the user is receiving

realtime traffic flow with fixed data rate which is much less than the offered link

capacity, the provided resources remain under-utilized. This causes the “Channel

Aware” scheme to exhibit lower efficiency.

Figure 5.7(b) shows the mean time to download a file of 10MByte size as ex-

perienced by the users in two comparison scenarios. Similarly, the mean number

of files downloaded by each user during the whole simulation run time are shown
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Table 5.2: Simulation configurations for evaluation of the downlink flow management

scheme.

Parameter Configurations

Total number of PRBs 25 PRBs (5 MHz specturm)

Mobility model Random Direction (RD) with 6 km/h

Number of users 5 VoIP, 3 live News video streams, 7 Skype video calls, 3 HTTP

and 5 FTP downlink users

LTE channel model Macroscopic pathloss model [25.06], Correlated Slow Fading.

LTE MAC scheduler Time domain: Optimized Service Aware,

Frequency domain: Iterative RR approach [S. 12]

WLAN access technology 802.11a, RTS/CTS enabled, coverage ≈ 100 m,

operation in non-overlapping channels

Transport network 1Gbps Ethernet links, no link congestion

VoIP traffic model G.722.2 wideband codec, 23.05kbps data rate and 50frame/s

Skype video model MPEG-4 codec, 512kbps, 30frame/s, 640x480 resolution,

play-out delay: 250ms

Live News video model MPEG-4 codec, 1Mbps, 30frame/s, 720x480 resolution,

play-out delay: 250ms

HTTP traffic model 100 bytes html page with 5 objects each of 100Kbytes,

page reading time: 12s

FTP traffic model FTP File size: constant 10MByte, as soon as one file download

finishes, the next FTP file starts immediately.

TCP configurations TCP new Reno, Receiver buffer: 1Mbyte, Window scaling: enabled,

Maximum segment size: 1300Byte, TCP reorder timer: 250ms

DEn decision interval Every 20ms

Simulation run time 1000 seconds, 13 random seeds, 95% Confidence interval

in Figure 5.7(c). These two figures also show the performance gain of the same

magnitude as observed in Figure 5.7(a).

A performance comparison of HTTP application can be seen in Figure 5.8.

HTTP users are seen to achieve less throughputs compared to downlink FTP users.

The rationale behind this is the smaller sized (100KByte) HTTP objects compared

to large FTP files (10MByte). Due to its small size, an embedded object down-

load finishes during the “slow start” phase of TCP. This prevents the users from

obtaining higher steady throughput achievable only in the post “slow start” phase

of TCP. This is also a hurdle for the “Channel Aware” approach to show its full

performance.

Figure 5.9 shows the box plots (also known as box-and-whisker plots) to repre-

sent the user perceived MOS scores of VoIP and video applications. A box-and-

whisker plot graphically depicts the groups of numerical data through their five
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Figure 5.7: FTP downlink performance comparison between “3GPP-HO” and “Channel

Aware” approaches.
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Figure 5.8: HTTP downlink performance comparison between “3GPP-HO” and “Channel

Aware” approaches.

number summary, i.e., (1) minimum, (2) maximum, (3) median (or second quar-

tile), (4) the first quartile, and (5) the third quartile. The bottom and top of the

box are the first and third quartiles, respectively. The band near the middle of the

box is the median. The whiskers represent the maximum and minimum of all the
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data values. Moreover, any data not included between the whiskers is plotted as

an outlier with a cross ‘+’ sign. Further explanation about the box plot has been

given in Appendix B.

The MOS values of VoIP call are computed during the simulation run every 1 sec

using E-model as discussed in Section A.3.1.2 of Appendix Chapter. The Evalvid

tool discussed in Section A.3.2.2 is used to estimate user QoE as MOS values for

each user call. These computations are performed offline after the completion of

a simulation run. It can be seen that “Channel Aware” approach succeeds in de-

livering the best user QoE to VoIP, Skype video, and News video users. For this

purpose, the “Channel Aware” approach utilizes its capabilities to estimate user

access link capacities and to manage the resources in a way such that the QoS

demands of realtime applications are always fulfilled. As long as the user stays

outside the WLAN access network coverage, the realtime traffic is served over

the LTE access link which offers QoS aware service by giving higher priority to

VoIP/video traffic over FTP/HTTP traffic. Therefore, during this time both “Chan-

nel Aware” as well as “3GPP-HO” can attain good MOS values. However, when

the user is in the coverage of the WLAN access point, the users in “3GPP-HO”

execute a complete handover to WLAN access network which fails to offer QoS

differentiation to the delay sensitive realtime applications. This leads to poor user

QoE during these times.

In contrast to “3GPP-HO”, the proposed “Channel Aware” approach makes an

accurate estimation of available WLAN access link capacity and utilizes it accord-

ingly. Moreover, any deficit in the required bandwidth demands of the application

is fulfilled from the LTE access link. In this way, the users are always served with

the necessary bandwidth resources required to achieve user satisfaction irrespec-

tive of the network congestion.

The VoIP MOS value is affected by both end-to-end delay and packet loss rate

while the model used to compute video MOS is indifferent to the packet delays

as long as they are less than the de-jitter buffer length (250ms). Any video packet

delayed beyond the de-jitter buffer length is assumed to be lost. These lost packets

drag the third quartile of video MOS values beyond 2. On the other hand, the VoIP

QoE evaluation model considers a continuous effect of packet delays which leads

the third quartile to stay above a MOS value of 3. Moreover, both applications

suffer from the packet losses during the vertical handover which is reflected by the

minimum values and outliers in the MOS plot.

Another closer look at realtime application performance is provided by Fig-

ure 5.10 which represents the end-to-end packet delay of video applications. It

is obvious from the figure that the “Channel Aware” approach manages to keep

delays under control by making use of intelligent flow management. However,
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Figure 5.9: Downlink performance comparison of realtime applications between “3GPP-

HO” and “Channel Aware” approaches.

the users in the “3GPP-HO” scenario suffer from excessive delays for extended

periods of time. These are the times when the users are being served by WLAN

access networks. The reason for large packet delays is the presence of FTP users

in the WLAN access networks. Owing to the fact that the radio interface is the

only bottleneck for users in the “3GPP-HO” scenario, the TCP connections buffer

a significant amount of data (which is equal to the TCP window size of 1MByte)

at the single MAC queue of the WLAN access point. Due to this high buffer oc-

cupancy and ’First Come, First Serve’ strategy of the WLAN MAC, the realtime

users suffer from large queuing delays.

In contrast to this, the “Channel Aware” approach manages the WLAN MAC

buffer occupancy so that it does not grows excessively high. This is because here

the downlink data is kept at the home agent in individual user buffers. The DEn
entity sanctions only that amount of user data to flow to the WLAN access point

which can be handled by that particular user’s access link. This alleviates the

head-of-line blocking situation observed in the “3GPP-HO" scenario.

5.5 Uplink Flow Management

In the previous section, it has been shown that multihoming and flow manage-

ment are capable of delivering substantial improvement in user QoE. However,

that section focused only on the downlink communication. This section extends
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Figure 5.10: Video packet delay comparison for downlink communication.

the investigations to the uplink communication. The mechanisms devised to es-

timate downlink access link capacity will also be used here with some essential

modifications.

5.5.1 Estimation of WLAN Link Capacity

In the WLAN network where a number of users are contending for medium ac-

cess to perform uplink transmission, the network capacity and the individual user

throughput is highly variable. In this way, another variable factor which affects the

throughput, in addition to those mentioned in Section 5.4.1, comes from the colli-

sions of contending stations. This makes it rather complex to mathematically com-

pute individual user throughput in such a network. In this work two approaches are

proposed which can help estimate the user throughput over time without analytical

modeling of the network.

5.5.1.1 Approach 1 - Random Access:

This approach is based on the same principle as explained in Section 5.4.2 for

the LTE access link capacity estimations. It requires a metering function, as part

of the information management entity (IE), which is introduced in the WLAN

MAC layer of the user terminal. The metering function is intended to measure the
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outgoing data rate from the buffer, as well as, the buffer occupancy level. These

two values are obtained periodically and sent to the DEu entity residing at the

UE. In the beginning, the DEu entity directs a sufficient amount of user traffic

to the WLAN MAC for transmission. This data stays at the MAC layer buffer

before transmission over the radio interface. The DEu entity now continuously

receives the buffer occupancy level reports and adjusts the size of traffic flow to the

WLAN network path to keep the buffer occupancy at the target level. In this way,

if the buffer occupancy level increases, it hints at reduction in available WLAN

path capacity due to some reason, e.g., congestion, poor channel conditions, more

collisions etc. In this case, the DEu entity accordingly reduces the traffic flow

amount directed towards the WLAN path. The opposite is true if a reduction in

MAC buffer occupancy is observed which suggests an improvement in the path

capacity. The DEu entity then takes advantage of this by sending more traffic

towards the WLAN path. Following this approach time varying WLAN network

path capacity can be tracked and used by the DEu entity.

In this approach, the DEn entity informs the DEu entity to act autonomously

in estimation and utilization of WLAN access link resources. As a part of this

decision, the DEn entity may also inform the DEu entity to take care of a maximum

or minimum traffic flow size to be directed to the WLAN access link.

The practical implementation of the suggested approach is straightforward as it

does not require any modification in the UE hardware or WLAN MAC protocol.

As far as the dynamic size of the target MAC buffer occupancy is concerned, it is

computed as suggested in equation 5.6.

5.5.1.2 Approach 2 - Time Round-Robin:

This approach involves a quasi-scheduling of the WLAN network resources. The

main idea behind this approach is to save the network resources which are oth-

erwise wasted due to contention in channel medium access and packet collisions

when multiple users transmit simultaneously. By saving these network resources

the user throughput can be improved and the network capacity can be increased.

This approach is realized by the active cooperation of both DEn and DEu entities.

In this approach the DEn entity receives the information about the active users as-

sociated with a WLAN AP. This information is periodically sent by the IE entity

residing at the WLAN AP. The DEn entity builds a list of active users and assigns

time slots to them to be transmitted in a round-robin manner. In order to minimize

the signalling traffic and associated delays, the scheduling decision is communi-

cated to the DEu entities in the form of ON-OFF periods. A user terminal trans-

mits only during the indicated ON period of self-repeating scheduling intervals
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and halts the transmissions otherwise. For example, if two users are associated to

an access point, they will share the network resources in a round-robin way so that

one user transmits only for a fixed time period allowed by its allocated time slot.

During the transmission time of the first user, the second user halts transmissions

and waits for the first user’s time slot to end. When the time slot of the first user

elapses, the channel access time for the second user starts and lasts for duration

equal to its time slot. During this time, the first user has to stop its transmissions

over the WLAN. This cycle is followed until any change happens in the network

topology, e.g., a new user joins or an existing user leaves the WLAN network etc.

In response to such events, the DEn entity reschedules the users and conveys the

updated schedule to the DEu entities of the active users.

Assume that each user i is assigned with a time slot of length θi during which it

is allowed to transmit exclusively. Referring to Section 5.4.1 for the definition of

ri as the achievable data rate for a user i, the mean user throughput ω trr
useri

can be

computed using the following equation, i.e.,

ω trr
useri

= ri · θi

∑N
i=1 θi

. (5.9)

where N is the total number of active users associated to the WLAN access point.

This approach assumes that the participating users are precisely time synchro-

nized which is realistic to be achieved in the real world. Section 5.3.4 mentioned a

few techniques to do synchronization with an accuracy in the range of 10ns to 1ms.

Without precise time synchronization, there could be some contention for medium

access during the overlapped period of the two adjacent time slots. However, if the

length of the time slot is much larger than the overlapping period, the users will

still be able to enjoy sufficient contention free time periods for their transmission.

Moreover, during the overlapping period only two users will be competing for the

medium access which is still better than the situation where all active users are

contending for the medium access and hence degrades the network performance.

Another problem associated with this approach is related to the WLAN MAC

buffer contents at the user terminal. Owing to the fact that the WLAN MAC func-

tion of the user terminal is unaware of the proposed approach, it will try to transmit

the existing buffered data even when the user time slot has elapsed. A possible so-

lution could be that the WLAN radio transmitter is switched off after transmission

and switched on again when the next time slot for transmission approaches. This

can prevent the users to contend for the channel during the time slot of the intended

user. However, in this case the packets already waiting in the MAC buffer could

be lost. To avoid this packet loss and minimize the contention period, the DEu
entity sends only two IP packets to the WLAN MAC for transmission. When the
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WLAN MAC function de-queue a packet for transmission, a software interrupt is

sent to the DEu entity which responds by delivering another IP packet to the MAC

buffer. This way, at any time instant during the transmission time slot of a user

there are at most two packets lying in the buffer. As soon as the time slot of the

user elapses, the DEu entity stops sending new packets to the WLAN MAC and

therefore this user contends for the medium access with the user of the adjacent

time slot to transmit only two packets. Another possible way to circumvent this

problem could be to use guard times between two adjacent time slots.

The quasi-scheduling decisions are conveyed to the users using LTE signalling

in order to avoid any excessive delays. Due to the fact that each user follows

its time slot for transmission, there are very few events of packet collision or

medium access contention involved. As a consequence, an improvement in the

network capacity is expected. This mechanism resembles the famous token ring

protocol, however, it does not require any modification on the WLAN MAC proto-

col. Though in this work simple round-robin scheme is used, the proposed quasi-

scheduling approach is general enough to accommodate other resource sharing

schemes.

It should be noted that the first approach for the WLAN link capacity estimation

can be used by both network-centric and user-centric flow management schemes.

However, the second approach must be used with the help of network functions

and is therefore only suitable for the network-centric flow management scheme.

5.5.2 Estimation of LTE access link capacity

The estimation of the LTE access link capacity available to a user terminal is per-

formed by using the same solution as discussed in Section 5.4.2. For this purpose,

the IE entity hosted on user the terminal periodically provides the PDCP buffer oc-

cupancy and the LTE uplink throughput information to let the DEu entity manage

the uplink bandwidth resources. The relevant parameters for resource manage-

ment (e.g., whether to use the LTE path, upper and lower thresholds of data traffic

to be sent on the LTE path etc.) are provided by the DEn entity as a part of the

decision and policy. Based on the decision parameters and link capacity estima-

tion algorithm, DEu autonomously judges the amount of available bandwidth on

the LTE uplink and accordingly sends the user data traffic over this path. This

approach of link capacity estimation can be used by the user-centric as well as the

network-centric flow management.
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5.5.3 Simulation Scenarios and Results

In this section simulation results are used to evaluate the performance of the pro-

posed approaches in multihoming scenarios. Similar to the study of downlink

approaches, mainly the performance of the two scenarios is compared. “3GPP-

HO” once again refers to the scenario which does not support multihoming or flow

management. The other scenario is called “Multi-P” where the users are enabled to

exploit multihoming and flow management features. Both scenarios follow sim-

ilar policies of access network association as observed in the study of downlink

approaches. That is, the users in the “3GPP-HO” scenario are preferably served

over the WLAN access link as long as they are in WLAN coverage. On leaving

that coverage, they are seamlessly handed over to the LTE network. In “Multi-P”

scenario, the users can make use of WLAN and LTE access links simultaneously.

More specifically, realtime users prefer to utilize the WLAN access link capacity

as much as possible and may get additional required capacity from the LTE access

link in order fulfill a fixed application data rate demand. On the other hand, the

FTP users try to utilize the capacities available from both access links simultane-

ously.

As the ‘proactive mobility management’ or make-before-break strategy is not

followed during vertical handovers in the “3GPP-HO” scenario, the users have

to suffer from packet losses in both uplink and downlink directions. “Multi-P”

avoids such losses by supporting multihoming when entering the WLAN access

network coverage. Moreover, in the “Multi-P” scenario the DEu entity does not

send new data packets for transmission to the WLAN interface when the PHY data

rate is 6Mbps. This is due to the fact that when a mobile user terminal achieves

the lowest PHY data rate of 6Mbps, it is an indication that the user has moved

near to the coverage boundary and loss of WLAN access link is imminent. At this

point, the user is given an opportunity to transmit already buffered data at the MAC

layer and hence minimize the packet loss rate. This is the same strategy which is

followed by the DEn entity in the downlink direction as discussed in Section 5.4.3.

The achieved user QoE is compared in “Multi-P” and “3GPP-HO” scenarios for

popular uplink applications, i.e., Skype video calls, FTP uplink, and VoIP. For this

purpose, a simulation setup is created which is composed of 20 users moving in an

area where the coverage of one LTE cell and two WLAN access point is available

(similar to Figure 5.6). The other simulation configuration details are the same as

listed in Table 5.2.

Within the “Multi-P” scenario two approaches for the WLAN access link capac-

ity estimation are employed as discussed in Section 5.5.1. In this way, there are

three scenarios to be discussed in this simulation setup, i.e., “3GPP-HO”, “Ran-
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dom Access”, and “Time Round-Robin”.

In addition to the aforementioned simulation setup of mixed user traffic, another

simulation setup is created with FTP users moving within the coverage of one

WLAN access point without having LTE connectivity. The motivation behind this

simulation setup is to study the performance comparison of the two “Multi-P”

approaches, i.e., “Random Access”, and “Time Round-Robin”.

Simulation Setup 1: Mixed User Traffic
In this simulation an uplink traffic mixture is generated by 5 VoIP calls, 4 Skype

video call, and 11 FTP uplink users. Figure 5.11 shows the uplink FTP applica-

tion performance. For example, the mean IP uplink throughput as experienced

by each FTP user is shown in Figure 5.11(a). It is evident that the highest mean

uplink throughput has been achieved by the “Time Round-Robin” approach of

“Multi-P” and the lowest performance is shown by the users in the “3GPP-HO”

scenario. Quantifying the performance figures, “Time Round-Robin” approach

manages to provide approximately 35% higher IP throughput compared to the

“3GPP-HO” scenario. Moreover, an approximately 27% gain in uplink IP through-

put is observed for the users following the “Random Access” approach compared

to the “3GPP HO” scenario. The reason for “Time Round-Robin” to attain higher

performance compared to the “Random Access” approach is due to its ability to

minimize medium access contention in WLAN by allocating each associated user

terminal a 10ms time slot for exclusive transmissions. All performance metrics

shown in Figure. 5.11 indicate that “Multi-P” algorithms outperform the “3GPP

HO” approach by making better use of aggregated bandwidth resources through

network path capacity estimation.

As far as the realtime applications (i.e., VoIP and video) are concerned, their

performance is evaluated by comparing the Mean Opinion Score (MOS) values as

shown in Fig. 5.12. These results indicate that the “Multi-P” approaches provide

an excellent performance for the VoIP calls, as well as, for the video conference

application type. The reason for “3GPP-HO” users to achieve low MOS value can

be attributed to packet losses during the vertical handover as well as to the lack

of QoS support in 802.11a networks. Thanks to algorithms of “Multi-P” scenario

which estimate and manage 802.11a resources in a way that not only the required

QoS for realtime traffic is provided but also an enhanced throughput performance

for non-realtime users is accomplished.

A comparison of Figures 5.9 and 5.12 reveals that the user in “3GPP-HO” sce-

narios are exposed to be inferior to the QoE in downlink compared to that of up-

link. The reason for this behavior can be explained by comparing the end-to-end

packet delay figures, i.e., Figure 5.10 and 5.13. It is noticed that end-to-end packet
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Figure 5.11: FTP uplink performance comparison among “Time Round-Robin”, “Random

Access”, and “3GPP-HO” approaches.
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Figure 5.12: Video and VoIP uplink application performance comparison among “Ran-

dom Access”, “Time Round-Robin”, and “3GPP-HO” WLAN resource management

approaches.

delay for uplink transmission has been confined to a much lower value range com-
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pared to that of downlink transmission. This is because in downlink, the data

packets from all user traffic are buffered in a single MAC queue at the WLAN ac-

cess point which causes head-of-line blocking for realtime application traffic. As a

result, the queuing delay for these packets grows excessively high leading to poor

user QoE. In contrast to this, in uplink the users have individual MAC queues in

their terminals and they have to compete only for the medium access to transmit.

As long as the number of active users is relatively small the medium access delay

remains restrained causing less adverse effects on user QoE.
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Figure 5.13: Video packet delay comparison for uplink communication.

Simulation Setup 2: FTP User Traffic
In this simulation setup only FTP uplink users are considered. In order to com-

pare the performance of “Time Round-Robin” and “Random Access” approaches

at various load levels, the number of active users are varied from 4 to 25. Fig-

ure 5.14(a) shows the mean IP throughput achieved by each user as a performance

comparison metric. It is illustrated that as the number of active users increases

the throughput share of each user reduces accordingly. Furthermore, the “Time

Round-Robin” approach is always seen to outperform the “Random Access” ap-

proach by providing a throughput gain above 12%. It is also evident from Fig-

ure 5.14(b) that the throughput gain increases with the number of active users in

WLAN access network. This is due to the contention in medium access and asso-

ciated transmission collisions which grow along with the user population. Owing

to the fact that the “Time Round-Robin” approach circumvents such collisions by

giving each user 10ms dedicated time slot for transmission, a noticeable improve-

ment in the user throughput is observed.
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A drawback of “Time Round-Robin” approach is the OFF period during which

the users let a single user transmit exclusively without any contention. As the

number of participant users increases, this OFF period also increases proportion-

ately. In the absence of multihoming, when a user has only WLAN access link to

transmit, these long periods tend to produce adverse effects on application perfor-

mance because of the associated delays. Such an effect will be more unfavorable

for realtime applications that are very sensitive to packet delays. Therefore, em-

ploying the “Time Round-Robin” approach is not recommended in the absence of

multihoming support when a large number of users are to be served.
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Figure 5.14: Per user mean IP uplink throughput comparison among the “Time Round-

Robin” and “Random Access” approaches.

This chapter introduced overlay architecture for flow management which com-

plements 3GPP compliant heterogeneous network architecture in achieving en-

hanced user QoE. A prerequisite of intelligent flow management was fulfilled by

introducing novel approaches for access link capacity estimation. The effective-

ness of flow management and the proposed mechanisms to estimate user access

link capacity was validated using simulation results. The next chapter will discuss

further cutting-edge approaches based on analytical modeling of access technolo-

gies. This will let flow management optimally utilize network bandwidth resources

by overriding the default packet scheduling schemes of the access technologies.





6 Analytical Solution for Optimized
Resource Allocation

This chapter discusses analytical solutions in order to optimize network resource

allocation for multihomed users. Chapter 5 has extensively discussed how the re-

source allocations can be made efficient using multihoming in conjunction with the

Flow Management. That study is further extended in exploring the upper limits of

achievable network performance. For this purpose, the techniques of operations

research or mathematical optimization are employed. A prerequisite in exploiting

these techniques is the analytical modeling of network access links which describe

how the network (spectrum) resources are translated to the achievable user data

rates. Such functions along with other conditions of serving users derive the mod-

eling of the optimized resource allocation process.

The organization of this chapter is as follows. Section 6.1 serves as an introduc-

tion to Linear Programming which is a technique of mathematical optimization.

The development of analytical models for network access links is discussed in Sec-

tion 6.2. After that, the resource allocation problem is formulated in Section 6.3

along with a simulation based study of the proposed approach. Finally, the compu-

tational complexity of the developed analytical solution is discussed in Section6.4

and the chapter is concluded by devising alternative approaches based on heuris-

tic algorithms which offer matched performance and exhibit less computational

complexity.

6.1 Linear Programming

The idea about linear programming can be traced back to Fourier’s work in 1826.

However, it was George B. Dantzig who introduced it as a discipline to solve a

large class of optimization problems in 1947. The term ‘programming’ should not

be confused here with the act of developing computer code. In fact, in the 1940s

this term was synonymous with ‘planning’. This way, linear programming is a

subset of mathematical programming which is itself a field of operations research.

Linear programming is renowned as one of the most commonly employed opera-
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tions research methods. Other operations research techniques include simulation,

queuing theory, regression analysis, stochastic processes, network analysis, game

theory, etc.

The Linear Programming deals with the efficient allocation of limited resources

with the objective of maximizing profit or minimizing cost. In formal words, a

linear program is concerned with the problem of maximizing or minimizing a lin-

ear function, subject to linear constraints. Some models naturally exhibit linearity

based on physical properties of the problem. Others may be linearized by employ-

ing mathematical transformation techniques.

The following points must be true of a problem to be solved using linear pro-

gramming:

1. The variables whose values are to be decided in an optimal fashion must

be non-negative. These unknown variables are called ‘decision variables’.

They can be written as

x j ≥ 0, j = 1,2,3, . . . ,n (6.1)

2. The criterion for choosing the optimal values of decision variables must be

a linear function of the decision variables. This criterion is referred to as

objective function and can be written as

O = c1x1 + c2x2 + . . .+ cnxn =
n

∑
j=1

c jx j (6.2)

where c1,c2,c3, . . . ,cn are constant values.

3. The optimal value of decision variables must abide by the operating rules,

called ‘constraints’. Each constraint must consist of either an equality or an

inequality associated with some linear combination of the decision variables,

e.g.,

a1x1 +a2x2 + . . .+anxn � b (6.3)

where a1,a2,a3, . . . ,an are constant values.

The requirements for the objective function and constraints as linear functions

of the decision variables justify the term ‘linear’ in linear programming. A combi-

nation of certain values for the decision variables is called a ‘solution’. A solution

is considered as a ‘feasible solution’ if it satisfies all constraints. Furthermore, any

feasible solution is called ‘optimal solution’ if it also achieves the desired maxi-

mum / minimum.
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In some cases, no feasible solution exists for a problem. This could be mainly

because of contradictions among the constraints. Such a problem is called ‘infea-

sible problem’. Another form of problems is referred to as ‘unbounded problems’.

A problem is unbounded if it has a feasible solution with arbitrarily large objective

values, e.g. consider the following simple problem,

maximize x1 − x2

subject to x1,x2 ≥ 0.

In this case, setting the value of x2 equal to zero, x1 can be assigned an arbitrarily

large value in maximizing the objective function. This makes it an unbounded

problem. In the process of problem formulation and finding optimal values, it is

important to detect when a problem turns out to be infeasible or unbounded.

A prerequisite for linear programming theory and algorithms is that the problem

variables must be real. This assumption is fulfilled in many real-life applications

of linear programming. However, sometimes, meaningful values of the problem

variables can be only Integer. For example, consider an example where the optimal

value of the production of items has to be computed. In such a problem, the output

should represent an integer number of items to be produced. In these situations,

imposing integrality requirements on some of the variables makes the problem

belong to ’Mixed Integer Programming (MxIP)’ class.

MxIP problems are categorized under the class of ‘NP-complete’ problems which

exhibit an extremely high computational complexity. In solving MxIP problems,

sometimes a work-around is employed by relaxing the integrality requirements.

This process is known as ‘relaxing’ of the corresponding MxIP problem. With the

help of this relaxation a near-optimal solution is achieved by judiciously rounding

off the fractional values of integer variables in the optimal solution. Such an ap-

proach introduces relatively a small rounding off error provided the typical values

for integral variables are in the order of tens or above.

6.1.1 Advantages of Linear Programming

The main reasons for wide use and recognition of linear programming to ana-

lyze numerous operations research problems are as follows. First, a large class of

problems from many areas can either be represented or approximated as linear pro-

gramming models. Second, a number of well-established and efficient methods are

available to solve linear programming problems. Especially, with the recent evo-

lution of computer hardware and sophisticated linear programming software, the

solution of even very large problems is fast and inexpensive. Finally, a linear pro-

gramming problem can be easily extended or limited by manipulating associated
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constraints. This feature is particularly helpful in carrying out sensitivity analysis

through the variations of problem data.

6.1.2 An Illustrative Example

The general process for a simple linear programming problem is to graph the con-

straints to create a walled-off area on the x- & y-plane, termed as ‘feasibility re-

gion’. Then identify the coordinates of the corners of that feasibility region and

evaluate the objective function for these coordinate values to find out the maxi-

mum / minimum value. This process is illustrated here for a simple example of

linear programming problem, described as follows: Find the values of x1 and x2

which maximize the sum term x1 + x2, subject to constraints x1,x2 ≥ 0 and

3x1 + x2 ≤ 0

x1 − x2 ≤ 1

x1 +2x2 ≤ 7

Figure 6.1 shows the plot of the above described constraint set and the result-

ing feasibility region (x1 is plotted in x-plane and x2 is plotted on y-plane). It has

been proved that a linear objective function always takes on its maximum / mini-

mum value at a corner point of the feasibility region, provided the constraint set is

bounded. Although in some cases the maximum / minimum may occur along an

entire edge but it still occurs at the corner point of that edge as well.

In the above described example, the coordinates of corner points of the four-

sided feasibility region are as follows: (0,0), (1,0), (3,2), and (1,3). The cor-

responding value of the objective function (x1 + x2) for these coordinates are as

follows: 0, 1, 5, and 4, respectively. Hence, the desired optimal or maximum value

is 5 which is obtained when x1 = 3 and x2 = 2. Moreover, the minimum value for

the objective function would be 0 when x1 = 0,x2 = 0.

6.1.3 Simplex Method

A two variable linear programming problem can be solved easily using the graphi-

cal method outlined in the previous subsection. A bit more complex problems can

be addressed by using algebraic techniques to solve systems of linear equations.

However, the real world problems may comprise hundreds of variables which can-

not be solved efficiently using the aforementioned techniques. This is where the

Simplex Method comes into the picture. This method was introduced by George

Dantzig which tests the adjacent vertices of the feasibility region in sequence so
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Figure 6.1: Graph of a system of linear equations. Identifying the feasibility region and

optimal point.

that at each new vertex the value of the objective function improves or remains

unaltered. The simplex method is generally very efficient and takes 2n to 3n itera-

tions in solving a problem with n equality constraints. The worst case complexity

of simplex method has been shown as exponential in certain rare cases.

In addition to the simplex algorithm, interior-point methods are also widely em-

ployed to solve linear programming problems. As explained earlier, the simplex

methods reach the optimum by traversing around the boundary of the feasibility

region in search for the extreme points of the feasibility region. In contrast to this,

interior-point methods approach the optimal solution from the strict interior of the

feasibility region. Generally, these methods consist of a self-concordant barrier

function used to encode the convex set and exhibit polynomial complexity for both

average and worst cases. The interior-point method was first invented by John von

Neumann and the later enhanced by Narendra Karmarkar[Kar84]. Though various

forms of interior-point method exist today, Mehrotra’s predictor-corrector [Meh92]

method is considered among the best interior-point methods which is competitive

with the simplex method, especially for large scale problems.

6.1.4 Software Tools

A computer software which employs certain algorithms to solve linear program-

ming problems is called ‘Linear Programming Solver’ or LP solver. In the follow-

ing, a few of the popular LP solvers are listed.

• lp_solve [lRG13]: This a free linear (integer) programming solver provided

under the ‘GNU lesser general public license’. Basically, it is a library (a set

of software routines) which can be invoked from almost any computer pro-

gramming language like C/C++, C#, Java, .NET, Delphi, VisualBasic etc.
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lp_solve’s capabilities are not restricted to model size, i.e., number of vari-

ables and constraints. The software package also includes IDE (Integrated

Development Interface) to access lp_solve functionality using a graphical

user interface.

• CPLEX [IBM13a]: The CPLEX solver has been named after the simplex
method implemented in the C computer programming language. However,

today it also provides additional methods to solve operations research prob-

lems. In fact, it is a state-of-the-art LP solver for which the size of problem

is merely limited by the computer capacity. This commercial tool has been

designed to solve large scale, complex problems where other LP solvers ei-

ther fail or become unacceptably slow. A free version of CPLEX is available

for students but is limited to 300 variables and constraints.

• GLPK [GLP13]: The name stands for GNU Linear Programming Kit. This

is another freely available tool licensed under the ‘GNU General Public Li-

cense’ and is organized in the form of a callable library. The GLPK is a

simplex-based solver which is capable of solving large scale linear, MIP,

and other related problems. The packet includes a stand-alone LP solver as

well as an Application Programming Interface (API) component.

Other mentionable LP solvers include FortMP [For13], Gurobi [GUR13], MI-

NOS [MIN13], and KNITRO [KNI13].

An LP solver accepts a linear programming problem as an input only if de-

scribed according to a certain modeling language for mathematical programming.

There are numbers of options available in this regard, e.g., AMPL (A Mathematical

Programming Language) [A M13], OPL (Optimization Programming Language)

[OPL13], GAMS (General Algebraic Modeling System) [The13] etc. In addition,

there are various file formats which can be used to present the linear program-

ming problem and archive it, e.g., MPS (Mathematical Programming System), .nl

format, .sol format, etc.

In this work, the AMPL modeling language has been used in conjunction with

CPLEX and lp_solve during the development and test phase. However, for the

purpose of integration with the OPNET simulator an educational version of ‘IBM

ILOG CPLEX Optimization Studio’ [IBM13b] was employed. The OPNET sim-

ulator uses the CPLEX API for the C-language to interface with the LP solver.
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6.2 Analytical Modeling of Network Access Links

In a wireless access network, frequency spectrum and its usage time are the main

network resources which are shared by its users. Considering the common prac-

tice where the access networks are assigned with a fixed amount of frequency

spectrum, each access network has a given number of network resources. For ex-

ample, an LTE access network may be installed with 5MHz spectrum bandwidth,

or an IEEE 802.11a network typically operates with 16.6MHz bandwidth. Having

the fixed network resources, a network’s capacity and its performance, in turn, de-

pends on the fact how efficiently these spectrum resources are utilized. For exam-

ple, if the users have good channel conditions, they can employ higher modulation

schemes to transmit more data bits for a given amount of network resources. In

other words, good channel conditions allow to achieve higher spectral efficiency.

The opposite is true for the users who are suffering from bad channel conditions.

Owing to the above facts, in multihoming scenarios, a strategy to increase net-

work capacity is to serve a user over that particular network path which costs less

network resources. This strategy is an advanced extension of the MaxT schedul-

ing technique discussed in Chapter 4. The original MaxT exploits only the user

diversity, but the proposed strategy, additionally, exploits the diversity of multiple

access networks in order to attain high spectral efficiency. This work adapts the

term “network path cost” to represent the required network resources to offer a

certain data rate. The network path cost is described in different units for different

access networks. For example, it is described in the units of [second] in WLAN

networks and in term of [PRB] in LTE networks. This will be further elaborated

over the next subsections.

The network path cost for a user can be computed using the pertaining channel

condition information. Such information is accessible through cross-layer com-

munication from the MAC layer of the corresponding access technology. This

information along with the other knowledge about the design and operation of the

access technology paves the way to an accurate estimation of the network path

cost. Over the next subsections, it is discussed how the network path cost can be

computed for the users in LTE and WLAN networks.

6.2.1 LTE Access Network

LTE performs a managed scheduling of available bandwidth resources. These re-

sources are assigned to users in terms of PRBs (Physical Resource Blocks). A PRB

is the minimum resource unit which can be allocated to a user in LTE. Based on

the allocated frequency spectrum size, LTE has a given number of PRBs. The LTE
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MAC scheduler residing at the eNodeB schedules these PRBs using 1ms Trans-

mission Time Interval (TTI). In Section 4.2.1 it has been discussed with details

how the LTE MAC scheduler allocates resources to the users. In the following, a

short summary of the process is outlined.

• In first step, the buffer status report is received for all users. The buffer status

report indicates which users are candidates for transmission in a particular

TTI. In downlink, the occupancy of buffers at RLC/PDCP layer at eNodeB

is used to indicate whether there exists user data to be transmitted. In up-

link, user terminals periodically send their buffer status reports to the MAC

scheduler at the eNodeB.

• With the help of buffer status reports, the MAC scheduler compiles a list of

users which are candidates for resources in this particular TTI. The next step

is to categorize them into GBR and non-GBR users.

• The GBR users usually have the highest priority. Therefore, they are served

right away with the required resources.

• The remaining resources will be assigned to non-GBR users. For this pur-

pose, these users are sorted according to their assigned bearer priority. The

users with the higher priority are allocated with the available resources us-

ing a scheduling scheme like Round Robin, Proportional Fair, etc. In the

resource allocation process, the MAC scheduler may also consider the user

channel conditions which can be described in terms of the MCS (Modula-

tion & Coding Scheme) index. There is a predefined range of MCS indices

which can be found in 3GPP standards [36.12].

• The assigned PRB count and MCS value of a user are used to lookup the

Transport Block Size (TBS) from a table defined in the 3GPP specifications

[36.12]. This is a two dimensional table where each row lists TBS sizes

corresponding to the number of PRBs for a particular MCS index.

• The looked-up TBS value defines the MAC frame size to be transmitted

in that TTI for a particular user. This information is conveyed to the RLC

layer which delivers an RLC PDU of the indicated size to MAC layer. After

attaching the necessary header, the MAC layer forwards the MAC PDU to

the Physical layer for transmission.

The above discussion implies that the knowledge of TBS values of a user in a

time window can help calculate that user’s throughput as also illustrated in Fig-

ure 6.2. In addition, the figure also depicts that for a given TBS index, the achiev-

able LTE throughput value has almost a linear relationship with the number of
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PRBs. When described mathematically, this relationship can be used to determine

the required number of PRBs (say qlte) per TTI to achieve a certain data rate Ri
[Mbps] for a user having TBS index i. That is,

qlte = αi ·Ri +βi (6.4)

The above is a linear equation which can be employed to represent any of the

TBS curves in Figure 6.2. Although these curves are not the straight lines, but can

be approximate to straight lines without significant loss of accuracy. The α in the

above equation is the slope of the approximated straight line described in units of

PRB/Mbps. The β is that line’s intercept at the y-axis and represents number of

PRBs. Both α and β together determine the network path cost of a user’s LTE

access link. The valid value range for qlte is 1 < qlte ≤ PRBmax, where PRBmax is

the maximum number of available PRBs.
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Figure 6.2: Relationship of LTE air interface throughput and number of PRBs for different

TBS index values [36.12]. Each curve represents one TBS index.

Appendix Chapter C provides the details of curve fitting data used to define a

highly accurate linear relation between number of PRBs and achievable throughput

at different TBS indices.

6.2.2 WLAN Access Network

Section 2.6 described the operation of WLAN MAC protocol in great detail. It

was highlighted there that the 802.11 MAC uses one of the following three tech-
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niques to provide channel access control mechanisms: (i) Point coordination func-

tion (PCF) (ii) Distributed coordination function (DCF), and (iii) Hybrid coordi-

nation function (HCF). PCF is not part of the Wi-Fi Alliance interoperability and,

therefore, is rarely found implemented on any portable device. As far as HCF is

concerned, it was originally introduced for the IEEE 802.11e standard, but it is

hard to find any compliant hardware due to higher implementation costs. In recent

times, although the 802.11n standard has incorporated the HCF mechanism and is

becoming increasingly popular, but to-date it is available only on a limited num-

ber of portable devices. The statistics show that a dominant percentage of today’s

portable Wi-Fi capable devices operate in the DCF mode of 802.11a/b/g. There-

fore, this work focuses on the DCF mode of operation when modeling WLAN

access link. Moreover, owing to the fact that three flavors of 802.11, i.e., a, b and

g, follow very similar procedures in medium access mechanism, 802.11a will be

considered as an example in following discussions.

DCF has two channel access mechanisms (i.e., the basic access and RTS/CTS)

as explained in the following description of for packet transmission. In WLAN

with several active users, the sender must sense the medium activity before trans-

mitting a packet to ensure that there is no transmission from other stations. If the

medium is sensed idle, the sender can transmit. If the medium is busy the sender

continues monitoring the medium until it is sensed idle for DIFS time period. Af-

ter this the sender has to wait for another time period determined by the random

back-off interval. This is done to minimize the collisions from other stations. At

this stage, if basic scheme of DFC is used then the sender simply transmits the data

packet. However, if RTS/CTS scheme of DFC is being followed, the short RTS

and CTS packets are exchanged to reserve the medium before the transmission of

data packet. The use of RTS/CTS scheme reduces the probability of collisions as

well as fixes the notorious ‘hidden terminal’ problem.

After providing an understanding of the packet transmission procedure in WLAN,

the process of network path cost estimation is described over the next subsections.

First, a ‘pure’ downlink scenario is considered where the users just receive data

from the access point and do not transmit anything over the WLAN access net-

work. In other words, there is only one transmitter (i.e., the access point) and

therefore no medium contention exists. Second, an uplink scenario is taken into

the consideration where all users have data to transmit and, therefore, a medium

contention situation is created.



6.2 Analytical Modeling of Network Access Links 173

6.2.2.1 Downlink Communication

Consider a WLAN access network comprising a station associated with an access

point. Assuming that the station is just receiving a downlink traffic flow from

the access point, there is no contention for medium access. In such a case, the

transmission of a single data packet of average size E[P] [bit] size requires Ts
seconds. Considering the RTS/CTS scheme of DCF, this time also includes the

transmission of control frames, i.e., RTS, CTS, SIFS, DIFS, and ACK frames.

Figure 2.23 graphically depicts the transmission of data packets in such a scenario.

The value of Ts is straightforward to compute, i.e.,

Ts = Tbackoff +TDIFS +TRTS +TCTS +Tdata +3 ·TSIFS (6.5)

Tbackoff =
Wmin −1

2
·σ (6.6)

TDIFS = TSIFS +2 ·σ (6.7)

Here TDIFS and TSIFS represent the duration of DIFS and SIFS frame space,

respectively. The TRTS, TCTS, and TACK are the duration of RTS, CTS, and ACK

control frames, respectively. σ is the duration of the ‘slot time’ as defined in

802.11a standard and Tbackoff represents the time spent in back-off phase. The Tdata

is the time required to transmit a single IP data packet including the MAC & PHY

headers. Its value is calculated considering the transmission rate at the physical

layer. The Wmin is the minimum value of the contention window in 802.11a. The

numerical values of these parameters are defined in 802.11a specifications and

have been listed in Table 6.1 for reference. The duration of control frames (i.e.,

RTS, CTS, and ACK) varies along with the physical layer data rate of the involved

users. The computed values of these durations is shown are Table 6.2.

Table 6.1: MAC/Physical layer parameters of 802.11a.

SIFS SlotTime RTS CTS ACK Wmin Wmax

16 μs 9 μs 160 bit 116 bit 116 bit 16 1024

It is clear that the 802.11 MAC follows the Time Division Multiple Access

(TDMA) scheme where the users share the wireless access medium for short pe-

riods of time. Considering resource allocation time intervals of 1 second, a user

needs an exclusive medium access for a Talloc fraction of that interval to achieve a

unitary data rate of 1 bit/sec. The value of Talloc actually determines the network

path cost and has its direct dependence on the transmission time of a packet, i.e.,
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Table 6.2: Duration of control frames in 802.11a for different physical layer data.

Data Rate Modulation Bits per RTS Duration CTS/ACK Duration
(Mbps) symbol Symbols μs Symbols μs

6 BPSK 24 7 28 5 20

9 BPSK 36 5 20 4 16

12 QPSK 48 4 16 3 12

18 QPSK 72 3 12 2 8

24 16-QAM 96 2 8 2 8

36 16-QAM 144 2 8 1 4

48 64-QAM 192 1 4 1 4

54 64-QAM 216 1 4 1 4

Ts. The value Talloc amounts to

Talloc =
Ts

E[P]
(6.8)

Moreover, the network path cost to support a data rate of R [bps] over this WLAN

access link will be as follows

qwlan =
TS

E[P]
·R (6.9)

The valid value range for the network path cost is 0 < qwlan ≤ 1 second. Any com-

puted value falling outside this range indicates that the access link cannot support

the desired data rate.

6.2.2.2 Uplink Communication

In uplink communication, the users have to compete for medium access in order

to perform transmissions. A network path cost can also be computed here if the

packet transmission delay is known for the access link. However, due to the ran-

dom back-off time and packet collisions, the time required to transmit a packet

is highly variable. In [Bia00], Bianchi has used a two dimensional Markov chain

model to compute the achievable throughput of 802.11b network. The analysis

considered a number of active stations having the same channel conditions and

traffic pattern. Chatzimisios et. al. [P. 02] has extended that model to calculate the

average packet delay. This work further extends the analysis of Chatzimisios et.

al. in order to support 802.11a PHY data rates as well as to make it applicable to

user mixtures operating at different PHY data rates. In the following, a summary

of the analysis performed by Chatzimisios et. al. is described.
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The mathematical analysis assumes a network of n contending stations where

each station always has a packet to transmit. The analysis has been divided into

two distinct parts. In first part, the behavior of a single station with the help of a

Markov model is analyzed. The outcome of this analysis is the stationary prob-

ability τ with which a station transmits packet in a randomly chosen slot time.

This probability is independent of the access mechanism (i.e., Basic or RTS/CTS).

Then, by studying the events that can occur within a generic slot time, the aver-

age packet delay for both Basic and RTS/CTS access methods is expressed as a

function of the computed value τ , i.e.,

τ =
2 · (1−2p)

(1−2p) · (W +1)+ pW · (1− (2p)m)
(6.10)

In Equation (6.10) Wmin is the minimum contention window size and m is the

“maximum back-off stage” so that the maximum contention window is Wmax =
Wmin ·2m. The p is the conditional collision probability, i.e., it is the probability of

a collision seen by a packet being transmitted on the channel or access medium.

p = 1− (1− τ)n−1 (6.11)

With the help of numerical techniques the system of nonlinear equations, i.e.,

(6.10) and (6.11) is solved. This provides a value of τ in terms of three parameters,

i.e., m, n, and Wmin. The value of τ is then used to compute the probability (Ptr)

that there is at least one transmission in the considered slot time. Moreover, it is

also used to compute the probability (Ps) that an occurring packet transmission is

successful.

Ptr = 1− (1− τ)n, and (6.12)

Ps =
n · τ · (1− τ)n−1

1− (1− τ)n (6.13)

The relationships of Ptr and Ps are used to calculate E[slot] which is the aver-

age length of a slot time. It should be marked, unless ambiguity occurs, that the

term slot time refers to either the (constant) value σ , or the (variable) time inter-

val between two consecutive back-off time counter decrements, i.e., E[slot]. The

average length of a slot time is obtained considering that, with probability 1−Ptr
the slot time is empty; with probability PtrPs it contains a successful transmission,

and with probability Ptr(1−Ps) it contains a collision, i.e.,

E[slot] = (1−Ptr)σ +Ptr ·Ps ·Ts +Ptr(1−Ps) ·Tc (6.14)
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here σ is the duration of an empty slot time, the Ts is average time during which

medium is sensed busy because of a successful transmission, and Tc is the average

time period for which the medium is sensed busy by each station during a colli-

sion. Assume that E[X ] is the average number of slot times for a successful packet

transmission. The value E[X ] is found by multiplying the number of slot times the

packet is delayed in each back-off stage by the probability to reach this back-off

stage. The final form of E[X ] is as follows

E[X ] =
(1−2p) · (W +1)+ pW · (1− (2p)m)

2 · (1−2p) · (1− p)
(6.15)

Finally, the average delay of a successfully transmitted packet E[D] is given as

follows

E[D] = E[X ] ·E[slot] (6.16)

In Equation (6.16) the values of σ , m, and Wmin can be obtained from Table 6.1.

The values of the other two unknown parameters, i.e., Ts and Tc depend on the fact

whether the basic or RTS/CTS scheme is chosen.

T bas
s = TH +TE[P] +TSIFS +δ +TACK +TDIFS +δ (6.17a)

T bas
c = TH +TE[P] +TDIFS +δ (6.17b)

T rts
s = TRT S +TSIFS +δ +TCT S +TSIFS +δ +TH +TE[P] +TSIFS+

δ +TACK +TDIFS +δ (6.18a)

T rts
c = TRT S +TDIFS +δ (6.18b)

where δ is the propagation delay, TH = TPHY hdr +TMAChdr is the time to transmit

the header data associated with the PHY and MAC protocols, and TE[P] is the time

to transmit a data packet of mean size E[P].
In the above described analysis of Chatzimisios et. al., it has been assumed

that all stations have the same channel conditions and therefore transmit with the

same PHY data rate. In a realistic scenario this assumption cannot always be

fulfilled. In order to make Equation (6.16) valid for a scenario where the users have

different channel conditions and PHY data rates, it must be extended as follows.

The direct influence of the PHY data rate on the average packet delay estimation

can be observed in the computation of Ts and Tc (see Equation (6.17) and (6.18)).

This is where the user PHY data rate determines the value of TE[P] which is the

time to transmit the data packet. Therefore, an 802.11a network of users with

different PHY data rates can be seen as a queuing system with a single server and
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a single buffer queue. In this system, the effect of the PHY data rate is directly

incorporated into the service rate so that a job is served at the PHY data rate of

the corresponding user terminal. The mean service time of such a system can be

computed as follows.

T̂E[P] = E
[ E[P]

PHY data rate

]
(6.19)

Furthermore, when stations are transmitting at different PHY data rates, the

transmission speed of control frames (i.e., TH , TRT S, TCT S and TACK) in the network

is limited by the station having the lowest PHY data rate. This implies that the

users must transmit control frames at a PHY data rate which can be decoded or

understood by all users. However, the data packet is still transmitted by the user’s

own current PHY data rate.

The value of T̂E[P] replaces TE[P] in Equation 6.17 and 6.18 to compute the ex-

tended values of T̂s and T̂c. They are, in turn, plugged into Equation (6.14) which

produces ̂E[slot] so that

̂E[slot] = (1−Ptr)σ +PtrPsT̂s +Ptr(1−Ps)T̂c (6.20)

Owing to the fact that the value of E[X ] is independent of the user PHY data

rate and therefore does not require any modification, Equation (6.16) takes the

following form

Ê[D] = ̂E[slot] ·E[X ] (6.21)

Figure 6.3 shows the average packet delay experienced by the users transmitting

in the 802.11a network with RTS/CTS enabled. The solid lines show the estimated

values computed using Equation (6.21). The markers on a solid line represent the

delay values obtained from the simulation results. It is evident from the figure that

the modified model can precisely estimate the mean packet delay when all users

have same PHY data rate as well as when users with different PHY data rate are

mixed together. The mean packet delay computed with the help of Equation (6.21)

can also be used to estimate the average user throughput Y in the network, i.e.,

Y =
E[P]

Ê[D]
=

E[P]

E[X ] · ̂E[slot]
(6.22)

It should be noted that Y is the single average throughput value which will be

experienced by each user in the network. The value of Y will decrease sharply

when more users will join the network and it will also be influenced by the PHY
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Figure 6.3: Average packet transmission delay experienced by users operating at different

PHY data rates in an 802.11a network. The solid lines show the estimated values computed

using analytical approach. The markers on lines represent the delay values obtained from

the simulation results.

data rates of transmitting users. But, all users will experience the same average

throughput Y irrespective of their individual PHY data rates. This can be elab-

orated with the help of aforementioned queuing model where during the service

time of a job other jobs have to wait in the queue. This leads to similar queuing

delays for jobs from all stations and hence results in the same average throughput

for each of them.

6.3 Problem Formulation in Linear Programming

The development of analytical relations to compute the network path cost for LTE

and WLAN paves the way for a problem formulation of optimized resource allo-

cation using linear programming. In the following, a generic and abstract resource

allocation problem is formulated in linear programming as a starting point. Later

on, the access network specific parameters will be incorporated into it to generate

a full-fledged model applicable to the heterogeneous network of LTE and WLAN.

Table 6.3 shows the generic mathematical model in algebraic form. The model

works with two data sets, i.e., U which represents the set of multihomed users and
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Table 6.3: Generic mathematical model for the resource allocation in algebraic form.

Given
U a set of multihomed users

L a set of access network links

f (R j,l) Linear function of network path cost which maps user data rate R j,l

to the access networks resources, ∀ j ∈U,∀l ∈ L
λ j Minimum aggregated data rate demand of a traffic flow destined to

user j, ∀ j ∈U
Λ j Maximum aggregated data rate allocation for a traffic flow destined to

user j, ∀ j ∈U
Ωl Available resources on access network l, ∀l ∈ L

Defined variables
R j,l Data rate carried over the access link l to user j, ∀ j ∈U,∀l ∈ L

Maximize
∑ j∈U ∑l∈L R j,l

Subject to
1. λ j ≤ ∑l∈L R j,l ≤ Λ j, ∀ j ∈U

2. ∑ j∈U f (R j,l)≤ Ωl , ∀l ∈ L

L which represents a set of access network links available to the user. A linear

function f (R j,l) of network path cost is used to compute the required network

resources in order to support a data rate R j,l for a certain user j over its network

access link l. This function makes use of analytical relations of network path cost

developed over the previous section. λ and Λ are the parameters which represent

the possible range of data rate assignment for a certain user. Specifically, λ is

the minimum data rate demand of the user which can be imposed to offer a certain

mean data rate for realtime services, like VoIP, video, etc. And Λ enforces an upper

limit on data rate assignment which is helpful in restricting data rates of TCP flows

as well as to achieve service fairness. Ωl is the amount of total available resources

for an access network l which can be utilized by this model.

The variable R j,l is defined by the model to represent the data rate of a user j
over an available access link l. This is the only output of this model when solved
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using linear programming. The goal of this model is to maximize R j,l by minimiz-

ing the associated network path costs so that an optimized network performance is

realized.

The data rate assignment by the model is subject to two constraints. First, the

assigned data rate must fall within the range defined by λ and Λ. Second, the

required network resources to achieve the assigned data rates should not exceed

the available resource of the access networks.

In case the available resources are not sufficient to satisfy the minimum data rate

requirements of all users, this will result in an infeasible problem. Otherwise, the

solution will provide an optimized allocation of network resources for the given

users channel conditions. These channel conditions are implicitly incorporated in

the network path cost function f (R j,l). As the users move, their channel conditions

vary due to which the parameters of the problem changes as well. This implies that

the problem should be reevaluated after a period of time which is short enough to

adapt to variations in user channel conditions. This way, an optimized network

performance can be guaranteed for mobile users over time.

6.3.1 Download Communication

This section develops a mathematical model to allocate network resources in a

‘pure’ downlink communication scenario. In this scenario, the users do not trans-

mit over the WLAN access link, instead they use it to receive traffic from the access

point. Hence, there is no contention for the access medium in the WLAN network

which allows the use of Equation 6.9 as network path cost function. Luckily, this

is a linear function which can be readily used in conjunction with linear program-

ming. As far as the LTE access network is concerned, the linear function described

by Equation 6.4 is used as the network path cost function.

Table 6.4 shows the algebraic form of the mathematical model developed for

‘pure’ downlink scenario through an implementation of generic model. The input

parameters α and β are the components of the path cost function for the LTE

access link. φ represents the path cost for the per unit data rate carried over the

WLAN access link. λ and Λ are the limitations on data rate assignments which are

set according to user application types. The total number of available resources for

LTE access network are represented by Ω. Moreover, for WLAN access network,

medium access time of 1 second is considered as the available network resource.

The model defines two variables (Rlte & Rwlan) to represent the data rate carried

over two access links of each multihomed user. In addition, a binary variable E
is defined to represent the use of the LTE access link for each user. It acts as an

auxiliary variable in the formulation of the path cost function for the LTE access
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link as shown in the first constraint. This is because β should be added to the

network resource consumption only when a user receives data over LTE access

links, i.e., the corresponding Rlte is non-zero. The fourth constraint in the model

determines the value of E as 1 if Rlte > 0 and as 0 otherwise.

The objective of this model is to maximize the user data rates over both LTE

and WLAN access networks. This objective has to be achieved under the six con-

straints shown in Table 6.4. The first constraint ensures that the total number of

PRBs required to serve users over their LTE access link should not exceed the

available number of PRBs Ω. The second constraint indicates that the aggregated

network path cost of WLAN access links from all users should not rise beyond

1 second limit. The third constraint is imposed to keep the aggregated assigned

user data rate in the range defined by λ and Λ. The model can flexibly assign the

data rate to the network access links of the users, e.g., the user data rate demands

can either be fulfilled by transmission over a single access link that has the lowest

network path cost or over both access links simultaneously in order to bundle up

their bandwidths. This is indicated by constraint 5 and 6.

6.3.1.1 Simulation Scenarios and Results

In this section, the performance of the proposed scheme for optimized resource

allocation is evaluated with the help of a simulation scenario. Figure 6.4 shows

an overview of the scenario in OPNET. The system is populated with 12 users

generating a rich traffic mixture of: Voice over IP (VoIP), downlink File Trans-

fer Protocol (FTP), Hyper Text Transfer Protocol (HTTP), video conference (i.e.,

Skype video call), and video streaming. The users move within one LTE eNodeB

cell, and within this cell one wireless access point is present. Table 6.5 shows the

parameter configuration for this scenario.

The network performance achieved by the linear programming approach will

be compared with the other two approaches discussed in Chapter 5, i.e., “3GPP-

HO” and “Channel Aware”. It can be recalled that in the “3GPP-HO” approach

multihoming is not supported, instead the policy is to serve a user preferably over

WLAN access network in the overlapped coverage of WLAN & LTE access net-

works. In contrast to this, the “Channel Aware” approach makes use of multihom-

ing and flow management to serve users efficiently. In this approach the capacity

of each of the user access links is precisely estimated and all available bandwidth

resources are bundled together in achieving the best user QoE. Now with the help

of the linear programming approach, data rates are assigned to the users in a way

that network capacity is maximized as well as the minimum data rate demands

are met for all users. For this purpose, the DEn employs the resource allocation
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Table 6.4: Mathematical model for the resource allocation in algebraic form for downlink

communication.

Given
U a set of multihomed users

α j Data rate dependent part of the LTE link cost in [PRB/kbps] for user j, ∀ j ∈U
β j Data rate independent part of the LTE link cost in [PRB] for user j, ∀ j ∈U
φ j Path cost of WLAN access link in [sec/kbps] for user j, ∀ j ∈U
λ j Minimum data rate [kbps] demand of a traffic flow destined to user j, ∀ j ∈U
Λ j Maximum data rate [kbps] allocation for a traffic flow destined to user j, ∀ j ∈U
Ω Number of available PRBs for the LTE access network

Defined variables
Rlte

j Data rate in [kbps] carried over the LTE access link to user j, Rlte
j ≥ 0, ∀ j ∈U

Rwlan
j Data rate in [kbps] carried over WLAN access link to user j, Rwlan

j ≥ 0, ∀ j ∈U
E j Auxiliary binary variable which hints the use of LTE access link by user j;

its value for a user j is 1 if Rlte
j > 0 and 0 otherwise, ∀ j ∈U

Maximize
∑ j∈U

(
Rlte

j +Rwlan
j

)
Subject to
1. ∑ j∈U

(
α j ·Rlte

j +β j ·E j

)
≤ Ω

2. ∑ j∈U

(
φ j ·Rwlan

j

)
≤ 1

3. λ j ≤
(

Rlte
j +Rwlan

j

)
≤ Λ j, ∀ j ∈U

4.
(

Rlte
j /Λ j

)
≤ E j ≤

(
Rlte

j ·1020
)
, ∀ j ∈U

5. 0 ≤ Rlte
j ≤ Λ j, ∀ j ∈U

6. 0 ≤ Rwlan
j ≤ Λ j, ∀ j ∈U

model shown in Table 6.4. At each decision instant, the model is solved using

updated parameters of user channel conditions and QoS demands and the resulted

data rates are then imposed on the user access links by EE entities.

Figure 6.5 shows the performance of the FTP downlink application in terms
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Table 6.5: Simulation configurations for evaluation of the downlink flow management

scheme using linear programming.

Parameter Configurations

Total number of PRBs 25 PRBs (5 MHz specturm)

Mobility model Random Direction (RD) with 6 Km/h

Number of users 2 VoIP calls, 1 video streaming, 3 Skype video calls, 2 HTTP

and 4 FTP downlink users

LTE channel model Macroscopic pathloss model [25.06], Correlated Slow Fading.

LTE MAC scheduler Time domain: Optimized Service Aware,

Frequency domain: Iterative RR approach [S. 12]

WLAN access technology 802.11a, RTS/CTS enabled, coverage ≈ 100 m,

operation in non-overlapping channels

Transport network 1Gbps Ethernet links, no link congestion

VoIP traffic model G.722.2 wideband codec, 23.05kbps data rate and 50frame/s

Skype video model MPEG-4 codec, 512kbps, 30frame/s, 640x480 resolution,

play-out delay: 250ms

Streaming video model MPEG-4 codec, 1Mbps, 30frame/s, 720x480 resolution,

play-out delay: 250ms

HTTP traffic model 100 bytes html page with 5 objects each of 100Kbytes,

page reading time: 12s

FTP traffic model FTP File size: constant 10MByte, as soon as one file download

finishes, the next FTP file starts immediately.

TCP configurations TCP new Reno, Receiver buffer: 1Mbyte, Window scaling: enabled,

Maximum segment size: 1300Byte, TCP reorder timer: 50ms

DEn decision interval Every 100ms

Data rate demands [λ ,Λ] [200kbps, 25Mbps] for FTP and HTTP users

Simulation run time 1000 seconds, 10 random seeds, 95% Confidence interval

of IP throughput and file download time. It is evident that the “Linear Program-

ming” approach achieves the highest performance among the three competing ap-

proaches. The optimized resource allocation strategy of the “Linear Programming”

approach helps increase user QoE experience by 25% in terms of file download

time compared to “3GPP-HO” approach. The “Linear Programming” approach

also outperforms the “Channel Aware” approach by reducing the file download

time up to 13%.

Similar conclusions can also be drawn for the HTTP application whose perfor-

mance has been shown in Figure 6.6. It can be noticed that the HTTP application

could attain much less IP throughput compared to the FTP application. This is

due to small sized embedded objects of web page. The download of these objects

finishes before the TCP connection could achieve the maximum possible through-
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Profile Application Mobility User database 

Application Server 

PDN-GW 
Serving-GW 

Home Agent 

Router1 

Router2 

eNode-B WAP1 

Figure 6.4: Simulation scenario setup in the OPNET simulator. The large circular area

shows the coverage of LTE and the smaller circular area represents the WLAN network

coverage. The user movement is restricted to the rectangular area.
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Figure 6.5: FTP downlink performance comparison for “3GPP-HO”, “Channel Aware”, and

“Linear Programming” approaches.

put. Owing to this fact, even the “Linear Programming” approach could not sig-

nificantly improve user QoE over the “Channel Aware” approach. However, a

substantial gain is observed compared to default “3GPP-HO” approach. A large
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variation in web page download can also be noticed for the “3GPP-HO” approach,

the reason of which is as follows. If an HTTP user is found in WLAN coverage,

“3GPP-HO” approach serves it solely over the WLAN access link. Now if the

WLAN access network is not heavily loaded because there are no FTP users at

that instant, then the HTTP users get high throughput and finish page download

fast. In other situations, they have to share bandwidth resources with the demand-

ing FTP users and hence page download time elongates.

The performance gain of “Channel Aware” and “Linear Programming” over

“3GPP-HO” approach can be attributed to manifold factors. For example, both of

them are capable of aggregating bandwidth resources from multiple access links,

they can accurately estimate the capacity of an access link and utilize it accord-

ingly, they can periodically reevaluate their assessment about the network condi-

tions and the capacity of user access links, etc. In addition, “Linear Programming”

is capable of performing optimized resource allocations. Among all of them, the

ability to estimate user access link capacity is the feature which helps these ap-

proaches to establish a definite superiority over the default “3GPP-HO” approach.

Without access link capacity estimation, the buffers at the air interface could have

very large occupancy. On the one hand, employing large buffers leads to long

queuing delays which adversely affects realtime applications in particular. On the

other hand, keeping buffer capacity small causes numerous packet drops which

degrades, especially, the performance of TCP based applications. By exploiting

the knowledge of user access link capacity, “Channel Aware” and “Linear Pro-

gramming” approaches just send the sufficient amount of data to the air interface

schedulers which avoids both the large queuing delays and packet drops. In addi-

tion, it also minimizes the risk of losing the buffered packets at the access point

during the instants of link failure or vertical handover.

The user QoE for VoIP application has been depicted in Figure 6.7. The Box

plot shows the sample values of MOS computed for a user employed wideband

codec. It can be seen that both “Channel Aware” and “Linear Programming” de-

liver excellent performance by keeping MOS values at the maximum level for most

of the time. However, the “3GPP-HO” approach fails to achieve a matched perfor-

mance. Though the median value lies close to the MOS score 4.0, the other values

show quite lower score due to long queuing delays at WLAN access point. Even

some of the outliers fall below MOS score 2.2 which could be very annoying for

the users. The reason for the “3GPP-HO” approach to sometimes achieve a very

high MOS score (i.e., above 4.0) lies in the fact that when the VoIP users are being

served over the LTE access network, they are provided with the guaranteed QoS

service. The problem arises only when these users are handed over to the WLAN

access network.
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Figure 6.6: HTTP downlink performance comparison for “3GPP-HO”, “Channel Aware”,

and “Linear Programming” approaches.
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Figure 6.7: Downlink performance comparison of VoIP application for “3GPP-HO”,

“Channel Aware”, and “Linear Programming” approaches.

The “Linear Programming” approach also offers excellent user QoE for video

applications. This can be confirmed by referring to Figure 6.8 which shows the

Box plot of user experienced MOS score for their video applications, i.e., video

conferencing and video streaming. Almost all video quality evaluations result in

the best MOS score for video applications for both “Channel Aware” and “Linear

Programming” approaches. However, “3GPP-HO” fails again to offer an accept-
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able performance for video application users. Its performance pattern is similar

to that of the VoIP application, i.e., the median value stays at the best MOS score

while the 3rd & 4th quartiles show the suboptimal performance. As already ex-

plained for VoIP case, this phenomenon can be understood with the help of end-

to-end packet delay plots shown in Figure 6.9. Considering the play-out delay

limit of 250ms, any packet arriving later than this limit is assumed as lost by the

video quality evaluation mechanism. Such packet losses in turn lead to perfor-

mance degradation. It is evident from Figure 6.9 that a large number of packets

experience more than 250ms delay for the case where “3GPP-HO” approach is em-

ployed. It is mainly the large MAC queue occupancy at the WLAN access point

which is the main reason behind these delays. During the times when video users

are served over LTE packet end-to-end delays remain under control due to QoS

aware scheduling employed in the LTE MAC scheduler. In these situations, the

users are satisfied with the service as indicated by the best MOS score. However,

during the time when users receive their video application traffic over the WLAN

access link, the chances are high that they have to encounter a congested network.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

3GPP−HO Channel−Aware Linear−Programming

News Video MOS

M
O

S

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

3GPP−HO Channel−Aware Linear−Programming

Skype Video MOS

M
O

S

(b)

Figure 6.8: Downlink performance comparison of video applications for “3GPP-HO”,

“Channel Aware”, and “Linear Programming” approaches.

Now that the performance of all applications has been observed, it can be in-

ferred that both the “Linear Programming” and “Channel Aware” approaches pro-

vide similar performance for realtime applications. However, the “Linear Pro-

gramming” approach excels when it comes to non-realtime applications like FTP,

HTTP etc. This is because realtime applications have stringent QoS requirements

which have to be fulfilled at all costs in order to keep users satisfied. Therefore,
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Figure 6.9: Packet delay comparison of video applications for “3GPP-HO”, “Channel

Aware”, and “Linear Programming” approaches.

both approaches preferably deliver the data rate demands of the realtime services.

However, the “Linear Programming” approach, with the help of optimized re-

source allocation techniques, manages to offer these data rates by consuming lower

network resources. This way, larger network resources are made available to non-

realtime application users in order to enhance their QoE as well as to increase

network capacity.

The discussion on downlink communication is concluded by comparing the per-

formance of “Channel Aware”, and “Linear Programming” approaches in scenar-

ios where only FTP users exist within an area of complete LTE and WLAN cover-

age overlap. Each of these seven FTP users download 10Mbyte files continuously,

i.e., as soon as one file download ends, a new file download is started. Figure 6.10

shows the FTP application throughput and file download time as experienced by

the users. In this particular scenario, the “Linear Programming” approach manages

to achieve 16% higher throughput compared to the “Channel Aware” approach.

This is slightly higher than 13% which was observed in case of the previous sce-

nario with mixed traffic. The reason behind this improved performance is the lower

‘minimum data rate’ requirement of FTP users compared to video users. Owing to

the fact that ‘minimum data rate’ requirements must be fulfilled, the users with bad

channel conditions consume lots of resources in achieving that data rate. On the

other hand, if this requirement is less, fewer network resources will be consumed

even when a user is suffering from bad channel conditions.
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Figure 6.10: FTP downlink performance comparison between the “Channel Aware” and the

“Linear Programming” approaches.

6.3.1.2 Sensitivity Analysis of DEn Decision Intervals

It has been explained that the decision making entity (DEn) of the flow manage-

ment overlay architecture which resides in the network is responsible for the re-

source management decisions. These decisions are based on the network infor-

mation (e.g., user channel conditions, application QoS demands, traffic load, con-

gestion, etc.) supplied by the information management entities (IE) installed at

different monitoring points across the network and at UE. Owing to the dynamic

load conditions of the networks and variable channel conditions of mobile users,

the information provided by IEs has a short validity period after which it must be

refreshed. In this way, the resource management decisions made by DEn at a cer-

tain time instant remain no longer the optimal decisions as soon as the IE supplied

information on which these decisions were based becomes obsolete. Therefore,

the IEs must send the fresh information to the DEn periodically to prevent afore-

mentioned situation. As soon as DEn receives the updated information, it revises

its resource management decisions and enforces them to achieve an optimal net-

work performance over time. There can be two reasons that the DEn receives a

delayed information from IE entities set up across the network. First, there exists

congestion in the network due to which it takes longer for the information data to

reach DEn. Second, an operator wants to cut down the signalling traffic load gen-

erated by that information element by reducing the frequency of updates. In such

situations the question is how long is the validity period of the IEs provided infor-



190 6 Analytical Solution for Optimized Resource Allocation

mation and what could be the consequences if resource management decisions are

not updated in due time?
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Figure 6.11: Downlink throughput variations of WLAN access point for different values of

the DEn decision interval. The “Linear Programming” approach has been used for resource

management decisions.

The above questions can be answered with the help of simulation results shown

in Figure 6.11, 6.12, and 6.13. For this purpose the same simulation scenario is em-

ployed which has been discussed earlier in this section and whose configurations

has been listed in Table 6.5. In this simulation study, the DEn decision interval

is varied from 10ms to 15s and the “Linear Programming” approach is used to

make resource management decisions. It is clear that the optimal resource man-

agement decisions should provide an optimum network capacity for both WLAN

and LTE networks. It can be seen in the Figure 6.11 that the WLAN access point

throughput which represents that network’s capacity, remains at the optimum point

until the DEn updates the resource management decisions at least every 1 second.

Any further delays cause the system throughput to reduce. This is due to the user

movements (at 6 km/h speed) because of which their channel conditions vary and

hence their PHY data rates change. When these variations are not tracked by the

DEn due to lack of fresh information the optimal resource management decisions

cannot be carried out. For example, if a user’s PHY data rate has increased from

24Mbps to 36Mbps during the elongated decision interval, his throughput will not

be upgraded by the DEn until the information about this change reaches DEn and

it revises the resource management decisions. Similarly a high traffic volume will

be continuously sent to a user whose PHY data rate has decreased from 36Mbps to
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24Mbps during the decision interval. This will cause that user to experience large

packet delays due the fact that some of the data is being buffered at the access

point due to PHY data rate downgrade. Due to such events the WLAN network

performance degrades. It can be noticed from the Figure 6.11 that increasing the

DEn decision interval to 15s causes approximately 30% degradation in the network

capacity.
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Figure 6.12: LTE downlink cell throughput variations for different values of the DEn deci-

sion interval. The “Linear Programming” approach has been used for resource management

decisions.

Figure 6.12 shows a similar behavior for the LTE network which may undergo

cell throughput degradations due to elongated DEn decision intervals. The cell

throughput can reduce up to 9% compared to its optimal value if a decision interval

of 15s is considered. However, it can be observed that the performance of the LTE

network is less sensitive to DEn decision intervals compared to WLAN network.

For example, a noticeable capacity degradation is seen for the LTE network for a

5s decision interval while such a behavior was observed for the WLAN network at

a 3s decision interval. The reason for this phenomenon lies in the fact that WLAN

has a smaller coverage area and the user the PHY data rates decrease sharply when

commuting away from the access point. Therefore, the information about user

PHY data rate becomes stale relatively faster and, in turn, affects the optimality of

resource management decisions.

It has been seen that when the resource management decisions are not optimal,

capacities of access networks are reduced. A natural consequence of this will

be deteriorations in the perceived user QoE. An example of this is illustrated in
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Figure 6.13: Mean file download time experienced by FTP users. The figure shows how

the FTP performance is affected by different values of DEn decision interval. The “Linear

Programming” approach has been used for resource management decisions.

Figure 6.13 which shows the mean file download time for FTP users. It can be

observed that the users have to wait longer for file download completion if DEn
fails to make optimal resource management decisions. Actually, this is because of

the reduced network capacities that the users can no longer achieve high through-

put and hence suffer from QoE degradations. The simulation results show that

file download time can increase up to 24% compared to the optimal value, if DEn
makes resource management decisions every 15s.

The above discussion implies that a decision interval of at most 1 second should

be employed in order to achieve an optimal network performance. However, this

value is specific to the simulation scenario being discussed and may not hold for

other scenarios. For example, in the current scenario the users are moving with a

speed of 6km/h following the random direction mobility model. If this configura-

tion is changed or some additional dynamic background traffic load is added to the

network, a rerun of this sensitivity analysis will be needed.

6.3.2 Uplink Communication

In ‘pure’ uplink communication, the users attached to the WLAN access network

may compete for the medium access which results in packet transmission colli-

sions and elongated back-off periods. In this case, the network path cost must be

determined from the analytical relation presented in Equation 6.22. However, it is
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clearly a nonlinear relation which must be linearized using some work-around for

use with linear programming. For this purpose, the Equation (6.20) is split into two

parts. The first part (i.e., fx(n)) depends only on n, a variable which represents the

total number of active stations in the WLAN network. The other part incorporates

both a function of n (i.e., fy(n)) and the variable T̂s. So that,

̂E[slot] = fx(n)+ fy(n) · T̂s

where fx(n) = (1−Ptr)σ +Ptr(1−Ps) ·Tc,

fy(n) = Ptr ·Ps

In the above equation, T̂c = T rts
c = Tc which holds due to the assumption that

WLAN network operates with RTS/CTS enabled. Moreover, Equation (6.15)

shows that E[X ] is a function of only one variable, i.e., n. Owing to this fact,

it is possible to rewrite Equation (6.21) in the following form:

Ê[D] = E[X ] · ̂E[slot] = f1(n)+ f2(n) · T̂s (6.23)

where f1(n) = E[X ] · fx(n)

and f2(n) = E[X ] · fy(n)

In order to simplify the relation in equation (6.23), f1(n) and f2(n) are approxi-

mated using 3rd order polynomial curve fitting as shown below:

f1(n)≈ A11 ·n3 +A12 ·n2 +A13 ·n+A14,

f2(n)≈ A21 ·n3 +A22 ·n2 +A23 ·n+A24

where all occurrences of Axx represent constant value numbers. Fig. 6.14 shows

that the curve fitting process generates an accurate approximation for f1(n) and

f2(n) with norm of residuals as 3.9×10−5 and 0.14, respectively.

Substituting the approximated functions for f1(n) and f2(n) in Equation (6.23)

produces

Ê[D] = A11 ·n3 +A12 ·n2 +A13 ·n+A14+(
A21 ·n3 +A22 ·n2 +A23 ·n+A24

) · 1

n
·

n

∑
i=1

TSi (6.24)

Substituting the value of Ê[D] in Equation (6.22) and assuming E[P] = G, the

following relation can be derived after a few manipulation steps of algebra.
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Figure 6.14: Approximation of f1(n) and f2(n) using polynomial curve fitting.

n ·G = Y · {A11 ·n4 +A12 ·n3 +A13 ·n2 +A14 ·n+

(A21 ·n3 +A22 ·n2 +A23 ·n+A24) ·
n

∑
i=1

TSi} (6.25)

The variable n, in Equation (6.25), can be replaced with a summation of binary

variables Fi which represents whether a station i is transmitting over the WLAN

access or not. If there are a total of Z number of users in the WLAN network out

of which only n users are active then

n =
Z

∑
i=1

Fi (6.26)

A second order term of n can be linearized as follows

n2 =

(
Z

∑
i=1

Fi

)2

=
Z

∑
i, j=1

Fi ·Fj =
Z

∑
i, j=1

χF2
i, j (6.27)

where χF2
i, j is itself a binary variable and represents the product of two binary vari-

ables, i.e., Fi and Fj. Its value is determined by following three constraints:

χF2
i, j ≤ Fi, χF2

i, j ≤ Fj, χF2
i, j ≥ Fi +Fj −1

Now Equation 6.26 and 6.27 can be used to get a linear relation for the cubic term

of variable n, i.e.,
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n3 = n2 ·n =

(
Z

∑
i, j=1

χF2
i, j

)
·
(

Z

∑
k=1

Fk

)
=

Z

∑
i, j,k=1

χF2
i, j ·Fk =

Z

∑
i, j,k=1

χF3
i, j,k (6.28)

The value of the binary variable χF3
i, j,k is decided by the following three con-

straints.

χF3
i, j,k ≤ χF2

i, j , χF3
i, j,k ≤ Fk, χF3

i, j,k ≥ χF2
i, j +Fk −1

Adopting this strategy any higher order term of variable n can be made linear.

Another non-linear term which happens to appear in Equation 6.25 is the product

of the continuous variable Y and n. Such a product can be linearized as follows

Y ·n = Y ·
(

Z

∑
i=1

Fi

)
=

Z

∑
i=1

Y ·Fi =
Z

∑
i=1

χYF
i (6.29)

here χYF
i is a continuous variable which substitutes the product of binary variable

Fi and continuous variable Y . Taking Y̆ as the maximum possible value of Y , the

following three constraints help settle the value of χYF
i , i.e.,

χYF
i ≤ Y̆ ·Fi, χYF

i ≤ Y, χYF
i ≥ Y − Y̆ · (1−Fi)

In the same way, the product of the continuous variable Y and any higher order

term of n can be made linear. For example, using the value of n2 from Equa-

tion (6.27), its product with Y can be written as

Y ·n2 = Y ·
(

Z

∑
i, j=1

χF2
i, j

)
=

Z

∑
i, j=1

Y ·χF2
i, j =

Z

∑
i, j=1

χYF2
i, j (6.30)

where the value of the continuous variable χYF2
i, j is determined by three constraints

as follows

χYF2
i, j ≤ Y̆ ·χF2

i, j , χYF2
i, j ≤ Y, χYF2

i, j ≥ Y − Y̆ · (1−χF2
i, j )

The summation term ∑Tsi in equation (6.25) represents the addition of the Ts pa-

rameters of active WLAN users. This can be rewritten as following

n

∑
i=1

TSi =
Z

∑
i=1

Fi ·TSi
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Linearizing the product terms of Equation (6.25) in the above described manner, a

complete linear relation is obtained, i.e.,

n

∑
i=1

Fi ·G =
Z

∑
j,k,l,m=1

(A11 +A21 ·TS j) ·χYF4
j,k,l,m +

Z

∑
j,k,l=1

(A12 +A22 ·TS j) ·χYF3
j,k,l+

Z

∑
j,k=1

(A13 +A23 ·TS j) ·χYF2
j,k +

Z

∑
j=1

(A14 +A24 ·TS j) ·χYF
j (6.31)

It should be noted that equation (6.31) is valid for n > 1. If there is only one active

user in the system then no medium contention would take place. In that particular

case

Ê[D] = Ts +Tback-off = Ts +
Wmin −1

2
·σ = T̃s (6.32)

Equation (6.31) and equation (6.32) can be combined by introducing another bi-

nary variable H whose value is 1 if there is only one active user (i.e., n = 1) and 0

otherwise. The value of the H is determined by following constraints

2−H ·ξ ≤
Z

∑
j=1

Fj and 1+(1−H) ·ξ ≥
Z

∑
j=1

Fj

where ξ represents a large constant real number value, e.g., 10 or higher. The ξ
helps establish the logic for linear programming to determine the intended value

of the H. Finally the linearized version of equation (6.25) which is valid for n ≥ 1

is given as below:

n

∑
i=1

Fi ·G =
Z

∑
j,k,l,m=1

(
A11 +A21 ·TS j

) ·χYF4
j,k,l,m +

Z

∑
j,k,l=1

(
A12 +A22 ·TS j

) ·χYF3
j,k,l+

Z

∑
j,k=1

(
A13 +A23 ·TS j

) ·χYF2
j,k +

Z

∑
j=1

(
A14 +A24 ·TS j

) ·χYF
j −

Z

∑
j=1

χYFH
j ·

(
A11 +A12 +A13 +A14 +(A21 +A22 +A23 +A24) ·TS j − T̃S j

)
(6.33)

Now after linearizing the WLAN path cost function, the resource allocation

problem for uplink communication can be mathematically modeled as shown in

Table 6.6. Owning to the fact that this is an extension of the model described in

Table 6.4, it inherits all input parameters such as α,β ,φ ,λ ,Λ,Ω, etc. from the

parent model. In addition, it also declares a new parameter G which is the mean
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size of IP packets belonging to the traffic flows received by users in the WLAN

network. The variables of the model include Rlte and Rwlan, which represent the

user data rate carried over the LTE and WLAN access links, respectively. The user

throughput in the WLAN network is defined by Y while E&F are used as auxil-

iary variables. The model targets to increase the network capacity by maximizing

throughput of users over their LTE access links. Furthermore, a suitable set of

users is selected which can achieve the maximum possible throughput in WLAN

network, i.e., maximize Y .

The model has to work with a number of constraints as shown in the lower part

of Table 6.6. Constraints 1–4 are exactly the same as described in Table 6.4 for

downlink communication. In Constraint 5, it is elaborated that Rwlan
j = Y is valid

only for a user j who have been selected as an active WLAN user (i.e., Fj = 1)

by the model. The 6th Constraint ensures that there is at least one active user in

the WLAN access network. The last constraint has been written in its compact

form for the sake of brevity; this constraint includes Equation (6.33) and all of

its associated constraints which come into being during the linearization of this

relation. The constraints related to Equation 6.29 and 6.30 are examples of such

constraints.

6.3.2.1 Simulation Scenarios and Results

The performance of the “Linear Programming” approach for uplink is studied with

the help of a simulation scenario. The scenario comprises 3 VoIP, 2 Skype video,

and 7 FTP uplink users. The other parameter configurations are shared from the

scenario of the downlink communication as listed in Table 6.5. Moreover, for the

sake of comparison the default “3GPP-HO” as well as the “Time Round-Robin”

approaches are considered as from Chapter 5. The resource allocation policies of

the two aforementioned approaches have already been discussed. As far as the

“Linear Programming” approach is concerned, the DEn assigns data rates to the

users by repeatedly solving the mathematical model presented in Table 6.6.

FTP uplink application performance has been indicated by Figure 6.15 in terms

of uplink throughput and file upload time. The figure clearly attribute “Linear

Programming” approach as the best among the other competing approaches. By

employing the clever strategy for optimized resource allocation, the “Linear Pro-

gramming” approach manages to enhance user throughput up to 40% compared

to the default “3GPP HO” approach. This performance gain is substantially higher

than that observed in downlink communication scenarios. The rationale behind

this is the medium contention among the users in the WLAN network. These users

when transmitting in uplink direction, encounter packet collisions and, therefore,
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Table 6.6: Mathematical model for the resource allocation in uplink communication.

Given
U a set of multihomed users

α j Data rate dependent part of the LTE link cost in [PRB/kbps] for user j, ∀ j ∈U
β j Data rate independent part of the LTE link cost in [PRB] for user j, ∀ j ∈U
φ j Path cost of WLAN access link in [sec/kbps] for user j, ∀ j ∈U
λ j Minimum data rate [kbps] demand of a traffic flow destined to user j, ∀ j ∈U
Λ j Maximum data rate [kbps] allocation for a traffic flow destined to user j, ∀ j ∈U
Ω Number of available PRBs for the LTE access network

G Mean IP packet size for traffic flows of active WLAN users in [bit]

Defined variables
Rlte

j Data rate in [kbps] carried over the LTE access link to user j, Rlte
j ≥ 0, ∀ j ∈U

Rwlan
j Data rate in [kbps] carried over WLAN access link to user j, Rwlan

j ≥ 0, ∀ j ∈U
Y Average user throughput in [kbps] experienced by each active user

in WLAN network, Y > 0

E j Auxiliary binary variable which hints the use of LTE access link by user j;
its value for a user j is 1 if Rlte

j > 0 and 0 otherwise, ∀ j ∈U
Fj Auxiliary binary variable which hints the use of WLAN access link by user j;

its value is controlled by the model in optimization of Y , ∀ j ∈U

Maximize
∑ j∈U Rlte

j +Y

Subject to
1. ∑ j∈U

(
α j ·Rlte

j +β j ·E j

)
≤ Ω

2. λ j ≤
(

Rlte
j +Rwlan

j

)
≤ Λ j, ∀ j ∈U

3.
(

Rlte
j /Λ j

)
≤ E j ≤

(
Rlte

j ·1020
)
, ∀ j ∈U

4. 0 ≤ Rlte
j ≤ Λ j, ∀ j ∈U

5. Rwlan
j = Fj ·Y, ∀ j ∈U

6. ∑ j∈U Fj ≥ 1

7. Equation (6.33) and associated constraints

experience less throughput. On the other hand, in downlink communication, it is

mainly the access point which is transmitting and all users act as mere receivers.
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Figure 6.15: FTP uplink performance comparison for “3GPP-HO”, “Time Round-Robin”,

and “Linear-Programming” approaches.

Therefore, no medium contention occurs in that case. That is why, a potential

performance boost can be realized in the uplink communication scenarios by min-

imizing the medium contention. This is exactly one of the strategies used in the

‘Time Round-Robin” and the “Linear Programming” approaches. The “Linear

Programming” approach even outperforms the “Time Round-Robin” approach by

additionally exploiting access network diversity through the use of the optimized

resource allocation scheme. Due to this reason, it achieves 15% higher uplink

throughput compared to that of “Time Round-Robin”.

Figure 6.16 shows the performance of realtime applications, i.e., VoIP and video.

The Boxplots of MOS scores indicate an excellent performance promised by the

“Time Round-Robin” and the “Linear Programming” approaches for both appli-

cation types. The results accomplished by “3GPP-HO” are good, as well. For

example, in case of VoIP, all MOS score values stay close to 4.0 which represents

an “all users satisfied” state of the service. However, for video applications, several

outliers can be observed which indicate the user dissatisfaction about the quality

of certain video calls. The cause of this phenomenon is explained by the end-to-

end packet delay plot of Figure 6.17. Though most of the time packet delays are

confined within 250ms threshold value, there exists a small probability that video

packets arrive at the destination later than the aforementioned delay threshold.

Such packets are discarded by the de-jitter buffer and hence cause a QoE degra-

dation. These elongated packet delays are mainly caused by a congested WLAN

access network due to its FTP users. Both “Time Round-Robin” and “Linear Pro-
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Figure 6.16: Uplink performance comparison of realtime applications for “3GPP-HO”,

“Time Round-Robin”, and “Linear Programming” approaches.

gramming” approaches circumvent these stretched delays by precisely regulating

the traffic load in the access networks. This makes packet delays stay well below

100ms excluding a few outliers.

When comparing the performance of realtime applications in uplink and down-

link communication, it can be observed that “3GPP-HO” delivers much improved

service in case of uplink communication. The reason of this behavior can be re-

called from the discussion of results in Section 6.3.1.1. That is, in downlink, a

single MAC queue at the WLAN access point is shared by both VoIP/video and

FTP traffic. Owing to the fact that it is the only bottleneck point in the network,

large buffer occupancy is created by the TCP protocol at this MAC queue. This

leads to large queuing delays for the packets of realtime and non-realtime applica-

tions. In contrast to this, in uplink communication, although the users have their

individual WLAN MAC queues in their devices, but in order to successfully trans-

mit a packet they have to contend for the medium access. Therefore, if the number

of active users are not excessively large, a packet can be transmitted within a de-

jitter threshold value of 250ms.

6.4 Heuristic Algorithms

The solution of the resource allocation problem obtained through mathematical

modeling using linear programming provides an upper limit on achievable network

capacity. A common practice in this regard is to consider that maximum achiev-

able performance as a target and then devise some heuristic algorithms which try

to attain a similar performance. The rationale behind this practice is the involved
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Figure 6.17: Packet delay comparison of the Skype video application for “3GPP-HO”,

“Time Round-Robin”, and “Linear Programming” approaches.

high complexity of linear programming problem. The high complexity requires

substantial computing power and time to solve these problems. This make the use

of linear programming unsuitable for realtime optimization tasks in most of the

cases. In this section, first of all the complexity of the proposed linear program-

ming approaches is discussed and then two heuristic algorithms are developed for

downlink and uplink communication scenarios. The effectiveness of the suggested

algorithms is also evaluated by comparing with the corresponding linear program-

ming approaches.

A customary way of analyzing the complexity of a linear programming problem

is through the number of involved variables and constraints. Figure 6.18 depicts

the complexity of the linear programming problem for downlink communication.

The two curves indicate that the number of variables and constraints increase lin-

early with the number of active users in the network. Moreover, even for a large

number of users (e.g., 100) the linear programming problem seems to have fairly

small computational complexity. This is because only few hundreds of variable

and constraints are involved at that user count. This fact is also verified by exam-

ining the wall-clock time required to solve these linear programming problems on

a laboratory server computer 1. The machine was able to solve any of such prob-

lems in less than 10ms of wall-clock time. The observation is based on an analysis

involving 20,000 random problems with active number of users varying from 3 to

100.

Figure 6.19(a) shows the complexity of the linear programming problem used

to optimally allocate resources in uplink communication. The figure indicates that

1Microsoft Windows Server 2008 R2 Enterprise 64bit, Intel©Xeon CPU @ 2.67GHz, 48GB RAM
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Figure 6.18: The complexity of linear programming problem for downlink communication

described in Table 6.4.

the variables and constraints count grows exponentially with the number of mul-

tihomed users. This makes the problem extremely hard to solve even just for 20

users which involves approximately 1 million variables and 400,000 constraints.

Accordingly, the wall-clock time to solve such problems also grows exponentially

increasing number of users as indicated in Figure 6.19(b). Therefore, in this case,

there is a particular need for an efficient heuristic algorithm to efficiently solve the

optimum resource allocation problems in realtime. Over the next two subsections,

the heuristic algorithms are developed for both downlink and uplink communica-

tion scenarios.

6.4.1 Downlink Communication

Table 6.7: An example problem of resource allocation in downlink communication.

User
Normalized network Data rate demand [kbps]
path cost per kbps Minimum Maximum
WLAN LTE

UE1 6×10−5 4×10−5 103 103

UE2 9×10−5 5×10−5 103 103
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Figure 6.19: The complexity of the linear programming problem for uplink communication

described in Table 6.6. The figure on right hand side is a semi-log graph with y-axis plotted

on a logarithmic scale.

Before the development of the heuristic algorithm, an understanding of the re-

source allocation problem is developed with the help of a simple example pre-

sented in Table 6.7. In this example, there are two multihomed users who require

a fixed data rate of 1Mbps to run a realtime service, e.g., video streaming. The

normalized network path cost on each access link of the user is also mentioned

in the table. The normalized cost represents the fraction of total access network

resources to offer a user with 1 Kbps data rate over that access network. The nor-

malized costs help directly compare the resource consumption of WLAN and LTE

access networks for a given amount of data rate, e.g., it can be seen that UE1 has

less path cost for the LTE access link compared to its WLAN access link.

The most suitable strategy to allocate resources in such a situation is through

the greedy approach. This implies that users should be served over that particular

access link which costs less network resources. It can be noticed from the table

that both users have less normalized cost for LTE access links compared to that of

WLAN access links. Therefore, according to the greedy strategy both users should

be served over their LTE access link. Serving them with their minimum data rate

over the LTE access network will consume 4 × 10−2 and 5 × 10−2 fraction of

resources, respectively. In other words, it will require a total of 9% of the available

LTE resources.

This strategy of the greedy approach is the main driver behind the heuristic al-

gorithm developed for resource allocation in downlink communication as depicted
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in Figure 6.21. The algorithm takes the network path costs and user data rate de-

mands as inputs. It traverses through the list of multihomed users and serve them

with the minimum data demands over their less expensive access links. If it hap-

pens that the available network resources are already assigned, then the rest of the

users are served over the other access network. In case, the network resources

of both access networks are consumed without satisfying the minimum data rate

demands of all users, the algorithm returns an error message. The error message

indicates that the provided problem is infeasible and there is no solution to the

problem.

After fulfilling the minimum data rate demands of all users, the left over network

resources should be assigned to the users whose maximum data rate demand is

greater than their minimum data rate demand. Typically, they are the FTP/HTTP

users. Though the same greedy approach can also be employed here once again,

it has to be slightly modified. This is because satisfying the maximum data rate

demand of ‘each’ user is not compulsory. Therefore, only those users should be

served who can achieve greater data rates with the available network resources.

For this purpose, a list is prepared where the network path cost of each user for

‘both’ of its access links is added. The size of this list is twice the number of users.

Sorting this list in the ascending order, users are served in the same order in which

their access link costs appear in the list. This procedure of serving users up to their

maximum data rate demand is performed in subprocess (A) in Figure 6.21. A flow

chart of subprocess (A) has been shown in Figure 6.22. At the end, the heuristic

algorithm returns the user data rate assignments over each of their access links.

In order to evaluate the performance of the heuristic algorithm described in Fig-

ure 6.21 and 6.22, its results are compared with that of the “Linear Programming”

approach. The evaluation is made more comprehensive and thorough by solving

20,000 random problems of resource allocation using both the heuristic and “Lin-

ear Programming” approaches. The problems are generated automatically with

the help of a script which considers a large range of active users from 3 to 100.

A probability of 50% is used to determine if a user in a random problem should

be using the realtime service (i.e., minimum and maximum data rate demands are

same) or the non-realtime service (i.e., maximum data rate demand is greater than

minimum data rate demand). Figure 6.20 summarizes the outcome of this evalu-

ation process. It shows a CDF and PDF curves of values representing how large

total network capacity is achieved using “Linear Programming” approach com-

pared to that obtained by the heuristic algorithm in random resource allocation

problems. The CDF curve depicts that in 90% of the problems, the heuristic ap-

proach achieved a network capacity which was at most 3% less than the optimum

achievable capacity computed by the “Linear Programming” approach. Consider-
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ing the simple complexity of the heuristic approach it is a great performance.
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Figure 6.20: The performance of the proposed heuristic algorithm for downlink communi-

cation. The CDF and PDF curves show the difference of the achieved network capacity

using the heuristic algorithm compared to the optimum value obtained using “Linear Pro-

gramming” approach.

A question can be raised at this point; why the simple greedy approach cannot

achieve the same performance as shown by “Linear Programming” approach. This

can be explained with the help of an example shown in Table 6.8. It is a slightly

modified version of the example presented in Table 6.7 where the maximum data

rate demands of users have been raised to 23.75Mbps. The resource allocation

problem in this example is solved using the developed heuristic algorithm as fol-

lows. First of all, both users are served with their minimum data rate demands

(i.e., 1Mbps) over LTE access network due to minimum involved resource con-

sumption. This costs 9% of LTE resources. As there are still 91% of LTE and

100% of WLAN access network resources available, a sorted list of network path

costs is prepared to utilize the remaining resources. The cost 4× 10−5 of LTE

access link from UE1 comes at the top, therefore 91% of LTE access network re-

sources are allocated to UE1 which translates to a data rate of 22.75Mbps. This

way UE1 is assigned with a total data rate of 23.75Mbps considering also 1Mbps

data rate allocation in the first step. The next lowest access link cost is of UE2

for its LTE access link (i.e., 5×10−5), however, there are no resources left on the

LTE access network. Therefore, no action is taken for UE2 this time. The next

lowest cost would be 6×10−5 of UE1 for its WLAN access link, but this user has

already been served up to its maximum data rate demand. Hence no additional
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Figure 6.21: Flow chart of the heuristic algorithm to solve the resource allocation problem

in downlink communication.
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Figure 6.22: Flow chart of the subprocess (A) in Figure 6.21.
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resource can be assigned to UE1. The last entry in the sorted list of cost would be

9×10−5 of UE2 over its WLAN access link. 100% of the WLAN access network

resources are assigned to this user which amount to a data rate of 11.1Mbps. This

way, UE2 gets a total data rate allocation of 12.2Mbps considering also 1Mbps

data rate allocation in the first step. Hence, the total network capacity amounts to

22.75+12.2=34.95Mbps, in this case.

Table 6.8: Another example problem of resource allocation in downlink communication.

User
Normalized network Data rate demand [kbps]
path cost per kbps Minimum Maximum
WLAN LTE

UE1 6×10−5 4×10−5 103 23.75×103

UE2 9×10−5 5×10−5 103 23.75×103

Solving the same problem using the “Linear Programming” approach serves

UE1 completely over WLAN access network despite the fact that it has lower

cost for LTE access link. This is because assigning all LTE resources to UE1

means that UE2 will have to be served over its WLAN access link which has the

highest path cost. This would be a bad move which could decrease the over spectral

efficiency of the network. Therefore, the “Linear Programming” approach takes

an intelligent decision of serving UE1 over WLAN access network and keep LTE

resources for UE2. Following this strategy, UE1 is served completely over WLAN

access network with data rate of 16.67Mbps and UE1 over the LTE access network

with data rate of 20Mbps. This way, total network capacity amounts to 36.67Mbps

which is 4.9% higher than that attained by using the heuristic approach.

A sophisticated heuristic algorithm which mimics the “Linear Programming”

approach in conceiving the effects of resource allocation of a user on the achievable

spectral efficiency of the other users will be overly complex. This is because as the

user count increases, each resource allocation will have to get feedback from many

of the users in a recursive way. Based on this feedback, the algorithm would have

to decide whether performing this resource allocation could degrade the achievable

spectral efficiency of other users. Above all, devising such an advanced scheme

would not offer a significant performance gain and would be against the idea of

developing a simple alternative approach.
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6.4.1.1 Simulation Scenarios and Results

This sections puts the developed heuristic approach to the test and evaluate its

performance in a simulation scenario. For this purpose, the simulation scenario

discussed in Section 6.3.1.1 is reused here so that the results of the heuristic ap-

proach can be compared with that of the “Linear Programming” approach.

Figure 6.23 compares the performance of the FTP downlink application for two

competing approaches. It is expected that the heuristic approach might not be able

to deliver a performance matching to that of “Linear Programming”. The FTP

downlink throughput as well as file download time verify this expected behavior.

However, the performs degradation is not significant. A comparison of numeri-

cal values reveals that the loss of performance is as low as 4%. A very similar

observation is also made for HTTP application performance. In this case users

encountered just 3% degradation in their QoE for webpage downloads. Moreover,

the absolute values of increase in download times are in the range of milliseconds.

Such a slight increase in download time remains unnoticed for human users.
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Figure 6.23: FTP downlink performance comparison for “Heuristic Algorithm” and “Linear

Programming” approaches.

Though non-realtime applications suffer slightly due to the use of the approach

based on heuristic algorithm, the performance of realtime applications essentially

remains unaltered. The reason behind this phenomenon has already been dis-

cussed. That is, the foremost target of the heuristic approach is to satisfy the

minimum data rate demands of all users. Owing to the fact that realtime applica-

tions require a fixed amount data rate, their minimum data rate demands are al-
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Figure 6.24: HTTP downlink performance comparison for “‘Heuristic Algorithm” and

“Linear Programming” approaches.

ways fulfilled. Only after allocating the minimum required data rates to all users,

the heuristic approach distributes the left-over resources among the non-realtime

users. Therefore, if the resources are not utilized optimally, there will be fewer

resources left to serve TCP users with the data rates surplus to their minimum data

rate demands.

The simulation results of realtime applications (i.e., VoIP and video) has not

been shown here in order to avoid unnecessary repetitions.

6.4.2 Uplink Communication

In uplink communication, users in the WLAN access network have to contend

for the medium access when carrying out any transmission. This implies that the

expected data rate of users over the WLAN access link would be degraded if other

users also start transmitting at the same time. The extent, to which the data rate

degrades, depends upon the PHY data rate of the involved users. In such situations

the simple greedy scheme will not be of much use because the resources required to

serve a user will change in response to the selection of other users to be served over

the WLAN. A work-around to this problem has been found through the study of

resource allocation solutions obtained using the “Linear Programming” approach.

The analysis indicates that in the majority of the problems, at most three users are

served over the WLAN access network and the rest are served over the LTE access
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network. This is because, serving large number of users over the WLAN degrades

the network capacity due to the involved contention among them. However, the

question still remains which particular users should be served over the WLAN

access network. One option could be to select those users who have the better

channel conditions compared to the other users. The findings of the analysis reveal

that the aforementioned criterion is not applicable in all situations. The reason of

which is very similar to the one explained during the discussion of the example

presented by Table 6.8.

This issue is resolved by searching for the most appropriate group of users

which, on being served over WLAN access network, can maximize the overall ca-

pacity of both networks. The search is executed by trying out all possible groups

or combinations of up to three users. For each such combination of users, the total

capacity of both networks is computed where these users are served over WLAN

and the rest are served over LTE following the greedy approach. Now the user

combination which promises the highest total capacity of networks is selected to

be served over their WLAN access links. The number of user combinations from

which the best choice has to be searched, depends on the number of multihomed

user as described below

Number of combinations = Z +
Z!

2! · (Z −2)!
+

Z!

3! · (Z −3)!

= Z +
Z · (Z −1)

2
+

Z · (Z −1) · (Z −2)

6
(6.34)

where Z is the number of active users in a WLAN access network.

In real world scenarios, the number of users associated with a WLAN access

point is typical assumed close to 20. Solving a resource allocation problem for the

20 users requires heuristic algorithm to search among 1,350 possible user combi-

nations. Even extending this count up to 50 users would make the search process

to look for one best user combination out of 20,875 possibilities. The machine

used in the analysis presented in Figure 6.19(b), was able to execute such a search

process in less than 10ms.

As described earlier, the analysis of solutions to the resource allocation prob-

lems reveals that mostly up to three users are served over the WLAN access net-

work. The question can be asked; what happens in the rest of cases? This can be

explained with the help of an example presented in Table 6.9. Here the first four

users have very low path cost for their WLAN access links while the fifth user is

economical if served over its LTE access link. Owing to the fact that the WLAN

access network is capable of serving the first four users up to their maximum data

rate demands, the “Linear Programming” approach will instruct them to transmit
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Table 6.9: An example problem of resource allocation in uplink communication.

User
Normalized network Data rate demand [kbps]
path cost per kbps Minimum Maximum

WLAN LTE

UE1 5×10−5 40×10−5 103 3×103

UE2 5×10−5 40×10−5 103 3×103

UE3 5×10−5 40×10−5 103 3×103

UE4 5×10−5 40×10−5 103 3×103

UE5 50×10−5 4×10−5 103 20×103

over their WLAN access links. The fifth user is then obviously served over LTE

access network because serving this user over the WLAN access network will drag

down the whole WLAN access network capacity.

In the heuristic algorithm, by limiting the user combination size to 3 would

provide a suboptimal solution in the above mentioned kind of problems. This

drawback can be circumvented using a ‘post-include-in’ strategy. In this strategy,

after getting the best user combination, it is tried to serve more users over the

WLAN access network without harming the existing users. For this purpose, an

additional user is added to the best user combination and the total capacity of

WLAN and LTE access networks is computed. If the resulted network capacity

increases, that user is marked to be served over WLAN access network altogether

with the best combination users. Otherwise, the same test is run on the other users,

one by one.

The above mentioned strategies of the resource allocation process have been

illustrated in the form of a flow chart in Figure 6.25. The process takes network

path costs and data rate demands of users as inputs. The first step searches for

the best user combination with the help of subprocess (B). Afterwards, the post-

include-in strategy is applied to improve network capacity using subprocess (C).

Finally, the user data rates are determined based on the outcome of subprocess (C).

The subprocess (B) has been outlined in Figure 6.26 which mainly assigns LTE

access network resources to the users following the greedy approach. That is, users

are first assigned the minimum data rate over the LTE access network. Then the

users are sorted according to their LTE path cost and served up to their maximum

data rate until all LTE access network resources are allocated. The subprocess (C)

has been described in Figure 6.27 which tries to improve the network capacity by

serving more users over the WLAN access network in addition to the users of the

best combination.



6.4 Heuristic Algorithms 213

Start

INPUT: LTE & WLAN network 
path costs and  data rate 

demands of users

Make a list of all such combinations where at most 
‘3’ users are served over WLAN access network

Assign resources to each combination in 
the list and compute total achievable 

network capacity for each combination

Select the combination which 
promises the highest network capacity

Try to improve network capacity by 
serving more users over WLAN 

OUTPUT: Assigned data 
rates over LTE & WLAN 

access links for each user

End

B

C

Assign data rates to users over their 
WLAN and LTE access links

Figure 6.25: Flow chart of the heuristic algorithm to solve the resource allocation problem

in uplink communication.
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Figure 6.26: Flow chart of the subprocess (B) in Figure 6.25.
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The performance of the proposed heuristic algorithm is compared with that of

the “Linear Programming” approach using a batch of 2,000 random tests. In these

tests the number of users is selected using a uniform distribution in the range from

3 to 20 users. Furthermore, there is an equal chance for a user to select between

realtime and non-realtime services. Out of all of these resource allocation prob-

lems, only 4 such cases were identified where the proposed heuristic algorithm

could not match the network capacity computed by the “Linear Programming” ap-

proach. This way, the heuristic algorithm offered near optimal network capacity in

2,000 resource allocation problems with the probability of 99.8%. In order to fur-

ther verify this claim the simulation scenario presented in Section 6.3.2.1 is rerun

using the proposed heuristic algorithm. The obtained simulation results are then

compared with those where the “Linear Programming” approach has been used

for resource allocation. The two sets of results appear to be essentially the same

and, therefore, have been omitted to avoid repetitions. This provides confidence

to the claims that the developed heuristic algorithms exhibit far less complexity

compared to “Linear Programming” approaches while delivering a matched per-

formance in computation of optimum network capacity.

This chapter developed mathematical relations between network resources and

achievable user data rate for LTE and WLAN access networks. These mathemati-

cal relations are then used to model the network resource allocation problem using

linear programming both for uplink and downlink communication scenarios. The

simulation results obtained by employing the “Linear Programming” approach are

seen to excel over the other approaches discussed in Chapter 5. The complexity of

the “Linear Programming” approach is also evaluated in terms of required compu-

tational power and time. As alternatives to the “Linear Programming” approaches,

heuristic based algorithms are devised which have less computational complex-

ity. Moreover, the performance of the proposed heuristic approaches in solving

resource allocation problems is proved to be very close to that of the “Linear Pro-

gramming” approaches.
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The main focus of this thesis work is to enhance user QoE as well as improve net-

work capacity in existing and future wireless access networks. For this purpose,

several optimizations are suggested in the 3GPP standards for Long Term Evolu-

tion (LTE), with special focus on the radio network. In addition, the work also

provides a futuristic look at heterogeneous networks where non-3GPP networks

(e.g., WLAN, WiMAX) are integrated into LTE networks. Such integration pro-

vides not only the means of traffic offloading but also paves the way to exploit

a new dimension of multiuser diversity. As a result, the proposed heterogeneous

networks are capable of living up to the demands of the mass-market by achieving

increased spectral efficiency and improved services at a lower cost with better user

QoE.

The implementation of a simulation model with the necessary details is an im-

portant and challenging task in the development and performance evaluation of

communication networks. Thus already developed basic simulation models of LTE

and WLAN were used in this work to build an integrated heterogeneous network

simulation model. The integration of two network types according to 3GPP stan-

dards required a number of extensions and modifications in the E-UTRAN nodes

(UEs, eNodeBs, PDN-GW, S-GW). Moreover, the realization of user multihoming

also required an implementation of IETF specified extensions for the Mobile IPv6

protocol of OPNET. Another implementation task related to the simulator was the

development of user QoE evaluation mechanisms for VoIP and video services. In

addition, the developed heterogeneous network simulator also implemented the

flow management system architecture which has been used to manage network

bandwidth resources for multihomed users.

This work proposes valuable enhancements to the LTE air interface scheduler.

For example, coordinated radio interface scheduling performs effective conges-

tion avoidance for the LTE core network. This improves system stability and

overall system performance in a number of ways, e.g., it saves UE battery power

which would otherwise be consumed to retransmit the packets dropped in con-

gested links. It also extends the network coverage and reduces the radio interfer-

ence in the cell. Another novel LTE air interface scheduling algorithm proposed in
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this work dynamically adapts to network load conditions. During the time when

congestion happens at the LTE radio interface, the algorithm enhances spectral ef-

ficiency at the expense of throughput fairness among the users. During the other

times, it offers user throughput fairness and extended cell coverage. Finally, the

performance evaluation study of different packet queue management schemes for

the LTE air interface scheduler is also carried out in this work. The analysis of

simulation results reveals that by employing the proposed schemes, not only the

end user QoE is enhanced but also inter-site handover completion time is reduced.

The network bandwidth resource management of integrated heterogeneous net-

works is a cumbersome task for operators. This work introduces a comprehensive

overlay architecture for resource management which complements 3GPP compli-

ant heterogeneous network architecture in achieving enhanced user QoE and spec-

tral efficiency. In addition, this work also presents several novel approaches for

dynamic estimations of user access link capacity which is a prerequisite for an

efficient network resource management. The effectiveness of the proposed archi-

tecture and the performance of the developed mechanisms for user link capacity

estimation is studied using the results of various simulation scenarios. The results

clearly indicate that the use of the proposed resource management schemes sub-

stantially enhances the user QoE for both realtime and non-realtime services in

an environment of heterogeneous networks. This proves the superiority of het-

erogeneous networks with intelligent resource management mechanisms over the

default 3GPP standardized networks.

In order to explore the limits of the achievable performance gain offered by the

intelligent resource management in heterogeneous networks, mathematical opti-

mization techniques are employed. For this purpose, the resource allocation prob-

lem is formulated using ‘Linear Programming’. The system performance of this

approach excels over the other approaches as indicated by the simulation results

obtained. The analytical study of the problem also provides an upper bound on

achievable system performance which serves as a target for the designs of new

resource management schemes. Inspired by the system performance achieved by

mathematical optimization techniques, heuristic based algorithms are also devised

in this work. These algorithms not only exhibit less computational complexity

but also accomplish a performance gain close to that attained by mathematical

optimization techniques. This make them feasible for use in real world network

equipment.

The concepts, mechanisms, and system architecture for resource management

presented in this work serve as a basis for further research in the area of user

multihoming and heterogeneous networks. The current work has focused only on

radio interfaces of LTE and WLAN. A natural extension would be to perform the
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resource management of the transport / core network and radio access networks si-

multaneously. This will provide the resource management scheme with an overall

picture of the access network so that performance of both networks is optimized.

For example, in such a scenario it will be possible to determine if the transport

network can support the user data rates which are being allocated at the radio in-

terfaces during the resource management process. Similarly, it will be possible

to determine the suitable transport links for certain application types based on the

dynamic QoS characteristics of these transport links.

Though the simulation results provided the proof of concept for integrated net-

works of LTE and WLAN, the presented concepts should be equally valid for other

access technologies like HSPA, WiMAX etc. However, such a validation is another

future work item. Moreover, this work focuses on network resource management

controlled by operators, while a quantization of achievable benefits when users

manage their own bandwidth resources, remains an open work item. Some work

has already been initiated in this direction, e.g., [X. 12], [X. 13].
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A User Satisfaction Models

The rapid advancements in mobile communication devices like smart phones, tablets, PDAs

etc. along with the evolutionary network technologies have opened doors for users to ac-

cess a variety of multimedia services instead of relying only on voice communication. A

major share of bandwidth resources from wireless access networks is being used to offer

data services. That is why mobile data services are rapidly becoming an essential compo-

nent of mobile operators’ business strategies. It is expected that this trend will gain further

pace in near future with the availability of new services and convergence of various access

technologies. Owing to the fact that the requirements of new data services are continu-

ously increasing, the growth of these services has posed big challenges in managing their

performance with the constraint of scares wireless network resources.

In today’s all IP networks, introducing some Quality of Service (QoS) improvement pro-

cedures may not necessarily translate to user satisfaction in the same order. For this purpose,

another term, called Quality of Experience (QoE), is used which quantifies user satisfaction

level from a service. This shifts the focus of service quality evaluation solely based on tech-

nical parameters to more subjective evaluation criteria. This places user QoE on a higher

level than technical parameters when categorizing them with respect to their importance for

network selection decisions in an environment of heterogeneous wireless networks. This, in

turn, dictates that it is imperative for operators to estimate the user satisfaction or QoE for

their services. This explains the need for a ‘user satisfaction model’ which can predict user

QoE based on the expected QoS parameters leading to an efficient network resource man-

agement. This chapter presents the related work in user satisfaction modeling for various

realtime and non-realtime applications. In addition, detailed discussions are made regarding

the operation of the most accepted user satisfaction models in the research community.

A.1 Background

This section provides an overview on the relationship of QoS and QoE as well as state-of-

the-art work in this area.

A.1.1 Quality of Service (QoS)

QoS describes the network’s ability to provide guaranteed service in achieving predictable

results. In order to provide end-to-end QoS all those functions and mechanisms in the

network that ensure the provisioning of the negotiated service quality must play their role.
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Network performance indicators within the scope of QoS include throughput, packet delay

and jitter, packet loss etc. QoS guarantees can be provided either by enforcing performance

measures, e.g., traffic prioritization, QoS aware scheduling etc. or by doing resource over-

dimensioning.

A.1.2 Quality of Experience (QoE)

The Quality of Experience term is used to describe end user’s perception of performance

of a delivered service. There are several formal definitions of QoE found in literature. For

example,

• “The characteristics of the sensations, perceptions, and opinions of people as they
interact with their environments. These characteristics can be pleasing and enjoy-
able, or displeasing and frustrating." [SJB+04]

• “Quality of Experience is the overall performance of a system from the point of view
of the users. QoE is a measure of an end-to-end performance levels at the user
perspective and an indicator of how well this system meets the user needs." [Goo05]

• “The user’s perceived experience of what is being presented by the Application
Layer, where the application layer acts as a user interface front-end that presents
the overall result of the individual Quality of Services." [SW03]

QoE is usually expressed on a scale of Mean Opinion Score (MOS) [IT98]. MOS value

can be measured either by conducting subjective tests or using the mathematical models

developed to predict user satisfaction based on number of parameters. In a broader sense,

other than network QoS parameters, QoE is also affected by factors such as cost, reliability,

efficiency, privacy, security, interface, user-friendliness and user confidence.

A.1.3 QoE versus QoS

The main difference between QoS and QoE is the reference perspective; QoS defines the

network perspective of performance while QoE defines the user perspective of service per-

formance. Though the perspective is different, QoE and QoS are so interdependent that no

discussion on QoE can be concluded without referring to underlying QoS. In fact, the only

way through which a network operator can offer the best QoE to the users in a cost-effective

and efficient way is the proper management of QoS in all steps from network planning to

implementation and optimization. In other words, the ultimate goal of achieving maximum

user satisfaction (QoE) can effectively be accomplished by using the building blocks of QoS

[SLC06].

From the above discussion one may get the impression that a better network QoS always

results in an improved user QoE. However, this argument does not hold in all circumstances.

For example, achieving high throughput and low packet loss using QoS enforcements in one

part of the network might not help to satisfy an end user, if there is a severe bottleneck in

another part of the network. This implies that QoS is essentially a bottom-up process which
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consists of a concatenation of point-to-point performance differentiation mechanisms with

little focus on end user perception. In contrary to this, QoE is a top-down approach where

end-user is the ultimate beneficiary of QoS. Therefore the implementation of QoS in a

network can help attain better QoE if the perspective is end user and all service performance

levels required for higher user satisfaction are assured.

The goal of delivering high QoE demands a comprehensive understanding of the factors

which contribute to end user’s perception of provided service. These factors encompass

both technical and non-technical aspects of the service (see Figure. A.1). The technical

factors are mainly covered by the end-to-end QoS and have been discussed intensively in

research literature. However, non-technical factors which are often ignored in QoE estima-

tions also bear an equal importance. Therefore, an accurate model of user QoE must take

into consideration the effects of both factor types on the user satisfaction. That is why the

user satisfaction model presented in this chapter conforms to this requirement by consider-

ing technical as well as non-technical factors.

Technical Factors
Throughput (or Bandwidth)
Packet delays and jitter
Packet loss rate
Access coverage
Etc.

Non-technical Factors
Security
Cost of service
Ease of accessibility
Battery power requirement
Etc. 

QoE

Figure A.1: Factors affecting end user QoE

A.1.4 Related Work

This section gives an overview of the research work found in literature with the focus on

computation of user QoE for various types of applications using analytical models. The

literature survey shows that speech quality assessment has been of particular interest to

many researchers. This yielded a large number of signal based speech quality models and

their modifications. Two most popular models which are referred to very often for voice call

quality evaluation and proposed by ITU Telecommunication Standardization Sector (ITU-

T), are E-model [IT09] and PESQ (Perceptual Evaluation of Speech Quality) [IT01]. Many

discussions on the performance of these models have been carried out leading to a number of

extensions to these two models. For example, in the context of network handovers and codec

switch-over, a detailed study has been presented by Möller et. al. [MRK+06]. Considering

various roaming scenarios, they concluded that packet loss rate is the most dominant factor

in deciding end user QoE while network handovers make nominal impact compared to

packet loss rate and codec switch-over. Moreover, in situations when packet loss rate is
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very high even the most sophisticated codec cannot conceal these losses, hence, leading to

poor voice quality.

Blazej et. al. [LWMV09] revealed that when narrowband and wideband codecs are used

in the same call, E-model cannot predict the voice quality accurately. To help this situation

they suggested a new impairment factor in E-model which reflects voice quality degradation

due to codec switching. Similarly, another experimental study conducted by Mehmood et.

al. [M.A10] explains how PESQ fails to provide accurate quality estimations due to several

reasons like codec switching, internal time shifting of talk spurts due to instabilities of

dynamic de-jitter buffer etc.

As far as video quality assessment is concerned, a range of objective models are avail-

able from simple models based on PSNR computations to advanced methods of comparing

transmitted video contents with reference video using spatial and temporal correlations. For

example PEVQ (Perceptual Evaluation of Video Quality) [IT08] model proposed by ITU-T

is based on modeling the behavior of the human visual tract. PEVQ analyzes the picture

pixel-by-pixel after a temporal alignment of corresponding frames of transmitted and ref-

erence video contents. Further discussions on video quality assessment can be found in

[Net03], [BN] and [Y. 06].

Khirman et. al. [KH06] have investigated the correlation of objective measurements

(QoS) and human perception (QoE) of HTTP service quality. The study focuses on the

impact of content delivery latency on user satisfaction. In [H. 08], the authors consider

various QoS parameters and suggest a sigmoid like function to show relationship between

QoS and QoE. Another study regarding QoS and QoE relationship can be found in [F. 10],

where authors present user rating as a function of response time for web applications. This

study also encompasses QoS parameters like packet loss, delay & jitter as well as packet

re-ordering. Further information on this subject can be accessed from [BH10] and [GR10].

A.2 Parameter Analysis for User Satisfaction Modeling

It has been mentioned earlier that a realistic representation of the user satisfaction requires

the consideration of both technical and non-technical parameters. This discussion is further

extended in this section, in order to identify and completely understand the influence of

these parameters on perceived user satisfaction.

A.2.1 Technical Parameters

The most influential technical parameters in determining user satisfaction of both realtime

and non-realtime applications are packet delay, packet loss, and bandwidth.

A.2.1.1 Impact of Delay on Different Application Types

For a VoIP application, network packet delays must be confined within a certain range in

order to achieve user satisfaction. If the network latency grows beyond a certain limit, the
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listener hears the words and acknowledges the speaker later than a normal conversation

which may cause an unnatural cadence of the conversation. Even further increasing the

delays deems the conversation impractical. Figure A.2 graphically depicts the impact of

end-to-end delay on the user satisfaction as found in the recommendations of the Interna-

tional Telecommunication Union (ITU) [IT03a]. According to this figure, three ranges of

one-way delays can be established. 0–150ms delay provides transparent interactivity for

the most of applications. 150–400ms delay is acceptable to allow flexible deployment of

networks without making an excessive number of users annoyed. Above 400ms delay is un-

acceptable for general networking purposes. However, in some exceptional cases, this limit

will be exceeded, e.g., double satellite hop for a hard to reach location. In practice, 200ms

of delay is a reasonable goal and 250ms is the maximum acceptable latency allowable in a

VoIP network.
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Figure A.2: Impact of VoIP packet delays on user satisfaction

The conversational or interactive video is also largely influenced by end-to-end packet

delays. A delay of 150ms is an optimal value to achieve the best user satisfaction level. A

value of 250ms is acceptable in most of the cases. The users get irritated over a threshold of

300ms and seriously annoyed at 500ms. Moreover, in order to achieve lip-synch (to match

lip movements with spoken vocals) the audio and video streams should not be apart more

than 50ms [SH04]. Similar recommendations can also be found in 3GPP standards where

the delay budget for interactive video traffic has been defined as 150ms (see Table 2.2).

As far as the non-realtime video streaming is concerned, the long packet delays do not

play any significant role in determining the user satisfaction. In this case, the effect of long

packet delays can be eliminated by employing a play-out delay of 5 seconds or more based
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on network conditions and device capabilities [SH04]. However, for this application type,

it is important to avoid the delay jitter grow excessively high which, otherwise, may lead to

packet losses [S. 10]. The delay budget for non-interactive video streaming has been set as

300ms in LTE networks as shown in Table 2.2.

In TCP based non-realtime applications (e.g., FTP, HTTP etc.), the user satisfaction is

usually determined by the provided throughput. Packet delay plays an important role in

setting an upper bound the on the achievable TCP throughput. For example, in the absence

of any packet loss, TCP throughput is determined by the following relation.

TCP throughput =
Wmax

RT T
(A.1)

where RT T is the TCP segment round trip time determined by the network latency. Wmax is

the maximum TCP window size in bytes. A typical value of Wmax size is 64KBytes. This

amount of Wmax together with RTT as 300ms can provide a maximum of 1.7Mbps TCP

throughput. However, when Wmax is increased to 1MByte, it is sufficient enough to achieve

26.6Mbps throughput value. This implies that the effect of RTT can be nullified by using a

proper value of TCP Wmax if no packet losses are present.

A.2.1.2 Impact of Packet Loss on Different Application Types

There are several causes of packet losses in the network, e.g., high bit error rates of wireless

access link, high levels of congestion that lead to buffer overflow in routers, link failure, high

packet delays & jitter etc. In IP telephony packet losses must be controlled to make conver-

sation possible. The extent to which packet losses can degrade user QoE depends on codec

type, packet loss rate, burst length of packet losses, and packet concealment algorithm being

employed. However, various investigations reveal that the quality of conversation will lag

if packet loss rate exceeds 5%, provided the burst length is not very large [SU10], [Ins12],

[DG03], [SXZS12]. Figure A.6 elaborates with examples how the user QoE deteriorates

with packet loss rate.

Video applications are also very sensitive to packet losses and any amount of loss rate

degrades the video quality. However, the extent of quality degradation depends on several

factors like, burst rate of packet loss, bit rate, frame rate, and compression parameters of

employed codec as well as the resolution of the video. For example, the most commonly

used MPEG video codecs generate three different types of video frames (i.e., I, P, and

B-frames). The composition of these frames varies for different video clips and the loss of

each frame type has different effects on perceived video quality [J. 09]. Therefore, no single

value of packet loss threshold can be specified as a rule of thumb to preserve user QoE for

all videos. In practice, a packet loss rate value of 1% is used as a design parameter and in

no case packet loss rate should exceed the upper limit of 5% [SH04] [MR02].

TCP based non-realtime applications are most susceptible to packet losses. Their perfor-

mance degrades sharply even with a slight increase in packet loss rate. This is explained

in greater details in Section A.3.3. As a design parameter, 3GPP standards propose packet
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loss rate in LTE networks to be 10−6 which is 1000 times higher than that of VoIP (see

Table 2.2).

A.2.1.3 Impact of Bandwidth on Different Application Types

Interactive voice and video applications usually have a certain data rate requirement which

is determined by the bit rate of the employed codec. If a network fails to offer this data rate,

the application simply stops working. Admittedly, there are some advanced scalable audio

and video coding schemes which can adapt to available bandwidth. However, they also

need a minimum data rate to function and improve on delivered application quality when

available bandwidth increases.

TCP based non-realtime applications are elastic in nature that they can operate at any

available bandwidth. Though they don’t have stringent requirements of data rate, the per-

ceived QoE of their users is directly influenced by their achieved throughput as discussed

earlier.

A.2.2 Non-Technical Parameters

User satisfaction is also effected by various non-technical parameters including user prefer-

ence over the service cost, reputation of the operator / service provider, etc. Such parame-

ters are of diverse scope and have a relatively more subjective nature compared to technical

parameters. Moreover, the influence of non-technical parameters on user satisfaction is spe-

cific to the service types. They can be normalized on expectancies of the lower the better,

the higher the better, or the nominal the better. The degree of impact of these parameters on

user satisfaction is purely attribute dependent, i.e., the decision of using linear, exponential,

logarithmic functions and control parameters depend on the attribute under consideration,

e.g., impact of security parameters may be modeled using a sigmoid like function where

users remain satisfied if a certain level of data encryption is achieved. Further beefing up

security beyond that level does not bring more satisfaction to the users.

A.3 Measurement and Evaluation of User Satisfaction

This section discusses the various means of predicting user perception of packet-switched

service quality from parameters that objectively describe the access network quality. These

methods are capable of translating the effects of packet delay & jitter and dropped packets

on user assessment of the respective service. As far as real time services like conversational

voice and video conferencing are concerned, there are two distinct ways of their quality

evaluation which are described below.

1. Subjective Measurements
Subjective tests are considered as the most reliable medium for obtaining a measure

of user perceived quality of a service. The reason is that, in a subjective test, user
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assessments of quality are elicited and collected directly from typical user of that ser-

vice. The user responses are then mapped to the widely used Mean Opinion Score

(MOS) scale which range from 1 to 5 where 1 is the worst and 5 is the best per-

ceived quality. In order to achieve credible and meaningful results from subjective

measurements, the testing must be carefully structured, controlled, and standardized

for a particular service, creating daunting test requirements like those presented in

[IT98] for voice applications.

Though subjective tests can produce results which are intuitively credible, opera-

tionally meaningful and scientifically defensible, they are not always preferred. This

is due the fact that such tests are very time consuming, expensive, and require a lot

of resources. Moreover, monitoring of real-time performance is not always practical.

Subjective tests are also of no choice for network planning purposes. These limita-

tions give rise to alternative ways of indirect quantification of service quality termed

as ‘objective measurement’ as discussed in the following.

2. Objective Measurements
Objective measurements of quantifying service quality and usability are based on

measures of characteristics of the underlying network connection (e.g., throughput,

latencies etc.). In other words, they rely on technical parameters which are used

to describe the performance of communication networks. There are numerous ad-

vantages associated with objective measurements like, input data can be collected

readily and automatically, output data can be interpreted without having to deal with

the vagaries of human opinion, the tests can be replicated in different environment,

scalability issues are non-existent etc. Objective measurements involve a modeling

of the human auditory and visual system, low level neural processing and higher

level cognitive processing. An objective measurement of a service quality will be

considered more accurate if it has higher correlation with the subjective measure-

ments. Objective measurement methods fall into following three categories.

• Full Reference: This approach requires the access to original reference multi-

media contents (i.e., audio or video file) that is assumed to have perfect qual-

ity. This reference signal (at sender side) is compared with possibly degraded

signal (at the receiver side) to compute distortion levels produced during the

transmission. For example, a received video transmission can be evaluated us-

ing the sent reference video and performing pixel by pixel comparison. The

full reference quality evaluation methods provide the highest accuracy and re-

peatability but tend to be processing intensive.

• No Reference: This approach assumes no access to the original reference sig-

nal and therefore relies only on the received signal to make the quality esti-

mation. Instead of analyzing the received signal in greater depth, commonly

found ‘no-reference’ methods are based only on an analysis of the digital bit

stream at an IP packet level. As a results, performance of ‘no-reference’ meth-

ods is usually inferior to that of full reference methods.
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• Reduced Reference: This approach, which is usually used for video quality

evaluation, lies between above described full reference and no-reference ap-

proaches. In this approach certain features are extracted from reference signal

at the sender side which are used along with the received signal to evaluate

the service quality at the receiving end (See Figure.A.3). An efficient reduced

reference method requires minimum feature data to predict a service quality

which has high correlation with the results obtained from full reference meth-

ods.

Transmitter Receiver

Feature extraction 
for video quality

Channel

Channel Reduced Reference 
Model

Reference video Received video

Video quality 
estimation

Figure A.3: Deployment of reduced-reference video quality assessment system

A.3.1 User Satisfaction Models for Conversational Voice

A.3.1.1 PESQ Model

PESQ (Perceptual Evaluation of Speech Quality) model provides a full reference objec-

tive voice quality measurement tool standardized in ITU-T recommendation P.862 [IT01].

PESQ has evolved from many new developments like PSQM, PAMS, MNB and, therefore,

considered as the state-of-the-art model to assess end-to-end speech quality with confidence.

PESQ takes into account following sources of voice signal degradation: packet loss, delay

and jitter, coding distortions and errors as well as filtering in analog network components.

A overview of the structure of the PESQ algorithm can be seen in Figure A.4. In the first

step, reference signal and received signal are aligned to a standard listening level. PESQ

assumes 79dB as subjective listening level at the ear reference. In order to bring both signals

at this level a gain function is applied. In the next step, PESQ compensates for any filtering

that has taken place in the network with the help of input filters. Time alignment for the

two signals is also required in order to counterbalance the variable delays of the network.

Time alignment is performed in three stages: First, talk spurts are time aligned. Second,

overlapping sections of the speech are aligned through the detection of delays which are

variable over the length of a talk spurt. Finally, those sections of speech which undergo

from very large distortion (called bad intervals) are realigned.

The next operation is the auditory transformation. This is essentially a psychoacoustic

model that mimics certain key properties of human hearing. This gives a representation in
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Figure A.4: Structure of perceptual evaluation of speech quality (PESQ) model [RBHH01]

time and frequency of the perceived loudness of the signal, termed as the sensation surface.

The difference between sensation surfaces of reference and received signals represents au-

dible differences introduced by the network. This analysis, at disturbance processing and

cognitive modeling stage, yields two disturbance parameters, i.e.,

• Absolute (symmetric) disturbance - It is a measure of absolute audible error.

• Additive (asymmetric) disturbance - It is a measure of audible errors that are signifi-

cantly louder than the reference signal.

In final step, these error parameters are linearly combined and converted to a quality

score. The score which lies between 4.5 and 1 represents the measure of user’s perception

of quality. The highest score 4.5 indicates that the received signal bears no distortion. The

score falls as the amount of distortion increases.

Rix et. al. [RBHH01] has shown in their experimental study that PESQ model provides

significantly higher correlation with subjective measurements when compared to other pop-

ular models in the same class.

A.3.1.2 E-Model

E-model [IT09] is a no-reference computational model used as a transmission planning tool

for assessing the effects of transmission parameters which decide conversational voice qual-

ity. The primary output of the E-model is the “rating factor" R or R-factor which can be

mapped to MOS in order to estimate the user opinion on voice quality. The E-model as-

sesses conversational voice quality by establishing a relationship between objectively mea-

surable factors and subjective assessment of voice quality based on large scale of measure-

ments. For a narrowband codec, the maximum value of R-factor computed by the E-model

is 100, which corresponds to the best possible achievable voice quality. For a wideband

codec, this value is ranged up to 129. The minimum value of R factor is 0, which represents

the worst quality. R factor combines several transmission parameters which are considered

relevant for an end-to-end transport connection: In addition it also reckons others elements
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which cover impairments due to low bit rate codecs, echo, background noise, and electronic

equipment, etc.

The R factor is composed of five factors as stated below.

R = Ro − Is − Id − Ie-eff +A (A.2)

The factor Ro represents the basic signal-to-noise ratio of a given environment of the talker.

Is is the sum of all impairments which may occur more or less simultaneously with the voice

transmission. Id represents impairments caused by mouth-to-ear path delay. The ‘advan-

tage factor’ A provides compensation for impairments in return of other benefits enjoyed

by the user, e.g. ease of access etc. Ie-eff is packet loss dependent ‘Effective Equipment

Impairment’ factor.

Considering the packet-loss probability Ppl and packet loss robustness factor Bpl , the

value of Ie-eff is calculated using the following equation.

Ie-eff = Ie +(95− Ie)
Ppl

Bpl +
Ppl

BurstR

(A.3)

BurstR is the so-called burst ratio; which is defined as:

BurstR =
Average length of observed bursts in an arrival sequence

Average length of bursts expected under “random” loss

If packet losses are random (i.e., uncorrelated) BurstR = 1; and when packet losses occur

in bursts (i.e., dependent or correlated) BurstR > 1. In this thesis work, pure random packet

losses are considered, i.e. BurstR = 1. Planning values of the packet loss robustness fac-

tor Bpl are provided in ITU-T Recommendation G.113 [IT07] for several popular codec

schemes.

The value of the Ie factor is obtained from subjective measurements of voice quality with

various codecs and various operating conditions, e.g., packet loss, packet size, etc. The

packet loss concealment algorithms of a given codec also influence Ie values.

Packet loss rate Ppl in equation A.3 has the following two components,

• Packet loss rate: All packet losses on the way from source node to destination node

due to transport network link impairments, buffer overflows in transport network

routers, etc.

• Packet drop rate: The packets which are dropped if they get delayed more than the

length of the de-jitter buffer.

The factor Is is a function of parameters which are independent of the underlying trans-

port network. Therefore, a default planning value provided by ITU-T G.107 [IT09] can be

used for simplification. Moreover, substituting a value of 100 for Ro shortens equation A.2

as follows:

R = 94.2− Id − Ie-eff +A (A.4)

Cole et. al. [CR01] have analyzed Id in great detail. They have provided a mathematical

expression based on curve fitting functions to evaluate impairments caused by one way
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mouth-to-ear delay. This expression for Id which is applicable for all codecs is defined as

follows:

Id = 0.024d −0.11(d −177.3)H(d −177.3) (A.5)

H(·) is heavyside function and d is one way delay. In pure IP networks d has the following

four components.

• Codec delay: Encoding delay, look-ahead delay etc. This value is given in codec

specifications.

• Packetization delay: It occurs when more than one voice frame are transported in

one IP packet.

• De-jitter buffer delay: This is the delay associated with the packet waiting in de-jitter

buffer. It shows up when packets are received out-of-sequence at destination or when

there are packet losses on the way from sender to the destination. This delay value

can go up to the maximum de-jitter buffer length value.

• Compressing and de-compressing delay: The processing delays associated with com-

pression/decompression of data inside voice frames.

The R factor produced by the E-model is mapped to MOS scale which ranges from 1 to

5, 1 being the worst and 5 the best perceived quality. The expression used to map R factor of

narrowband codecs onto MOS scale can be found in Appendix B of ITU-T G.107 [IT09]. A

similar expression can also be derived for wideband codecs for whom R value ranges from

1 to 129. Table A.1 shows such a mapping of R factor on MOS scale.

Table A.1: User satisfaction level on MOS and R scale for wideband and narrowband codecs

Rnb–value MOS–value Rwb–value User
(lower limit) (lower limit) (lower limit) satisfaction

90 4.34 116.1 Very satisfied

80 4.03 103.2 Satisfied

70 3.6 90.3 Some users dissatisfied

60 3.1 77.4 Many users dissatisfied

50 2.58 64.5 All users dissatisfied

The Figure A.5 depicts the influence of packet loss rate and mouth-to-ear delay on

achievable MOS score as predicted by E-model for wideband codec G.722.2 (23.05kbps)

codecs.

The E-model defined by equations A.3-A.5 has been implemented by the author in OP-

NET simulator. This makes possible it to use E-model in evaluation of VoIP call quality, in

simulation based studies presented in this work.
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Figure A.5: 3-dimensional plot of VoIP wideband MOS score variations due to packet loss

rate and mouth-to-ear-delay

A.3.1.3 EIP-Model

After having a detailed overview of PESQ and E-model, it would be interesting to compare

their performances. Such a comparison study has been carried out by Uhl. et. al. [Uhl08].

Their study reveals that within the scope of IP networks PESQ model delivers improved

results with high correlation to subjective measurements. However, E-model performance

degrades substantially in the presence of a high packet loss rate in the IP networks.

In another research work [SU10] by the same authors, an enhancement has been proposed

to the standard E-model in order to obtain more reliable results for lossy IP links. The

enhancement comes from the investigations on the effects of average burst length of packet

losses and speech sample length on voice quality. As a result, a new parameter BSLP (Burst

Sample Length Product) is introduced. From the experimental study on PESQ behavior in

diverse end-to-end network conditions and for various codecs, the values of Bpl and Ie are

obtained in terms of BSLP parameter. For example, in the case of G.726(32 kbps) codec,

these values are as shown below,

Bpl = 0.0634 ·BSLP+20.815, (A.6)

Ie =−0.01 ·BSLP+17.76, (A.7)

This modified E-model is named as EIP-Model by the developers. Figure A.6 shows that

EIP-Model provided results are very close to that of the PESQ model for different packet

loss rate and burst size values. On the other hand, the standard E-model provided curve

deviates from the other two models.



236 A User Satisfaction Models

The high accuracy of EIP-Model makes it a preferable method for voice quality evalu-

ation. Though this model has been implemented by the author in OPNET based network

simulator, it has not been used in this thesis work due to two reasons. First, EIP-Model has

not yet been validated for any wideband codec. Owing to the fact that all simulation based

studies presented in this thesis work employ wideband codecs, EIP-Model is not a choice.

Second, the investigations made in this thesis work do not deal with high loss IP links,

therefore the original E-model still delivers the satisfactory performance in these scenarios.
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Figure A.6: MOS values as a function of nondeterministic distributed packet loss with

BurstSize equal to 1 and 4 [SU10]

A.3.2 User Satisfaction Models for Conversational Video

Similar to VoIP, video quality at receiving end can also be determined using Subjective as

well as Objective evaluation techniques. Most state-of-the-art objective evaluations of video

quality metrics attempt to model the Human Visual System (HVS). The principle behind

HVS based metrics is to process the visual data by simulating the visual pathway of the

eye-brain system. Digital Video Quality (DVQ) metric [A. 01] and the Perceptual Distortion

Model (PDM) [Win99] are the examples where HVS-based video quality metrics have been

proposed. However, HVS-based quality metrics suffer from inaccurate modeling of the

HVS. In particular, temporal mechanisms in the HVS is a likely source of performance loss

as indicated in a study by Video Quality Experts Group [VQE00]. Hence, the performance

of HVS based algorithms has a considerable room for improvement.

Among other popular video quality metrics are SNR (peak signal to noise ratio), Ssim

(Structural similarity), and MDI (Media Delivery Index) which are computed by a large

number of full reference models.
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• PSNR: It is a derivative of the well-known signal to noise ratio (SNR) metric. PSNR

term defines the ratio between the maximum possible power of a signal and the power

of corrupting noise that affects the fidelity of its representation. When comparing

two video files, signal is the original file and noise is the error which occurs due to

compression or during transmission over the network. In the context of video quality

evaluation, PSNR is taken as an approximation to human eye perception of image

quality. It is measured in decibel units (dB).

• Ssim Index: Ssim exploits the well-defined structures found in natural image signals

which carry important information about the visual scene. This information plays

an important role in human visual system to perceive image quality. Ssim based

models perform structural distortion measurements instead of just computing error

signal power. Structural Similarity (Ssim) index gives a measure of the similarity

between two images. Ssim index value ranges from -1 to 1. Higher the Ssim index

value, higher the similarity between the two comparing images. For videos quality

evaluation, Ssim index is computed image by image.

• Media Delivery Index: An interesting metric to evaluate IP based transport net-

work performance for video streaming is MDI. Though it does not quantify user

perception of a video quality, it provides a set of measures (e.g., packet delay and

jitter in the transport network which are main causes for quality loss) to help moni-

tor delivered video quality. MDI can be used in network planning phase as well as

in network monitoring which allows network operators to take necessary corrective

actions well in advance. A set of MDI values for different type of video streaming

applications like SDTV, HDTV, Video-on-demand etc., have been recommended by

IETF [WC06].

A.3.2.1 ITU-T G.1070 Model

The opinion model discussed in ITU-T G.1070 recommendation encompasses several input

parameters related to video and speech quality which influences user satisfaction or QoE.

This computational model consists of three functions, namely, video quality estimation,

speech quality estimation, and multimedia quality integration functions. In first step, speech

quality is estimated based on the E-model discussed in section A.3.1.2 and video quality Vq
is calculated based on the relation given in equation A.8. In the second step, speech and

video quality estimations are combined using an integration function to estimate overall

multimedia quality.

Vq = 1+ Icoding · exp

(
− PplV

DPplV

)
(A.8)

where Icoding represents the basic video quality determined by the codec distortion and is a

function of the frame rate and bit rate. PplV represents the packet loss rate and DPplV is the

degree of video quality robustness against the packet losses. The basic video quality for a
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certain bit rate BrV and frame rate FrV can be calculated using the following relation.

Icoding = IO f r · exp

((
ln(FrV )− ln(O f r)

)2

2D2
FrV

)
(A.9)

O f r is an optimal frame for maximum achievable video quality and IO f r is the maximum

video quality at bit rate BrV so that,

O f r = v1 + v2BrV , 1 ≤ O f r ≤ 30 (A.10)

IO f r = v3 ·
(

1− 1

1+(b/v4)v5

)
, 0 ≤ IO f r ≤ 4 (A.11)

Moreover, DFrV which represents the video quality robustness due to frame rate FrV and

packet loss robustness factor DPplV are expressed as follows,

DFrV = v6 + v7BrV , DFrV > 0 (A.12)

DPplV = v10 + v11 · exp
(
−FrV

v8

)
+ v12 · exp

(
−BrV

v9

)
, DPplV > 0 (A.13)

where coefficients v1, v2,. . . ,v12 are dependent on codec type, video display size, key frame

interval and display format. Provisional values for these coefficients have been provided

in the ITU-T G.1070 document based on subjective tests for MPEG-4 codec in QVGA

and QQVGA formats. Belmudez et. al. [BM10] has provided a new set of parameters

for MPEG-2 codec. Another extension has been made by Yamagishi et. al. [YH08] who

supplied coefficient values for H.264 codec in HD format.

The Figure A.7 shows the deterioration of video MOS score due to packet losses as

predicted by G.1070 model.

A.3.2.2 PSNR Based Quality Evaluation

EvalVid is a framework and tool-set for evaluation of the video quality transmitted over a

real or simulated communication network. It is capable of analyzing the transport network

performance used for video streaming in terms of QoS parameters like, packet loss, delay &

jitter. As an output, it provides both the frame by frame PSNR values and an overall MOS

score as a prediction of end user’s perception of received video quality. Evalvid toolkit is

based on full reference service quality measurement methods which has been integrated into

the heterogeneous network simulator developed in chapter 3. It has been used as a default

video quality evaluation tool in all simulation based studies presented in this work.

The process of obtaining MOS values for a video streaming application in OPNET can

be split into three phases i.e., pre-processing, online-processing, and post-processing. In the

following a detailed description of each phase is provided.

• Pre-processing phase
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Figure A.7: Video MOS variations due to packet losses at different MPEG-4 codec bit rates

– In first step, a video clip of a certain time length, resolution, and frame size

is selected which is used for video streaming application in OPNET. With the

help of Evalvid took-kit the selected video clip is converted to raw YUV format

making it ready for encoding in the desired format.

– Evalvid tool-kit supports MPEG-4, H.264, and H.263 codecs. Based on the

scenario configuration the video clip is encoded to a preferred codec format

with the desired bit rate. In this work, the default codec is selected as MPEG-4

due to its widespread use in Internet applications.

– EvalVid toolkit is then used to generate a trace of packet transmission for that

particular encoded video clip. For this purpose, the video clip is streamed over

a real IP network and all IP packets belonged to the transmission are captured

using network sniffing tools, like, Tcpdump [Ana13] etc. A simple analysis of

this trace file helps extract the information of packet sizes and their inter-arrival

times.

• Online-processing phase
– When running a simulation setup, the OPNET takes the above extracted infor-

mation to generate UDP based video streaming traffic in the scenario. These

UDP packets are marked with sequence numbers in order to detect packet loss

and reordering at the receiving end.

– At the receiving end in the simulation scenario, another trace file is generated

which contains the information about the received video stream, like, end-to-

end delay and losses for all packets.
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• Post-processing phase

– When the simulation ends, the two trace files generated in previous phases,

along with the reference video clip, are fed to Evalvid took-kit. It compares

two trace files to detect the packet losses during the transmission in simulation

environment. With the help of this information and reference video clip, it

constructs the received video file. In the construction of video file all those

packets which are delayed greater than specified play-out or de-jitter buffer

size are treated as lost packets.

– In the final step, EvalVid took-kit takes the reference video file and received

video file to compute peak signal-to-noise ratio (PSNR) values in frame by

frame manner. Based on these PSNR values a MOS value is also computed by

the tool following the mapping the Table A.2.

MPEG-4 
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Video stream 
transmission over 

real IP network

Video stream 
capture and 
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IP packet 
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Figure A.8: Video quality evaluation in OPNET simulator using Evalvid

Table A.2: Mapping of PSNR values onto MOS scale [Ohm99]

PSNR (dB) MOS

> 37 5 (Excellent)

31–37 4 (Good)

25–31 3 (Fair)

20–25 2 (Poor)

< 20 1 (Bad)
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A.3.3 User Satisfaction Models for TCP Applications

Generally, realtime applications (i.e., VoIP call, video conference call etc.) are very sensi-

tive to the path delays than the losses. This makes UDP transport protocol a natural choice

for such applications. In contrast to this, non-realtime applications (i.e., FTP, HTTP etc.)

require an error free delivery of the contents by compromising the transfer delays. Such

requirements are fulfilled by the underlying TCP transport protocol. TCP retransmits the

lost and corrupted packets, ensures in sequence deliveries, as well as, adapts to the avail-

able bandwidth of the link by controlling the data transfer rate. With the help of all these

mechanism, TCP guarantees error free delivery of the data. Hence, for non-realtime appli-

cations, user satisfaction cannot be evaluated based on transmission errors in the delivered

contents. Instead, the metric for user satisfaction is directly related to waiting time required

for successful completion of data transfer, e.g., File download time, HTTP page response

time etc. Owing to the fact that the content transfer time is determined by user through-

put, the achieved user throughput also serves a QoE metric for TCP based non-realtime

applications.

An error free delivery of contents is made possible in TCP through its error control mech-

anism. This ARQ (Automatic Repeat-reQuest) mechanism of TCP uses acknowledgements

and timeouts to retransmit those packets which are lost or extensively delayed in the net-

work. Such retransmissions, in turn, cause to reduce the achievable throughput as seen by

the above application. Therefore, it is important to analyze the influence of the packet loss

and delays on the achievable throughput of TCP based applications. In a simple scenario

where negligible packet losses are introduced by the network, TCP throughput is inversely

proportional to the end-to-end packet delay as indicated by equation A.1. However, in prac-

tice, TCP connection is subject to packet losses, for example, due to network congestion etc.

Mathis et. al. [M. 97] studied the effect of such packet losses on the TCP performance with

the help of TCP congestion avoidance algorithm model. They proposed a TCP throughput

model with selective acknowledgements considering a wide range of Internet conditions.

However, it is also applicable to other TCP implementations under restricted conditions.

The model which predicts the achievable TCP throughput has been validated by the authors

using simulations, as well as, the live Internet measurements. The model is described as

follows:

throughput =
MSS
RT T

· C√
p

(A.14)

where MSS is the maximum TCP segment size, p is the packet loss rate and C is the con-

stant of proportionality which depends on TCP implementation. Nowadays, in most of the

TCP implementations “Delayed Acknowledgement” algorithm [SW94] is used to reduce

the number of tiny TCP acknowledgement packets in the network. For such TCP imple-

mentations C is normally less than 1. Thus, in many practical situations a simpler bound on

TCP throughput can be used, i.e.,

throughput <
MSS
RT T

· 1√
p

(A.15)
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As mentioned earlier, the above model is valid for packet loss rates up to a moderate level

(p < 2%). Padhye et. al. [P. 98] extended this investigation to develop an improved model

which captures the effects of TCP retransmission mechanism and timeout mechanism on the

achievable throughput. The predicted TCP throughput is given by the following relation:

throughput =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1−p
p +E[W ]+ Q̂(E[W ]) 1

1−p

RT T ( b
2 E[W ]+1)+ Q̂(E[W ])T0

f (p)
(1−p)

if E[W ]<Wmax

1−p
p +Wmax + Q̂(Wmax)

1
1−p

RT T ( b
8Wmax +

1−p
pWmax

+2)+ Q̂(Wmax)T0
f (p)

(1−p)

otherwise

.

(A.16)

where Wmax is the maximum TCP window size, b is the number of segments acknowledged

by one TCP acknowledgement packet, p is the packet loss rate and T0 is the initial retransmit

timeout value. Q̂(w) is the probability that a loss in a window of size w is a TCP time-out.

E[W ] =
2+b

3b
+

√
8(1− p)

3bp
+

(
2+b

3b

)2

,

Q̂(w) = min

(
1,

(1− (1− p)3(1+(1− p)3(1− (1− p)w−3))

1− (1− p)w

)
≈ min

(
1,

3

w

)
,

f (p) = 1+ p+2p2 +4p3 +8p4 +16p5 +32p6

An approximation of the model in equation A.16 is also provided by the same authors as

shown below,

throughput ≈ min

⎛⎜⎜⎝Wmax

RT T
,

1

RT T
√

2bp
3 +min

(
1,3

√
3bp

8

)
p(1+32p2)T0

⎞⎟⎟⎠ (A.17)

Figure A.9 provides a graphical illustration of how TCP throughput is influenced by

the packet losses and path delays. The curves have been drawn using equation A.17 and

considering a TCP windows size of 1MByte. It can be observed that both of the parameters

(i.e., packet losses and delay) have a significant impact on user throughout and, hence, on

the perceived QoE.

A.4 Generic User Satisfaction Model

The previous section has presented a number of objective models to evaluate user QoE for

each type of realtime and non-realtime applications. Owing to the fact that the outcome

of these models depends on a confined number of technical parameters, it is possible to

define a generic user satisfaction model which encompasses all necessary parameters to

evaluate user QoE for any predefined application type. Such a generic user satisfaction
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Figure A.9: TCP throughput degradation due to packet losses for different RTT values

model is composed of several linear and non-linear functions whose behavior for a certain

application is determined by a set of predefined attributes for a set of predefined application

types. In addition to technical parameters, such a model can also consider non-technical

parameters as discussed in the beginning of this Chapter. The development of this generic

user satisfaction model requires an extensive discussion and, therefore, is beyond the scope

of this work. In another research work related to network selection, the author has realized

such a model whose details can be found in [TKGTG11] and [KT11].

A generic user satisfaction model is of great importance in making crucial decisions at

different levels of the telecommunication paradigm. At the user level, it can help users in

network selection by predicting their satisfaction level achievable from a certain network.

At the cell level, a base station’s decisions about handover optimization and link adaptation

can be derived from this model. At the network level, an operator can get help from this

model in achieving optimal resource allocation and enhancing user QoE in an environment

of heterogeneous networks. In addition, in an environment where no long term contracts

exist and the users are free to choose a network operator on a per application usage basis,

the estimation of the user satisfaction is of prime importance. In such an environment, the

model can help an operator compete in the market by computing better service offers. The

details of author’s work on use of this model in aforementioned scenarios is available in

[M. 10b], [M. 10a], and [TKGTG11].





B The Box Plot

The box plot or box-and-whisker plot was introduced by John Tukey in 1977. It is one of the

standardized was of displaying the distribution of data based on the five number summary:

(1) minimum, (2) maximum, (3) median (or second quartile), (4) the first quartile, and (5)

the third quartile. An example of a standard box plot is shown in Figure B.1.
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Figure B.1: An example of the box plot. IQR is the inter-quartile range.

It can be observed in the figure that:

• The box (the central rectangular portion of the plot) extends from the first quartile

to the third quartile. The length of the box indicates the IQR (inter-quartile range)

which is the middle half (the interquartile range) of the ordered data.

• A horizontal line segment inside the box shows the median. This helps illustrate the

skewness pattern of the data. For example, if most of the data samples are concen-

trated on the low end of the scale, the distribution is skewed right. If the opposite is

true then the distribution is skewed left. Moreover, if the median line evenly splits

the box, it is an indication of symmetric distribution.
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• Two vertical lines, called whiskers, extend from the top and bottom of the box.

• The lower whisker extends from minimum to the first quartile. The length of this

whisker indicates the range of the lowest fourth of the ordered data.

• The upper whisker extends from the third quartile to maximum. The length of this

whisker indicates the range of the highest fourth of the ordered data.

• The portion of the box between the first quartile and median indicates the range of

the second fourth of the ordered data.

• The portion of the box between median and the third quartile indicates the range of

the third fourth of the ordered data.

• The values that fall beyond the end of whiskers, have been plotted as dots. They are

called outliers due to their extremeness relative to the bulk of the distribution.



C LTE Curve Fitting Data

The data presented in Table C.1 has been generated using “Curve Fitting Toolbox” of

MATLAB software. The accuracy of the curve fitting is shown in the table using ‘norm

of residuals’ and square of ‘correlation coefficient’. According to MATLAB help, the norm

of residuals is computed using the following formula:

norm of residuals =

√
n

∑
i=1

di
2

where d represents the numerical difference of an original data point and its approxima-

tion. The n represents the number of data points in the sample.
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Table C.1: Curve fitting data to represent a linear relationship between PRBs and LTE

throughput at different TBS indices. The values of α and β are used in Equation 6.4 to

get a relationship between ‘number of PRBs’ and ‘achievable user throughput’ for a certain

TBS index.

TBS index α β
Norm of Square of
residuals Correlation

Coefficient
0 3.581×10−2 7.162×10−1 0.9271 0.9993

1 2.749×10−2 4.536×10−1 1.2605 0.9988

2 2.250×10−2 2.866×10−1 0.9729 0.9993

3 1.716×10−2 3.054×10−1 0.8658 0.9994

4 1.387×10−2 3.144×10−1 0.8423 0.9995

5 1.124×10−2 3.114×10−1 0.6987 0.9996

6 9.637×10−3 −2.859×10−2 2.3870 0.9956

7 8.057×10−3 2.486×10−1 0.9057 0.9994

8 7.052×10−3 2.270×10−1 0.5489 0.9998

9 6.280×10−3 1.599×10−1 0.7211 0.9996

10 5.633×10−3 1.719×10−1 0.6484 0.9997

11 4.966×10−3 5.924×10−2 0.7752 0.9995

12 4.336×10−3 1.306×10−1 0.7100 0.9996

13 3.840×10−3 1.404×10−1 0.5839 0.9997

14 3.476×10−3 5.404×10−2 0.9189 0.9994

15 3.267×10−3 1.358×10−2 0.7915 0.9995

16 3.086×10−3 −4.254×10−2 0.8843 0.9994

17 2.758×10−3 5.194×10−2 0.8582 0.9994

18 2.515×10−3 4.120×10−2 0.6140 0.9997

19 2.323×10−3 6.142×10−3 0.5950 0.9997

20 2.159×10−3 −2.557×10−3 0.7571 0.9996

21 1.983×10−3 7.328×10−2 0.6418 0.9997

22 1.847×10−3 8.933×10−2 0.6624 0.9997

23 1.755×10−3 −5.122×10−2 0.8799 0.9994

24 1.628×10−3 7.830×10−2 0.5729 0.9997

25 1.563×10−3 1.009×10−1 0.6861 0.9996

26 1.359×10−3 −4.971×10−2 0.6814 0.9997
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