SIGMA: A mobility architecture for terrestrial and space networks.

Abstract

Internet Protocol (IP) mobility can be handled at different layers of the protocol stack. Mobile IP has been developed to handle mobility of Internet hosts at the network layer. Mobile IP suffers from a number of drawbacks such as the requirement for infrastructure change, high handover latency, high packet loss rate, and conflict with network security solutions. As an alternative solution, a few transport layer mobility protocols have been proposed in the context of Transmission Control Protocol (TCP), for example, MSOCKS and TCP connection migration. In this dissertation, a S&barbelow; eamless I&barbelow; P-diversity-based G&barbelow; eneralized M&barbelow; obility Architecture (SIGMA) is described. SIGMA works at the transport layer and utilizes IP diversity to achieve seamless handover, and is designed to solve many of the drawbacks of Mobile IP. It can also cooperate with normal IPv4 or IPv6 infrastructure without the support of Mobile IP. The handover performance, signaling cost, and survivability issues of SIGMA are evaluated and compared with those of Mobile IP. A hierarchical location management scheme for SIGMA is developed to reduce the signaling cost of SIGMA, which is also useful to other transport layer mobility solutions. SIGMA is shown to be also applicable to managing satellite handovers in space. Finally, the interoperability between SIGMA and existing Internet security mechanisms is discussed

    Similar works