409 research outputs found

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    Mixed-Signal Neural Network Implementation with Programmable Neuron

    Get PDF
    This thesis introduces implementation of mixed-signal building blocks of an artificial neural network; namely the neuron and the synaptic multiplier. This thesis, also, investigates the nonlinear dynamic behavior of a single artificial neuron and presents a Distributed Arithmetic (DA)-based Finite Impulse Response (FIR) filter. All the introduced structures are designed and custom laid out

    Parallel computing for brain simulation

    Get PDF
    [Abstract] Background: The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. Aims: For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. Conclusion: This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2014/049Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; R2014/039Instituto de Salud Carlos III; PI13/0028

    DANNA2: Dynamic Adaptive Neural Network Arrays

    Get PDF
    Traditional Von Neumann architectures have been at the center of computing for decades thanks in part to Moore\u27s Law and Dennard Scaling. However, MOSFET scaling is rapidly approaching its physical limits spelling the end of an era. This is causing researchers to examine alternative solutions. Neuromorphic computing is a paradigm shift which may offer increased capabilities and efficiency by borrowing concepts from biology and incorporating them into an alternative computing platform.The TENNLab group explores these architectures and the associated challenges. The group currently has a mature hardware platform referred to as Dynamic Adaptive Neural Network Arrays (DANNA). DANNA is a digital discrete spiking neural network architecture with software, FPGA, and VLSI implementations. This work introduces a successor architecture built on the lessons learned from prior models. The DANNA2 model offers an order of magnitude improvement over DANNA in both simulation speed and hardware clock frequency while expanding functionality and improving effective density

    Can my chip behave like my brain?

    Get PDF
    Many decades ago, Carver Mead established the foundations of neuromorphic systems. Neuromorphic systems are analog circuits that emulate biology. These circuits utilize subthreshold dynamics of CMOS transistors to mimic the behavior of neurons. The objective is to not only simulate the human brain, but also to build useful applications using these bio-inspired circuits for ultra low power speech processing, image processing, and robotics. This can be achieved using reconfigurable hardware, like field programmable analog arrays (FPAAs), which enable configuring different applications on a cross platform system. As digital systems saturate in terms of power efficiency, this alternate approach has the potential to improve computational efficiency by approximately eight orders of magnitude. These systems, which include analog, digital, and neuromorphic elements combine to result in a very powerful reconfigurable processing machine.Ph.D

    Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays.

    Get PDF
    Resistive RAM crossbar arrays offer an attractive solution to minimize off-chip data transfer and parallelize on-chip computations for neural networks. Here, we report a hardware/software co-design approach based on low energy subquantum conductive bridging RAM (CBRAM®) devices and a network pruning technique to reduce network level energy consumption. First, we demonstrate low energy subquantum CBRAM devices exhibiting gradual switching characteristics important for implementing weight updates in hardware during unsupervised learning. Then we develop a network pruning algorithm that can be employed during training, different from previous network pruning approaches applied for inference only. Using a 512 kbit subquantum CBRAM array, we experimentally demonstrate high recognition accuracy on the MNIST dataset for digital implementation of unsupervised learning. Our hardware/software co-design approach can pave the way towards resistive memory based neuro-inspired systems that can autonomously learn and process information in power-limited settings

    Algorithm Hardware Codesign for High Performance Neuromorphic Computing

    Get PDF
    Driven by the massive application of Internet of Things (IoT), embedded system and Cyber Physical System (CPS) etc., there is an increasing demand to apply machine intelligence on these power limited scenarios. Though deep learning has achieved impressive performance on various realistic and practical tasks such as anomaly detection, pattern recognition, machine vision etc., the ever-increasing computational complexity and model size of Deep Neural Networks (DNN) make it challenging to deploy them onto aforementioned scenarios where computation, memory and energy resource are all limited. Early studies show that biological systems\u27 energy efficiency can be orders of magnitude higher than that of digital systems. Hence taking inspiration from biological systems, neuromorphic computing and Spiking Neural Network (SNN) have drawn attention as alternative solutions for energy-efficient machine intelligence. Though believed promising, neuromorphic computing are hardly used for real world applications. A major problem is that the performance of SNN is limited compared with DNNs due to the lack of efficient training algorithm. In SNN, neuron\u27s output is spike, which is represented by Dirac Delta function mathematically. Becauase of the non-differentiable nature of spike, gradient descent cannot be directly used to train SNN. Hence algorithm level innovation is desirable. Next, as an emerging computing paradigm, hardware and architecture level innovation is also required to support new algorithms and to explore the potential of neuromorphic computing. In this work, we present a comprehensive algorithm-hardware codesign for neuromorphic computing. On the algorithm side, we address the training difficulty. We first derive a flexible SNN model that retains critical neural dynamics, and then develop algorithm to train SNN to learn temporal patterns. Next, we apply proposed algorithm to multivariate time series classification tasks to demonstrate its advantages. On hardware level, we develop a systematic solution on FPGA that is optimized for proposed SNN model to enable high performance inference. In addition, we also explore emerging devices, a memristor-based neuromorphic design is proposed. We carry out a neuron and synapse circuit which can replicate the important neural dynamics such as filter effect and adaptive threshold
    • …
    corecore