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Abstract—OpenOverlayRouter (OOR) is an open-source soft-
ware router to deploy programmable overlay networks. OOR
leverages the Locator/ID Separation Protocol (LISP) to map
overlay identifiers to underlay locators, and to dynamically tunnel
overlay traffic through the underlay network. LISP overlay state
exchange is complemented with NETCONF remote configuration
and VXLAN-GPE encapsulation. OOR aims to offer a flexible,
portable, and extensible overlay solution via a user-space im-
plementation available for multiple platforms (Linux, Android,
and OpenWrt). In this article, we describe the OOR software
architecture and how it overcomes the challenges associated with
a user-space LISP implementation. Furthermore, we present
an experimental evaluation of OOR performance in relevant
scenarios.

I. INTRODUCTION

OVERLAY networks have been used over the years to
circumvent the constraints of physical networks. Over-

lays allow bypassing the limitations of current deployments
and enhancing networking infrastructure without replacing the
hardware already in-place. These networks have proved to be
useful for a broad range of use-cases, such as multicast [1],
traffic engineering [2], resilient networks [3] or peer-to-peer
networking [4]. Furthermore, with the advent of Software-
Defined Networking (SDN), overlays have become a tool to
enable SDN capabilities over legacy network equipment [5],
[6].

Among the different options to instantiate overlays, the
Locator/ID Separation Protocol (LISP) [7] has gained signif-
icant traction among industry and academia [5], [6], [8], [9],
[10], [11], [14], [15]. Interestingly, LISP offers a standard,
inter-domain, and dynamic overlay that enables low-CAPEX
innovation at the network layer [8]. LISP follows a map-
and-encap approach where overlay identifiers are mapped to
underlay locators. Overlay traffic is encapsulated into locator-
based packets and routed through the underlay. LISP leverages
a public database to store overlay-to-underlay mappings and on
a pull mechanism to retrieve those mappings on demand from
the data-plane. Therefore, LISP effectively decouples control
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and data planes, since control-plane policies are pushed to the
database rather than to the data-plane. Forwarding elements
reflect control policies on the data-plane by pulling them from
the database. In that sense, LISP can be used as an SDN
southbound protocol to enable programmable overlay networks
[5].

In this article we present OpenOverlayRouter1 (OOR), a
community-driven project focused on developing an open-
source software router to deploy LISP-based overlays. Open-
sourced under an Apache 2.0 license, OOR can run on Linux
computers, Android devices, and OpenWrt2 home routers.
OOR supports both LISP [7] and LISP-MN [9] (a lightweight
version of LISP intended for mobile devices) for overlay
state exchange, NETCONF (RFC 6241) protocol for remote
management and configuration, and LISP & VXLAN-GPE3

formats for encapsulation. OOR is a renaming of the LISP-
mob4 project, the original implementation of the LISP-MN
specification, after LISPmob grew in features and capabilities
over the years. From a minimal LISP-MN implementation,
LISPmob evolved into a complete LISP implementation, and
from there to a comprehensive overlay solution that incor-
porates other protocols beyond LISP, effectively becoming
OpenOverlayRouter.

OOR’s focus is on enabling network programmability at the
edge, with special interest into providing added value to end-
users. To that end, OOR’s code runs entirely at the Linux user-
space and has a common code-base for all supported platforms.
This software approach allows the OOR community to have a
strong focus on flexibility, customization, and development of
new features. In this context, OOR represents a solid base for
research, innovation, and prototyping of new overlay use-cases.
An example of OOR’s success is that it is being used by LISP
projects in major SDN controllers, i.e. LispFlowMapping5 in
OpenDayLight6 and SBI LISP [10] in ONOS7.

In what follows, we describe OOR’s software architecture
and components. We first give an overview of the main
architectural core ideas behind its implementation to later delve
into the internals of its architecture (both control and data
plane). In addition, we present the benefits of instantiating
overlays via OOR, describe successful use-cases across the
OOR community and compare OOR to other similar software

1http://openoverlayrouter.org [Accessed on 13th March 2017]
2http://openwrt.org [Accessed on 13th March 2017]
3https://tools.ietf.org/html/draft-ietf-nvo3-vxlan-gpe-03 [Accessed on 13th

March 2017]
4http://openoverlayrouter.org/lispmob [Accessed on 13th March 2017]
5http://docs.opendaylight.org/en/stable-boron/user-guide/lisp-flow-

mapping-user-guide.html [Accessed on 13th March 2017]
6https://opendaylight.org [Accessed on 13th March 2017]
7http://onosproject.org/ [Accessed on 13th March 2017]
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Fig. 1. LISP Overview.

solutions. Finally, we present an experimental evaluation of
OOR in relevant scenarios and compare its performance with
related implementations. As results show, although taking
a user-space approach, OOR’s implementation results in a
remarkable performance suitable for home and edge devices.

II. LISP BACKGROUND

The Locator/ID Separation Protocol (LISP) instantiates
overlays via decoupling host identity from its location. It
creates two different namespaces: Endpoint IDentifiers (EIDs)
and Routing LOCators (RLOCs). Each host is identified by an
EID, and its point of attachment to the network by an RLOC.
To keep LISP incrementally deployable, in its very basic form
EIDs and RLOCs are syntactically identical to current IPv4
and IPv6 addresses. However, the protocol allows more address
families to be used as well.

Packets are routed based on EIDs at LISP sites, and
on RLOCs at transit networks. At LISP sites edge points,
Ingress/Egress Tunnel Routers (xTR) are deployed to allow
transit between EID and RLOC space. To do so, LISP follows
a map-and-encap approach. EIDs are mapped to RLOCs and
the xTRs encapsulate EID packets into RLOC traffic. LISP
introduces a publicly accessible Mapping System, which is a
distributed database containing EID-to-RLOC mappings. The
Mapping System is composed of Map-Resolvers (MR) and
Map-Servers (MS). Map-Servers store mapping information,
and Map-Resolvers find the Map-Server storing a specific
mapping. Fig 1 shows an example of LISP workflow. Host
A wants to communicate (1) with its peer B, from which it
only knows its EID. xTR X sends (2) a Map-Request to obtain
the RLOC of the xTR serving host B. This Map-Request is
routed (3) through the Mapping System to finally reach the
Map-Server containing this info. The Map-Server replies (4)
to xTR X with a Map-Reply message. With the mapping
information, xTR X is able to encapsulate and send (5) the
data packet to xTR Y which decapsulates and forwards it (6) to
peer B. Other relevant LISP devices are: Proxy xTRs (PxTR),

that can be used to connect to legacy (i.e. non-LISP) sites,
Re-Encapsulating Tunnel Routers (RTR), to enforce in-path
policies, and LISP Mobile Nodes (LISP-MN). In LISP-MN
the xTR is embedded within the mobile node, and connections
-at transport level- are preserved across handover events.

In terms of history, LISP was initially created as an outcome
of a 2006 Internet Architecture Board Workshop (RFC4984)
that concluded that the most important problem facing the In-
ternet today was the continued growth of the Border Gateway
Protocol (BGP) routing tables in the default-free zone. This
resulted in a plethora of solutions to address this issue where,
among them, LISP gained a lot of traction. With LISP, EIDs
are allocated to sites in a provider-independent manner, but
they are not advertised in the global Internet. The global BGP
routing tables would eventually only contain RLOCs; then it
would be possible for these to be assigned in such a way
that transit network providers could highly aggregate them,
and help scale the BGP routing tables. Although this was the
initial goal, the dynamic mapping of EID to RLOCs inherently
enables programmable overlays. As a result, LISP has been
applied to many other use-cases beyond the scalability of the
default-free zone. Particularly interesting areas are SDN [5]
and NFV [6], as well as edge overlays, which are mainly
covered by OOR.

III. ARCHITECTURE OVERVIEW

OOR is an open-source implementation of both LISP [7]
and LISP-MN [9], written in C for Linux-flavored systems.
The main goal of OOR is to represent a solid code-base
for overlay research, innovation, and prototyping with focus
on offering easy programmability and end-user support. To
achieve this, OOR comprises a modular architecture with a
user-space approach and a multi-platform implementation.

A. Modular Design
Although it runs as a single user-space daemon, internally

OOR is composed of different software modules. The modules
have been abstracted and their interactions well-defined. This
allows different components of OOR to be inspected and mod-
ified without disrupting the rest of the system. An overview of
the different modules is depicted in Fig. 2. There are two main
modules, control and data which support the control and data
planes respectively. The data module handles data packets pro-
cessing while the control module keeps control state, regulates
signaling, and manages mapping information used by the data
module. It should be noted that OOR implements several LISP
devices. Each device is represented with a module that adapts
the control and data modules behavior in order to match with
the specific LISP device. Beyond those main modules, certain
parts of OOR have been abstracted into auxiliary modules
that connect to the main ones, such as interface management,
multihoming procedures or database storage.

B. User-Space Implementation
All OOR code runs in user-space. This approach presents

many advantages. First, it prevents having to delve into hard-
ware specific optimizations and avoids the complexity and
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Fig. 2. OOR architecture

high maintenance costs typically associated with kernel code.
Second, software can be easily ported to other platforms (see
section III-C) making it available in a wide range of devices.
Third, it lowers the entry barrier for new contributors to the
project. On the contrary, the main drawback of user-space
implementations is the performance drop due to communica-
tion between kernel and user spaces. However, achieving high
throughput is not the primary goal of OOR, since it is targeted
at the network edge (eg. mobile nodes, home routers), where
devices typically do not require very high bandwidth.

In order to support a LISP data-plane on user-space, OOR
uses TUN/TAP8 drivers. Specifically, it creates a TUN interface
to capture and forward traffic. TUN virtual devices allow
user-space applications to receive and transmit network layer
packets. Figure 2 depicts OOR components in user-space and
how they interact with kernel space. The data module hooks to
the TUN interface for data processing while the control module
opens a socket on the WAN interface to control signaling.
Finally, OOR uses netlink to monitor and modify the routing
tables.

C. Multi-Platform
Thanks to its modular architecture and its user-space ap-

proach, OOR supports three different platforms while using
the same code base. The Linux implementation of OOR has
been ported to OpenWrt (home routers) and Android (mobile
devices). Leveraging these three different flavors, OOR users
have reported successful deployments of OOR on desktops,
laptops, routers, and smartphones, as well as on Raspberry Pi9
devices and Arduino10 boards.

IV. CONTROL-PLANE COMPONENTS

This section describes relevant implementation details of the
OOR control module. OOR supports different LISP devices via

8http://www.kernel.org/doc/Documentation/networking/tuntap.txt
[Accessed on 13th March 2017]

9https://www.raspberrypi.org/ [Accessed on 13th March 2017]
10https://www.arduino.cc/ [Accessed on 13th March 2017]

a unified control module that accepts pluggable device-specific
modules (see Fig. 2). The control module is configured using
a static configuration file which is read during boot-up. At
run-time, it is possible to modify parts of this configuration
remotely thanks to the NETCONF (RFC 6241) module that
OOR implements with the libnetconf library11. Other major
auxiliary modules are described in this section.

A. Databases

OOR uses two different EID-to-RLOC mapping databases.
One is to store local mappings (e.g. EID prefixes being served
by an OOR xTR) that are configured during bootstrap or via
NETCONF. The other one, usually referred to as the map-
cache, stores mappings learned when pulling information from
the Mapping System (e.g. EID prefixes served by remote
xTRs). Both databases are implemented over Patricia Trie
structures kept in memory. Patricia Tries are a special case
of Radix Tries where the radix equals 2. In other words,
a Patricia Trie is an optimized version of a digital tree
where single-child nodes are merged with their parents. This
generates an optimal data storage for strings that share long
prefixes, such as the bit-strings of IP addresses. Since LISP
mappings are (generally) indexed based on IP prefixes, Patricia
Trie databases allow OOR to optimally store such indexes
and retrieve the most specific prefix for a given IP address.
However, OOR’s modularity supports as well unplugging the
Patricia-based structures and using other databases for non-IP
based mappings.

B. Multihoming

In multihoming scenarios -where an xTR has several loca-
tors available at the same time- users have to define inbound
and outbound traffic policies. This is done in LISP by configur-
ing priorities and weights for the available locators. Following
the LISP specification, OOR does not load-balance traffic per
packet but rather per flow (defined as a sequence of packets
identified by the same 5-tuple). This approach avoids splitting
flows over different paths that may have different delay/jitter
and hence, may severely impact on performance. In order to
load-balance traffic according to the configured weights (for
locators that have the same priority), OOR uses a vector that
assigns positions to locators based on their weight (e.g., if two
locators have weights 10 and 15 the module will assign the
40% of the vector positions to the first one and the 60% to the
second). Flows are then forwarded to (and through) locators
based on randomly chosen vector positions.

C. Interface Management

In order to manage system interfaces, OOR opens a netlink
socket to the kernel, which is used to modify routing tables
(see section V) as well as to monitor changes in these tables
or in the network interfaces. The events currently filtered and
processed are: interface status up, interface status down, new

11https://github.com/CESNET/libnetconf [Accessed on 13th March 2017]
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IP address assigned to an interface, and new entries in the
routing tables. Such events are processed as follows:

When OOR detects a new IP address assigned to an interface
it updates its internal structures. If needed, it also updates the
Mapping System information and the cached information on
remote peers through LISP control signaling. In the event of
an interface going up or down, it follows the same procedure,
but it also checks if its multihoming state is still valid. This is
due to the fact that in some cases new locators are available
or previously available locators are no longer usable. Finally,
if OOR detects a new entry on the routing tables it checks if
there is a new gateway for any of the interfaces it is monitoring
and, if required, updates the routing tables to handle outgoing
RLOC packets (see section V).

V. USER-SPACE DATA-PLANE

This section presents how OOR implements the data-plane
of the different LISP devices. The OOR data-plane is imple-
mented in the data module, which is responsible for encap-
sulating and decapsulating data packets. Although some LISP
devices do not need data-plane (Map-Server/Map-Resolver),
for the remaining devices (xTR, RTR, and PxTR) data-plane
operation is quite similar; only Mobile Nodes (MN) require a
slightly different approach. Regarding address families, OOR
supports only IPv4 and IPv6 for both EIDs and RLOCs, even
though LISP allows other address families to be used. At the
time of this writing, support for L2 addresses (e.g. Ethernet
MAC) is on OOR’s roadmap. Finally, OOR is agnostic to the
specific encapsulation format and complies with both LISP and
VXLAN-GPE specifications. VXLAN-GPE headers are binary
compatible with LISP headers and thus support for the former
is almost immediate once the latter is implemented.

Regular OOR data-plane runs in user-space on top of the
Linux kernel networking stack. However, there is an ongoing
effort to make OOR compatible also with Vector Packet Pro-
cessor (VPP)12. VPP is an optimized data-plane that bypasses
the kernel stack and offers high performance. We leave the
analysis and measurements of such approach for future work.

A. Encapsulation via TUN
When processing outgoing traffic (i.e. from EID space

to RLOC space), OOR needs to capture EID space traffic,
encapsulate, and forward it. In order to intercept outgoing EID
traffic (both on xTR and PxTR modes), OOR redirects it to
the TUN interface and retrieves it. This redirection is achieved
modifying the Linux routing tables and routing rules. In xTR
mode, since local traffic does not have to be encapsulated, the
new routes and rules forward to TUN all outgoing traffic from
the EID space that is not addressed to the local EID space
itself. RTRs operate on RLOC space and hence they receive
EID traffic encapsulated directly from an RLOC interface.

Based on the EID traffic, OOR builds outer headers using
RLOC addresses (governed by the control module). To speed-
up processing time, the data module keeps a hash table with
information from already processed packets to avoid querying

12https://fd.io/technology [Accessed on 13th March 2017]

the control module on a per-packet basis. OOR writes the
encapsulated traffic into a socket, which injects traffic again
in the Linux routing system.

In multihomed scenarios with several default routes, OOR
must ensure that Linux chooses the appropriate outbound
interface. To achieve this, OOR creates (for each RLOC
interface) a table that only includes a route to the gateway
of the interface and, in turn, for each table a rule that matches
packets using that particular source RLOC.

To manage incoming traffic (i.e. from the RLOC space to
the EID space) OOR opens a socket listening for encapsulated
traffic. Received RLOC traffic is decapsulated and written in
the TUN interface, then the kernel forwards EID packets to
the EID space. In RTR mode traffic is re-encapsulated with
new RLOC headers and forwarded back to the RLOC space.

B. Mobile Node Considerations

Although a LISP-MN operates fundamentally as an xTR,
additional considerations must be taken into account. The ma-
jor difference between an xTR and a MN is that a LISP tunnel
router (xTR) receives packets from an external source, while
in a LISP-MN such packets are generated -by the applications
running- in the device itself. In mobile node operation, the
TUN interface must be provisioned with the mobile node EID
address. Applications running on the MN bind sockets to this
interface and use its EID as source address. In order to enforce
that all the applications bind to the TUN interface, OOR
configures it as the most preferable route for non-local traffic.
Additionally, it configures specific tables and rules per each
RLOC interface and therefore, once encapsulated, traffic will
be forwarded to the correct outgoing interface, thus effectively
preventing loops.

To allow correct packet reception in Linux, OOR deacti-
vates reverse path forwarding (RPF) verifying mechanisms to
prevent discarding packets. In Linux, RPF works as follows:
for every received packet the kernel checks -according to its
routing tables- the output interface for that particular source
address. If the input interface is different from the output
interface, the RPF mechanism discards the packet as an anti-
spoofing mechanism. While OOR is running, Linux detects
that any non-local destination address is reached through the
TUN interface, thus RLOC [packets arriving via a physical
interface would not pass the RPF check.

VI. DISCUSSION

OOR as an overlay solution presents a set of benefits
and drawbacks, as well as different levels of applicability to
different use-cases. In this section, we discuss the pros and
cons of using OOR to instantiate overlays and summarize
several relevant use-cases that the OOR community has found
over the years.

A. Overlays via OOR

Overlays have been used since the early days of the Internet
for a wide variety of applications, such as enabling multicast
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[1], improving delay through overlay routing [2], making net-
works resilient [3] or instantiating peer-to-peer networks [4].
Unfortunately, overlays are typically static, i.e., they are setup
once and rarely modified nor reprogrammed. However, LISP
and OOR can provide fully programmable dynamic overlays.
The main advantage of OOR overlays is that they follow a
pull-based approach. The state is not statically provisioned,
but instead programmed on a central entity (i.e the Mapping
System) and requested on-demand by data-plane elements. In
addition, thanks to OOR, LISP overlays can be effectively
instantiated on the very edge of the network and over het-
erogeneous devices (Android phones, OpenWrt routers, Linux
servers, etc). On the other hand, a major disadvantage of
OOR overlays (and LISP overlays in general) is that they
require encapsulating packets, and thus they introduce some
overhead. Moreover, there may be an initial packet loss when
the LISP overlay state is not ready, since signaling mechanisms
must pull the state from the Mapping System to be able to
forward subsequent packets. Finally, while it provides several
benefits, the user-space approach of OOR limits the data-plane
throughput that can be achieved.

B. Use-Cases for OOR
Over the years, the OOR community has reported different

success stories of real-world use-cases of OOR. For instance,
several users have been able to leverage OOR as a way to
bypass their IPv4-only providers, in order to gain connectivity
with publicly reachable IPv6 addresses. In other cases, people
have used OOR as a way to keep a fixed IP address across
handover events while avoiding triangular routing (e.g. for
mobile servers). However, one of the major success stories
is the use of OOR for easy home multihoming.

Multihoming offers important advantages for users since
they can connect to the Internet through several providers at the
same time, eliminating provider lock-in, and enabling band-
width aggregation while potentially reducing costs (combining
several low-speed connections may be cheaper than using one
high-speed connection). Still, multihoming is typically only
available to large BGP-capable networks.

OOR enables end-users to deploy multihoming in small
routers (homes or small offices). The OOR community offers a
fully pre-configured OpenWrt binary installation file for end-
users. Thanks to the LISP Beta Network13 (an experimental
LISP network currently operated by OOR maintainers), users
are provided an EID and the required LISP infrastructure to
connect both to LISP and non-LISP sites. The interested reader
can find more information about this in the OOR wiki14. This
particular use-case has been highlighted in printed press15,
which has drawn further attention to OOR.

Finally, OOR is playing an important role in research. Cur-
rently, there are other academic initiatives (e.g., [11]) that are
making use of the project for their own research. Furthermore,

13http://www.lisp4.net/beta-network/ [Accessed on 13th March 2017]
14https://github.com/OpenOverlayRouter/oor/wiki/Easy-Multihoming [Ac-

cessed on 13th March 2017]
15https://www.heise.de/ct/ausgabe/2017-3-LISP-auf-Fritzboxen-OpenWRT-

und-Cisco-IOS-3595908.html [Accessed on 13th March 2017]

OOR has helped to discover new research challenges that need
to be addressed. A notable example can be found, for instance,
in the map-cache [12].

VII. RELATED WORK

Recent software solutions provide similar capabilities to
those offered by OOR while having a different architectural
approach. First, FlowTags [13] provides dynamic policy en-
forcement over the network, specially tailored for middleboxes,
by including tags in packets. Second, EMPOWER16 provides
a Network Operating System to create network slices with an
emphasis on edge networks and third, the jFED17 framework
helps researchers create network experiments regardless of the
underlying topology, also allowing edge deployments. Finally,
with a similar architecture to OOR, OpenVPN18 offers user-
space packet encapsulation with a static pre-loaded configura-
tion.

In addition, OOR is not the only software implementation
capable of enabling LISP overlays. OpenLISP [14] is a BSD
kernel LISP implementation and jLISP [15] is an open-source
Java implementation with a focus on portability and extensibil-
ity. However, to the best of our knowledge, OOR is the only
available solution that brings dynamic LISP overlays to the
very edge of the network and enables LISP overlay capabilities
on end-user devices.

VIII. EVALUATION

This section presents an experimental evaluation of the
performance of OOR. To the best of our knowledge OOR is the
only mature LISP implementation that takes a full user-space
approach and thus, there are no reference implementations to
compare with. Instead and when relevant, we compare OOR
performance with OpenLISP and OpenVPN.

A. Throughput
Here we focus on the throughput of OOR’s user-space data-

plane. OOR is compiled for Linux and installed in two Intel
Core 2 PCs (3GHz, 4GB RAM) running Ubuntu 14.04, both
machines are connected over a dedicated Gigabit Ethernet link.
OpenLISP 2.0.2 runs on the same machines with FreeBSD
9.2. Traffic is generated using the nuttcp tool (UDP packets of
1388 bytes), and we monitor both input and output rates. As
figure 3 shows, OOR scales close to the link capacity with a
maximum throughput of 800Mbps, at this rate the OOR user-
space process is using all the available CPU. OpenLISP with
its kernel implementation is very close to link capacity.

We also measure the throughput of the Android and Open-
Wrt OOR implementations and compare it to OpenVPN
(1.1.14 for Android, 2.2.2 for OpenWrt) on which, for the
fairness of the comparison, we deactivate encryption and
configure UDP traffic. In Android we generate traffic using
iperf running on a Nexus 7 (Android 4.3) over a WiFi link
(802.11g), for OpenWrt we run OOR on a Netgear home router

16http://empower.create-net.org/ [Accessed on 13th March 2017]
17http://jfed.iminds.be/features/ [Accessed on 13th March 2017]
18http://openvpn.net [Accessed on 13th March 2017]
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(WNDR3800, OpenWrt 12.09) and we generate traffic with
nuttcp. As shown in Fig. 4 OOR outperforms OpenVPN in
both cases. Both OOR and OpenVPN show a slight decrease
in performance under high loads.

B. Multihoming
As described in section IV-B, OOR supports multiple data

interfaces at the same time. In order to test the performance of
OOR in this scenario, we run OOR in a virtual machine con-
nected to 4 different interfaces (10Mbps of link capacity per
interface). We generate 100 flows using iperf and we measure
the average throughput as a function of the number of active
interfaces. As Fig. 5 shows, OOR dynamically takes advantage
of the available interfaces resulting in efficient multihoming.
The overall throughput is limited by the overhead introduced
by the different encapsulation headers.

C. Horizontal Handover Latency
We also focus on the handover latency across technologies

on the Android implementation. With OOR running on our
Nexus 7 tablet we manually force horizontal handovers (WiFi
and 3G). At the same time, the tablet is generating a high
ratio of ICMP packets (50 pkts/s) towards a remote host. The
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Fig. 6. Handover time

handover latency is measured as the time when the host is
not receiving packets. Fig. 6 shows the number of packets
received per second over a series of handover events with and
without OOR. As shown in the plot, there are not noticeable
differences between the scenario with or without OOR. This
is due to the handover bottleneck being on the underlying
hardware operations, out of OOR control. OOR reacts as
fast as the kernel does to physical interfaces changes and it
introduces negligible signaling latency. Indeed, the average
WiFi to 3G handover latency measured over 31 tests is 4.16s
and 3.98s with and without OOR respectively. From 3G to
WiFi the handover latency does not impact the data-path since
the Android OS does not turn off the 3G interface until there is
WiFi connectivity. Nevertheless, it should be possible for OOR
to improve the handover times shown in Fig. 6 via buffering
or low level hardware management. However, at the time of
this writing, that remains as future work.

IX. CONCLUSIONS

The OOR project offers a mature solution for LISP-based
programmable overlays. Its modular user-space approach pro-
vides an extensible and flexible LISP implementation while
keeping low complexity and easy deployment.
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Additionally, experimental evaluation shows remarkable per-
formance of the OOR control-plane in terms of processing and
handover latency, resulting in unnoticeable overhead on the
system. OOR’s data-plane presents comparable performance
to similar software solutions (e.g., OpenVPN). Such results
show that OOR, although taking a full user-space approach, is
suitable for production in edge and home environments.
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