473 research outputs found

    Implementation and comparison of iSCSI over RDMA

    Get PDF
    iSCSI is an emerging storage network technology that allows for block-level access to disk drives over a computer network. Since iSCSI runs over the very ubiquitous TCP/IP protocol it has many advantages over its more proprietary alternatives. Due to the recent movement toward 10 gigabit Ethernet, storage vendors are interested to see how this large increase in network bandwidth could benefit the iSCSI protocol. In order to make full use of the bandwidth provided by a 10 gigabit Ethernet link, specialized Remote Direct Memory Access hardware is being developed to offload processing and reduce the data-copy-overhead found in a standard TCP/IP network stack. This thesis focuses on the development of an iSCSI implementation that is capable of supporting this new hardware and the evaluation of its performance. This thesis depicts the approach used to implement the iSCSI Extensions for Remote Direct Memory Access (iSER) with the UNH iSCSI reference implementation. This approach involves a three step process: moving UNH-iSCSI from the Linux kernel to the Linux user-space, adding support for the iSER extensions to our user-space iSCSI and finally moving everything back into the Linux kernel. In addition to a description of the implementation, results are given that demonstrate the performance of the completed iSER-assisted iSCSI implementation

    SDN Enabled Network Efficient Data Regeneration for Distributed Storage Systems

    Get PDF
    Distributed Storage Systems (DSSs) have seen increasing levels of deployment in data centers and in cloud storage networks. DSS provides efficient and cost-effective ways to store large amount of data. To ensure reliability and resilience to failures, DSS employ mirroring and coding schemes at the block and file level. While mirroring techniques provide an efficient way to recover lost data, they do not utilize disk space efficiently, resulting in large overheads in terms of data storage. Coding techniques on the other hand provide a better way to recover data as they reduce the amount of storage space required for data recovery purposes. However, the current recovery process for coded data is not efficient due to the need to transfer large amounts of data to regenerate the data lost as a result of a failure. This results in significant delays and excessive network traffic resulting in a major performance bottleneck. In this thesis, we propose a new architecture for efficient data regeneration in distribution storage systems. A key idea of our architecture is to enable network switches to perform network coding operations, i.e., combine packets they receive over incoming links and forward the resulting packet towards the destination and do this in a principled manner. Another key element of our framework is a transport-layer reverse multicast protocol that takes advantage of network coding to minimize the rebuild time required to transmit the data by allowing more efficient utilization of network bandwidth. The new architecture is supported using the principles of Software Defined Networking (SDN) and making extensions where required in a principled manner. To enable the switches to perform network coding operations, we propose an extension of packet processing pipeline in the dataplane of a software switch. Our testbed experiments show that the proposed architecture results in modest performance gains

    A shared-disk parallel cluster file system

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Informática Pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaToday, clusters are the de facto cost effective platform both for high performance computing (HPC) as well as IT environments. HPC and IT are quite different environments and differences include, among others, their choices on file systems and storage: HPC favours parallel file systems geared towards maximum I/O bandwidth, but which are not fully POSIX-compliant and were devised to run on top of (fault prone) partitioned storage; conversely, IT data centres favour both external disk arrays (to provide highly available storage) and POSIX compliant file systems, (either general purpose or shared-disk cluster file systems, CFSs). These specialised file systems do perform very well in their target environments provided that applications do not require some lateral features, e.g., no file locking on parallel file systems, and no high performance writes over cluster-wide shared files on CFSs. In brief, we can say that none of the above approaches solves the problem of providing high levels of reliability and performance to both worlds. Our pCFS proposal makes a contribution to change this situation: the rationale is to take advantage on the best of both – the reliability of cluster file systems and the high performance of parallel file systems. We don’t claim to provide the absolute best of each, but we aim at full POSIX compliance, a rich feature set, and levels of reliability and performance good enough for broad usage – e.g., traditional as well as HPC applications, support of clustered DBMS engines that may run over regular files, and video streaming. pCFS’ main ideas include: · Cooperative caching, a technique that has been used in file systems for distributed disks but, as far as we know, was never used either in SAN based cluster file systems or in parallel file systems. As a result, pCFS may use all infrastructures (LAN and SAN) to move data. · Fine-grain locking, whereby processes running across distinct nodes may define nonoverlapping byte-range regions in a file (instead of the whole file) and access them in parallel, reading and writing over those regions at the infrastructure’s full speed (provided that no major metadata changes are required). A prototype was built on top of GFS (a Red Hat shared disk CFS): GFS’ kernel code was slightly modified, and two kernel modules and a user-level daemon were added. In the prototype, fine grain locking is fully implemented and a cluster-wide coherent cache is maintained through data (page fragments) movement over the LAN. Our benchmarks for non-overlapping writers over a single file shared among processes running on different nodes show that pCFS’ bandwidth is 2 times greater than NFS’ while being comparable to that of the Parallel Virtual File System (PVFS), both requiring about 10 times more CPU. And pCFS’ bandwidth also surpasses GFS’ (600 times for small record sizes, e.g., 4 KB, decreasing down to 2 times for large record sizes, e.g., 4 MB), at about the same CPU usage.Lusitania, Companhia de Seguros S.A, Programa IBM Shared University Research (SUR

    Performance analysis and design of iSCSI over wireless network

    Get PDF
    Master'sMASTER OF ENGINEERIN

    The global unified parallel file system (GUPFS) project: FY 2002 activities and results

    Full text link

    Performance analysis of an iSCSI block device in virtualized environment

    Get PDF
    Virtualization is new to telecom but it has been already implemented in IT sectors. Thus its benefits are already proven, which drags other sectors attention towards it. Now the telecom organizations are also focusing on virtualization to reap the full benefits of it. The main focus of this thesis is to conduct a performance analysis of a block storage device in a virtualization environment. Storage performance plays vital role in telecom sector. The performance and the reliability of the storage device is more important factor to fulfill the client request with minimum latency. This thesis is comprised of three main areas. The first literature part is to study the different storage networking possibilities and the different storage protocol practice to establish communication between server and the storage in the storage area network. The study indicated that Internet Small Computer System Interface (iSCSI) has more advantages than other practices in the storage area network. The second part covers the design of storage area network (SAN) solution. The storage is offered by an iSCSI storage server. It offers a block level storage device access to the compute server. Different iSCSI targets are available in market, performance of those were compared. Linux-IO Target was concluded as better iSCSI target with better performance and reliability. The Storage server was implemented as a virtual machine for better resource utilization, thus there was a study about the hypervisor and the different networking options for the virtual machines were compared. The final part is to optimize the SAN solution. Multipathing, different caching options and different driver options provided by the kernel virtual machine (KVM)/ Quick emulators (QEMU) were considered for optimization

    Implementation and Evaluation of iSCSI over RDMA

    Full text link
    iSCSI is an emerging storage network technology that al-lows block-level access to storage devices, such as disk drives, over a computer network. Since iSCSI runs over the ubiquitous TCP/IP protocol, it has many advantages over its more proprietary alternatives. Due to the recent movement toward 10 gigabit Ethernet, storage vendors are interested to see the benefits this large increase in network bandwidth could bring to iSCSI. In order to make full use of the bandwidth provided by a 10 gigabit Ethernet link, specialized Remote Direct Memory Access hardware is being developed to offload processing and reduce the data-copy-overhead found in a standard TCP/IP network stack. This paper focuses on the development of an iSCSI implementation that is capa

    Cheetah: An Economical Distributed RAM Drive

    Get PDF
    Current hard drive technology shows a widening gap between the ability to store vast amounts of data and the ability to process. To overcome the problems of this secular trend, we explore the use of available distributed RAM resources to effectively replace a mechanical hard drive. The essential approach is a distributed Linux block device that spreads its blocks throughout spare RAM on a cluster and transfers blocks using network capacity. The presented solution is LAN-scalable, easy to deploy, and faster than a commodity hard drive. The specific driving problem is I/O intensive applications, particularly digital forensics. The prototype implementation is a Linux 2.4 kernel module, and connects to Unix based clients. It features an adaptive prefetching scheme that seizes future data blocks for each read request. We present experimental results based on generic benchmarks as well as digital forensic applications that demonstrate significant performance gains over commodity hard drives
    corecore