32 research outputs found

    The Underpinnings of Workload in Unmanned Vehicle Systems

    Get PDF
    This paper identifies and characterizes factors that contribute to operator workload in unmanned vehicle systems. Our objective is to provide a basis for developing models of workload for use in design and operation of complex human-machine systems. In 1986, Hart developed a foundational conceptual model of workload, which formed the basis for arguably the most widely used workload measurement techniquethe NASA Task Load Index. Since that time, however, there have been many advances in models and factor identification as well as workload control measures. Additionally, there is a need to further inventory and describe factors that contribute to human workload in light of technological advances, including automation and autonomy. Thus, we propose a conceptual framework for the workload construct and present a taxonomy of factors that can contribute to operator workload. These factors, referred to as workload drivers, are associated with a variety of system elements including the environment, task, equipment and operator. In addition, we discuss how workload moderators, such as automation and interface design, can be manipulated in order to influence operator workload. We contend that workload drivers, workload moderators, and the interactions among drivers and moderators all need to be accounted for when building complex, human-machine systems

    Disruptive Technologies with Applications in Airline & Marine and Defense Industries

    Get PDF
    Disruptive Technologies With Applications in Airline, Marine, Defense Industries is our fifth textbook in a series covering the world of Unmanned Vehicle Systems Applications & Operations On Air, Sea, and Land. The authors have expanded their purview beyond UAS / CUAS / UUV systems that we have written extensively about in our previous four textbooks. Our new title shows our concern for the emergence of Disruptive Technologies and how they apply to the Airline, Marine and Defense industries. Emerging technologies are technologies whose development, practical applications, or both are still largely unrealized, such that they are figuratively emerging into prominence from a background of nonexistence or obscurity. A Disruptive technology is one that displaces an established technology and shakes up the industry or a ground-breaking product that creates a completely new industry.That is what our book is about. The authors think we have found technology trends that will replace the status quo or disrupt the conventional technology paradigms.The authors have collaborated to write some explosive chapters in Book 5:Advances in Automation & Human Machine Interface; Social Media as a Battleground in Information Warfare (IW); Robust cyber-security alterative / replacement for the popular Blockchain Algorithm and a clean solution for Ransomware; Advanced sensor technologies that are used by UUVs for munitions characterization, assessment, and classification and counter hostile use of UUVs against U.S. capital assets in the South China Seas. Challenged the status quo and debunked the climate change fraud with verifiable facts; Explodes our minds with nightmare technologies that if they come to fruition may do more harm than good; Propulsion and Fuels: Disruptive Technologies for Submersible Craft Including UUVs; Challenge the ammunition industry by grassroots use of recycled metals; Changing landscape of UAS regulations and drone privacy; and finally, Detailing Bioterrorism Risks, Biodefense, Biological Threat Agents, and the need for advanced sensors to detect these attacks.https://newprairiepress.org/ebooks/1038/thumbnail.jp

    Arctic Domain Awareness Center DHS Center of Excellence (COE): Project Work Plan

    Get PDF
    As stated by the DHS Science &Technology Directorate, “The increased and diversified use of maritime spaces in the Arctic - including oil and gas exploration, commercial activities, mineral speculation, and recreational activities (tourism) - is generating new challenges and risks for the U.S. Coast Guard and other DHS maritime missions.” Therefore, DHS will look towards the new ADAC for research to identify better ways to create transparency in the maritime domain along coastal regions and inland waterways, while integrating information and intelligence among stakeholders. DHS expects the ADAC to develop new ideas to address these challenges, provide a scientific basis, and develop new approaches for U.S. Coast Guard and other DHS maritime missions. ADAC will also contribute towards the education of both university students and mid-career professionals engaged in maritime security. The US is an Arctic nation, and the Arctic environment is dynamic. We have less multi-year ice and more open water during the summer causing coastal villages to experience unprecedented storm surges and coastal erosion. Decreasing sea ice is also driving expanded oil exploration, bringing risks of oil spills. Tourism is growing rapidly, and our fishing fleet and commercial shipping activities are increasing as well. There continues to be anticipation of an economic pressure to open up a robust northwest passage for commercial shipping. To add to the stresses of these changes is the fact that these many varied activities are spread over an immense area with little connecting infrastructure. The related maritime security issues are many, and solutions demand increasing maritime situational awareness and improved crisis response capabilities, which are the focuses of our Work Plan. UAA understands the needs and concerns of the Arctic community. It is situated on Alaska’s Southcentral coast with the port facility through which 90% of goods for Alaska arrive. It is one of nineteen US National Strategic Seaports for the US DOD, and its airport is among the top five in the world for cargo throughput. However, maritime security is a national concern and although our focus is on the Arctic environment, we will expand our scope to include other areas in the Lower 48 states. In particular, we will develop sensor systems, decision support tools, ice and oil spill models that include oil in ice, and educational programs that are applicable to the Arctic as well as to the Great Lakes and Northeast. The planned work as detailed in this document addresses the DHS mission as detailed in the National Strategy for Maritime Security, in particular, the mission to Maximize Domain Awareness (pages 16 and 17.) This COE will produce systems to aid in accomplishing two of the objectives of this mission. They are: 1) Sensor Technology developing sensor packages for airborne, underwater, shore-based, and offshore platforms, and 2) Automated fusion and real-time simulation and modeling systems for decision support and planning. An integral part of our efforts will be to develop new methods for sharing of data between platforms, sensors, people, and communities.United States Department of Homeland SecurityCOE ADAC Objective/Purpose / Methodology / Center Management Team and Partners / Evaluation and Transition Plans / USCG Stakeholder Engagement / Workforce Development Strategy / Individual Work Plan by Projects Within a Theme / Appendix A / Appendix B / Appendix

    How to keep drivers engaged while supervising driving automation? A literature survey and categorization of six solution areas

    Get PDF
    This work aimed to organise recommendations for keeping people engaged during human supervision of driving automation, encouraging a safe and acceptable introduction of automated driving systems. First, heuristic knowledge of human factors, ergonomics, and psychological theory was used to propose solution areas to human supervisory control problems of sustained attention. Driving and non-driving research examples were drawn to substantiate the solution areas. Automotive manufacturers might (1) avoid this supervisory role altogether, (2) reduce it in objective ways or (3) alter its subjective experiences, (4) utilize conditioning learning principles such as with gamification and/or selection/training techniques, (5) support internal driver cognitive processes and mental models and/or (6) leverage externally situated information regarding relations between the driver, the driving task, and the driving environment. Second, a cross-domain literature survey of influential human-automation interaction research was conducted for how to keep engagement/attention in supervisory control. The solution areas (via numeric theme codes) were found to be reliably applied from independent rater categorisations of research recommendations. Areas (5) and (6) were addressed by around 70% or more of the studies, areas (2) and (4) in around 50% of the studies, and areas (3) and (1) in less than around 20% and 5%, respectively. The present contribution offers a guiding organisational framework towards improving human attention while supervising driving automation.submittedVersio

    MODELLING VIRTUAL ENVIRONMENT FOR ADVANCED NAVAL SIMULATION

    Get PDF
    This thesis proposes a new virtual simulation environment designed as element of an interoperable federation of simulator to support the investigation of complex scenarios over the Extended Maritime Framework (EMF). Extended Maritime Framework is six spaces environment (Underwater, Water surface, Ground, Air, Space, and Cyberspace) where parties involved in Joint Naval Operations act. The amount of unmanned vehicles involved in the simulation arise the importance of the Communication modelling, thus the relevance of Cyberspace. The research is applied to complex cases (one applied to deep waters and one to coast and littoral protection) as examples to validate this approach; these cases involve different kind of traditional assets (e.g. satellites, helicopters, ships, submarines, underwater sensor infrastructure, etc.) interact dynamically and collaborate with new autonomous systems (i.e. AUV, Gliders, USV and UAV). The use of virtual simulation is devoted to support validation of new concepts and investigation of collaborative engineering solutions by providing a virtual representation of the current situation; this approach support the creation of dynamic interoperable immersive framework that could support training for Man in the Loop, education and tactical decision introducing the Man on the Loop concepts. The research and development of the Autonomous Underwater Vehicles requires continuous testing so a time effective approach can result a very useful tool. In this context the simulation can be useful to better understand the behaviour of Unmanned Vehicles and to avoid useless experimentations and their costs finding problems before doing them. This research project proposes the creation of a virtual environment with the aim to see and understand a Joint Naval Scenario. The study will be focusing especially on the integration of Autonomous Systems with traditional assets; the proposed simulation deals especially with collaborative operation involving different types of Autonomous Underwater Vehicles (AUV), Unmanned Surface Vehicles (USV) and UAV (Unmanned Aerial Vehicle). The author develops an interoperable virtual simulation devoted to present the overall situation for supervision considering also the sensor capabilities, communications and mission effectiveness that results dependent of the different asset interaction over a complex heterogeneous network. The aim of this research is to develop a flexible virtual simulation solution as crucial element of an HLA federation able to address the complexity of Extended Maritime Framework (EMF). Indeed this new generation of marine interoperable simulation is a strategic advantage for investigating the problems related to the operational use of autonomous systems and to finding new ways to use them respect to different scenarios. The research deal with the creation of two scenarios, one related to military operations and another one on coastal and littoral protection where the virtual simulation propose the overall situation and allows to navigate into the virtual world considering the complex physics affecting movement, perception, interaction and communication. By this approach, it becomes evident the capability to identify, by experimental analysis within the virtual world, the new solutions in terms of engineering and technological configuration of the different systems and vehicles as well as new operational models and tactics to address the specific mission environment. The case of study is a maritime scenario with a representation of heterogeneous network frameworks that involves multiple vehicles both naval and aerial including AUVs, USVs, gliders, helicopter, ships, submarines, satellite, buoys and sensors. For the sake of clarity aerial communications will be represented divided from underwater ones. A connection point for the latter will be set on the keel line of surface vessels representing communication happening via acoustic modem. To represent limits in underwater communications, underwater signals have been considerably slowed down in order to have a more realistic comparison with aerial ones. A maximum communication distance is set, beyond which no communication can take place. To ensure interoperability the HLA Standard (IEEE 1516 evolved) is adopted to federate other simulators so to allow its extensibility for other case studies. Two different scenarios are modelled in 3D visualization: Open Water and Port Protection. The first one aims to simulate interactions between traditional assets in Extended Maritime Framework (EMF) such as satellite, navy ships, submarines, NATO Research Vessels (NRVs), helicopters, with new generation unmanned assets as AUV, Gliders, UAV, USV and the mutual advantage the subjects involved in the scenario can have; in other word, the increase in persistence, interoperability and efficacy. The second scenario models the behaviour of unmanned assets, an AUV and an USV, patrolling a harbour to find possible threats. This aims to develop an algorithm to lead patrolling path toward an optimum, guaranteeing a high probability of success in the safest way reducing human involvement in the scenario. End users of the simulation face a graphical 3D representation of the scenario where assets would be represented. He can moves in the scenario through a Free Camera in Graphic User Interface (GUI) configured to entitle users to move around the scene and observe the 3D sea scenario. In this way, players are able to move freely in the synthetic environment in order to choose the best perspective of the scene. The work is intended to provide a valid tool to evaluate the defencelessness of on-shore and offshore critical infrastructures that could includes the use of new technologies to take care of security best and preserve themselves against disasters both on economical and environmental ones

    INTEGRATION OF MULTIPLE UNMANNED SYSTEMS IN AN URBAN SEARCH AND RESCUE ENVIRONMENT

    Get PDF
    In view of the local, regional and global security trends over the past decade, the threats of disaster to the populace inhabiting urbanized areas are real and there is a need for increased vigilance. There can be multiple causes for urban disaster natural disasters, terrorist attack and urban warfare are all viable. This thesis focused on the event in which an urban search and rescue operation is required due to the aftermath of a terrorist activity. Systems engineering techniques were utilized to analyze the problem space and suggested a plausible solution. Application of unmanned vehicles in the scenario enhanced the reconnaissance, intelligence and surveillance capabilities of the responding forces, while limiting the exposure risk of personnel. One of the many challenges facing unmanned systems in a cluttered environment is a capability to rapidly generate reactive obstacle avoidance trajectories. A direct method of calculus of variations was applied for the unmanned platforms to achieve mission objectives collaboratively, and perform real-time trajectory optimization for a collision-free flight. Dynamic models were created to enable simulated operations within the thesis design scenario. Experiments conducted in an indoor lab verified the unmanned systems ability to avoid obstacles and carry out collaborative missions successfully.http://archive.org/details/integrationofmul1094532805Civilian, Defence Science and Technology Agency, Singapor

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Nondestructive evaluation and underwater repair of composite structures

    Get PDF
    Thesis (S.M. and Nav. E.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (leaves 98-106).Composite materials are gaining popularity in U.S. Naval applications because of their unparalleled strength, stiffness, and manufacturing simplicity. A better understanding of the structural integrity of these materials has the potential to reduce overdesign, decrease manufacturing cost, and simplify repairs. Though underwater nondestructive evaluation of composites has not been well documented, this thesis illustrates the available technologies for underwater evaluation and repair of laminated composite structures, similar to those currently used in marine applications. Dependent on accuracy and reliability of underwater evaluation, the decision to pursue temporary or permanent repairs may be made based on available information regarding the structural integrity of the effected repairs. Discussion of the environmental effects on composite laminates and their repairs is included to provide insight into the detrimental effects of contaminates such as saltwater and petroleum products. The effect of the environment has a profound impact on the quality of composite repairs using currently available repair materials. Underwater repairs, whether permanent or temporary, are suggested for future U.S. Navy components such as the DDG-1000 composite twisted rudder. Furthermore, a suggestion is made to eliminate the use of cofferdams on U.S. Navy shaft covering repairs in order to reduce both cost and the risk of injury associated with a cofferdam.by William L. Hagan III.S.M.and Nav.E

    Sovereignty Through Security? Canada's Arctic Defence in the Surveillance Age

    Get PDF
    This project considers how materials, practices and semiotics align and structure the development and use of security technologies in the Canadian Arctic. The dissertation asks: does the development of new technologies geared towards surveillance of the Canadian Arctic represent a new approach to security in the North? It is argued that current technological developments are grounded in a particular sociotechnical imaginary that is at once predicated on historical state practices while drawing from a more comprehensive assemblage of modern state strategies that are refracted through a lens of futurity. Notably, how the Arctic is understood and rationalized as a space of social and political life is dependent on a uniquely securitized image of the future. Within this imaginary, the Canadian state's rhetorical claims to sovereignty are threatened by the potential for competing expressions of power enabled by climate change, technological diffusion, and other trends at the international scale. Consequently, technologies developed for surveillance, intelligence, and Arctic security more broadly are designed to support practices of pre-emption as techniques of state power. Canada is prioritizing technological innovation as a governance strategy designed to rationalize and consolidate its power over its Arctic territory. Broadly, this strategy is predicated on illuminating the Arctic using the visible and non-visible spectrums, which contributes to sovereignty as a rhetorical, material, and symbolic signifier of state power and control. In order to demonstrate the interplay between this imaginary and material expressions of state sovereignty, the concept of full-spectral dominance is deployed as a technique of power that captures the state's security ambitions through the joint practices of surveillance and intelligence (sensing). This concept is illustrated through an examination of current technological developments being pursued by the Canadian state through the All Domain Situational Awareness (ADSA) Program led by National Defence along with related programs and developments. In sum, these developments exhibit how increasingly imaginative views of the Arctic’s future contour state-led practices in the present

    The Effect of Task Load, Automation Reliability, and Environment Complexity on UAV Supervisory Control Performance

    Get PDF
    Over the last decade, military unmanned aerial vehicles (UAVs) have experienced exponential growth and now comprise over 40% of military aircraft. However, since most military UAVs require multiple operators (usually an air vehicle operator, payload operator, and mission commander), the proliferation of UAVs has created a manpower burden within the U.S. military. Fortunately, simultaneous advances in UAV automation have enabled a switch from direct control to supervisory control; future UAV operators will no longer directly control a single UAV subsystem but, rather, will control multiple advanced, highly autonomous UAVs. However, research is needed to better understand operator performance in a complex UAV supervisory control environment. The Naval Research Lab (NRL) developed SCOUT™ (Supervisory Control Operations User Testbed) to realistically simulate the supervisory control tasks that a future UAV operator will likely perform in a dynamic, uncertain setting under highly variable time constraints. The study reported herein used SCOUT to assess the effects of task load, environment complexity, and automation reliability on UAV operator performance and automation dependence. The effects of automation reliability on participants’ subjective trust ratings and the possible dissociation between task load and subjective workload ratings were also explored. Eighty-one Navy student pilots completed a 34:15 minute pre-scripted SCOUT scenario, during which they managed three helicopter UAVs. To meet mission goals, they decided how to best allocate the UAVs to locate targets while they maintained communications, updated UAV parameters, and monitored their sensor feeds and airspace. After completing training on SCOUT, participants were randomly sorted into low and high automation reliability groups. Within each group, task load (the number of messages and vehicle status updates that had to be made and the number of new targets that appeared) and environment complexity (the complexity of the payload monitoring task) were varied between low and high levels over the course of the scenario. Participants’ throughput, accuracy, and expected value in response to mission events were used to assess their performance. In addition, participants rated their subjective workload and fatigue using the Crew Status Survey. Finally, a four-item survey modeled after Lee and Moray’s validated (1994) scale was used to assess participants’ trust in the payload task automation and their self-confidence that they could have manually performed the payload task. This study contributed to the growing body of knowledge on operator performance within a UAV supervisory control setting. More specifically, it provided experimental evidence of the relationship between operator task load, task complexity, and automation reliability and their effects on operator performance, automation dependence, and operators’ subjective experiences of workload and fatigue. It also explored the relationship between automation reliability and operators’ subjective trust in said automation. The immediate goal of this research effort is to contribute to the development of a suite of domain-specific performance metrics to enable the development and/or testing and evaluation of future UAV ground control stations (GCS), particularly new work support tools and data visualizations. Long-term goals also include the potential augmentation of the current Aviation Selection Test Battery (ASTB) to better select future UAV operators and operational use of the metrics to determine mission-specific manpower requirements. In the far future, UAV-specific performance metrics could also contribute to the development of a dynamic task allocation algorithm for distributing control of UAVs amongst a group of operators
    corecore