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Abstract

This thesis introduces implementation of mixed-signal building blocks of an artificial neu-

ral network; namely the neuron and the synaptic multiplier. This thesis, also, investigates

the nonlinear dynamic behavior of a single artificial neuron and presents a Distributed

Arithmetic (DA)-based Finite Impulse Response (FIR) filter. All the introduced structures

are designed and custom laid out.

A novel VLSI implementation of a reconfigurable neuron based on choosing the min-

imum operator utilizing the winner-take-all circuit is proposed. The neuron estimates the

Sigmoid-shape activation function using the piece-wise linear approximation method and

achieves the adaptability by taking advantage of the body effect of PMOS transistors. The

structure covers a variety of activation functions such as rectified linear, hard-limit, and

different precision sigmoid functions which aims to improve the generalization ability in

neural networks.

An area and power-efficient synaptic multiplier is proposed which works based on the

combination of the digital gates and weighted current mirrors. A 4-3-2 neural network

containing the modular synapse-neuron building blocks is successfully tested for pattern

recognition. The proposed artificial neural network addresses the area-efficiency consider-

ing the inevitable growth in the size of the current networks.

vii



ABSTRACT

Moreover, the nonlinear behavior of a single sigmoidal neuron is investigated to dis-

cuss the oscillatory behavior of a single neuron and its possible applications in the future

generation of oscillators.

The proposed FIR filter is designed aiming to address the efficient VLSI implemen-

tation which works based on the distributed arithmetic. There is trade-off between the

computation efficiency of the DA-based processing and area-efficiency of multiply-and ac-

cumulate (MAC)-based ones. The proposed FIR filter reduces the required area for a DA-

based filter by employing mixed-signal approach. An 8-bit 16-tap FIR filter is designed

and successfully tested for a BPF and LPF at 10MHz and 48KHz respectively.
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Chapter 1

Introduction

In this chapter, a brief overview of the mixed-signal approach towards different signal pro-

cessing building blocks especially the neural network implementation is presented. This

chapter shortly investigates diverse types of artificial neurons and the importance of utiliz-

ing an adjustable neuron. Also, the possible nonlinear behavior of the neural network is

explored briefly.

The mixed-signal approach integrates both analog and digital elements in a single sili-

con chip [1, 2]. There is an impressive attention drew to the mixed-signal ICs because of

the two trends in the design industry [3]. First, the transistor dimensions have been scaled

down to deep submicron levels to allow millions of transistor and complex systems inte-

grated into a solo die. Second, multifaceted, complex systems need to put the digital signal

processors and the analog circuitries together on a single chip by using the digital to analog

converters (DAC) and analog to digital converters (ADC).

These two trends in the IC industry, the upsurge in the number of the transistors pack-

able in a single die and the growing extensiveness of electronic systems, make the mixed-

1



1. INTRODUCTION

signal circuit design a demandable approach in IC market [3]. Another attractiveness of the

mixed-signal approach is the ability to partially skip the disadvantages of both analog and

digital implementations when blending the advantages. Addition, subtraction, and division

by a constant number are examples of operations that can be done effortlessly in analog

domain [4].

Multipliers which are one of the essential building blocks of the filters and neural net-

works can be built by using multiplying DACs [5, 6, 7] which perform the multiplication in

the analog domain by digital controls. Some of the mixed-signal circuits can work with a

fewer number of DAC or ADC or avoid using any, by utilizing MDACs as multipliers. The

fewer number of DACs and ADCs means the inevitable reduction in the area and power

consumption.

Another multiplication method which can benefit from mixed-signal implantation is

Distributed Arithmetic (DA) [8]. Distributed arithmetic is a bit-serial computational method

that performs the inner product in a different fashion than multiply-accumulate (MAC) op-

erations [9]. Crosier et al. [10] introduced the DA concept for the first time; then the method

was used for digital implementation of FIR filters [11]. In the DA approach, the clock cy-

cles that are needed to compute the inner product is fixed and depends on the resolution of

the input data. This approach has been utilized in image coding [12], filter implementation

[8, 13], vector quantization [14], and discrete cosine transform [15]. Compared to MAC

operations, DA is more efficient regarding computations and mechanizations; the advan-

tage is more visible when the system needs to deal with a large length input vector [8, 9].

It should be noted that the previous structures of the DA replaced the multipliers by large

memories, shift registers, and adders which increased the area and power consumption.

The proposed mixed-signal implementation would be beneficial by eliminating the adders,

subtractors, and dividers. The details of the proposed architecture are presented in Chapter

6.

Artificial neural network (ANN) is another computational method that can benefit from
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the mixed-signal implementation. ANNs have the ability of being trained to provide so-

lution to different types of problems for which analytical solutions do not exist or hard to

be calculated [16] such as pattern recognition [17], memories [18, 19], nonlinear signal

prediction, time-series prediction [20, 25], and action recognition [26].

ANNs have been drawing attention due to their generalization ability which leads to the

better prediction performance [20], therefore, a solution that could improve their general-

ization ability is critical.

Considering the capability of the neural network in solving unknown problems [16],

they can be used in some specific applications such as wearable sensors that are used to

control the patients conditions continuously [21] or as wireless sensor network (WSN) that

employ a network of several sensors to monitor environmental conditions [22].

These real-life applications can give us a view of the design characteristic that should be

considered in the neural network implantations. The first aspect that should be considered

in the neural network realization is that the design should be able to perform the parallel

computation to follow the network principles [23]. The area and power consumption are the

issues to be paid attention to in portable and battery-powered devices such as wearable sen-

sors and WSNs. Accuracy is a less of concern criteria in neural network implementations

since inaccurate elements performance can be modified during the training of the network

[23, 24]. In general, the analog implementation performs the parallel processing while pro-

vides more area and power-efficiency compared to the digital realizations whereas showing

less accuracy. The mixed-signal approach can benefit from the parallel calculation, area

and power-efficient characteristic of the analog design while it shows higher accuracy in

comparison.

Two basic composing blocks of an ANN are neuron and synapse. In the synapse, the

synaptic weight is multiplied to an input; then the result passes the neuron which shapes the

synapse output due to its activation function. In analog implementations [27, 28], synaptic

weights, processing, and neuron’s activation function are implemented by analog circuits

3
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usually providing a higher efficiency compared to digital implementation [6, 29].

Analog implementations can realize the highly parallel nature of the biological neu-

ral networks, however, they are not as accurate as the digital realizations. The inaccuracy

of analog implementations can be compensated by increasing the number of neurons [6].

Mixed-signal implementation can improve the accuracy compared to analog implementa-

tion while still benefiting from analog circuits advantages. A modular multiplying DAC can

adequately perform as a synapse module in which the digital synaptic weights are stored in

shift registers [29].

Another challenge of the ANNs implementation is the realization of the neuron acti-

vation function which can be sigmoid, hyperbolic tangent, hard-limit, Poslin, and linear.

Area, power consumption, and accuracy are the criteria that are considered in the implan-

tation. Reconfigurability of the neuron’s activation function is another specification that

give the neuron the ability to change shape post-fabrication. A programmable (reconfig-

urable) neuron is primarily can be used in multiresolution learning paradigm which has

been proposed as a method that improves the ANNs generalization feature significantly

[20, 25]. The multiresolution method works based on adjusting the activation function cor-

responding to the resolution they need, that means to start with the coarse tuning activation

functions and increase the resolution as going further [20, 25]. In this fashion, an adapt-

able analog implementation of a neuron activation function would be beneficial for analog

and mixed-signal applications that are aiming to achieve improvement in generalization

property.

To get a deeper knowledge of how the neural network performs, knowing the behavior

of a single neuron is an immense help. In this thesis, the nonlinear dynamic behavior of a

single sigmoidal neuron with a feedback synaptic weight is investigated and the possible

applications are proposed.

The analog and mixed-signal research lab at the University of Windsor has been fo-

cused on the pattern recognition and in a special case movement recognition using neural
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networks. This thesis is motivated by the basic blocks that are used in pattern recognition

and challenges brought up in mixed-signal implementations.

1.1 Outline of the Dissertation and List of the Contribu-

tions

• In Chapter 2, A very large-scale integration (VLSI) prototype of a reconfigurable

neuron is proposed and realized for the first time. The programmable neuron can

be used in analog and mixed-signal networks. The activation function of the neuron

can be accustomed off-chip or on-chip by a 2-bit voltage digital to analog converter

(DAC) to provide the hard-limit, linear, and variable slope sigmoid functions. Since

the proposed neuron is able to provide adjustable precision, it would be invaluable

for neural network applications such as signal prediction which use multi-resolution

learning paradigm to increase the efficiency of the system by improving the general-

ization ability of the network.

• In Chapter 3, an area and power-efficient synaptic multiplier is realized in TSMC

CMOS 0.18µm technology. The mixed-signal MDAC is highly modular making it

suitable to be used to multiply digital synaptic weights and the analog inputs. The

structure reduced the dimensions of the required transistors and decrease the need for

weighted current mirrors compared to conventional MDACs.

• In Chapter 4, a 4-3-2 mixed-signal neural network is employed for pattern recogni-

tion application and a series of patterns are tested successfully. The network building

blocks are the proposed neuron introduced in Chapter 2 and the proposed synaptic

multiplier presented in Chapter 3.

• In Chapter 5, it is shown that a single sigmoid neuron with a feedback synaptic

weight shows the oscillation behavior which is the simplest system which can realize
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a neural oscillator for the first time. The frequency of oscillation only depends on

the propagation delay of the system which is promising to reduce the dependency of

VLSI implementations on the process and fabrication variations.

• In Chapter 6, the distributed arithmetic principles is used to implement a mixed-

signal FIR table without need to us a lookup table. DACS with the current-mode

outputs are utilized to do the multiplication between digital inputs and the analog

coefficients. The current-mode multiplication eliminates the required adders and di-

viders, consequently, reduces the required area and power consumption. Two 16-tap

8-bit FIR filters (a BPF and an LPF) are realized by using the proposed architecture.

• Lastly, Chapter 7 highlights the contributions of the research and introduced the pos-

sible future works.
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Chapter 2

Reconfigurable Neuron PWL

Approximation Based on the Minimum

Operator

2.1 Introduction

Hardware implementation of neural networks relies on efficient implementation of neu-

rons [1, 2, 3] and their synapses [4]. A challenge in the implementation and application of

the neural networks is to enhance their generalization capability which leads to the better

prediction performance. Multiresolution learning paradigm is a relatively new approach

which improves the neural network generalization ability significantly [5]. The method

works based on tuning the neurons activation function during the training process; con-

sequently, a neuron with an adaptable transfer is required in this method. Although the

multiresolution learning process has been proposed before, the hardware implementation
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faces challenges in creating adjustable neurons.

In this paper, a universal and programmable analog neuron is proposed that can change

the shape of its transfer function on demand without the need to redesign the neuron circuit.

There are several very large-scale integration (VLSI) implementations and applications for

various activation functions such as sigmoid function [1], hard-limit [2] and linear activa-

tion functions [3]. However, to the best of the authors knowledge, a reconfigurable analog

structure that can provide different transfer functions on demand without redesigning the

neuron circuit is not proposed. The neuron can generate the various sigmoid functions, as

well as hard-limit, and linear activation functions.

The proposed neuron can be distributed in the network, where each node is composed

of several sub-neurons. This type of neurons has been shown to improve the network per-

formance [6]. Moreover, the distributed sub-neurons scaled over the input range, therefore

prevented the neuron to become a band-limiting or a low gain linear function. However, the

sub-neuron activity was not the result of training, rather the range of input values caused the

scaling effect. On the other hand, the proposed neuron can generate the desired functions

based on the multiresolution training algorithm and under the control of the designer.

The desired function of the proposed neuron is generated by choosing the minimum

operator based on the piecewise linear (PWL) approximation method. The PWL approxi-

mation of an exponential function utilizing a Winner-Take-All (WTA) circuit was presented

for the first time in [7]. However, the method cannot provide a solution for estimating non-

monotonic functions.

The architecture proposed in this chapter works based on choosing the minimum basis

function (operator) to provide the PWL approximation of the looked-for neuron activation

function. Therefore, it can be suitably called a Loser-Take-All (LTA) structure. The design

method is suitable for the PWL approximation of different non-monotonic functions; in this

chapter, the proposed method is used to estimate a tunable sigmoid function. The proposed

neuron can change shape and is tunable to form different sigmoid functions as well as the
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linear ones.

2.2 PWL approximation for a non-Monotonic function

The sigmoid function, defined by K
1+e−ax , is the base of the PWL approximation in this

paper. It should be mentioned that the proposed method can be used to estimate other

non-monotonic functions as well.

The general approach to PWL approximation is to divide the input range into several

subintervals and to define a linear basis function that fits the curve in each subinterval. A

WTA-based approach suggested in [7] uses the fact that the exponential function increases

monotonically to approximate eax function in a positive interval of [0, XN ]. However, most

neuron activation functions, including the hard-limit, hyperbola, poslin, and sigmoid

functions are defined in the interval of [−XN , XN ] and are not monotonic [8].

In the proposed approach, the first step is to find the best estimation which fits the curve

with the minimum error. The least square fit is a curve fitting modeling method that is

widely used for a different variety of functions and is a routine approach for optimized

approximation [9].

Fig. 2.1 shows a case study of the sigmoid function of 19
1+e−0.1x and its 5-pieces PWL

approximation achieved by applying the least square curve-fitting method. In each subinter-

val, the minimum operator is the one which fits the original function. Reasonably, a Loser-

Take-All (LTA) circuit that chooses the minimum correspondence function in a subinterval

among all the basis functions can successfully approximate the circuit. In the positive

interval, the output can be described as follows:

K

e−ax + 1
≈ yapx = min[m1x+ b1,m2x+ b2, ...,mnx+ bn] (2.1)

in which mn and bn are the slope and the y-intercept of each basis function respectively.

Each basis function can be built by a current mirror with the dimension ratio of mn set
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Figure 2.1: The sigmoid function of 19
1+e−0.1x and the corresponding 5- pieces PWL approx-

imation.

with respect to the dimensions of the input transistor, Win/Lin, as follows:

mn =
Wn/Ln

Win/Lin

=
K

(xn − xn−1)(1 + e−axn)(1 + e−axn−1)
(2.2)

The y-intercept is a DC current offset that is added to the output of the corresponding

current mirror.

It should be noticed that this function is symmetric with respect to the point x0. By

means of this symmetry, the function in the negative interval, (−65µA, 0), is generated

from the function in positive interval, (0, 65µA), by subtracting f(x) from a constant cur-

rent, such that (g(x) = IC−f(x)). The constant current IC is equal to the higher horizontal

asymptote of the sigmoid function as shown in Fig. 2.1. f(x) and g(x) define the sigmoid

function in the positive and the negative intervals respectively. As shown in Fig. 2.1 the

minimum operator between the basis functions 1© , 2© , and 3© shows the PWL estimation

in the positive interval. The dimension ratios of the corresponding current mirrors which
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Figure 2.2: The reconfigurable neuron schematic.

generate these basis functions are as follows:

m1 =K
e−ax0 − e−ax1

(x1 − x0)(1 + e−ax0)(1 + e−ax1)

=K
1− e−a∆x

(2∆x)(1 + e−a∆x)
(2.3)

m2 =K
e−ax1 − e−ax2

(x2 − x1)(1 + e−ax1)(1 + e−ax2)

=K
e−a∆x(1− e−ap∆x)

(p∆x)(1 + e−a∆x)(1 + e−a(p+1)∆x)
(2.4)

m3 =0 (2.5)

in which x1 − x0 = ∆x and x2 − x1 = p∆x.
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The DC offset of the current mirrors are achieved as follows:

b1 =
K

2

b2 =
K

p
(p+ e−a∆x((p+ 1)e−ap∆x − 1)) (2.6)

b3 =K

To simplify the structure, the second basis function is generated from the combination of

the first and the third ones such that m2 = α(m1+m3) and b2 = β(b1+b3). By substituting

these equations in to the equations 5.4 to 5.7, α and β are achieved as follows:

α =
2e−a∆x(1− e−ap∆x)

p(1− e−a∆x)(1 + e−a(1+p)∆x)
(2.7)

β =
3p

2(p+ e−a∆x((p+ 1)e−ap∆x − 1))

In this section, the structure and the design method of the current-mode neuron activation

function of 19
1+e−0.1x in the input range of [−65µA, 65µA] is represented. Achieving the

second basis function from the averaging of the first and the third ones not only leads to

a simpler structure but keeps the activation function smooth. That means any mismatch

or process variation that may arise in the first or the third current mirror block cells dur-

ing fabrication would similarly affect the result of the average and thus would eliminate

discontinuity in the PWL approximation result.

2.3 The proposed reconfigurable structure of the neuron

Fig. 2.2 shows the structure of the proposed reconfigurable neuron with the sigmoid activa-

tion function. A two-section WTA (shown in the dashed box) is employed to compare the

mirrored currents corresponding to the first basis function, I1 = m1Iin + b1, and the third

one, I3 = b3. Due to the nature of WTA, the output voltage of VA goes high only if I1 > I3.

16



2. RECONFIGURABLE NEURON PWL APPROXIMATION BASED ON THE MINIMUM OPERATOR

In the case that I1 < I3 the voltage of VA goes low while VB goes high. The voltages VA

and VB are used to control the switches which let the minimum operator pass through the

output transistor, M13. NOT gates are used as the push-pull amplifiers to generate VA and

VB that are able to reach the absolute value of 0 and Vdd.

In the conventional WTA circuits, M3 and M6 work in the saturation region and the

voltages VA or VB can be high or low because even a small difference between their cur-

rents reduces the drain voltage of the transistor with the lower current, in a chain loop this

reduction goes further until Vo2 becomes almost 0 and Vo1 becomes 1 [10]. When M3 and

M6 work in the triode region, an overlap region is generated at which VA or VB can be

low at the same time due to the higher dependency of the current to the drain voltage. The

bias voltage of VG determines the range of input currents at which the overlap occurs. Two

cascaded NOT gates are used to push VA/VB to zero or pull them to Vdd. In this way, the de-

pendency of these voltages to the effective threshold voltages of NOT gates is neglectable.

Fig. 2.3(a) shows the overlap range variation for different values of VG. As shown in this

figure, the overlapping gap increases when the lower VG is applied to the circuit.

The signals, VA, VB, and VA ·VB are used to control the switches which allow one of the

basis functions to pass through to the output. At the positive input range, sign is 1 which

closes the S1; in this case, the output current would be equal to Io as shown in Fig. 2.2. At

the negative input range, S2, S3, and S4 which are controlled by Sign are closed, and the

output current would be equal to Iout = b3 − Io.

Fig. 2.3(b) illustrates the simulation result for VG of 710mV , the ideal sigmoid function,

and the PWL approximation from Fig. 2.1. The voltage VG is chosen in a way that it

provides the most similar subintervals to the sigmoid approximation shown in Fig. 2.1.

The transistors dimensions and ratios are selected considering formulas (5.4) to (5.8) and

are summarized in Table 2.1.

The accuracy of this method can be shown by using the standard deviation which is

defined as E = K
1+e−ax − yapx. In the least square method, the subintervals are not equal
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and are chosen to provide the best fit to the curve. If the first subinterval (x1−x0) is chosen

to be the reference and is considered to be equal to ∆x, the subinterval (xn − xn−1) can be

assumed to be p∆x while the xn−1 − x0 = q∆x. In this case, the standard deviation, E,

for the subinterval of (xn, xn−1) is achieved as follows:

E

K
=

1

1 + e−ax
−

xe−aqx(1− e−ap∆x) + p∆x+

p∆x(1 + e−aq∆x)(1 + e−a(p+q)∆x)
(2.8)

×
q∆x−aqx(e−ap∆x − 1) + p∆xe−a(q+p)∆x

∆x(1 + e−aq∆x)(1 + e−a(p+q)∆x)

As shown in the above equation, the standard deviation depends on the subinterval, a, and

K. The maximum standard deviation occurs at the two ends of the subinterval, xn or/and

xn−1. Consequently, it is simplified to:

Emax

K
=

2q∆xe−aq∆x

p∆x(1 + ee−aq∆x)(1 + e−a(p+q)∆x)
(2.9)

Table 2.1: The neuron schematic transistors dimensions.

Win/Lin = 7.5/1 W2/L2 = W3/L3 = 4/1
W1/L1 = W8/L8 = 3.5/1 W4/L4 = W5/L5 = 4/1

W9/L9 = 1/1 W6/L6 = W7/L7 = 0.25/0.18

Table 2.2: The intersection points of (x1, y1) and (x2, y2), the slopes, and the

y-intercepts of the 5-piece PWL approximation.

Basis function intersection points (x,y) Slope y-intercept

1© (-12.4,3.698), (12.4,15.4) 0.47 9.555

2© (12.4,15.4), (37.2,19.01) 0.145 13.6

3© (37.2,19), (37.2,18.99) 0 19

4© (-12.4,3.698), (-37.2,0.094) 0.145 5.5

5© (-37.2,0.094), (-62,0.112) 0 0.0112

The intersection points (x0 to xn) of the PWL approximation of the sigmoid function

of K
1+e−ax depends on the number of basis functions and a. Accordingly, for a 5-piece
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Figure 2.4: The deviation error for the 5-piece PWL approximation of K
1+e−0.1x

for K = 19,

10, and 5.

PWL approximation of K
1+e−0.1x the deviation error only depends on K. Fig. 2.4 shows the

deviation error for three different values of K. The intersection points, the slopes, and the

y-intercept of each basis function are shown in Table 2.2.

2.4 The Reconfigurability and the simulation results

The main advantage of the proposed neuron over the previously proposed structures is that

it provides the ability to be controlled off or on-chip to generate a wide variety of transfer

functions based on the requirements and applications. The form and slope of the neuron can

get adjusted by externally changing voltages and programming it during the training when

the neuron is used for a chip-in-the-loop or online configuration. The proposed structure is

implemented in CMOS 0.18µm technology and uses the power supply of 2.5V. The area

and power of the structure are measured 94.4µm2 and 0.92mW respectively.

The reconfigurability of the neuron is realized by controlling the substrate voltage of VS

of the PMOS transistors as shown in Fig. 2.2. The voltage difference between the substrate

and the source of the PMOS transistors, Vdd − VS , changes the threshold voltage of Vth of
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Figure 2.6: 2-bit voltage DAC corner analysis result for different conditions ff , ss, fs,

and sf .
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the corresponding transistors due to the body effect. The variation of the substrate-source

voltage affects the drain current as a function of Vth. Consequently, the current ratios be-

tween the transistors of the three basis functions and the input transistor vary corresponding

to the variations in the substrate voltage.

Fig. 2.5 shows the post-layout simulation results of the neuron transfer function for

different values of the substrate voltage of VS while the bias voltage, VG, is 250mV for

linear functions and 710mV for variable sigmoid functions. As shown in this figure,

the lower VS results in a higher slope for the first and the second basis functions. At

VG = 710mV and VS = 2V the slopes change to the point that the sigmoid function

ultimately reshapes to a hard-limit. That means the parameter a which controls the shape

of 1
1+e−ax can be controlled off-chip via the substrate voltage. For VS = 2V, 2.3V, 2.4V ,

and 2.5V the a is realized 1.2, 0.3, 0.2, and 0.1 as shown in Fig. 2.5.

When the voltage VG is lower than 300mV , both VA and VB go high. Consequently,

only the second basis function can go through to the output, results in generating a linear

activation function. The linear transfer functions shown in Fig. 2.5 are generated at VG of

250mV and VS of 2V , 2.3V , 2.4V , and 2.5V . The highest slope is correspondent to VS of

2V as expected.

The substrate voltage of the mentioned PMOSs is controlled by a 2-bit voltage digital

to analog converter (DAC) which is shown in the dashed-dotted box in Fig. 2.2. The output

voltage of this block is VS and depends on which of the transistors are on at the time. If

and only if the x1x0 is 00, the transistor M18 turns off and shows a high impedance at the

output node providing the output voltage of VS = Vdd = 2.5V . When x1x0 is equal to 01,

10, and 11, transistors M16−18 turn on respectively to provide the corresponding VS of 2V ,

2.3V , and 2.4V . The output voltage of the voltage DAC vs. different values of x1x0 is

shown Fig. 2.6.

The corner analysis for different conditions of ff (Fast NMOS Fast PMOS), ss (Slow

NMOS Slow PMOS), fs (Fast NMOS Slow PMOS), and sf (Slow NMOS Fast PMOS)
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Figure 2.7: Post-layout simulation results for different conditions of ff , ss, fs, and sf for

the temperatures of -55C, 27C, and 125C .

is performed, and the result of that is shown in Fig. 2.6 as well to investigate the process

variation effect on the output result. The maximum output fluctuation of the voltage DAC

happens for x1x0 = 01 where VS changes from 1.93V at ff to 2.07V at fs conditions.

In this case, VS is supposed to be equal to 2V and is correspondent to the hard-limit

neuron shape and does not affect the neuron shape significantly. Moreover, the hard-

limit neuron shape is considered the coarse tuning when used in multiresolution learning

paradigm [5]; meaning that small variations in the transfer function can be compensated

during the fine-tuning stages. The dimensions of transistors M14−18 are 0.25
2

, 1.25
2

, 1.25
2

, 4.2
2

,

and 3.8
2

respectively.

The process and temperature variations impact on the neuron function is investigated

by performing the corner analysis for the neuron transfer function. The post-layout sim-

ulations are shown in Fig. 3.6 for a = 0.1, a = 1.2 at VG = 800mV and for the linear

function at VG = 200mV and at the temperatures of 27C, -55C, and 125C. The deviation

from the tt (Typical NMOS Typical PMOS) condition at the room temperature of 27C is

represented in Fig. 2.8. As shown in this figure, the maximum deviation occurs at the ff

condition for both -55C and 125C.
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Figure 2.8: The corner and temperature post-layout analysis for different conditions of ff ,

ss, sf , and fs at temperatures of 27C, -55C, and 125C showing the deviation from the

activation function at 27C.

Similar to other analog structures, the proposed neuron is disposed to mismatch. How-

ever, the parametric analysis simulation results show that the circuit works well by con-

sidering 10% mismatch of transistors. It should be noted that the proposed neuron when

used in an on-chip or a chip-in-the-loop configuration, can enjoy some flexibility because

the adaptation of the synapses during the training will be based on the actual and physical

characteristics of the fabricated neuron. Moreover, the mechanism for adjusting the neuron

transfer function allows more flexibility in the transistor mismatches while the network is

getting trained.

2.5 Conclusion

A novel reconfigurable neuron is proposed in this paper to be used in analog and mixed-

signal neural networks with different requirements. The shape of the neuron can be changed

on the spot to provide different shades of sigmoid, hard-limit, and linear activation func-

tions. The structure is based on the piecewise linear approximation of the desired transfer
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function and the controllability is obtainable by adjusting the substrate voltage of PMOS

transistors. A 2-bit voltage DAC is used to adjust the shape of the neuron on or off-chip.

The proposed structure is an invaluable part of the analog or mixed-signal networks that

use multiresolution learning process.
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Chapter 3

Mixed-Signal Synapse Multipliers for

Feed-Forward Neural Networks

3.1 Introduction

In Analog Neural Networks (Analog NN) [1, 2, 3] neurons can be realizing with simple and

elegant non-linear analog circuits and with only a few transistors. Moreover, the addition

of values can be performed by simple nodal summation of currents as long as it can drive

the circuit of the next stage. However, the accuracy of analog circuits has always been a

limiting factor for the realization of large size multi-layer Analog NNs. A multi-layer net-

work requires storing a large number of synaptic values. In analog circuits, these values are

typically stored on capacitors which may change due to leakage currents; hence, periodic

refreshments are required. The issue of storage has been proven to cause limitation in size

and complexity of such networks.

Mixed-signal approach is shown to be an intriguing choice for neural networks imple-

27
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mentations [4, 5, 6, 7]. In such systems, advantages of both analog and digital [9, 10, 11, 8]

domains are gathered in one place in order to overcome the design challenges to accomplish

smaller area, lower power consumption, higher speed, and smoother activation function re-

alization.

One of the most efficient approaches to implement the synapse in mixed-signal circuitry

is based on the Multiplying Analog to Digital Converter (MDAC) which is used to multiply

the synapse value by the neuron input. Conventional MDACs work based on the weighted

summation of currents, that means weighted current mirrors are required in the network.

Therefore, in each layer of the network with N neurons, N2 MDAC units are required.

Optimization of the size of the multiplier would significantly affect the feasible size of the

network and hence its performance.

In this chapter, a programmable mixed-signal MDAC multiplier is proposed to be used

in the feed-forward neural network. The proposed structure is modular and easy to be

adopted for different network configurations while the area is reduced by using digital gates

to ease the multiplication and avoid using large-size transistors. Moreover, synaptic weights

are stored in registers which eliminate the need for capacitors and refreshing circuitries.

3.2 Neural Network Configurations

In this section, the general configuration of one layer of the mixed-signal neural network

is presented. There are three main building blocks for the mixed-signal implementation of

neural networks: programmable MDACs for synapse multipliers, adders, and non-linear

neurons that create an integrated synapse-neuron building block.

In the proposed architecture, multiplication operation between the synaptic weights and

the network inputs is performed by the MDAC, where synaptic weights are stored in digital

registers and are multiplied by the analog inputs. Multiplication result of each multiplier

passes through an s-shape neuron and then is added to other multiplication results coming
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Figure 3.1: System-level configuration of the proposed mixed-signal neural network.

from other blocks.

Fig. 3.1 shows the block diagram of a sample 2-2-1 network. As it can be seen in this

figure outputs of n building blocks are connected in parallel to generate a neuron. The

number of MDACs in each layer is equal to the number of inputs to that layer.

The digital registers store the value of the synaptic weight and are programmable based

on the network training. The weights are denoted by Ymn in this figure, where m and n

represent the number of corresponding neuron and inputs of each layer, respectively.

Since the circuit design is based on the current-mode operation, addition in the network

is based on the summation of currents. Neurons are resistive non-linear functions which

are distributed in the network.

The proposed network is trained off-line, where weights and network parameters are

calculated off the chip and downloaded later into the weight registers. However, the net-

work can be easily adjusted for on-line training by adding extra hardware for weight ad-

justment calculations.
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Figure 3.2: General configuration of the mixed-signal neural network[7].

3.3 Building block’s components

Neuron and its simulation result are presented in this section, followed by the proposed

multiplier structure that plays an important role in reliability and accuracy of the network.

3.3.1 Neuron

Neurons for this network are resistive-type and distributed in order to increase the signal

to noise ratio of the network [7, 5]. The neuron transfer function self-adjusts, preventing

the saturation of neurons when the total number of input increases. The neuron uses the

fundamental nonlinearity in V-I characteristics of the MOS transistors to approximate the

sigmoid-like function. Fig. 3.2 represents the resistive-type neuron. The 6-transistor design

[7] is biased to operate in both triode and saturation regions and has an accurate approxi-

mation to the original sigmoid function. The simulation result of the transfer function of

the neuron is displayed in Fig. 3.3.
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Figure 3.3: Non-linear neuron activation function which approximates the sigmoid func-

tion.
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Figure 3.4: Multiplying the two less significant and the two most significant bits of Y with

the analog value of the input X

3.3.2 Mixed-Signal Multiplier

In its most general form, multiplication between two binary values (X, and Y) can be

preformed as follows:

M =
3

∑

i=0

xi2
i ·

3
∑

j=0

yj2
j (3.1)
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Figure 3.5: The proposed modular mixed-signal multiplier to be used in distributed feed-

forward neural network

where xi and yj are ith and jth bit of X and Y respectively. In mixed-signal multiplication,

one of the numbers (X) is an analog value. the synapse receives an analog input and mul-

tiplies it by a digital weight in the first layer. The multiplication result passes the S-shaped

nonlinear neuron; then it is added to other multiplication results come from other branches

in the first layer.

In conventional MDACs, the principle of multiplying is to use weighted current mirrors.

That means that if the size of the first transistor in a weighted current mirror is W/L, we

need transistors of the size of twice, four times, and eight times of W/L are required to per-

form the digital to analog multiplication and conversion. The proposed modular multiplier

reduces the size of transistors significantly by introducing a new method to do the multi-
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plication. In the proposed approach, the analog input is multiplied to two bits of the digital

weight (Y). Fig. 3.4 represents the concept of multiplication of two least and most signif-

icant bits of the weight (Y) to the analog input of X separately. Based on this separation,

the multiplication result from (1) can be rewritten as:

MA = (y0 + 2y1) · (x0 + 2x1 + 22x2 + 23x3) (3.2)

MB = (y2 + 2y3) · (x0 + 2x1 + 22x2 + 23x3) (3.3)

As it can be seen in equation (2), the output of the MA block can be 0, X, 2X, or 3X

depending on what the value of y0 and y1 are. In this method, combinations of y0 and y1

are used to generate controlling signals that let 0, X,2X or the addition of them (3X) pass

through to the output. The MB block has the same structure as the MA but it’s controlling

signals are generated by combinations of y2 and y3.

Fig. 3.5 represents the modular architecture for a 4-bit to 4-bit equivalent mixed-signal

multiplier. In this figure, SiA and SjB are controlling signals generated by pair of y0 and y1

and pair of y2 and y3. Respectively. S0A (S0B ) lets the same value of input X pass through

M1 (M3) if y1y0 (y3y2)=01. Due to the same logic, twice of the value of X passes through

M2(M4) when y1y0 (y3y2)=10. When y1y0 (y3y2)=11, passes 1 and 2 are open and the

addition of M1 (M3) and M2(M4) passes through M5 (M6) which is output of MA (MB)

block.

To confirm the validity and accuracy of the operation, the simulation result and ideal

expected multiplication result for Y=1111 are compared in Table I. In case of Y=1111,

MA and MB reach their maximum values that fully load the multiplier. In this case, the

error and power consumption are at their maximum levels. Also, they have the same value

because of the modularity of the design. As it can be seen in this table the maximum error

is equal to 0.24µA and is occurred for analog inputs of 8µA and 9µA. The maximum error
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Figure 3.6: MA/MB output result for Y=1111for corner analysis fast-fast (ff), slow-slow

(SS), slow-fast (sf) and fast-slow (fs) to show the process variation effect.
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Figure 3.7: Multiplication results for Y=0010, 0111, 1010, 1011, and 1100. Ideal and

simulation results are shown with dashed and solid lines respectively.

percentage is 1.3% for 4µA. Corner analysis results represented in Fig. 3.6 shows the result

considering process variations.

The multiplication results for more five digital weights and the ideal multiplication

results for an input range of 0 to 15µA is shown Fig. 4.6. The maximum error of 0.24µA

which is one-fourth of the multiplier accuracy of 1µA. That means the error is not only

within the acceptable range but also it can increase the accuracy to 5 bit.

To confirm the validity and accuracy of the operation, the simulation result and ideal

expected multiplication result for Y=1111 are compared in Table I. In case of Y=1111,
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Table 3.1: Simulation and ideal multiplication result for Y=1111 at different in-

put levels and the measured error.

X=1111

Y Ideal Result Experiment result error error percentage

1 3=000011 2.97 -0.032 1

2 6=000110 6.05 0.051 0.8

3 9=001001 9.12 0.116 1.2

4 12=001100 12.16 0.165 1.3

5 15=001111 15.19 0.191 1.2

6 18=010010 18.21 0.216 1.1

7 21=010101 21.23 0.237 1.1

8 24=011000 24.24 0.240 0.9

9 27=011011 27.24 0.240 0.7

10 30=011110 30.23 0.230 0.7

11 33=100001 33.23 0.230 0.6

12 36=100100 36.19 0.190 0.5

13 39=100111 39.17 0.170 0.4

14 42=101010 42.12 0.120 0.2

15 45=101101 45.07 0.070 0.1

MA and MB reach their maximum values that fully load the multiplier. In this case, the

error and power consumption are at their maximum levels. Also, they have the same value

because of the modularity of the design. As it can be seen in this table, the maximum

error is equal to 0.24µA and occurs for analog inputs of 8µA and 9µA. The maximum

error percentage is 1.3% for 4µA. Corner analysis results represented in Fig. 3.6 shows the

result considering process variations.

The multiplication results for more five digital weights and the ideal multiplication

results for an input range of 0 to 15µA is shown Fig. 4.6.

Here, the LSB is considered to be 1µA at the output, so, 1µA to 15µA were seen as

equivalent to four bits. This structure is expandable for higher resolution considering the

fact that the error is less than 0.5µA. Also, every two digits increase in weights resolution

needs another MA block to be added to the circuitry.

The current-based structure of this multiplier eliminates the need of extra storages to

store multiplication results that consequences a huge saving in the area. Moreover, the

combination of digital gates and analog circuit reduce the total area and static power con-
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sumption significantly comparing to a conventional MDAC.

Three recent conventional mixed-signal multipliers are compared to our proposed mod-

ular multiplier in Table II. The dash sign indicates that the content was not reported in the

original paper.

Table 3.2: Simulation and ideal multiplication result for Y=1111 at different in-

put levels and the measured error.

Proposed [12] [13] [14]

Technology(um) 0.18 0.35 0.09 0.35

Power supply (V) 1.8 - 1.2 3.3

Chip area (um2) 244 775 - -

Power (mW) 0.23 - 406 30.73

Largest transistor (um/um) 4.5/1.4 125/0.6 - -

The area of this multiplier is 244um2 and the maximum power consumption is mea-

sured 0.23 mW. The small area of this multiplier makes it an excellent choice for deep-

learning neural networks. Also, this highly modular and scalable VLSI architecture that

can be unified with neurons structure is capable of increasing the number of synapse per

die area and being used in different distributed neural network applications.

3.4 Conclusion

A modular mixed-signal multiplier architecture is implemented in CMOS 0.18µum for

multi-layer neural networks applications. The multiplier receives analog inputs and lin-

early multiply it with digital weights stored in registers and gives out the result as a current.

This structure reduced area and static power consumption by using a new technique in mul-

tiplication that multiplies every two bits of weights separately to the whole analog value.

The area and power consumption at the maximum input level of 244um2 and 0.23mW

with the measured output current error of less than 0.5µA respectively. Area and power-

efficiency of this structure in addition to the modularity feature make this structure and an

easy and an excellent choice for the neural network design especially for multi-layers one
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in that these criteria are in high demand. Corner analysis results confirm the robustness of

this structure.
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Chapter 4

Hardware Realization Of Mixed-Signal

Neural Networks

4.1 Introduction

Artificial neural networks (ANN) are popular adaptive trainable systems that are employed

in the vast field of applications from the prediction of nonlinear time series [1] and fi-

nancial data forecasting [2] to the pattern recognition applications [3]. However, VLSI

implementation of these systems faces challenges due to the complications associated with

implementing a large fully parallel system especially when low complexity is required.

Flexibility, area, power-efficiency, and reliability are some of the most significant chal-

lenges to overcome in the hardware implementation of such systems. Moreover, as the

size and complexity of the network grows, its training becomes more difficult and it takes

longer to complete due to increased number of parameters.

In terms of hardware realization, a mixed-signal implementation approach was chosen
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to address the above-mentioned issues [3, 4]. This approach uses the analog circuit’s advan-

tages such as the small, well-designed neurons and the current-mode structure to simplify

calculations [7, 6, 5]. In the same way, the mixed-signal structure avoids the drawbacks

typically associated with the analog structures such as lower accuracy compared to the dig-

ital implementations and the large capacitors which analog circuits require to store analog

weights. These storages cause more design complexity and limit the size of the imple-

mentable neural network.

In the proposed structure, neurons are divided into sub-neurons which are effective in

reducing the effect of quantization noise in the circuit [8]. Moreover, the neurons that are

used in this work, are effective in increasing the generalization capacity of the network.

There are several methods proposed in the literature that attempt in improving the network

performance and generalization capability. These include reduction of weight parameters

through weight sharing [9, 10], and multi-resolution learning [11]. However, these methods

are tailored for software simulations of neural networks and face challenges and difficulties

for hardware implementation.

It should be noted that the Sigmoid neurons become ineffective, when the input values

to a neuron increases, forcing the neuron to act more similar to a threshold neuron rather

than a non-linear sigmoid neuron. The neurons used in this chapter, however, are able to

self-scale their non-linear gain and do not require to be redesigned. The neuron used in this

chapter is simple and suitable for hardware realization of neural networks.

In this chapter, a modular synapse-neuron building block is introduced based on a

mixed-signal synapse and a distributed neuron. Due to the current-mode performance,

the addition, subtraction, and division are done in the most area-efficient way. The synaptic

multiplier utilizes AND gates and weighted current mirrors instead of using the weighted

summation of currents as it is used in conventional DACs. The synaptic weights are stored

in digital registers; consequently, the storage capacitors are avoided. The design is laid out

in the TSMC CMOS 0.18µm process, and simulation results for a 4-input pattern recogni-
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Iin
M13 M15

M16

M11

M14M12 M17

Iout

Bias1

T1

Figure 4.1: The resistive-type neuron circuit modified to a robust current-mode structure.

The synaptic multiplier’s output current is applied to the neuron as Iin via terminal T1. The

output current is shaped by a self-adjustable sigmoid function.

tion are provided to prove the performance of the design.

4.2 Self-adjustable distributed Neuron

In a distributed neural network, the neurons with small areas are desirable since there is

a sub-neuron for each synaptic multiplier forming a synapse-neuron module. An area-

efficient resistive-type neuron was introduced in [13]; however, was sensitive to the mis-

match and the process variations. Here, the resistive-type neuron has been improved to

generate an output current of Iout from the input current of Iin to generate the transfer func-

tion. Moreover, the neuron required current to voltage conversions, additions, and divisions

which are eliminated here. The modified circuit of the sub-neuron is presented in Fig. 4.1.

The gates of M14 and M15 should be set at Vdd/2 the gates of M14 and M15 should

be set at Vdd/2 to keep the transfer function symmetric. The diode-connected transistors

are used for biasing and sized in a way that they can provide the required biasing current.

The voltage of Bias1 is 250mV to keep the M18 ON even when the gate voltage is close

to zero. Fig. 4.2 shows the post-layout simulation results presenting the transfer function

of the improved neuron for three ranges of input currents of (−65µA, 65µA), (−100µA,

100µA), and (−200µA, 200µA).
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Figure 4.2: The variation of the neuron’s activation functions for the input ranges of

(−60µA, 60µA) shown by the solid line,(−100µA, 100µA) shown by dotted line, and

(−200µA, 200µA) shown by dashed line.

Figure 4.3: The 1000 runs Monte Carlo simulation results of the current-mode neuron’s

activation function.
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As shown in Fig. 4.2, the neuron is adjustable and can change its non-linear gain region

depending on the input current. This means that the neuron’s transfer function tunes itself

to go into the saturation region for larger input current depending on the input range. The

fact that the value of the weights might increase during the training, causes a neuron with

fixed transfer function to behave similarly to a threshold neuron for larger input values.

This has been shown to create difficulties during the training phase and has caused some

networks to rely more on linear-style neurons. The proposed neuron can adjust its transfer

function depending on the input values, and this can be achieved by the circuit without any

changes in the circuit.

The robustness of the proposed structure is shown by Monte Carlo analysis. Fig. 4.3

illustrates the 1000 runs of post-layout Monte Carlo analysis results considering the process

variation and the mismatch of circuits parameters.

In the following section, the neuron is used in a full network in a modular format. The

network is only for a proof of concept, to test the circuit operation. However, the neuron and

the modular synapse-neuron module can be used for hardware implementation of various

network sizes.

4.3 distributed neural network

In this section, the system level of a distributed neural network structure is introduced and

the unified current-mode synapse-neuron circuits are presented.

Fig. 4.4 shows the 4-3-2 configuration of the distributed feed-forward neural network.

The dashed box represents the modular block that contains a mixed-signal synaptic multi-

plier and a sigmoidal neuron. As shown in this figure, the synapse-neuron block and digital

registers are the only parts that are needed to form a multi-layer current-mode neural net-

work. The jth programmable synaptic weight corresponding to the ith neuron in the second

layer is denoted by Wij which are multiplied by the current-form inputs I1−4. The inputs
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of the hidden layer, Ia−c, are multiplied by the synaptic weights corresponding to the third

layer represented by Cij . The biases related to each multiplier are denoted by bij .

The circuits of the synapse-neuron block are discussed in the following subsections.

4.3.1 Synaptic Multiplier

Conventional synaptic multiplier also called multiplying digital to analog converter (MDAC)

principally works based on the weighted current mirrors, which leads to the use of large

transistors, especially in the most significant bit [12].

In this chapter, a small-area power-efficient multiplier is used as the synapse. The 5-bit

multiplier is designed by adding the sign bit to the multiplier that the authors proposed in

[12]. The synaptic multiplier works based on separating the two less significant and the

two most significant bits of synaptic weights and performing the signed multiplication by

combining the simple digital gates (AND and NAND) and weighted currents and adding

the sign bit od b4 at the end of the structure. This method results in the two identical

Ib Ic Ia 

I2 

I1 

I3 

I4 

b11 

W11 

W14 

b21 

W12 

W13 

b21 

W21 

W24 

W22 

W23

b31 

W31 

W34 

W32 

W33

C11 

C21 

C12 

C22 

C13 

C23 b22

O1 

O2 

Figure 4.4: The system level configuration of a 4-3-2 distributed neural network. Wij and

Cij are the digital synaptic weights corresponding to the second and third layers respec-

tively. I1 to I4 are the input currents representing the input patterns.
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Figure 4.5: The modular signed multiplying DAC that performs as the synapse [12]. T1

is connected to the terminal with the same name in Fig. 4.1 to build the synapse-neuron

module.

module shown as 1 and 2 dashed boxes in Fig.4.5 which diminish the mismatch effects of

transistors. Moreover, the size of the largest transistors is reduced significantly.

Fig. 4.5 shows the circuitry of the synaptic multiplier. Here, the input currents of I1−4

shown in Fig. 4.4 are denoted by Iin which is multiplied to the two least significant bits

of the synaptic weight in 1 and to the two most significant bits in 2. The addition of the

output current of 1 with the four times of the output of 2 will be the multiplication result of

the input current and four bits of the synaptic weight. The direction of Iout is determined

by the sign bit of b4 which is positive in case of a 0 and negative in the event of a 1.

The maximum power consumption and the dimensions of a single multiplier are measured

328µW and 103.25µm× 36.2µm respectively. The dimensions of transistors that are used
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Figure 4.6: The corner analysis simulation results of tt (Typical NMOS Typical PMOS), ff

(Fast NMOS Fast PMOS), fs (Fast NMOS Slow PMOS), sf (Slow NMOS Fast PMOS), and

ss (Slow NMOS Slow PMOS) that show the process variation effect on the multiplication

performance for the input current of 1µA that is multiplies to a digital weight that varies

from -11111 to 11111.

in this neural network are listed in table 4.1. Fig. 4.6 presents the corner analysis of the

Table 4.1: Sizes of the transistors of the multiplier.

M0,M1,M2,M3 4.5/1.4 M8, M9 2.5/1

M4,M5,M6 1/1 M10, M11 6/1

M7 4/1

results of an input of 1µA multiplying to the 5-bit weight changing from -15 (11111) to

+15 (01111). The corner analysis represents the process variation effect of the multiplier’s

performance and shows the maximum deviation from the ideal multiplication results occurs

for the ff (Fast NMOS Fast PMOS) and is equivalent to 0.7uA, which is less than the input

current, and thus the accuracy is correctly considered to be 1µA. Via terminal T1 the output

current of this multiplier passes the neuron that is presented in the following subsection.

4.4 Pattern recognition

In this section, the performance of the 4-3-2 feed-forward neural network that is shown in

Fig. 4.4 is discussed. The network is built with the synapse-neuron block that was presented
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in the last section to show the feasibility of the design. This network is used to classify the

pattern templates as shown in Fig. 4.8.

Here, the network is trained offline. However, the design can be modified for the chip

in the loop training. The 5-bit weights and biases that were calculated off line in MATLAB

are as follows:

Wij =











10011 11000 01011 10111

11010 00110 00001 11110

00110 01111 00010 11001











Cij =





11001 01101 00001

01010 01010 11001





bi1 =











00000

11000

00100











b2j =





00000

10010





The output currents of the neural network are compared to a reference current at the

terminals of O1 and O2 and provide the voltage of 0 (1) in case the current is lower (higher)

than the reference. The current comparator structure used in the proposed neural network

is shown in Fig. 4.7.

Fig. 4.9 shows the input currents that are introduced to the network and the output

voltages Out1 and Out2. As seen in this figure the outputs are as we expected for any valid

combination of the input.

The layout of the neural network is presented in Fig. 6.12. The dimensions and the

average power consumption are measured 318.950µm× 446.150µm and 0.93mW respec-

tively. The corner analysis results supports the notion that the network is not affected by

process variation due to the tunable reference currents.

A comparison of three 4-3-2 neural networks is shown in table 4.2. The table includes

the comparison between areas, power consumptions, and number of the tested templates.

Fig. 4.11 represents the sensitivity and robustness of the network performance to the

most critical paths in the design. The output currents are shown for the 5% variation in
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Table 4.2: The comparison table of the proposed 4-3-2 distributed NN and other

similar structures.

Proposed [13] [8]

Technology(um) 0.18 0.18 1.2

Chip area (um2) 142299.5 385320 -

Average Power (mW) 0.93 - 3.65

Power per synapse(mW) 0.33 5 -

Number of tested templates 6 6 4

Iout1

Out1
Iref

O1

Figure 4.7: The structure of the current comparators that are connected to the O1 and O2

terminals of Fig. 4.4.

the input current (dotted lines), 5% changes in the width and length of the transistor M6 in

the multipliers of the input layer (dashed lines), and 5% variations in the width and length

of the transistor M18 of the second layer (solid lines). As shown in the figure, the outputs

Out1 and Out2 remain the same while these variations are applied.

4.5 Conclusion

A mixed-signal distributed neural network designed for a pattern recognition application is

implemented in TSMC CMOS 0.18µm. The network, which uses a power-efficient synap-

tic multiplier consumes a low power and occupies a small area. The 5-bit digital synaptic

weights are introduced to the synapse where they are multiplied with analog input currents.
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Templates Input equivalent bits Output bits

0101 10

01

01

10

00

11

0011

1010

1100

1001

0110

Figure 4.8: The input templates that are used to test the functionality of the neuron.
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1 1 1
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Figure 4.9: Simulation results of the 4-3-2 distributed neural network to prove the pattern

recognition capability.

Following the multiplication, the resulting current passes through the neuron which applies

a sigmoid-shaped transfer function to deliver the output currents. The area of the network

is measured 142299.5µm2. The average power consumption is measured 0.93mW .
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Figure 4.10: The 4-3-2 mixed-signal network layout.

Figure 4.11: Simulation results of the 4-3-2 distributed neural network to show the sensi-

tivity regarding three critical paths.
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Chapter 5

Dynamic Behavior Of A Single Sigmoidal

Neuron: Stable To Period Doubling

5.1 Introduction

Neural networks are getting more popular in signal processing and computation due to

their ability of learning which can target different applications such as nonlinear signal

prediction, time-series approximation, pattern recognition, and medical purposes [1, 2, 3].

Complex neural network systems consist of a few to a large number of neurons the dynamic

behavior of which determines the performance of the system. Consequently, a deep under-

standing of a single neuron dynamic behavior plays a key role in understanding the nature

of the neural networks and expanding different approaches towards different problems.

Neurons’ activation functions fall into two main categories, artificial, and spiking which

are both popular and progressive in parallel to expand the applications of neural networks.

Artificial neuron’s activation functions such as hyperbolic tangent, sigmoid, Poslin etc.
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usually vary from -1 to 1 [4] and there have been various implantation methods proposed so

far [5, 6, 7]. On the other hand, spiking neurons are more similar to the neuron’s biological

model due to their oscillatory behavior which also makes them more difficult to be realized.

The oscillatory behavior of spiking neurons can be described by a dynamic system based

on a set of two coupled differential equations [8, 9]. The neural oscillator is also has been

discussed by the computational model proposed by Freeman which show the oscillatory

behavior of the interconnective groups of neurons [10, 11, 12]. The oscillatory behavior of

coupled artificial neurons has been also discussed [13].

In this chapter, we are interested to provide the possible oscillatory behavior of a single

sigmoid neuron which is much easier to be realized compared to spiking neuron and Free-

man’s model. The oscillatory behavior of such a simple structure may open a way towards

realizing the neural oscillation without implementing the coupled differential equations.

In this chapter, we analyze the dynamic behavior of a single neuron using the bifurca-

tion and stability maps for investigating the oscillatory behavior of the sigmoidal neuron.

5.2 Background and Theory

In this section, the theory of the dynamic behavior of a single artificial neuron in a feedback

configuration is discussed. The sigmoidal neuron with the synaptic weight of β is shown

Fig. 5.1. The output value of y is updated in the discrete time domain. At the instant n,

part of the output signal is sampled and added to the input of x0 by the synaptic weight of

β. The addition of x0 + βy[n] passes through the sigmoidal activation function to generate

the output at the instant n+ 1. The local map of the sigmoid activation function is:

f(x) =
1

1 + e−µx
(5.1)

in which, the neuron gain, µ, is a positive number that determines the maximal slope of the

sigmoid function. It should be noted that µ is a variable number and affects the dynamic
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behavior of the system significantly; this effect will be discussed in detail later. Based on

the power flow between the input and the output, the dynamic behavior of the system is

described as follows:

y[n+ 1] =
1

1 + e−µ(x0+βy[n])
(5.2)

in which, n, n + 1, n + 2, . . . , are discrete time instants that present the experienced prop-

agation delay of ∆T by the system such that (n+ 1)− n = ∆T .

For a given constant value of the input, x0, the equation (5.2) describes the transient

behavior of the output. From the perspective of dynamic behavior, the system is defined as

the one-dimensional map of f(y[n]) if µ, β, and x0 are constant. Therefore, the dynamic of

the system is explained by the iteration map point of view on the value range of the neuron

on I = [0, 1] [13].

Due to the nonlinear activation function of the system, we expect to observe a broad

spectrum of the nonlinear behavior which is described by the iteration map.

There are two main methods to study the dynamic behavior of nonlinear systems regu-

lated by the iteration map, the linearization method, and Lyapunov stability analysis [14].

In this paper, we choose to go on with the linearization method for the local stability as-

sessment. The linearization method is much less complex compared to Lyapunov analysis.

Furthermore, developed mathematical tools for studying the dynamic behavior of linear

time-invariant (LTI) systems can be employed in this approach.

The system’s essential requirement that makes it adequate to use the linearization method

is to have a stationary point for any arbitrary value of parameters. Based on the Brouwer

fixed point theorem [15], if the local map of f is continues for any values of x0, β, and µ

while the state space of I is a subdivision of R, then the system always has a stationary

solution. The existence of the stationary solution allows us to use the linearization method

to investigate the systems stability. The stability map of the single neuron configuration is

displayed in Fig. 5.2 for the random values of x0, β, and µ.
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β 

1+e
-μx
1

x0 y

Figure 5.1: A single sigmoidal neuron in a feedback configuration.

After linearization, the next step is to discuss the stability of the LTI system by studying

the locus of the eigenvalues of the system in Z-plane which is also known as the region of

convergence (ROC).

The linearization of this system which is performed by employing the first-order per-

turbation stability analysis and the locus of the eigen values of our sigmoidal system are

discussed in detail in the following section.

5.3 Stability Analysis of the single neuron structure

The First-order perturbation stability analysis is a well-known method to study the dynamic

behavior of nonlinear systems [16] by linearizing the iterative map about a fixed-point. In

this approach, the complex nonlinear system is approximated by using an exact solution of

y0 to a related but easier system through applying a small perturbation term of ε to the fixed

point.

That means the solution to the complex system is approximated from the combination

of the exact solution in a fixed point and the small perturbation term. Upon the condition

and the parameters values of the system, the fixed point can be asymptotically stable, stable,

or unstable. The fixed point of the equation (5.2) is obtained for the state variable of y
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Figure 5.2: The stationary solution for the arbitrary values of µ = 2, β = 3, and x0 = 0.55.
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Figure 5.3: The bifurcation map of the structure shown in Fig. 5.2 when x0 = 0.55 and

y0 = 0.001728.
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y0

0.2

0.9

Figure 5.4: Stationary solution of y0 for various β and µ values.

Period Doubling

Stable

Figure 5.5: Stability map achieved from the system eigenvalues which show the two possi-

ble behaviours, stable and period doubling, for the system.
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when it is time-independent such that:

y[n+ 1] = y[n] = y0 (5.3)

In this paper, equation (5.3) is solved numerically by graphing to find the stationary point

due to the analytical complexity of the system. In this approach, equation (5.3) is substi-

tuted in equation (5.2) to define the objective function of G as follows:

G(y0) = y0(1 + e−µ(x0+βy0) − 1) (5.4)

The stationary solution of y0 is the point where the objective function is globally minimum

such that |G(y0) ≈ 0| as shown in Fig. 5.2.

To study the dynamic behavior, we apply the first-order perturbation term of ε to the

stationary solution of y0 as follows:

y[n] = y0 + ε[n] (5.5)

By Substitution of equation (5.5) into the dynamic discerption of the system described

by equation (5.2) for two consecutive time instants, equation (5.6) and equation (5.7) are

achieved as follows:

y0 + ε[n+ 1] =
1

1 + e−µ(x0+β(y0+ε[n]))
(5.6)

y0 + ε[n] =
1

1 + e−µ(x0+β(y0+ε[n−1]))
(5.7)

60



5. DYNAMIC BEHAVIOR OF A SINGLE SIGMOIDAL NEURON: STABLE TO PERIOD DOUBLING

If we note that ε is much smaller than y0, then the following equation is realized by sub-

tracting (5.7) from (5.6):

ε[n+ 1]− ε[n] =
e−µ(x0+βy0)(eµβε[n] − eµβε[n−1])

(1 + e−µ(x+βy0))2
(5.8)

in which the higher order perturbation terms were ignored. The equation is approximated

by utilizing the first-order Maclaurin expansion of eµβ [n] and eµβ [n−1] as follows:

ε[n+ 1]− ε[n] =
e−µ(x0+βy0)(1 + µβε[n]− 1− µβε[n− 1])

(1 + e−µ(x+βy0))2
(5.9)

which is summarized as:

ε[n+ 1]− ε[n] =
e−µ(x0+βy0)(µβ)(ε[n]− ε[n− 1])

(1 + e−µ(x+βy0))2
(5.10)

with a mathematical manipulation of ε[n+1]−ε[n] = δ[n+1] and ε[n]−ε[n−1] = δ[n]

and keeping the first order perturbation terms the following equation is achieved:

δ[n+ 1] =
−(µβ)e−µ(x+βy0)

(1 + e−µ(x+βy0))2
δ[n] (5.11)

The perturbative elements at time instants of n + 1, n, n − 1, n − 2, . . . are related

together as

δ[n+ 1] = Zδ[n] = Z2δ[n− 1] = Z3δ[n− 2] (5.12)

in which Z represents the eigenvalue of the system in Z-space. The locus of Z in ROC de-

termines the different dynamic behaviors of the neural network. For a system with several

eigenvalues, the system is stable if and only if all the eigenvalues are within the conver-
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gence region. The system experiences the instability even if only one of the eigenvalues is

outside of the ROC. The instable behavior of the system for different eigenvalues can be

summarized as follows:

f(x) =



























Re{Z} ≥ 1, Im{Z} = 0, Bistable

Re{Z} ≤ −1, Im{Z} = 0, Period doubling

Re{Z} ≤ 1, Im{Z} = 0, Self-Pulsation

(5.13)

The system is bistable when there are two stable equilibrium states which the system

can relax in either of two [17] depending on the values of x0, µ, and β. The region of period

doubling is explained from the bifurcation map point of view. Bifurcation occurs when a

change in the system parameter causes the system experiencing a qualitative variation in

the output. The bifurcation map related to the parameters of Fig. 5.2 is demonstrated in

Fig. 5.3.

In the period doubling regime, for a single parameter of µ, two possible outputs occur.

The chance that one of these states is excited is identical. The transition from one state to

the other does not show the hysteresis behavior on the contrary of what occurs in bistability.

Consequently, the output oscillates between these two states with the period of twice the

propagation delay of the original system, ∆T .

To understand how period doubling works, Euler representation of the eigenvalue is

employed as Z = rejω∆T , where r is the magnitude of the eigenvalue and ω is the frequency

of oscillation. To have period doubling (also know as Ikeda) instability, rejω∆T should be

less than -1 [18] leading to ejω∆T = ejπ. The phase shift can be rewritten as 2πfosc∆T = π,

therefore, the oscillation’s frequency is Tosc = 2∆T . This type of oscillation was observed

by Ikeda et. al. in the nonlinear optical ring resonator [18].

Self-pulsation represents another form of oscillatory behavior of the system where the

oscillation occurs for a constant DC input. It should be noted that the system does not need

a forced oscillation from the input that has harmonic elements. the frequency of oscillation
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Figure 5.6: Time domain behavior of the system for two different arbitrary sets of µ an β.

(a) shows the oscillatory behavior for µ = 6 and β = 3. (b) shows the stable behavior for

µ = 0.3 and β = 0.15.
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highly depends on the system parameters such as µ and β, which causes the phase noise

and jitter if is used in the local oscillator-based systems.

Among these three unstable behaviors, period doubling is promising because of its

possible application as a local oscillator due to its jitter free nature of oscillation. In the

period doubling regime, the frequency only depends on the propagation delay of the system

while in the self-pulsation it depends on all the parameters of the system, µ, β, and x0.

The bistable regime has possible applications in flip-flops and latches or any other de-

vices such as memories which need to store binary data.

5.4 Simulation Results

In this section, we present the simulation results to show the dynamic behavior of the

sigmoidal neuron structure.

According to the discussion of the section 5.3, the first step to analyze the dynamic

behavior is to find the stationary solution. for an arbitrary value of x0-let’s say 0.5- the

stationary solution is a function of µ and β as shown in Fig. 5.4.

Since y0 is a function of the design parameters of µ and β, the corresponding eigenvalue

location can be determined from equation (5.11). From the locations of eigenvalues which

represent the dynamic behavior of the system, the stability phase map can be regulated as

a function of the design parameters as shown in Fig. 5.5. According to the stability phase

map, the system can be either stable or in the period doubling region.

The time domain behavior of the system is shown in Fig. 5.6. As shown in Fig. 5.6(b)

the system rests at the steady state after a short transient state. For the period doubling

region, the system oscillates between two constant values both of which depend on y0.

The main advantage of the oscillatory behavior shown in Fig. 5.6(a) is that the fre-

quency of oscillation is only dependent on the propagation delay of the system and can

be considered constant unless a delay is intentionally introduced to the system for the fre-
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quency tuning purposes.

The analysis, also, determines the region in which the neuron shows the oscillatory

behavior. Therefore, the parameters can be chosen to increase the tolerance of the system

to the process variations. The frequency of oscillation does not depend on the µ, β, or x0 as

long as the system is kept in the period doubling region which minimizes the process and

fabrication effect on the oscillation frequency.

5.5 Conclusion

In this paper, the nonlinear behavior of a single sigmoidal neuron with a feedback synap-

tic weight is discussed. The analysis as well as the bifurcation and phase stability maps,

prove that there are only two possible behaviors for the system, stable, and period dou-

bling. The system oscillates with the period of twice of the propagation delay in the period

doubling region. The oscillation’s frequency does not depend on any other system’s pa-

rameters except the propagation delay which suggests promising applications in the VLSI

implementations of the oscillatory system by reducing the dependency to the fabrication

variations. The proposed structure is the simplest neural oscillation structure that has been

proposed so far.
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Chapter 6

Low-Power Mixed-Signal Implementation

of the DA-based FIR Filter

6.1 Introduction

For portable devices that are used for dynamic signal processing, stability, power, and area

efficiency are ever-present need. Feeding these needs means a reduction in system size

and the off-chip communication while increasing the battery life which are the main design

concerns in portable devices. FIR filters are usually used at the early stage of dynamic

signal processing applications due to their stability. Since the filter is one of the largest

components in the system, it is vital to be designed low-power and area-efficient.

In digital signal processing, the inner product, which is the essence of the many pro-

cessing functions including FIR filters, is characteristically realized based on multiply-

accumulate (MAC) operations. Although the MAC units can be easily programmed, they

negatively affect the throughput of the filter, especially of the high order ones. The lower
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throughput means the computation needs the higher clock rate for the system which in-

creases the power consumption. In fact, the computation time and the number of required

MAC operations increase linearly with the length of the input vector and the filter order

respectively. Consequently, implementation of a real-time and low-power filter would be a

challenging task as the order increases [1, 2, 3, 4].

Distributed Arithmetic (DA) [3, 4, 5, 6, 7] is an efficient alternative for decreasing the

power consumption in real-time applications. In this method, multipliers are replaced by

adders and shift registers and multiplication is performed in fixed cycles of time while

coefficients are stored on the chip. The fixed-cycle performance makes the structure com-

putationally efficient especially when the input length is large. In digital signal processing,

despite the computation efficiency, the DA approach would not be area efficient compared

to MAC due to a considerable number of memory units that it must use. This problem could

be eased by using mixed-signal implementation of DA Multiplying [7, 8], or switched-

current techniques [3, 9, 10, 11] with limitations on power and speed [8].

The mixed-signal approach proposed in this chapter provides a subtle solution to large

area occupation problem of DA-based structures by focusing on the processing stage rather

than the analog storages. To demonstrate the efficiency of our approach, we implemented

a 16-tap 8-bit adaptable current-mode FIR filter with a low area and power consumption.

An LPF and a BPF are realized at different sampling frequencies to prove the efficiency of

the proposed structure,

In this chapter, a new structure for the current-mode mixed-signal FIR filter is proposed

and implemented based on the DA. The proposed structure is low-power and area-efficient

taking advantage of the current-mode and DA-based structures. An LPF and a BPF are

implemented to prove the efficiency of the proposed structure.
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6.2 Distributed Arithmetic

The DA concept [12] is used for the calculation of the inner product of two vectors in a

bit-serial mode, in which the output Y [n] is generated by the addition of the delayed and

weighted samples of the digital input X[n].

An inner product which represents an FIR filter is computed as follows [4, 7]:

Y [n] =
M−1
∑

i=0

IC [i] ·X[n− i] (6.1)

where ICi and M denote filter coefficients and number of taps respectively.

To achieve the DA formulation, X is represented in 2’s-complement format. Assuming

that X[n] is an N -bit word, it can be represented by separating it’s sign bit in the following

form:

X[n− i] = −xi0 +
N−1
∑

j=1

xij2
−j (6.2)

in which xi0 is the most significant bit of ith component in X[n] vector indicating sign, and

xij is the jth bit of ith component.

By substituting the X[n] from (6.2) in (6.1), Y [n] can be written as follows [3]:

Y [n] = −

M−1
∑

i=0

ICixi0 +
N−1
∑

j=1

2−j

M−1
∑

i=1

xijICi (6.3)

There are N − 1 clock cycles of divisions and feedbacks required to realize the second

term of equation (6.3) utilizing shift registers, multipliers, and adders [3, 4, 7].

At the N th clock cycle, the last input is subtracted from the feedback to generate the

first term of (6.3). At the N + 1th clock cycle, the system resets to set the feedback zero

and getting ready for the next operations.

That means N -bit serial input M -tap filter which works based on the DA concept re-
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quires fixed number of clock cycles, N to perform the filtering operation. It should be noted

that the same filter which is MAC-based needs M MAC units in typical DSP approaches.

The DA-based approach offers lower power consumption of the filter especially of the

higher order ones. The mixed-signal structure proposed in the following section offers even

more efficiency by simplifying computations and a hardware realization that is needless of

large memories.

6.3 Proposed Current-Mode Distributed Arithmetic Struc-

ture

The proposed mixed-signal DA architecture is composed of the following main compo-

nents: sixteen (number of taps) 8-bit (number of bits of the digital input) digital shift

registers to introduce digital inputs to the filter, eight 5-bit shift registers to store the mul-

tiplicands, eight 5-bit digital to analog converters (DAC), and two current delay/divider

cells.

It should be noted that the number of multiplicands storages and DACS are reduced

from sixteen to eight according to the symmetry of the filters coefficients.

The configuration of the proposed DA structure is showed in Fig. 6.1(a). As shown in

this figure, two’s complement inputs, X0 to X15, are serially fed to the system through the 8-

bit shift registers. At jth clock cycle, the least significant bit of ith input (xij) is multiplied

by the current-form multiplicand ICi which is the output of the ith DAC. Current-mode

multiplication results are added to each other through the connection node SUM . The

filtering computation is performed in N = 8 clock cycles. Figures 6.1(b) to (d) show

the performance of the delay and division section in various clock cycles and present the

filtering process in more details as follows.

Fig. 6.1(b) displays the performance of the delay and division section during the high

state of the first N−1 = 7 clock cycles. In this period of time, S1 and S2 are close and open
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respectively and the output current of Iout feeds back to the first current delay cell, D1. The

output of D1 and D2 pass the current trough if and only if their inputs are disconnected

first. Consequently, during the high state of the first N − 1 = 7 clock cycles, D1 stores the

current while it is disconnected from D2. Simultaneously, the current stored in D2 in the

previous clock cycle is added to the current coming from the node SUM , IS .

Each of D1 and D2 stores the current for half a clock cycle releases it in the second

half. Fig. 6.1(c) presents what happens at the low state of the first N − 1 = 7 clock cycles

where the current stored in D1 is divided by two and fed to D2.

The equation (6.3) is fully generated at the N th clock cycle by subtracting Is from the

feedback current, If as depicted in Fig. 6.1(d). At this time, IS and If are equal to the first

and the second terms of the equation (6.3) respectively. The output current of this step is

the final result for the filter.

The CLK signal controls the speed of the operation by controlling the input shift reg-

isters and delay cells. The RESET signal opens the switch S1 at the N − 1th clock cycle

to cut off the feedback branch and clear the data at the end of each N cycle stream.

In the proposed structure, the inverse of some of the controlling signals such as CLK

and RESET are also noted. It does not mean that CLK and RESET are really utilized as

the controlling signals but CLK and RESET control PMOS switches instead of NMOS

ones.

6.4 Proposed Filter Implementation

In the previous section, the basis of the DA-based FIR filter was discussed. In this section,

the novel implementation of a 16-tap 8-bit FIR filter based on the DA is proposed.

Fig. 6.2 and Fig. 6.3 show the proposed filter structure. Fig. 6.2 presents the multiplying

stage at the output of that connects to the processing stage circuitry shown in Fig. 6.3.

Filter coefficients, ICi, are signed values that are fed to the circuit in the current form
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through 5-bit shift registers and DACs as presented in Fig. 6.2. The negative sign means a

change in the direction of the coefficient currents.

Current-mode multiplication between the filter coefficient (ICi) and the jth bit of ith

input (xij) is performed through weighted binary switches illustrated in Fig. 6.2. The input

xij lets the flow of ICi in case of a 1 or opens the switch and cuts off the current in the

event of a 0. The multiplied currents are added together by connecting the node SUM .

The addition is performed considering coefficients’ signs. That means the direction of the

addition result, Is, can be leftward or rightward at the node SUM depending on the values

of xij at the existing clock cycle.

The addition result, Is, reaches it’s smallest possible negative value when all weighted

binary switches related to positive ICis are open and all switches related to negative ICis

are close. In this case, Is would be equal to the addition of negative coefficients flowing in

the leftward direction. It should be noted that the leftward direction is unwanted because it

is not compatible with the following stage, delay/division.

To avoid this problem and keep the Is positive in any condition, a compensating current

of Ib is added to the coefficient currents at the node SUM . The value of Ib is equal to the

absolute value of the addition of all negative coefficients, consequently, IS is guaranteed to

be positive and ready to go to the delay/division stage.

The current mirrors generating Ib pass the current if and only if the corresponding sign

bit is 1. In this way, the Ib has the minimum required value to keep Is positive which is

necessary to minimize the power consumption when programming the filter with different

coefficients. It should be noted that adding a constant value of Ib to the coefficients does

not affect the filter performance as will be proven in the following.

The following equation below is derived from equation (6.3) considering the presence

of the constant current Ib:

Y = −
M−1
∑

i=0

(ICixi0 + Ib) +
N−1
∑

j=1

2−j

M−1
∑

i=1

(xijICi + Ib) (6.4)

77



6. LOW-POWER MIXED-SIGNAL IMPLEMENTATION OF THE DA-BASED FIR FILTER

The equation (6.9) can be written as:

Y = −Ib −

M−1
∑

i=0

ICixi0 +
N−1
∑

j=1

2−j

M−1
∑

i=1

xijICi + Ib

N−1
∑

j=1

2−j (6.5)

The geometric series of
∑N−1

j=1 2−j converges absolutely to 1 for an infinite series. For a

16-tap filter, the mentioned geometric series converges to 1 with the error of %0.003 which

is negligible in the filter performance. Consequently, (6.5) can be rewritten to:

Y = −Ib −
M−1
∑

i=0

ICixi0 +
N−1
∑

j=1

2−j

M−1
∑

i=1

xijICi + Ib (6.6)

In which, −Ib and Ib cancel out each other which makes the equations of (6.3) and (6.6)

equal.

Going back to the filter′ structure, the positive Is enters the delay/division stage through

the transistor Ms at every clock cycle as depicted in Fig. 6.2.

A case study of a random Is generated by random digital inputs is compared to the clock

and other relevant operating waveforms in Fig. 6.4. At every clock cycle, Is is added to the

delayed feedback current of If which has the initial value of zero as shown in Fig. 6.4. The

summation results, Iin = Is + If , is delayed and divided by two in each clock cycle for the

first seven clock cycles while the RESET switch is close to generate If for the next clock

cycle, such that If (T ) = Iin(T − 1). The division by two is achieved by a current mirror

at the feedback branch, in which width of M2 is half of that of M1. The delay and division

steps take one clock cycle to generate the feedback current, If , which is added to the new

Is at the next rising edge of the clock. It should be noted that If is zero at the beginning of

every 8 clock cycles stream because of the RESET switch.

At 8th clock, the switches related to RESET are close which change the direction of

Is through the transistor M9 and let the subtraction happens instead of the addition, such
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that Iout = Iin(T8) = If (T8)− Is(T8).

The direction of the output current, Iout, can be positive or negative depending on which

one of Is or If is higher. To take the direction of Iout into consideration, a current-mode

comparator (see the dashed-box in Fig. 6.3) produces the Control signal which goes low

in case of If < Is. In this case, the positive Iout flows through transistor M3. When Iout is

negative, the Control signal goes high and M4 provides the path for the negative current

to flow.

In the following subsections, the DAC and delay/division stage performance are dis-

cussed.

6.4.1 DAC

To generate the coefficient currents of ICi from the digital coefficients of Yi, a group of

eight 5-bit DACs are utilized. The configuration of the DAC employed in the proposed

filter structure is shown in Fig. 6.5. This design is the modified architecture of the MDAC

that proposed in[13] which utilizes the combination of AND gates and weighted current

mirrors to reduce the area and static power consumption compared to the conventional

MDACs [13].

As shown in the dash-dotted box in Fig. 6.5, a reference current of Iref is fed to the input

of the DAC. Here, Iref is 1µA and equivalent to the one-bit weighted current. The reference

current of 1µA is then multiplied to the digital coefficient value of Y = y4y3y2y1y0 through

the AND gates and weighted current mirrors. The direction of ICi is determined by the

sign bit of y4 and can be leftward in the case of y4 = 1 or rightward in the event of y4 = 0.

As shown in Fig. 6.5, if all the bits of Y are zeros the output of the DAC would be

zero because all the switches of SW10−22 are open. However, there would be a power

dissipation due to the reference current producer. To eliminate the power consumption due

to the reference current, the transistor M12 turns on by the OR of Y bits. Therefore, M12 is

on letting Iref flow if and only if one the bits of Y is 1.
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Figure 6.5: The 5-bit DAC structure [13]
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Figure 6.6: The 5-bit DAC output current of ICi (solid line), the exact error calculated

from Error(µA) = ICi−Iideal shown by dashed line, the error percentage calculated from
100·(ICi−Iideal)

Iideal
shown by dash-dotted line.

Figure 6.7: The family plot of the DAC output current vs. the analog equivalent of the

digital input achieved from 500 runs of Monte Carlo simulations.
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(a) (b)

(c) (d)

Figure 6.8: The input and output currents of two cascaded delay cells and a current divider

for four random input currents of 4.98µA, 20.02µA, 60µA, and 99.98µA..
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Figure 6.9: Corner analysis of tt (Typical NMOS Typical PMOS), ff (Fast NMOS Fast

PMOS), fs (Fast NMOS Slow PMOS), ss (Slow NMOS Slow PMOS), and sf (Slow NMOS

Fast PMOS) of the error percentage occurs in the feedback branchs output current.

Table 6.1: DAC transistors dimentions.

M0,M1,M2,M3 1/3 M8, M9 2.5/1

M4,M5,M6 4.5/3 M10,M11 6/1

M7 6 M12,M13,M14,M15 3/2.5

The transistor M12 turns on in the triode region while the diode connected transistors

of M13−15 are in the saturation region. The transistor M15 has the same size as M12 and

added to the design to decrease the VGS of M12 furthermore leading to reduce the reference

current to the desirable value of 1µA without increasing the sizes of M14 and M16. The

dimensions of the DAC transistors are shown in table 6.1.

Fig. 6.6 shows the output results of the DAC achieved from the post-layout simula-

tion. As shown in this figure, the output current of ICi varies from −15µA to 15µA cor-

responding to the coefficients changing from 11111 to 01111. The exact error is mea-

sured by subtracting the expected output of Iideal from the measured value of ICi such that

Error(µA) = ICi−Iideal. The exact error is too small compared to the output of the DAC,

ICi, and cannot be presented properly in the same figure (See the dashed line in Fig. 6.6).
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Consequently, the error percentage (dash-dotted line) is calculated from
100·(ICi−Iideal)

Iideal
to

provide more readable error measurements.

The effect of the components’ mismatch and process variation on the accuracy of the

designed DAC is shown by the 500 runs of Monte Carlo simulations the results of that are

illustrated in Fig. 6.7.

The DAC output error causes nonideality in the filter performance which is modeled in

the filter equation as follows:

Y [n] = −

M−1
∑

i=0

(ICi + δi)xi0 +
N−1
∑

j=1

2−j

M−1
∑

i=1

xij(ICi + δi) (6.7)

in which, δi is the error corresponding to the coefficient ICi. The error can be achieved by

the subtraction of equation (6.7) from (6.3)as follows:

E = −
M−1
∑

i=0

δixi0 +
N−1
∑

j=1

2−j

M−1
∑

i=1

δixij (6.8)

The error value varies from the minimum of −δ0+(−δ1+δ1)+(−δ2+δ2)+· · ·+(−δM−1+

δM−1) = −δ0 in case that all bits are 1 to the maximum of
∑M−1

i=0 δi. The minimum error

can be reduced to zero if all bits are 1 except x00.

The error in the DACs outputs of ICi can introduce ripple in the pass-band, reduce

the pass-band width of the filter, and decrease the stop-band attenuation [7]. Keeping the

coefficients error within the current range equivalent to one bit reduces these unwanted

effects. In our design, the current range equivalent to one bit is 1µA and due to the results

shown in Fig. 6.5 and Fig. 6.6 the error introduced by the DAC is less than 1µA.

6.4.2 Current-Mode Delay Cell

As explained in section 6.3, the delay/division steps are needed to be repeated 8 times to

generate the output of the filter. That means the accuracy of the two cascaded delay cells
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of D1 and D2 plays a key role in the filter performance. As shown in Fig. 6.3, the cascaded

delay cells of D1 and D2 work with the controlling signals of CLK and CLK respectively

and connected to each other by a current mirror.

Although the filter structure can afford all the inverse controlling signals, signals, to

be generated by utilizing a NOT gate in the path of the corresponding controlling signal,

here, we use PMOS switches to be controlled by signals instead of by signals to avoid the

delays introduced to the signal paths by NOT gates and to take advantage of better time

matching.

The delay cell (consider D1) works based on the transistor M5 and the capacitors. The

transistor M5 needs to be able to store the input current of Iin at the high level of the CLK

signal and release it at the low level of that. At the high level of the clock cycle, switches

Sa, Sb, and Sc are closed and Iin is charging capacitors C1−3. When capacitors are fully

charged, the current flowing through them is zero (sampling stage). That means the whole

Iin passes through M5 and M6. The cascaded transistor M6 working in the saturation region

is utilized to reduce the channel length modulation effect and to keep the Vds of M5 constant

while it is disconnected from the input current at the low level of CLK (hold stage).

At the low level of the clock, M8 is on because of the capacitors connecting to it’s gate

keeping the current of M5 at the same value it had at the high level of the clock. In fact,

the source follower M8 is utilized to prevent the changes at the output current to affect the

sampled current.

In the sampling stage, the switch Sb is closed slightly earlier than Sc which itself is

closed slightly earlier than Sa to reduce the switches charge injection using feedthrough

techniques. Otherwise, the charge injection changes the voltage stored in C1 by ∆V which

consequently changes the stored current by gm∆V [14, 15].

Considering this technique, the values of capacitors are set considering the following
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Figure 6.10: The 1000 runs Monte Carlo simulation family plot of the second delay cell

output current for four random input currents of 100µ, 58µA, 24µA, and 6µA.

rules [14]:

C1 = C2 = 10C3 (6.9)

Here, capacitors’ sizes are chosen to be C1 = C2 = 100fF and C3 = 10fF . Biasing

voltages, Vbias1 and Vbias2 are 1.4V and 560mV respectively to keep M5 biased in the

saturation region.

Fig. 6.8 displays the post-layout simulation results of the two cascaded delay cells of

D1 and D2, and the current divider for four sample input currents of 91.55µA, 45.09µA,

19.55µA, and 4.38µA in CMOS 0.18µm technology. Each of the delay cells detains the

current for half of the clock cycle. The output current of the first delay cell, ID1, is equal

to 1
2
Iin(T − 1/2) and is introduced as the input current to D2. The feedback branch output
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Figure 6.11: The frequency and phase responses of the DA-based BPF and LPF.
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current is shown as If = ID2.

The ideal output current of the feedback branch is expected to be equal to the half of

the input current at one clock cycle earlier. Consequently, the error percentage is calculated

as follows:

E =
ID2(T − 1)− Iin(T )/2

Iin(T )/2
(6.10)

Fig. 6.9 provides the error percentage for the input current range varies from 0 to 100µA to

evaluate the performance of the filters feedback branch. Using the mentioned formula the

error percentage for Fig. 6.8 (a), (b), (c), and (d) are calculated 1.38%, 0.56%, 0.8%, and

1.12%.

The corner analysis results are presented in Fig. 6.9 to estimate the effect of the variation

of fabrication parameters on the feedback branch performance. As shown in this figure, the

maximum error percentage is 2.3% which occurs for ff (Fast NMOS Fast PMOS) and fs

(Fast NMOS Slow PMOS) corner analysis at the input current of 1µA and for ss (Slow

NMOS Slow PMOS) at the input current of 100µA. For the most values of input currents,

error percentage is less than 1% considering fabrication parameters variation.

Fig. 6.10 shows the 1000 runs Monte Carlo family plot of the output current of the sec-

ond delay cell for four random input currents of 100µ, 58µA, 24µA, and 6µA to represent

the mismatch and process variation effect on the performance of the feedback branch.

The error introduced by the feedback branch affects only the second part of the equation

6.3. The error can be modeled as a constant error to which another constant error is added

at every clock cycle as shown as follows:
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Y = −(IC0x00 + IC1x10 + · · ·+ IC(M−1)xi(M−1))

+2−1(x11IC1 + x21IC2 + · · ·+ x(M−1)1IC(M−1) + δ1)

+2−2(x12IC1 + x22IC2 + · · ·+ x(M−1)2IC(M−1) + δ12
−1

+δ2) + · · ·+ 2−(N−1)(x1(N−1)IC1 + x2(N−1)IC2 + · · ·

+x(M−1)(N−1)IC(M−1) + δ12
−(N−2) + δ22

−(N−3) + · · ·

+δN−1)

(6.11)

In which, δj is the error which comes from the jth feedback in the filter. The deviation of

the equation (6.11) from the equation (6.3) is the error introduced by the feedback branch

calculated by:

E = 2−1δ1 + 2−2(δ12
−1 + δ2) + · · ·+ 2−(N−1)

.(δ12
−(N−2) + δ22

−(N−3) + · · ·+ δN−1)
(6.12)

Which can be rewritten as:

E = (2−1δ1 + 2−2δ2 + · · ·+ 2−(N−1)δN−1)

.(1 + 2−2 + 2−4 + · · ·+ 2−(N−2))
(6.13)

By substituting (6.13) in (6.11) and using the geometric series of
∑N−2

j=1 4−j , (6.11) is

rewritten as:

Y = −

M−1
∑

i=0

ICixi0 +
N−1
∑

j=1

2−j(δj
1− 1

4

N−2+1

1− 1
4

+
M−1
∑

i=1

xijICi) (6.14)

Based on (6.13) and (6.14), the maximum error in the output of an N-bit filter caused by

the error introduced by analog circuits of the feedback branch is calculated considering

δ1 = δ2 = · · · = δN−1 = δmax and using geometric series of
∑N−1

j=1 2−jand
∑

N−2

2

j=0 4−j as

follows:
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E = δmax(
1− 1

2

N

1− 1
2

− 1)(
1− 1

4

N−4

2

1− 1
4

) (6.15)

Assuming the error that is added to the feedback branch at every clock cycle is equal to

the maximum possible error, the maximum total error generated in the feedback branch is

0.69µA which occurs for Iin = 100µA. For an 8-bit filter, the maximum output error due

to the feedback branch error is 0.69µA · 1.24 = 0.86µA. The error would be 0.92µA for

the infinite number of bits.

6.5 Results Discussion

In this section, the results of the proposed 16-tap 8-bit FIR filter implemented in CMOS

0.18µm technology are presented. The DACs provide the external access to the filter coeffi-

cients for a reconfigurable structure. A band-pass and a low-pass FIR filter are implemented

to show the adjustability of the proposed architecture.

For the BPF, the sampling frequency of fs is 10MHz, therefore, based on our discus-

sion in sub-section 6.4.2, the CLK period is set to 100ns.

The LPF is designed with fs of 48KHz, while for both filters, the input precision and

number of taps are eight and sixteen respectively.

Table 6.2 demonstrates the coefficients of both filters. Ideal coefficients are achieved

from MATLAB for the 16-tap filters with the defined pass-band and stop-band. To convert

these coefficients into the (mapped) currents within the affordable range of the utilized

DACs, they are all multiplied to a constant to keep the consistency of the coefficients. The

inputs of the DACs (DAC(in)) are chosen considering the mapped current values to provide

the closest 5-bit number that can generate the similar mapped current value. As an instant,

the input of the DAC that provides the closest value to mapped current of 4.8µA is 00101

which generates the current of 5µA. DAC (out) denotes the measured output currents of
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Table 6.2: Filter’s Coefficients.

BPF LPF

ideal
mapped

(µA)
DAC(in)

DAC(out)

(µA)
ideal

mapped

(µA)
DAC(in)

DAC(out)

(µA)

-0.02424 -1.29 10001 -1.02 -0.04843 -1.74 10010 -2.06

+0.02885 1.53 00010 2.11 0.03164 1.14 00001 1.01

+0.02091 1.11 00001 1.02 0.06631 2.38 00010 2.09

+0.02114 11.26 01011 11.34 0.01611 0.58 00001 1.02

+0.09029 4.8 00101 5.04 -0.07617 -2.74 10011 -2.98

-0.16071 -8.56 11000 -8.26 -0.04178 -1.5 10001 -1.02

-0.24275 -12.93 11101 -13.21 0.18376 6.61 00111 7.15

+0.28154 15.01 01111 15.1 0.41718 14.99 01111 15.13

+0.28154 15.01 01111 15.1 0.41718 14.99 01111 15.13

-0.24275 -12.93 11101 -13.21 0.18376 6.61 00111 7.15

-0.16071 -8.56 11000 -8.26 -0.04178 -1.5 10001 -1.02

+0.09029 4.8 00101 5.04 -0.07617 -2.74 10011 -2.98

+0.02114 11.26 01011 11.34 0.01610 0.58 00001 1.02

+0.02091 1.11 00001 1.02 0.06630 2.38 00010 2.09

+0.02885 1.53 00010 2.05 0.03164 1.14 00001 1.01

-0.02424 -1.29 10001 -1.02 -0.04843 -1.74 10010 -2.06

the DAC while all connected to each other at the node SUM .

The digital random numbers are serially introduced to the circuit through the sixteen

8-bit shift-registers as the input of the filters. At each clock cycle, the inputs bits move

forward to complete the filtering cycle. The magnitude and phase responses of the BPF

and the LPF are illustrated in Fig. 6.11. The number of data points that are collected to

get these frequency responses are 2184. Process variation is considered and represented in

these simulations by performing corner analysis. The phase responses of these symmetrical

filters are shown to be linear within the pass-band. The solid lines in Fig. 6.11(c) and (d)

represent the ideal phase and the dotted lines show the post-layout simulation results.

The layout of the proposed design is shown in Fig. 6.12 and the area of the DA architec-

ture considering shift registers and DACs is 0.071mm2. The maximum power consumption

is measured 2.2mW . Table 6.3 provides a summary of the performance of the proposed

implementation and a comparison between different implementations of FIR filters in the

number of taps, sampling frequency, power dissipation, supply voltage, and the technology

node.
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Figure 6.12: The layout of the 8-bit 16-tap mixed-signal filter based on DA.

Table 6.3: Comparison of the proposed filter with recent published filters

Filter # taps
Technology

node

Power

consumption

Sampling

frequency

Supply

voltage

Area

(mm2)

Proposed 16 0.18µm 2.2mW 10MHz 1.8 0.071

[7] 16 0.5µm 16mW 50kHz 5 1.125

[9] 4 0.8µm — 1MHz 2 1.3

[16] 5 0.18µm 3.6542mW — 5 —

[17] 6 90nm 4.35mW — 1 0.239

[18] 4 0.18µm 4.1mW — 1.8 0.52
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The proposed filter’s power consumption is significantly lower than that of the simi-

larly implemented FIR filters. This difference becomes more significant when it takes into

consideration that increasing order of the filter would increase the power consumption.

Moreover, high sampling frequency increases the power consumption of digital sections of

these circuits such as the shift registers and switching transistors. It should be mention that

the sampling frequency is not reported for some of these works. The cut-off frequency,

instead, is reported to be equal to 13.5MHz and 10MHz in [17, 18] respectively, for [16]

bandwidth of 40MHz is reported. As can be seen in table 6.3, the proposed structure’s

area, and power efficiency makes it an excellent choice for portable devices where these

two criteria matter the most.

6.6 Conclusion

A current-mode mixed-signal implementation of a distributed arithmetic-based FIR filter

is proposed in this chapter. The proposed structure is utilized to implement a band-pass

and a low-pass filter to prove the tunability. Sixteen-tap 8-bit filters are realized at different

sampling frequencies in 0.18µm CMOS technology, and magnitude and phase responses

are achieved considering the process variations parameters. Avoiding current to voltage

converters, adders, and dividers results in a low-power area-efficient structure that is an

excellent choice for portable devices. Sampling frequencies for the BPF and the LPF are

10MHz and 48KHz correspondingly. The area and the maximum power consumption of

the proposed structure are 0.071mm2 and 2.2mW respectively that are significantly lower

compared to that of the similar works considering tap numbers, input data number of bits,

and sampling frequency.
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Chapter 7

Conclusions and Future Works

7.1 Summary of Contributions

In this dissertation, it is mainly focused on the mixed-signal design of a fully parallel arti-

ficial neural network. First, the advantages of mixed-signal circuit design were explored,

then the two different composing building blocks, synapse, and neuron were introduced.

Lastly, the generalization ability of the neural networks as a widespread problem in NNs

was discussed.

In Chapter 2, we proposed the VLSI implementation of a programmable neuron to ad-

dress the generalization issue of ANNs. The proposed structure provides different maximal

slopes of sigmoid and linear functions. The mentioned various activation functions can be

chosen on-chip or off-chip by a 2-bit voltage DAC.

The programmability was achieved by using body effect via controlling the substrate

voltage of PMOS transistors. The post-layout simulations, Monte Carlo, and corner analy-

sis were performed to confirm the robustness of the design. To the best of authors knowl-
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edge, the proposed architecture is the first analog VLSI implementation that can provide

different shapes of activation function post-fabrication.

In Chapter 3, a mixed-signal synaptic multiplier was proposed. The structure works

based on the weighted current mirror in combination with AND gates. Using this struc-

ture, we addressed the area and power efficiency by avoiding the largest size transistor in

the conventional multiplying DACs and cutting out the currents when the operation is not

needed. To reduce the mismatch effect in weighted current mode, we designed the structure

with two similar building blocks and avoid the size differences between transistors.

In Chapter 4, the proposed synaptic DAC and a current-mode area-efficient neuron

were used together as a synapse-neuron building block of a feed-forward 4-3-2 ANN. A

series of patterns were successfully recognized with this structure. The area was measured

142299µm2 which is one of the smallest reported areas of the synaptic multipliers. The

average power was measured 0.93mW which is much lower compared to the state of the

art designs.

In Chapter 5, the nonlinear dynamic behavior of a single neuron with the sigmoid acti-

vation function and a feedback synaptic weight was investigated. We were interested in the

possible oscillatory behavior of this structure to be used for neural oscillation applications.

The linearization method was used to investigate the dynamic behavior of the structure

by linearizing the function around a fixed point to assess the local stability. Different dy-

namic behaviors of this system which were achieved based on the locus of Z in ROC were

investigated.

In Chapter 6, a novel mixed-signal structure of a DA-based FIR filter was proposed.

The structure is current-mode and employs DACS with the current-mode outputs to do the

multiplication between digital inputs and the analog coefficients. Two 16-tap 8-bit filters

were implemented, one is a BPF with the sampling frequency of 10MHz and the other is

an LPF with the sampling frequency of 48KHz. The area is a t least 5 times smaller that

similar works.
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7.2 Suggested Future Work

Multiresolution learning paradigm is an issue which can be further studied to investigate

the effect on the generalization ability as well as the learning speed. The learning speed

of the neural network discussed in Chapter 4 can be improved by controlling the activation

function of each neuron. Also, an improvement in the pattern recognition is expected by

using the programmable neuron suggested in Chapter 2.

It is also highly suggested to test the neural network with distributed neuron-synapse

blocks by assigning different activation function in each layer. That is possible if we use

the adjustable neuron proposed in Chapter 2. In this way, we most probably can address the

saturation and overfitting the weights in a higher level compared to non-distributed circuits.

The nonlinear dynamic behavior of a single neuron with the sigmoid activation function

which is investigated in Chapter 5 suggests the possibility to be used in oscillator and

spiking neuron applications. The suggested structure can be implemented both in analog

and digital circuitries. Base on the nature of this work, the implemented oscillator would

be robust with a very low jitter. Also, the analog implementation of this structure is highly

recommended to realize the spiking neuron. This implementation should most probably

is more robust and area-efficient by avoiding the capacitors that has been used so far in

spiking neurons implementations.
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