39 research outputs found

    Optimization of LiDAR MEMS Data Computation for Point Cloud Creation

    Get PDF
    The goal of this project is to conceptualize and design a digital signal processing system for a LiDAR sensor to be applied in the automotive industry. The way the sensor works and how it influences and interfaces with the microcontroller, where the processing will take place, must be properly analyzed. Then, the right algorithms must be chosen in a justifiable way and the system that performs them has to be designed. This system must operate under strict real-time restrictions and obey to performance and cost requirements

    Detection and Prediction of Epileptic Seizures

    Get PDF

    System architecture study of an orbital GPS user terminal

    Get PDF
    The generic RF and applications processing requirements for a GPS orbital navigator are considered. A line of demarcation between dedicated analog hardware, and software/processor implementation, maximizing the latter is discussed. A modular approach to R/PA design which permits several varieties of receiver to be constructed from basic components is described. It is a basic conclusion that software signal processing of the output of the baseband correlator is the best choice of transition from analog to digital signal processing. High performance sets requiring multiple channels are developed from a generic design by replicating the RF processing segment, and modifying the applications software to provide enhanced state propagation and estimation

    Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program

    Get PDF
    The activities are reported of the NASA Biomedical Applications Team at Southwest Research Institute between 25 August, 1972 and 15 November, 1973. The program background and methodology are discussed along with the technology applications, and biomedical community impacts

    The application of digital techniques to an automatic radar track extraction system

    Get PDF
    'Modern' radar systems have come in for much criticism in recent years, particularly in the aftermath of the Falklands campaign. There have also been notable failures in commercial designs, including the well-publicised 'Nimrod' project which was abandoned due to persistent inability to meet signal processing requirements. There is clearly a need for improvement in radar signal processing techniques as many designs rely on technology dating from the late 1970's, much of which is obsolete by today鈥檚 standards. The Durham Radar Automatic Track Extraction System (RATES) is a practical implementation of current microprocessor technology, applied to plot extraction of surveillance radar data. In addition to suggestions for the design of such a system, results are quoted for the predicted performance when compared with a similar product using 1970's design methodology. Suggestions are given for the use of other VLSI techniques in plot extraction, including logic arrays and digital signal processors. In conclusion, there is an illustrated discussion concerning the use of systolic arrays in RATES and a prediction that this will represent the optimum architecture for future high-speed radar signal processors

    Low power, reduced complexity filtering and improved tracking accuracy for GNSS

    Get PDF
    This thesis addresses the power consumption problems resulting from the advent of multiple GNSS satellite systems which create the need for receivers supporting multi-frequency, multi-constellation GNSS systems. Such a multi-mode receiver requires a substantial amount of signal processing power which translates to increased hardware complexity and higher power dissipation which reduces the battery life of a mobile platform. During the course of the work undertaken, a power analysis tool was developed in order to be able to estimate the hardware utilisation as well as the power consumption of a digital system. By using the power estimation tool developed, it was established that most of the power was dissipated after the Analog to Digital Converter (ADC)by the filters associated with the decimation process. The power dissipation and the hardware complexity of the decimator can be reduced substantially by using a minimum-phase Infinite Impulse Response (IIR) filter. For Global Positioning System (GPS) civilian signals, the use of IIR filters does not deleteriously affect the positional accuracy. However, in the case where an IIR filter was deployed in a GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS) receiver, the pseudorange measurements of the receiver varied by up to 200 metres. The work undertaken proposes various methods that overcomes the pseudorange measurement variation and reports on the results that are on par with linear-phase Finite Impulse Response (FIR) filters. The work also proposes a modified tracking loop that is capable of tracking very low Doppler frequencies without decreasing the tracking performance

    Liquid stream processing on the web: a JavaScript framework

    Get PDF
    The Web is rapidly becoming a mature platform to host distributed applications. Pervasive computing application running on the Web are now common in the era of the Web of Things, which has made it increasingly simple to integrate sensors and microcontrollers in our everyday life. Such devices are of great in- terest to Makers with basic Web development skills. With them, Makers are able to build small smart stream processing applications with sensors and actuators without spending a fortune and without knowing much about the technologies they use. Thanks to ongoing Web technology trends enabling real-time peer-to- peer communication between Web-enabled devices, Web browsers and server- side JavaScript runtimes, developers are able to implement pervasive Web ap- plications using a single programming language. These can take advantage of direct and continuous communication channels going beyond what was possible in the early stages of the Web to push data in real-time. Despite these recent advances, building stream processing applications on the Web of Things remains a challenging task. On the one hand, Web-enabled devices of different nature still have to communicate with different protocols. On the other hand, dealing with a dynamic, heterogeneous, and volatile environment like the Web requires developers to face issues like disconnections, unpredictable workload fluctuations, and device overload. To help developers deal with such issues, in this dissertation we present the Web Liquid Streams (WLS) framework, a novel streaming framework for JavaScript. Developers implement streaming operators written in JavaScript and may interactively and dynamically define a streaming topology. The framework takes care of deploying the user-defined operators on the available devices and connecting them using the appropriate data channel, removing the burden of dealing with different deployment environments from the developers. Changes in the semantic of the application and in its execution environment may be ap- plied at runtime without stopping the stream flow. Like a liquid adapts its shape to the one of its container, the Web Liquid Streams framework makes streaming topologies flow across multiple heterogeneous devices, enabling dynamic operator migration without disrupting the data flow. By constantly monitoring the execution of the topology with a hierarchical controller infrastructure, WLS takes care of parallelising the operator execution across multiple devices in case of bottlenecks and of recovering the execution of the streaming topology in case one or more devices disconnect, by restarting lost operators on other available devices

    The development of an in-vivo method for assessing the antithrombotic properties of pharmaceutical compounds

    Get PDF
    The formation of a thrombus stems from the malfunction of a normal physiological function referred to as haemostasis and the activity of blood platelets; such thrombi give rise to debilitating and often fatal strokes. Consequently much effort is associated with the search for pharmacological compounds capable of their prevention or dispersion. 路 Most of the primary screens associated with such work rely on in-vitro tests and in separating the blood from it's vasculature, the influence and results associated with several naturally occuring moderators may be lost. There therefore exists the incentive to develop more representative in-vivo screening methods. Following an introduction to the underlying physiology and pharmacology and a review of established screening methods, this thesis proceeds to describe the development of a novel technique suitable for such in-vivo studies. It's inception is shown to be a consequence of an amalgamation of ultrasonic methods associated with the clinical detection of occlusions and laser Doppler velocimetry. Both topics are individually surveyed and then brought together through a concept whereby the efficacy of compounds might be evaluated in animal models by measuring the velocity of blood in the fluid jet formed distal to an induced thrombus.The main underlying assumption is that the jet velocity will reflect the degree of encroachment of the thrombus into the vasculature. In accord with the evolved measurement rationale there then follows a description of a specific laser Doppler velocimeter and some associated experiments, designed to qualitatively appraise the validity of the underlying assumptions. The ensuing results in turn give rise to the design of a laser Doppler microscope, an analyser for extracting the required velocity information from the Doppler shift spectrum and an additional series of experiments. Central to this latter stage of validation is the use of a thrombus analogue in a narrow bored glass flow tube. Finally, some preliminary in-vivo experiments and results are presented
    corecore