847 research outputs found

    Selection of the key earth observation sensors and platforms focusing on applications for Polar Regions in the scope of Copernicus system 2020-2030

    Get PDF
    An optimal payload selection conducted in the frame of the H2020 ONION project (id 687490) is presented based on the ability to cover the observation needs of the Copernicus system in the time period 2020–2030. Payload selection is constrained by the variables that can be measured, the power consumption, and weight of the instrument, and the required accuracy and spatial resolution (horizontal or vertical). It involved 20 measurements with observation gaps according to the user requirements that were detected in the top 10 use cases in the scope of Copernicus space infrastructure, 9 potential applied technologies, and 39 available commercial platforms. Additional Earth Observation (EO) infrastructures are proposed to reduce measurements gaps, based on a weighting system that assigned high relevance for measurements associated to Marine for Weather Forecast over Polar Regions. This study concludes with a rank and mapping of the potential technologies and the suitable commercial platforms to cover most of the requirements of the top ten use cases, analyzing the Marine for Weather Forecast, Sea Ice Monitoring, Fishing Pressure, and Agriculture and Forestry: Hydric stress as the priority use cases.Peer ReviewedPostprint (published version

    Europe's Space capabilities for the benefit of the Arctic

    Get PDF
    In recent years, the Arctic region has acquired an increasing environmental, social, economic and strategic importance. The Arctic’s fragile environment is both a direct and key indicator of the climate change and requires specific mitigation and adaptation actions. The EU has a clear strategic interest in playing a key role and is actively responding to the impacts of climate change safeguarding the Arctic’s fragile ecosystem, ensuring a sustainable development, particularly in the European part of the Arctic. The European Commission’s Joint Research Centre has recently completed a study aimed at identifying the capabilities and relevant synergies across the four domains of the EU Space Programme: earth observation, satellite navigation, satellite communications, and space situational awareness (SSA). These synergies are expected to be key enablers of new services that will have a high societal impact in the region, which could be developed in a more cost-efficient and rapid manner. Similarly, synergies will also help exploit to its full extent operational services that are already deployed in the Arctic (e.g., the Copernicus emergency service or the Galileo Search and rescue service could greatly benefit from improved satellite communications connectivity in the region).JRC.E.2-Technology Innovation in Securit

    Monitoring environmental and climate goals for European agriculture: User perspectives on the optimization of the Copernicus evolution offer

    Get PDF
    Abstract A vicious cycle exists between agricultural production and climate change, where agriculture is both a driver and a victim of the changing climate. While new and ambitious environmental and climate change-oriented goals are being introduced in Europe, the monitoring of these objectives is often jeopardized by a lack of technological means and a reliance on heavy administrative procedures. In particular, remote sensing technologies have the potential to significantly improve the monitoring of such goals but the characteristics of such missions should take into consideration the needs of users to guarantee return on investments and effective policy implementation. This study aims at identifying gaps in the current offer of Copernicus products for the monitoring of the agricultural sector through the elicitation of stakeholder requirements. The methodology is applied to the case study of Italy while the approach is scalable at European level. The elicitation process associates user needs to the European and national legislative framework to create a policy-oriented demand of Copernicus Earth Observation services. Results show the limitations faced by environmental managers in relation to the use of Remote Sensing technologies and the shortcomings associated with a purely technology driven approach to the development of satellite missions. Through the introduction of this flexible and user centred approach instead, this paper provides a clear overview of agro-environmental user requirements and represents the basis for the definition of an integrated agricultural service

    The Mission Assessment Post Processor (MAPP): A New Tool for Performance Evaluation of Human Lunar Missions

    Get PDF
    The National Aeronautics and Space Administration s (NASA) Constellation Program paves the way for a series of lunar missions leading to a sustained human presence on the Moon. The proposed mission design includes an Earth Departure Stage (EDS), a Crew Exploration Vehicle (Orion) and a lunar lander (Altair) which support the transfer to and from the lunar surface. This report addresses the design, development and implementation of a new mission scan tool called the Mission Assessment Post Processor (MAPP) and its use to provide insight into the integrated (i.e., EDS, Orion, and Altair based) mission cost as a function of various mission parameters and constraints. The Constellation architecture calls for semiannual launches to the Moon and will support a number of missions, beginning with 7-day sortie missions, culminating in a lunar outpost at a specified location. The operational lifetime of the Constellation Program can cover a period of decades over which the Earth-Moon geometry (particularly, the lunar inclination) will go through a complete cycle (i.e., the lunar nodal cycle lasting 18.6 years). This geometry variation, along with other parameters such as flight time, landing site location, and mission related constraints, affect the outbound (Earth to Moon) and inbound (Moon to Earth) translational performance cost. The mission designer must determine the ability of the vehicles to perform lunar missions as a function of this complex set of interdependent parameters. Trade-offs among these parameters provide essential insights for properly assessing the ability of a mission architecture to meet desired goals and objectives. These trades also aid in determining the overall usable propellant required for supporting nominal and off-nominal missions over the entire operational lifetime of the program, thus they support vehicle sizing

    A study of translunar trajectories for a small satellite navigation and communications mission

    Get PDF
    Analysis was done to determine fuel optimal translunar trajectories from Earth geostationary transfer orbit to a specified target lunar orbit for a small satellite navigation and communication mission. The study included the optimization of impulsive and finite burn transfers. The inclusion of finite burns was necessary due to the low thrust nature of a small satellite propulsion system. Finite burn optimization was achieved using suboptimal parameterization control theory. The orbital parameters of the initial Earth orbit as well as the target lunar orbit were varied to see how this affected the optimal transfer results. Additionally, two engine thrust levels were explored to find the impact on the fuel mass required. All optimization analyses were completed using Copernicus, a trajectory optimization software package developed at the University of Texas at Austin for the National Aeronautics and Space Administration (NASA)

    Benefits of using mobile ad-hoc network protocols in federated satellite systems for polar satellite missions

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The Operational Network of Individual Observation Nodes (ONION) project evaluated the benefits of applying Distributed Satellite System (DSS) architectures to Earth Observation. One of its outcomes is the identification of Arctic services as top priority current user needs that require near-realtime observations. Using Inter-Satellite Communications (ISC) capabilities, a Federated Satellite System (FSS) can establish a win-win collaboration between two spacecrafts to provide these services. However, as a FSS is established during the contact between two satellites, the service duration is limited. Therefore, the Internet of Satellites (IoSat) paradigm promotes the use of multi-hop sporadic networks to deploy FSS. In this context, the routing protocol (which identifies routes between a source-destination pair) becomes crucial. One of the most extended networks is the Mobile Ad-hoc Network (MANET), in which nodes are constantly moving and changing the network topology. In principle, applying MANET technologies in the IoSat context would provide self-organization, self-configuration, and flexibility to satellite systems. The Optimized Link-State Routing (OLSR) protocol is the predominant solution in MANET, because it quickly reacts against topology changes. This article aims at studying the benefits of using satellite networks with MANET solutions (e.g. OLSR) for polar satellite missions. The results presented in this article demonstrate that the access time is significantly improved, and thus these new Arctic services can be achieved.Peer ReviewedPostprint (author's final draft

    Earth Observations for Addressing Global Challenges

    Get PDF
    "Earth Observations for Addressing Global Challenges" presents the results of cutting-edge research related to innovative techniques and approaches based on satellite remote sensing data, the acquisition of earth observations, and their applications in the contemporary practice of sustainable development. Addressing the urgent tasks of adaptation to climate change is one of the biggest global challenges for humanity. As His Excellency António Guterres, Secretary-General of the United Nations, said, "Climate change is the defining issue of our time—and we are at a defining moment. We face a direct existential threat." For many years, scientists from around the world have been conducting research on earth observations collecting vital data about the state of the earth environment. Evidence of the rapidly changing climate is alarming: according to the World Meteorological Organization, the past two decades included 18 of the warmest years since 1850, when records began. Thus, Group on Earth Observations (GEO) has launched initiatives across multiple societal benefit areas (agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather), such as the Global Forest Observations Initiative, the GEO Carbon and GHG Initiative, the GEO Biodiversity Observation Network, and the GEO Blue Planet, among others. The results of research that addressed strategic priorities of these important initiatives are presented in the monograph

    Architectural optimization results for a network of earth-observing satellite nodes

    Get PDF
    Earth observation satellite programs are currently facing, for some applications, the need to deliver hourly revisit times, sub-kilometric spatial resolutions and near-real-time data access times. These stringent requirements, combined with the consolidation of small-satellite platforms and novel distributed architecture approaches, are stressing the need to study the design of new, heterogeneous and heavily networked satellite systems that can potentially replace or complement traditional space assets. In this context, this paper presents partial results from ONION, a research project devoted to study distributed satellite systems and their architecting characteristics. A design-oriented framework that allows selecting optimal architectures for a given user needs is presented in this paper. The framework has been used in the study of a strategic use-case and its results are hereby presented. From an initial design space of 5586 unique architectures, the framework has been able to pre-select 28 candidate designs by an exhaustive analysis of their performance and by quantifying their quality attributes. This very exploration of architectures and the characteristics of the solution space, are presented in this paper along with the selected solution and the results of a detailed performance analysis.Postprint (published version

    European Arctic Initiatives Compendium

    Get PDF
    Julkaistu versi

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version
    • …
    corecore