
University of New Hampshire
University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Spring 2008

Implementation and comparison of iSCSI over
RDMA
Ethan Burns
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For
more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Burns, Ethan, "Implementation and comparison of iSCSI over RDMA" (2008). Master's Theses and Capstones. 356.
https://scholars.unh.edu/thesis/356

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UNH Scholars' Repository

https://core.ac.uk/display/215515605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/356?utm_source=scholars.unh.edu%2Fthesis%2F356&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

IMPLEMENTATION AND COMPARISON OF ISCSI

OVER R D M A

BY

Ethan Burns

B.S., University of New Hampshire (2006)

THESIS

Submitted to the University of New Hampshire
in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

in

Computer Science

May 2008

UMI Number: 1454987

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1454987

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

This thesis has been examined and approved.

U-B
Thesis director, Robert Russell,
Associate Professor of Computer Science

4-<zJl\fi~^ p*^-^-i^

Radim Bartos,
Associate Professor of Computer Science

Robert Noseworthy,
UNH-IOL, Chief Engineer

0
Barry Rfeinhold,
President, Lamprey Networks

Da te^ 7

ACKNOWLEDGMENTS

I would like to thank Dr. Robert D. Russell for all of his help throughout this entire project.

I would also like to thank my committee for their guidance and advice, and Mikkel Hagen

for his critiques and suggestions. Finally, I would like to thank the iSCSI, OFA and iWARP

groups at the University of New Hampshire InterOperability Lab for their vast knowledge

and technical help.

i i i

CONTENTS

ACKNOWLEDGMENTS iii

LIST OF TABLES vii

LIST OF FIGURES ix

ABSTRACT x

1 I N T R O D U C T I O N 1

1.1 The iSCSI Protocol 1

1.2 Remote Direct Memory Access 2

1.3 iSCSI Extensions for RDMA 4

1.4 Thesis Goals 5

1.5 Outline 5

2 B A C K G R O U N D 8

2.1 SCSI 8

2.2 iSCSI . 10

2.2.1 Login Phase 12

2.2.2 Full Feature Phase 14

2.2.3 Logout Phase 17

2.3 RDMA 18

2.3.1 Marker PDU Aligned Framing 19

2.3.2 Direct Data Placement 20

2.3.3 Remote Direct Memory Access Protocol 23

2.4 iSER 25

2.4.1 iSER Operational Primitives 25

iv

2.4.2 iSER Specific iSCSI Login/Text Keys 28

2.4.3 iSER Inbound/Outbound RDMA Read Queue Depths 28

2.4.4 iSER Connection Setup 29

2.4.5 iSER Hello Message Exchange 30

2.4.6 iSER Connection Termination 30

2.4.7 iSER-Assisted iSCSI Read Operation 30

2.4.8 iSER-Assisted iSCSI Write Operation 32

2.4.9 iSER and Current RDMA Hardware 33

3 I M P L E M E N T A T I O N 34

3.0.10 Protocol Layers 34

3.1 iSCSI 35

3.1.1 Three Steps 36

3.1.2 Emulating the Kernel-Space APIs 36

3.1.3 Moving to User-Space 38

3.2 RDMA Interfaces 40

3.3 Software iWARP 41

3.3.1 Difficulties With the OFA Stack in User-Space 44

3.4 Adding iSER Support 45

3.4.1 iSER Modifications 46

3.5 Moving to Kernel-Space 47

3.5.1 Deferred Event Handling 48

3.5.2 Call-back Functions v.s. Queues 49

3.5.3 Memory Registration 51

3.6 iSER Difficulties 56

3.6.1 TCP Stream Transitioning 56

3.6.2 Zero-based Virtual Addressing 60

3.6.3 Send with Solicited Event and Invalidate 63

v

3.7 The Completed Implementation 65

3.7.1 iSER Layer Layout 65

3.7.2 iSCSI Target 67

3.7.3 iSCSI Initiator 70

4 RESULTS 74

4.1 Tests Performed 74

4.2 Throughput 76

4.2.1 Maximum Data Throughput 77

4.2.2 Kernel-Space Throughput 79

4.2.3 User-Space Throughput 83

4.2.4 User-Space and Kernel-Space 85

5 CONCLUSIONS 93

5.1 Conclusions 93

5.2 Future Work 94

BIBLIOGRAPHY 96

VI

LIST OF TABLES

4.1 Performance Test Combinations 75

4.2 Header Bytes With iWARP RDMA 78

4.3 Header Bytes With With TCP/IP 78

5.1 Throughput Performance Results 93

vn

LIST OF FIGURES

1-1 Traditional TCP Receiving Data 3

1-2 RDMA Receiving Data 3

1-3 Traditional TCP Sending Data 4

1-4 RDMA Sending Data 5

1-5 iSCSI-iSER-RDMA stack 6

2-1 The iSER-Protocol Stack (with iWARP) 9

2-2 Devices Connected Using Parallel SCSI 10

2-3 Devices Connected Using iSCSI 12

2-4 A Simple iSCSI Login 15

2-5 An iSCSI Encapsulated SCSI READ Command 16

2-6 An iSCSI Encapsulated SCSI WRITE Command 17

2-7 A Theoretical DDP Frame Without MPA 21

2-8 A DDP Segment Using MPA 22

2-9 An iSER-Assisted iSCSI Read 31

2-10 An iSER-Assisted iSCSI Write 32

3-1 iSCSI-iSER-RDMA Stacks 35

3-2 User-space iSCSI Implementation 40

3-3 iSER Over OSC RNIC 42

3-4 Hybrid Software/Hardware RDMA 44

3-5 Pseudo Algorithm for Processing CQ Events 46

3-6 Registered Memory Regions 52

3-7 Scatter/Gather Lists 54

viii

3-8 TCP Stream Transitioning, Theoretical V.S Actual 58

3-9 Zero-based Virtual Addressing 61

3-10 Non-Zero-Based Virtual Addressing 62

3-11 iSER Headers 64

3-12 iSER Target-Side Connection Establishment 66

3-13 iSER Initiator-Side Connection Establishment 67

3-14 iSCSI Target Thread Interactions 70

3-15 iSCSI/iSER Layer Interaction 71

3-16 iSCSI Initiator Thread Interactions 72

4-1 Kernel-space iSCSI Read Throughput 80

4-2 Kernel-space iSCSI Write Throughput 82

4-3 Kernel-space iSER Read and Write Throughputs 83

4-4 User-space iSCSI Read Throughput 84

4-5 User-space iSCSI Write Throughput 85

4-6 User-space iSER Read and Write Throughputs 86

4-7 iSER Read Operation Throughput 86

4-8 iSER Write Operation Throughput 87

4-9 Hybrid User/Kernel-Space iSER Write Operation Throughput 87

4-10 Kernel-space and User-space iSER-Assisted Initiator Layering 88

4-11 Kernel-space and User-space 1MB Write Operation 90

4-12 Hybrid User/Kernel-Space iSER Write Operation Throughput 91

4-13 Hybrid User-Space iSER Write Operation Throughput 92

ix

ABSTRACT

I M P L E M E N T A T I O N A N D C O M P A R I S O N O F I S C S I O V E R R D M A

by

E t h a n Burns
University of New Hampshire, May, 2008

iSCSI is an emerging storage network technology that allows for block-level access to

disk drives over a computer network. Since iSCSI runs over the very ubiquitous T C P / I P

protocol it has many advantages over its more proprietary alternatives. Due to the recent

movement toward 10 gigabit Ethernet, storage vendors are interested to see how this large

increase in network bandwidth could benefit the iSCSI protocol.

In order to make full use of the bandwidth provided by a 10 gigabit Ethernet link,

specialized Remote Direct Memory Access hardware is being developed to offload processing

and reduce the data-copy-overhead found in a standard T C P / I P network stack. This thesis

focuses on the development of an iSCSI implementation that is capable of supporting this

new hardware and the evaluation of its performance.

This thesis depicts the approach used to implement the iSCSI Extensions for Remote Di

rect Memory Access (iSER) with the UNH iSCSI reference implementation. This approach

involves a three step process: moving UNH-iSCSI from the Linux kernel to the Linux user-

space, adding support for the iSER extensions to our user-space iSCSI and finally moving

everything back into the Linux kernel. In addition to a description of the implementation,

results are given that demonstrate the performance of the completed iSER-assisted iSCSI

implementation.

x

CHAPTER 1

INTRODUCTION

1.1 The iSCSI Protocol

The Internet Small Computer Systems Interface (iSCSI) [12] protocol is an emerging Storage

Area Network (SAN) technology that uses the Internet Protocol (IP, specifically TCP/ IP)

as its underlying fabric. Since iSCSI uses the ubiquitous T C P / I P protocol instead of a

specialized network fabric it has a lower total cost of ownership than other SAN technologies

[7]. In addition to being less expensive than its competitors, iSCSI also has the ability to

provide networked storage to home users over Local Area Networks (LANs) or across the

wide area Internet [16] without requiring any specialized hardware.

The iSCSI protocol has yet to be adopted for wide-spread deployment. Part of the

reason for this is because of the huge investment that most companies already have in Fibre

Channel (FC), the current leading SAN technology. Another reason that iSCSI has yet to

see wide-spread deployment is that the IP networks that it uses don't currently match the

speed of other specialized fabrics. IP networks typically run at either 100 megabits per

second (Mbits/s) or one gigabit per second (Gbit/sec) speeds, where as FC fabrics can run

at about 4-8 Gbits/s, and Infiniband [2] (another competing technology) can reach speeds

in the 40 Gbits/s range.

1

1.2 Remote Direct Memory Access

The current 10 Gbit/s Ethernet (lOGigE) standard allows IP networks to reach competi

tive speeds, however, standard T C P / I P is not sufficient to make use of the entire lOGigE

bandwidth. The reason that T C P / I P has a difficult time filling a lOGigE link on its own

is because of data copying, packet processing and interrupt handling done on the CPU. In

a traditional T C P / I P network stack an interrupt occurs for every packet being received,

data is copied at least once in the host computer's memory and the CPU is responsible

for processing packet headers for all incoming and outgoing packets. In order to get rid

of these inefficiencies, specialized Remote Direct Memory Access (RDMA) hardware is re

quired. RDMA hardware uses the iWARP protocol suite [4] [13] [11] to move data directly

from the memory of one computer to the memory of a remote computer without extra copies

at either end. RDMA hardware will reduce the number of data copies that are required by

the T C P / I P network to one-per-host (between the memory and the wire) and it will offload

a bulk of the network-processing from the CPU. This means that applications with RDMA

support will have lower CPU usage and the ability to utilize a full lOGigE link.

Figures 1-1 and 1-2 give a depiction of the difference between traditional TCP and

iWARP on the receiver end. Notice that, in Figure 1-1, the traditional TCP example, the

CPU is interrupted for each TCP packet that it receives, it then needs to process the TCP

packet and put the data at the correct position in the reassembly buffer. After the data is

assembled the CPU copies it into the application's receive buffer. With RDMA (Figure 1-2),

the CPU is not involved; the RNIC assembles the TCP data straight into the application's

final receive buffer, no extra copying is required. This frees up the CPU to perform other

tasks while removing the overhead involved in copying, interrupt handling and processing

of TCP packets.

Figures 1-3 and 1-4 give a depiction of the difference between traditional TCP and

iWARP on the sender side. In Figure 1-3 the application copies data into the operating

system's outgoing TCP buffer. The data must remain available in the operating system

2

CPU

Remote Host

TCP Packet

TCP Packet

TCP Packet

Operating System

w

TCP

reassembly

buffer

\ .

Copy ^ ^

data

to

application

Application

Application

receive

buffer

Figure 1-1: Traditional TCP Receiving Data

Remote Host
RNIC

TCP-MPA-DDP-RDMAP Packet

TCP-MPA-DDP-RDMAP Packet

TCP-MPA-DDP-RDMAP Packet

w
W

Application
receive
buffer

Figure 1-2: RDMA Receiving Data

3

CPU

Remote Host

^ T C P Packet

^ T C P Packet

^.TCP Packet

K

Operating System

TCP

send

buffer

Copy ^ s
data

from

application

Application

Application

data

buffer

Figure 1-3: Traditional TCP Sending Data

because data loss may require TCP retransmissions. Since retransmissions are hidden from

the application, the operating system must retain its own copy of the data in case the

application destroys the data buffer before all of the data is acknowledged by the receiver.

The semantics of RDMA prevent the application from destroying the buffer before all of

the data has been transmitted. In Figure 1-4 the RNIC is able to send data directly from

the application's buffer without the need of an extra copy.

1.3 iSCSI Extensions for R D M A

One of the difficulties with RDMA is that its usage differs from traditional T C P / I P and

applications may need some re-designing to support it. In the case of iSCSI, a new IETF

standard has been created that defines the iSCSI Extensions for RDMA (iSER) [8]. iSER

describes a set of operational primitives that must be provided by an iSER implementation

for use by an iSCSI implementation, and a description of how a conformant iSER-assisted

iSCSI session must operate. Some of the design goals of iSER were to require minimal

changes to the SCSI architecture and minimal changes to the iSCSI infrastructure while

retaining minimal state information [8]. With the iSER extension an iSCSI implementation

4

Remote Host
RNIC

TCP-MPA-DDP-RDMAP Packet
<

TCP-MPA-DDP-RDMAP Packet
<

TCP-MPA-DDP-RDMAP Packet

<

Figure 1-4: RDMA Sending Data

can make use of general-purpose RDMA hardware for very-high-speed data transfers. Figure

1-5 shows the differences in the network stack between iSER-assisted iSCSI and traditional

iSCSI. Notice that in iSER-assisted iSCSI there are more layers in the stack, however, all

layers under the iSER layer are handled by the specialized RDMA hardware, not the CPU.

Also note that there is a possibility for future implementations to include the iSER layer

directly on the RNIC too, leaving only the iSCSI layer for the CPU to handle.

1.4 Thesis Goals

The goal of this thesis was to build a working iSER-assisted iSCSI implementation for Linux

using as much preexisting software as possible and to evaluate its performance in as many

situations as time allows.

1.5 Outline

• Chapter 2 of this paper gives the background information on the technologies involved

in this project. This chapter, briefly, describes the SCSI and iSCSI protocols, gives a

description of Remote Direct Memory Access and tells how they all tie together with

Application
data

buffer

5

iSER-assisted iSCSI Traditional iSCSI

iSCSI

iSER

RDMAP*

DDP-

MPA*

TCP

IP

Ethernet

iSCSI

TCP

Ethernet

CPU

Network Hardware

* Protocols in the iWARP suite. These
three protocols comprise iWARP.

Figure 1-5: iSCSI-iSER-RDMA stack

6

the iSCSI Extensions for RDMA.

• Chapter 3 of this paper describes the approach that we used to accomplish our goal

for implementing an iSER-assisted iSCSI. This chapter also describes some of the

difficulties that we encountered while implementing this project.

• Chapter 4 of this paper describes the benchmarks and comparisons that we were able

to run between different variations of iSER-assisted iSCSI and traditional iSCSI and

the results that we got from them.

• Chapter 5 of this paper presents the conclusions that we have drawn from the results

of this thesis. This chapter also describes work that future projects may perform

based on what has been done in this thesis.

7

CHAPTER 2

BACKGROUND

There is a large number of protocols that are mentioned through this document. This

chapter gives a brief background of the purpose of each of these protocols. Figure 2-1 gives

an overview of where each protocol lies in the protocol stack when using iSER-assisted

iSCSI.

2.1 SCSI

The Small Computer Systems Interface (SCSI) (the top of the protocol stack in Figure 2-1)

is an architecture for connecting peripheral devices to computers. The SCSI architecture

includes, not only a command protocol, but also a physical transport specification. The

most popular transport for the SCSI command protocol is one called parallel SCSI. This

transport system uses a set of parallel wires in order to transport entire words between

two connected devices. Traditionally, high-end systems use the parallel SCSI transport to

communicate with storage systems, such as disks or tape drives. One of the big advantages

of using the SCSI architecture is that it is well supported by all major operating systems

and by a very large number of devices used in high-end computing systems. For this reason

the SCSI protocol has been very largely adopted in storage systems.

The SCSI protocol has two different classifications of devices: initiators and targets. A

SCSI initiator device is one that constructs commands using Command Descriptor Blocks,

or just CDBs for short, and a SCSI target device services SCSI commands received from an

initiator. Typically an initiator will be the Host Bus Adaptor (HBA) in a computer (along

8

SCSI

iSCSI

DA/iSER

RDMAP

DDP

MPA

TCP

IP

Ethernet

Figure 2-1: The iSER-Protocol Stack (with iWARP)

with the software that drives it) and the target will be a peripheral device (such as a disk

drive, tape drive controller or even a printer). While the SCSI protocol contains a large

number of different commands, the most typical commands are for querying the status of

a device (checking if it is ready, obtaining its storage capacity, etc.), reading data from a

device or writing data to a device. Commands that read data from a target device are

called SCSI READ commands, and commands that write data to a target device are called

SCSI WRITE commands1.

While parallel SCSI is a very popular method for connecting peripherals to a computer,

it has been known to suffer from some scalability issues. Parallel SCSI has a few limitations

that create problems in modern storage environments, namely an upper limit on the number

of connected devices and a length limitation on cabling. The parallel SCSI protocol has

1 There are also bidirectional commands that do both a read and write as part of a single command, but

those are not discussed in this document.

9

Computer

Parallel SCSI Bus

Eh
DiskCnntrni-er

Host
Bus

Adaptor

-Q
1 apeController

Q
D:skCcjntro':or

Printer

Internal

Figure 2-2: Devices Connected Using Parallel SCSI

many different varieties, however, the upper limit on the number of connected devices is

never more than sixteen and the maximum length of cables is around 25 meters. Figure 2-2

shows a simple SCSI configuration with a few peripheral devices. Notice that the devices are

connected to the parallel SCSI bus which is internal to the computer (with the exception of

the printer). This configuration severely limits the number of devices that can be connected

to a single computer.

In modern computing centers where petabytes of storage are required, these upper

limits, imposed by parallel SCSI, are insufficient. With a maximum of sixteen peripherals

per server, entire clusters of storage servers are often required to provide the desired storage

capacity. With a limited distance of 25 meters, these storage servers must be in relatively

close proximity, and alternative transport methods are required for backing up data to

remote locations.

2.2 iSCSI

At the time that the SCSI protocol was created network bandwidth was considered a scarce

resource and specialized I /O channels (such as parallel SCSI) were used for connecting

computers to devices. Today, however, network bandwidth is plentiful and the need for

10

large amounts of data storage has grown. In order to respond to these changes a new

set of technologies called storage area networks (SANs) have been created. In a storage

area network, storage devices are connected to storage servers over external serial network

hardware, instead of internal parallel I /O channels. The advantage of using networking

technology instead of I /O channels is that networks allow for a much greater scalability.

With a storage area network there is virtually no limit on the number of devices that can

be connected to a storage server. Additionally there is much greater distance supported by

networking technology, and networks can span a very large area.

The Internet Small Computer System Interface (iSCSI) [12] protocol (which resides be

low SCSI on the protocol stack shown in Figure 2-1) was created as a cheaper alternative to

the more expensive Fibre Channel technology that has, traditionally, been used to imple

ment SANs. The iSCSI protocol uses a standard T C P / I P network as the physical transport

for the very well known SCSI command protocol. Since T C P / I P networks can have a limit

less number of connected devices and can span a, virtually, unbounded distance this enables

SCSI to be used in a much more scalable environment. Figure 2-3 shows an iSCSI configura

tion. Notice that in this figure that the devices are all connected externally to the computer

over a practically limitless network cloud. Another advantage of the iSCSI protocol is that

IP networks are, currently, the most popular networking technology. This means that the

hardware, equipment, tools and people with experience and knowledge about IP networks

are readily available and are less costly than more specialized network fabrics.

The iSCSI protocol consists of iSCSI sessions between a target and an initiator device.

Each iSCSI session can consist of multiple connections (mostly for redundancy and error

recovery purposes), and each connection has three distinct phases: login phase, full feature

phase and logout phase. The login phase of an iSCSI connection is used for the initiator and

target devices to authenticate and negotiate parameters that will be used for the remainder

of the connection2, After the login phase is complete the devices transition into a full

2It is also possible for some of these parameters to be re-negotiated after the login phase has completed.

11

Q 0
iSCSl Disk iSCSI Disk

Internal

iSCSI Disk

iSCSI Disk iSCSI TapeDrlve

Figure 2-3: Devices Connected Using iSCSI

feature phase where SCSI commands and data are sent back-and-forth between the devices

using iSCSI Command Protocol Data Units (PDUs) that contain embedded SCSI CDBs.

Generally a connection will remain in the full feature phase for an extended period of

time (the uptime of the computer, for example). When the devices are finished with their

connection (typically when the initiator unmounts a disk or is shutdown) a simple logout

exchange is performed.

2.2.1 Login Phase

The iSCSI login phase is used in order for the target and initiator to form a network

connection, to communicate iSCSI specific parameters and, optionally, to authenticate each

other. In this phase of a connection there are no SCSI CDBs transferred, instead special

iSCSI PDUs are used. The login phase is for iSCSI only and would not take place in a SCSI

session using a parallel SCSI bus as the physical transport.

During the login phase of an iSCSI connection, the initiator and target negotiate pa

rameters that will be used for a connection by exchanging iSCSI LoginRequest PDUs and

12

iSCSI LoginResponse PDUs. iSCSI LoginRequest PDUs are transmitted by the initiator

device and each LoginRequest received by the target is responded to with an iSCSI Login-

Response PDU. These special PDUs contain text strings that associate values with iSCSI

parameters called keys. Both the initiator and target use these text strings to negotiate or

declare certain values that will be used for the new connection. The iSCSI protocol defines

a large set of negotiable parameter that can effect the performance, memory requirements

and error handling a in given connection and/or session[14].

There are two types of iSCSI keys: declarative and negotiable. Declarative keys declare

an un-negotiable value for an iSCSI parameter, for example the TargetAlias key is a declar

ative key in which the target declares a human-readable name or description that can be

used to refer to it. An example of a negotiated key is the HeaderDigest key where the target

and initiator offer a list of header digest algorithms (including "None" which, if selected,

means that no header digest is used for this connection) that they support, and the most

preferable algorithm that they have in common is selected. iSCSI keys can also have a

variety of different types of values. Some keys, such as the HeaderDigest key, take a list of

values in order with the most preferable first while others may take either a simple numeric

value or a boolean value ("Yes" or "No").

Keys in which the originator offers a list of values must always contain the value "None"

in the list in order to indicate the lack of a certain functionality. When responding to a

key where the value is a list, the responder must choose the first value in the list that

it supports (since the "None" value is guaranteed to be in the list, it is always possible

to respond to a list of values key, even if the functionality is not supported). To keys in

which the originator offers a numeric range the reponder must reply with a single value

that is within the given range. In the case of a numeric range, the key can either be a

minimum function or maximum function where the responder chooses either the minimum

or maximum of the desired values respectively. Keys that contain boolean values are also

negotiated based on one of two possible functions: AND and OR. With the AND function,

if the originator offers the value "No" then the responder must reply with the value "No",

13

otherwise, the responder can reply with either value ("Yes" or "No") depending on its

desires or configuration. With the OR function, if the originator offers the value "Yes", the

responder must reply with the value "Yes", otherwise, the responder can reply with either

the value ("Yes" or "No") depending, again, on its desires or configuration. These value

types and negotiation functions give the administrator of an iSCSI environment a great deal

of flexibility when deploying a storage network.

Once the initiator is finished negotiating all of its parameters, it sets the transition bit

(or T-bit) of its next LoginRequest PDU to 1, and the next stage (NSG) field to the de

sired next stage in order to request a stage transition. The target is then able to continue

negotiating parameters if it desires, or it can also set the T-bit and NSG field in its next

LoginResponse PDU to transition to a new phase. Figure 2-4 shows a very simple iSCSI

login phase where the devices do a single exchange of a set of key=value pairs and then

transition to full feature phase (FFP). In Figure 2-4 the first LoginRequest/LoginResponse

exchange is used to negotiate a set of required and optional iSCSI keys for the connec

tion. Both of these PDUs have the T-bit set to zero, which indicates that there is no state

transition request. During an iSCSI Login phase there may be many more of these Login-

Request/LoginResponse exchanges, in order to allow the devices to negotiate more keys, or

to perform authentication during a special security negotiation phase (which may be tran

sitioned to using the T-bit and NSG field). In the second LoginRequest in Figure 2-4, the

initiator sets the T-bit to one and the next stage field to full feature phase to tell the target

that it is ready to make a stage transition. The target replies with a LoginResponse with

the T-bit also set to one and the next stage field set to full feature phase, which accepts

the transition and the devices proceed into the full feature phase of the iSCSI connection.

2 .2 .2 Full F e a t u r e P h a s e

The iSCSI full feature phase is where the devices transfer encapsulated SCSI commands and

data. During full feature phase the initiator creates and transmits iSCSI Command PDUs

which contain SCSI CDBs that were generated by the SCSI initiator layer and passed down

14

Target Initiator

Figure 2-4: A Simple iSCSI Login

to iSCSI for transport. For each iSCSI Command PDU which is received by the target, the

target will perform a service for the initiator (which may involve a data transfer in either

direction) and will conclude the service with an iSCSI Response PDU that contains the

SCSI response and status (typically either 0x00 for success or 0x02 for an error).

Certain SCSI Commands may make use of an optional data transfer phase. For example,

in a SCSI READ or SCSI WRITE command data will be transferred to or from the initiator

respectively. Since iSCSI target devices are expected to be peripherals with limited resources

(such as an iSCSI enabled disk controller), all data transfers are controlled by the target.

For READ commands, the target device sends iSCSI Data-in3 PDUs to the initiator device.

Since the target is sending the data in this situation there is no special handling required,

3The direction of SCSI and iSCSI commands are relative to the initiator device. Therefore, the Data-in

PDU is sent by the target and received by the initiator. Likewise, Data-Out PDUs are sent by the initiator

and received by the target.

15

Target Initiator

Figure 2-5: An iSCSI Encapsulated SCSI READ Command

the target has control of the transfer by default since it can select how much and how fast

to send its PDUs. Figure 2-5 shows an iSCSI READ. In this figure, the initiator begins

the read by sending an iSCSI encapsulated SCSI READ command to the target, the target

then sends the read data to the initiator using Data-in PDUs and finishes the command

with an iSCSI encapsulated SCSI response. This response tells the initiator that the read

is complete. For WRITE commands a special Ready2Transfer (R2T) PDU is used for the

target to signal to the initiator that it is ready to receive a set of Data-Out PDUs containing

the data being written. R2T PDUs allow the target to maintain control over when the data

is transferred and how much data is transferred at a time. Figure 2-6 shows an iSCSI

WRITE with two R2T PDUs.

In order to allow the devices to have better control over the flow of data, all iSCSI data

transfers happen in bursts of a certain size called MaxBurstLength (which is negotiated

during the connection login phase). For READ commands, where the target sends a set of

Data-in PDUs to the initiator, the bursts are not noticeable since one burst is immediately

16

Target Initiator

Figure 2-6: An iSCSI Encapsulated SCSI WRITE Command

followed by the next. For WRITE commands, however, the MaxBurstLength defines the

maximum size of data that can be requested by a single R2T PDU. In Figure 2-6 the

highlighted PDUs makeup a single data burst. In this figure there are two bursts of Data-

Out PDUs, which are dictated by the R2Ts transmitted by the target. Additionally, the

MaxRecvDataSegmentLength parameter (again negotiated during the login phase) dictates

the maximum size of a single Data-in or Data-Out PDU. This means that any given burst

of data may contain MaxR^x
D

B
aZsl^Lngth

 D a t a " I n o r Data-Out PDUs. Previous work

has been done to evaluate these values and other negotiable values that iSCSI offers to see

what their effect is on performance [14].

2 .2 .3 L o g o u t P h a s e

When the initiator has finished with a connection, it sends an iSCSI LogoutRequest PDU

to the target. Upon receiving a LogoutRequest the target device will respond with an iSCSI

17

LogoutResponse PDU and the devices will tear down the connection.

2.3 R D M A

The speeds of networking technologies in today's high-performance computing environments

are rapidly growing. In high-end systems, the CPU has replaced the network as the new

"bottle neck". With technologies like 10 Gigabit/sec Ethernet (lOGigE) modern CPUs lose

the ability to keep enough data flowing into the network to make full use of the available

bandwidth. With a reliable transport system like TCP, the operating system must make

and retain copies of all outgoing data so that it is able to retransmit it if the data does not

make it, without error, through the network to its destination. On the receiving side, the

operating system must maintain a reassembly buffer where, possibly out of order, data is

stored before being copied into the final receive buffer. In addition to all of the overhead

involved in copying data, the operating system is constantly interrupted each time a new

segment of data arrives on the network. At each network interrupt, the operating system

must copy the data off of the network card and process the header information to determine

how to interpret the data. With all of this interrupting, copying and processing a typical

CPU is only able to make use of about half of a lOGigE connection. Not only is the CPU

insufficient to use all of the available bandwidth, but it also must spend a lot of its time

maintaining the network traffic instead of handling other processing that the system may

need done.

To fix the problems stated above, specialized Remote Direct Memory Access (RDMA)

hardware has been developed to alleviate the need for data copying, and to offload network

processing from the CPU. In an RDMA protocol auxiliary information travels across the

network with the data so that it can be immediately placed in its final receive buffer. Along

with this auxiliary information, specific segment sizing and special markers can be used to

allow detection of packet boundaries to eliminate the need for a lot of reassembly in the case

of out of order data. These two features allow RDMA hardware to perform "zero-copy"

18

transfers directly from the memory of one computer to the memory of another.

Although there are other RDMA technologies (such as Infiniband), the one that we are

mostly concerned with for this project is iWARP [4] [13] [11]. iWARP is a protocol suite

that allows for RDMA across a T C P / I P network (such as those used with iSCSI). The

iWARP protocol suite is divided into three different protocols:

1. Marker PDU Aligned Framing (MPA) [4]

2. Direct Data Placement (DDP) [13]

3. Remote Direct Memory Access Protocol (RDMAP) [11]

2.3.1 Marker P D U Aligned Framing

Since TCP is a stream oriented protocol, upper layer protocols (ULP)4 , that require the

detection of record boundaries, must use a reassembly buffer to store received TCP infor

mation while looking for message boundaries. If the header information of an upper layer

frame arrives late (due to lost or out of order TCP segments), it will be necessary for the

ULP to delay processing of all subsequent TCP segments until the one containing the header

arrives. This is because the ULP will not be able to determine where the next frame begins

since that information is contained in a header that has not yet arrived.

The MPA protocol resides directly above the TCP layer in the protocol stack (refer to

Figure 2-1) . MPA defines a method of reliably tracking frame boundaries within a TCP

stream by using fixed sized frames and by optionally embedding markers at known offsets in

a TCP stream. Using MPA on top of TCP provides the upper layer protocol with a method

of sending fixed sized records which, in the optimal case, will arrive intact embedded within

a single TCP segment. With Marker PDU Aligned Framing a receiver is not required to

4 The term upper layer protocol refers to any protocol that resides above the current protocol on the stack

shown in Figure 2-1. In the case of MPA, the upper layer protocol refers to DDP. In the case of DDP, the

upper layer protocol refers to RDMAP. Finally, in the case of RDMAP, the upper layer protocol refers to

any protocol that is making use of the RDMA stack in order to gain high-performance network usage.

19

reassemble data from the TCP stream, which allows an ULP (such as DDP) to have the

ability to skip using intermediate storage and to directly place received data into memory.

In addition to providing fixed sized framing, the MPA protocol also provides padding

for 4-byte alignment and an optional cyclic redundancy check (CRC). The CRC can be used

in order to determine if the received packet has been modified during transmission. The

purpose of the CRC in the MPA layer is to provide extra checking for errors that may have

been missed by the TCP layer. If the CRC option is not enabled, the MPA header still

contains the CRC field, it is just left unused.

In practice, the MPA markers and CRCs are not used. In, what the MPA specification

refers to as an optimal situation, the MPA layer works very closely with the TCP layer

in order to guarantee that each MPA frame will be contained in a single TCP segment.

In this optimal case, MPA markers provide little benefit, since reassembly is never needed

to reconstruct an MPA frame. In current hardware, this optimal case is implemented and

markers would only add extra overhead. Additionally, the optional MPA CRCs are also

unused in current hardware.

2.3.2 Direct Data Placement

Above the MPA layer in the iWARP stack (see Figure 2-1), is the Direct Data Placement

protocol (DDP). DDP allows an upper layer protocol (such as RDMAP) to send data

directly to a destination receive buffer without the need for an intermediate copy. DDP

works with MPA to segment data into small frames where each frame will fit directly into

a single TCP segment. Using DDP with MPA allows for frames to be directly placed in the

receiver's memory without the need for buffering or reassembly even when TCP segments

are lost or arrive out of order. Without the use of MPA framing, lost or out of order TCP

segments would require DDP to use reassembly storage in order to reconstruct the frames

and find the header with the memory placement information. Figure 2-7 shows a theoretical

DDP frame that does not use MPA. Each block in this figure represents a TCP segment.

Notice that if the TCP segment labeled "A" does not arrive first, the other segments must

20

DDP
Header t

TCP
Segment

Figure 2-7: A Theoretical DDP Frame Without MPA

be buffered until segment "A" arrives with the DDP header. Figure 2-8 shows what a DDP

frame using MPA would look like5. Notice that the entire DDP frame fits into just a single

TCP segment, so even if one is lost there is always a DDP header available in the next.

This is the ideal behavior of TCP, MPA and DDP, depending on the implementation, MPA

frames may not fit exactly into a single TCP segment. In these situations, the MPA stream

markers can be used to help detect frame boundaries in the case of packet loss.

DDP provides two different mechanisms to its upper layer for transferring data: Tagged

Buffer transfers and Untagged Buffer transfers. In a tagged buffer transfer, the upper layer

protocol must advertise the buffer that will be used in the transfer to its peer. The peer

then has the ability to perform a direct, memory-to-memory transfer into the advertised

buffer. For untagged buffer transfers, the receiver must, explicitly post untagged receive

buffers on a queue for the peer to write data to. These buffers are posted in the order that

5 Note tha t the size of the single T C P segment shown in Figure 2-8 would be the same size as the smaller

segments (labeled A-D) in Figure 2-7, however Figure 2-8 is enlarged to show the headers more clearly.

21

TCP
Segment

Figure 2-8: A DDP Segment Using MPA

the receiver would like them to be consumed by the RDMA hardware upon receiving an

untagged transfer. Untagged transfers also require the upper layer to perform flow control,

since a transfer will fail if there is not an appropriately sized receive buffer available at the

front of the queue to accept an incoming message.

DDP uses the term data sink to refer to the the destination of a data transfer and the

term data source to refer to the source of a data transfer. DDP also defines the notion of

a Steering Tag (Stag) which is an opaque identifier for a tagged buffer. When performing

a tagged buffer transfer, the data source uses the Stag from the data sink to transfer data

directly into the data sink buffer. In order for the data source to know the Stag of a data

sink buffer, an upper layer protocol at the data sink is required to advertise the Stag along

with a Tagged Offset (TO) and a length for the desired transfer. In untagged buffer transfers

the data source sends a message to the "next" untagged buffer on the front of the untagged

buffer queue at the data sink. It is the job of the upper layer protocol on both the data

sink and the data source to ensure that the data sink has enough queued buffers to be able

A MPA
.X. Header

A DDP
X Header

22

to receive the untagged transfer.

2.3.3 Remote Direct Memory Access Protocol

The Remote Direct Memory Access Protocol (RDMAP) [11] uses DDP to provide remote

direct memory access over T C P / I P networks and other reliable transports. RDMAP is also

designed to allow for kernel bypass, in which a user-space process bypasses the operating

system kernel when performing data transfers. Kernel bypass is possible because the entire

network stack (RDMAP, DDP, MPA, TCP, IP and Ethernet in Figure 2-1) is offloaded onto

the RDMA hardware. A user-space application, with access to the RDMA hardware is able

to make network connections and send data without any interaction with the operating

system kernel. Kernel bypass allows a user process to avoid the extra context switches and

data copies that are usually involved when communicating through the kernel.

RDMAP defines a set of data transfer operations which are summarized below [11]:

Send uses an untagged DDP data transfer in order to send information from a data source

to an untagged data sink buffer on the receiver side. When using a Send operation

the upper layer protocol at the data source provides a message and a length to send to

the data sink. At the data sink side, after receiving the data from a Send operation,

the upper layer protocol is provided with the length and the received message.

Send with Invalidate (Sendlnv) uses an untagged DDP transfer, just like the Send op

eration. However, in a Sendlnv message an additional Stag in the header is transfered

to the receiver. After the receiver gets the data from the Sendlnv message, it invali

dates the use of the buffer that is identified by the extra Stag field (which is a separate

buffer from the one that is receiving the data transmitted with this send operation).

Send wi th Solicited Event (SendSE) uses an untagged DDP transfer, just like the

Send operation, but after receiving the data in the data sink buffer, it also gener

ates an event in the receiver side.

23

Send w i t h Solici ted E v e n t and I nva l ida te (S e n d l n v S E) is a combination of Send-

Inv and SendSE. After the receiver gets the data, it invalidates the buffer identified

by the extra Stag and generates an event on the receiver side.

R D M A Read uses a tagged DDP transfer in order to perform a zero-copy read from a

remote data source buffer. The RDMA Read operation uses a two message exchange

in order to perform the data transfer. First, the data sink sends, to the data source, an

RDMA ReadRequest message which contains the <Stag,TO,len> tuple that describes

the data source buffer, and the <Stag,TO,len> tuple that describes the data sink

buffer. After receiving the RDMA ReadRequest message, the data source will send a

RDMA ReadResponse message to the data sink which performs the zero-copy transfer

from the data source buffer to the data sink buffer. On the data sink side, the upper

layer protocol provides the RDMAP layer with the data source buffer's Stag, Tagged

Offset and length and the data sink buffer's Stag, Tagged Offset and length. The

upper layer protocol on the data source is not notified of an RDMA Read operation

performed by the remote peer.

R D M A Write uses a tagged DDP transfer to write data from the data source buffer

directly into the data sink buffer on the remote peer. On the data source side, the

upper layer protocol provides the RDMA layer with the data sink buffer's Stag, Tagged

Offset and with a message and message length. The upper layer protocol on the data

sink is not notified of a RDMA Write operation performed by the remote peer.

Terminate uses a DDP untagged transfer to send error information to the remote peer.

These data operations are provided to users to allow them to access the functionality of

RDMA hardware. The exact means used to provide these seven operations is left open in

order to facilitate compatibility with a large range of systems.

24

2.4 iSER

In order for iSCSI to compete with other SAN technologies, which have the ability to

perform at speeds that are greater than 1 Gigabit/sec, it must be able to make efficient

use of lOGigE. To this ends, the iSCSI Extensions for RDMA (iSER) [8] protocol was

created. iSER is an implementation of the Datamover Architecture (DA) for iSCSI [3].

DA specifies operations that a small protocol layer, residing below iSCSI on the protocol

stack (see Figure 2-1), needs in order provide a standardized interface for iSCSI to transfer

commands and data over a network. The iSER extensions specify an implementation of

DA that encapsulate and translate iSCSI PDUs in order to send them over an RDMA

Capable Protocol (RCaP), such as iWARP, while retaining a minimal amount of extra state

information.

2.4.1 iSER Operational Primitives

The Datamover Architecture for iSCSI defines a set of operational primitives that must

be provided to the iSCSI layer. iSER describes an implementation of these operational

primitives that allow for using an RCaP layer as the transfer method. There are nine

operational primitives that an iSER layer will provide for iSCSI.

SencLCont ro l operational primitive is used by an iSCSI initiator and target device to

request the transfer of iSCSI Control type PDUs which are iSCSI PDUs that contain

either iSCSI/SCSI commands or unsolicited Data-Out PDUs. Depending on the type

of iSCSI Control PDU that is being sent, a different RDMA Send-type operation is

used:

iSCSI C o m m a n d P D U s sent by the initiator are transferred using RDMA Send

with Solicited Event operations. If the Command PDU will require an optional

data transfer phase, the iSER layer at the initiator will advertise an Stag to the

target for the data sink or data source buffer (depending on the direction of the

transfer) to be used.

25

iSCSI Response P D U s sent by the target are transferred using an RDMA Send

with Solicited Event operation unless the Response is responding to an iSCSI

Command PDU that involved a data transfer where an Stag was advertised;

in this case a Send with Solicited Event and Invalidate operation is used to

automatically invalidate the Stag used for the completed data transfer.

iSCSI Data-Out P D U s sent by the initiator for unsolicited data transfers are trans

ferred using a Send operation with the exception of the final Data-Out PDU in

a burst which is transmitted with the SendSE operation instead.

Put_Data is an operational primitive that is used only by the target. This operational

primitive is used to send an iSCSI Data-in PDU. The iSER layer at the target trans

lates the Data-in PDU, received from the local iSCSI layer, into an RDMA Write

operation using the Stag that was advertised by the initiator in the iSCSI Command

PDU that requested the data transfer. The data is written using a zero-copy transfer

directly into the initiator's data sink buffer.

GetJData is an operational primitive that is used only by the target. This operational

primitive is used to send an iSCSI Ready2Transfer (R2T) PDU. The iSER layer at the

target translates the R2T PDU, received from the local iSCSI layer, into an RDMA

Read operation using the Stag advertised by the initiator in the iSCSI Command

PDU that requested the data transfer. The RDMA Read from the target will perform

a zero-copy read of the data from the initiator's data source buffer into the data sink

buffer on the target.

Allocate_Connection_Resources is used by the initiator and the target iSCSI layer to

tell the iSER layer to allocate connection specific resources that it will need for an

RDMA session.

Deallocate_Connection_Resources is used by the initiator and the target iSCSI layers

to tell the iSER layer to deallocate any resources that it has allocated for a given

26

connection.

Enable_Datamover is used by the target and the initiator in order for the iSCSI layer to

tell the iSER layer that it should enable iSER-assisted mode on the given connection.

Connection_Terminate is used by the initiator and the target iSCSI layers to tell the

iSER layer to terminate the RDMA connection.

Notice_Key.Values is used by the initiator and the target to allow the iSER layer to see

the result of iSCSI Login key=value text negotiations. The iSER layer can then use

some of the information from these negotiations to allocate the appropriate amount

of resources for this connection.

Deallocate_Task_Resources is used by the initiator and the target to allow the iSER

layer to free up resources that it has allocated for a specific iSCSI task.

Along with the operational primitives provided by the iSER layer to iSCSI, there is

another set of operational primitives that the iSCSI layer must provide to iSER. These

primitives are used as call backs for iSER to signal the local iSCSI layer of various events.

Control_Notify is used by the iSER layer to signal to the iSCSI layer that a new iSCSI

Control type PDU has been received. iSCSI Control type PDUs, as described above,

are the iSCSI PDUs that contain iSCSI specific commands, SCSI commands or unso

licited Data-Out PDUs.

Data_CompletionJNfotify is used by the iSER layer on the target to notify the iSCSI

layer that a data transfer (either an RDMA Read or an RDMA Write) has completed.

Data_Ack_Notify is used by the iSER layer at the target to notify the iSCSI layer of an

arriving data acknowledgment.

Connection_Termination_Notify is used by the iSER layer to notify the iSCSI layer of

an unexpected connection termination.

27

2.4.2 iSER Specific iSCSI Login/Text Keys

The iSER extensions also specify a few additional iSCSI Login/Text keys used to negotiate

iSER specific parameters.

R D M A E x t e n s i o n s is a boolean type key that is added by iSER to the iSCSI Login phase.

This optional key must be negotiated to "Yes" by both the initiator and target in order

to operate in iSER-assisted mode.

TargetRecvDataSegmentLength and Ini t ia torRecvDataSegmentLength keys are

numeric keys that are added by iSER to the iSCSI Login phase. The values of these

keys declare the maximum number of bytes that either the target or initiator can

receive in a single iSCSI Control type PDU. These two keys are part of the flow

control mechanism that iSER uses for RDMA untagged transfers. The values of these

keys corresponds to the size of the untagged buffers that are queued with the RCaP

layer.

M a x O u t s t a n d i n g U n e x p e c t e d P D U s declares the maximum number of outstanding, un

expected PDUs that a device can receive. This key is also used in order to help with

flow control of RDMA untagged transfers. This parameter corresponds to the number

of untagged buffers that are queued with the RCaP layer.

2 .4 .3 i S E R I n b o u n d / O u t b o u n d R D M A R e a d Q u e u e D e p t h s

In addition to flow control for untagged buffers, the iSER layer is also responsible for flow

controlling RDMA ReadRequests. When performing RDMA Read operations, an RCaP

layer must have the appropriate amount of resources to handle all of the possible RDMA

ReadRequest messages that the remote peer may send. In the case of iSER, only the target

will be sending RDMA ReadRequests, therefore the initiator declares the maximum depth

of the Inbound RDMA Read Queue (IRD). The iSER layer at the target is then able to

select a maximum depth of the Outbound RDMA Read Queue (ORD) which is at most

28

as large as the IRD. If the ORD value proposed by the target is less than the IRD value

declared by the initiator, the initiator may choose to free up the extra resources. These

parameters are negotiated in an additional Hello message exchange that is performed in

iSER-assisted mode as described in Section 2.4.5.

2.4.4 iSER Connection Setup

An iSER-assisted iSCSI session is established by first performing a standard iSCSI login

in regular TCP streaming mode. During the login phase, if both of the devices negotiate

RDMAExtensions=Yes, then the following full feature phase will use the iSER extensions

and RDMA. The RDMAExtensions key must be offered in the first available LoginRe-

quest or LoginResponse PDU in order to allow the devices to negotiate the additional iSER

parameters on a successful RDMAExtensions negotiation. A failure to negotiate the RD

MAExtensions key to "Yes" will cause the devices to fallback on traditional, unassisted,

iSCSI in the proceeding full feature phase.

On the iSCSI initiator, the Allocate_Connection_Resources operational primitive is

invoked on the iSER layer just before sending a LoginRequest with the T-bit set for

transition into full feature phase. The initiator, then has the option of invoking the

Notice_Key_Values primitive, before invoking they Al locate_Connect ionJ tesources prim

itive, to allow the iSER layer to see the results of the login phase negotiations. After re

ceiving the target's LoginResponse message with the T-bit set for full feature phase, the

initiator must invoke the Enable_Datamover primitive in order to transition the TCP con

nection from streaming mode into iSER-assisted mode.

On the iSCSI target, the Allocate_Connection_Resources operational primitive must

be invoked on the iSER layer just before sending a LoginRepsonse with the T-bit set in,

in response to the initiator's request to transition into full feature phase. As with the

initiator side, the target can optionally invoke the Notice_Key_Values primitive to allow

the iSER layer to see the results of the login phase negotiations. The target must invoke the

EnableJDatamover operational primitive with its final LoginResponse PDU with the T-bit

29

set to complete the transition to full feature phase and to transition the TCP connection

into iSER-assisted mode.

2.4.5 iSER Hello Message Exchange

Directly after entering full feature phase of the iSCSI connection the initiator must send

an iSER Hello message to the target declaring the iSER-IRD (the maximum number of

outstanding Read Requests that the RCaP layer at the initiator is prepared to receive).

In response to the Hello message, the target must send the initiator a HelloReply message

declaring the iSER-ORD (the maximum number of outstanding Read Requests that the

iSER target is prepared to send to the initiator) that will be used for the connection. Upon

receiving the HelloReply message from the target, if the iSER-ORD value is lower than

the iSER-IRD value, the initiator may free up any extraneous resources. Once the Hello

message exchange is completed, the devices are successfully operating in an iSER-assisted

iSCSI full feature phase where commands and data are transmitted as described in Sections

2.4.7 and 2.4.8.

2.4.6 iSER Connection Termination

In a normal logout, the iSCSI layer at the initiator uses the Send_Control operational prim

itive to send an iSCSI LogoutRequest PDU to the target. After receiving the iSCSI Lo-

goutRequest, the target responds with an iSCSI LogoutResponse (using the SencLControl

operational primitive), and then invokes the ConnectionJTerminate primitive to notify the

iSER layer that it should close the RCaP stream. After the initiator receives the iSCSI

LogoutRespsonse from the target, it also invokes the ConnectionJTerminate operational

primitive on its end to notify its iSER layer that it should terminate the RCaP stream.

2.4.7 iSER-Assisted iSCSI Read Operation

Figure 2-9 shows an iSER-assisted iSCSI Read operation. In this figure, the initiator invokes

the Send_Control operational primitive on its local iSER layer to request the transmission

30

Target Network Initiator

iSCSI iSER iSER iSCSI

SCSI

ControLNotify

PuLData

Data_Completion_Notify

Send_Control

SendSE
iSCSI Read

RDMA Write

SendSEInv
iSCSI Response

^

Send_Control

ControLNotify

Figure 2-9: An iSER-Assisted iSCSI Read

of an iSCSI Command PDU encapsulating a SCSI Read CDB. When the iSER layer at

the target receives the Command PDU, it generates a Contro l J Jo t i f y event at the target

iSCSI layer to notify it of the received iSCSI Command. After passing the Read CDB off to

the SCSI layer and acquiring the read data buffer, the iSCSI target invokes the Put JData

operational primitive on its local iSER layer to transfer the read data to the data sink

buffer on the initiator using a zero-copy RDMA Write operation. This entire RDMA Write

operation happens without intervention of the CPU on either end. Once the RDMA Write

operation completes the iSER layer at the target notifies the iSCSI layer by invoking the

Data_Completion_Notify operational primitive on the target-side iSCSI layer. When the

target SCSI layer has been notified that the data transfer is complete, the target iSCSI

layer invokes the Send_Control operational primitive in order to tell the target-side iSER

layer to transmit an iSCSI Response PDU. After receiving the iSCSI Response PDU, the

initiator's iSER layer notifies the iSCSI initiator by invoking the Control -Not i fy primitive

and the transfer is completed. Notice that a Read at the SCSI/iSCSI layer is implemented

by an RDMA Write operation.

31

Target Network Initiator

iSCSI iSER iSER iSCSI

SendSE

iSCSI Write

RDMA ReadRequest

RDMA ReadResponse

SendSEInv
iSCSI Response

Send_Control

ControLNotify

Figure 2-10: An iSER-Assisted iSCSI Write

2.4.8 iSER-Assisted iSCSI Write Operation

Figure 2-10 shows an iSER-assisted iSCSI Write operation. To begin the Write operation,

the initiator invokes the SencLControl operational primitive on its local iSER layer to

transmit an iSCSI Command PDU encapsulating a SCSI Write CDB. Upon receiving the

iSCSI Command PDU, the target-side iSER layer invokes the Control -Not i fy operational

primitive on the target iSCSI layer to notify it of the received command. The iSCSI layer on

the target passes the CDB to the target SCSI level, and then uses the Get JData operational

primitive to tell the target-side iSER layer to read the data from the data source buffer on

the initiator. The iSER layer at the target transmits an RDMA ReadRequest to the ini

tiator RDMA layer which responds with an RDMA ReadResponse message containing the

Read Data. The RDMA ReadRequest and ReadResponse messages are exchanged without

the intervention of the CPU on either end and the data is transferred without using any

extraneous copies. Once the target side RDMA layer is finished placing the Read data, the

iSER layer notifies the iSCSI layer at the target using the Data_CompletionJJotify opera

tional primitive. The target iSCSI layer notifies the target SCSI layer that the data transfer

has completed, and then uses the SencLControl primitive to have an iSCSI Response PDU

32

sent to the initiator. When the initiator's iSER layer receives the iSCSI Response PDU it

notifies the iSCSI layer using the Con t ro l J Jo t i fy primitive and the transfer is completed.

Notice that a Write at the SCSI/iSCSI layer is implemented by an RDMA Read operation.

2.4 .9 i S E R a n d C u r r e n t R D M A H a r d w a r e

With current iWARP hardware, the iSER specification is not possible to follow as stated.

Specifically, current RDMA hardware does not perform "TCP stream transitioning", "Zero-

based virtual addressing" or the Send with Solicited Event and Invalidate operation. These

three issues are discussed in detail in Sections 3.6.1 3.6.2 and 3.6.3 respectively. The iSER

implementation discussed in this thesis uses a set of extended operational primitives in

order to aid in the establishment of RDMA connections. Additionally, a non-standardized

iSER header is used in order to communicate extra information that is required by current

RDMA hardware in order to perform RDMA data transfers. Finally, since the Send with

Solicited Event and Invalidate operation is not supported, our implementation uses a Send

with Solicited Event operation in order to transmit iSCSI/SCSI response PDUs.

33

CHAPTER 3

IMPLEMENTATION

In order to perform our comparisons between iSER-assisted and traditional iSCSI, we first

needed to build a working iSCSI-iSER-iWARP stack. Due to the complexity of each layer

in this stack, we choose to base our work on preexisting implementations instead of creating

our own where possible. This process involved selecting from various software projects to

use as a base, and the reworking them to fit our needs.

3 .0 .10 P r o t o c o l L a y e r s

The software layers that we choose to use for this project are:

• The University of New Hampshire iSCSI Reference target and initiator (UNH-iSCSI).

• The OpenFabrics Alliance (OFA) [1] RDMA stack (for communication with the RDMA

hardware). We also made use of a software-only implementation of the iWARP pro

tocol developed at the Ohio Super-Computer Center (OSC) which provides an OFA-

compatible interface [6].

• An old iSER implementation from the OpenIB iSER target project [15].

Figure 3-1 shows how all of the protocol layers fit together with iSCSI and the iSER

extensions. The following sections describe how each of these layers work and interact with

the pieces that sit above or below it in the protocol stack. Additionally, a description of

the modifications that were required and any difficulties that were encountered is given.

34

UNH-iSCSI

iSER

OSC
iWARP

T(

1

OFA CMA

iWARP

:p

>

Ethernet

IB

Software protocols

Hardware protocols

Figure 3-1: iSCSI-iSER-RDMA Stacks.

3.1 iSCSI

In order to create a working iSER solution, we first decided to choose an iSCSI implemen

tation to which we would add iSER support. There are a handful of freely available iSCSI

implementations for the Linux operating system. We selected one that was created here

at the University of New Hampshire InterOperability Lab (UNH-iSCSI) [9]. There are a

number of reasons for this choice:

The UNH-iSCSI implementation was created and is maintained here at the InterOp

erability Lab (IOL) at the University of New Hampshire, which makes it very easy to

get support for the project. Most other projects would require a lot of support from

external organizations.

UNH-iSCSI contains both an iSCSI initiator and target together in one project. Both

of these are well tested and supported by the IOL. Most other projects have chosen to

35

build either an iSCSI initiator or a target, not both. This could lead to interoperability

issues between the two separate implementations.

• Previous work has already been done to add iSER support to UNH-iSCSI [10]. While

there are other projects available that are developing or are thinking about developing

iSER, the UNH-iSCSI project already had some preliminary hooks for iSER that were

added during this previous, incomplete attempt.

3.1.1 Three Steps

The UNH-iSCSI project was developed as a Linux kernel module, which means that UNH-

iSCSI code runs in kernel-space. Kernel-space code is much more difficult to debug than

user-space code because the user-space is provided with memory protection. A mistake made

in kernel-space can bring down an entire system, whereas a mistake made in user-space will,

at most, abort the process that caused the error. In addition to memory protection, user-

space code can be easily run in a debugger which can provide line-by-line stepping and can

give stack-traces when errors are encountered.

Since the Open Fabrics Alliance RDMA stack, which we choose to use for communicating

with the RDMA hardware, provides a user-space API in addition to a kernel-space API and

since user-space programs are much easier to debug, and therefore to develop, than kernel

modules we decided to use three steps in our implementation.

1. Move UNH-iSCSI into user-space.

2. Add support for iSER-assisted iSCSI, in user-space.

3. Move everything back into the Linux kernel.

3.1.2 Emulating the Kernel-Space APIs

The first step in our implementation was to move the UNH-iSCSI project into the Linux

user-space. As described above projects that run in user-space are much easier to develop

36

than projects in kernel-space. In user-space we are provided with an almost limitless set of

tools such as the GNU Debugger gdb, the v a l g r i n d profiler and more. The process that

we used to move our project out of the kernel and into the Linux user-space is described

below.

In Linux, the kernel-space code is not able to make use of traditional user-space libraries.

This is partially because the kernel implements most of the library functionality on behalf of

user-space. Another reason that the library functions in the kernel are different is because

the kernel does not see the same virtual view of the computer hardware that user-spaces

processes do. The kernel has the ability to use some shortcuts that would be impossible in

user-space (such as direct access to the hardware without an abstraction layer). The main

task that we did in order to move UNH-iSCSI into user-space was to emulate a large set of

functions traditionally provided by the Linux kernel using only user-space functionality.

In order to properly mimic the kernel-space libraries, we attempted to use as much code

directly from the Linux kernel as possible. Specifically, we were able to use the Linux kernel

doubly-linked list and atomic_t (a structure which defines a multiprocessor atomic counter)

data types directly from the source code of the kernel. We were also able to make use of the

Linux bit-wise operation functions and some other utility routines directly. Other higher

level structures, such as threading and semaphores, we were not able to copy directly.

To build the API for pieces that we were not able to pull directly out of the kernel

source code, we needed to implement them in terms of user-space functions. To handle

threading, we used the POSIX threads library. This library provides an API for creating

and manipulate new, concurrent threads of control. Since UNH-iSCSI is mostly event

driven, it relies heavily on threads in order to wait for events from multiple sources (such

as receiving on the network, transmitting on the network, the SCSI mid-level and more).

The use of threads also requires locking primitives to prevent race conditions when multiple

threads are attempting to access common data at the same time. The Linux kernel is

heavily parallelized and has a very rich set of tools for maintaining concurrent threads and

preventing race conditions. To reimplement the Linux locking primitives required us to

37

use more features of the POSIX threads library, such as conditional waits and mutex data

structures.

An example of another major structure that the Linux kernel provides that is not typi

cally found in user-space are memory caches. The kernel has a set of functions for creating a

cache of similarly sized memory regions that are used for very quickly allocating commonly

used structures. In order to provide this functionality in user-space, we were required to

implement our own simple memory cache using a list of pre-allocated memory chunks.

Finally, there were a few pieces of the kernel API that, when translated to user-space

were "no-ops". An example of this is the translation between virtual and physical addresses.

In the kernel-space, certain operations require a translation between a virtual memory

address and a physical memory address (such as DMA transfers). In user-space there is

never a need to use physical memory addresses, so these routines were translated into

routines that, effectively, do nothing.

3.1.3 Moving to User-Space

The UNH-iSCSI target was the first piece we moved to user-space. The target is able to

act in three different modes: DISKIO mode1, FILEIO mode2 and MEMORYIO mode3. Of

these three modes, only the DISKIO mode is required to be in kernel-space. In DISKIO

mode, the target sends SCSI commands straight into the Linux SCSI mid-level, an operation

that can only happen from within the kernel. In the other two modes (FILEIO mode and

MEMORYIO mode) the target does not need to be in kernel-space at all. This design allows

lrThe target uses a SCSI disk for storage. DISKIO mode allows the target to provide raw access to a real

SCSI disk drive.

2 The target uses a file on its local file system to emulate a disk drive. This allows the target to be used

in a system that does not have a SCSI disk available. It also allows for debugging the iSCSI implementation

without causing any harm to SCSI disks in the target system.

3The target uses a memory buffer instead of a disk. This mode allows the iSCSI stack to be tested

without worrying about the overhead of the Linux file system.

38

the target piece to be moved to user-space without significant changes as long as it is not

compiled with DISKIO mode support.

The UNH-iSCSI initiator required more work to get it to run in user-space. Since

the initiator receives commands directly from the Linux SCSI mid-level4 it required some

redesigning to move it out of the kernel. In order for the initiator to act like a real SCSI

initiator device, we needed to devise a way to pass it SCSI commands that it could then

transfer to the target. To accomplish this, we wrote a simple interpreter for the initiator.

This interpreter reads commands from standard input and performs basic actions like:

logging into a target with a new iSCSI connection, sending a SCSI command to the target,

and perform a SCSI READ or WRITE operation. This simple interpreter allows us to write

scripts that emulate a real SCSI session. In addition to emulating a SCSI session, these

scripts collect timing information to determine the performance of transfers.

Timing information, in the user-space initiator, is gathered by using a special repeat

command. The repeat command specifies a RepeatCount and an output file to log to.

Following a repeat command can be either a SCSI READ or SCSI WRITE operation. The

repeat command tells the interpreter to perform the following operation RepeatCount

times while keeping track of the total number of bytes transferred and the time that the

entire transfer takes. Once the repeated operations are completed the command logs the

RepeatCount, number of bytes transferred and total transfer time (in seconds) to the spec

ified output file. In order to prevent memory exhaustion, the user-space initiator uses a

very simple flow control mechanism when building and queuing new SCSI commands with

the iSCSI layer. The repeat command tracks command completions and makes sure that

it never queues more than a certain number of SCSI command with the iSCSI layer. If this

mechanism were not in place, our emulated sessions would not be able to use a RepeatCount

that would transfer more bytes than the physical memory of the host computer.

Figure 3-2 depicts a possible configuration for the user-space iSCSI system. This diagram

4The UNH-iSCSI initiator registers itself with the operating system as a Host Bus Adapter (HBA).

39

Initiator reads the command script Target stores data in files

Command S c r i p t

\
User-space

iSCSI Initiator

Sockets API

TCP

IP

C-thernel

t

File File

\ A /

User-space

iSCSI Target

Sockets API

TCP

IP

Ethernet

A

Network connection

f File

1
1

J User-space

J Kernel-space

Figure 3-2: User-space iSCSI Implementation

shows the initiator reading from a command script, and a target that is in FILEIO mode

using local files as its backing data store. Alternatively the user-space target could use a

memory buffer instead of files (MEMORYIO mode), which would allow us to evaluate the

performance of the transfer protocols without the overhead of an actual storage system.

3.2 R D M A Interfaces

To have the ability to communicate with RDMA hardware, there are a handful of RDMA

interfaces that provide POSIX socket-like abstractions. This type of abstraction is advan

tageous because most programmers are very familiar the socket communication paradigm.

A group called the OpenFabrics Alliance (OFA) provides a free RDMA stack with a socket

like abstraction layer that they call a Communication Manager Abstraction (CMA), along

with a verbs layer that is used to perform data transfers (together these pieces are referred

to as the OFA stack or the OFA API). The OFA stack has been growing in popularity

40

due to its active development community and inclusion in the Linux kernel. In addition to

kernel support, the OFA stack also provides a user-space library that allows for user-space

applications to use its API. We choose to use the OFA API for this project because of its

availability and its growing popularity.

Another advantage of the OFA stack is that it can reside on top of either iWARP

(which this project focuses on) or Infiniband 5. There is a growing interest in the computer

storage industry to see a comparison between iWARP and Infiniband since they are both

competing RDMA technologies. With the ability to use either technology, the OFA API

may eventually allow us to make comparisons between iWARP and Infiniband without any

significant modifications to our solution.

3.3 Software iWARP

The iWARP protocol suite uses TCP/IP as its method of achieving reliable transport. This

feature allows iWARP to be implemented in software using the standard socket interface

provided by Linux and other operating systems. Since RDMA hardware is expensive and

possibly buggy we choose to use a free, software iWARP stack created by the Ohio Super

computer Center (OSC) [6] to aid in our development (see Figure 3-1). Version 1.1 of this

software RNIC6 provides an OFA-like interface that should be compatible with the true

user-space OFA interface. Using this software RNIC, we were able to begin developing with

a fully-software, user-space system. This gave us the ability to view the entire project in a

software debugger (such as the GNU Debugger, GDB) to aid in finding and fixing errors.

Also, since the OSC RNIC provides the user-space OFA like interface, it is interchangeable

with the true OFA interface and a real hardware RNIC. The OSC software RNIC gave

us t h e ability to do development in a fully software envi ronment , t hen switch to ha rdware

5Infiniband is another high performance fabric that offers RDMA support.

6RNIC stands for RDMA Network Interface Controller, and refers to the hardware used to perform the

iWARP protocol. OSC has called their software iWARP implementation a software RNIC.

41

User-space
iSCSI

iSER

OSC OFA-API

OSC RNIC

Sockets API

TCP

IP

Ethernet

Figure 3-3: iSER Over OSC RNIC

RDMA once we had the system debugged and working. The OFA software RNIC also gave

us the ability to develop pieces of our solution when we did not have direct access to our

RDMA hardware7. Figure 3-3 shows the layout of our user-space implementation when

using the OSC software-RNIC.

Another interesting feature of the OSC software RNIC is its ability to provide a cost

effective transition mechanism for the deployment of iWARP. The OSC RNIC, on one end

of the transmission wire, is able to be used in conjunction with a hardware RNIC on the

other end; this combination can allow systems to transition to RDMA without requiring the

currently expensive iWARP hardware in every computer. This setup can also drastically

reduce the CPU usage on a server with a hardware RNIC performing protocol offloading

while clients are using the freely available software RNIC. There are no speed advantages

on the client with this setup, but it allows applications to begin adding support for RDMA

without requiring clients to purchase any expensive hardware. Figure 3-4 shows a possible

topology where client machines with software RNICs are connected to an iSCSI target using

7This was very useful to have the ability to continue development while away from the lab

User-space

Kernel-space

42

a real hardware RNIC.

We did encounter some difficulties while using the OSC RNIC. It turns out that the OSC

OFA interface does not match up exactly with the true OFA interface. When performing

large I /O operations, a data type called a scatter-gather list (scatterlist) is often used to tie

together a list of discontiguous memory buffers in order for them to be used as if they were

one single contiguous buffer. The first issue that we encountered with the OSC RNIC was

that it does not allow for scatter-gather lists with more than a single discontiguous buffer

entry. We were able to resolve this issue, however, by copying scatter-gather lists into single,

contiguous, buffers before passing them to OSC. This solution, while easier than spending

time to fix the OSC RNIC to properly use scatterlists, adds a lot of extra copy-overhead in

both directions. We expect that this extra overhead will create more CPU load on endpoints

using the OSC RNIC. Since these endpoints were expected to show a performance decrease

anyway (from the extra overhead involved in implementing software iWARP) this turned

out to be acceptable for development purposes.

Another issue with the OSC OFA interface is that it was not designed to be used by

a multi-threaded application. Originally the OSC RNIC's OFA interface used a simple

state machine to emulate the order in which events are reported by the OFA API during

connection establishment. The problem with this state machine is that, in a multi-threaded

application, events could be missed or reported incorrectly. Additionally, the state machine

would never report more than one connection request event. Once the first connection

request event was reported the state machine would never return to the state where it

listened for another connection. Since our iSER solution is multi-threaded and since we

wanted to support multiple connections, we needed to modify the OSC OFA interface to use

a queue and locking primitives for incoming events. Using an event queue enables the RNIC

to listen for more than a single connection in a separate thread. When a new connection

request is made the event is added to the end of the queue so that it can be communicated

to the upper layer protocol. This behavior more accurately emulates the behavior of the

real OFA API which provides its own event queue to the upper layer protocol.

43

— r ji

iSCSI Initiator with softw,

iSCSI Initiator with software RNIC

iSCSI target with RDMA hardware

iSCSI Initiator with software RNIC

Figure 3-4: Hybrid Software/Hardware RDMA

We also found that the OSC OFA interface does not support completion queues. The

OFA stack uses completion queues for user-space applications to get notifications about

completed data transfer events. Without completion queues an application is required

to poll for completion events in a tight loop. Due to time constraints, we choose not to

implement a completion queue in the OSC RNIC. Instead, our solution attempts to alleviate

the CPU requirements of a tight polling loop by yielding the processor after a poll returns

no events. The extra overhead caused by this tight loop did not prove to be an issue during

the initial stages of our development where we made heavy use of the OSC RNIC.

3.3.1 Difficulties W i t h the OFA Stack in User-Space

One of the difficulties that we have encountered using the OFA API is that there is not a

lot of documentation for it. We were required to learn the interface based on the source

code8 and example programs that are distributed with it. It took a long time to become

8OFA software is all open-source and the code is freely available.

44

comfortable with using the API. Also, since the API is constantly under development, some

of the example programs did not address pieces of the API that have changed or were newly

available. There was a lot of trial and error while learning to use the OFA stack.

Another problem that we encountered is that, if not used carefully, there is an inherent

race condition in the functions used to retrieve data transfer completion events from RDMA.

In user-space, the upper layer protocol (in our case iSER) is notified of completion events

by polling a completion queue (CQ) structure by using the ibv_poll_cq function provided

by the OFA API. Since it would be a waste of processor cycles to sit in a busy loop polling

this queue, the API also provides a set of three functions to: request notification of events

(ibv_reqjnotify_cq), wait for an event notification (ibv_get_cq_events) (which merely

blocks until an event arrives, at which time the upper layer protocol must poll the CQ to

get the event) and to acknowledge the reception of an event notification (ibv_ack_cq_event).

A naive implementation may use a process similar to the one shown in Figure 3-5 in order

to handle events arriving on a CQ. The problem is that if an event arrives after polling, but

before re-requesting notifications, the event will be missed until another event arrives and

unblocks the call to ibv_get_cq_events. In a normal situation, this can cause a deadlock

where the remote end is waiting for a response to a request that the local end missed due

to this race condition. To fix this issue, an implementation must make sure that there is

always a call to ibv_poll_cq in between requesting notification events and blocking on a

call to ibv_get_cq_event.

3.4 Adding iSER Support

The iSER layer that we choose to modify is one taken from the OpenIB iSER target project

[15]. This code was given to the OpenIB iSER group under a dual BSD/GPLv2 license,

and therefore was freely available for us to use. In addition to being free, an older version

of this same iSER implementation was used in a previous, unsuccessful, attempt at adding

iSER to UNH-iSCSI [10] and UNH-iSCSI already had some preliminary support for this

45

do:

ibv_req_notify_cq

ibv_get_cq_event

ibv_poll_cq

ibv_ack_cq_events

<process the received events>

loop

Figure 3-5: Pseudo Algorithm for Processing CQ Events

iSER interface9.

3.4.1 iSER Modifications

The OpenIB iSER implementation was written to run in the Linux kernel. Since we began

our development in user-space it was necessary for us to move this code out of the kernel

for it to be able to work with the user-space version of UNH-iSCSI. The approach that we

used to move this project into user-space was the same as the one used to move UNH-iSCSI;

we wrote user-space implementations of necessary kernel services. Since many of the basic

kernel services were already written for UNH-iSCSI we were able to share a lot of code

between the two projects, however, some additional functionality was necessary to support

features of the kernel that OpenIB iSER used and UNH-iSCSI did not.

Since we choose to use a newer version of iSER than the one used in the previous attempt

[10] it was necessary to make modifications to UNH-iSCSI to reflect some changes that were

made to the iSER interface. These changes were made so that the iSCSI implementation

does not need to maintain extra state information and actually simplified some of the iSCSI

code. Most of these updates were minor but required some time to find and fix.

9 The iSER version that was used by the previous attempt was not be used in this project because of

licensing issues.

46

The previous iSER implementation attempt also used a single per-connection variable

in the iSCSI layer to store incoming PDUs from iSER. This approach is not sufficient since

there is no guarantee that the iSCSI layer will finish processing a PDU before another PDU

has been received. The problem that we found is that PDUs would get lost because the

next arriving PDU would overwrite the previous PDU in this single variable before iSCSI

was able to process it. In order to fix this issue a simple thread-safe queue was added to

the iSCSI interface for receiving PDUs from iSER. In this approach the iSER layer adds

received PDUs to the tail of the iSCSI receive queue. When iSCSI is ready to "receive" a

PDU, it checks this queue:

• if the queue is empty, iSCSI blocks until a PDU is added to the queue from iSER

• if the queue is not empty, the iSCSI layer processes the front PDU on the queue and

removes it when complete.

This approach is used in both the target and initiator.

Another change that was required in the iSER layer is because the OpenIB iSER imple

mentation was, originally, developed using kDAPL [5] as its interface to the RDMA layer.

We choose to use the OFA stack in this project, so it was necessary for us to convert the

iSER layer to interface with OFA instead of kDAPL. Both kDAPL and OFA have imple

mented their abstraction layers to be similar to a POSIX socket interface, so it was possible

to make a change from one interface to the other without a large impact on the structure

of the iSER implementation. Most of the changes that we needed to make, here, were re

naming functions, types and constants. There were some issues, however, since OFA uses

different terms than DAPL does to refer to various functionalities.

3.5 Moving to Kernel-Space

The advantage of having our project running in kernel-space is that we can send and receive

SCSI commands to and from the Linux SCSI mid-level. This means that our iSCSI target

47

can use a real disk drive and the iSCSI initiator can receive SCSI commands passed down

from the Linux virtual file system. Unlike the user-space version, the kernel-space iSCSI

initiator registers itself with the operating system as a Host Bus Adaptor and can provide

the user with real disk access to a connected target. This setup allows us to explore our

implementation in a real iSCSI environment (with no emulation). This also gives us a real

working product that people can freely make use of for high-performance storage networking.

In our user-space application we implemented Linux-kernel services to use instead of

the user-space run-time environment calls, therefore we didn't need to make many large

changes in order for our code to compile in the kernel. There are, however, some differences

between the OFA user-space API and the OFA kernel-space API. To solve this problem we

created an abstraction between the two interfaces so that our iSER layer can use most of

the same code for both user-space and kernel-space CMAs. Although this small layer is

mainly need to abstract function and type names, there is some more complexity added for

event notification and memory registration (which are handled differently in the kernel).

We encountered a large number of difficulties with some of the differences between

these two OFA interfaces when building our user-space/kernel-space abstraction layer. The

kernel-space interface uses call-back functions to notify the user of events where the user-

space interface uses completion queues and polling. The kernel-space interface also handles

memory registration a little differently because the kernel does not use virtual user-space

addresses for memory buffers. Since the kernel does not have the same protections as

user-space applications these differences were difficult to find and fix.

3.5.1 Deferred Event Handling

One substantial difference between user-space and kernel-space is that, in certain kernel-

space contexts (such as interrupt or atomic contexts), sleeping functions can not be called.

Many operations, such as memory allocation, buffer registration/de-registration and waiting

on a semaphore can cause the current process to be removed from the scheduler run-queue

and effectively be put to sleep for a period of time. In kernel-space there are places where

48

the current control path is not tied to a process or is holding a special locking primitive,

that prevent it from begin safely put to sleep. Some of these places include: control paths

that are locked with a spin-lock10 and atomic contexts such as event notification call-back

functions that are called from an interrupt. We run into issues with memory de-registration

which can happen with a spin-lock held and with data transfer completion notifications

that can happen within an interrupt handler. In order to avoid errors that are introduced

by sleeping in one of these contexts, we use a work queue structure that is provided by the

kernel to defer execution of certain code until it can be executed in a safe context.

3.5.2 Call-back Functions v.s. Queues

The OFA user-space API uses various queue data structures to communicate events arriving

from the RDMA hardware to the upper layer protocol which is using the API. There are two

main queues which are used in the user-space API: an event channel is used to signal the

upper layer protocol of connection oriented events (such as, receiving a connection request,

the completion of address or route resolution or a connection termination), and a completion

queue/completion channel pair is used to notify the upper layer protocol of data transfer

completion events.

In user-space RDMA event channels are used to signal an upper layer protocol of con

nection oriented events. In the kernel-space version of the OFA API, a call-back function

is used instead of a queue. In order for us to, cleanly, abstract between these two APIs

we choose to implement the functionality of an RDMA event channel in our kernel-space

abstraction. The reason for this decision is because it encourages a great deal of code

sharing since the event handler thread can use the same interface for both user-space and

kernel-space. The downside to this approach is that it is less efficient, in kernel-space, to

add an event channel than to simply handle events from the call-back function. There are

two reasons why this is not an issue:

10A mutex locking primitive that waits for a critical section with a busy wait.

49

1. Connection events do not happen often. The only times that we receive connection

events are during connection setup and teardown. These events will not occur in the

"fast-path" where speed is critical.

2. Connection event handlers can not be used in atomic context. In our experience, the

call-back functions from the OFA API may happen from an atomic context, one in

which we do not have the ability to call function which may cause a reschedule of

the current thread. Some of the operations that we perform during our connection

event handlers (such as memory allocation) may cause the current thread to sleep.

If a thread sleeps in an atomic context the system may deadlock, and this is strictly

prohibited by the Linux kernel. In order to handle our events outside of an atomic

context, we would need to queue them up for a separate thread to quickly process,

which is exactly what we do with our event channel implementation.

In user-space data transfer completion events are handled by using two different queues:

a completion channel and a completion queue. The completion queue (CQ) holds completion

event structures. This CQ can be polled in order to get the completion events structures

that contain information about completed data transfers. The completion channel is used

to signal the upper layer protocol of the availability of events on the CQ by allowing the

user to block while no events are available. In the kernel the upper layer protocol (such as

our iSER implementation) is notified of completion events by a call-back from the RDMA

device's interrupt handler routine. Our user/kernel space abstraction layer handles both of

these interfaces while sharing as much code as possible to avoid duplication and to avoid

the need to make changes in two places for a common bug fix. The way in which we

handled this difference between the two interfaces is by making use of a common function

which polls a completion queue for events. In the user-space a separate thread is created

for each connection whose only job is to sit blocked on a call to ibv_get_cq_event and to

call the shared poll function when it is awakened by an event. In kernel-space, our event

notification call-back function makes use of a deferred work queue to schedule a call to

50

the shared completion queue polling function once a safe context is available. The reason

that we choose not to implement our own completion channel in kernel-space is because

data completion events need to be handled quickly. We rely on the kernel's deferred work

handling to allow us to process these events in a safe context, as a tradeoff we lose a little

bit of code sharing.

3.5.3 Memory Registration

With the kernel-space OFA API, memory must be explicitly mapped for DMA transfers.

In order for us to ignore these details throughout most of our iSER code, we choose to

register memory for DMA operations in the kernel-space abstraction code while registering

the memory with the RDMA subsystem. While this sounds obvious it was actually difficult

due to very complicated memory buffer handling inherited from the original iSER layer.

Since our iSER layer was originally developed to run in Linux 2.4 kernels there was a lot

of logic for dealing with conversion between virtual memory regions and physical memory

pages. In more current versions of the Linux kernel these details are handled by functions

provided by the Infiniband subsystem, which contains the kernel-space OFA API. In order

to make sure that we are not converting or mapping memory regions multiple times it was

necessary to track down the old procedures and remove them, or modify them in such a

way that they do not conflict with the new ones.

Our implementation deals with two different general classes of registered memory:

1. Header and immediate data buffers.

2. Non-immediate data buffers (used for the bulk of data transfers).

Figure 3-6 shows these two registered memory types for both the target and the initiator.

The header and immediate data buffers are fairly small. Each SCSI command is en

capsulated in an iSCSI header with an iSER header placed before it. These commands are

transmitted using an RDMA Send type message, and are received into pre-posted RDMA

Recv buffers in the receiver's untagged buffer queue. Since memory registration can be

51

Non-
Immediate

Data
Buffer

Target

SCSI
Mid level

Initiator

File-
System

iSCSI

iSER

*

Registered buffer cache

Figure 3-6: Registered Memory Regions

quite costly, we choose to cache these registered buffers to avoid extra register/unregister

operations for small transfers. When a header buffer is required we can pull one off of the

cache that is already registered instead of allocating and registering a new one. After each

Send or Recv operation is complete, we can push the buffer back onto the cache instead of

unregistering and deallocating it.

The Non-immediate type of data buffers are passed to iSER from the iSCSI layer and

are registered and mapped before each data transfer. In the case of the target, these buffers

are allocated by the SCSI mid-level and are passed to iSCSI. On the initiator side these

buffers are passed down from the filesystem layer. In both of these cases, we have a specific

memory region that we are required to use for the data transfer. We register these regions

before each transfer and we unregister them when a transfer completes. It is not helpful

to cache these data buffers since they are not allocated by the iSER layer and there is no

guarantee that we will use one of these buffers for more than a single transfer. Another

approach, that could be used to alleviate buffer registration overhead, is to cache these

non-immediate buffers with the assumption that the SCSI mid-level or file system layer will

52

use them for subsequent transfers. A least-recently-used policy could be adopted to handle

removing stale buffers from the cache when memory is low.

In SCSI, scatter/gather lists (also called scatterlists, or sg lists) are often used to de

scribe non-immediate data buffers11. A scatterlist is an array of address/length pairs that

map a discontiguous set of memory pages to a contiguous buffer. Figure 3-7 shows how a

.;scattap:/gather list is used to perform this mapping. In this figure, main memory is shown

as ah array of pages on the left and the virtually-contiguous buffer that the scatterlist maps

these pages to is shown on the right. Pages in the buffer are labeled A-F in order to help

demonstrate this mapping. Also, note that the third element in the scatterlist which refers

to the page labeled "E" has a length of two so it also maps the page labeled "F", which

directly follows "E", onto the buffer. Scatterlists are heavily used for large data transfers

since memory fragmentation often prevents the allocation of very large contiguous buffers.

Scatterlists are often given to iSCSI (and eventually to iSER) from the Linux SCSI mid-level

and from the file system.

Using the OFA API, we are able to register an entire scatterlist as a single registered

memory region. This means that an Stag can be associated with an entire scatter/gather

buffer. Each RDM A Read or Write operation may then consist of a vector of multiple,

registered, scatter/gather buffers depending on the RDMA hardware that is being used.

To be able to support the OSC software RNIC (which only supports using a single

scatterlist per RDMA operation) and RNICs with more strict memory buffer limitations

we were required to add routines to merge and re-expand scatterlist entries. These routines

take a scatterlist and copy it into a single contiguous buffer before registering and trans

ferring it. Upon completing a data transfer where a scatterlist was merged, we copy the

contents of the contiguous buffer back into the scatterlist. While this copy-overhead kills

performance, it is necessary in cases where it is impossible to perform RDMA operations

n A s of Linux 2.6.25, it appears that scatter/gather lists are always used with the SCSI mid-level to

describe these buffers.

53

Main Memory
Pages

Scatter/Gather List

^ , Addr Len

B 1

Buffer

Figure 3-7: Scatter/Gather Lists

54

with larger scatterlists. In the case of the OSC software RNIC this performance cost is

not an issue since the advantages of the software RNIC do not include performance. We

have not encountered a hardware RNIC that requires these merge/expand operations of

scatter/gather lists, however, we feel that a slower transfer is still better than no transfer

at all.

Another issue that we ran into throughout our development is that the OFA stack does

not give a lot of information about errors that may occur. The kernel-space interface returns

a single error number from most function calls, however, even with verbose debugging

enabled there is often no extra information reported beyond the very general error number.

This makes it very difficult to track down the cause of an error. In many cases the CM A or

RNIC driver code needed to be edited to add additional logging for error paths. Another

approach that we used to get better error reporting was to duplicate the parameter checking

performed by the device drivers so that we could report errors that would occur when calling

certain device driver functions. These issues tended to be very time consuming (since they

often required re-compilation of the kernel). Similar difficulties were found in the user-space

interface, however, these were not nearly as difficult to track down since we were able to

use an interactive debugger.

We also found that it was difficult to determine whether or not issues were in our code

or in the driver/hardware code. Since RDMA is a new technology, even the core Linux

support for it is not extremely well tested. We found that changes to the kernel, driver

code and firmware often surfaced new bugs and issues in our implementation. Another

interesting thing to note on this issue is that the user-space implementation seemed to be

much less effected by kernel-code or driver changes than the kernel-space implementation

was. Due to the fact that we were originally attempting to track some of the most up to

date Linux kernels, we tended to encounter these bugs fairly often. During the time that we

were doing our development the Linux kernel seemed to make some fairly significant changes

to the SCSI mid-level and the scatter/gather list systems. These changes required us to

be constantly fixing glitches and adding macros to abstract functionality that is different

55

between different kernel versions.

3.6 iSER Difficulties

One of the problems that we encountered with our iSER implementation is that there are

large differences between the way that the iSER standard [8] expects RDMA devices to

behave and the way that they actually do behave. We found that there are three notable

places where current hardware is unable to conform to the the iSER standard.

3.6.1 TCP Stream Transitioning

While the iSER standard was being written it was believed that iWARP devices would

have the ability to perform TCP stream transitioning. The idea behind T C P stream tran

sitioning is that a TCP socket could be opened in the regular streaming mode and even

tually transitioned into an RDMA Capable TCP session using iWARP (hence the iSER

Enable_Datamover operational primitive). This ability would let applications negotiate the

use of RDMA mode and, if selected, they could "turn on" RDMA mode on-the-fly. In other

words RDMA mode would be an option that could be enabled on an already established

TCP connection.

The iSER specification takes advantage of the fact that an iSCSI login consists, mainly,

of the negotiation of various parameters; iSER states that an RDMAExtensions parameter

must be negotiated to "Yes" by both the initiator and the target in order to use RDMA

mode. The login phase of an iSCSI connection is expected to happen in regular, streaming

TCP mode and, if RDMAExtensions was negotiated to "Yes", the devices will transition

the TCP connection to RDMA mode after the login is complete. Once in RDMA mode,

before beginning the full feature phase of the iSCSI session, the devices must also perform

a simple Hello message exchange to establish some RDMA specific parameters (namely the

Inbound RDMA Read Queue Depth and the Outbound RDMA Read Queue Depth, which is

the maximum number of outstanding, unexpected read requests that the device can handle

56

for a given connection).

The problem is that current RDMA hardware does not perform TCP stream transition

ing. A connection between two RDMA devices starts either in TCP streaming mode or in

RDMA mode using iWARP, and there is no way to switch between the two modes without

establishing a completely new connection. This makes it impossible, with current RDMA

hardware, to adhere to a portion of the iSER specification.

Since RDMA mode must be enabled from the start, our iSER target either only listens

for RDMA connections or only listens for traditional iSCSI connections on the iSCSI well

known port number. Our implementation does not support the run-time negotiation of

the use of iSER-assisted mode as stated by the iSER standard. This approach requires the

administrator of a storage network to choose if a target will communicate with iSER-assisted

devices only or with traditional iSCSI devices only, never both. An alternative approach,

that is feasible with current hardware, is to allocate a new well known port number for iSER.

This would allow a target to distinguish between iSER and traditional iSCSI connections

based on the port number that an initiator device is connecting to.

Additionally, since we determine whether or not we are using RDMA mode at compile

time12, there is no real need to negotiate the RDMAExtensions key in the iSCSI login.

Our target implementation negotiates this key anyway, however, if the key is negotiated

to "No" while compiled for RDMA mode the behavior is undefined13. Likewise if the

key is negotiated to "Yes" while compiled for traditional iSCSI mode the behavior is also

undefined.

Another complication caused by this is that we had to choose where to perform the

hello exchange. The IRD value needs to be negotiated very early in an RDMA connection

1 2This could be done with run-t ime configuration, however, this feature is not yet implemented

13 The behavior in this situation is undefined because some pieces of the implementation check the value of

this key to determine which mode they are operating in. If the key's value does not match the compile-time

value some control pa ths break.

57

*

Figure 3-8: TCP Stream Transitioning, Theoretical V.S Actual

in order for the RDMA layer to allocate the proper amount of resources to handle all of

the possible RDMA ReadRequest messages that it may receive. For our implementation,

we choose to perform the hello message exchange before the iSCSI login phase instead after

it. This way, our RDMA session is aware of all of the proper parameters before data is

transferred.

Figure 3-8 shows three iSCSI connection modes. The left most diagram shows a tradi

tional iSCSI connection with no RDMA. The center diagram shows the iSER specification's

vision of how TCP stream transitioning should work with an iSER-assisted connection. Fi

nally the right most diagram shows how iSER-assisted mode works with current hardware

and UNH-iSCSI. Notice that the SCSI login phase on the traditional iSCSI and on the

iSER standard iSCSI line up side-by-side. It is easy to see that, if stream transitioning were

possible, a negotiation in the iSCSI login phase could allow a connection to choose to be

transitioned into RDMA mode, or to choose to remain in traditional TCP mode.

Because of our requirement to start a TCP connection in RDMA mode some of the iSER

standard's descriptions of the iSER/iSCSI interface no longer make sense. Various opera-

Traditional
iSCSI

TCP
Established

iSCSI
Login

iSCSI
Full

Feature
Phase

TCPS treaminc

iSER
Standard

TCP
Established

iSCSI
Li jo i "

V°A
hi: ai.z.w:!'i

Hello
Exchange

iSCS)
FIJI.

FedluHf
Phase

iSER-assisted
UNH-iSCSI

TCP
Established

MPA
Initidl.irV'cr

Hello
Exchnnge

iSCSI
Login

iSCSI
Ful:

FBntur6
Phase

n
Mode RDMA Mode

58

tional primitives are suppose to be used at specific times during an iSER-assisted session,

for example the Allocate_Connection_Resources primitive (which allocates RDMA spe

cific resources for a connection) must now be used by iSCSI before the login phase, instead

of before the iSCSI full feature phase as stated by the iSER standard. Other operational

primitives, such as EnableJDatamover (which is suppose to perform the TCP stream tran

sition), are completely unusable with current implementations. Our target and initiator

make use of these operational primitives in places where we felt they made the most sense,

however this does not necessarily follow the iSER specification.

Finally, an extended set of operational primitives needed to be added in order for the

iSCSI layer to establish an RDMA capable connection. If TCP stream transitioning truly

existed, a connection would be established by the traditional means, using the operating

system socket API. Since stream transitioning does not exist in current RDMA hardware,

operational primitives were added to the iSER layer to provide the following services:

Connection_Establish is invoked by the iSCSI initiator in order to tell the iSER layer to

establish a new RDMA connection to an iSER-enabled target.

Connect_Accept is invoked by the iSCSI target in order to tell the iSER layer to accept

an RDMA connection request made by an iSER-enabled initiator.

Additionally, the iSCSI layer must provides the following operational primitives so that

the iSER layer can notify it of new event types:

ConnectionJEstablishJNotify is invoked by the iSER layer on both the initiator and

target in order to notify the iSCSI layer that an RDMA connection is established and

ready for an iSER-enabled iSCSI login.

Connection_Request_Notify is invoked by the iSER layer on the target in order to notify

the iSCSI layer of a new iSER-enabled, RDMA, connection request by an initiator

device.

59

3 .6 .2 Z e r o - b a s e d V i r t u a l A d d r e s s i n g

While setting up for an RDMA data transfer, the upper layer protocol is required to make

an advertisement for the memory buffers that data will be transferred to and from. In the

case of an RDMA Read operation, the iSCSI initiator must advertise the memory region

that it would like the target to read from. In the case of an RDMA Write operation, the

iSCSI initiator must advertise which memory region it would like the target to write into.

According to the iWARP protocol suite a buffer advertisement consists of three pieces of

information:

1. The Steering Tag (STag) for the buffer.14

2. The length of the data that will be transferred.

3. The tagged offset (TO) for the transfer.

These three pieces of information describe everything needed for the RNICs to perform the

data transfer from the memory of one machine into the memory of the other15.

The problem that we encountered is that there are two possible interpretations of the

tagged offset field. The first interpretation is referred to as Zero-based Virtual Addressing.

In this interpretation a tagged offset value of zero refers to the base address of the memory

region specified by the STag. Figure 3-9 shows how the three fields of a buffer advertisement

are used to find the specified memory region using Zero-Based Virtual Addressing. Using

this interpretation it is not necessary to advertise the tagged offset for a buffer if all transfers

are to start at the base of the buffer (offset zero).

The other interpretation of the tagged offset field is that it contains the address of the

tagged buffer. Since RDMA requires that a buffer advertisement contains the Stag, Tagged

Offset and length of a tagged buffer, a remote peer will still have enough information to refer

14The steering tag is an opaque handle that uniquely describes a registered memory region.

15Actually these three pieces of information must be given for both the source and destination buffers,

however, this information for the local buffer does not need to be transferred over the wire.

60

Memory

STag Table

BufferBase

ufferBase + Length

ufferBase + Offset

BufferBase

Figure 3-9: Zero-based Virtual Addressing

to the correct buffer for RDM A operations. The difference is that the tagged offset value

advertised refers to an address instead of an actual offset. In this interpretation an offset of

zero does not refer to the base of a registered memory region, and will most likely be invalid.

Using this interpretation the advertisement of the tagged offset is required, since it refers

to an address and will be used by the RNIC to find the base of a buffer. This approach is

advantageous because the tagged offset field is 64-bits (as opposed to the 32-bit STag field)

and is large enough to contain an entire memory address on a 64-bit architecture. RNICs

that use this approach have the ability to store the buffer address directly in the tagged

offset, and can circumvent the need to do a lookup on the STag for each transfer request.

Figure 3-10 shows how an advertisement that does not use Zero-based virtual addressing

may be used to locate a memory region.

61

^

Validate

STag Table

STag

Advertisement

STag

Length

Offset

BufferBase + Length

BufferBase

__W
r

^ W

Memory

Figure 3-10: Non-Zero-Based Virtual Addressing

62

The specific problem we found is that the iSER specification does not advertise tagged

offset values. The iSER buffer advertisement only advertises STags16 with the assumption

that the tagged offset is implicitly zero. If iWARP hardware used Zero-Based Virtual

Addressing this would not be a problem, however, current iWARP hardware does not use

Zero-Based Virtual Addressing, instead it takes advantage of the size of the tagged offset

field to hold the memory address of an advertised buffer. This means that, in order to fully

specify a memory region, an extra set of fields needs to be added to the iSER header to

advertise tagged offset values for a tagged buffer. Figure 3-11 shows the two different iSER

headers: the one specified by the iSER standard and the one use by UNH-iSCSI.

In this figure it is apparent that a conformant iSER implementation would not be

interoperable with the UNH-iSCSI implementation since it would not understand the two

extra fields that we have added. With current iWARP hardware, however, a conformant

iSER implementation can not exist.

3.6.3 Send with Solicited Event and Invalidate

The iSER specification requires an iSER-assisted target to use the RDMAP Send with

Solicited Event and Invalidate operation when transmitting iSCSI/SCSI response PDUs.

Currently, the OFA API does not support Send with Invalidate type messages, so our

implementation uses a standard Send type message in order to transmit these PDUs. The

Open Fabrics Alliance does have plans to add support for Send with Invalidate type messages

in the next release of the Linux kernel. Since Send with Solicited Event and Invalidate

operations only provide a minor increase in efficiency and security, this does not cause any

issues with our implementation.

16The transfer length is available through the iSCSI header that is transferred along with the iSER

advertisement.

63

iSER Standard Header

Reserved

Write STag

Read STag

UNH-iSCSI iSER Header

Reserved

Write STag

Wi ; i * T.ijir-PC! 0-T»,e:

Read STag

Reaa Taijqw! Wise.

Figure 3-11: iSER Headers

64

3.7 The Completed Implementation

3.7.1 iSER Layer Layout

The iSER layer resides between UNH-iSCSI and the OFA API, as shown in Figure 3-1. Our

iSER layer provides one of two different sets of operational primitives to the iSCSI layer

above it: one for an iSCSI target and one for an iSCSI initiator. These primitives use a

common set of functions in order to maintain the state information required for iSER and

to perform command and data transfers.

Establishing an iSER connection is performed by a simple state machine, as shown in

Figure 3-12. The passive connection on the iSCSI target is established as follows: The

iSER layer, upon the registration of a new iSCSI target, uses the OFA API in order to

tell the RDMA hardware to listen for new connection requests. When a new connec

tion request event arrives at the target's iSER layer the extended operational primitive

Connection J t e q u e s t J J o t i f y is invoked to signal the iSCSI target of a new connection re

quest. The iSCSI target will then invoke the Connection-Accept primitive on the iSER

layer, and the target's iSER layer will tell the OFA layer to accept the connection. Once

the connection has been accepted, the target's iSER layer waits for the arrival of a Hello

message from the initiator. After the Hello exchange, the connection is ready for the iSCSI

login phase, and the target's iSCSI layer is notified with the Connect ionJEstabl ish_Notif y

operational primitive. Figure 3-12 shows the process described above. A summary of the

Hello message exchange is shown in this figure in order to simplify it. In the actual process,

the Hello messages are exchanged by performing RDMA Send and Recv operations, which

would add many more steps to the diagram.

The iSER initiator has a more complicated state machine for making an active connec

tion to the iSER-assisted iSCSI target, as shown in Figure 3-13. When the iSCSI initiator

layer invokes the Connect ion_Establ ish primitive on its local iSER layer, iSER begins the

connection by asking the OFA layer to perform address resolution. The address resolution

attempts to find which network interface card to use for this connection. If the OFA layer

65

iSCSI Layer iSER

Register

iSCSi Target

Connection Request

Notify

Connection

Accept

Connection Establish

Notify

K

Layer RDMA

Listen for

Connections

Connection

Request

Accept

Established 4

4
^

Layer

W
p.

iSER Hello
Message
Exchange

Figure 3-12: iSER Target-Side Connection Establishment

was able to resolve the address, it signals the initiator's iSER layer, which then requests

that the OFA layer perform a route resolution. When the route has been resolved, the

initiator's iSER layer tells the OFA layer to make a connection to the iSCSI target. Once

the connection has been established the initiator's iSER layer enters the Hello message ex

change. At the completion of the Hello message exchange the iSER layer at the initiator

invokes the Connection_Establish_Notify primitive on the iSCSI layer in order to notify

the initiator's iSCSI layer that the connection is established. This procedure is shown in

Figure 3-13. Note that, as with Figure 3-12 the Hello message exchange has only been

shown abstractly in order to simplify the diagram.

The iSER layer on both the initiator and target is notified of network events from the

RDMA hardware by the OFA stack in two ways. Connection events, such as those described

above, are sent to the iSER layer by an event channel17. The iSER layer contains a per-

17In kernel-space these events use call back functions instead of a channel, however, our approach imple

ments a channel with these call back function in order to promote code sharing.

66

iSCSI Layer iSER Layer RDMA Layer

Connection

Establish

Connection Establish

Notify

ResolveAddress

Address Resolution

Complete

ResolveRoute

Route Resolution

Complete

Connect

Established

. ^ . iSER Hello

Message

Exchange

Figure 3-13: iSER Initiator-Side Connection Establishment

adaptor thread which waits for new connection events on the OFA event channel. Each

time an event arrives, this per-adaptor thread does the processing of the event and then

returns to wait for another one. The other type of event that the OFA stack will generate

is called a work completion. Work completion events signal the completion of work requests

that were submitted by the iSER layer. Work requests are generated by iSER for all of

the types of data transfer operations (Sends, Receives, RDMA Writes and RDMA Reads).

Work completions are added to the end of a completion queue by the OFA stack, and the

iSER layer, in user-space uses a per-connect ion thread to poll this queue in order to receive

work completion events. In kernel-space, work completion events are notified through call

back functions, in which the iSER layer will create a deferred work structure that will poll

the queue in a shared kernel worker thread.

3.7.2 iSCSI Target

The UNH-iSCSI target consists of four main threads of control:

67

1. The server thread.

2. The SCSI target process thread (for all modes except DISKIO mode).

3. The (per-connection) transmit thread.

4. The (per-connection) receive thread.

The UNH-iSCSI target's server thread listens for and accepts new iSCSI connections.

In the case of an iSER-assisted session, this thread blocks until it is signaled by a call back

from the iSER layer that a new connection request has been made.18 Upon receiving a new

connection request, the iSCSI target accepts the connection by invoking an extended iSER

operational primitive called Connection_Accept. This extended, operational primitive tells

the iSER layer to accept the connection and to perform the Hello message exchange. Once

the Hello message exchange has been completed the iSER layer signals the target server

thread that the connection setup is completed. When the connection setup has completed,

the target server thread spawns a transmit and receive thread which effectively begins the

new connection.

The target process thread exists only for MEMORYIO and FILEIO modes. This thread

is used to emulate the Linux SCSI mid-level. In MEMORYIO and FILEIO modes, functions

are provided in order to notify the target process thread of new SCSI commands. Upon

receiving a new command, the target process thread will perform the given service using

either a memory buffer (for MEMORYIO mode) or a file on the local file system (in FILEIO

mode) as the backing data store. When services have been completed, this thread notifies

the iSCSI transmit thread so that an appropriate action can take place. In the case of

18This call back function is part of a non-standardized, extended iSER operational primitive set that we

inherited from the OpenIB iSER, target project's code base. Without the ability to transition a traditional

TCP connection into an RDMA capable connection, the iSER operational primitives do not provide the

functionality to listen for and accept new connections. These extended operational primitives have been

added in order to support current RDMA hardware which does not perform TCP stream transitioning (see

Sections 2.4.9 and 3.6.1).

68

DISKIO, these actions are performed by the true Linux SCSI mid-level, using a real SCSI

disk device as the backing data store.

The UNH-iSCSI target's per-connection transmit thread performs one half of the work

for an iSCSI connection. This thread is woken up by events that occur in the receive thread

and the Linux SCSI mid-level. Upon waking up, the transmit thread will look through all of

the pending iSCSI commands for the connection for which it is responsible. If any of these

commands are in a state which requires an action to be performed, the transmit thread

will perform that action. An example of an action that the transmit thread may perform is

transmitting an iSCSI PDU (hence the name "transmit thread"). The iSER Send_Control,

Put_Data and Get_Data operational primitives are used, in iSER-assisted mode, by the

target transmit thread in order to transmit iSCSI PDUs on an RDMA capable connection.

The iSER layer will use the Data_Completion_Notify operational primitive to signal the

transmit thread when a data transfer has completed. The transmit thread can then signal

the SCSI mid-level of the transfer completion and get ready to send an iSCSI/SCSI response.

The UNH-iSCSI target's per-connection receive thread performs the other half of the

work for an iSCSI connection. The receive thread waits for iSCSI PDUs to arrive on the

network. When an iSCSI PDU arrives, the receive thread performs the initial actions for this

PDU. Some initial actions include: progressing the login phase, storing data, or notifying

the SCSI mid-level of a new command. In an iSER-assisted session the iSER layer uses the

Con t ro l J Jo t i fy operational primitive in order to enqueue new PDUs for the target receive

thread. Each time the iSER layer invokes the Con t ro l J Jo t i fy primitive on the iSCSI layer,

the new PDU is added to the tail of a receive queue and the receive thread is woken up in

order to process it.

Figure 3-14 shows the interaction between the three iSCSI target threads in UNH-iSCSI

along with the interaction with the iSER layer and the SCSI mid-level. The interaction

between the iSCSI target threads and the iSER layer happens on behalf of the thread of

control that is invoking an operational primitive. This means, for example, if the target

transmit thread invokes an operational primitive on the local iSER layer, the target transmit

69

Thread

f

4

Target

Server
Thread

>k

>r \

iSER Layer I \ ^

^^ Receive
Thread

Linux i
SCSI Midlevel !

Figure 3-14: iSCSI Taxget Thread Interactions

thread drops down to the iSER layer (via a function call) in order to begin the desired

service. Likewise, when the iSER layer's event processing thread invokes an operational

primitive on the iSCSI layer (again, via a function call), it raises up into the iSCSI layer to

begin the notification. Figure 3-15 shows this interaction between the iSCSI and iSER layers.

The dashed arrows between threads represent communication through shared structures and

semaphores and the solid arrows represent the function calls that move between the iSCSI

and iSER layers19.

3.7.3 iSCSI Initiator

The UNH-iSCSI initiator consists of two main threads of control.

1. The initiator (per-connection) transmit thread.

19A similar interaction also occurs between the iSCSI and the SCSI layer, however this document does

not cover that interaction in great detail.

70

iSCSI

Thread

iSCSI Layer

iSER Layer

V

iSCSI
Thread

Within iSER
Layer

< - - -

" • ™"

H V _ ^ - ^

- >

iSER
Thread

Within iSCSI

Layer

A

iSER

Thread

Figure 3-15: iSCSI/iSER Layer Interaction

2. The initiator (per-connection) receive thread.

The initiator transmit thread handles the transmission of iSCSI PDUs. Since the ini

tiator registers itself as a Host Bus Adaptor with the operating system, it is required to

implement a queue-command function that allow the SCSI mid-level to pass it new SCSI

commands. Each new command is added to the initiator's queue by the queue ..command

function, and the transmit thread is woken up in order to transmit the new command to

the iSCSI target. The Send_Control operational primitive is used by the iSCSI initiator's

transmit thread in order to give the local iSER layer each new iSCSI PDUs to transmit to

the target.

The initiator receive thread waits for new incoming iSCSI PDUs on the network. The

initiator provides the Con t ro l J Jo t i f y and Data_Completion_Notif y primitives to the iSER

layer so that it can receive notification of new incoming iSCSI PDUs or data from the

RDMA capable connection. Upon receiving an iSCSI response PDU indicating that the

71

Initiator
Transmit
Thread

4

^̂ ^ ^̂ ^

/proc
filesystem

or command
interpreter

thread

/ 4< N

iSER Layer

Linux
SCSI Midlevel

^ ^ s ^ ^

a£

Initiator
Receive
Thread

Figure 3-16: iSCSI Initiator Thread Interactions

iSCSI target has completed servicing the request for a previous iSCSI Command PDU, the

initiator receive thread will signal the SCSI mid-level that the command has completed.

In order to create the initiator's transmit and receive threads for a new connection,

the /proc file-system is used in kernel-space mode and a command interpreter thread is

used in user-space mode. Writing certain commands to the / p r o c file system entries that

correspond to the iSCSI initiator (or to the command interpreter, in the case of user-space)

will cause a new connection to be created. A new connection, in iSER-assisted mode, is

created by invoking some of the extended operational primitives similar to the ones used in

the target. Once the local iSER layer has completed making the connection to the target,

the initiator receive and transmit threads are created and the new iSCSI connection begins.

Figure 3-16 shows the interaction between the iSCSI initiator threads. As with the

iSCSI target, the interaction between the iSCSI and iSER layer happens on behalf of the

72

thread that is invoking an operational primitive (refer to Figure 3-15).

73

CHAPTER 4

RESULTS

Our implementation is designed to support all of the protocols shown in Figure 3-1. It is also

designed to run in user-space and kernel-space and to use the three UNH-iSCSI 10 modes

(DISKIO, MEMORYIO and FILEIO). This design should be able to perform a large variety

of test combinations. Table 4.1 gives a table of possible test combinations. FILEIO mode,

while useful in development, is not something that we consider interesting with respect

to performance results since it does not tell us any useful information pertaining to the

real world use of our implementation. DISKIO mode is interesting since it demonstrates

the system while using a real disk drive, and MEMORYIO is useful to demonstrate the

performance of just the protocol stack (without the disk overhead). Also, one should note

that evaluation runs with the target environment of user-space can not use DISKIO mode

because of previously mentioned restrictions on using the Linux SCSI mid-level.

4.1 Tests Performed

Due to time constraints, all of the tests shown in Table 4.1 were not performed. The exper

iments performed, for this thesis, used the following subset of the possible configurations:

• iSER-assisted kernel-space target and initiator over iWARP with MEMORYIO mode.

• Traditional iSCSI kernel-space target and initiator with MEMORYIO mode.

• iSER-assisted user-space target and initiator over iWARP with MEMORYIO mode.

• Traditional iSCSI user-space target and initiator with MEMORYIO mode.

74

Initiator

Transport

T C P

TCP

T C P

T C P

T C P

T C P

OSC

iWARP

iWARP

OSC

OSC

OSC

iWARP

iWARP

iWARP

iWARP

iWARP

Infiniband

Infiniband

Infiniband

Infiniband

Infiniband

Target

Transport

TCP

T C P

T C P

T C P

T C P

T C P

OSC

OSC

OSC

iWARP

iWARP

iWARP

iWARP

iWARP

iWARP

iWARP

iWARP

Infiniband

Infiniband

Infiniband

Infiniband

Infiniband

Initiator

Environment

User-space

Kernel-space

User-space

User-space

Kernel-space

Kernel-space

User-space

User-space

Kernel-space

User-space

User-space

User-space

User-space

User-space

User-space

Kernel-space

Kernel-space

User-space

User-space

User-space

Kernel-space

Kernel-space

Target

Environment

User-space

User-space

Kernel-space

Kernel-space

Kernel-space

Kernel-space

User-space

User-space

User-space

User-space

Kernel-space

Kernel-space

User-space

Kernel-space

Kernel-space

Kernel-space

Kernel-space

User-space

Kernel-space

Kernel-space

Kernel-space

Kernel-space

10 Mode

MEMORYIO

MEMORYIO

MEMORYIO

DISKIO

MEMORYIO

DISKIO

MEMORYIO

MEMORYIO

MEMORYIO

MEMORYIO

MEMORYIO

DISKIO

MEMORYIO

MEMORYIO

DISKIO

MEMORYIO

DISKIO

MEMORYIO

MEMORYIO

DISKIO

MEMORYIO

DISKIO

TCP: Traditional iSCSI without iSER with software TCP.

OSC: iSCSI with iSER and software OSC iWARP/TCP.

iWARP: iSCSI with iSER, OFA CMA and hardware iWARP/TCP.

Infiniband: iSCSI with iSER, OFA CMA and hardware Infiniband.

Table 4.1: Performance Test Combinations

75

The MEMORYIO mode was chosen in order to demonstrate the throughput of the iSER

protocol without the overhead of a disk drive. For this project, the main interest was in

demonstrating the benefits of using RDMA hardware to assist an iSCSI connection. The

overhead of a disk drive was ignored, for these evaluations, since it is independent of the

performance of the iSCSI protocol itself.

While these configurations do not nearly cover the entire set of possible test configura

tions, they do succeed in demonstrating the benefits of iSER over traditional iSCSI. Using

these results, a comparison of the throughput of data transfers in both the read and write

directions, with and without RDMA, over a lOGigE network connection was possible.

4.2 Throughput

This section shows the results gathered for the throughput of our implementation in the

configurations mentioned above. All of the graphs shown in this section use the following

iSCSI parameters:

• MaxRecvDataSegmentLength=512KB

• MaxBurstLength=512KB

• InitiatorRecvDataSegmentLength=512KB (only in iSER-assisted mode)

• TargetRecvDataSegmentLength=512KB (only in iSER-assisted mode)

• InitialR2T=Yes

• ImmediateData=No

The latter two parameter values were chosen in order to prevent the use of immediate

and unsolicited data. The current iSER implementation does not properly handle imme

diate and unsolicited data. These two negotiations were necessary for our iSER-assisted

implementation to work properly. The first four parameter values were chosen because

76

512KB is the largest SCSI data transfer size that is generated by the Linux SCSI mid-level.

In the Linux SCSI mid-level, large data transfers are segmented into multiple SCSI Read

or Write CDBs that are at most 512KB long. The largest data transfer size possible was

chosen in order for the kernel-space iSER-assisted implementation to overcome some of the

RDMA memory registration and transfer-setup overhead by performing larger transfers.

Using a larger value here would be a waste of resources, since no more than the maximum

of 512KB per command will ever be used within kernel-space.

The computers used to perform these evaluations contained four Intel 2.6GHz, 64-bit

processor cores with a total of four gigabytes of main memory. These computers were

running the Red Hat Enterprise Linux operating system version 5 with version 1.3 of the

OpenFabrics Enterprise Distribution. The kernel version of the systems, as reported by

the uname - a command, was "Linux 2.6.18-8.el5" with Symmetric Multiprocessing support

enabled.

4.2.1 Maximum Data Throughput

The maximum throughput of a lOGigE network is 10 Gigabits/sec. This value describes

the maximum throughput of the total number of bytes transmitted on the network. In the

following graphs, the throughput values, shown along the vertical axis, represent the data

throughput carried within T C P / I P and, in the case of the iSER-assisted graphs, iWARP.

Each of the protocols in the network stack (see Figure 2-1) use a portion of the available

10 Gigabit/sec bandwidth in order to add extra header information to the data.

Table 4.2 shows the header information added by the various network layers involved

in an RDMA tagged buffer transfer. The section labeled RDMA Data Payload, which

contains 1440 bytes, is where the data is placed in an iSER-assisted iSCSI data transfer.

Since the entire Ethernet frame on the wire is 1538 bytes in size, only y | | | m 93.6% =>

9.36 Gigabits/sec of the entire 10 Gigabit/sec bandwidth is available for payload data in an

iSER-assisted iSCSI data transfer using the iWARP protocol.

Table 4.3 shows the header information added by the various network layers involved in

77

Bytes

12

8

14

20

20

16

1440

4

4

1538

Layer

Ethernet Inter-Frame Gap

Ethernet Preamble

Ethernet Header

IP Header

TCP Header

Tagged RDMA Header

RDMA Data Payload

MPA CRC

Ethernet CRC

Total Ethernet Frame

Table 4.2: Header Bytes With iWARP RDMA

Bytes

12

8

14

20

20

1460

4

1538

Layer

Ethernet Inter-Frame Gap

Ethernet Preamble

Ethernet Header

IP Header

TCP Header

TCP Data Payload

Ethernet CRC

Total Ethernet Frame

Table 4.3: Header Bytes With With T C P / I P

78

a TCP data transfer. The section labeled TCP Data Payload, which contains 1460 bytes,

is where the data is placed in a traditional iSCSI data transfer. Since the entire Ethernet

frame on the wire is 1538 bytes in size, only j | | | « 94.9% =>• 9.49 Gigabits/sec of the entire

10 Gigabit/sec bandwidth is available for payload data in a traditional iSCSI transfer.

In the following figures, the lines labeled Theoretical Max RDMA Data Payload Through

put (9360 Megabits/sec) represents the theoretical maximum data payload throughput avail

able for iSER-assisted iSCSI over the iWARP protocol while using tagged buffer transfers.

4 .2 .2 K e r n e l - S p a c e T h r o u g h p u t

In the kernel-space implementation of iSCSI the initiator registers itself with the operating

system as a Host Bus Adaptor. Upon the completion of a successful connection to an iSCSI

target, a disk device file is created in the /dev directory on the initiator that allows for

block level access to the target device. The read or w r i t e system calls can be used on this

special file in order to cause the operating system to generate a set of SCSI Read or SCSI

Write CDBs. These CDBs are then passed to the iSCSI initiator in order to perform the

appropriate data transfers to or from the connected target. Once the target finishes the

data transfer and sends the initiator an iSCSI response PDU, the iSCSI initiator will inform

the operating system and the read or w r i t e system call will complete.

To test the throughput in the kernel-space implementation, two programs, b l a s t i n 2

and b l a s t o u t 2 , were used to read from or write to the iSCSI target device file on the

initiator. In the case of b l a s t i n 2 , the read system call is used to read data from the iSCSI

target. Likewise, the b l a s t o u t 2 program uses the w r i t e system call to write blocks of data

to the iSCSI target. Both of these programs accept two command-line arguments. The

first argument specifies an iteration count, the second argument specifies the size in bytes

to use for each read or w r i t e system call. The iteration count argument is used in order

to perform operations multiple times to get an average throughput value.

In the b l a s t i n 2 program the 0_DIRECT flag is passed to the open system call when

opening the target device file. This flag is a non-standardized extension added by the Linux

79

Kernel-Space iSCSI Reads Over 10 Gigabit Ethernet

Max RDMA Data Payload Throughput (9360 Megabits/sec)
iSER-assisted iSCSI Over iWARP/TCP ->'

Traditional (Unassisted) iSCSI Over TCP •••«•••

0 2 4 6 8 10 12

Data Payload Size (Megabytes)

Figure 4-1: Kernel-space iSCSI Read Throughput

kernel that attempts to prevent the operating system from caching accesses to the opened

file. Without the 0-DIRECT flag the operating system was shown to give impossibly-high

performance. This is because after performing the first read command the file system layer

in the operating system, assuming that the operation had been performed on a block device,

would cache the read data from the target in main memory. Subsequent read calls would

then return this data straight from main memory instead of transmitting SCSI Read CDBs

to the iSCSI target. With the OJHRECT flag, however, operations on the target device file

are not cached in main memory and a new iSCSI CDB set is generated for each read.

Figure 4-1 shows the throughput of both iSER-assisted iSCSI and traditional iSCSI

performing SCSI Reads in kernel-space. The horizontal axis of the graph shown in this

figure represents the size of the read system calls performed on the target device file. Each

read operation was performed for 10000 or 1000 iterations depending on the size of the

operation. For read system calls that were less than 1MB in size, 10000 iterations were

10000

8000

f 6000

4000

2000

'

•mf*

m

m

Theor

80

used in order to reduce the effects of timing inaccuracies. For read system calls that were

larger than 1MB in size, 1000 iterations were used since timer accuracy was less of an issue

and reducing the iteration count, here, reduced the amount of time required to run the

experiment. The throughput values, on the vertical axis, shows the average value over all

of the iterations performed for each specific transfer size.

In Figure 4-1 we see that the iSER-assisted iSCSI throughput surpasses the traditional

iSCSI implementation almost immediately. The throughput of iSER-assisted iSCSI climbs

steeply for transfer sizes below 2MB. This is because, as the transfer sizes increase, the

overhead involved in setting up an RDMA transfer becomes less significant than the benefits

of offloading and zero-copy transfers. Transfer sizes greater than 2MB show a more steady

throughput as the maximum speed of the network is approached. The throughput does fall

short of the maximum throughput of a lOGigE network. This extra overhead comes from

a few places:

• Ethernet, T C P / I P and RDMA header bytes sent on the wire use a portion of the

lOGigE bandwidth. This reduces the amount of bandwidth that is available for data.

• In kernel-space iSCSI Command and Response PDUs that are transmitted for each

512KB of data also use a portion of the bandwidth. Again, this reduces the amount

of bandwidth available for T C P / I P data.

• Processing of each iSCSI Command and Response PDU on the target and initiator

increases the latency of the transfer and therefore also reduces the throughput.

Figure 4-2 shows the throughput of both iSER-assisted iSCSI and traditional iSCSI

performing SCSI Writes in kernel-space. The horizontal axis of the graph shown in this

figure represents the size of the w r i t e system calls performed on the target device file.

Each w r i t e call was performed for 10000 or 1000 iterations with the same procedure as

used for the read operations. The vertical axis of this graph shows the average throughput

over all of the iterations performed for each specific transfer size.

81

Kernel-Space iSCSI Writes Over 10 Gigabit Ethernet

%

Theoretical Max RDMA Data Payload Throughput (9360 Megabits/sec)
iSER-assisted iSCSI Over iWARP/TCP ---*

Traditional (Unassisted) iSCSI Over TCP •••«•••
j i i _ i i

0 2 4 6 8 10 12

Data Payload Size (Megabytes)

Figure 4-2: Kernel-space iSCSI Write Throughput

In Figure 4-2 we see that the iSER-assisted iSCSI throughput, again, surpasses tra

ditional iSCSI immediately. In this figure, we also see a steep climb in throughput until

about 2MB. This steep climb in throughput happens as the overhead of setting up an RDMA

transfer becomes less significant with respect to the size of the data transfer. For transfer

sizes greater than 2MB the throughput flattens out. In this graph, iSER-assisted iSCSI falls

even further short of the maximum throughput of the lOGigE connection. This is because,

in addition to suffering from all of the sources of extra overhead that were mentioned above,

iSER-assisted Writes involve an extra RDMA ReadRequest message to be sent from the

target to the initiator in order to begin the data transfer. This extra exchange increases

the latency of SCSI/iSCSI Write commands and reduces the data throughput, as shown in

this graph.

Figure 4-3 shows the iSER-assisted iSCSI Read and Write throughput values plotted

on the same graph. This figure shows that for transfers that are greater than about one

82

I U W U

8000

6000

4000

2000

Kernel-Space iSCSI Reads and Writes Over 10 Gigabit Ethernet

10000

8000

"5 6000

4000

2000

I

1 !
f

M

•» *

i i

. « » > • • * m---'>"~*m°-" ...,«,..,

Theoretical Max RDMA Data Payload Throughput (9360 Megabits/sec) -
iSER-assisted iSCSI Over iWARP/TCP (READs)

iSER-assisted iSCSI Over iWARP/TCP (WRITES) • ..*..-

4 6 8
Data Payload Size (Megabytes)

10 12

Figure 4-3: Kernel-space iSER Read and Write Throughputs

megabyte in size the performance for Read operations is about 500 Megabits/sec greater

than that of Write operations. The reason that iSCSI/SCSI Read operations perform better

than iSCSI/SCSI Write operations, as described earlier, is because of the extra RDMA

ReadRequest message that is required for the RDMA Read operations that implement

iSCSI/SCSI Write data transfers.

4.2.3 User-Space Throughput

Since the user-space implementation does not register itself with the operating system, we

are unable to make use of the b l a s t i n 2 and b l a s t o u t 2 programs used for the kernel-space

evaluations. Instead, scripts were written for the user-space initiator's interpreter that

would exhibit behavior similar to that of the blast programs. The graphs shown next were

generated using these blast-like scripts in user-space.

Figure 4-4 shows the throughput of user-space Read operations. The same iteration

83

User-Space iSCSI Reads Over 10 Gigabit Ethernet

10000

8000

6000

4000

2000

! ! ! ! !

i f tSF 8 * ' " '

f

i

"98 g . . , . . , . ; .^,.,,,,,,, ^ ,

Theoretical Max RDMA Data Payload Throughput (9360 Megabits/sec)
iSER-assisted iSCSI Over iWARP/TCP —•>'.

Traditional (Unassisted) iSCSI Over TCP •••«•••
i i i i i

10

Data Payload Size (Megabytes)
12

Figure 4-4: User-space iSCSI Read Throughput

scheme was used in order to generate this graph as was used for the kernel-space graphs.

These iteration counts were implemented using the repeat command in the iSCSI initiator's

command interpreter. We are unable to explain why the throughput for user-space iSER-

assisted Read operations flattens out at just over 5500 Megabits/sec. In user-space there

is less processing being performed on each Read operation since there is no interaction

involved with the Linux kernel SCSI mid-level. It is because of this that we would expect

the user-space Read operations to have a slightly greater throughput than kernel-space.

Figure 4-5 shows the throughput of user-space Write operations. Again, the standard

iteration scheme was performed by using the repeat command in the iSCSI initiator's com

mand interpreter. This graph shows that the user-space iSER-assisted implementation is

able to achieve a much higher throughput compared to the traditional iSCSI implementa

tion. In this figure, we see that the throughput of user-space, iSER-assisted iSCSI Writes

ramps up very steeply for transfer sizes of under 1MB. After about 1MB the throughput

84

User-Space iSCSI Writes Over 10 Gigabit Ethernet

10000 I 1 , , 1

: _w jnflif " * « • » , $ $. . » i . » . . . « . . . • . * J - * * . . . ^ ; . . 5 | » — ?• • •« • « • - •

?f [| i | ["

K : : : i

Theoretical Max RDMA Data Payload Throughput (9360 Megabits/sec)
iSER-assisted iSCSI Over iWARP/TCP —x—

Traditional (Unassisted) iSCSI Over TCP •••«—

0 2 4 6 8 10 12
Data Payload Size (Megabytes)

Figure 4-5: User-space iSCSI Write Throughput

flattens out at just over 8500 Megabits/sec. These operations, again, do not reach the

maximum throughput of the lOGigE network.

Figure 4-6 shows the user-space Read and Write throughput values plotted on the same

graph. As stated earlier, we were unable to determine why the iSER-assisted Read opera

tions do not give higher throughput values.

4.2.4 User-Space and Kernel-Space

The comparisons shown in this section are between the user-space and kernel-space iSER-

assisted iSCSI implementations. Figure 4-7 shows the throughput values for iSER-assisted

iSCSI Read operations and Figure 4-8 shows the throughput values for iSER-assisted iSCSI

Write operations. Although we were unable to explain the behavior of the user-space

Read operations, the results of the SCSI Write operations in Figure 4-8 shows that the

implementation is able to achieve a greater throughput in user-space than in kernel-space.

8000

6000

4000

2000

85

User-Space iSCSI Reads and Writes Over 10 Gigabit Ethernet

10000

8000

6000

4000

2000

M
•• » «•«• « :••» * >••• »....>...« «.,

Theoretical Max RDMA Data Payload Throughput (9360 Megabits/sec)
iSER-assisted iSCSI Over iWARP/TCP (WRITEs)
iSER-assisted iSCSI Over iWARP/TCP (READs) •••«••

4 6 8 10 12
Data Payload Size (Megabytes)

Figure 4-6: User-space iSER Read and Write Throughputs

iSER-Assisted Reads Over 10 Gigabit Ethernet

10000

8000

6000 k

4000

2000

• • • • < • « • » ! • • • • m ••••'•••* » • •

Theoretical Max RDMA Data Payload Throughput (9360 Megabits/sec)
Kernel-space iSER-assisted iSCSI Over iWARP/TCP

User-space iSER-assisted iSCSI Over iWARP/TCP

4 6 8 10 12
Data Payload Size (Megabytes)

Figure 4-7: iSER Read Operation Throughput

86

iSER-Assisted iSCSI Writes Over 10 Gigabit Ethernet

10000

8000

6000

4000

2000

£ll

r
-i """"

1

. - f «••-

"|* * U - * — < J ><
. . . ; - # • ^ |" * • - • "W- f - • n m — ? • • • • • - •

Theoretical Max RDMA Data Payload Throughput (9360 Megabits/sec)
User-space iSER-assisted iSCSI Over iWARP/TCP

Kernel-space iSER-assisted iSCSI Over iWARP/TCP •
i i r i i i

.,..«....

- . * • • •

4 6 8

Data Payload Size (Megabytes)

10 12

Figure 4-8: iSER Write Operation Throughput

iSER-Assisted iSCSI Writes Over 10 Gigabit Ethernet

10000

8000

6000

4000

2000

j*::
-.,«-»• "*"

Theoretical Max RDMA Data Payload Throughput (9360 Megabits/sec)
User Initiator Kernel Target

User Initiator User Target •••*•
Kernel Initiator Kernel Target e

Kernel Initiator User Target

4 6 8

Data Payload Size (Megabytes)

10 12

ure 4-9: Hybrid User/Kernel-Space iSER Write Operation Throughput

87

Kernel-space
Layers

user-space

kernel-space

Blast
Programs

Linux
File-system

Linux
Block-level

Linux
SCSI mid-level

UNH-iSCSI

UNH-iSER

OFA Kernel API

RNIC Driver

User-space
Layers

UNH-iSCSI
Initiator Script

UNH-iSCSI

UNH-iSER

OFA User API

RNIC Driver

user-space

kernel-space

Figure 4-10: Kernel-space and User-space iSER-Assisted Initiator Layering

In order to explore this phenomenon, evaluations were performed on the SCSI Write

throughput in a full set of combinations between the user-space and kernel-space, target

and initiator. These results are shown in Figure 4-9. This figure shows that the most

limiting agent is the kernel-space iSCSI initiator. Both of the runs in which the kernel-

space iSCSI initiator was used show significantly lower throughput values than the runs in

which the user-space initiator was used.

The reason that the user-space initiator performs significantly better than the kernel-

space initiator is because it does not use multiple SCSI commands for each data transfer.

Figure 4-10 shows the layering of the stages that data transfer operations pass through on

their way through the kernel-space and user-space iSER-assisted iSCSI initiator. In the

kernel-space implementation, the read and w r i t e system calls are passed down from the

Linux file-system layer and eventually make their way into the Linux SCSI mid-level. In

the SCSI mid-level, Linux builds a set of SCSI CDBs that it queues up with the UNH-

iSCSI initiator to perform the requested data transfer operations. The maximum size SCSI

CDB that the Linux SCSI mid-level will generate is 512KB. This means that, for each

megabyte transferred, the initiator will generate and transfer two SCSI CDBs, two iSCSI

Command PDUs (one for each CDB), while the target performs two transfer operations

and sends two iSCSI Response PDUs. It is also important to note that the iSCSI initiator

only sends a single command at a time to the iSCSI target, so none of these commands

are being handled in parallel1. In user-space, the UNH-iSCSI initiator script performs data

transfers by building SCSI CDBs and queuing them with the UNH-iSCSI initiator. The

CDBs generated by the UNH-iSCSI initiator script, in these experiments, are all the exact

size of the requested transfer. This means that for each data transfer, regardless of its size,

there is only a single SCSI CDB, iSCSI Command PDU and iSCSI Response PDU.

Figure 4-11 shows both the kernel-space and the user-space implementations performing

a 1MB Write operations. An important thing to remember is that, even for larger transfers,

the user-space implementation will never use more than a single SCSI CDB to perform the

transfers. In the kernel-space implementation, a new SCSI CDB will be transferred for each

512KB of data. This means that, for a 12MB transfer, the kernel-space implementation will

transmit 24 SCSI CDBs, and the user-space implementation will only transmit one.

Figure 4-12 shows the throughput of kernel-space iSER-assisted iSCSI Write commands

and of user-space iSER-assisted iSCSI Write commands which are restricted to 512KB in

size. In order to build the user-space portion of this graph, data transfers using sets of SCSI

Write CDBs of size 512KB were generated using the initiator's command interpreter. This

comparison demonstrates the difference in throughput between user-space and kernel-space

while both implementations use the same maximum SCSI CDB size. This comparison shows

that the kernel-space implementation achieves a greater maximum throughput than the user

space implementation does. This is, most likely, because the kernel-space does not suffer

1UNH-iSCSI allows this to be changed by reconfiguration, however, at this time the multiple outstanding

command feature does not appear to work properly with iSER enabled.

89

Kernel-Space

Target Initiator Target

User-Space

Initiator

iSER/iSCSI/SCSI Write
<

RDMA Read Request

4
RDMA Read Response

r

^
4

^ ^

4
^ ^

^

RDMA Read Response

iSER/iSCSI/SCSI Response

iSER/iSCSI/SCSI Write

RDMA Read Request

RDMA Read Response

^
W

w

4
^, RDMA Read Response

iSER/iSCSI/SCSI Response
->

A—
^

iSER/iSCSI/SCSI Write

RDMA Read Request ^

RDMA Read Response

^
^,
^ ~

RDMA Read Response

RDMA Read Request

RDMA Read Response

^
W

4
^ T

RDMA Read Response

iSER/iSCSI/SCSI Response ^

Figure 4-11: Kernel-space and User-space 1MB Write Operation

90

Userv.s Kernel iSER-Assisted iSCSI Writes Over 10 Gigabit Ethernet

10000

8000

6000

4000 -r

2000

?" my \

*

L, ».--"*•*»"•'* 4 - 8 * j - - . « . " " " " * " - '

Kernei-space iSER-assisted iSCSI Over iWARP/TCP K-~
User-space iSER-assisted iSCSI Over iWARP/TCP (Max SCSI Payload 512KB) »•#»*

4 6 8
Data Payload Size (Megabytes)

10 12

Figure 4-12: Hybrid User/Kernel-Space iSER Write Operation Throughput

from context switch overhead and the extra overhead involved in the user-space/kernel-space

API abstraction.

Figure 4-13 shows the difference in performance between the user-space implementation

when using exact size SCSI Write commands and when using SCSI Write commands no

larger than 512KB. This figure shows that, without the extra overhead of building, regis

tering, transmitting and processing the extra SCSI CDBs, the user-space implementation

is able to achieve a significant performance increase.

91

User-Space iSER-Assisted iSCSI Writes Over 10 Gigabit Ethernet
10000

8000

6000 -

4000

2000

I I

>i I I a
.; I , , , - • • •••*""

User-space
User-space iSER-assisted iSCSI Over iW

-x * • -

yload Throughpi
SER-assisted iS
ARP/TCP (Max

!

- > - ! — < J X - X

CSI Over iWARP/TCP — x -
SCSI Payload 512KB) —••••

4 6 8

Data Payload Size (Megabytes)
10 12

Figure 4-13: Hybrid User-Space iSER Write Operation Throughput

92

CHAPTER 5

CONCLUSIONS

5.1 Conclusions

The goal of this thesis was to implement an iSER-assisted iSCSI solution and to evaluate

its performance. In order to accomplish this goal, support was added to the UNH-iSCSI

reference implementation for the iSER extensions to the iSCSI protocol. This paper has

described the approach which was used to perform this task and some of the difficulties that

were encountered on the way. Additionally, the results of a set of throughput evaluations

using this new implementation were presented. Table 5.1 shows the maximum throughput

values in Megabits/sec that were achieved by tJNH-iSCSI in iSER-assisted mode and in

traditional iSCSI mode. These results show that the iSER extensions enable an iSCSI

solution to make much more efficient use of a lOGigE network.

Max Data Pay load Throughput

User-Space iSCSI Writes

Kernel-Space iSCSI Reads

Kernel-Space iSCSI Writes

iSER Throughput

(Megabits/sec)

9360

8847 (94.5%)

8661 (92.5%)

7727 (82.6%)

iSCSI Throughput

(Megabits/sec)

9490

4580 (48.3%)

4463 (47.0%)

4761 (50.2%)

Table 5.1: Throughput Performance Results

93

5.2 Future Work

Due to time constraints imposed by the unexpected difficulties in getting our implementation

to work properly, we were unable to perform all of the possible evaluations that are enabled

from our iSCSI solution's design. Table 4.1 shown in the previous chapter presents all

of the possible configurations that our iSCSI implementation is designed to support. It

would be beneficial for a future project to evaluate the performance of all of these different

configurations. Specifically, it would be interesting to see a comparison between our iSER-

assisted implementation running over iWARP and Infiniband. Currently, Infiniband is the

leading RDMA technology, and it would be useful to see how the newer iWARP protocol

performs with respect to Infiniband. It would also be useful to do more work with the

UNH-iSCSI target's DISKIO mode in order to evaluate the performance of our solution

when it is interacting with a real disk device. This configuration would show the benefits

of the real-world usage of our solution. Finally, a comparison between iSER-assisted iSCSI

using RDMA offload hardware and a fully offloaded iSCSI solution would be beneficial. If

iSER-assisted iSCSI is able to achieve similar speeds to fully offloaded iSCSI, then general

purpose RDMA hardware can be used in practice instead of very special purpose iSCSI

offload hardware.

In addition to the comparisons mentioned above, a future project could explore the

usage of immediate and unsolicited data with iSER-assisted iSCSI. Since RDMA transfers

require a significant amount of overhead to setup, it may prove beneficial to make use of

iSCSI immediate and unsolicited data transfers to circumvent the RDMA setup overhead

for small transfers. Our current implementation does not properly handle immediate and

unsolicited data in iSER-assisted mode. A future project could add support for this and

then attempt to find an optimal immediate/unsolicited data size to use in order to get the

greatest performance on an iSER-assisted connection.

The OpenFabrics Alliance API is planning on adding support for the RDMA Send with

Solicited Event and Invalidate operation (SendSEInv) in an upcoming release of the Linux

94

kernel. A future project may want to explore the usage of the SendSEInv operation with

iSCSI Response PDUs. Theoretically the SendSEInv operation will allow for re-using some

of the memory registration information on the RDMA hardware, which will reduce RDMA

transfer setup overhead. It would be interesting to see how much of a reduction in overhead

occurs when using the SendSEInv operation as specified in the iSER standard.

Another benefit of Remote Direct Memory Access hardware is that network protocol

offloading, should greatly reduce the amount of work that is needed by a CPU. Future work

should attempt to measure the CPU load of iSER-assisted iSCSI in various situations and

then compare it with the CPU utilization of traditional iSCSI. This evaluation will be useful

to demonstrate one of the additional benefits of the iSER extensions to the iSCSI protocol.

95

BIBLIOGRAPHY

[1] Open Fabrics Alliance, http://www.openfabrics.org.

[2] Infmiband Trade Association. Infiniband Architecture Specification version 1.2.1.

[3] M. Chadalapaka, J. Hufferd, J. Satran, and H. Shah. Datamover Architecture for

Internet Small Computer System Interface (iSCSI). RFC 5047 (Informational), October

2007.

[4] P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Carrier. Marker pdu aligned framing

for tcp specification. RFC 5044 (Standards Track), October 2007.

[5] DAT-Collaborative. kDAPL: Kernel Direct Access Programming Library, June 2002.

[6] D. Delessandro, A. Devulapalli. and P. Wyckoff. Design and Implementation of the

iWarp Protocol in Software. PDCS, November 2005.

[7] J. L. Hufferd. iSCSI The Universal Storage Connection. Addison Wesley, 2003.

[8] M. Ko, M. Chadalapaka, J. Hufferd, U. Elzur, H. Shah, and P. Thaler. Internet Small

Computer System Interface (iSCSI) Extensions for Remote Direct Memory Access

(RDMA). RFC 5046 (Standards Track), October 2007.

[9] A. Palekar, A. Chadda, N. Ganapathy, and R. Russell. Design and implementation of

a software prototype for storage area network protocol evaluation. In Proceedings of

the 13th International Conference on Parallel and Distributed Computing and Systems,

pages 21-24, August 2001.

[10] M. Patel and R. Russell. Design and Implementation of iSCSI Extensions for RDMA,

September 2005.

96

http://www.openfabrics.org

[11] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia. A remote direct memory

access protocol specification. RFC 5040 (Standards Track), October 2007.

[12] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner. Internet Small

Computer Systems Interface (iSCSI). RFC 3720 (Proposed Standard), April 2004.

Updated by RFCs 3980, 4850.

[13] H. Shah, J. Pinkerton, R. Recio, and P. Culley. Direct data placement over reliable

transports. RFC 5041 (Standards Track), October 2007.

[14] Yamini Shastry, Steve Klotz, and Robert D. Russell. Evaluating the Effect of iSCSI

Protocol Parameters on Performance.

[15] Voltaire. Open source iSER code at https://svn.openfabrics.org/svn/openib/gen2/.

[16] F. Xu and R.D. Russell. An architecture for public internet disks. In Proceedings

of the 3rd International Workshop on Storage Network Architecture and Parallel I/O

(SNAPI05), pages 73-80, September 2005.

97

https://svn.openfabrics.org/svn/openib/gen2/

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 2008

	Implementation and comparison of iSCSI over RDMA
	Ethan Burns
	Recommended Citation

	ProQuest Dissertations

