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Resumo

O uso coordenado de multiplos nés de computachestéry como plataforma para
resolver, em ambientes de calculo de elevado desempenho (ptBblgmas de grande
exigéncia computacional, ou para oferecer, em ambientes de Sislemaformacédo (Sl),
servicos fiaveis e tempos de resposta adequados é hoje wip@osioldiscutivel, em termos
de custo/beneficio.

Os ambientes de HPC e Sl séo razoavelmente dissimparésularmente no que se refere
a sistemas de ficheiros e as arquitecturas de armazeoaemntambientes HPC”, favorece-
-se 0 uso de sistemas de ficheiros de elevado desempenho, ranerdet de outras
caracteristicas (ndo sao, geralmente, compativeis POSIX¥}am-se discos internos ou
privados; em “ambientes SlI”, preferem-se solucdes de alta dhdjplae suportadas em
armazenamento externo e, quando tal se revela necessario, sitefichgiros para discos
partilhados (CFS), desde que compativeis POSIX (mesmo sacrificando peeksem

O parallel Cluster File System (pCFS) é a nossa propastamudar este estado de coisas,
usando o melhor de cada um: a fiabilidade dos CFSs e o exagspatapenho dos sistemas
de ficheiros paralelos. Nao se pretende conseguir maximositssaohas tdo somente uma
compatibilidade total com a norma POSIX, versatilidade, e s fiabilidade e
desempenho suficientemente bons para uma utilizagdo genéricxag@gi tradicionais e
HPC, suporte de motores DBMS que armazenem dados em fichestosamingde video.
As ideias-chave para o pCFS séo:

» Cachingcooperativo, uma técnica usada em sistemas deirffichpara discos distribuidos que,
tanto quanto sabemos, nunca foi usada em CFSs é¥no8/4sistemas de ficheiros paralelos.
Resulta daqui que o pCFS pode usar todas as istinatsras (LAN e SAN) para aceder a dados.

» Locking de granularidade fina, que permite definir regideguntas (ao nivel do byte) num
ficheiro podendo os processos, mesmo quando canemos distintos, nele ler e escrever em
paralelo, a velocidade da infra-estrutura SAN (degke ndo ocorram mudangas importantes na
estrutura dos metadados).

Construimos um protétipo sobre o GFS (um CFS da Red Hat), modificaagtarignte o
moédulo GFS, acrescentando-lhe dois modulos de sistema suplementaneks um terceiro,
de nivel utilizador. No protétipo, lockingde grao fino esta integralmente realizadocache
global é mantida coerente com transferéncias de fragmentos de padinasagaobre LAN.

Os testes efectuados para 0 caso de processos que correneremtedifnés escrevendo
sobre um mesmo ficheiro mostram que o pCFS tem um desempenhmidéntio Parallel
Virtual File System (PVFS) e duas vezes superior ao dq BfSumindo muito menos CPU
que estes (cerca de 10 vezes); e que, quando comparado com o GE#&eaemenhos que
sdo 2 a 600 vezes superiores (para acessos de 4 MB e 4 pdtikesnente) com idénticos

consumos de CPU.






Abstract

Today, clusters are the de facto cost effective platform bothhigh performance
computing (HPC) as well as IT environments. HPC and IT are diffarent environments
and differences include, among others, their choices on file systethstorage: HPC favours
parallel file systems geared towards maximum I/O bandwidth, behvelne not fully POSIX-
-compliant and were devised to run on top of (fault prone) mar¢itd storage; conversely, IT
data centres favour both external disk arrays (to providdyhayailable storage) and POSIX
compliant file systems, (either general purpose or shar&detlister file systems, CFSs).
These specialised file systems do perform very well i thgget environments provided that
applications do not require some lateral features, e.g., no fikngpon parallel file systems,
and no high performance writes over cluster-wide shareddileSFSs. In brief, we can say
that none of the above approaches solves the problem of providimdekigds of reliability
and performance to both worlds.

Our pCFS proposal makes a contribution to change this situdtiorationale is to take
advantage on the best of both — the reliability of clustersfistems and the high performance
of parallel file systems. We don't claim to provide the absolute bestbf bat we aim at full
POSIX compliance, a rich feature set, and levels of religl@iid performance good enough
for broad usage — e.g., traditional as well as HPC applicatioppo#g of clustered DBMS
engines that may run over regular files, and video streaming. pCFHSideais include:

» Cooperative caching, a technique that has beenindéd systems for distributed disks but, as
far as we know, was never used either in SAN badester file systems or in parallel file
systems. As a result, pCFS may use all infrastrast(LAN and SAN) to move data.

» Fine-grain locking, whereby processes running acrdsstinct nodes may define non-
overlapping byte-range regions in a file (insteadhe whole file) and access them in parallel,
reading and writing over those regions at the siftacture’s full speed (provided that no major
metadata changes are required).

A prototype was built on top of GFS (a Red Hat shared disk CHS3. kernel code was
slightly modified, and two kernel modules and a user-levemdaewere added. In the
prototype, fine grain locking is fully implemented and a clustiele coherent cache is
maintained through data (page fragments) movement over the LAN.

Our benchmarks for non-overlapping writers over a single filresi among processes
running on different nodes show that pCFS’ bandwidth is 2 timesegréetn NFS’ while
being comparable to that of the Parallel Virtual Filst8yn (PVFS), both requiring about 10
times more CPU. And pCFS’ bandwidth also surpasses GFS’ (@8 fior small record
sizes, e.g., 4 KB, decreasing down to 2 times for large resiped, e.g., 4 MB), at about the

same CPU usage.
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Part I:
Motivation and Background

In this Part we present the motivations for our work, alorty wismall introduction that
covers the transition from the supercomputer architecture ttedusve include a brief
overview of applications that need high performance I/O, includifensfic, database, and

multimedia, and lay out the focus and major contributions we anticipateofrodissertation.
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1 Introduction

1.1 The evolution of high performance computing architectures

In the last two decades, two factors were determinant irmnttgtectural shift that made
high performance computing (HPC) available to broader audienchantegical, in the form
of high speed microprocessors and interconnects; and econoasddleir inclusion in the
commodity market of personal computers (PCs) resulted in evesr logsts. Specialised
supercomputer architectures have therefore been replaced bgr&lustoriginally built
around piles of commodity PCs, then around small symmetrical shemewry multi-
processor (SMP) nodes made up from common off-the-shelf (COTiS) aad recently with
more “exotic” parts such as multicore processors and bladersgteday, large clusters can
reach amazing raw performance figures, as we multiply a npdegfgrmance expressed, e.g.,
in floating-point operations per second (FLOPS), by the total number of nodes.

As clusters replaced Massive Parallel Processors (Mdte) other supercomputer
architectures, efforts were carried out to simplify thegtallation, operation, administration,
and everyday use; the aim was, quite understandably, to presestes ak a single, although
large-sized, computer. Efforts were pursued in the programminglsnatena too, aiming
either to simplify programming, as proposed by the shared memoryl raddpters, or
develop programs that extract the last ounce of performaneglvasated by the proponents

of message passing programming model.

1.2 Bottlenecks: when reality crushes in

But despite the high performance figures we can get out ftostecs (even when these
figures are not merely raw values but ones derived from atdy@nchmarks such as the
LINPACK? [Don+01] benchmark), some HPC “real world” applications may rum miuich
slower speed than what it should be expected, given the sgstaing. There may be several
reasons why this may happen; to name a few, and drawing a pperailleat happens in the
single node world, the application may be CPU bound, memory bound, or I/O bound.

We all know, just by mere observation of advertisements imthestry, the huge increases
in processor and interconnect performance that occur, say, everggyedealing with a CPU
bound application is simple, isn’t it? We just need to add another @Rgplace the current
one with a faster model... well, it may help; or else, it may highlight yet another
bottleneck. Anyway, in a multiple node cluster, what should weR#g®?ace the CPUs in all

nodes? Add in some more nodes? The first option is quite cumbersome, but the seagnd is ve

! For a comprehensive survey of computing architestsee Part II, section 4.
2 Used to rate the world’s top supercomputers inuep500.0rg.



practical — although it may be inappropriate for some cases -wban, to use more nodes,
either the application itself or some of its parameters tmabe changed.

Good observers will also notice that the high rate of impromémeCPUs does not hold in
other technologies, e.g., disk, and/or memory; therefore, “slow apptitdiehaviour can
also result from memory latency or bandwidth problems, somethihgnénanot be so easy
to fix as, say, adding more memory to each node when memory ég saad cannot for sure

be fixed just by increasing the CPU clock.

1.3 The I/O bottlenecks

In this work we are first and foremost interested in systems that caadsetmperform 1/O
at such a rate that it will not hinder the overall progogssf the computation, i.e., systems
that exhibit good I/O performance, and are scalable.

From a node’s perspective, good /O performance reduieasonably fast disk devices; a
contention-free or slightly-contended I/O infrastructure to conttex devices to their bus
adapters; a DMA-capable 1/0O controller plugged into a high batidwow latency /O bus;
and finally, a good I/O stack — from the device driver to the file systgen.la

But these are single-node perspectives and we are isgbiastlusters where more things
should be considered; for example, should each node in the clustétshawea set of private
disks, or share disks with other nodes? Should nodes be symmeticahould they run the
same set of services or, conversely, should some nodes perfordutynenly, e.g., /O
storage/server, while others are I/O clients? And, fma#i the configuration (hardware,
architecture, software, etc.) scalable, i.e., does resourcegoadslich as nodes and/or disks

result in more I/O bandwidth?

1.4 High availability

Today’s cluster applications may use large numbers of nodes arfdrrdays, or even
months. In this scenario, failure of a component (CPU, memorycamteect, disk, etc.) is a
certainty, so steps must be taken to assure that the ajuplistate can be recovered and, as
soon as the subsystem containing failed component has been eitliredrepaéaken off, the
computation can be restarted. From the I/O perspective thigegsquhighly available (HA)
architecture, covering both hardware and software — e.g.yBlern. As a counterexample,
an I/O architecture where nodes have their own, private, intagkal id not a good choice, as
data is no longer accessible when a node fails, whereas atectrai@ where nodes access

external array-based storage [Pat+89] may be able to offer sohud service continuity.

% These aspects will be explored in greater ditddart II.



2 1/0 Intensive Applications

Today, I/O intensive applications are executed in clusteedl sizes; while today’s most
HPC clusters mimic supercomputers of yore and are usuallyiseghinto compute and I/O
nodes (see sections 4.3 to 4.5), some are configured in a difiEgnanyway, nodes that
perform I/O tasks do run a distributed file system — no mhtierwe call it: parallel, cluster,
or just plainly distributed What do applications, running in those clusters, need from the 1/O
subsystem? How can the operating system (OS), file systairstarage subsystem satisfy

their needs?

2.1 Who needs high-performance 1/0?

It is common knowledge that most applications that accesdargig amounts of data need
high-performance 1/0, and we can find examples in very diffefields such as scientific,
database and multimedia.

Scientific applications cover domains such as astronomyxgdbrmation), chemistry
(molecule synthesis), geophysics (climate, ocean), physics @gndmics), high energy
physics (particle accelerators), and medicine (tomography daining). Common
characteristics of “hard” scientific applications are #f9%]: they use multidimensional
arrays, are not embarrassingly parallel, and are memory and/or CPU bound.

Database applications also benefit a great deal from higbrpeafice 1/0; well known
examples include online transaction processing (OLTP) apioics such as airline
reservations and online shopping, online analytical proces€hg§K) applications such as
business marketing, sales reporting, data warehousing, and data mining.

Multimedia applications such as video-on-demand require both high lhdwo cope
with multiple data streams, and good quality of service (Qo&),donstant data rate from

video servers.

2.2 Scientific applications

Broadly speaking, reasons to perform I/O in scientific apiitina can be grouped into two
categoriescompulsoryandout-of-core[Cra+04, Sch+99]. Compulsoriye., unavoidable 1/O,
includes data and parameter input, and output data. We label hewt-afscore all those
operations that, while avoidable in principle, are nevestisetonvenient to have; examples
include checkpointing of partial results, both for debugging andppastiapplication restart
(because of failures or to try “something else” — e.g.,ferdnt set of parameters — on
intermediate results); scratch files; and, finally, true afttere support where data

overlaying is programmed/controlled explicitly by the applicatiagpmmer because either

1 We will propose, in Part IV, a reference modeal antaxonomy that will enable us to establishe fil
system classification and highlight their importaaspects.



he/she is using legacy code, or knows that performance will tex bedn if that same task is
carried out by the kernel’s virtual memory management.

When performing I/O to a disk file, several transformatioay wccur; the layout of a data
structure, when in-memory, may be quite different from itfilénlayout, and that one may
also be distinct from the on-disk layout. Furthermore, the develgseto decide either for a
data layout that will extract the best performance, or onewilabe compatible with a
sequential version of the application — quite useful for debuggingheatexpense of
performance; one may also choose to store it in a portabletfaoeh as the Hierarchical
Data Format, HDF [NCSA99] or the Network Common Data FormCR& [Uni06]. User-
-level libraries provided with these packages do perform thraseformations, but they are
usually available only for POSIX compliant [I[EEE04] file systems.

Therefore, to efficiently support a wide range of existing sifierapplications and/or
libraries (where some were developed to run on MPP platforims;sotvere tailored to large
SMPs or vector supercomputers) in a cluster with a minimumoafifications to their source
code, one must choose a file system that offers POSIX-cdmtipa(including both the API

and the sharing semantics) while still providing high aggregategdfformance.

2.3 Database applications

The evolution of high performance database servers followed aresting path, from
early sharednemoryarchitectures to sharawthingMPPs, and back to “shared something”
in the form of today’s clustered shardidk SMPs [Nor+96].

The shared disk approach was taken mainly because it sutigessives two major
problems: tolerance to failures, and difficulty to find a gooditp@ming strategy to distribute
data among the nodes (and their local disks). This is just ano#ser of trading the
theoretical peak power of the MPP approach for the apparently sjml®ugh theoretically
less scalable, “cluster of SMPs” architecture; for siaifyij we mean that life is much easier
for database designers/administrators and application programasean example, database
administrators have to decide about the placement of the physitzdiase structures into
logical disks, and these onto physical ones, taking into atatata de-clustering, RAID
levels, and multi-pafh/O; they don’t need to worry on how to partition data among servers.

Still, for the DBMS engine implementer, the main difficedtifor implementing a “Storage
module” remain: the mapping of logical database structureh, &si¢ables (in a RDBMS),
indexes, hash tables, etc. into physical database structures, siilels as a filesystem, or

blocks inraw diské (also called raw devices) [Ndi+04].

% See Part IV, section 12.1.
% Microsoft SQL Server is a major DBMS that doessupport raw disks.



To efficiently support a file-based DBMS, instead of a ravi«tiased one, even general-
-purpose local file systems such as ext2 [Bov+05] or NTFSOflanust provide high
performance 1/O; to run a file-based DBMS in a cluster withinimum of modifications to
the DBMS implementation, the supporting distributed file systamt again offer high levels
of aggregated 1/0 performance, while still providing POSt¥apliant file system features,

such as “single-node equivalent semantics” (see 11.1.5 and [Sch+02]).

2.4 Multimedia applications

Multimedia environments are yet another example of the distributed-skever paradigm;
a typical scenario has users at their terminals (TV, B@, Ifhobile phone, etc.) choosing (in
a process that may involve something as simple as browsisigad thoices, or as elaborate
as querying a database) a “rich document”, and accessingutifigi and/or hearing, or even
producing/modifying). From end to end, i.e., from the server down to #ré&s aerminal, the
whole infrastructure must concurrently support multiple data sgeamre synchronicity and
isochronicity are of paramount importance [Ben+02].

From the 1/O point of view, the “source” (servers and diskkjch is our main subject of
attention, has to cope with these requirements as they impgéme constraints that must
be met throughout all the file system layers, down to thediaks. A common approach for
today’'s multimedia servers is to have a clustered anthite where nodes have external
SAN-attached disk arrays(shared or not) and data is distributed across servess/disk
according to some user/file system defined policy. One intljtiexpects that the usual
policies for reordering disk requests, such as the elevajorithim [Bov+05], may not be
adequate here and that having a richer file system APIlthaieenables us to communicate
the above-mentioned requirements down to the file system layer, seemlogiait

Finally, processing of streamed data may have to be carriee¢.gutto adapt the stored
frames resolution to the user’s terminal, something that can beajlen¢he server [Ben+02],
trading CPU for a decrease in network bandwidth; or, b) audlee’s terminal, if that is
possible and desirable; or, ¢) in a middle tier of applicationifipeservices/servers, an
architecture we have never seen but seems a reasonablechp@od is probably an
interesting research topic.

Thus, to effectively support rich media environments where phaltindependent
isochronous streams must be fed, a server (parallel) apglicaust be able to specify its
QoS requirements regarding sustained data delivery bandviiitbach stream. This seems

possible even on top of a general purpose, POSIX-compliany§iters, provided that some

* Internal disk configurations are not widely useecause they constitute single points of failure;
Storage Area Networks (SANSs) are discussed onlRaection 5.



minor modifications to the API are introduced, e.g., extending the @nggtions available

to some calls such apen() andioctl()

2.5 High performance 1/O for all: the case for shared disk storage

Disk arrays are today’s ubiquitous storage bricks; for padioce reasons as well as high
availability they can be found from the smallest to the krijE departments, hosting data
bases, and in research centres, hosting very large deta.stbey can be efficiently used
both as shared storage, as in parallel database clusterslanerfabnfigurations (mail, file
and web servers), and as privately attached storagé ¢liska“‘emulation”) in non cluster-
-aware environments (legacy applications, video servers and scipatillel 1/0).

In this dissertation, we argue that a high performance, higlaiyable, POSIX-compliant
file system can be built for SAN-based clusters with esthatorage disk arrays. Such a file
system would be able to efficiently support all but perhaps st demanding applications,

from all problem domains, in small to medium sized clusters (up to Adedred nodes).

3 Dissertation Focus

3.1 Problem statement

Today’s supercomputer is the cluster which, to be convenienttyasa HPC platform, is
usually configured in a way that emulates its predecesshesMPP) computing and I/O
subsystems. But HPC clusters are only cost-effective whenattegeluilt from COTS parts,
i.e., mainstream SMP server nodes. Unfortunately, the refiabfli“the cluster” as a whole
falls quickly when the number of nodes increases, and faulataleolutions must be used if
one wants to provide the same service level supercomputer usexcastomed to. Solutions
that withstand compute node failures rely on the ability of so#w usually middleware — to
perform cluster-wide checkpoint/restart of computations, whileettiosrecover from /O
node failures are two-fold: when using internal disks, one coujldorethe ability to cross-
replicate data among nodes (a solution not used in HPC becalas &n unacceptable
overhead); or, instead, dispense altogether with interna distk use external disk arrays and
additional software to provide fault tolerance.

The external, array based solution used today in large HPC <éntia fact, exactly the
same approach that has been used for quite some time in busiresenteds to support
highly available DBMS, mail, web and file servers, etc. Hmvethere are some differences
between those environments, including both fileesystem and thestorage access model
HPC-oriented file systems are geared towards maximum I/O hdifgwse partitioned (also
known as distributed) storage, and usually aren't fully POSiXgliant; data centre

environments favour high availability general purpose file systavhich, conversely, use



shared storage and are fully POSIX compliant — and to providen@cessary, they sacrifice
performance.

In this dissertation we focus on the development of a protatyseer file systerthat uses
the shared storage approach and is fully POSIX complianie wtill being able to provide a
high bandwidth, low latency access to reliable storage. TP API is enhanced through
the addition of new “option flags” to thapen() call, although, in the future, new primitives
may be added; both will allow the user to have a better canftitble file system behaviour,

and increase its performance.

3.2 Contributions
The foci of this dissertation are five-fold:

» To characterise the areas commonly known as “Parallel If@ ‘®arallel”,
“Cluster”, or “Distributed” file systems and propose a set of rigodmimitions.

» To propose a reference model that encompasses all layergHeonpper, data
management services down to the device layer, and define a taxtoraimy “File
System” layer.

» To propose a new architecture for a shared disk CluskerSystem (CFS) that
overcomes current parallel and cluster file systems imaliti simultaneously
provide full POSIX compliance and high performance.

« To develop a prototype (based on modifications to Red Hat's')GiB8 the
proposed CFS, one that is fully POSIX compliant while still beipig to provide a
high bandwidth, low latency access to SAN-based reliable storage.

» To assess the prototype, comparing it against well edtallifile systems running

a synthetic benchmark.

3.3 Organization

This document is organised as follows:

Part | presents the motivations for our work, along with a smatiduction that covers the
transition from the supercomputer architecture to clusiteaso presents a brief overview of
applications that need high performance I/O, including scientdfitabase, and multimedia,
and lays out the focus and major contributions we anticipate from ¢iis w

Part Il presents a brief survey of computer, storage, and opesgtitegn architectures used
when problems do not fit in a “single-box” anymore; we start \BithPs and then move to
multi-node MPPs, non-uniform memory architectures (NUMAS) dusters. In the storage

section, we introduce storage devices (from disks to stoeaggys) and interconnect

! See Part IV, section 15.3.1.2 for a thorough desien and references.



architectures (from internal I/O busses to storage areeried). Finally, we briefly mention
operating system choices for single and multi-node architectures.

Part Il discusses fundamental concepts in file syst@magliscuss the user-level views of
file organization and access, sharing semantics and data tenngjsand an array of
techniques commonly used to enhance performance, such as datatiistand caching —
starting from the perspective of the single-node computer andrtbeimg to multiple node
architectures. Each concept/technique is then illustratedavimal world” file system.

Part IV starts by discussing I/O flow in modern architectarss operating systems, which
allows us to extract precise definitions fearallel I/O andParallel Disk AccessThen a new
Reference Model for Data Management Architectures (RMADPMs proposed, and
taxonomies for the three topmost layers (File System, Objecadst, and Storage Access)
are presented. A short evaluation of the model and accompanying taxonomy is caiigd out
survey of some relevant, widely known, “parallel”, “distributé@tlient/server” and “cluster”
file systems, I/O software stacks, and storage architectures.

Part V starts with a critique of traditional shared-diskster file systems, listing their
features and benefits as well as limitations; while we fipelty refer to Red Hat's GFS,
remarks also apply to other CFSs. To validate whetherliidgas, e.g., using the LAN as a
secondary path to move data among nodes, were sound, we have devegiopedototype
and some preliminary tests were carried out. Results weyeusitive and led us to propose
a new architecture for shared-disk CFSs, one that moveslimtiaag from the device to the
file system cache while preserving POSIX semanticesaccluster nodes; we call it the
“parallel Cluster File System”, pCFS.

Part VI is a prerequisite to understand the pCFS implement#tiefiirst section discusses
the architecture of the Linux VFS and how it is used to integraeific file systems; then an
overview of GFS internals is presented; and finally we ritescwith some detail, how GFS
implements locking and uses it to promote clusterwide coherency.

Part VII describes how we have implemented pCFS, through the addftitwo kernel
modules, a user-space daemon, and slight modifications to GFS adwdiied GFS code
distributes information about clusterwide open files and actigins, and implements cache
coherency without resorting to expensive disk flushing and cache invatiagtéerations.

Part VIII benchmarks pCFS against “plain” GFS and other kel file systems such as
NFS and PVFS (where both the “regular’ configuration, witkerimal disks, and the high
available configuration, with disk volumes provided by a disk arvegre benchmarked);
these benchmarks go beyond the usual set of metrics and also acc@Ritfoonsumption.

Part IX assesses the benefits of pCFS — its use of amatgdgpproach to data movement,
cooperative caching, and low latency cache coherence operationshevaridey succeed in

overcoming the I/O bottleneck. Finally, it introduces ideas for futumw



Part Il:

A Survey of Computer, Storage, and
Operating System Architectures

In this Part we present a brief survey of computer, storagd, operating system
architectures that are used in those situations where the peoble want to address do not
fit in a “single-box” anymore; we start with SMPs, then moweerulti-node MPPs, non-
-uniform memory architectures (NUMAS) and clusters. In the géosection we introduce
storage devices (from disks to storage arrays) and intercioarghitectures (from internal
I/O busses to storage area networks). Finally, we briefigtion operating system choices for

single and multi-node architectures.
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4 Parallel and Distributed Computing Architectures

4.1 Architectural archetypes
The topics we are going to cover now are introduced in a sim@leby Fig. 4.1, as it
charts architectures we're addressing on a two-dimensioithlbgilt along two axes: the

number of CPUs, and their “distance”, measured in terms of memorgsdatencies.
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Figure 4.1 Architectural archetypes “at a glance” (hardware-biased view)

To illustrate the placement of an item in the chart let's |é@mkexample, at a typical SMP:
it has a few CPUs (so we place it in the “Tens” zondjngittlose to each other on a low
latency, very high bandwidth interconnect (quite often, a sharecabddherefore we place it
close to the “Small” line. We then group (“encircle”) similarchitectures into families,
according to the way CPUs access memory; for exampthared memorgarchitectures all
CPU(s) can access the whole memory — and they are eithdre oUniform Memory
Architecture (UMA) variety, when all the CPUs can asca memory modules at the same
“speed” (latency), or of the Non-Uniform Memory Architect{idUMA) variety, when a
CPU may access some memory modules at a faster “speéatic{lp than it may access

others.
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4.2 The shared memory multiprocessor

The symmetrical shared-memory multiprocessor (§N#today’s prevailing architecture
for small size (up to 4 CPUs) and even medium size (up to 8 ) QPOES systems; it is so
common that one can find a huge amount of literature, including textboaksifacturers
white papersand computer magazine articles, and was scarcely a fedepic. However,

recent developments on multicore architectures have, once agaiedsmsearch on SMPs.

CPU CPU
Memory
% bank 1
I
Memory B
Controller Hub

I Memory
: bank 2

PCl slots I/O Controller
Hub

Figure 4.2 Architecture of a common off-the-shelf SMP server

Current Intel-based SMPs are of the uniform memory archite@iM#\) type, where the
cost (latency) of accessing a memory location is the sanalfCPUs, while AMD has been
busy selling their Opteron-based SMPs [Jes05], a shared nomrunifi@mory access
architecture (NUMA, to be detailed in section 4.4); understagddlUMAs may need some
operating system assistance, such as the Linux NUMA extensioh93DBIli+04], in order
to transparently achieve “optimum” application performance.

There are some very strong points in favour of the SMP artlni¢edt is very easy to
program, as it implements the shared memory programming mods]; at least with a
properly designed memory subsystem, very easy to scale CPUnmerfie if the number of
CPUs is kept low (let's say less than a dozen); and, with gyogeesigned memory and I/O
subsystems, it is also relatively easy to scale 1/O performance.

But this easiness is for low numbers; in fact, it is verfiaift to simultaneously increase
both the number of CPUs and the I/O bandwidth because a COTS SM$§igaed around a

! We will, unless otherwise noted, use SMP to rafeshared-memory multiprocessors, a more generic
architecture that includes the symmetrical sharedaory architecture as a subtype.
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memory and I/O interconnect topology (usually one or more busésh vghnot scalable. For
cost reasors this subsystem is built as PCB lanes onto the motherboaidgaan not be
“widened” to support a larger data path; another way to iserbandwidth is to increase the
bus clock rate, but that's not an easy task: the electii@hcteristics of the bus dictate the
fastest clock rate it can sustain, and anything that's ptuggehe bus only contributes to
deteriorate its characteristics; so, if we succeechimeasing the clock rate in a specific
motherboard’s bus, it just means that it was being underutilized before

Historically, the I/O subsystem has tried very hard to keewitipthe CPU performance;
the Peripheral Component Interconnect (PCI) bus, plugged into a ‘lmodge”, has evolved
from the original mid nineties 33 MHz, 32-bit wide PCI (at MB/s) to a 66 MHz 64-bit
wide bus found in mainstream products in late nineties (at 533)Miiw/, PCI-X, with a
bandwidth of circa 1 GB/s (with 2 and 4 GB/s almost readgke bff) can be found directly
attached into a memory hub [PCI-X]. But high performance diskyaron Fibre Channel at
800 MB/s per full-duplex port, and Gigabit Ethernet devices, at 10 M#B&n still saturate it.
A solution to this problem includes, among others, the latggtrgtion of serial-based busses
and interconnects: PCI Express (PCl-e) [Bha01], and Infinfo@By[Pfi01].

4.3 The massive parallel processor

Compute Compute Compute
node 1 node 2 node ¢

Interconnection Netwo

I/0 node I/0 node | I/0 node

0Bl (80 B0

Figure 4.3 Architecture of an MPP

2 To see what can be done in big, expensive shaesdomy architectures, see Sun’s Starfire [Cha98].
% IB has yet to fulfill the promise of being an aitative to PCI [Pfi01]; tight control, by Intel, dfie
Front Side Bus (FSB) has deterred developers figogying” into the memory hub.
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The Massive Parallel Processor (MPP) is another appraadfictease raw computing
power; the concept is based around a large number of‘*rsitliesy close to each other, linked
together with an expensive, special-purpose, high bandwidth Iwmcha interconnect —
usually a non-bus topologg.g, mesh, hypercube, torus, etc.); depending on the architecture
and/or topology of the interconnect, increasing the number of nodespafrom reasonably
easy to very hard; anyway, the available raw computing pailieincrease accordingly. The
MPP is obviously well (“naturally”) suited to support the ss@ge passing programming
model, due to its distributed memory architecture.

The prevailing I/O architecture for MPPs is based on the usecefrtain number dfO
nodesthat either hold internal disks, or have a separated intercaomédtastructure linking
them to external storage; these I/O nodes are, together with the comp&eatiadbed to the
general-purpose interconnection network [Ber+94].

The big advantage of the MPP architecture is its (theobesicalability: it is (at least with
a properly designed interconnect) very easy to scale up rBarrpance, even in a large
configuration (thousands of nodes), just by adding more compute nodesiraitarly, to
increase raw I/O performance, one may just add I/O nodes. Qiothe side, it not easy to
program it, as message passing is the programming model afectsmme authors will
strongly disagree with this statement). As a consequenceeadargunt of software originally
developed for SMPs will not run in MPPs; to solve this problem, two approacheherefore
possible: porting the software, which can be a very expensigetonsuming endeavour for
large productsd.g, the port of a DBMS engine), or simulating a MPP-wide esthamemory
with appropriate middleware — this approach, called Virtual $histemory, VSM [Li+86],
has been shown adequate for some applications.

A special point must be noted: we have been using the rarmpower which is the
aggregated sum of the power (computational or other) of alhdkes; but one thing is to
advertise the raw power, while another one is to be able tat yseductively, to run
applications. MPP applications are very sensitive to theulagf data distribution among
nodes, as well as to the frequency of communication and amount afxdhtnged between
the nodes; if not properly done (which is no easy thing to do), mpeafice will be much
lower than what one could expgcAnother sensitive point is I/O: if computing nodes do not
have direct access to storage, all I/O data must trax@ligh the network interconnect, and
this should be done in a way that does not interfaredelay, application message exchange;

one should strive for a segregation between the /0O datddransssages and application

* A node is a package containing a complete sys&hi(s)-memory-I1/O.
® For example, the performance of a well known pnatdolding application on a 2048-processor
Blue Gene is about 4 ns/day, while it reaches Ifaysn a IBM 595 “big NUMA” with 944 CPUs.
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communication, and, if possible, overlap them with computationsywites we will be

increasing the sequential term in Amdahl’s law [Amd67, Gus88], and speedispfiei.
Development of MPPs has been lingering for quite some timegldsr the much more

cost-effective clusters, but recently IBM has been commisditmalevelop the Blue Gene

architecture, a “massive supercomputer” [Gar+05].

4.4 Distributed shared memory architectures and NUMAs

A distributed shared memory (DSM) architecture is a speeth distributed memory
architectur® where it is possible for a node to use a separate interd¢gmoéthe CPU-local
memory interconnect) to access another node’s memory; thisteememory access
capability is provided by special hardware (which may, or maty be complemented with
OS-level software). DSM architectures were developed &vcowme both “the” limitation —
poor scalability — of bus based shared memory multiprocessorsheamhaw performance of
software based virtual shared memory implementations whaéieg their major strength:
the shared memory programming model.

While the most general definition of Non-Uniform Memory Architge (NUMA)
encompasses all architectures where the latency of amgebstinct memory addresses may
differ (e.g, an omega network used for CPU/memory interconnection), itad tsday
mainly to refer to DSM architectures. NUMA research haaged mainly into three different
architectures: the cache-coherent NUMA (cc-NUMA), theheaenly memory architecture
(COMA), an implementation with coarse grained shared memory@ate and the generic,
non cache coherent, NUMA [Len+95]. Several cc-NUMA archirestuwere successful
commercial designs in the past: the Kendall Square Rese&Rhlkand KSR-2, the Convex
(now HP) Exemplar, the Silicon Graphics Origin series, the Séqonew IBM) NUMA-Q,
and the Data General (now EMC) AViiON 20000. Silicon Graph®&&l) is one of the
companies still on the market with a (cc-)NUMA architegfuthe Altix range of high
performance computing systems (with up to a few thousand noded)eraiotBM with its
large pSeries systeneg, the 128 CPUs p575.

The advantage of a cc-NUMA over the NUMA is in the hardveessisted coherence
between local and remote (also called far) memory; it isee@erformance and makes the
development of the operating system much easier, so both udesdévere (applications)
and “middleware” (such as DBMS engines) can run unmodified, althdweghrhay need

tuning if we want to extract adequate performance.

® Notice that we restrict the more generalised afsthe terminology, as does [Len+95]: we define
DSM architectures as hardware-enhanced, thus esuhesftware-only solutions, which we call
VSM.
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Figure 4.4 cc-NUMA architecture

Most commercial designs (exceptions were SGI and KSR —aiés not exactly a
“commercial” design) were based on the Scalable Coherentdo#e(6CI). SCI is an IEEE
standard that provides very high performance (both low lat@ndyhigh bandwidth), bus-like
functionality, to a large number of nodes [Gus92, IEEE92]. It usesacket-based
communication protocol over unidirectional links connected in a dpglogy, and provides
remote memory access capability, which, together with a cacherance protocol (an
optional feature on the standard), enables us to offer a unigpallglshared memory across
nodes. SCI was the first of a series of Remote DMA (RDM#pable, high bandwidth, low
latency standard interconnects; today, the most prominent ongdiaileand [IBTAQ1], and
Myrinet [Nan+95, VITA98, Myr00].

4.5 Cluster architectures

As the name suggests, a cluster is a group of machinesg$itbse” to each other); from
this common ground, quite a few different interpretations of widiister is can be found,
particularly if one includes vendor whitepapers and magazine articles.

Informally, a cluster is a group of nodes (with or without latiaks), which we will call
cluster nodesinterconnected by some sort of networking infrastructlifeus, from an
architectural point of view, a cluster is a closetredaof the MPP — and thus well suited to
implement the message passing programming model; it can elpctored exactly as the
MPP, and so Fig. 4.3 may also be used to describe a cluster.aféeh®wever, differences:
the cluster interconnect is often either a general purposeriete.g, Ethernet), or a more
specialized (read: expensive) and better performing intercorfbet nevertheless, easy to
“shop”), while the interconnect used in MPPs is just the oppesite expensive, purposely
built one; and a cluster node is usually a complete packaggatemgthe “ultimate” cluster
building block of today is thbladé or, at least, a complete motherboard, while an MPP node
may be something ranging from a special board that is inseredrdme (similar to blades,
but no power supply), to a fully “boxed” item that is inserted into a cabinet expansion in

a MPP can become impossible when the cabinet is full.
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The strong and weak points of clusters are quite simildrasetof MPPs: on the plus side,
it's very easy to increase the raw computing power, as onegests to add new nodes, and
to increase both the 1/O capacity and raw bandwidth, as alas do is either add disks to
existing nodes, or add new nodes with their own disks. The less faluahavacteristics of
cluster architectures are the message passing programmitej, and lack of off-the-shelf
software. But there are two very special points that must teel:non the positive side, for the
same raw computer power, a cluster may be one or more ordaegjoitude cheaper than its
MPP counterpart; and, on the negative side, its “usable perfoetharay be more sensitive
to the issues of application communication patterns, data distrilartahO.

Wishing to eliminate, or at least improve on the weak pafhtsuster architectures, some
researchers have successfully experimented with high perfoamiaterconnects, instead of
being tied up to Ethernet only. Today, clusters can be found usingpénfd, Myrinet, or SCI
making them usable in situations where sensitivity to the dsttidodition and communication
patterns precluded the use of cheaper Ethernet (e.g., HPC alhel pBaclusters). Currently
research efforts are underway to use these interconnecto(mgVECl, today Infiniband) to
implement distributed shared memory — in fact, turning the COOISec into a NUMA or

even a cc-NUMA “single system image” (SSI) complter

4.6 PoP and NoW

PoP (Pile of PCs) [Rid+97] and NoW (Network of Workstatio#g)d+95] are ways to
aggregate small computers, and use them together; thesehtarenbeen used in a somewhat
ad hocmanner, but we think that the term PoP should be used to deaagitoeip of PCs
sitting close to each other in a single room, perhaps alignedauk ®fr shelves, while NowW
should be used to describe a larger “cloud” of small computersiszhth a large building or
in a campus.

If we stick to the above definition, PoPs are in fact “unpaettaglusters, and so they
share with them the same configurations and constraints: due ittteh@ode distance, for
example, it is possible to link them with high bandwidth interestgrand create a NUMA.
But that may not be feasible in a typical NoW, as nodes may be somewdnatfafrom each
other; so, NoWs use Ethernet, and if we want to implement a streedry layer, it will

have to be a software-only VSM solution.

4.7 Grid
The Grid is a structuring vision for a “flexible, secureginated resource sharing among
virtual organizations — dynamic collections of individuals, toitins, and resources”

[Fos+01]. From the architectural point of view — the only thatrevinterested in here — it's

" For a brief description of SSI see section 6Qpérating Systems for Clusters”.
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just like any other large scale distributed system, onentagt encompass many different
resources, from single-user PCs to large clusters, fiosRand mobile phones to sensors
and 3D display devices, etc., all interconnected by a wide, geographicplysgid network.
Notice that, being “the Grid” a very hot research topic, andtibakis not covered in our
work, we've added this subsection (and the next one on clusterafihs) just for

completeness of the survey; it is, consequently very brief and incomplete

4.8 Cluster federation

A cluster federation, as the name suggests, is made oudiefdual clusters; it is a
federation in the administrative senise,, there is an agreement on policies such as resource
management and access, user authentication, etc. From thechnehi perspective, a cluster
federation is another large scale distributed system; but, eurdikgrid, it is more
homogeneous, both in site and network homogeneity: each siteusterchnd the network
access point at every site is a high bandwidth, dedicated infrastructure

As far as we could trace it (as with the grid, cluster rfilens are not a topic of study in
this dissertation), the concept of a cluster federation seehmsve been originated from two
opposite directions: as an expansion, from clusters to largensygthe term “federated
grids” can also be found), as in the move from single administraibmains, tackled with
Condor, to multiple administrative domains, through the use of Condlere301], and as a

smaller, simpler, and more predictable “grid” [Xtreem].

5 Storage Architectures

5.1 Architectural building blocks

Gone are the days when the only direct access storage d®A&D) that could be
plugged into a system was the magnetic disk; now we also dgtieal and hybrid disk
technologies (which we will ignore together with other technokgseich as tapes), solid
state disks and, more important, the storage disk cabinet.

The storage disk cabinet is an external device that has itp@mer supply (and very often
redundant power supplies), hosts a fairly large number of désts o hundreds), and has an
/0 channdl interface of some sort. The storage cabinet is the basliting block for the
storage array [Pat+89]; the array “feature” adds memuadypaocessing power to the cabinet,
allowing us to create logical volumes (also known as logiisiisyl out of groups of physical
disks. A group generally adds some property to the “basic dibk$"constitute it, such as

higher performance or some sort of fault tolerance; comnfonlyd groups use the different

8 Here we deviate slightly from the historical IB30 1/0O channel concept; we use the term to refer t
an interface that is connected to a DMA-capablesatavhich offloads the host’'s CPU for the most
part of an 1/O task.
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RAID levels offered by the array, which often include level(also called striping, no fault
tolerance), 1 (mirroring), 0-1 (combined striping and mirrorir®y)(bit interleaving with

dedicated parity disk) and 5 (block interleaving with rotatingtpalisk). The host computer
can only see each logical volume, not the individual physicakdisat make the group
(unless a configuration called Just a Bunch Of Disks — JBOD -ewhere is no grouping at

all, is used, and therefore all physical disks in the cabineaiisilde).

5.2 Direct attached Storage

Direct attached storage (DAS) is the oldest form of imt@mection known to computer
architects, as shown in Fig. 5.1: each storage device — diigkoarray — is connected to one
and only one host computer.g.internal disks are connected to their I/O host adapter(s) in a

pretty similar way as the array’s storage controller is conneciedden adapter.

CPL CPL

e —

Mem.Hub

Memory

PCI slots
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Disk Array on an
external SCSI bus

Internal disks on
a SCSI HBA

Figure 5.1 Direct attached storage with DASDs and Storage Arrays

5.3 Shared storage and storage area networks

A very important I/O channel technology that spread in theaighties, and still prevails
today, is the Small Computer System Interface (SCSI). Develapel981 by Shugart
Associates and the NCR Corporation, it was submitted to t8l X3T9 committee and
became an official standard in 1986 [SCSI-1]. SCSI introduced tmitieomputers of the
eighties an inexpensive way to connect disk devices (ctdlg@ty to one (or more) host
adapters (callemhitiators) via a shared bus — shown, in its simplest configuration, in Fig. 5.1.

The SCSI protocol allows an initiator to send commands to attaifydus entities are
uniquely identified by a SCSI ID, or, if they are target devigeg, disks, tapes), by a SCSI
ID/LUN (Logical Unit Number) pair. This has several mggting possibilities, but we will
discuss just two: i) the SCSI bus can be “driven” by twtaitdrs in the same host, and one
may use a specialised fault tolerant driver which can datégted host adapter and “switch”

to a good one, which was dormant, as shown in Fig. 5.2; and, ii) the isitiagyrbe plugged
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into different hosts, as shown in Fig. 5.3, and each host (initiator) may beuwredfig access

only a subset of the disks (“its own subset”).

CPL CPL
External Storage [ ]
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;— /O Hub
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Figure 5.2 Host-based HA: shared SCSI bus over two host adapters

Option ii) is called alual-initiator configuration, and requires adequately “enhanced” SCSI
drivers to support UN masking a way to restrict the set of LUNs that the host @tjivs
allowed to access. It is important to notice that we have mivgedinternal storage, where
all disks are accessible only from one host, to an exteatéhet with a pool of drives that
can be configured to satisfy the storage needs of each sytségpardicular moment, and later
on be reconfigured to satisfy a different set of needs, (System A” has now a lot of free

space, let's mask out one or more disks so that they can be used on “System B”).

CPL CPL Host Host 2 CPL CPL

Memory Memory

Mem.Hub Mem.Hub
PCI slots | Gb Ethernet PClI slots | Gb Ethernet

1/0 Hub I/0 Hub
| |
) \ __

—
H H H % %% ? Shared SCSI cable

Figure 5.3 Node-based HA: Attaching an external storage cabinet to two hosts

In SCSI-2 there was an address space of 16 SCSI IDs, soulgeconnect up to 15 hosts
(with one adapter each) leaving out one ID for the target eelifis not an easy task, to
connect all these cables — in fact it is virtually impoigsiso the SCSI hub was developed. A

SCSI hub is a device that behaves just like an network hisbaitstar topology that
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implements a shared bus; and it gives users a string of Isersefith as the possibility of, at
the flick of a button, removing a device from the bus withawtsing a total failure — just like
network hubs (well, almost; network hubs don’t have buttons — on@ysimplugs the cable
to disconnect something). Now the configuration closely reserdbleetwork; in fact, it's

called a Storage Area Network, or SAN

CPL CPL Host 1 Host r CPL CPL
Memory Memory
Mem.Hub @— Mem.Hub
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SCSI Disk Array

Figure 5.4 A Storage Area Network (SAN)

SCSI has been so widely used that has been the target tobfaelohancements over the
years, and specifications SCSI-2 [SCSI-2] (which replaced-$C&d the SCSI-3 “family”
are now part of the standards. SCSI-3 was a major stepydee@aseparated the SCSI
protocol from the cabling itself, thus allowing it to be used waitly transport, as in Serial
Attached SCSI [SAS-1], and also to be encapsulated in othercptet as in Fibre Channel,
where it was integrated in Layer 3 [FC-FCP], and oveatPdefined by the iSCSI protocol
[Kru+02]. Thus, there is a specific SCSI-3 annex for each comtxmaif protocol and
interconnect.

Storage Area Networks are a hot topic: a lot of researchdes done over the years, and
every major player in the hardware arena — both computer aw@ords and storage
companies — has a string of products for SAN. Fibre Channel (FGS) the enabling
technology, overcoming the 15 m maximum parallel SCSI bus Iéngh 30 m for copper
and 10 km for optical fibre) and the complexity and fragility of ¢banectors (with 68 to 80
pins for parallel SCS¥s.two twisted pair conductors for copper FC, or two optical fibmes i
optical FC). Fibre Channel also offers aggregate speensZ00 to 1600 MB/s (over dual 1,
2, 4 or 8 Gbps serial links) against an initial SCSI-1 offed0 MB/s (parallel SCSI now

® SAN may have another, totally different meaniBgstem Area Network. It is often used to describe
a group of hosts interconnected by high bandwidtthiologies such as Infiniband, Myrinet and
SCI; we will use the SAN acronym only to refer torage area networks.
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boosts up to 320 MB/s but only in very short, internal cable réisprevious figures can be

“updated” to the latest FC technology just by replacing the words “SC81™®C".

5.4 Network attached storage

The concept behind Network Attached Storage (NAS) iputat simply, to offer a plug-
and-play file server with the administrative costs of an appliance

The file server concept started in the mid-eighties with SNetsvork File System (NFS)
[San+85], and progressed through with the integration of dilaring within Network
Operating Systems (NOS), including Novell's Netware O ulite Netware File Sharing
Protocol (NFSP), and Microsoft's Windows NT with the Common m&erFile System
(CIFS) [Her04]. A file server “internally” stores fileand folders that may be remotely
accessed (shared is term generally used in IT) by cliertines; via network — usually, an
Ethernet LAN. These systems have flourished for the last 15 years or sosbute users the
burden of the administration tasks needed to keep them runninggtef proportion — and
one of the reasons was that the “box” hosting the file sersertald a full fledged operating
system, requiring regular OS system administration tasks fusfile maintenance, selective
backups, software upgrades, etc.); to make things worse, thefilberesharing protocols
quoted above (CIFS, NFS and NFSP) are incompatible with each other.

CPL CPL Host 1 Host r CPL CPL
Memory Memory
Mem.Hub I%— Mem.Hub
PCI slots | Gb Ethernet PCl slots | Gb Ethernet
/O Hub (——H— /0 Hub
I
Eth.emet nulu ||ﬂ| Ir!
switck

NAS appliance
Figure 5.5 A Network Attached Storage (NAS) solution

The NAS appliance, developed throughout the nineties, was theosohlustorage cabinet,
with CPU, memory, disk and network I/O; a special or general pargaut stripped down
version of an operating system, and software to implement one offilaciearing protocols;
the appliance can interoperate with multiple NOS servers kamis; so the administrative
costs are trimmed down to a minimum. Current versions of NA®iseare highly developed

products, including their own proprietary internal file systefwith hardware or software
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RAID capabilities), and being able to share the same fileeveral clients using different
protocols concurrently: for example, the same file can be aatefes example, on a UNIX
client using NFS and UNIX file permissions, while on a Windovisntlusing CIFS it will
use Windows’ Access Control Lists. Fig. 5.5 shows a LAN with tlents and a NAS
appliance.

Network Attached Storage is, together with SANs, a hot tapit NAS proponents are
actively pushing the concept as “the” storage solution; rigiit NAS is being used mainly to
replace and consolidate file servers; it is not being usadyageral purpose storage box — for
example, it can not always be used to host a database, as sonstreaai database
technology vendors do not support their products in the NAS environment.

Network Attached Secure Disks (NASD) [Gib+98] is a resle@roject at Carnegie Mellon
University rooted on the same ideas of NAS — giving actestorage through the network.
The idea behind their work is to get rid of all the exisesdata movement inside servers and
clients; for example, in a file server data has to be mawed the disk to the OS buffers and,
from there, to the network buffers, down the network Igyansl into the server's (or NAS)
Network Interface Card (NIC); then it must travel throughribevork to the client’s NIC, up
the network layers into the client's OS buffer, from vehétr finally gets moved to the
application program that requested it. NASD advocates that eachmd#gkhave its own NIC,
processing power and software, and be directly attached to therkefmother project that
originated from NASD, Active Disks [Rie+01], proposes thak disvices can be built where
the device’'s processing power is enough to build file or data masegement systems

directly “on disk”, thus eschewing traditional file and databasessgrv

5.5 Object storage devices and Object-based storage

The Object-Based Storage Device (OBSD, also known asCOBjerage Device - OSD) is
an abstraction used to redefine the roles and capabilitiesragstdevices (disks, tapes, etc.);
an OBSD is able to accept commands that create objec{@egroups), with or without
quotas, and then accept the creation of identifiable objects (iestamgthin the set)
automatically managing the necessary storage space. Ta acoisan object one may start
with an “object open” for an identified object, then read andfate, retrieve and/or store
some attributes, and end access to the object with an “aiifeset”; OBSDs thus “know”
when an object is in-use. This approach will move most of the wamently performed by
the host (running the Object Storage Layer, see section b3t8¢ devices, thus alleviating
file system implementations, and therefore providing opportsritie performance increases
in the file system [Mes+03, Fac+05].

The OBSD originated from the NASD work and, after yearsadperation between

industry, academia and standard bodies, was transferred toottageStNetworks Industry
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Association (SNIA). The SNIA and the International Committgelnformation Technology
Standards (INCITS) T10 committee “Object Based Storage Gioaye already ratified a

standard on SCSI commands for object-based storage devices [And9B{]T10

6 Operating Systems

6.1 Operating systems for shared memory architectures

Research on operating systems for small-scale shared menuitigrocessors is quite
stable at the small size SMP.¢, Intel 1A-32/64, IBM PowerPC) and cc-NUMA (g, AMD
Opteron) architectures; Linux is quickly catching up with cargial UNIX derivatives
(HP/UX, IBM AIX, Sun Solaris) with enhancements in schedulitte (so called O(1)
scheduler [Lov03]), POSIX threads support [Dre+05], memory nwanagt (support for
large memory, large pages and NUMA extensions [Gor04]), andvidlime managers,
LVM [LewO05] and EVMS [Pra02, Lor+05], direct I/O [Bov+05], asymonous I/O [IEEE04,
Bha+03], and both Linux vectored [Bov+05] and POSIX list-directed I/O [[EEE

However, the advent of high levels of on-chip parallelism eitmehe form of multicore
architectures with tens of cores, such as Intel's TeraFlgeegsor [Van+07], or with many
hardware threads, as implemented in the Sun’s Niagarasgmcgkon+05], has once again
revived OS research; OS support for many-cores must not onlgsaddirge numbers of
threads efficiently (a problem that has been researchedehebut also dispatch them in a
way that application efficiency can be increased, e.g., leadiagdecrease in execution time
for parallel applications. Research in OS scheduling, su@mn &xtensions to support gang
scheduling [Raj+07] of related threads has therefore become a hot topic.

Furthermore, research efforts are also strong in highlyablailor near fault-tolerant OS
extensions, e.g., for on-line subsystem configuration and de-configurgguch as hot
pluggable memory, CPU, and devices [Bor+05]), self healingwvaodt and autonomic

computing [Gan+03], and support for resource partitioning and virtual machimerenents.

6.2 Distributed operating systems

The term “distributed system” has been used to describe ensysinsisting of several
interconnected computers that do not share either memory acka ehch one having its own
memory and processor(s). Distributed systems range from ktriogrconnected MPPs, to
clusters or PoPs in a room, large installations of NoWscianapus or in a metropolitan area
network, country or continental-wide cluster federations, world-wide ,ggtds

Ideally it should be possible to present a distributed systeits users as “a single (big)
system”, one which would roughly provide them with the same aterfnd set of services

they've grown accustomed to, and not just a disparate colleofioisolated computer
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systems, each one running its own, independent, OS copy. Undedethedistributed
operating system (DOS) users would have to login only once, angwaed they would
always get the same environment, being able to browse througlysteen’'s resources, list
files, observe the status of running processes, etc.; theydblgeto launch their jobs
(processes) in the same (or in a very similar) way #reyused to do it in a single-node
computer — and expect the DOS to schedule them on the “best node(s) for the jelotemsd
files irrespectively of where they are stored. And, furiwe, applications would run
efficiently, increasing user satisfaction! Transparerscyhe keyword that could be used to
characterize the behaviour we've just described; fundamémtal distributed operating
system are (adapted from [Tan92]) name, access, and locatimpdrency. Other desirable
properties which, in a DOS, should also enjoy transparency aim (agdapted from [Tan92])
migration, replication, concurrency, parallelism, and failure.

Unfortunately there is no distributed operating system capalieptémenting all features
on our “wish list”, if we embrace the entire architectureges however, there are partial

solutions that come quite close in some cases, as we will see below.

6.3 Operating systems for MPPs

Operating systems for MPPs can be either general-purposas @pecialized as the
architecture itself; the Intel Paragon [Ber+94], an MPPhef mineties with hundreds of
computational nodes plus a few I/O and service nodes, is an exafmalsystem that uses
both a generic and a special purpose OS, depending on the node.

Users access Paragon throsgivice nodesunning the Mach based OSF/1, a UNIX API-
-compliant OS (for enhanced compatibility with widely avaiabbde) that handles the usual
chores: process management (with lightweight thread supportialvinemory management,
and inter-process communication services.

Paragon 1/O nodes (either with their own internal SCSI disksyitbr fast HiPPI links to
external disk arrays) also run OSF/1, seamlessly supportiogigtihthe kernel's Virtual File
System (VFS) interface, different file systems suchhasUNIX File System (UFS), NFS,
and Intel’'s own Parallel File System (PFS). Local filegeys can, interestingly, be “unified”
into a single MPP-wide Paragon Distributed File System (DFS).

The original design specification mandated that a) a distibservice layer would be
added to each Paragon node to provide for a single system in&lyeic®n, one where the
whole system would behave as a “single, although very largepwier” for users,
programmers, and system administrators; and b) that a computatmflcould be used
either in “bare” mode, loaded with a message passing libraig, “@ull” mode, loaded with
OSF/1. In the end, it turned out that OSF/1 was too inefficiealldov compute nodes to

perform at their best “rate”, so several installations ldnasen to replace it with SUNMOS,
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a single-task/single-partition OS developed by Sandia LabstladNew University of

Mexico; as a consequence, the SSI vision was abandoned, too.

6.4 Operating systems for clusters
Clusters, when used as “commodity MPPs”, want to provide their ustrshei“MPP look

and feel®®

and therefore they segregate nodes into three distinst tedad, computational,
and I/O nodes.

The head node performs the same function as the MPP fronit-éndhe single point of
administration (users, groups, permissions, etc., resource miogjteand file system
administration), and, in some cases, the only node where uselsgimayand thus develop,
i.e., edit, compile, link their applications); if users are aillgwed to log into the head node,
then the head node must ruijol schedulemhich accepts user’s requests, places them in a
gueue, and dispatches them to compute nodes according to some speafyeéripally, /0
nodes store information needed by applications that are running jput®modes together
with transient files they produce.

To provide these functionalities, a common approach is to pidkix-based operating
system, such as Linux, and extend it with the necessary midelel@rexample, in the head
node Network Information Service (NIS, once called Yellow Paf@as02] or Lightweight
Directory Access Protocol (LDAP) [How95] may be used totredise the administration of
users, groups, etc., while resource monitoring applications, such ragiecGpGanglia] or
Munin [Munin] provide vital resource information for cluster axistrators; as for batch
schedulers, openPBS [openPBS], LoadLeveler [Kan+01] and a plethotlers provide the
required functionality. File systems for clusters are a major subjediwill be left to the next
section; for now, it suffices to say that the “seamkasgronment” that we aim to provide
would require a file system with the same functionalities?afagon’s DFS; but a usable,
although less “transparent” environment can still be built vl more prosaic NFS by
configuring the head node to be a NFS server while compute nodes araeYiEsS cl

The other, less used but nevertheless cleaner approach, is tétuss ®OS to provide
SSI functionality; recently there have been several effaredled by the availability of high
bandwidth low latency interconnects, to provide Linux-based bliggd operating systems,
such as the distributed shared memory Kerrighed [Lot01, MorHQzje provides a VSM at
the kernel level, as Kerrighed does, then processes (and thheagsjheir address spaces
transparently built on top of memory which may be physicallytex@at among several nodes,
turning the cluster into a “big SMP”, one who exhibits strong NUMA attaristics but is not
a “set of independent nodes” anymore. So, ultimately, there read to modify existing

applications, not even “command line utilities” suchpas(which now can report the list of

19 Of course, in a cluster that was not “configuremibehave as a MPP, things can be quite different.
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processes running in the whole cluster); and there is no neegplace runtime shared
libraries with specialised versions, a characteristic of sorddleware or hybrid approaches.

A third, remarkably efficient approach, is one that doesstrote for a true SSI as above
but that, for user and administrator tasks, behaves like odeeasViosix [Bar+98, Bar+99].
Mosix provides the cluster with a dynamic load balancing capalfityall that the batch
scheduler approach balances jobs staticadly,resources are evaluated just before launching
a job), thus allowing a process to dynamically migrate from one tmdamother. Process
migration in Mosix is accomplished by leaving a proxy in thigioal node when a process
migrates; communication with the user and among the migrabeggs and other processes
requires a hop through the proxy, but is completely transparent t@plieasion; execution
of library/system calls related to a process’ environmerth sisgettimeofday() , must

also take place at the proxy, before the result is sent back tajthestiag process.

6.5 Operating systems for large-scale distributed architectures

“Large scale distributed” is an expression commonly and lpaseed to embrace a
diversity of architectures, environments, and applicationacitdles sensor, and other forms
of content distribution networks (e.g., peer-to-peer file sharivigeo on demand),
geographically dispersed collaborative applications and datasgsingeetc. The large scale
distributed environments that we will cover here are cluster federatimhthe Grid; as we've
pointed out before these are covered in the spirit of complatemfeshe survey and,
consequently, are very brief and incomplete.

The paradigm for the Grid [Fos+01] is one of a seamless syfstemesource sharing;
therefore, efforts to develop a grid-targeted operatingesystere not actively pursued, as it
would compromise the grid's ubiquitous nature; instead, the iyajof the research
proposals is to build on layers of middleware which, if poss#tileuld be operating system
agnostic and built upon a minimum set of local services,relying on the most primitive
widespread functions for process management, communication, argestocess, as Globus
[Fos+97, Fos05] does. Vigne [Ril0O6] is a notable exception to riige, aiming to
demonstrate that a Grid aware operating system is not onlybjggsisut can, by design,
include mechanisms that offer highly available services.

At the cluster federation front, driven by such paradignrasearch facilities as Grid 5000
[Grid5000], where dedicated dark fibre links interconnect istelusters and have
bandwidths that are comparable to those commonly found on intrarclusdts (differing
only in incurred latencies), current operating system reséarctusing on the move from
cluster-aware OSs to the next level, federation-aware O8der the umbrella of the
XtreemOS project [Xtreem] whose aim is to develop kerrtdnsions to provide for large

scale SSI computing systems, the Kerrighed OS is being exteritthecbwtributions from the
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PARIS Research Project [PARIS].¢.integrating a mechanism to support checkpoint/restart
in the kernel) to operate seamlessly and efficiently in clusterdgdes.

A different approach, however, has been encouraged by the secgatin virtual machine
environments and proposes the use of virtualised resources (nsactgtveorks, applications
and data) to create virtual grids that run user applicatianssdistributed environments. In-
-VIGO is one of these virtualisation based projects that adgsaaising the level at which
resources are “gridified® instead of dealing with concrete resources, In-VIGO midatew
[Ada+05] deals with virtualised ones such as virtual maschivietual (private) networks, and
virtual data; for example, to provide for single sign-on, it delesugrid accounts from local

accounts and then uses role-based access control lists to supgdrésosrce access

verification [Ada+04].

1 A “gridified” resource is one that can be “shamtiong a dynamic collection of individuals, and
institutions in a flexible, secure and coordinatey” i.e., is a Grid resource.
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Part IlI:
File Systems: Concepts and Performance

In this Part we discuss some fundamental concepts inyteras; we cover topics such as

user-level views of file organization and access, sharinstcs and data consistency, and

an array of techniques commonly used to enhance performance, siath dsstribution and

caching — starting from the perspective of a single-node compuig then moving to

multiple node architectures. Each concept/technique is iltadtraith a “real world” file

system.
7 File Systems: Concepts and Performance...........cccccoeeviiiiiiiiiiii e, 31
8 The Case for Caching in a Local File System...........cccccovviiiiiiiiiiiiii e, 38
9 The Case for Caching in a Distributed File System............cccccccciiiiiiinnnnnnn, 42
10 Caching and Sharing in Local File Systems ...........cccciiiiiiiiiiiiiiiccreieee e 46
11 Distributed File SYStEmMS ......ccooiiiii e 56







7 File Systems: Concepts and Performance

7.1 File systems

File systems are to computer systems what filing systerae were to archiving rooms:
filing systems were used to organise records into files adériy and these into cabinets;
today's computer-based file systems organise files and dliestin a tree-like structure
whose root is usually contained within the bounds of a singledbgolume, which we call a

file system instance, or filesystem, for short.

7.2 File organisation and access methods

The sequential file is the most widespread file orgamisathodel, one that reflects the
earliest storage medium — the magnetic tape: an open operdtiposition the tape’s begin-
of-tape mark over the unit's head; then, a read commandoaitl #irough the tape, reading a
record, and movement will stop at the next inter-record gap; esch scans towards the
tape’s end, and no more reads may be issued when the end-of-tapes mark the unit's
head. The disk based file system’s analogy for this behavidoidisfine ssequentiafile and
a file pointerwhich is located at a particular offsetd, zero on open), incremented after
each successful read or write, or positioned with a seek operation.

Logical file organizationdeals with the file’s logical structure: a file may holdher
structured (fixed, variable length records, etc.), or unstredt (byte-stream) data; a
sequential filej.e., a “file without holes”, mimics a tape and contrasts withparse file,
where “holes” may exist between regions which contain deteess methodspecify how
one may access, i.e., read or write data to the file; fanpbea one can read data “forward”
starting from a givewffsetin a logically contiguous file, while one cannot (always) du th
a sparse file; conversely, for indexed files, a key must Specprior to retrieving the

corresponding data.

7.2.1 The UNIX heritage
UNIX popularised the byte-stream (unstructured) sequentibkparse file organisations,

and a very simple file access API, consisting of five mpijonitives: open, close, read, write
and seek as a consequence, both the sequential and sparse file digasis@e supported

today by the majority of local, as well as distributed $iystems. Sequential files, being one
of the simplest forms of storing data, are used both for persideda storage and as a

mechanism for data interchange.

! Unfortunately, in some texts, adherence to thisséve primitives is all that it takes for thetm say
that a given file system has (or has not) a POSPX A
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7.2.2 Business applications and file I/O
UNIX file organisations, access methods and primitive diggr® although extremely

powerful (and thus capable of being the building blocks for othere ncomplex file
organisations and access methods), are quite detached from dseohége typical business
application developer. For example, business applications usuallirereaplvanced data
structures and file organisations such as keyed, indexed siedj(E3AM), or even a fully
fledged DBMS; these may be the ones needed to narrow thentsemap between the

(user’s) problem and tools available to application developers.

7.2.3 Scientific applications and file I/O
Scientific applications commonly use data organisation and saceethods that are quite

different from those appropriate to other fields such as busimegsmedia, etc. Regarding
the amount of data accessed, business applications typicalllangee numbers of “data
sources”, be they files or tables (when using a DBMS); &mheequest, several files are
accessed, but the amount of data moved to the application is uguadlysmall: a few
“records” per accessed fileConversely, archetypal scientific codes use few but \&gel
data files whose contents are, at first, fully (as much asamét) loaded into memory, in an
I/O burst; then a sizeable amount of time is spent computingempute burst; finally, a
large amount of data is written out, in another long I/O burstpofse, variations do exist,
such as problems which require almost no input data, or others that dermawate much

output, while some of them use temporary scratch files for debugging or ouedatar

7.2.3.1 Data storage vs. data distribution
Another big difference between scientific and business codateselo file sharing: in

business applications, several concurrently executing processes sharéhdgteead/modify/
/write - and guarantee consistency through the use of filenigclkihile in scientific codes
different processes usually access distinct, non-overlappdgigns of a file, thus requiring no
locking — in principle. Multi-process scientific codes mesg files both as a way to store data
and as a mechanism for data distribution; to illustrate thig p@ resort to a commonly used

data structure, the 3D array (where each squareris;anmdata block).

4 4|5

A 5
00 1|1 =
00 |1(1 vi
212 |33
212 | 3|3

Figure 7.1 Logical view of a 3D array

2 There are, off course, exceptions: Data Wharehguaind Data Mining spring to mind...
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Supposing that we're executing a single-process applicationptbareé (memory) image

of the data array would be, for a row-major layaug( C codes),

00110011223322334455445566776677

Figure 7.2 In-core row-major layout of a 3D array

while for a column-major layoue(g, FORTRAN codes) it would be,

00220022113311334466446655775577

Figure 7.3 In-core column-major layout of a 3D array

Now, suppose that we wanted to store the in-core array out diléo ia a C program we
could accomplish it with a sindlecall such aswrite(fd, array, size) , one that
writes the data out on a file; that would create a (setglgfite layout similar to the in-core
layout of Fig. 7.2; the physical on-disk layout would, of course, depend on several thimgs suc
as the file system itself, and whether a simple disk or an ardiglsf is used, etc.

Now, suppose that we do have eight processes, labelled from @a&ctv pne holding in
memory only those data blocks whose label is equal to the procesber, and that we
decide write them to a single file; among several possible Isyouthe file, we highlight the
following three [Mad+04]:

a) The canonical 3D block distribution, either in row-major or colimajor order, just like

those in Figs. 7.2 and 7.3 (although these figures were sketchedwtdrshore, not file

data layouts). Notice that the algorithm for their creatiamotbe as easily specified as,
say, those for (b) and (c) below.

b) The 1D block distribution (Fig. 7.4), created b®.g. sequentially executing the

following: each process (starting with the lowest numberedaodethen proceeding to the

next in sequence) writes all its data onto the file, and yredds to the next process (which

picks the file pointer offset left from the previous one, and continueisgyrit

00001111222233334444555566667777

Figure 7.4 File layout of a 1D block distributed array

c) The interleaved sequential block distribution; again, ailplessequential algorithm for
this layout is: each process (starting with the lowest nurdbame and then proceeding to

the next in sequence) writes its first block onto the file,\aeldis to the next, until the first

Assuming thasize is within the allowed bounds for the OS/file systeall; otherwise, multiple
calls would be used.
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set of blocks for all the nodes have been written; then, padess proceeds to write the

second block, etc.

012345670123456701234567012345¢67

Figure 7.5 File layout of a sequential block distributed array

Block distribution algorithms (b) and (c) laid out above wereifipddn terms of ashared
file pointer — when a process issues an I/O operation that moves thpofileer, other
processes will “immediately” see the file pointer's nelugawe could have use private file
pointers instead, and theeek() call; for example, the (b) 1D block distribution algorithm
requires each process to seek to a location computptba*wholeDataSize , and
then write its whole data chunk onto the file; but, for the int@dd sequential block
distribution in (c), the algorithm using private file pointers noecomes more complex, as
each process loops until done, successively seeking to fildiolmgacomputed by
proclD*DataSize+cnt*nbrOfProcs , writing a portion of data onto the file.

After a file layout has been decided, and the file stored on slishetimes things change;
for example, the number of processors may be charggdrore processors were bought)
thus benefiting from an increase in the number of processed; Wign leads to a different
data distribution; or, some obscure bug must be sorted out by mgsmrta single-process
sequential execution. In any case, we now must resort to aediff@igorithm for loading the
array and, if we want to cover “all” possible cases, the andg become confusing and
inefficient. This is why access methods start incorporatirgnotion of views that “hide” the
offset between successive data blocks to each process’negking them look contiguous,
such as strides for sequential files, or more sophisticatedrjinisation models, such as the
sub-files in Galley [Nie+96] and Vesta [Cor+96] parallel fiystems.

7.2.3.2 Closing the semantic gap in scientific applications
Strided access is very common in parallel applications:sinided operation, several non-

contiguous data chunks within a file are accessed; for examplee iBdlley file system, to
distribute data from a file with a canonical row-major laytmueach of the eight processes,
each one would perform (assuming that each array block, i.e., equaré” in Fig. 7.1,
occupies 1024 bytes)

f_stride= 4096; m_stride= 2048; rec_size= 2048; qua nt=2;

offset= procID*f_stride + (even(procID)?0:-rec_size );

ofs_read_strided(fid, *buf, offset, rec_size, f_str ide, m_stride, quant);

Beginning abffset |, the file system will reaquant records, ofec_size  bytes each.

The offset of each recordfisstride bytes greater than that of the previous record; records
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are stored in memory beginning buf , and the offset into the buffer is changed by
m_stride  bytes after each record is transferred. Wimestride  is equal taec_size
data will be gathered from disk, and stored contiguously in memohgnW stride is
equal torec_size , data will be read from a contiguous region of a file, and sedttier
memory. It is also possible for botm_stride andf_stride to be different than
rec_size , and possibly different than each other. Galley also allows egpess more

complex access patterns, in the form of nested strides, and to organiséodatb-files.

00110011223322334455445566776677

A
rec _size

(a) (b) (c)
f _stride 00 0000
1& T A
buf buf + m_stride buf + 2*m_stride

Buffer filling: (a) before reading; (b) quant=1read; (c) quantad.re

Figure 7.6 Process 0 getting its data from a 3D array stored in a file.

The MPI-IO approach to the data partitioning problem [Cor+02] define an elementary
data typegetype , that contains the user “record” type structureyuftype which describes
the arrangement oftype elements into an application buffer, andilatype which

describes howetype s are laid out onto a file.

00112233001122330011223300112233

Process Process Process

]

etype filetype filetype filetype

Figure 7.7 MPI-10 data partitioning.

7.3 Delivering high performance

Delivering powerful abstractions that ease the develogmnden by narrowing the gap
between the problem space and its implementation is an impstégntbut it's not the only
one; a file system must also deliver good performance. Wenwaill look at some of the

options available to tackle the filesystem performance problem.

7.3.1 Enhancing the file API for efficient data access
It is well known that local file systems do a better job wherviag a small number of

large-sized requests than when they have to serve large nuofbensall requests; for
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example, Linux places I/O requests in a queue where theyf gressible, coalesced with
already existing requests before being submitted to the disfoienfBov+05]. The reasons
behind this performance increase are twofold: as each diglss experiences rotational and
seek latencies which dominatis-a-visdata transfer times, by submitting fewer requests we
hopefully get better throughput; and, by submitting fewer requestspend less time in
system call processing, queue processing, programming DMA engiasponding to
interrupts, etc., thus decreasing CPU usage (for a more in-detageysee section 8, “The
case for Caching in a Local File System”).

APIs that allow programmers to submit fewer requests, suttfeame for strided accesses
shown in Fig. 7.6, or the POSIX API [IEEE04] for vectorised MDith allows a contiguous
file region to be scattered into/gathered from non-contiguous mdorations withreadv
andwritev() calls) and list I/O (which allow non-contiguous file regions toabeessed
with a singlelio_listio() call) are quite important, as they provide information to the
file system that enables it to perform optimisations that deliver better application

performance.

7.3.2 Parallel access through data distribution
We have seen how advanced logical file structures and/aadiess methods can be used

to better map the problem-domain to the underlying data storage,aamvey to the file
systems information on application access patterns, in order to imthedasperformance.
Another way to increase performance is through the use digtiama: if we are able to
distribute data across multiple disks in a way that, to falingle 1/0 request, we have to
access several disks in parallel, we may expect a perfoamiacrease due to the higher
aggregated bandwidth. In the next subsections we will discuseéys of distributing data
across disks: one distributes data to multiple disks attached to a singlater system, while

the other distributes data to disks hosted onto distinct, interconnected camputer

7.3.2.1 Scaling in: intra-node data distribution
Data distribution at the device level is implemented byrtesy to multiple disks and

“scattering”, or de-clustering, data over them; this approachoablyi increases bandwidth,
by as much as the aggregated bandwidth of the disks “activiat@ditallel to fulfil a single
I/O request, and is applicable to single-node computers.

Hardware-based solutions call for RAID-capable processotallat either internally, in
the host, or externally, in disk array boxes while softwareebaséutions are provided by
logical volume managers (LVM) or software-RAID (Linuxid device driver) modules; both
offer a set of choices as the RAID level to use. Usubdlels 0 or 5 (or “combined” ones,
such as 0/1) are used to create a “virtual disk” which is, tdittkedriver or file system layer,

completely undistinguishable from a “real device”; parametarsh as stripe size and width,
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for the RAID device are usually chosen to optimise a spdtific (.9, application reads), as
it is quite difficult to optimise everything e.g, as the file system is unaware of striping, it
lays out its metadata structuresq, superblocks, bitmaps, inodes, etc. — see Part VI) over the
virtual disk just as it would do on a physical device, unaware of i&d’‘geometry.

Although we have not found any existing implementation of a loacalsfjistem that
supports data de-clustering on a per file basis, instead ofohene, there is no obstacle to
building one; we think that reasons why such a feature is ndalleain local file systems

may relate to their general-purpose nature.

7.3.2.2 Scaling out: inter-node data distribution
If a computer system, large as it may be, reaches itgyooation limits on a resource, one

has two options: a) replace it with a “bigger” model; bgf it and add one more, connecting
both together and using them in “parallel”, hopefully solving the problem.

Using several interconnected hosts is thus another way toooverthe shortage of 1/0O
bandwidth, as each computer gets its own set of disks (intrexternal); to be beneficial,
i.e, to deliver increased performance, several things must hafiystndata will have to be
de-clustered across the various server nodes and their respaisiis in such a way that a
single 1/0 requestke.g.a read, issued to the “server group” must be processed byldgvera
not all) hosts, which will respond by accessing their own diski/ediglg the data over the
interconnect; second, the interconnect must not become the nesnécikt- we do not want
to be replacing one problem with another; and finally, there must beeasurable gain,
otherwise we may be offering some sort of file sharing sebté not the high performance
I/O system we were aiming at.

The use of several hosts in parallel to act as data steegers requires a distributed file
system to integrate and coordinate clients and servawd]gbdile systems are a subclass of
distributed file systems whose main target is performares: $upport data de-clustering,
either at the filesystem level, as in PVFS and GP&Sat a finer grain, as in Vesta, which is

able to de-cluster at the file level.

7.3.3 Caching for high performance
No modern computer systems can do without caching. Caches have lieimday in

from processors to disk controllers, from file systems to databagines, to web servers, etc.
From the point of view that interest us, caching is usell bgtlocal and distributed file
systems, although the later sometimes restrict their usageRVFS only uses server caches)
having balanced the cost of maintaining cache coherence atEnsenefits it provides in

their target environments. Caching is very important, and we elévetnext two sections on

* PVFS and GPFS are described in detail later ofpraBVFS, it is constantly evolving, and version
2.7 (end of 2007) allows finer grained data deteltisg.
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it: in the first one we analyse the benefits of caching in local fdeesys, while in the next we

apply the same reasoning to caching in distributed file systems.

7.4 Closing remarks

In this section, we have presented some important topics on Blensy. First, the
adequacy of file organisation and access modes to real worleem®bivhere we found that
the POSIX sequential and sparse models are insufficient fa domains, such as business
(where ISAM and DBMS are the answers) and scientific (evlilee five primitives are not
enough, but vectorised and list I/O may help). Then we raised theoispadormance; to get
good performance out of a file system several techniques lmusted: suitable APIs that
allow the programmer to convey to the file system inforomathat enables it to optimise data
access; parallelism, with data de-clustering over multiptksdiand/or multiple servers,

together with an adequate interconnection infrastructure; and, last beastpicaching.

8 The Case for Caching in a Local File System

8.1 A simple performance model

read()
Tsys call Chit TCPUxfer (SZ)
File &/St em % sysret
Cache
Cmiss
Tsearch / 7]
|
Devi ce Towmaxter (S2)
+T
Dr | ver DMActrl
Tdrv queve
/
Host Bus
buffer
Adapt er -
Thba queu
Tdev e, (Sz)
i Interconnect i
' latency :
TdevV req l T
St orage
Devi ce Cache

Figure 8.1 Contributors to latency and bandwidth on a read() call.
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Computer systems have been using both hardware and softwatkthdfers and caches to
speedup tasks; Fig. 8.1 depicts the cache hierarchy commonly folvedli® tpath on a local
file system implementation, along with tags highlighting eawd of the major contributors to

the latency of a read request. A short description of each tag follows:

Tsyscal » Tsysret ~ TiMe spent executing a system call, which involves a trandrom
user to kernel mode, and back.

Tsearch Time spent searching a cache for a matching item (block, page, etc.)

Tdrv guewe Time spent by a request in the driver's queue, waiting wubmitted
to the adapter (HBA) or device controller.

Thbagueue Time spent by a request in the HBA/controller queue, waitinigeto
submitted to the device.

Tdev q Time spent to transfer the request packet from the HBA, thrthegh
device interconnection network, to the device; for simplicite
assume that issuing a device read involves just one packet.

Tdev e Time spent to transfer data (we are reading) from tivicaldo the
HBA, across the interconnection network; for simplicity, weuass
the response as a header plus data (so the time actually depethés

data size).
Tomactr Time spent to program the DMA engine at the beginning and anthe
of the data transfer.
Tomaxfer Time spent by the DMA engine to copy the data to the cache.
Tcpuxfer Time spent by the CPU to copy the amount of data requested by the

user from the cache to the user buffer.

A short description of the shortest path, one where data is already in cache, for a user
read, is as followsTsscar  Will be the overhead of entering the read system calbmek
space; after a cache lookup that take$is., , we have a hit and copy the requested amount
of data to user space Tepuxier (Sz) time; finally we return from the system callTgsre: -

To get the breakdown for therite() , we just need to swap the rolesTafev ., and
Tdev,,, WhereTdev ., Will carry the overhead plus data, amdev ., will be just an

acknowledge packet.

8.2 Peak bandwidth

We want to compute approximate values for the bandwidths we cariegxgeif, on a
read, we: get the data from the file system caBlg{cache ); US€ direct /O to bypass the file
system (FS) cache, and move it straight to the user biE¥gf.{0 ); and, go through the
cache but end up fetching the data from the de@@&{rrucache ). The first thing we’ll do is

to identify values that are so small that they do not con&ibwch to the overall result; for
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current COTS server hardwar@gyscan , Tsyset and Tpuwacn take tens to hundreds
nanoseconds and, as all the other values are in the micro igecaiid range, we’ll ignore
them. As we’re aiming for a peak value, we will assume no stguee pending on the

queues, so we'll also Setrv gueue andThbaguee t0 zero. Therefore,

BWomCache = Sz/T CPUxfer (SZ) (8-1)
BWirecth = SZ/[T DMAXxfer (SZ)+TdeV req +TdeV rep (SZ)] (82)
B\MiskThruCache = SZ/[T CPUxfer (SZ)+T DMAXxfer (SZ)+TdeV req +Tdev rep (SZ)] (8-3)

Expression (8.1) shows th&W,mcache depends only on CPU speed and memory
bandwidth, and not on devices, as expected; in the lab serverfoughis worRk, the peak
value for memory bandwidth is 6.3 GB/s, while the sustained valeieget from the
STREAM benchmark [McC95] is in the 1.6 to 2 GB/s range.

Expression (8.2) shows that, if the device is to be accepsedl, /0O is reached when
resorting to Direct I/Oi.e., bypassing the FS cache; data still has to flow through the system’s
I/O bus, pumped by the DMA engine in the HBA. In today’s smallessr /O busses have
bandwidths of 1.6 GB/s for 4x PCl-e or 1066 MB/s for PCI-X (at 133zMHd a 64-bit bus)
[IBM-07], which clearly shows that 1/O bus bandwidth is adequate. The aimmes

B\NomDevice = SZ/[ Tdev req +Tdev rep (SZ)] (8-4)

computes the device transfer rate; even today's medium sizedigkCarrays from such
companies as EMC, HP and IBM have several GB of cache dindrdeggregate transfer
rates in excess of 1GB/s across multiple fibre links at 100 to 800p&B/EC port.

Finally, expression (8.3) highlights the extra copy operation — fhenkérnel cache to the

user buffer — that contributes to a slightly lower performance of {&3-vis(8.2).

8.3 Latency and sustained bandwidth

Given that peak bandwidth is quite adequate, we must look glasekpression (8.4), for
the transfer rate of an 1/0O device and, along with Fig. 8.2, bettar understanding of what
contributes to a sustained bandwidth.

The time taken by the request packet, issued by the HBA, te atrthe 1/0 device can be
approximated aJdev ., =Link gyReqs,; likewise, the time spent to transfer the data is
Link gpwData s,. The “processing delay”, as tagged in the figure, is the sipsat by the
device to make the data available to be transferredait be insignificant if the data is
available on the device cache and can be quickly located but, i&cioed, may become quite

important, as it could take about 5 ms even for fast (10K rpm) SCSI or EC dis

! See Part VIII, “Benchmarking pCFS”.
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Figure 8.2 Contributors to latency and sustained bandwidth

Assuming a 16 byte request packet, a 200 MB/s FC link, a 5 ms giragetelay per
packet {.e., no cache at the device) and a “device” capable to sustaifulth200 MB/s
transfer rate +e., not a single disk bug.g, a RAID-0 volume of 5 disks with a sustained 40

MB/s per disk — we compute the sustained bandwidth as,

SustainedBW rompevice = SZ/[5*10 3 + (16+Sz)/200%10 9] (8.5)

For blocks of sizes 1K, 8K, 64K and 512KB we get sustained bandvafitt32K, 162K,
1230K and 68790 KB/s; so, our best case has a 34% use of thelavadabtwidth for one
link only! Thus, as expectedt the end of the I/O chain devices must have cacmg then
we will be able to exploit the full bandwidth of the I/O chanrilt is it enough to have
caches at the devicieg., at the end of the I/O chain? How large should they be? Angefy
large caches, is it still possible to perform a cache loakupfew microseconds, or are we
beginning to see the build up of another delay factor?

Today’s large disk arrays “serve” not one but several Hosenterprise data centres some
of these hosts have distinct architectures, and even riemedhif operating systems) and they
have really huge caches — up to 64 GB; understandably, théctipeeform a cache lookup is
now closer to the millisecond. If, in expression (8.5), we change the V&lue to 1 ms, our
best case turns out to be 145 MB/s now, or 72 % of the single link bahdiidtsmall-sized
requests, such as the Linux default's page-sized 4KB I/O reatilsuse the bandwidth very
poorly at 1ms, with 20% usage.

All the above intuitively reinforces the belief that, even with the today’s high performanc
infrastructures at the end of the chain, we still nebdsd-based cachié we want to provide

high sustained bandwidths and faster response times to applicatibite.on this subject,

2 A detailed study would be very long and complexd & therefore outside the scope of this work.
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some authors argue that caches everywhere (on disks, arrays, étogt are not always

beneficial, as, if not accounting for anything else, they surelyxgensive [Won+02].

8.4 CPU use in I/O operations

Given that all HBAs worth considering are DMA-capable, amdfthction of CPU spent in
programming the DMA is negligible when compared to amount of CPUede® perform a
copy from the VFS cache into the application buffer (assuming ddéDg, we can easily
compute an approximate value for the fraction of CPU needed in a full l/Saras follows:
let’'s assume that 100% of CPU is consumed in our lab serpartorm a memory copy at 2
GB/s in the STREAM benchmark; then, to move data from thieectcthe user buffer at 100

MB/s (our server’'s maximum FC rate), we would wear out 5% of the Hgt C

8.5 The benefits of caching

We conclude that caching and pre-fetching are both importantad fite systems: reads
and writes hitting the FS cache experience the memory sebsysindwidth and latency;
pre-fetching, for reads, as well as write-combining (whose wae not discussed in this
section), for writes, both deliver higher /0O subsystem bandwidghshey batch smaller
requests together into fewer I/O operations with largedsiaocks”; some decrease in the
CPU load, resulting from a smaller number of I/O operations, sy lee expected as a

consequence of fewer interrupts, less context switching, etc.

9 The Case for Caching in a Distributed File System

9.1 A simple performance model

For file systems, such as NFS, that access remote data otwork, Fig. 9.1 illustrates
the contribution of each major step to the latency of a rapdest when reading a file from a
remote server. A quick look shows a great resemblance wgtt8Ri; new are the NFS client
module and an “upper” network software layer (which inclutbesremote procedure call —
RPC - and external data representation — XDR — layers), andCiR4P stack. Notice the
much referenced double buffering/copy problem: from the NIC, dafaMA moved to a
network buffer, where it may be moved around (for packet reddgeformat “translation”),
then copied by the host CPU to the OS cache (in a best-casE; copy) and finally from
there to the user buffer T2copy). After some research proved the feasibility and srjigr
of a zero-copy approach in the network stack [Pai+99, Wu+04$ ndleases bundled with

Linux 2.6 versions do profit from it.
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Figure 9.1 read()call flow on a NFS client.

A short description for each tag follows:

Tsyscall ) Tsysret

Tsearch

TbuiIdet

Tdrv queue

TNniC queue

Tclt g

Time spent executing a system call, which involves a trandirom
user to kernel mode, and back.

Time spent searching a cache for a matching item (block, page, etc.)

Time spent to build, in the NFS client layer, a server request pautet
submit it through the XDR/RPC, TCP and IP layers.

Time spent by a request in the driver's queue, waiting tsubmitted
to the network interface card (NIC).

Time spent by a request in the NIC’s queue, waiting to beosgrib
the network.

Time spent to transfer the request packet from the NIC, thrdwegh t
interconnection network, to the file server; for simplicitye assume
that issuing a read involves just one packet.
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TSIV rep Time spent by the server to answer the client’s requesteliverdthe
data (we are reading) across the interconnection network; for
simplicity, we assume the response as a header plus datee (8mé
also depends on the data size).

Tomactrl Time spent to program the NIC DMA engine at the beginning and a
the end of the data transfer.

Tomaxter Time spent by the NIC DMA engine to copy the data to the nktwor
layer buffers.

Tcpusfer Time spent by the CPU to perform a memory copy; for simpligé
assume that the size of the data moved between the networkdndfer
the cache is equal to the amount requested by the user, moved from the
cache to the user buffer.

9.2 The case for server-side caching

The read bandwidth, as perceived by the client, may be approximated by

BWomNetwork = SZ/[Z*T CPUxfer (SZ)+T DMAXxfer (SZ)+TCIt req +Tsrv rep (SZ)] (91)

which shows up the double copy (from the network stack to the jpatye and from there to
the user buffer), the client’'s request transfer delay andcongribution of the file server,
which we will now break down.

To break down the server's contribution, we will assume thee ssimplifications made
before for the client. The first part is essentially theerse route of the client’s traffic: the
client request is received at the NIC and “migrates” up diftevare layers, to the NFS layer,
at an oversimplified zero cost; then, the NFS server wilictein its cache for the requested
data, at alsach cOSt (which, to be coherent, should also be dismissed swdawill be
smaller than the network stack cost we've just ignoredthétserver, the time to find the
data is eithellseacn , if data is cached, Grsearen plus the time to access the local storage,
plus the denominator from (8.3); but, as we've done for it wéslh @mit the search time

now, so (9.3) will be the same as (8.3),

Tdatacached = T search (9.2)

TdataUncached = T CPUxfer (SZ)+T DMAXxfer (SZ)+TdeV req +Tdev rep (SZ) (9-3)

We can now proceed to compute the time required for the compkgiense, which will
include the copy to the server’'s network buffer and the timeatwsfter it to the client’'s NIC;

if we call the network latendy, (s) , to denote it as a function of the packet'’s size,

Tsrv repCached — L net (SZ)+T CPUxfer (SZ)+T dataCached (94)

Tsrv repUncached =L net (SZ)+T CPUxfer (SZ)+T dataUncached (9-5)
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We can thus expand (9.1) to its final form (renaming iBWomscache tO indicate that

data is fetched from the NFS server cache)

BWoervCache :SZ/[?’*T CPUxfer (SZ) +2*T DMAXfer (SZ) +L net (Clt pkt ) +

+L net (SZ) +T dataCached ] (96)

i.e,, in a NFS environment without client caches (but with sezaehing) we may clearly see
that: a) aggregated CPU usage is, at least, three timewill see later that, in practice, it is
much more) in a NFS client than in a local file system cliant, b) client bandwidth is
degraded with respect to the network bandwidth by the amgouiiCit ). From several
sourcese.g.[Hug+05], we get round-trip latencies for Gigabit Ethéf(@bE) of circa 25us
for small UDP packetd.€., client requests) and 15 to transfer a 1500 bytes frame (which

we will assume carries a 1400 bytes payload); so we compute a maximum of

BWomsrvcache =1400*8/(12.5+12) = 457 Mbl/s or 57 MB/s (9.7)

an utilisation of about 50% of the GbE bandwidth (in fact, much wbedkthe contributions

that we have discarded were brought in).

9.3 The case for client-side caching

Instead of using a 1-by-1 request/reply pattern with thediingize of an Ethernet packet,
such as in (9.7) above, we could use larger requests, in an teffprofit from the TCP
streaming capabilitie®.g, using a TCP segment of 32KB for the reply (about 22 pacitets
1460 bytes each). Then, we would get

BWomsncache =22%1400*8/(12.5+22*12) = 891 Mb/s or 111 MB/s (9.8)

Expression (9.7) unequivocally shows that, even using a NFS skateraches data in its
memory, a NFS client using a request/reply read patternewdrdy the exact amount of data
required by the application is transferred, performs veryhathat amount is less than, say,
one full-length Ethernet packeflo get suitable performance, one must use read-ahead and
caching at the clienfThe value predicted in (9.8) is very close to single-client bandwidth wi
NAS appliances (from companies such as EMC or NetApp) usiryg gegormance NICs
designated TOEs, TCP Offload Engine boards, and heavily tunedaseftflightweight
kernels and network stacks). Small computers acting assif®@rs usually cannot provide
such levels of bandwidth, due to the overheads of TCP/IP, Otelkdite system and I/O
devices; a typical value for sustained bandwidth in s servers is around 30 MB/s, but
they are nevertheless able to deliver similar peak values whesiageceached data.

At the client side, for cached data, we have

BWomCache = Sz/T CPUxfer (SZ) (9-9)
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Clearly, bandwidth from the client’s cache is the same8al ¢ obviously there is no
difference in the bandwidth delivered by a local or a remagesfistem to its “clients” if data

is located in the host’s cache

9.4 CPU use in remote I/O operations

Network I/O at full bandwidth using either a completely dumb ¢Qferformed on-board
and checksuming performed by the host CPU) or even a “medium-smart” NIC (cafpadple o
board CRC and checksum processing) consumes a sizeable amount;oinGRr test
infrastructure we have measured around 40% of CPU usapeawit.6 GHz Xeon and
regular-sized 1500 bytes frames, and about 30% with 9000 bytes Juanfes fto keep a
Broadcom GbE NIC at 80MB/s [Lop+05]. Therefore, /O in distribufitsl systems may
require, depending on the “intelligence” of the NICs used, quite @&@ power than the

corresponding operations in local file systems.

9.5 The benefits of caching

We have shown that both caching and pre-fetching (or read-ahead)portant to remote
file systems and that they should be performed at the cliem¢lass in the server; reads and
writes hitting the client’s cache experience its memory stbsydandwidth and latency,
while those hitting the server's cache experience the nethankiwidth and latency; pre-
fetching, for reads, as well as write-combining (whose roleneasliscussed in this section),
for writes, allow requests to be batched into fewer I/O operatiodarger sized “blocks” and
thus require fewer request/reply packets, resulting in hightvork utilisation (bandwidth)
as well as a much reduced CPU load, a consequence from tleastedn the number of

interrupts raised by the NIC.

10 Caching and Sharing in Local File Systems

Modern, widely used local file systems may offer simitasic characteristics but are
usually quite different from each other when it comes to “adwinfeatures such as fault
tolerance and resilience, time to recover from failures,pntbrmance. Most have adopted
the UNIX file organization model, which supports both (logicabpntiguous and sparse
files, as well as distinct access modes, including se@liemd random; they eschewed the
record-based file model in favor of the byte-stream “unstradtuapproach, relegating more
complex organization and access modes such as keyed, ISAMoedpplication libraries
and DBMS systems.

Local file systems make extensive use of both data and neetadehing to increase
performance; some take even more steps, such as trying to fnedigiplication’s file access

behavior and asynchronously reading data ahead, or batching togetleeal reads (or
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writes) together in order to minimize the number of 1/O retguessued while performing
larger, more productive, I/O transfers. In the next sectimeswill show that defining the
sharing semantics for a file system strongly limits thsigieer’s choices on the caching

subsystem architecture as well as on cache coherence poliaysoptio

10.1 The page cache in modern operating systems

Modern operating systems, such as Windows and Lihaxe benefited from research that
was incorporated originally into SunOS 4 and showed the advardghgamified page cache
over two separated memory zones — a buffer-cache area fiogdite system blocks and a
page-cache area for storing program pages; those beneliitdeirec cleaner (although more
complex to implement) interface between the virtual memory dadfanagement kernel
subsystems (which simplifies the implementation of memory ntafifes) and a unified

approach to file access, independently of the file’s “type” (e.g., progsadata).

10.2 The file abstraction and the page cache

File System
Layer
\
\\ -7
\\ \\ ”
P, \ N Page n-1
\ I L
\\
/|4 -7
/)\\
| .
// Y, AN
/ / Page n
/ /
P, / // k.
Y, N
/ /
/
//
Page
Cache
Host OS

Figure 10.1 A file “image” is created from the page cache.

! From release 2.4.10 onwards.
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As a side effect, the adoption of a Page Cache has creatibgéramismatch (an interposed
page layer) between the byte-stream file abstractimhthe block structured I/O devices,
resulting in a “cache line” increase from the size oflevice) block to a page. A page-sized
cache motivates us to perform larger sized I/O operations &besssing the filesystem
devices, and is even more beneficial if a) data is contiguousyeld, as only a single request
needs to be issued, and b) if data pre-fetchtahg the way will be used again in the (near)
future. Figure 10.1 depicts a file, shown a sequence of pgse pages contain the file data
“records”, and a record may be spanned across two (or mored. dagdso shows two
processes accessing (again, we assume both are readiraghtheesord; and, despite being a
complex data structure that stores pages from many distiest fi still allows the upper
layers in the file system to implement, at the API levke various “file models” that

applications expect, and depend on.

Definition 10.1: file view

A file view (FV) for some filef is the logical view (of the file) that we get when, at a
momentt, we select all pages bbtored in the page cache:

FV(f) =Page-Cachdf)

wherePage-Cache(fls the function that performs the “select” on the page cdobking for
pages that hold data from fil¢and sorts them by page index).

When a process performs a read, only a subset of the pades KV tis involved in the
operation, i.e., those containing the “record” that must be copied tordlcess buffer; for

example, in Fig. 10.1, the requested data spans pabeandn.

Definition 10.2: request window
A request window is the smallest set of file pages (stiorélde page cache) that satisfies a

single, contiguous request of size r over a file (poiriter)
W(f,r)={P}:iO[start(f,r),end(f,r)]

where, start(f,r) = f div PageSize,
end(f,r) = start(f,r) + SizeofRequest(r) div PageSize

If the request is of the scatter/gather type, then the regiredow is clearly the union of

the request windows for each contiguous sub-request.

Definition 10.3: overlapping requests

Let r and s be two requests made by distinct processes on a file f; thiey dfe
[start(f ,r),end( f ,r)]ﬂ[start(f ,S),end( f ,s)] Z [ ]

2 As usual, we're using a read operation becausess a simpler job at illustrating the point.
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Definition 10.4: overlapping request windows
Let r and s be two requests made by distinct processes onfatliidgr request windows

overlapiff
W(f,r)NW(f,s)#{}
False sharingarises when two requests do not overlap but their request wirdinitss a

consequence of caching at a granularity level larger than the rexaifd it

10.3 Sharing: from the file system down to the file

An important feature of a file system is fharing semantics.e., how it behaves under
concurrent access from user applications. In any modern filensydtere are two major
“objects” as perceived by the users: files and directoridss Rold user data (and may hold
other “data” too, such as source programs, executables, ette)divhctories organise files
e.g, into a tree. File system objects have associated metabata holds information about
the objects themselves; examples of file and directoryadatd are timestamps (e.g., of

creation, last access), size, ownership, etc.

10.3.1 File system sharing semantics
File system sharingemantics specifies how thike systenitself behaves under concurrent

operations that read and eventually update its own managed sudtuspecifies, for
example, the outcome of an execution where a process is reafilegwdile another is
concurrently deletes it — as an example, Linux’ ext2 allowsptioeess to continue, even
though the file entry is already missing from the directangd svon't be seen by newer

processes, while PVFS will return an error on the next operation issuledt pydcess.

10.3.2 File Sharing Semantics
On the other handijle sharing semantics specifies howfiée behave$when processes

concurrently access it, with mixed operations that may readveateluser data within the file
itself (and, consequently, its metadata); it specifiesetample, the outcome of an execution
whereby a process is reading a file section while other meseme concurrently writing to
the same region — as an example, the ext2 file system neptlnients the so called POSIX

file sharing semantics, as described in section 10.4.3 below.

10.4 Case study: caching in Linux

For the Linux operating system, the role of the relevant$aiywolved in a read or write
operation from or to a disk device, is sketched in Fig. 10just a starting point for our
discussion (not the complete picture), but one that highlightsndjer aspects: it briefly

shows that application I/O calls enter the kernel and areepsed at the file system layer,

% This is a figure of speech; files do not “behawaf’course...
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where usually a cache lookup is performed to see if the deddta is already present in the
cache; for example, if eead() is being executed and data is found in the cache, it is

immediately moved to the application buffer; there’s no need to adeedisk device, here.

[ Apptication Leyer |

Filename

Page cact

VFS dentryfinode
open()

[ Fiksysem Leer |

File System Handler
Request Queue

Request Queue
Utilities

R Request (from queue)

-
Read Blocks, Write Blocks

Init
blk_init_queue() open()
redister blk device() close()

Figure 10.2 Architecture for file I/O in the Linux kernel (from [Rod+05])

10.4.1 The file system layer
The Linux file system layer is structured in two partsupper, Virtual File System (VFS)

layer, and a lower file system-specific layer, where modulesdoh file system do “plug in”.

Two Application
I/O streams on l
two file objects

System Call Interface /2/ T
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Generic Block Device
Layel
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Figure 10.3 File system layers in the Linux kernel
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The VFS is based on the Sun UNIX Vnodes architecture [KleB8pftware framework
that captures the commonality between different file systamd defines a kernel-level
interface that enables simpler implementations of both thediated system calls and the

specific file system being supported, as depicted in Fig. 10.3.

10.4.1.1 The VFS layer
The VFS layer is implemented using an object-oriented (@Pjoach, and VF®bjects

have methodsto operate on them; methods live at the VFS layer and magdafined at
lower level layers, namely at the file system speciiget — in what resembles OO generic
methods for a class that get specialized in their suledagsr example, if a vnode object
holds an inode that represents a regular file living in @2 file system, theead()
method for that vnode ends up invoking the \@s&2_file_read() function (see Fig.
10.3), while if it holds an inode that represents a “file” lie fproc  pseudo file system
containing information about a SCSI adapter, thad() method for that file ends up
invoking some device driver function that accesses the harddaper and pulls out (reads)
some information.

It is important to point out that Linux terminology can sometiro@sfuse the reader; for
example, in Linux’ terminology, inode is used to refer to two distioctcepts: the in-core
VFS generic structure (which we have called vnode previousig)ttee on-disk inodeit is
up to the reader to make the distinction, using the context. Therevan cases where the
same name is used to refer to a third structure, an inkoage which is “slightly” different

(e.g., the endian-format) from the on-disk layout.

10.4.1.2 The file system specific layer
When a disk partition is formatted to hold a specific fitstam type, such as ext2 or FAT

file system, some data structures are created andragliskto hold persistent data. The role
of the specific file system implementation module is to prom@¢hods to access these data
structures — they must first be read from on-disk to theione images, and then re-arranged
into generic, file system independent, VFS objects; modifiedctsbjaust be written back to
disk, later on, to update the persistent file system informatiarstep requiring a conversion
from their in-core format(s) back to their on-disk layout.

Porting an existing (or developing a new) file system twkiis thus a task that requires
the developer to: a) understand which VFS objects provide igdilersystem abstractions
such as vnodes, superblocks, ehb).;port (or write from scratch) the code that reads and

writes the on-disk data structures from/to their in-core statectures — let’s call these the file

* Provided that the specific file system uses suselructure, as in ext2; if not, as in the FAT, #ieS
vnode is “virtualised” from other on-disk structare
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system specifigprivate methods; and dmplement, the file system specifimiblic methods,

ones that will be called by the VFS layer to perform the appropridtasct

10.4.2 Caching

10.4.2.1 Introduction and terminology clarification
Caching is, as we've seen before, an important technique tofileaststem performance,

but it also brings in new problems that must be adequately solVeahwite the whole effort
will be useless. When using caches, important issues that bauappropriately tackled
include the cache unit size and cache replacement policiesgnofiexmong various caches
and/or cache levels, and the possibility of loosing data upon syfstdumes. For data
(content) caching, Linux has evolved from an implementation based on two sepalais (a
buffer and a page cache) into a single unified page cacheaBhihg may also be used to
speedup accesses to metadata structures, something that will esl davirer down.

It is worth noting that in the memory management (MM) terminplaged in the Linux
kernel, cache refers to a memory area that is used to il fequently created/destroyed
objects, not only file system objects. Such a cache is furtltmtivdded into slabs, each
capable of holding a certain number of objects. That's why ttexdees are also referred to as
slab cachessome, typically used for transient object allocation, may Hidsimilar objects.
In this work we are interested in those (slab) caches whotd file system objects of one
type only, e.g., ext2 inodes, or dentries, and are organised in sughaswabe efficiently

searched (usually by some hash-based lookup function).

10.4.2.2 The concept of a buffer cache
An application requests (reads or writes) data in “recordsbofe specific size, while the

data transfers between disk and memory are carried oubéRshbufferingis the technique
used to handle the mismatch between the size of the data eshjbgshe application and the
amount that needs to be accessed on the device, eauhéngis a technique used to keep
data, once retrieved from disk, in memory, hoping that it wilrduesed again in the near
future. Due to the differences between access times to énacat on-disk data, which span
several orders of magnitude, caching is an important techfoqumcreasing performance in
file systems. Buffering and caching started out as twondistcomplementary approaches,
but were soon merged in a unified structure, ibéfer cache available in the first UNIX
implementations. On those days, the amount of memory to set aside for thebclewas a
kernel configuration parameter, fixed at boot (or even worse ria¢lkeuild) time; this was a
nuisance for system administrators, who tried to tune it fmmapromise between a good hit
ratio for file access, and not stealing so much memory thatdfidheekernel to heavily page

when running “memory intensive” applications.
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10.4.2.3 The concept of a page cache
In early UNIX and Linux releases, caching of executable program filecisnags done at a

page-structured cachee(, the unit of caching was a page, containing logically contiguous
data from a file), while buffering and caching of “regular” filata was handled in a separate
buffer cache, as described above, one containing frequently ataliskeblocks; starting
with SunOS 4 (1988), both were merged into a single unified gag®e, one where the unit
size was a full OS page; UNIX System VR4 implementatitomediately adopted it, and
Linux introduced it in version 2.4.10, about 12 years later.

The unified page cache brought in a number of benefits, sudch) dass code, as code
needed to maintain the two separate caches consistentmagerkband, b) code for regular
I/O calls may was merged with code for memory mappaudp file access; and c¢) reduced
memory pressure — the page cache is dynamic and, when more andataoi® cached and
memory starts to become scarce, the MM and the FS may wotkéaoge shrink the page
cache by discarding unmodified and/or flushing out modified pageadded benefit, which
further decreases memory pressure, is that it allows difitmslystems to “plug” themselves
into the page cache, thus avoiding per-file system privatbes which get “polluted” with

multiple copies of the same data when a file is copied from one FS t@anoth
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Figure 10.4 Read flow for an ext2-hosted regular file (from [Rod+05])

Fig. 10.4 illustrates the top-down flow ofr@ad() call on a regular file living in a ext2

volume: a) thevfs_read() function executes theead() method for the file — the one
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specified in theread field of thef _op vector of operations which, when referring to an
ext2 file, has been “loaded” with thgeneric_file_read() function; b) some further
processing is done, and ttle_generic_mapping_read() function is called to access
the page cache; c) if data is found, it is copied to theludéar, etc.; d) if data is not found in
the cache, thenpage_readpage() method, stored in theeadpage field of thea_ops
vector of operations is invoked — this method is the same one wghiaied when accessing
the file through thenmapinterface,.e., from this point on, the two call graphs are merged.

As there is only one place to cache data, coherency betweamrrem@accesses from both
user and kernel processes may be maintained by resortin@-tev€l mutual exclusion
mechanisms; the only added complexity here comes from devidesniag DMA from, or
into the cache while processes concurrently access it — the ¢dtution is to define a flag in
the page descriptor structure to signal that an 1/O is inr@seg The way coherency is
enforced, thus, guarantees that a strict compliance withXP@8 sharing semantics (see
10.4.3, below) can be achieved by a particular file system implati@n. Cached data may
be out-of-sync +.e., be more up-to-date — with respect to data living on-disk, Haitdoes
not conflict with the sharing semantics, as long as all reqflestshrough the cache; to keep
disk data synchronized a kernel daemon periodically flushes adified pages to disk; data
can be also flushed on-demand, either on the last close of thetige explicitly requested
by the process, or implicitly, when requested in the file open &ileasystem mount time,
and/or on every write, if theync option is used on thmount .

File systems usually provide a way for applications to bygsssdche; POSIX specifies
an O_DIRECT option to request it. Bypassing the cache may create inceaiesah other
processes are allowed to open the file “with cachings the usual way out is to disallow it,
i.e, if a process has a “direct open” on the file, any other procésgguently attempting a
“regular” open will get an error. Direct I/O is used by highined user applications, or, more

commonly, by DBMS engines which perform their own caching on behalf of theirsclient

10.4.2.4 Metadata caching
Metadata access must be fast, otherwise it gets in thefrdata access and thus hinders

performance; for example, indirect blocks must be accessedtibfodata blocks they point
to, so indirect blocks benefit from caching. Metadata structonags be separated into two
groups: file system metadata, which users are generally unafyaand metadata for “user-
visible objects”; examples of file system metadata tires are superblocks and space

management bitmaps; examples of file metadata are indirect (a.k>. lohatks, and inodes.

® Because data buffered in the user space of @gsagsing direct I/O could be out of sync with data
maintained in the page cache on behalf of othen-fhiect 1/0) processes accessing the file.
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File system metadata structures are block-based, so they dmlgdbelong to the page
cache; however, Linux uses pages (called buffer pages) to contdaidata block-based
structures instead of file data pages; for example, it hiblesin-core image of some FS-
-specific “inode” in a buffer page, but store its VFS counterfs@mode) in a slab cached,
there are functions to translate between the VFS objects amt¢bes images — which will

then mimic the on-disk — data structures).

10.4.2.5 Caching directory data
When performing a file open, the file’s pathname must be brivitera series of filenames

(separated by thelashtoken) all but the last one identifying directories. Fohddename, a
dentry object, associating (storing) the filename and its inoderegated and inserted into
the dentry cache; future references to other filenames wiasle part of, or the same
components in their pathnames will be much faster to resohag,cass to these components
only requires cache lookups, and does not need disk accessedDantl. objects stay in
cache in a most recently used policy.

A special case is one of a negative dentry: when, in the “gfiddlpathname processing, a
filename component does not resolve to an existing file, theydsrtill cached, but with the

inode pointer set tblULL Negative dentries accelerate the resolution of failed paths.

10.4.3 File sharing semantics in Linux
To understand the POSIX [IEEEO4] file sharing semantics wordingl|pstio join sections

taken from both its rationale and descriptions for red() andwrite() calls on the
issues of concurrency, stated as a) “This volume of IEEEL803.1-2001 does not specify
behaviour of concurrent writes to a file from multiple procesggplications should use
some form of concurrency control.” and atomicity, stated as 0)i4/intended to be atomic
to ordinary files and pipes and FIFOs. Atomic means that abhyttes from a single operation
that started out together end up together, without interleavaorg 6ther /0O operations.”
Furthermore, it is stated that c) “aftewvate()  to a regular file has successfully returned,
any successfulead() from each byte position in the file that was modified by theewrit
shall return the data specified by thaite()  for that position until such byte positions are
again modified, and any subsequent succeswgiit () to the same byte positions in the
file shall overwrite that file data”.

File sharing semantics is not an operating system, but aylifem issue; thus we cannot
talk about “Linux file sharing semantics” in general but indtea should refer to the specific
file system being discussed, such as ext2/3 [Bov+05] or XF$Q0Bh For example, a
write() to an ext2-hosted file follows a call graph similar to the of Fig. 10.4; the

generic_file_write() issued as a result of tfiee->f_op->write() does lock
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a semaphore in the file’s vnode, which results in an mutual exclbosiwreen writes against
the same file. But no call in thead() path observes that (or any other) semaphore, and
thus the following is possible: a) in a multiprocessor archite, a transfer from the page
cache to satisfy a read is in progress while some remaining podiget transferred is being
modified by a write from another process; or, b) in a uniprocessor architectuaasfer from
the page cache to satisfy a read is in progress and it galgeih the user buffer — and the
process sleeps, waiting for the page, while another proceshaduded and modifies the
cached contents, so, when the first process resumes, the datausethleuffer is “half-
old/half-new”. Thus ext2 and all other file systems that usesstme VFS generic routines for
reading and writing will not preserve read, but only write atomicity. t&otlg speaking, ext2
does not comply with “POSIX file sharing semantics” as dafiy above is not observed,;
this is contrary to established UNIX implementations whidierdiull file 1/0O call atomicity
(i.e,, any I/O call issued against a file is atomic with respe@ny other call issued against

the same file).

11 Distributed File Systems

By its own nature, a DFS has many cliémdth whom it shares one or more file system
“objects”; but, contrary to what is commonly found in local fistems, some distributed file
systems do not allow processes running on distinct clients te aHde for read/write, while
others place sharing restrictions that some applications siogpigot tolerate. The reason
behind it is caching vs. coherence: in order to get an atdepberformance out of a DFS,
caching must be extensively used; but its use implies thatpheuttiients sharing the same
file should agree on how, when, and where modifications made tolgy fleme process are
going to be noticed by otherisg.,, the sharing semantics offered by the DFS will dictate the
caching consistency policy, wice versa

In the following discussion we reuse several concepts introdzendidr in this document;
but we have also drawn some new material (mainly examptes) fLev+90] which,
although not covering the current breed of file systems, aiters a lot of fundamental

ground.

11.1 Sharing semantics for DFSs

Different distributed file systems do exist for distinct eamiments, covering the whole
spectrum from high latency, wide area distributed architestutown to the very low latency
“in-a-box” MPP architectures (the later usually hosting sdomen of parallel file system).

Such diversity determines which sharing policies can realigtioa offered in some specific

! Here, client is a system that accesses data iDfS it does not imply a client/server architeetur

56



architecture/DFS combination when pursuing such goals as compatibith existing
applications and/or good performance. An overview of file sharingusties offered by some
well known distributed file systems, starting with more retexmes and ending with the
strictest case, the POSIX single system equivalent samafdllows. Metadata sharing is
also important, and will be covered further down.

Several distributed file systems have been proposed along ttse wegether with various
degrees of file sharing, ranging from immutable files to ROe sharing semantics; the
reason behind the wide range of available options is a conseqfethesign choices: for a
given environmentg.g, storing user home directories (which generally are not used for
sharing data among users) across a WAN, a DFS may favoorrmarfce over consistency,
while for a different environment.g, storing software development repositories shared
across a user team, a DFS should favour strong consistency above evelsghing e

Applications developed to run on a particular file system, e.g. dnehveffers a specific
sharing model, may not run correctly or with adequate performanes wioved to a
different one, which does not offer the same model; this happgite often when
applications are, e.g., moved from a local file system to a -BEfre may be a mismatch

between the application expectations and what the DFS provides.

11.1.1 Immutable semantics
The simplest sharing semantic is the one of immutable &le=y time a file is designated

as shareable, its contents cannot be modified ever again. AltHusgtiea has recently been
pushed in a slightly different way, in Content Addressable §of@AS) appliances such as

EMC Centera [EMCa06], it is not relevant to our work, so we will not contimuthis path.

11.1.2 Versioned semantics
Versioned is also a simple sharing semantics: every timedification is done to a file, a

new version is created, but the previous one is also kepttsclibat already had the file
opened for reading, will continue seeing the “old” version. This li@s been used in
versioned file systems such as CVFS [Sou+03]; as with theuiable semantics above,

versioned semantics is not relevant to our work.

11.1.3 Transaction semantics
Transaction semantics follows on the same ideas as triamsdaiata base systems and

applies those ideas to file sharing. The main concepts of ttemmsdalata base systems are
those of transactions, delimited by a begin/end pair, atomicitiiafges, consistency of data
that ends up in the data store, isolation between processes ofetata, and durability of
stored data — the often touted ACID [Hae+83] properties. An examhplerery simple use of

transaction semantics is session semantics, described belioh wses open/close as

57



begin/end pairs; other more elaborate implementations includdéoaddlifile system calls,
thus deviating from the POSIX API for file access.

Transaction semantics is often used to guarantee metawetistency in the presence of
concurrent operations executing across several nodes in &duedrifile system; it is not,

however, commonly applied to data sharing.

11.1.4 Session semantics
Session, also known as close-to-open semantics, is the siniplestof transaction

semantics: when a file is modified, clients currently asiogsit do not immediately get the
results of the modification; the updated version of the dataowmily be noticed after the
updating process issues a close and then, either a newspopess the file, or processes that
already had it opened, close the file and then re-openiit.&8@me DFSs do offer different
semantics depending on whether interactions occur on the same noddisiimcirnodes; for
example, they may offer session semantics if processesgsktze file do not run in the same
node, but otherwise, they offer regular POSIX semantics. ThBSs obviously violate the
transparency property (considered of utmost importance in a “gtistiibuted system) as
sharing behaviour will depend on the process’ location.

As with immutable files, session semantics works welhviud! file caching: when a client
opens a file (“begin session”), it gets a copy of the file from th®’Borage spaégthe copy
is then placed on a local cache where all accesses, anddsrites, will be handled; when
closing the file (“end session”), a check is performed tofsie file was modified and, if it
was, it is pushed back to DFS storage, overwriting the one thdtesiés t

The original version of the Andrew File System, AFS [How+&8Jan example of a DFS
with true (as defined above) session semantics; later AFfons allowed for partial caching
of a file in 64 KB segments, as a way to decrease cache pressure. diiRgpments “a sort

of” session semantics, along with other types; we will study NFStail dater.

11.1.5 POSIX single-node equivalent sharing semantics
In a DFS, compliance with POSIX file sharing semantics lleddPOSIX single-node

equivalent sharing semantics” [Sch+02], and calls for a fileirglhadehaviour which is
exactly the same as in a POSIX-compliant local fileesys{see 10.4.3); consequently, if a
DFS supports it, then full transparency is preserized,there is no “impedance mismatch”:
applications will see the same behaviour, with regard to sharimgy, wxecuted either in the
local, or in the distributed file system. Or, to put it diéfetly, in a DFS (such as GFS) which
offers POSIX single-node equivalent sharing semantics, c@mmturexecution of file

operations (reads and writes) is performed in a sequentially consistgnt w

2 Being irrelevant if the storage space is distebiicross several nodes or held at a single one.
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11.1.6 Other file sharing semantics
We have presented several types of sharing semantics whidiotir conceptually clear

and important landmarks. Due to the quest for ever increasingrmparfoe, almost every
distributed file system proposes its own semantics, one whictbmalose to but not always
quite the same as those introduced before; they are bettertondenhen we study them
along with their respective file systems, something thatwlledo in a moment for a few,

selected case studies.

11.1.7 Performance, cache coherency and file sharing semantics
As clearly stated in [Kaz+88], “many distributed file systego to great extremes to

provide exactly the same consistency semantics in a disttieatdronment as they provide
in the single machine case, often at great cost to perfoen@tber distributed file systems
go to the other extreme, and provide good performance, but witdnetyr weak consistency
guarantees. However, a good compromise can be achieved betweenwihedgews of
distributed file system design”.

So, “strong” semantics, such as POSIX sharing semantics, tiead®r performance in a
DFS; or vice-versa; but we can add another ingredient, onenwelyoboost performance:
caching. The problem with caching in a DFS is that strongasgos also requires strong
cache consistency, and we’re back to poor performance... oBnedRing this circle is now
possible by adopting new technologies, such as high speed, low latdDlA-Eapable
interconnects, and combining them with smaller grained cachespJerhead invalidation

protocols, and other novel solutions, such as throwing in another, often igmueddagking.

11.1.8 DFS as a part of a distributed operating system
Distributed file systems offering POSIX single-node shaseqantics are quite scarce

when compared to the large number of DFSs implementing ottmansies; furthermore, it is
interesting to note that all examples (namely Locus and Spritakd in [Lev+90] of DFSs
that implemented UNIX semantics, were “embedded” within distributed opgststems.

These are interesting examples because, besides offeriatpthie read/write behaviour,
they used shared file pointers. In UNIX, for example, when aegsoforks a child, a shared
file pointer is “created”; if the child keeps the inheriteld fbpen, then an operation that
changes the file offset in a process, e.g., the father, resultsan thieservable (offset) change
in the other process, in this example, the son. This is thentulsemantics fofork() in
Linux and other POSIX compliant operating systems.

In a SSI operating system, where it is possible (performiasaes apart) that a process (or
thread) creation may result in the new one being createdl different node (as in the
Kerrighed OS [Mor+04, Lot01]). For such an environment, a POSIXptiant file system

able to support shared file pointers would be quite sought aftereas for “typical”, HPC
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clustered or networked environments where each node runs its ate mopy of the OS,
“native” support of shared file pointers at the DFS levelasoverly important as, if needed,

it can be provided by runtime libraries, such as MPI.

11.1.9 High performance distributed file systems
High performance distributed file systems, usually referregistparallel file systems, are

specialised DFSs used in MPP and HPC cluster architecturese they offer file models
that enable carefully programmed and/or tuned applicationstacekigh performance from
the underlying I/O subsystem (where “model” stands for orgaoizahccess, and sharing

semantics).

11.2 The file abstraction and the distributed cache
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Figure 11.1: Global File View created from page caches of all nodes.

We will now take a look at an hypothetical distributed filsteyn running in a multi-node,
distributed memory architecture, where each node runs its ownate@8 copy with its

own, separate, page cache; each node also has (for simplicity) a set diks;aand files are
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striped across the nodes. Figure 11.1 depicts an example ofasigtecture: it has two
nodes, each one running its own operating system copy, and the Diffflysittegrated into
the OS and its page cache. For this architecture, we wamiptp the same reasoning as
before: to satisfy a file access request submitted in a megleyant to build a Global File

View (GFV) by resorting to a union of the page caches of all nodes.

Definition 11.1: global file view

A GFV is the view of the file that we get when we perfdha union of the pages of a file

f, stored in the page caches ofialbdes. We can thus express it as
GFV(f)= LnJ< Page-Cachd f) >,
i=1

The above definition raises some issues; for example, someuparipage of the fil§ say
P«(f), may be present in more than one page cache at the mam&hen we perform the
“select” operation. Clearly there should be no problem for our upenation if the contents
of that page are the same in all the caches where it carube; but what to do if it is not?
Another issue we must look at is time: how do we spdirifgt across several systems? And
how do we perform the union operatiortiatet?

So, buried in the apparent simplicity of the above formula, thererenty important (and
complex) issues such as cache coherence (or consistencyputhstrtime, and distributed
operations. In the next subsections, we will introduce case stizdi@sfew representative
(i.e., broadly used) DFSs, in order to get a better understanding obtilerps we face when

caching is used in a DFS.

11.3 Case study: caching in NFS

NFS is the most utilised DFS. This alone mandates its inclusiancase study; but NFS is
also a representative of (distributed) client/server difstems, supports file locking, and
client-sidé caching — all strong reasons for its inclusion in this setask cstudies. The
following discussion applies, broadly, to NFS versions 2, 3 and &ilviocus our attention

mainly on v3; however, we may sometimes refer to v2 or v4, to illustoee point.

11.3.1 Cache consistency policies
The protocols introduced for NFS v2 and v3 do not define policieglint or server

caching; in particular, there is no support for strict cache smmgly between a client and
server, nor between different clients. Existing client anstesé@mplementations do usually
offer distinct caching policies (detailed below) allowing th#manistrator to choose the

appropriate one for each case.

® NFS'’ server-side caching is one of a local filstem, and irrelevant for this discussion.
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11.3.1.1 Time-based cache consistency
Time-based NFS client cache consistency is a best-effodypalhen a client gets its first

data for a particular file from the server, it alstelfies the file’sime of last modificatiomnd
stores it, along with a reference to the momgntyhen that piece of data was cached; for an
access occurring at a later timethe data in the cache can be used to satisfy # ff + trr,
i.e., if the access was performed within the time bounds alléevesl cached copy to live in
the cache. If that limit is exceeded, the client will cohthe server to fetch the file's time of
last modification, once again; if there was no chahgs,updated (renewed) and the data in
the cache is still valid, and may be used to satisfy theestgatherwise, the cache has to be
purged and data will have to be fetched again from the server.

In the Solaris NFS implementation, for example, the value can be chosen between 3
and 30 seconds for regular data files (or 30 to 60 seconds fotodies), with smaller values
guaranteeing better client cache consistency at the expelseredsed traffic between the

clients and the server [Cal00].

11.3.1.2 Open-to-close cache consistency
Open-to-close cache consistency was spurred by the obsentaiprwhen UNIX was

used at university campuses file “sharing” was, most oftithe, completely “sequential”:
first, client A would open a file, write something to it, and then close it; themtd would
come in, open the same file, and read the changes.

Open-to-close cache consistency [Cal00] is implemented initNB8ch a way that, when
an application tries to open a file stored in an NFS fiesy, the NFS client first checks, by
sending the server @GETATTRor ACCESSmessage, that the file exists and has suitable
permissions. When the application closes the file, the NIe&tahrites back any pending
changes to the file so that the next opener can view the ehalbis also gives the NFS
client an opportunity to report any server write errors odhplication via the return code
from close() . After closing the file, cached data needs not to be discasdeit,can be
useful for another open; as an example, Linux implements tlise-tb-open cache
consistency by caching the results @BTATTRoperation issued just after the file is closed,
and comparing them to the results of the @&aTATTRissued when the file is re-opened. If
the results are the same, the client’s cache is still validiveites it is purged.

Open-to-close cache consistency has certain similaviitbssession semantics: if all data
in clientA is flushed on thelose() , and not before, and clieBtopens the file afterwards,
the result is the same. A different situation arisé&shad already opened and read some data
from the file by the time\ flushed it, and continues reading — then it will get modified data;
the same will happen if A writes periodically to the fibefore the close: those are situations

inconsistent with the definition of session semantics. This is not thenidsAFS [How+88],
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for example, as it offers true session semantics — the cligfiéteh the whole file to its local

disk cache on the first open.

11.3.1.3 Weak cache consistency
Open-to-close cache consistency can create an enormous menssyr@ia the client, as

it will have to postpone all modifications until tetwse() . The NFSv3 protocol provides
procedures and data that clients can use to implement anothet, pokc designated weak
cache consistency (WCC) [Cal00, RFC1813]; procedures, and data sdineitirned by
those calls, provide a way for a client to check a filétsbaite$ before and after a file
modifying operation, such as a write of file data or settinisadittributes; as a consequence,
a client can easily identify changes that could have been toatie file by others, and thus

purge its cache.

11.3.2 NFS cached objects
NFS clients usually cache more than just file data; othelechobjects include directory

entries, lookup replies, and other metadata information sucteasnfi directory attributes,
file system information, etc.

When NFS clients perforraOOKURoperations they get replies which include file handles
and file attributes, and they cache those replies; famele, a Linux NFS client caches them
at the VFS'dentry andinode caches (see 10.4.2.5). When a client detects a change in the
parent directory’s time of last modification, it purges @thed entries for that directory;
when the client itself modifies a directory, an NFSv2 cledab purges all cached entries for
that directory (to minimize the risk of changes performedother client on the same
directory getting unnoticed), while an NFSv3 client may usaNIiEC enhancements to avoid
unnecessary purges (of course, it's the reloads that are expemditiee purges themselves).

The results ofREADDIR and READDIRPLUSoperations may be also cached; caching
READDIR results is useful to avoid faileHOOKUR to the server, because having all
directory entries cached allows the client to reject rafere to filenames which do not exist
without even querying the server; on the other hand, ca@®EADDIRPLUSesults allows
us to skip both “negative2OOKUB, as above, but also “positive” ones (e.g., with insufficient

permissions) as tHREADDIRPLUS all already returns “extended attributes” for the entries.

11.3.3 File sharing semantics in NFS
As hinted before, file sharing semantics in NFS (versionsaBd34) is of the “close to, but

not quite” variety: a) its close-to-open cache consistencyughly equivalent to session
semantics, provided that clients open a shared file in tuensteader(s) open the file after

the writer has finished using (closing) it; b) its time-boundache consistency is roughly

* File attributes are NFS’ parlance for file metada
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equivalent to POSIX single-node equivalent semantics (strorge caansistency) provided
that sharers wait enough time between accesses to allowc¢hescto expire — the limiting
case being no caching, suffering the performance degradatiomgshaiong; c) WCC just
provides a faster procedure for a client that performsifidifications €.g, writes of data or

attributes) that travel through the server, to detect nuadifins previously performed by
other clients and thus invalidate its cache. Another importstei is that NFS is not
transparent in the sense of that desired distributed system properti, riegard to file

sharing: behaviour observed by clients will be different dependimgvhether a set of
processes that share a file all run in the same, or in distinct NFS fobsts.

NFS has been designed to perform well in distributed environments fitbestgaring is an
infrequent event; for situations where this is not true, the only way aan guarantee
consistency in NFS (versions 2, 3 and 4) is through the use afir@dso called byte-level)
locking and turning client caching off (use of file locking in®NFequires some knowledge of
its interactions with caching, otherwise the expected behaviayr mat materialise; for a

more in-depth coverage, see [Cal0Q]). This is, of course, very detrineptformance.

11.4 Case study: caching in PVFS

PVFS, the Parallel Virtual File System [Car+00], is glyickecoming one of the most
utilised high performance distributed file systems, at leashé open-source domain; it is
also a representative of client/server file systems dantrary to NFS, one which does not
support client-side caching or file locking at’allhat being said, PVFS is well worth being
studied as a DFS strictly designed with HPC in mind, an emvient where file sharing is
not uncommon but where processes sharing a file do not, as angageein “conflicting”,

i.e., overlapping requests.

11.4.1 Cache consistency policy
PVFS does not use client-side caching, as it would compromisiltsy to guarantee

correct operation in a read/write (or write/write) sharaggoss client nodes; as one of the
developers puts it, “Many network file systems like NFS hagaker consistency guarantees
on file system data and meta-data, since they are pynargeted at workloads where it is
not common to have many processes accessing the same filectoriges from many nodes
simultaneously. PVFS, on the other hand, cannot afford to haveveeaker file system
semantics guarantees because it is primarily targétedrkloads that exhibit read-write data
sharing. Therefore, PVFS (at this stage) does not cacheafideand meta-data in the Linux
page cache; in other words, all file system accesses twaincur a network transaction”

[Vil+04]. Of course, one could implement client-side caching by riegprto a cache

® Recently, a locking APl was proposed for the PVE®! interface [Chi+07].
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consistency protocol, perhaps even supplemented by mechanisms swkirgs but this is
not the PVFS way, as stated by the original designers: “PVESitndocking component.
Instead, the metadata server supplies atomic metadata opgraiiminating the need for
locking when performing metadata operations. This approach aftowss relatively simple
system with no file system state held at clients, butdtlpdes client-side caching, which
makes for very poor performance in a number of cases, particularly singesgmworkloads”
[Lig+03].

11.4.2 File sharing semantics
In PVFS, data operations are guaranteed by I/O servers torsistent for concurrent

writes that do not overlap at a byte-level granularity, andlteeare immediately visible to
other clients; but byte-level overlapping concurrent wriessult in an undefined file state,
while concurrent reader(s) that overlap their accesses witlitex may experience a mixture
of old and new data [Lig+04, Vil+04], thus violating the “POSIX #ngode equivalent
semantics”i(e., sequential consistency).

What is specific to PVFS (and all DFSs) is its distridutature; thus, there are two issues
here: one, being how to interpret the “after” in the POSIX fragriafter awrite() to a
regular file has successfully returned...” (see 10.4.3); the ,otheing the cost of
implementing 1/O call serialisation. The first issue is hat different from what happens in a
multiprocessor: when two events occur in separate flows (meses threads), asserting that
event B(starting the read) occurs aftewent A(returning from the write) is only possible if
both synchronise themselves either by exchanging messages, omtlineugxecution of
some synchronising call. As for the cost of serialising operstibns at least one order of
magnitude higher in a distributed than in a centralised systech @s in the above mentioned
multiprocessor), where it could be implemented by directly ssicg the system’s memory
(at less than a hundred ns), instead of with resorting t@ages exchanged among nodes
(even if they are carried over a very fast communicatiorasifucture, such as Infiniband,
they take a fewis per message); this is the main reason behind PVFS’ detisdyop both
serialisation (among 1/O operations) and file locking.

To conclude, PVFS does not offer the sequential consistency wradetPOSIX file

sharing semantics” and, furthermore, lacks file locking in its “PO\RI.

11.5 Case study: caching in GFS

GFS, the Global File System [So0l97], is a fully symmetistridbuted file system based on
shared disk storage, where all nodes have equal access tostumde devices; the usual
configuration is based on a FC SAN interconnecting hosts and mesfsabut an Ethernet

based SAN where hosts and arrays communicate through an iSCSI protcsmbisssible.
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11.5.1 Cache consistency policy
GFS implements strict coherence among its client’s cathes paving the way to be able

to offer POSIX single-node equivalent semantics (as defined in3l0Gache coherency is
implemented in GFS by resorting to locking and invalidation; we hoefly present, in an
overly simplified way, the main concepts used to implemeifdrita more detailed study see
section 19, “GFS internals: an introduction”.

In GFS, some in-core “objects” have local, intra-node vigjbilihile others may be shared
among client nodesg., have a broader, global, inter-node (cluster wide), visibilityrgtas
of objects having a cluster-wide visibility are ginodes (Gstfictures within the VFS
vhodes). When a ginode (or any other cluster-wide visible obgctreated” for the first
time in the cluster, a cluster-wide global lock — G-Lock — ie algated to protect that object;
the G-Lock is uniquely identified by a value pair which holds ttjeat!s type €.g, “regular
file” inode) and numbere(g, inode number, based on its on-disk location).

When a process wants to perform an operation on a G-Lock protegtet] tie following
protocol must be observed: first, theocessmustacquire the G-Lock in a suitabléocked
state; then, the process performs the desired operation(s);thmexitocesainlocksit, and
finally, the nodemay releasethe G-Lock. Acquire/lock and unlock/release are cluster-wide
operations that may involve a global lock manager (distributedtdrand, as such, incur in
non-negligible communication latencies and processing overheadsaknodes may hold a
G-Lock in the shared state, but only one is allowed to hold it in th&clusive state.
Lock/unlock are used to implement mutual exclusion for intra-node operations.

As an example, consider a file being opened for the first tineeicluster, for reading: as
part of theopen() call processing, the node where the process requesting the fildsope
being executed asks to the Lock Manager to create a Gfbodtke new ginode (and vnode)
object; then, it acquires the G-Lock in the shared state lacks it “local-exclusive”
(preventing another process in that same node from simultanegiistyto open it), and fills
the inode with data from the (on-disk) inode image; nexterhoteghe lock state to “local-
shared”. Now, each time the user process perforrmad() , as the process already holds a
lock on the G-Lock, standard VFS-level mutual exclusion operatiaysbe performed while
the page cache is searched, or data is retrieved fronamtisglaced in the node’s page cache
and, from there, moved to the user bifféfow if another process on the same node happens
to open the same file, G-Lock creation is skipped, as the nabdglthas” the G-Lock; all
the process will have to do is acquire the G-Lock in the shéasland lock it “local-shared”
— which it will be able to do, because the acquiring and lodkitegts of the new process are

compatible with the lock’s current state.

® We're assuming a typical file usage pattern, whieeepage cache is used.
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If a process in another node opens the same file for writiegsame set of operations is
carried out: an inode and a G-Lock (identified exactly by #mespair) will be created, and
the G-Lock acquired in the shared state, and locked in the ‘$beabd” state. Now, each
time the process performswarite() , the following sequence will be carried out: the
process will attempt to lock the G-Lock exclusively, a requdsith can’'t be immediately
granted because another node already holds the G-Lock in tiesl state; the “offending”
node is called back by the Lock Manager and asked to drop the Ibidy ivwill do after

invalidating the inode and all cached pagaew the lock may be granted to the writing node.

11.5.2 File sharing semantics
We've just described is GFS’ implementation of an invala@abased cache coherency

policy along with the serialisation of “conflicting” I/O opexats,i.e., concurrent read/write
or write/write calls; together, they enable GFS to eadilgr POSIX single-node equivalent
file sharing semantics.

Unfortunately GFS’ POSIX-compliance is provided at a cost thabifigh, as shown both
in [Lop+05] and in the performance benchmarks section in this docunvemtfactors
contribute to the observed performance degradation: on one hand, the uslitfi@ncy is, in
fact, the whole file, as any attempt to write on any filgnsent immediately results in data
cached on other nodes to be discarded, even when the region being ignitté cached; on
the other hand, reading a file region on a reader node fdreesriter node to immediately
flush all data to disk, even when that data does not include the regiondxsiing r

GFS, as currently implemented, is thus more appropriate fotigitsavhere write sharing
of a file among processes running in different nodes is an infnegaeent; it may be
successfully used to replace NFS or CIFS in environments wisers have their “home”
directories, usually private, several read-only shared feldesually holding executable
(“binaries™) and/or configuration files, and a few shared dimrées where files are modified,
but usually not concurrently. It is not, however, suited to HPC envigatsnwhere several
processes in different nodes concurrently share a file foingiriand/or read/writing, even if

accessed regions do not overlap each other.
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Part |V

A Reference Model for
Data Management Architectures

This Part starts by discussing I/O flow in modern architestand operating systems, and
from there, we extract precise definitions for Parallel and Parallel Disk Access. Then we
propose a Reference Model for Data Management ArchitectubdRA) and a taxonomy
for the model’'s upper layer (“File System Layer”). A shoralaation of the model and
accompanying taxonomy is carried out as a survey of some melewadely known,
“parallel”, “distributed”, “client/server” and “cluster” I&# systems, I/O software stacks, and

storage architectures.

12 1/O in modern Operating SYSTEIMS.......uuuiiiiiiiiiiiiieeeeeee e
13 A Reference Model for Data Management Architectures ..........cccccoeeeevvvinnnnnn.
14 A Taxonomy for File SYStEMS .......cooiiiiiiiiii e
15 File Systems for Distributed and Parallel Architectures.............ccccccevvvvveennnnnns







12 I/0O in modern Operating Systems

12.1 1/O flow in modern operating systems

In modern operating systems the flow of control in file system related IiKOi<a bit more
complex than what it used to be just a few years ago; todasatimgesystems support the
concept of Logical Volume (LV) [Van+00, Lew05], and they alsoehdO drivers that
support multiple 1/0O paths (MPIO) to the same storalgeice. Each concept contributes with
another degree of freedom: LVs allow better storage spacegement while MPIO allows
higher availability (by switching to another path on failutead balancing (using different
paths to access different storage devices) and “paraM@l (using several paths
simultaneously). We will use Fig. 12.1 below to present, in @ sienple way, these concepts

and layers:
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Figure 12.1 I/O data flow in modern Operating Systems

The rightmost part of Fig. 12.1 enables us to assert a simple fact: exaryalgart from the
FS layer itself (at least in a typical, single node F&i, introduce a multiplex/de-multiplex
function on the I/O path; here, the Device Layer multiplexes digtinct paths of the MPIO

Layer into a single one. We've drawn a full mesh at the MBd@er (every green circle

! Multipathing has also been used in network drivetsere it is known as channel bonding, multi-rail,
trunking, ether-channel (Cisco proprietary protpcot link aggregation (IEEE 802.3ad).
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connected to a red one) with dashed-arrows, to show that each durbe accessed from
both paths; that enables us to have higher availability (i.e., eedmm path failure) and, if
the driver supports it, load balancing (i.e., use both paths sireolialy to perform data

movement — not a very interesting situation here, because there is onliealisky

Definition 12.1 Parallel I/0: We will say that parallel 1/0 is being performged
in a system whenever multiple, concurrent data flows, existlayex (any
layer) in the 1/O path.

This is a broad definition, encompassing a lot of situatiortsatiganot commonly regarded
in the literature as parallel /0O [St098]; according toirdeébn 12.1, we do not care which
layer is involved; but we are particularly interested inesawhere multiple access paths to
different disk devices do exist, so we’ll formulate a defimitthat covers it. Therefore, we
turn our attention to Fig. 12.2 which shows two situations whegpglication is accessing a

single file whose data happens to be spread across several devices

An Application
I/O stream on a
file object

That refers to a File System
Y, file \\ Layer

Placed on a .
Logical Logical Volume
/ Volume \ Layer

Accessed Accessed _
via one viaseveral Multi-Path I/O

/0 path ypaths Layer

Fa\ Faa\
Stored on .
different Device
/ devices \ Layer

Figure 12.2 Parallel disk /O

(pe—se—slpe—sDe—

[«

There are two ways to achieve the kind of parallelism depintdtk leftmost side of Fig.

12.2: we could rely on software solutiorprovided by the LV layér which creates a RAID

2 Other possibilities include layers distributed ormiltiple servers, as we will see later on.
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logical volume out of aggregating several disks (or pandiin different disks); or,
conversely, we could rely on tmrdware solutionprovided by a storage array. Either way
(provided we use an appropriate RAID level), we end up with fibeksl being stored on
different devices, a situation known data de-clusteringSto98] orstriping, which enables

disk level parallelisniSto98], or, as we prefer to sgparallel disk access

Definition 12.2 Parallel disk accessWe say that parallel disk access is bging
performed in a system whenever, to satisfy a single requetstefaransfer of
a number of contiguous disk blocks, several disks are concurrently accessed.

From the definition above, we can see that the topmost FSitdgeiace — and thus the
programmer — is not aware of the parallel disk access, &lere is hot much of a difference
when we consider the rightmost part of Fig. 12.2: we just added arit@heontroller, and
disk devices were attached to different controllers — we’re nésvkatth to issue requests and
transfer data in a truly parallel fashion, avoiding the corderitiat may occur on a shared
interconnect. Having looked at some techniques that can be usedaais levels — server
architecture, 1/O controllers, devices, and operating systgensidbelow the FS layer) — to
increase /O bandwidth in a single-server system when one @ pnocesses are accessing
one or more files in unrelated computations, we must now looleatabe where a “parallel

computation” is accessing some files, to see if this brings simyeinew to our findings.

A Parallel Application has opened multiple
I/O stre\ams

On a single file File System

object\ Layel

Placed ona Logical Volume
Votume \_ e
- ——

V'?‘CCGf/S?dI Multi-Path 1/10

I/aOSSatehs Layer

Stored on

different Device
/ devices Layer

Figure 12.3 Is this parallel file 1/0?
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In Fig. 12.3 processes in a parallel application access sitgledncurrently issuing 1/0
requests; the file is stored on a single logical volume, made @ipuofdifferent disks; the
system has three /0 adapters, and the disks are attachetfetentliadapters, making
multiple I/O paths available. Thus, according to definitions Hhd 12.2, the system is
performing both parallel 1/O and parallel disk access. Notie¢ ithwe wanted to draw a
figure to represent three unrelated computations accessing, anfitead of a “parallel
application”, Fig. 12.3 could be reused; general purpose POSIX{ikeating systems and
file systems we use regularly have no API options to enabléo usag” processes as
“parallel”, or convey to the FS that processes are shalffifg 8o, the answer to the question
posed in the legend of Fig. 12.3, “Is this parallel file I/O?" teabe, for the moment, “We
don’'t know” — because we've not yet seen what the “paralleéctide means, at the file

system layer.

13 A Reference Model for Data Management Architectures

13.1 Introduction and motivation

Answering questions such as “Is this parallel file 1/0?” andfomparing features of
distinct file systems in meaningful ways requires us to tegelid framework, one which
will cover all aspects involved in I/O, and does not need to be changed to accommosate a ne
file system, storage device, or interconnect. Having looked aroumdhawe not found a
framework that is, at the same time, simple (i.e., easy to stadel) but generic enough — in
the sense that file systems, storage architecturespafigurations we wanted to study could

be assessed — so, not unexpectedly, we have developed a new referehce mode

13.2 Data management: the broad picture

Data management is another step in the quest for closigaghbetween data abstractions
that model “real world entities” and the set of tools at thpadial of application developers.
Traditionally, data management has been split into two majopgadata base and file
systems; FSs have been offering very simple file modeigiéstial, indexed, etc.) for years,
but recently more sophisticated file storage and access mathts form of semantic file
systems [Gif+91] and content addressable storage [EMCa06, Tol+83bwaposed.

Today we find DBMSs in applications that have to deal witlygdaamounts of data,
organized as complex interrelated data structures, concurreodlysad by a large number of
users, where accesses must be isolated in a way thas #atat coherent, and recovery from
crashes should be “automatic”. Conversely, file systemsuaesl to support file-based
applications that have requisites and access patterns gffiéeemti from those expressed
above; they hold application files — for example, for officedpiaivity, multimedia, and

scientific applications (which may access very largwagfe repositories) — but also OS
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storage (for the OS itself plus all the software tig#i); business applications usually do not

use file systems as a major data repository technology anymore, hBBMSs instead.

13.3 A reference model for data management architectures
We now present a Reference Model for Data Management Actthigs (RM-DMA) that
generalises the architecture depicted in the previous sgdtitncomposed of two major

pieces: the Storage Management Domain (SMD) and the Data Managesneain[DMD).

Data Managemen
Domair Data Manageme Lavel

Obiect Storage Laye

Storage

Management Storage Virtualisation Lay
Domair

StorageNetwoiking Lavel

T

Figure 13.1 Reference Model for Data Management Architectures

The Storage Management Domain provides services that arédbydeD software to
store data; it is structured into five layers: the Storage Bdvayer (SDL) models the devices
themselves; the Storage Network Layer (SNL) deals witkopols (packets, frames, coding
and physical cabling) that are used to access the (e.g., block addressaida) gdhyices that
ultimately store data; the Storage Virtualisation Lay@vLl() handles device virtualisation
tasks, such as device partitioning and/or aggregation, and iedraeailability (e.g., RAID);
the Storage Access Layer (SAL) provides the shared andbdisti models of storage;
finally, the Object Storage Layer (OSL) provides higheeletorage abstractions, ones that
go beyond the usual “array of blocks”.

The DMD may be split into several “vertical” layers, Buas the File System Layer (FSL)
that models file system software implementing the usuataisins of files and directories
as well as links, records, etc., and the Data Base Layekr)(Dor data base management
software. Outside the scope of this work are DBMSs and s@ecatised FSs such as
semantic, content addressable, and peer-to-peer FSs; therefoRIMtDMA has not (yet)
been validated against them.

Our RM is similar to the Storage Network Industry AssociatiBNIA) Shared Storage
Model [SNIAO03]; the most striking differences are that theadei includes the file/data base
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system software as part of the storage domain, does nofaratiee object and access layers,

and storage is (always) assumed to be shared.

13.4 RM for file systems: a layer by layer description

Decoupling a real-world file system into layers, i.e., maight to our reference model
may be far from trivial; this is especially true fongle node (i.e., not distributed) monolithic
file systems such as UFS and its descendants (e.g., ext)rdiiiem is further exacerbated
because the FSL must interact with the operating syatehtherefore FS “objects” become
managed in both worlds (e.g., they are allocated per FSL reguéeshay be flushed and de-
-allocated by the OS memory management layer — in close cooperatiahavi-SL).

And it gets even worse: in an attempt to reduce memory peessut increase FS
performance, UNIX descendants (e.g., Linux) have implementedusaViile System (VSL)
layer [Kle86, Bov+05] and a Page Cache [Bov+05, Rod+05]; theesattris an FS-abstract
layer (the VFS) whose generic structures (egodesanddentries) may not match with the
FS “native structures” (ranging from quite similar for son&sFsuch as in ext2, through
similar, such as in GFS, up to completely different thi point where they simply do not
exist, such as in the FAT), and this complicates the “slianighe real FS into the layers of
our RM.

13.4.1 File system layer
The FSL provides all those well known “objects” such as volulffes instances),

directories and files, together with the API that allows thenbe accessed and managed.
However, there’s more to it: at the “instance” (volume) lelre FSL has to address security,

reliability, fault tolerance and recovery, performance and scalglilitd sharing semantics; at

the “file” level, the FSL should define which file types, orgations, and access modes are
supported, and what is the proposed semantics for file sharing. And, of course, aspegbr

is it distributed or local?

13.4.2 Object storage layer
The OSL provides the set of ADTs that will be used by tledjistem layer to offer the

user-level data and metadata objects — files, directomnés, ktc.; for example, in an ext2 file
system those structures are the superblock, resource group, inddista and index blocks,
while in a FAT file system they are the boot sector, ctustet directory and the FAT itself.
The OSL is responsible to perform transformations needed tadhmafDTs it provides into

the next (downwards) layer structures, e.g., implementing on-diseisnin a local, block-

-based object storage, or accessing a peer OSL in another node in order termap th

! For a more detailed description of the VFS lags section 17, “VFS internals”.
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In commonly used file systems it may be difficult to identig OSL, as it may be tightly
integrated with the FSL; examples include single node loaalsfiistems such as ext2 or
NTFS. Quite the opposite may occur with recent DFSs, wheeeslaye more decoupled and,
consequently, easier to identify; for example, in PVFS orreufra03], the FSL (the
“client” file system) accesses object storage serystarage targets, in Lustre parlance)

running in other nodes, i.e., making it a distributed OSL architecture.

13.4.3 Storage access layer
The SAL provides two distinct abstractions to the upper laywmely distributed and

shared storage; distributed (a.k.a. private) storage refdletcase where a logical volume
(see below) is accessed by a single OSL entity (e.g., ke sinde), whereas in shared storage
multiple OSL entities (nodes) access the same logicaimal It also implements the
consistency and security models, defining who (which upper-layetieghtiand how

(credentials, constraints) one has access to the lower layers.

13.4.4 Storage virtualisation layer
The SVL is responsible for implementing tlegical volume or logical disk an abstraction

of a direct access storage device (DASD) that may, or mgycooespond to a physical
device. For example, the SVL may present a volume out of a disk partition, vaiilg bther
partitions of the same disk; or, it may aggregate two oerd@ks, or partitions, into a single
(larger) volume either by appending them one after the other, siriping their blocks; or
create a highly available volume out of two identical “mirdodisks” — the possibilities are
increasing everyday, as this is a fertile R&D grdund

Storage virtualisation may be performed at the host, with aodtwroducts such as LVM
[LewO5] or EVMS [Pra02, Lor+05]; or inside storage array boxese(@n directly at the
HBA), where the usual options are RAID levels 0, 1, 0/1, 3 and 5thegevith LUN
virtualisation capabilities; and finally it may also be perfednby highly specialised storage
appliances that operate at the network (SAN) level [Tat+06, EMCbO06].

13.4.5 Storage networking layer
The SNL encompasses the protocols layers required to carry tautraasfer and control

operations against storage devices; we call the entitysthats operations amitiator, while

the “addressed” device is tharget® For the configurations we're interested in this work the
initiator is an Host Bus Adapter (HBA) inserted into a host’s slot (RC#), and the target is

a “disk device”; an example of a SAL protocol is SCSI, eitmd directly over a parallel

cable, encapsulated in FC, or over IP (iSCSI).

2 For a more detailed coverage, refer back to IPaection 5, “Storage Architectures”.
® We have borrowed the SCSI terminology, but wé weé it across every technology.
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It should be noted that communication events that take place amotsgamosdo not
involve storage (e.g., initiators and targets, as defined by tdoek-storage protocols) are
not relevant for this layer; examples include data transfigigered by clients accessing data
in “shared folders” published by NFS or CIFS servers, or helsosb transfers such as
moving data over Ethernet or over RDMA-capable interconnéddisS and CIFS are
especially suited to illustrate the difference, as the comratioicbetween NFS/CIFS clients
and their servers takes place (depending on where therapligalayers is done) either at the
FSL or OSL, never at the SNL.

13.4.6 Storage device layer
The SDL deals with the storage devices themselveg —magnetic media (disks, tapes),

optical media (CD, DVD), solid state devices, etc. We do rntendéhto have it thoroughly

analysed here, but we must mention it, for completeness of the model.

13.5 Applying the reference model to a few simple cases
The RM we have developed is, we hope, suitable to accommodatnlgothose file

systems covered here, but also other classes (as previously, fat¢he small set we will be
evaluating in the next section, the RM will be used to hiblitheir most important
characteristics, derive some properties, and establish a clagsifidet this will be done with
a focus on the File System Layer, we now introduce a fewlsimxamples to cover the
remaining layers and, at the same time, establish a atorelvith the model presented in the
previous section. The examples will be presented as follee/start with a short description
on the environment (hardware, disks, RAID levels, FS, etollpwied by both text and

pictorial descriptions on how these “components” are mapped into the RM layers

DML VFS + ext?2

SVL

SNL

Figure 13.2 Reference Model for Example 13.1: ext2 with LVM-based RAID-0
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Example 13.1: A Linux host with two internal SCSI disks aggregghinto a RAID-0 volume
with LVM software. On top of the logical volume, art2 file system is used (Fig. 13.2).

RM: The disks are accessed via the SCSI protocoleimghted at the HBA and its devi
driver — so, SNL is running at the host; the diakes aggregated by LVM software — thus S
is running at the host, too. As for the SAL we cay that, conceptually, it does supply
partitioned (unshared) disk volume to the OSL. Borext2 file system, as well as for t

majority of local file system implementations, thes no clear line separating the OSL fr¢m

the FSL; anyway, the OSL clearly runs at the host supplies the needed ADTs (inod
index and data blocks, superblocks,)dim the host running the ext2 FSL.

D

Sl

DML VFS + ext2

o ]

Storage switd
(optional

Figure 13.3 Reference Model for Example 13.2: ext2 with array-based RAID-0

Example 13.2: A Linux host with an external disk array supplyiagstriped (RAID-0)
volume. On top of the “disk”, an ext2 file systesrcreated (Fig. 13.3).

RM: The array’'s disk drives are aggregated with SVEvw&re running in the array; th
access to the virtualised device is via the SNLtqmal (but notice that this is protoc
independent: the result is the same for any bloasetd access protocd,g, FC, and the
optional router is a storage switch; or iSCSI, #melrouter is an IP router). As for the upy
layers, their roles are identical to the ones iargle 13.1.
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DML NFS C i ent NFS Server

=y | = |

Figure 13.4 Reference Model for Example 13.3: a NFS client and a NFS server
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Example 13.3: A host (Linux or other) as a NFS client of a “NABpliance” with a “built-
in” disk array supplying to the host a NFS file tgyn.

RM: The NAS internal array’s disk drives are aggredatééh SVL software running in th

A1

array; the virtualised device is then exported &¢F&-mountable file system. Client/server
interaction is performed at the FS (here NFS) Layer

A final note: we have shown that the proposed Reference IM®ddble to model both
internal and external storage, together with storage aremonkst and different access
protocols; it also models virtualisation both “at the hoatid “in the device”. Space
constraints forbids us from covering more examples here, blRNREMA can also model
storage objects at higher level than the “disk block”, irdgi@perating system entities, such

as anonymous pages, upon which the Linux /proc file system is built [Bov+05].

14 A Taxonomy for File Systems

Using the reference model we've just introduced (one which, yquretall, subsumes the
simpler layered approach we've used before), we now proceedvétopea taxonomy to
classify file systems, where we will cover the not orhe tRM's File System Layer
(collocated at the DML) but also the OSL and SAL. The proposamhteny will be used in
the forthcoming survey on file systems for parallel and idigted architectures; the reader
will be asked, sometimes, to look at examples laid out imthe section, to get a better
understanding of the proposed taxonomy. The classification will, arntieof this Part, be

presented as a table, such as the one below:

FSL " OosL
Deploymer Roles loymer [ Partitioning Scalability
ext2 Locel tralize None \
NFSE | Distributec | Asymmetric
GF< | Distributec | Symmetric ributec | Homogeneoir| Data & MD
PVFS | Distributec | Asymmetric ributec |Heterogeneot Date-only
| ustre | Distributec | Asymmetric ributec |Heterogeneot| Date-only

Figure 14.1 Preview of the Classification Table

For each layer of the reference model, we will now iderttifyse attributes that denote

major architectural decisions, and thus set different impitattiens apart; we want to stress
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the word “major”: we do not intend to address every possibleirksahere and now; in the
survey we will study some influential file systems, and, thaseinnovative concepts are

introduced, other attributes will be added to our classification grid.

14.1 Data Management Layer (DML)
With regard to how the FSL is deployed, there are clearly onty major file system

architectures: local and distributed.

Definition 14.1 Local File System Control and data flows in the file system layer
are restricted to a single computing node.

Definition 14.2 Distributed File System Control and data flows in the file systgm
layer are distributed across several computing nodes.

From the above definitions we assert that, no matter what happeahe layers of the
Storage Management Domain, it will not influence our classifin at the file system layer;
for example, if virtualisation of a storage device is perfrhy distributed software running
across several nodes, as in Petal [Lee+96], but the filersylayer only runs in a single node
(where the “virtual device” is mounted) the file system is locathermore, it should be clear
that any file system which is not of the local type is distributedyaedversa

Having defined what a DFS is, we now proceed to identify anothmriant characteristic
of distributed file systems: symmetry. This attribute spertadistributed file systems where
some nodes play specific roles (such as metadata or datasyemle others perform
another, complementary role (such as file system cliénus) those where all nodes play the

exactly the same role, i.e., run exactly the same set of services.

Definition 14.3 Asymmetric DFS. One or more nodes may assume distinct (file
system) roles.

Definition 14.4 Symmetric DFS All nodes perform the same (file system) roles.

Of course, many more attributes can be used to characteris&ributitd file system; as
always, in a taxonomy one strives to retain those which are amdin the sense that, here,
they really set a DFS apart from others) and discard thosahen’t; we have thus selected
partitioning andscalability as very important characteristics in a DFS. As an intésimat
we will present those attributes in a tree-like strieinrFig. 14.2, before moving later to a

table layout format; for completeness, we will start with DFSetrige top.
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Role

Service
Partitioning
Architecture

Service
Scalability

Examples

DFS

—

Symmetric Asymmetric
l (Client-Server)
Partitioned Monolithic Partitioned
(distributed (single service) (distributed services)
ser\lices) \
Homogeneot Heterogeneol
Full None None Partia Full
GPFS NFS ? PVFS1 A FS
GFS PVFSZ

Figure 14.2 Characterising DFS architectures (FSL-only attributes)

Service partitioning allows us to express whether the DEShime crucial set of services

that must be deployed in a single-node as an aggregated/micnetitity (e.g., an NFS v3

server), or, conversely, they may de deployed across multiple naldere those nodes may

(PVFS) or may not (GFS) be used to run distinct sets of services.

Definition 14.5 Partitioned Service Architecture: File system (server) services run
across multiple (server) nodes.

Definition 14.6 Monolithic Service Architecture: A single (server) node runs tlLe
full set of file system (server) services for that role.

Definition 14.7 Homogeneous Service ArchitectureAll (server) nodes run th
same set of file system (server) services.

D

Definition 14.8 Heterogeneous Service Architecture (server) Nodes may ru
distinct sets of file system (server) services.

>

Scalability allows us to assess whether the servid@tacture is scalablég., supports the

addition of more nodes, possibly resulting in a performance s&rea examples of scalable
DFS architectures, we've listed GFS and PVFS in Fig. 14.2. &ipPorts the addition of
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multiple nodes, and we expect increased performance both for maetadthdata accesses;
consequently we tag GFS’ scalability as “full”. But PVAS1agged as a “partially scalable”
architecture because while we can add more data (I/O)rseordy one metadata server may
exist, while PVFS2 allows for multiple metadata servers, so iil¥y“6calable”.

All file systems used here as examples will be coveratkiail later, and we hope that a
thorough description of each one will help the reader to dedti@r understanding of the

characterisation attributes and their “values”.

14.2 Object Storage Layer (OSL)

Very few file systems (noteworthy exceptions are Lustnd ®VFS) allow a clear
separation between the OSL and FSL; generally these lagetglaed” together, in a sort of
“monolithic” approach.

Just like in the file system layer, deployment is chosera asajor OSL attribute: a
centralised object store is one where the OSL is confinadiiegle node (which may, or may
not, be the same node where the file system layer itsatse runs), whereas in a distributed

object store, the OSL runs across several nodes.

Definition 14.9 Centralised Object Store Control and data flows in the object
storage layer are restricted to a single node.

Definition 14.10 Distributed Object Store: Control and data flows in the object
storage layer are distributed across several (object stegager) nodes.

Another important attribute is object partitioning across seraad how to accomplish it,
vis-a-vishomogeneity and scalability; for example, distributed objeres may exist where
each object server node plays a specific role (such aslatetaerver, or data server), thus
being heterogeneous, while other object stores may be homogenegua| nodes provide
exactly the same set of services. The scalabilitypater assesses how many servers of a

specific type are supported — either one, or many.

Definition 14.11 Heterogeneous Object Store PartitioningSeparate server nodgs
may implement distinct storage object types.

Definition 14.12 Homogeneous Object Store Partitioning Every server nod
implements the full set of storage object types.

D
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The scalability attribute allows us to characterise howndtoease object store capabilities
(e.g. bandwidth, capacity, fault tolerance); allowed values are againnone full, and
partial (this one to cover those architectures where some cdjesbitiay be increased while
others may not). For example, the PVFS1 architecture supgeptzate metadata and data
servers (thus being an example of a heterogeneous objectestwchjfecture, as objects in
the OSL of a metadata server are distinct from those inaa-dfile — server); it has a fully
scalable data architecture, but an un-scalable metaddt#teanare, as the number of
supported metadata servers can not grow (so, it is taggef@aatiadly scalable architecture,

or as “data-only scalable”).

—r

Definition 14.13 Scalable Object Storage Architecture The number of objed
storage servers may be increased and may result in aiadle increase in th
subsystem capabilities (bandwidth, fault tolerance, capacity).

[¢2)

Note that this classification is based on architecturdalfes, not an evaluation of some
implementationj.e., tagging an architecture as fully scalable does not imptyatipoduct’s
implementation of that architecture is highly scalablezamversely, that one that is partially

scalable is not scalable enough for its application environment.

14.3 Storage Access Layer (SAL)
The SAL is the first (downwards) layer that deals withw'tatorage blocks, how they are
accessed and whether they are shared. The two paradigmsdgessbaring are: partitioned

(a.k.a. private or distributed) and shared.

Definition 14.14 Partitioned Storage All nodes access disjoint sets of storage
resources (disks).

Definition 14.15 Shared Storage Nodes access the same set of storage resources
(disks).

The shared storage approach may be fully supported by an underlying architetigowesha
all the way down to hardware devices, such as multiported,diskby virtual shared disks
(VSD) implemented by resorting to internode communication, much insdéinee way a
distributed shared memory is implemented. For the shared storsgeatiawed attribute
values in our classification will behared disKSD) andvirtual shared disKVSD); to record

the opposite case, unshared disks, we will userikiate or partitioned diskgPD) tag.
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14.4 Conclusion

Part IV of this dissertation starts with a question; we as#,slightly rephrased way, “what
is parallel file system?”, referring to issues raigedigures 12.2 and 12.3. It may seem we
have not answered it, after all. The simple answer is terialiel file system” is, together
with other often used labels such as “cluster file system” an inggrémim. The taxonomy we
have presented is used in the next section (the focus being thepmvost layers, FSL and
OSL) to guide us through some distributed file system case sturtipefully allowing us to
get a clearer picture out of a blurred field created by th@vex mentioned imprecise
terminology or from marketing hype and/or terminology abuse from sorfipus8ers”.

We have not covered some important attributes, such as seawgsdifience, and
availability; we simply do not intend to cover them hehmse aspects are pervasive to all
layers, but time and space constraints deter us from purgugtine of work. However, if

something close to a definitive taxonomy is to be developed, they surely musklbd.ta

15 File Systems for Distributed and Parallel Architectures

15.1 Introduction
Again, a simple figure will be used to chart the differefe ystem types we are

introducing in this section.

Node distance
(latency, BW) 4

>

3 Grid
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Medium ,pgﬂs
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[

Tens Hundreds Thousands # CPUs

Figure 15.1 File system types “at a glance”
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Fig. 15.1 is a two-dimensional grid built along the same axes u$ect e Fig. 4.1, but
now with computing architectures grouped according to the kind lef sfystem they
commonly use. To illustrate the placement of “groups” in thetchar use the SMP and
NUMA architectures as examples: in a SMP, disks are ceoeplenanaged by the node’s
operating system which runs a standaigl file system €.g, ext2 ), while in multiple node
NUMA/DSM architectures, either a local odastributedfile system may be used — local file
systems may be used if nodes are running a true singlensiystege (SSI) operating system
(as in tightly coupled cc-NUMAs), while distributefile systems (with or without the

“parallel’ tag) of various “types” must be used in all other cases.

15.2 Local file systems

Local file systems, running both on uniprocessors and SMPs, eéfr&nown, and were
already covered in Part Ill (sections 8 and 10), where we lonkednly at features they
make available to users, but also at some architectodaingplementation details. As we're
now focused on surveying relevant distributed/parallel fistesys, we will no longer refer to

local file systems in this section.

15.3 Distributed file systems

The taxonomy we have proposed will now be used to characterisefilbosgstems we
deem particularly relevant, ones that have been somehow |dosiely called distributed,
parallel, and cluster file systems; it will be used in‘tRde System Classificatiofi entries
one can find for each case we're surveying. File systenid&ibresented in the same (left-

-to-right) order they were depicted in Fig. 14.2.

15.3.1 Symmetric distributed file systems
A distributed file system with a symmetric architeetwith regard to node roles) must be

based on shared storage — either physically or virtually gdhawe will be surveying GPFS
and GFS, two of the most representative “global” file systemgere global is a keyword
commonly used to tag shared storage file systems (another usftd terminology is “cluster

file system”, which is also used to refer to Lustre, an asymmeDIeg).

15.3.1.1 GPFS
Description: The General Parallel File System, GPFS [Sch+02],"t$oaed-source” IBM

proprietary “parallel shared-disk file system for clusteh#dectures”, which runs on the AIX
operating system based p-Series SMP clusters, and orcéBiified Linux clusters; for the
remainder of this overview we will focus on the Linux version.

File System Classification:GPFS is a fully-scalable, distributed services, symmetric. DFS
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File System Architecture: GPFS is targeted to cluster configurations with very high node
counts, such as the one depicted in Fig. 15.2; in those large condigsyaiot all nodes are
required to be homogeneous when it comes to storage — some maWkst&zhed while
others are not, being used mainly as computational nodes; non &&NReat nodes, however,
may still run GPFS, accessing Network Shared Disks (NSiighnare “virtual shared disks”
implemented by a software layer that runs on top of a netwfrdstructure. Hence, GPFS is
symmetric from the file system layer viewpoint, becausenatles access the same set of
shared disks.

Storage Architecture: Storage devices are enclosed into storage arrays wheeh ar
connected to the hosts through a SAN built around FC switcheerd&b@urpose host
interconnection is achieved either with IBM proprietary Stéwn switches”, or via more
common infrastructures such as Ethernet, Myrinet or Infinibdrajrtterconnect is used for

all non-FC traffic: application, inter-node locking and, if NSDs are used/@SL traffic.

Node 1 Node 2 Node 3 Node n

Interconnection Netwo

!

Disk Array

ululw

Figure 15.2 Architecture of a GPFS site

Storage System ClassificationGPFS is a shared storage system.

Target Application Environments: GPFS is targeted to serve applications requiring I/O
bandwidths that exceed the capacity of a single node, and thugchaeeexecuted in a
cluster; although supporting correct execution of multi-procegdications developed for
single node environments, it excels at serving high performance papaliebsions.

OS integration: GPFS is provided as a module to be loaded into the Linux késgether
with another, portability layer module (source available utldeBSD license), which plugs

it into the VFS and provides a portable interface to the “closedsbGPFS module.
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Performance: Data: Under GPFS a file is built from relatively large esizblocks, from
16K up to 1MB; block size is chosen at filesystem creation timey $feall files (and the last
data block on large block-sized files) can use sub-blocks,twérie 1/3% of the size of a
regular block. Consecutive data blocks may be stripped ontodtiiffdisk units, to achieve
load balancing across host adapters, storage controllers, arsd-désl, two LUNs on
different arrays, each accessed through a different host addptadata: When creating a
new filesystem the administrator may individually select Whiisks will hold the metadata
and, consequently, stripe metadata across them, resulting insedré® bandwidth for
metadata accesses. GPFS supports efficient file name lookwyery large directories
(reportedly millions of files) using extensible hashingotganize directory entries. Like
Linux (and all UNIX-like file systems) GPFS uses inodes amtiréct blocks, but not the
allocation strategy of either “standard UNIX" or the “BdekeFast File System” cylinder
groups. The allocation map is geared towards minimizing ctsflietween nodes accessing
it; further information can be gathered in [Sch+@4ching: GPFS for Linux implements its
own private cache, independent from the Linux page cache; thpsoisably to reduce
differences between the AIX and Linux versions to a minimunchi®g is used extensively
to increase performance, both for data and metadatafetching: GPFS recognizes
sequential, reverse sequential, and some forms of stridessguaterns, and prefetches data
into its buffer pool, issuing /O requests in parallel; in theecaf a single-threaded
application, this results in requests to as many disks assaege® achieve the highest
bandwidth possible in the fabric. Flushes out of the buffer pool smecalried out in parallel,
and the write-behind technique may also be used to increase eréarnirregular access
patterns can be hinted by the application programmer, in an attempieasiegrerformance.

Availability: GPFS is a highly available file system: fault tolemw storage devices is
provided by disk arrays; each node maintains a separateljfareach file system it mounts
and all metadata updates that affect file system consjstrcrecorded in the journal; if a
node fails, any other node can immediately start the recovery ditbe fode’s journal.

Concurrency, Consistency and SharingGPFS guarantees single-node equivalent POSIX
semantics for most file system operations across theeclagtept when “data shipment”
mode is used; also, when “time attributasitiime /atime /ctime ) are modified in a node, it
takes some time to propagate them to other nodes. Performfacmecarrent file sharing is
satisfactory thanks to dynamically elected “metanodes’cémtralized management of file
metadata; fine grain sharing applications that do not re@®IX semantics, such as MPI-
IO applications, can use data shipping to achieve better penfice; data shipping resorts to
a technigue where file blocks are assigned to nodes, in roundfiadiiion, so each data
block will only be accessed by a single node; other nodes magjuhiat block will get it

shipped from the general-purpose interconnection network. A Digtdbubck Manager
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(DLM), which uses both a centralized global lock manageming on a node of the cluster),
as well as local lock managers (running on all other nodeg$erd to support both user-level
file locking and cache consistency; the global lock manager haud®ck tokens to local
lock managers, conveying them the right to distribute lockbowt the need for message
exchange each time a lock is acquired or released.

Locking: GPFS supports POSIX byte-range locking.

Further references: Other than the previously mentioned [Sch+02], interested i=adar
consult “Concepts, Planning and Installation Guide” [IBMa06], tha@ristration and
Programming Reference” [IBMb06] and browse the IBM Redbooksfsitdocuments such

as Redbooks and Redpapers.

15.3.1.2 GFS
Description: The Global File System (GFS) is a shared-disk fiktesy that runs on Linux

clusters. It started out (in 1995) from the desire to exploitdéBriology to post-process large
scientific data sets, and was implemented on top of Silicon Gsaphiciware and the IRIX
operating system (GFS-1); later, it was refined, re-impigete and reported on a PhD thesis
(GFS-2) [Sol97]. The key objective for GFS-2 was to design, pyoeoand test a shared file
system based on well known distributed file system reseaittha novel extension: the file
system consistency mechanism was to be based on Device ([odlkscks), a proposed
extension to the SCSI standard [Pre+99]. GFS-3 was a re-and porting to Linux, and a
company, Sistina Software Inc., was formed to sell GFS; smade was then closed, and
versions 4 and 5 were released. Later, Red Hat Inc. boughtaSiatid source code was
released again to the open source community. D-Locks, although profeldingéal testing
was done on modified Seagate disk drives and Ciprico disk areagee never included in
the SCSI standard and were replaced by another concept, the S@& Blemory Export
Protocol (DMEP), an extension to the SCSI protocol [Bar+00], which wascnepted, too.

File System Classification:GFS is a fully-scalable, distributed services, symm&tms.

File System Architecture: GFS is targeted to medium-sized (currently, 300 nodes) Linux
clusters where nodes, which we will call GFS clients, are honemyes when it comes to
storage: all access the same set of SAN-provided sharesl #igk 15.2 may be used to
depict a GFS setup if all nodes are drawn as SAN-attached.

Storage Architecture: Storage devices are enclosed into storage arrays, and dteese
connected to the hosts through a SAN built with FC switches tr an iSCSI-capable
infrastructure. The only requirement for the general-purposeciminection infrastructure is
that it must support TCP/IP, so anything from plain Ethernet to Infiniband casede

Storage System ClassificationGFS is a shared storage system.
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Target Application Environments: GFS guarantees single-node equivalent POSIX
semantics for file system operations across the clustdile sharing situations, concurrent
readers executed across distinct nodes can benefit frongghegated I/O bandwidth, but
write sharing of a file across multiple nodes has very lovfopeance. GFS is then quite
appropriate for situations where one needs sharing of mostllydata, such as directories
containing application binaries and configuration files, or whdes fare shared, but not
concurrently updated across nodes, such as in home directories.

OS integration: GFS is delivered as a single Linux kernel module (but depamdshers,
such as lock managers); GFS is closely integrated both into VF8ahithtix page cache.

File System Organization, Resources and Metadat# GFS file system volume is based
on SAN-exported LUN(s) and organized into several Resource GrR@)s RGs are similar
to the BSD Fast File System cylinder groups (and Liext2 block groups [Bov+05]) and
include a superblock, bitmap, dinodes and data blocks. A dinode is similatiblEienode;
key differences are: dinodes use a full file system bld§ bytes), so files that are small
enough can be stuffed into the dinode; and the indirect block tree is uniforeply de

Performance: Data: in GFS a large file is automatically spanned onto resogirceps,
and as different RGs may reside in different devices, toissequently striped out onto
different disk units, allowing applications to achieve dislelgvarallelism.Metadata: The
resource group metadata structure previously described coesrituenhance performance
by minimizing conflicts between nodes accessing metadata thatrisajgpeeside in different
RGs. Caching: GFS nodes keep both data and metadata cached as long as no other node
needs to access the file. Write caching is write-back: nieadiflocks in cache are marked
dirty and flushed by Linux daemons when appropriate, or a by a usaesteq sync
operation.Prefetching: GFS resorts to the Linux standard VFS functions to perforricelev
access and populate the page cache; so, GFS prefetchs are, iimfxapréfetches.

Availability: GFS is a journaled file system, and each node maintains a separage jor
metadata transactions. Any node can start the recovery of a failed node jativoal lhaving
to wait for the failed node to come back online — eitherdbtecting, at mount time, a
previously “unclean shutdown”, or by detecting an “expired” client node.

Concurrency, Consistency and SharingGFS guarantees single-node equivalent POSIX
semantics for file system operations across the clustenndtiple nodes may issue
concurrent reads and writes to the same file. GFS locksisa®@ to maintain cluster-wide
coherency; in short, evergad() or write() places, respectively, a shared or exclusive
lock over the file’'s inode for the duration of the operation. Two hagkprotocols are
available — one based on DMEP, and another based on DLM. As no DafaBle hardware
exists, a user-level TCP/IP daemon that implements a DME®@rse provided. GFS clients

specify the locking protocol they wish to use at filesystem moumet tim
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Locking: GFS supports POSIX byte-range locking.
Further references: The Red Hat sitenww.redhat.cojnhas both Administrator and User

Guides available for downloading.

15.3.2 Asymmetric distributed file systems
Asymmetric distributed file systems (also designated clenter DFSs) are those where a

functional separation exists betwesgrvernodes, which do run the “server part” of the file
system layer and provide services that are usetlidryt nodes, which run the “client part” of
the FSL to access stored data.

In a distributed system, a protocol is defined to regulate otterss among members; in a
DFS, it is used to specify how the client’'s FSL talks vitishpeers — and it may define that
interactions strictly happen between a client and a serverasuohNFS, or that they may be

of a broader nature, and involve not only multiple servers, as in RES|so other clients.

15.3.2.1 Single-server asymmetric DFS
A single-server asymmetric distributed file system gsjta name suggests, a client-server

DFS where multiple clients access stored data through servimgdgtt by a single server.

15.3.2.1.1 NFS
Description: The Network File System is one of the most well-knowrerthserver

distributed file systems; once extensively used in all domadinkas been replaced by
Microsoft's CIFS (Common Internet File System), namelyNimdows environments. NFS
originated around 1984 at Sun Microsystems, and has been improvechewsats; the
currently most widespread release is NFS version 3 (NFSW3gh is available for all
general purpose operating systems, and even for some more itésmtes; version 4 has
been available for some time, but has not yet displaced v3. Alegbararsion (similar to
PVFES) initially designated Parallel NFS, or pNFS (now MES was scheduled for inclusion
in the Linux mainstream release in 2008, but has yet to appear.

Classification: NFS is an un-scalable, single-service asymmetric DFS.

File System Architecture: As shown in Fig. 15.3, NFS is a client-server DFS where a
single server is accessed by multiple clients over a [PGRYerconnection network; a typical
NFS usage scenario resorts to UDP to perform data transétween clients and servers,
while more demanding environments (e.g., HPC) use TCP to perform datarsansf

Storage Architecture: A typical NFS server is a single SMP node with DASageri.e.,
with its own local disks; storage may either be intermatlse LUNs provided by external
disk arrays. NFS may be also found in “bridge” configuratieng, to gain access to data

stored/mediated by other file systems. For example, a GFSyfitem may be exported on a
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(cluster) node and then mounted by NFS clients — however, thig ignnarchitecturally

different configuration, as the exporting node becomes “the” single-server.

NFS — NFS
Client Application Server
VFS VFS
A A A\ By
y y A\l Y
NFS NFS
Local i Serve
FS client v Local F¢
Nw Protocol Nw Protocol
Network Infratructure

N
e al i

Figure 15.3 Architecture of a NFS site

Target Application Environments: NFS is particularly well suited to support
environments that have moderate bandwidth requirements angui@ftesharing events, such
as having, e.g., a head-node server which exports user home dieand application
binaries to client cluster nodes. NFS does not comply with PGBi¥le node equivalent
semantics; it does, however, support file locking by resorting tmmpanion user level
daemon, calletbckd . Through the use of locking (even in situations where one shotld no
normally need to use it) it is then possible to guarantee correct executjpodesses sharing
a file, albeit at the expense of reduced performance caused loyradiic and repeatedly
flushing of data blocks cached in clients.

OS integration: As shown in Fig. 15.3, the NFS client code is tightly integrates the
kernel (in the UNIX/Linux VFES); conversely, server code needsto be in the kernel,
although most implementations do it, for performance reasons.

File System Organization, Resources and MetadataAs any other DFS, NFS is both a
file system and a protocol for client-server interacti®F¢ 1813]. As NFS has been
designed to be OS independent [Paw+94], the specifics of the-silienFS organisation,
semantics, etc., are implementation issues but its clientsidefor a given OS, is usually
implemented as to mimic some “favourite” local FS, thus easiadpurden for users, which
will welcome the similarities. So, in a Linux host a NF8dystem will look like a local FS,
such as ext2, and similar metadata structures (inode, index b&ickswill be visible for
local users of the (remote) file.

Performance: Data Caching: NFS clients may choose whether they want to cache data,

for enhanced performance but at the risk of using stale datefeasd in 11.3 “Case study:
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caching in NFS”. The NFS protocol does not address cliesttimg and cache coherency,
although return data provided by the protocol calls does providgee sbelp for
implementations. A strategy commonly used by NFSv2 clientsdoce the chance of using
stale data is to ask the server for the file’s modificatime (time ) periodically; if it
matches the one stored in the client, cached data is vaiisl pfocedure does not guarantee
full consistency because the client only asks for the fitdisme on file opens and whenever
cached attributes (which includatime ) expire; between those events, a second client may
modify data that is cached by the first client. Weak Consist&n@y policy available on
NFSv3 that may offer a performance increase over the préyidescribed NFSv2 strategy,
but still suffers from the stale data problem [Paw+®Mgtadata Caching: Caching of
metadata at clients is performed as a result of (renamiggss operations; metadata cached
objects include, among others, directory entries, file handigdile attributes. Policies used
to promote consistency are the same ones previously descivetetching: Data
prefetching occurs both at the client and in the server; atlibmt, prefetching may be
triggered by assigning successive “NFS read calls” tondisthreadsHiod s); at the server,
as a consequence of standard Linux read-ahead behaviour; if lee san process the
requests arriving at thesd s in parallel, the client will see a high prefetch rate; if not, i wil
at least, benefit from the reduced latency that results ti@moverlapping of the client
requests. Complementary to the read-ahead is the write-behgnsiante threading approach
can be used by the client to submit multiple “NFS write calls” ag#iesserver [Cal00].

Availability: The NFS protocol is stateles®., each request carries enough information to
be processed independently from other requests, past and futuer. @ash recovery is then
simple: a client keeps retrying a request until the semsponds; a client is not able to
differentiate between a slow server and one that crashedvasdsubsequently rebooted
[Paw+94]. Failover NFS solutions do exist, where data is stored in an exteayadhiad when
a “primary NFS server” fails, the dormant backup serzercd@nfiguration usually called
active-passive) will mount and export the disks (and it may grab the primary server’s IP
address); Highly-Available NFS (HA-NFS) [Bhi+91] is a #an solution that uses an active-
-active, load balancing approach, with both servers actingd@péndent NFS servers (each
one is a backup of the other), dual-ported disks (made obsoleteldys disk arrays) and
mirroring software, to be able to recover from disk failures.

Concurrency, Consistency and SharingDefault consistency semantics for NFS can be
very easily stated: data written by a client is noticed therst at most 3 seconds later;
metadata (file, directory, symbolic link) changed (created, redjoby a client will be
noticed by others at most 30 seconds later. These are thfSto-live policies for cached

data and metadata: default values are respectively 3 anad@@dsebut the minimum value
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could be as low as zero — no caching at all; these policies asepaot of the NFS protocol,
but are fully dependent on client’s implementations [Cal00].

Locking: NFS’ consistency model does not, per se, provide sufficiertagtees for
consistent updating between cooperating clients in the absengplicftdocking, as won't
any other FS. Advisory byte-range locking is provided by thevbidt Lock Manager (NLM)
in conjunction with the Network Status Monitor (NSM); NLpdovides the locking calls and
maintains state, while NSM provides information about crastdrt so that NLM can initiate
lock recovery. Locking and caching, when used together, creat delinate problems.g.

a client locks, writes, and then unlocks the first byte of tlee \fihile another does the same
for the second byte; the “performance road” would be tahgefirst 8KB of data for the first
client, and change the first byte while the same sequenceepeated for the second client,
but now acting upon the second byte. At the end, the 8KB of data would fedpiosthe
server at distinct times, possible resulting in a lost wpdasolution adopted by Solaris NFS
client implementations is to disable caching and transfeexhet amount of data requested
by the clients [Cal00]. Another would be to extend the lock ramgever the full amount of
data transferred (but that would decrease the degree of concurrency).

Further references: NFS is extensively covered in of books, papers, technipatts etc.
and, furthermore, several implementations have their sourcefiemlg available; therefore

we feel no more references are necessary.

15.3.2.2 Partitioned asymmetric DFS
Partitioned asymmetric distributed file systems (PADFSirdjaish themselves from the

previous group, single-server asymmetric, because in PADKSsdrver side of the file
system service is itself distributed across multiple nodeBADFS where all server nodes
must run exactly the same set of services, is a homogeneousSPMAbDHe another, where
some nodes may run some services, such as data access gdatac@sovers), while others

run different set of services, such as directory services, igndted heterogeneous.

15.3.2.2.1 PVFS
Description: The Parallel Virtual File System (PVES$ an open source file system that

was developed at Clemson University and Argonne National Lab@sitats primary

objective is to provide high performance 1/O for MPI apglaas running on COTS Linux
clusters [Car+00]. PVFS is widely used today, including in emvirents where it is not the
most appropriate FS (e.g., in environments, where Samba/CIF&dsonstop of PVFS to
provide “shares” for Windows PCs) because it's free and ©offeod scalability, provided

some conditions are met. In production mode PVFS I/O nodes should stom@ndaxternal

! The PVES discussed here is the latest versidledddVFS?2, available since November 2004.
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disk array LUNs; that's because if an I/O node fails, titem.UNs can be “transferred” to
another node, and PVFS may be restarted; PVFS is not, comrgpgpular belief” (lying
around on several HPC-oriented web sites), an inexpensive solution anymore

Classification: PVFS2 is a fully-scalable heterogeneous partitioned asyntmBiS
(PVFS1 was patrtially scalable, as only one metadata manageupyasted).

File System Architecture: As shown in Fig. 15.4, PVFS has a client-server archictur
where multiple clients (compute nodes), data servers (/O natat)metadata servers
communicate via a general-purpose interconnection network; tygitaorks found on small
cost effective PVFS installations use Gigabit Ethernet,emnibre demanding ones resort to
high bandwidth low latency interconnects, such as Infiniband or Myfirsing their native
transport interfaces, not just simply TCP/IP on top of them).

Storage Architecture: PVFS is based on metadata and 1/0 nodes with private diblch
may be either DAS internal disks, or LUNs provided by SANehitd disk arrays; it is,

consequently, a file system for a distributed storage architecture.

Compute Compute Compute
node 1 node 2 node ¢

Interconnection Netwo

I/0 node I/0 node | I/0 node MD mgr 1 MD mgr m

080 |1B0JBea 186] |0

Figure 15.4 Architecture of a PVFS site

Target Application Environments: PVFS is particularly well suited to support MPI
parallel applications that require high bandwidth access to, datfficiently supports
concurrent access both to distinct files, and to distinct, norlapgéng regions of a single
file. PVFS is accessible via twdlifferent APIs, each addressing a different need: a stnda
POSIX interface (with the exception of locking), and an MPIliiBerface. The POSIX

2 Access to the native API referenced in PVFS1 majsenot documented under PVFS2, and traffic on
the pvfs2-users mailing list discourages its use.
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interface extends the applicability of PVFS to support geniegic hon-parallel applications,
at the probable expense of reduced performance [Vil+04]; thel®Mterface supports
parallel MPI applications, and is the main P\&on d'étre

OS integration: Both server code and client code for the MPI-IO interface,imunser
space; only the client's POSIX interface is implemented &inux kernel module that plugs
into the VFS and thus allows applications to use a subset of the Ril@Shterface API.

File System Organization, Resources and MetadataA typical PVFS installation has a
few, sayi , I/O nodes, where each one contributes with a locally managed @socal file
systeme.g, ext2) storage area of sigeto form a “storage pool” of siZ8 =i x s , and
one or more metadata managers to store and track metadataaion about existing files
and support the filesystem hierarchy. When a client wantsai ae existing file, it (the
PVFS library) contacts the metadata manager, which returrideflsebase nodehy(), striping
size €), and number of stripes); then, the client gets the first stripe of data from niode
the second stripe from node-1, etc., up to the last stripe, which comes from niotle (a
file striped across all nodes would have i ).

Performance: Data striping: a file is striped across I/O nodes either according to a
predefined striping policy (for the POSIX interface), or viaapaeter values supplied when
the file was created (MPI-10 interface, onlyjetadata striping: PVFS supports multiple
metadata servers, each one handling a non-overlapping partitibie &ill metadata space
and storing information about files and directories it manages Berkeley DB [Ols+99]
databaseData Caching: PVFS clients do not cache data — a decision taken to greatly
simplify the PVFS implementation — but I/O servers automdyitanefit from the standard
Linux page cache; client writes reaching a server are suldraittéocal file system writes, and
thus share the same cache policies, cached pages are marked dirty and periodically
flushed by a Linux daemon, or immediately as a result from ainis@ated sync or close.
Metadata Caching: Caching of metadata is tuneable at clients (from 0 — norogchp to
some duration, in seconds) and handled by the Berkeley DB at e¢tedata servers.
Prefetching: Data prefetching only occurs at the 1/O servers, as aqarsace of standard
Linux read-ahead behaviour. There is, however, a sort of metaddigdiching at the client’s
POSIX kernel module: to reduce multiple network “transactiomnken fetching directory
entries €.g, for thels command) a directory read operation issued at the kernel enodul
triggers the metadata server to perform an aggregatedfeddmost 64 entries and report
those to the client kernel module, where they will be useill tqpfVFS dentries; however, it
is not clear if this feature reported on PVFS1 [Vil+04] is atithilable on PVFS2.

Availability: When using internal disk storage PVFS does not withstand amapent

server failure, be it data or metadata. However, with extstoehge and failover software,
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one can recover from a node failure by re-mounting LUNs on anatitler and re-starting the
PVFS daemons. Some attempts to provide software based replisaltitions that still keep
the internal disk storage approach have been proposed, such as CEFT-PVFS [Zhu02]

Concurrency, Consistency and Sharing:PVFS guarantees consistent data from file
system operations across the cluster, allowing concurrentrseacie writers, as long as they
operate on disjoint locations within the file (as, then, readbwrites are atomic with regard
to each other).

Locking: Recently, a locking API was proposed for the MPI interface [Chi+07].

Further references: The documentation page on the PVFS2 sitev.pvfs.org/pvfs2.

15.3.2.2.2 AFS and DCE/DFS
Description: The Andrew File System (AFS) is a client-server thated file system,

pioneered at Carnegie Mellon University in the mid-eighti@sl, supported and developed as
a product by Transarc Corporation (now IBM Pittsburgh Labs). IBM Ieah¢he source of
the AFS product (in Sep, 2000), made a copy available for communigtogevent and
maintenance, and called the release openAFS. The OSF (Operar8ofR@undation, now
Open Group) Distributed Computing Environment (DCE) endorsed abdistd file system,
called DCE/DFS, which was also based on AFS (DCE does nuottselee supported by any
vendor or group for quite some years).

Classification: Both AFS and DCE/DFS are fully-scalable heterogeneous ipaetit

asymmetric DFSs.

Client 1 Client 2 Clienic

Interconnection Netwo

File Sn 1 File Sn k DB Srv 1 VL Srv 1 VL Srvm

00d LB6jBeg 1868] L3O

Figure 15.5 Architecture of an AFS site
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File System Architecture: As shown in Fig. 15.5, both AFS and DCE/DFS have client-
server architectures, where multiple clients and serversnoaiicate over an interconnection
network. They are different from other distributed file systémthe degree of specialisation
they confer to servers: each File Server Machines a local file system that holds a portion
of the global filesystem tree and exports it, contributinghwifte stored data (files) and
metadata (directories) to the global filesystem; Volumeation Servers maintain databases
that are queried by clients to discover which File Servitshibhe volume containing the file
(see File System Organization, Resources and Metadata)b&atabase Server Machines
maintain replicated administrative databases (configuratimhrantime information); other
serversiie., services) exist, such as Authentication, Protection, Updabtkupaetc., but we
are not covering them in this short survey.

Storage Architecture: AFS and DCE/DFS are based on I/0O nodes with local disks, be they
DAS internal disks (as in Fig. 15.5), or LUNs provided by SAMekted disk arrays; it is,
consequently, a file system with a distributed disk architecture.

Target Application Environments: File sharing, in AFS’ view — motivated by research
into UNIX file usage patterns mostly on academic environmemgsthat users infrequently
perform concurrent read/write sharing of a file, but, converdedguently read-share the
same binarieg,e., executable files; therefore, AFS efficiently supports oot access to
distinct data files, and read-sharing of file among concumesats. It does not, however,
support any flavour of file locking. AFS is particularly weliited to support environments
that require highly available access to data, as itgtaoture includes automatic replication,
data backup, and redundant services distributed across multiphénes DCE/DFS is quite
more general, and provides POSIX single-node equivalent semantics.

OS integration: AFS is supported on Linux, several UNIX flavours, and Windows. AFS
client code, the Cache Manager, plugs into the Linux’ VFS andftite allows applications
to use a subset of the standard POSIX file interface, wiki® server code has kernel-level
as well as user-level components. DCE/DFS’ Linux integration isagimalAFS'.

File System Organization, Resources and Metadata typical AFS or DFS installation,
such as the one depicted in Fig. 15.5, has a few File Server mackima® each one
contributes with a locally managed (using a local file systeq ext2 ) storage area called
partition; each partition then holds one or memumes and each volume stores a portion of
the global AFS/DFS filesystem hierarchy in the form of dfiies] and metadata (directories,

etc.). When a client wants to read an existing file, it @aehe Manager) contacts a Volume

% We will deviate for a moment from the usual taraldgy of servers (computers) running services,
and adhere to the AFS terminology of machines nmiervers (processes); the reader is warned
that although DFS and AFS concepts are quite sintilay use different terminologies.
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Location Server, which informs the client about the file’se Flerver location; from that
moment on, all traffic is exchanged solely between that client éispair.

Performance: Data and Metadata Load Balancing:both in AFS and DCE/DFS, a file
system “object” (file, directory) must be contained in a lgingplume, so it can't be striped
across multiple file servers; so, these are not solufimmbigh performance I/O to a single
file; however, load balancing can be achieved by separatiignsein the file space across
multiple volumes, and then segregate volumes to multiple fileseiData Caching and
Prefetching: early versions of AFS clients performed caching lat dranularity,i.e., when
they opened a file, a private copy of the whole file was fulinsferred to the client’s local
cache, implemented either in memory or in a local disk (depgndin the client's
configuration); recent AFS and DCE/DFS versions, however, merfidle caching in
contiguous chunks of 64KB for file data, and 8KB for memory data (thesgedault values).

Availability: Both AFS and DFS provide an architecture where a completetédedant
solution can be built, at the expense of replication of daturfes), services (multiple
servers), configuration databases, etc.; it is up to the sitmisthator to choose the desired
level of availability, and appropriately configure the site servers.

Concurrency, Consistency and Sharing:AFS semantics, known as private copy until
close [Hog+02] (a.k.a. session semantics) is highly scalaipider the assumption that
read/write sharing is a rare event, and does not guarantaee sile caches: each client is
supplied, abpen() time, with a copy of the file, aallback promise; if the node modifies
the cached copy, when tletose() is performed, the modified file is sent back to the
server, which calls back other clients so they can invalidhetie cached copies on the next
(re-)open. If two or more clients are concurrently modifyimgjrtlocal copies, the last one to
perform the close operation is the one who gets its file trserver. AFS’ version of the
copy-on-close is an improvement over the standard version dmeeauAFS client can keep
on using a cached copy until the callback expires or is recldiyéke server; otherwise, it
does not need to contact the server, and LAN traffic is redéeetbr DCE/DFS, it uses a
complex token manager to provide POSIX single-node equivalent semanti@JAga

Locking: From a practical perspective, no file locking in audéain AFS — it only
supports full file locking, and the lock state is guaranteecetwidible only within the node
that initially locked the file; however, DCE/DFS supportsIPO advisory locking [Sal96,
And9g].

Further references: The AFS Administration Guide and other IBM AFS documentation, is
available online at [IBMafs], and also available from tpenAFS documentation page at
[openAFS]. For DCE (including DFS) the Open Group’s DCE booksto@&[DCE] has the

most up-to-date documentation.
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15.3.2.2.3 Other partitioned asymmetric heterogeneous DFSs
There are several file systems in this class, besides thoseyed here, PVFS and AFS;

the two most important ones are the new NFS v4, and partictih&INFS v4.1, also known
as Parallel NFS, or pNFS [Hil+06], and Lustre [Bra03]. pNFar@hitecturally similar to
PVFS1: multiple clients, multiple data servers, and a simgladata server; therefore, pNFS
is only partially scalable, as it does not support additionmoie metadata servers.
Conversely, Lustre is architecturally similar to PVFS2:tiplé clients and multiple data and

metadata servers; therefore, Lustre is fully scalable.

15.4 Conclusion

We conclude our survey with Table 15.1, a classification lofilal systems and storage
paradigms that make up the case studies previously presphisdsome that were briefly
mentioned; we do it according to the taxonomies proposed for theSyElem (FSL) and
Object Storage (OSL) layers. We also include the ext@®3¥istems to show how a local file

system compares with distributed file systems.

File System layer | Object Storage layer

Deployment Roles Partitioning Scalabillty Deploymept tR@ning | Scalability
ext2/3 Centralised N.A. Monolithic None Centralised Aggregated None
GFS Symmetric | Homogeneous Full Distributed Aggregated Full
GPFS
NFS3 Monolithic None Centralised Aggregated None

Distributed
NFS4.1/pNFS Aevmmetic Partial

i
PVFS1 y Heterogeneous Distributed | Heterogeneous Full
PVES2
Full

Lustre

Table 15.1 Classification of some well known file systems
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Part V:

The parallel Cluster File System proposal

In this Part we start with a critique of traditional sluadésk cluster file systems, listing
their features and benefits as well as limitations; whilespexifically refer to Red Hat's GFS
here, remarks also apply to other CFSs. To overcome thosatiim#, we propose a new
architecture for shared-disk CFSs, one that moves data sliaringhe device to the file
system cache while preserving POSIX semantics acroserchumies; we call it the “parallel
Cluster File System”, pCFS. To validate whether fundamédtgaks, e.g., using the LAN as a
secondary path to move data among nodes, were sound, we have devgiogedototype

and some preliminary tests were carried out.

16 pCFS, the parallel Cluster File System ..o,







16 pCFS, the parallel Cluster File System

16.1 Introduction

As we previously pointed out, it's easy to perceive a divisinorag academy/research and
general IT communities on both storage and file systems emgenseFrom a storage point
of view, the former group favours an approach based on /O nodemteithal disks while
the later adopt SAN infrastructures based on disk arrays simgpartariety of RAID levels
(providing users with high availability, a basic requirement f@dr continuous operation” of
their data centres). Also, file systems used in these enwimutsnare quite dissimilar: 1T
choices span from the run of the mill ext3 and NTFS to the smphisticated cluster file
systems, such as Red Hat's GFS or Oracle’s OCFS, Ordg#teCFile System [OCFS,
Fas06], both supporting continuous access to stored data even in tbecered node
failures; on the other hand, HPC communities do prefer parddiedyfstems such as PVFS or
GPFS.

Definitely, the above mentioned “advanced” — parallel, cludtaresl disk — file systems
perform very well in their target environments, provided thatiegidns do not require some
“lateral features”, e.g., no file locking on parallel file t&yas, and no high performance on
cluster-wide write-shared files on CFSs. In brief, we cantlsayno approach has provided
high levels of reliability and performance to both worlds.

Our pCFSproposal makes a contribution to change this situation: the rationdle tigke
advantage on the best of both — the reliability of cluster filesystind the high performance
of parallel file systemdNe don’t claim to provide the absolute best of each, but we aim at full
POSIX compliance, a rich feature set, and levels of religl@iid performance good enough
for broad usage - e.g., “regular” as well as HPC applicateuport of clustered DBMS
engines that may run over regular files (i.e., the engine dhmtlbe required to bypass the

file system to access clustered raw partitions), and video streaming

16.2 Sharing and caching
File sharing is something that sets apart IT and HPC envimsmieaving watched for
quite some time both sides of the “fence”, we have noticed that
» The IT paradigm of choice is primarily one of filgstem sharingiot file sharing; in the typical
IT environment multiple clients access the same §if/stem, sharing some of its “folders”
(directories), but use files either exclusively sihare them with other readers. Notable
exceptions are DBMS engines (where multiple praeessnning in the same node RW share a
set of files) and collaborative applications. Fégstems endorsed in this environment must
efficiently support various file locking paradigmsych as POSIX locks (to support a broad
range of applications), and mandatory locks ordsdfr more “collaborative-oriented” ones).
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* Inthe “HPC world” there are two major file sharipgtterns:
o Read sharing of input data file(s), e.g., for paten scanning or pattern searching,
usually in embarrassingly parallel applications.
o Read/write (or even write/write) sharing of a sendle by processes accessing disjoint
(i.e., non-overlapping) segments of the file.

Sharing semantics in a distributed file system is of paramiogmbrtance because it is
closely related to caching, something that we've discussesdtion 11 “Distributed File
Systems”, particularly 11.1 to 11.3; and caching is one of theimpsttant ways to enhance
performance in any case, let alone a distributed file systgwes applications a low latency
and high bandwidth path to data. For pCFS to succeed in both environme@tsa(d IT) it

must support byte range locking and make good use of caching.

16.3 Caching in pCFS: an introduction
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Page Cache Page Cache
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Figure 16.1: pCFS page caches are not fully coherent across all nodes

The way cache is implemented in pCFS is explained with thef &iy. 16.1, where Hs a
reader while Ris a writer. P is allowed to access a file segment that starts “inrtickelle” of
pagen and ends somewhere further down; converselys Bllowed to access a file segment
that ends precisely in page just before Ps segment starts. Notice that pagés coloured
light green while paga-1 is light blue, and that,Rvrites onto page, so a dark blue record
is superimposed on both pages (because the records are notigredyahowever, the

cached images are different on both nodes: data cached in node 2 is up-to-datepagehot
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andn-1 have been superimposed by the record’s respective fragmentsgbut' $aached
image in node 1 is a “before image” (data modified pgdes not show up).

Caching, as implemented by pCFS, does preserve POSIX shariagt®snibecause it is
complemented by the byte range locking mechanism which prevenesgese such as P
above, from accessing data belonging to other processes’ sedmkiats we callregiong,
such as Ps. Only when R removes its region lock, it's time to enforce coherence: rieadif
data is written back to disk and other nodes are sent invalidaiessages for that page.
Notice that these “slight un-coherencies” can only develop in tiorpages” between
segments that are accessed by processes running in diffevdaes, and which carry
incompatible lock states, such as read/write or write/write.

The whole subject of pCFS caching will be detailed in RrtpCFS implementation”,
but while we're on it let’s just briefly describe how things wbhbk handled if both;Rand B
were writers: there, writes triggered to the frontier pagé¢he last process to lay out its lock
would be forwarded shipped- to the other process’ node, and there it would be merged into
the node’s page cache (the node would be called the owner of that page).

In short, pCFS, while adopting files system techniques — sudching and locking — that
are applicable both to distributed as well as shared-disktectures, nevertheless uses them
in innovative ways; when compared to other file system tcioires, pCFS’ major
differences are:

» pCFS uses aooperative cacha@pproach, a technique that has been used inyfiterms for
distributed disks (e.g., XFS [And+96]) but, as &rwe know, was never used either in SAN
based cluster file systems or in parallel file eysd. As a result, pCF®ay use all
infrastructures (LAN and SAN) to move data

» pCFS usegine-grain locking allowing the user to explicitly lock byte-rangegions instead of

the whole file, and that fine-grained approacheigied out down to the F&plementation

16.4 Cooperative Caching

pPCFS uses cooperative caching: where a local file systenhaslits host cache to access,
in a distributed file system such as pCESnode can access data that is cached in the
memory of another node and that's exactly what pCFS does, as described in [Lop+05,
Lop+06]. Accessing another node’s cache may improve performanceskelegency on a
LAN is about one order of magnitude smaller (a hungi®dt worst) than for a local disk (a
few ms).

File systems for distributed disk architectures mova ¢@atd lock/coherency traffic, when
applicable) over LAN interconnects, while those for sharel dishitecturesonly use the

LAN to move coherency (control/lock) traffic and the SAN to malata. Using cooperative

! We have not found any file system — shared orthat uses both infrastructures.
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caching means that pCFS can effectively explore all@vailinfrastructures (LAN and SAN)
to move data and, therefore, its I1/O bandwidth should be able to appitoa sum of all
interconnect bandwidths — at least in some cases.

To validate our fundamental assumption i.e., that in a CFS, umngAN to move cached
data around may decrease the latency and increase bandwidth lastlotger of magnitude
when compared to the established approach (using disk writes/readsetala@around), we
decided to make small modifications to a well establishemjyation-level CFS, in order to
prove (or dispel) its feasibility. After carefully evaluagiOracle’s OCFS (a pre-release at the
time) and openGFS [openGFS] (seemingly phased out when GFS mot@uktosource”
status), both somehow documented, our choice was to use GFS. We ended uqg studyi
thousands of lines of GFS code (as “internals” documentation swasti available) and
decided to carry out tests through a mixture of real and siedulaperations inside GFS
kernel code. We have modified GFS’ kernel module to follow one owr@fifferent code
paths when reading a file:

» SAN path: When a process in a node is reading a file, thalae GFS code path is followed: a
shared read lock is placed on the file’s ginodelierduration of the read; if another node wants
to modify one or more file blocks, the node hawit for the read to complete, get an exclusive
lock over the ginode — which forces other nodesetease any shared locks they may hold and
invalidate all cached data for that file — modifetblocks, flush them out to disk, and then, if
necessary, release the lock to other nodes (bay.’ré¢ waiting to resume their reads).

* LAN path: When directed to do so, by the simulation testn&kecode on the reader node
follows another code path, where a) locks (requesid grants) are simulated by message
exchange between the nodes, and b) the writer sogglies, from its own page cache, a copy

of the modified page(s) to the readers.

To implement the LAN path we have built two kernel modulediesmtcmodule, which is
called by the modified GFS code when a decision has been made datg directly from
another node, and forwards the request to the other node; an@rarsedule, which handles
a client request and ships the data back (for the proof-of-comeepdpted for minor
modifications to GFS, without any changes to the locking subsydietmyve nevertheless
simulated the latency of lock messages through packet exchange).

Assessment of the proof-of-concept was carried out with a sivrgker/multiple-readers
parallel application where a single file is shared acnogkes: after producing new data, the
writer node signals reader(s) to consume it. Tests were runeoinftastructure depicted in
Fig. 16.2. We used four IBM x335 dual-Xeon nodes, with clock speeds rangimg2f6
(node 3) to 3.03 GHz (nodes 4, 5 and 6) and 4 GB of RAM per node. Two rnddies were
connected to the SAN through just one FC HBA, while otherswadhdapters per node; all
HBAs were Qlogic QLA-2200F working at a speed of 1 Gbps. Thigrbgeneous

106



configuration allowed us to experiment with the use of dual vslesipgths to access the
SAN and the array. The FC switch was an IBM 3534-F08 (a re-da8igecade SilkWorm
2800) and the disk array was an IBM FAStT-200 model 3542-2RU with siemage
processors (SP) and a total amount of 88MB of usable data cacBe.gdesr the experiments
reported here, one independent 36 GB 7200 rpm FC disk has been “attéxhealh
controller, and both were visible on the SAN as LUNs 0 and 1.

FC Switch

GDbE Switch 4 IBM x335

FAStT200 Disk array

Figure 16.2 Proof-of-concept tests infrastructure

The nodes were running Red Hat EL3 (Kernel 2.4) and GFS (6dth EUN was
partitioned in half (18 GB) and both halves were joined togetfittr GFS’ clustered LVM
version (CLVM) to form a 36 GB logical disk; on each node sediifit path was configured
to access each LUN, which in fact doubles the bandwidth on the whdegs have two FC

adapters; the 36 GB logical disk was then mounted by all cluster nodes.
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Figure 16.3 GFS’ scalability: single file, multiple-readers with sequential access
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Results were reported in [Lop+05] and we copy them here, & eareference. GFS’
scalability with the configuration under test is shown in Hi§.3, where multiple readers
were started in parallel to sequentially read a filehe&ader was run in a different node,
and, for each test, a new node was added. The test with foursreeaie able to reach the
sustained rate quoted by IBM for the FAStT 200 disk array, which is 7/8;Nti read buffer
size used for the reads was 4 KB (bandwidth was computed dividirigtal amount of data
read by the time — taken at the slowest node — it took to read it).

Figure 16.4 below highlights the common problem of most SAN-baseddstasie file
systems: a single GFS writer is able do produce datae(arftle) at 14 MB/s, but this rate
decreases drastically if the file is shared with prazessreaders, in this test — running on
different nodes. Here, when a single writer shares the file avsingle reader (1 W - 1 R
test), the bandwidth is 0.16 MB/s for a 4 KB buffer; incneggihe buffer size and/or the
number of readers also increases bandwidth, and a maximum of 18sM@&shed for a 512
KB buffer when, following every write, three reads aredine parallel (1 W — 3 R test); this
behaviour shows that, for very large request sizes, writenghfiles across nodes with GFS

may provide an acceptable performance for some applications.
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Figure 16.4 GFS’ poor sharing: single file, one writer/multiple readers

Our assumption that using the LAN to move cached data around a@ecthadatency of
data movement and increases bandwidth, both by an order of magnitvadidased by
results exhibited in Fig. 16.5: even for a single writer argihgle reader, both using a 4 KB
buffer, bandwidth jumped from GFS’ 0.16 MB/s to 35 MB/s, a 200 timease. The price
to pay is an increase on the CPU usage; and this is a isltagase, as we were using
inexpensive Ethernet adapters, and those consume much more @RWe the same amount
of data than FC adapters (as reported in Part VIII, “Benchmarking’pCFS
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Figure 16.5 pCFS proof-of-concept: single file, one writer/multiple readers

16.5 Caching, fine-grain locking, and regions: the complete picture

Caches are only effective if they provide good hit ratiosa idistributed file system, a
node’s cache can only be effective if it satisfies both readswrites and keeps them “away”
from disks as long as possible; and that won't be possible datiee is invalidated often, as
it happens with GFS.

16.5.1 Caching and locking in GFS
But if shared disk cluster file systems such as GFS ingnefmyte range locking, why do

they invalidate all data cached in other nodes when a writegsitdine answer in GFS’ case
is that every write operation requires an exclusive locknatja ginode, and this triggers
cache invalidations on other nodes; this is GFS’ way to protiglesad called “POSIX single
node equivalent semantics” [Sch+02], and is a necessary stapskeGFS allows processes
in a node to unreservedly access (for reading and/or writiaig) that is concurrently being
modified by processes in another node. GFS makes no effort to ube, iatplementation

level, the fine-grain locking mechanism it provides at the uset (byte range locks).

16.5.2 Regions, fine grain locking and caching in pCFS
Concurrent file sharing, as offered by pCFS requires procesdeskt regions (with byte

range locks) before accessing them, and this makes cachidatieal an infrequent event, as
it occurs only when a writer region is removed (unlocked) areh gwen, only frontier pages
cached in other nodes get invalidated. This is possible bep&i=® uses fine-grain locking
also at the implementation level, and writes that do not rasuitajor changes to the file's
metadata (such as when its size grows, or “holes” in a spkrsed filled-in) can be carried

out concurrently while the file’'s ginode is locked in shared madedéscribed in [Lop+08])
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and any access is checked to be valid within its region. However, opetaabtrsgger major
metadata changes still require us to use an exclusivgdocthe ginode and, if necessary, on

other relevant metadata structures, e.g., resource groups, bitmaps, etc.)

16.5.3 Data forwarding vs. data shipping
pCFS, as we have seen, keeps coherent caches through updatinderimedes, and

invalidation, in reader nodes. Updating is used when two wrides share a (frontier) page;
there, one must forward all writes over that page to the other nodee-ahlktesl page owner.
Data shipping is an extended form of data forwarding where dalid — and not only some
portion of a frontier page — is shipped to/from another nodeayjt be used, e.g., in situations
where a) major metadata changes are quite frequent (suchthe producer-consumers
sharing reported in [Lop+05], with a file that was initialipgty), or b) regions are so small
that there are many frontier pagemd, for performance reasons, it is better that a node is
elected the file’s data and metadata owner while all theratodes ship data to/from it (in a

NFS-like way, where the owner acts as an NFS server).

16.6 Programming with pCFS

Our proposal for pCFS requires that programming should not dewistetie use of the
standard POSIX API; in fact, we merely propose a few addltioption flags for the
open() call, and a new way of looking at the semantics of existekinggrimitives. Both
were the result of some observations on currently availdblsyfstems, namely that there is
no way of specifying the degree of sharing for a file at openitirttee POSIX API (which in
a distributed file system, results in all sorts of tricksgaised to “implement” it), and that

our region concept is closely related to the one of mandatory locks.

16.6.1 pCFS files and the extended open() options
We add three, mutually exclusive, options todapen() call:
« O_CLSTXOPENO request a cluster-wide exclusive open (ifea, process is able to open the
file, any subsequent attempt by any other proaespén the same file will fail);
« O_NODEXOPERMD request a node exclusive open (i.e., if aggedn a node was able to open
the file, any subsequent attempt by any other m®t®open the file on the same node will fail);
* O_CLSTSOPENhe flag for a cluster-wide (un-restricted) stthopen.
The introduction of these flags was carried out without \iiltgabur premises, namely the
“no VFS changes”: all code was confined to the GFS layewufately Linux does not check
all flag combinations and allowed these new flags to “flow}.i&hd, furthermore, they have

a very important side effect: they allow the user to choosseeet “pure GFS” or pCFS

2This will happen in access patterns with a peomdock/access/unlock sequence where a small
record is locked, accessed and then immediatetyckat!.
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behaviour just by omitting or including these flags. The simplioitythis process is also

highly beneficial to the debugging and benchmarking tasks.

Definition 16.1 A pCFS file is a file that lives in a GFS filesystemd is opened
with one of the following flagsd_CLSTXOPEND_NODEXOPENrO_CLSTSOPEN

16.6.2 pCFS regions
After the open (which, for a pCFS regular file mimstiude one of the above flags), the user

may declare a region over which accesses will be made, byfypgdis start and end byte
offsets, and how the region will be used (for reading or writing., in shared or exclusive
mode). Region declaration is performed withtl() , and region modes are expressed and
enforced at declaration time, but can later be changed by chaosmagle which is more or
less restrictive than the current one (e.g., going from exclusiv&hared, or vice-versa).
Regions may overlap if their modes are compatible, i.e., both ar@share

pCFS regions behave as a sort of mandatory locks: every fil€RScess (read or write) is
checked against the region boundaries; if an access would \tiodae an error is returned
and the operation is not performed. Regions also guarantee aorsiateong sharers on the
file: readers striving to access a region occupied by ammiay either try to get in (and keep
retrying if they can’t) or queue up waiting for the writerleave; when a process is granted

access, it is guaranteed that it will see the latest versidre afata.

16.7 The pCFS prototype

16.7.1 pCFS conceptual architecture
The conceptual architecture we propose for pCFS does net filiffin other typical SAN-

based CFS architectures, as Fig. 16.6 shows.

1 1
I POSIX + pCFS Extended API !
1 1

! CSF Mgr BSF Mgr !

I I

1

Lock .

| |
i Mgr Cache Mgr

; SD Magr ,

! SD Metadata Mgr I

l 1

. Cl. MPIO. and other kernel modules .

Figure 16.6 pCFS high-level module architecture
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The Cluster Infrastructure (Cljs the core building block for a true cluster service itsgtt
it apart from “cluster setups” which are no more than jusillaction of nodes), and usually
encompasses:

» A membership service that keeps track of which sdatdong to the cluster, taking care of node
admission, leave, and eviction (e.g., when a nadis to comply with some basic policy
requirement, such as failing to answer a predefmedber of heartbeats);

» An inter-node communication service which providekable communication among enrolled
cluster nodes, gracefully handling dynamic recanfigion events, such as nodes entering or
leaving the cluster (may provide an API for mesdairgadcast and/or multicast support);

* A publish/subscribe database that allows “prodticéwsregister themselves and advertise
services or resources they provide, and “consunterspecify what services and/or resources
they need to operate;

» And a failover/failback database that allows thenmistrator to specify “logical resources”
(such services or disks) and rules for the trapsfe/restart of those resources in case of node
failure (failover) and resume (failback).

Multi-Path 1/0O (MPIO), as described here, is an extensionMuat once was a device-
-specific concept: that one can aggregate multiple 1/0O dswif the same class (e.g., LAN
interfaces or disk devices) under a common umbrella and usedbgether to provide higher
bandwidth and/or availability. It has been widely used for LAfkeifaces, where it is
commonly referred to as bonding, link aggregation or trunkings keswn, as it requires
either multi-ported disks or a SAN infrastructure (sedi@ec), is disk-based MPIO; in
Linux, disk-based MPIO has long been provided by manufacturethdisrown FC drivers;
however, recently, it has received enough attention to be regasdedeparate kernel upper-
-layer module where adapter-specific driver modules should plug-in.

The Shared Disk Manager (SDM) is the module that accessleslata blocks (requesting
them to flow through the appropriate lower-level /O stack pahd guarantees coherency
among copies of the same shared data blocks when theypaie kiferent nodes. The level
of coherency can vary, as dictated by the usage policy of yaeslabove the SDM; one can
imagine a strict policy where all copies of the samelbloast be in-sync all the time, or a
less restrictive one which, for example, allows data thath®ssn cached but cannot be
accessed by a node (e.g., only some part of a block which has not beé&adrasiéwhere,
can be accessed) to stay un-coherent for some time; furthelimisreot obvious that the
block is the unit of choice for coherence (see CM, below). TheeB8haisk Metadata
Manager has detailed knowledge of both on-disk and in-core lRjmumetadata structures,
and is called when it is necessary to transfer them foodigk; it also takes care, in the same

vein of SDM, of keeping them coherent across nodes.

% CI software has been developed to support coniat@made clusters (e.g., Windows Cluster,
Compag TruCluster, Red Hat Enterprise Linux)
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The Cache Manager (CM) is the module that handles data caonmgan devise either a
completely separated cache, i.e., one that does not integthtéheioperating system page
cache (see 15.3.1.1, GPFS implementation on Linux) or the approasheidlby most Linux
file systems, a tightly integrated one. Here, the issu®loérency must be again tackled; as
the element of caching is a page, it is “natural” to prornatde coherency at the page level,
a decision which may seem to contradict the block appno@shiously suggested. In fact, we
could have both in place: a page-grained coherency for I/O reghastBow through the
page cache, and a block-grained coherency for requests that do not use thehgage cac

In a distributed file system the Lock Manager (LM) igpafamount importance, because it
is commonly used to implemeoth cache coherencgnd user-level locking primitives
(when available). The LM supplies “global locks” that aredysat a cluster-wide level, to
lock target objects; e.g., when a request to place a shateal ghck over some data structure
(residing in the node) is issued, the LM of the requestor nodeadtgeeither with a
centralised lock server (in a client/server implementatiwnyith the LM in other nodes (in a
truly distributed implementation) to “get hold” of the lock;sMiccessful, i.e., the lock was
granted to the requester, the lock is now held at the node (wihpretects some data
structure). The locked object may be a purely internalsfiistem object, such as a superblock
or inode, or the internal representation for a user-level object, sudiieaek.

Finally, the character-special and block-special file mareafCSF and BSF) are used here
as mere illustrations of two abstract concepts that repréise two standard UNIX interfaces

to access devices: character and block-oriented.

16.7.2 Objectives of the pCFS prototype
Global objectives of the pCFS prototype are:

* New concepts brought in should require a minimurohzinge in user programming habits, i.e.,
they should resort to concepts already familiaptmgrammers, which should not be forced to
use new APIs (although new parameter options forroonly used file calls are acceptable).

» Evaluation should be carried out over regular &iteess, i.e., we do not intend (for now) to
improve the speed of memory mapped I/O or metadaggiations (e.g., increase the speed of
file creation, deletion, directory listings, etc.).

Specific objectives of the pCFS prototype are:

» True file sharing — that is, sharing a file amongagesses running in distinct nodes for
simultaneously reading and writing — operationsusthdnave performances which are close to
those exhibited in non-sharing situations. Of paramt importance is the situation that arises in
typical HPC applications: files often need to barskl across nodes, but each node accesses a
file region which does not overlap, at the byteelewith regions accessed on other nodes.

» Proposed contributions should either be impleme(aethpletely or partially), or else proved to

be possible to implement.
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16.7.3 Methodology for the pCFS prototype implementation
Developing from scratch a new shared disk file system witlptbposed features would be

a huge task, unattainable in the realm of this work; conlxera feature-light implementation
would preclude a fair head-to-head comparison against othesyfiiems. Therefore, we
decided to build on the work carried out for the proof-of-condag®ping GFS as the basis
for our prototype.

Before we can plunge into Part VII, “pCFS implementation”, we rhase a more detailed
look at VFS and GFS; the reason is quite simple: GFS angr coupled with VFS.
Therefore, a description on how VFS provides the fundamentaheatistis for different file
systems (and how they plug themselves into VFS) as well asvarview on GFS’
architecture (followed by an in-depth look at its global lockiregh@anisms) is a pre-requisite

to understand both the prototype and design decisions that were taken alortly.the pa
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Part VI:
Inside the Kernel: VFS and GFS

This Part constitutes a prerequisite to understand the pCpiSnientation: in the first
section, we discuss the architecture of the Linux VFS and hisnused to integrate specific
file systems; in the second section we present an ovemiete internals of GFS; and,
finally, in the last section we describe, with some detail, h&& @nplements locking and

uses it to promote clusterwide coherency among nodes.
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17 VFS internals

In this section, a very short description of the fundamentatadiions provided by VFS is
presented, with an eye on what happens on two important operatiesgstéim mounting
and opening a file. VFS internals are quite adequately coverseviral books, including
[Bov+05] and [Rod+05].

17.1 The Linux Virtual File System

The Linux Virtual File System is a layer that capturesatimmonality between different
file system types; it's model is, unsurprisingly, closelated to the UNIX file system model,
where a file system instance is described by a superblock, a file by an inodejiegxtory is
a (special) file that contains names of files and othectdires, together with inode numbers.
The major VFS objects represented in Fig. 17.1 are:

superblock

Stores information about a mounted filesystem; whefilesystem is mounted, this object is

created and gets populated with data retrieved &ditesystem “control block” stored on disk

inode
Stores information about a particular file; getpplated with data retrieved from the file's
metadata, stored on disk. Each infodeject is identified by an inode number that ueigu
identifies the file within the filesystem instance.

file
Stores information about the interaction betweermpen file and processes accessing it; this is
where, for example, the file pointer abstractioimiplemented.

dentry

Is the representation of a directory entry in tHeS\world; stores information about a file by
linking the filename to the file's inode.

For some kernel data structures it necessary to checkquakly, whether a particular
instance exists or not, in memory; this is why slab cacheshésetstructures are further
organised into hash tables: inode and dentry instances, for exaanplstored in hash-
searchable caches. Also, the page cache is used to stpagileescriptors — a data structure
that points to the “real” file page (notice that previoustywave referred to the page cache as
if it had the “real data” in it, not pointers...).

! Here we are interested in disk based file systams our examples assume just those.
2 Notice that the Linux VFS uses exactly the saenminology — inode — for the VFS and on-disk data
structure while, e.g., Sun uses vnode for the MR&t&ire and inode for the on-disk structure.
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System Call Interface

The Linux (Virtual) File System
: files_struct :Info on open files &! file_system_t
files *@ file descriptors ! file_systens
; File Objects —-
- fd > : (List of filesystem >
fS . |
sdtin 0 [: types currently SR |
task_struct ! __'—"[: List of file s_supel
(Process stderr 2 , objects -
Descriptor) : fs_struct 3 ‘ owned” by
: ->| @ : vfsmount
| 4 '
NextPD | ; L F )
: Info on cwd & root dir !
filesystems for this proc.
Process :
! > Array of super _bl ocks --
' » namespac o _
Management P open files; — | ) (Lists of
"""" (List of mounted
VM Management filesystems)
inode dentry
Cache cache cache !
Mgmt i

Figure 17.1 Architecture of the Linux Virtual File System layer (and relationships with other layers)

118



17.2 A closer look at the Linux Virtual File System

17.2.1 Begin in the beginning: file system mounting
The first step for plugging a file system into the VFS happ¢niemount ; we will now

briefly describe a subset of the most important VFS objectessed when mount is
performed, as well as their relationships; we also desbidbethe liaison between the VFS
and the specific file system is established, i.e., how VIR@riecode ends up calling the file

system'’s specific code.

17.2.1.1 Providing the kernel with the file system implementation module
Whether a module that implements a specific file systeowiisin at kernel compile time

or dynamically inserted at runtime, it must be registerfitagth the Linux kernel, an
operation that causes a new objectdéict file_system_type ) to be created and
appended to the single-linked list whose head is stored irfilthesystems global
variable (see Fig. 17.2); the object must have been previmisblized with, among other
information, the filesystem name (e.g., the object describingvailable ext2 file system
implementation module would have an “ext2” string on the namd)fiel pointer to the
function that will be invoked on the mount operation to read tkeyfitem superblock (the
read_super field), and a pointer to the implementation module ¢weaer field).

file_system_type

file_systemns

available in the kernel)

fs_supers

(List of filesystem types currently B)
N

(Double-linked list of superblocks of _ vfsmount
currently mounted filesystems of this vismtli st

type) (information on mounted
filesystems)

-
T "

super _bl ocks

(List of all superblocks) /

Pointers to dentries of the mount directory and
the root directory of this filesystem

super_block

Figure 17.2 VFS objects involved in file system mounting

119



17.2.1.2 Mounting a filesystem
The simplest (and even so, oversimplified) execution path on a mount opésati

a) an object (of typestruct super_block

) is created and initialized (for example, a field
pointing to the desired device gets filled), andntlyets populated with data retrieved from disk
when the functiomead_super() is executed (what happens is thatrised_super field of
the appropriatdile_system_type object is set to point to a filesystem specifindtion
supplied with the module; that function usuallyars either to the “buffer cachdtread() or

breada() to do the actual read);

b) on a successful return, make the superblockcbbjgerations pointes_op (see 17.2.1.3 below)

point to thestruct super_block_operations provided by the module implementing the
file system — these are the functions implementipgrations such as “read inode”, “write inode”,
“write the superblock”, etc., that are specificthat file system type (and are called via pointer

dereferencing as usual, e gh->s_op->read_inode() );

¢) the superblock object is appended to the dolitted list whose head is thie supers field of

thefile_system_type object, which keeps track of all the mounted shbipeks of the same

file system type;

d) an inode and a dentry are allocated for thet“dir@ctory” of the file system, and these objeuts

e) astruct vfsmount

then linked to the appropriate VFS data structures;
object is created and filled in, then linked te tppropriate lists and

other VFS objects; it stores information about theunt point, mount flags, and relationships

between the file system being mounted and othexady mounted, file systems.

In short, the mount operation is the one that, for the specifianostbeing mounted,

“glues” the file system implementation module to the VF&iain such a way that the same

set of user-level file operations can be used with everyifittependently of the specifics of

the file system where the file “I

ives”.

17.2.1.3 The superblock object
A shortened listing of the superblock data structureifssede/linux/fs.h ) is:

struct super_block {

struct list_head s_list;

kdev _t s_dev;
unsigned long s_blocksize;
Jnsigned char s_dirt;

struct file_system_type *s_type;
struct super_operations *s_op;

struct dentry

struct list_head
struct list_head
struct list_head
struct block _device
struct list_head

*s root;

s_dirty;
s_locked_inodes;
s_files;

*s_bdev;
s_instances;

/* dirty inodes */
/* inodes being synced */
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union {

éfruct ext2_sb_info ext2_sb;

éfruct msdos_sb_info msdos_sb;
struct isofs_sb_info isofs_sb;

gtruct udf_sb_info udf_sb;

.\'/Ioid *generic_sbp;

0

}

We can easily identify a fixed part, containing several stamd corresponding to the VFS
superblock object, and a variable, possibly empty union thaegtosextend the “base” VFS
object with a file system-specific data structure; thatcture is, from the VFS point of view,
opaque, and should be accessed only by the file system-spediicnot by VFS code. In the
union we can find the “add-on” structure pointers for disk-badedyistems such as ext2 or
MS-DOS, for CD-ROM devices with ISO or UDF formats, aslwasl a “catch all” for file
systems not included in the standard kernel release, in the form of an ppatgae

For some of the above mentioned fields, we now briefly describe their usage:

* The s_list field is used to attach the superblock to the alolinked list of all the
superblocks, whiles_instances  is used to attach the superblock to a list oftled other
superblocks of the same file system typedev ands_bdev identify the device where the

file system (and thus the superblock) lives, whilblocksize  indicates the size (in bytes) of
a block on that particular device;

 Thes files field is used to build a list of all file objectim-use” that refer to files living in
this file system; this greatly simplifies work neeldto get a list of the files currently opened on
a particular file system, because all one needs te walk through this list;

« If the in-core superblock image has been modifiediirt  is set; when some in-core inode has
been modified, it is appended to thedirty list; then, it becomes easy to update the on-disk
images for all inodes, as all we’ll have to do @ through thes_dirty  list updating each
inode at a time. All inodes (that belong to thipesilock file system) involved in an I/O
operation at a particular time are collected inghecked_inodes list.

Now let’s look at the superblock object methods, i.e., the superbjoetations. These are
“bound” via thes op field. How does one define these operations? We must always
remember that the VFS layer is immutable, i.e., it's “structaref “code” are already written
... but with a lot of generic VFS code, as well as pointersrtbofype functions not yet
defined NULL pointers) — and those are the ones that a file system develbiobrwants to
add a new file system to the kernel must code in the newdelsle) to do it properly, he/she
must adhere to the VFS predefined superblock (function) operatiafs (in

include/linux/fs.h ):
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struct super_operations {

struct inode *(*alloc_inode) (struct super_block *s b);

void (*destroy_inode) (struct inode *);

void (*read_inode) (struct inode *);

void (*dirty_inode) (struct inode *);

void (*write_inode) (struct inode *, int);

void (*delete_inode) (struct inode *);

\./.(.)id (*put_super) (struct super_block *);

void (*write_super) (struct super_block *);

|nt (*statfs) (struct super_block*, struct
statfs *);

\./.(.)id (*clear_inode) (struct inode *);

}

The developer must implement those functions that are needeaptthe new file system
into the VFS model; for example, ext2's developers have definddnetion to read
information from a disk data structure and fill in the ViR8de structure, and they called
this functionext2_read_inode() ; then, they went on to define functions to write VFS
inodes to their on-disk inode images, to write the VFS superbtoitk bn-disk image, etc.
Then, they defined a structure in the module that implements the (ext®) file system, and
“assigned” all (functions) operations to the correct fieldshefstructure, as in the following

code fragment from thext2 implementation moduldg/ext2/super.c ):

static struct super_operations ext2_sops = {
read_inode: ext2 read_inode,
write_inode: ext2_write_inode,
put_inode:  ext2 put_inode,
delete_inode: ext2_delete_inode,
put_super:  ext2_put_super,
write_super: ext2_write_super,
statfs: ext2_statfs,
remount_fs:  ext2_remount,

}
Notice that not all functions have to be implemented: one mayelsome adNULL
pointers, while others may point to generic VFS (pre-defined) functions
Finally, when mounting an ext2 file system one must link the supek’sls_op field to
the above structure, thus “binding” the VFS abstract operationthe “real” functions
implemented in the ext2's module. The last step of this “bindisgpérformed in the

ext2_read_super() function, (also irfs/ext2/super.c ) where we find,

struct super_block *sb

sb->s_op = &ext2_sops;
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So, when a VFS superblock is being filled by the “abstresdid_super() function
(bound to the “realext2_read_super() function which reads the on-disk superblock),
at some point of the code’s execution the VFS superblock operatiamtsr is set to point to
the “real” functions living in thext2 module.

To conclude, the VFS layer has several major “abstract tsbjalong with their “abstract
methods”; some of these methods are already pre-bound to VFS doldeotivers must be
implemented as functions within the filesystem specific modihe explanation of how this

is done is a blueprint that can be applied to many other similar VFS objects.

17.2.2 Opening a file
From the set of the most frequently used file operations, open, céask and write, we

will look only at one, thepen() system call: on one hand, it makes an interesting study
because in bridges together two kernel layers, namely Rridtamsagement and VFS; on the
other hand, studying each call is both tedious and not stricthssauy; the interested reader
can refer to [Bov+05, Rod+05].

An open() system call is invoked with the following parameters: tharsne of the file
to be opened, option flags and access mode flags, and a permission bit mask Imecfile ibt
to be created. If the system call succeeds, it returfie alescriptor — that is, the index
assigned to a new entry in therrent->files->fd array of pointers which will point to

the file object,

- files_struct : Info on open files & ifile
files > descriptors |
@ ! File Objects
fo Ll fd — |
sdtin 0 i
task struct | stdout 1 : <
ask_struct i
(Process 1 stderr 2 _E_r_
Descriptor) ! !
| fs_struct 3 |
| > |
| ® | T
NextPD ! !
i Info on cwd & root dir i
! filesystems for this proc. !
Process i Arrav of i
Management | » namespace openyfiles |

super _bl ocks

Figure 17.3 Some VFS objects involved in the open() system call
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The oversimplified (e.g., we will leave out file creation paried through the open call)
execution path on aspen() is:

a) getname() is invoked to extract the file pathname from thecess address space;

b) get_unused_fd() is invoked to find an empty slot in tleairrent->files->fd array.

The corresponding index (the new file descripterdtored in théd local variable;

¢) next,filp_open() is invoked, with the following parameters: pathmaraccess mode flags,
and permission bit mask. This function, in turre@xes the following steps:

1- open_namei() is invoked to perform a lookup operation, with flelowing parameters:
pathname, access mode flags (encoded in a differay}, and a pointer to a locsalruct
nameidata ; if successful, it returns in its fielddentry and mnt the addresses of the
dentry object and mounted file system objects aatst with the successfully looked up file.

2- dentry_open() is invoked, with the access mode flags, and thet@s to the dentry and
mounted filesystem objects returned by the lookpgration as parameters. This function:

a) allocates a new file object, and initializes fieddsf flags  andf_mode according to
the access mode flags passed tooten() call;
b) initializes thef_fentry  andf _vfsmnt fields according to the addresses of the dentry
and the mounted filesystem objects passed as ptaane thedentry _open() call.
c) setsthd op field to the contents of thefop field of the correspondinipode object;
this sets up all the methods for future file opers.
d) inserts the file object into the list of operféds pointed to by the files field of the
filesystem superblock;
e) iftheO_DIRECTflag is set, pre-allocates a direct access buffer;
f) if the open method of the file operations isidedl, invokes it.
d) Sets current->files->fd[fd] to the address of the file object returned by
dentry open() ;
e) Returndd .
Two important things to note are: the file access opemafflmmction pointers) are defined
in the file object and are copied from the file's inodeeobpperations, as 2-c) shows; and, a
“file system-specific open”, if set (i.e., nMULL), will get executed almost at the end of the

code path, in 2-f).

17.2.3 Closing remarks and GFS preview
VES code for file operations, as seen above foropren() function, allows for calling

specific code provided by the target file system; we will $hede that, when opening a GFS
file, gfs_open()  will be called at the location 2-f), thus bridging the V&® GFS worlds,
and opening the door for file system specific actions, when neges$ar example, in ext2

there are no specific actions to perform, so the function pointer iis NELL
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18 GFS internals: an introduction

18.1 GFS architecture

Figure 18.1 is an overview of the GFS architecture and itsngdkerarchy (adapted from
[openGFS])); the left side shows lock module loading/unloadingsfextg/un-registering
with the lock harness) and lock protocol mounting, while the rithe shows all other
operations. GFS is tightly integrated into VFS, with somé& @Bjects linked to VFS ones,

e.g., VFS superblock'generic_sbp  points to the GFS in-core superblock image.

User level operations: (un)mount, open/close/read/write/lsedk/fcnt

Linux VFS code & structures: superblocks, inodes, dentries, ..., cached pages, et

superblocks, ginodes,
File System Module (gfs.ko) flocks, journals, u
resource groups, etc... glops
|
mount misc. G-Locks -
i
Harness Module others_may_mount, Lock and LVB
reset_expired, operations
unmount
register, mount;

unregister Lock Module (e.g., gdim.ko)

P

Lock Storage (e.g., memexpd)

Loading, mounting, unloadin§—»  Ongoingdiletem operations, unmount
Figure 18.1 GFS fundamental software modules and layers

GFS supports three inter-node lock protocol implementations: liet-server “Grand
Unified Lock Manager” GULM; the distributed “GFS Distributed Lock Manage@ LNt
and the “no lock” NO_LOCKimplementation which allows GFS to be used as a single node
local file system. The lock harness serves two simple purposes:
* Maintaining the list of the implementations (e.@ULM GDLN currently available for

filesystem mounting and,

» “Connecting” a selected LM module to a filesystetnmount time.

! Now seemingly discontinued.
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As an example, assume we have two distinct locking protocalslaieaGULMwhich will
allow us to use shared disks across nodesN&ahd OCKfor disks we want to mount locally
at a single node, without incurring in inter-node locking overheadi®nvé locking protocol
module is brought into the kernel (issuing, ergadprobe lock_gulm or modprobe
no_lock ) it registers itself with the harness module; then, whenuer performs a GFS
filesystem mount, e.g., witmount —t gfs ... -lockproto=no_lock , the harness
module is accessed to extract the appropriate pointéhe timck protocol functions, and all
locking operations within GFS will “trigger” the chosen module’s lngkiunctions.

The locking modules and lock storage facility take care of:

» Managing and storing inter-node locks and lock &ddlocks (LVBs, see further down).
» Handling lock expiration (lock request timeout) atehdlock detection.

« Heartbeat functionalify(are other nodes alive and healthy?).

« Fencing nodésrecovering locks, and triggering journal replaycase of a node failure).

The G-Lock software layer is a part of the GFS file system cotdantiles:

» Caching and coordinating locks and LVBs among ssesg orthis node.

» Communication with the locking backend (lock modute inter-node locks.
» Executing glops when appropriate (see below).

» Journal replay in case of a node failure.

The Global Lock (G-Lock, a.k.a. glock) is a fundamental GFS qano@e which will be
studied in more detail in the next section; for the momeist sufficient to say that it is an
abstract cluster-wide visible “object” that may be usedujgpert synchronized access to
protected resources (e.g., GFS inodes) shared among nodes; aqoesssrmay originate
from local, intra-node, or global, inter-node, processes; G-Lockssafgmort serialisation of
intra-node accesses for correct GFS operation on SMP atahite. The G-Lock operations
layer is also a part of GFS file system code, impleingnthe file system-specific,
architecture-specific, and protected-item-specific operatitag must occur right after
locking or just before unlocking, such as:

« Reading items from disk, or from another nbda a LVB, after locking a lock,

» Flushing items to disk, or to other nodes via a L-¥dBfore unlocking a lock,

 Invalidating kernel buffers, once flushed to dis&,that a node can't keep on using them while
another node is changing their contents.

Each glock has a type-dependent vector of operations (glops) srattached to it; this is
the key to porting the locking system to other environmentspandfating different types of

glocks, and defining their associated behaviour.

2 In recent revisions, some of these tasks havae, meare in the process of being moved to a new
module that implements generic Cluster Infrastmecfunctionalities.
% The only items currently “moved around” from nddenode in LVBs are resource group bitmaps.
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Finally, an LVB is an opaque data type that is used to cafoyniation across cluster
nodes, and is a performance enhancement path for maintaining nttgquedated data
structures coherent across nodes; for example, it is used to maintaiceggowp bitmaps in
sync across nodes, e.g., a hode that updated some bitmap does nofflnsbdttto disk first
so that it can be re-read from disk in other nodes. An LVBdgslatd to the lock that protects
the GFS object it holds, and has its own set of operationgntiyrLVB size is fixed, at 32
bytes.

18.2 Lock harness

When a lock manager module is inserted into the kernel, asfghg module initialization
it registers itself with the lock harness via the register_proto() call; this adds the
protocol implemented by that module to the list of availabl&ithgcprotocols in the cluster,
ultimately allowing GFS to access to the set of operations it provides

At the top layer, the lock harness layer offers a seteofices to aid in file system
mounting (and un-mounting) by performing the remaining part of theiritidlization (or
removal); these arédm_mount() , Im_unmount() , andim_withdraw()

To illustrate the use of the functions listed above, let's Idok &FS file system mount
operation: at mount time, when asked — via options string, laskproto=gulm —to use
some available lock protocol, the lock harness layer wilfy the module’s supplied set of
operations into the mounted file system GFS in-core “supé¢bletructure: first, by

executinglm_mount() *

, which fills in some information within thed_lockstruct
structure; then calling the “mount” operation provided by that pro®éoiplementation
module, e.g.,gulm_mount()  for GULM this will, in turn, fill in other information,

particularly thds_ops field with the appropriate vector of operations.

sdp —struct gfs_super { / struct Im_lockstruct {
struct ... *sd_lockstruct; T struct ... *Is_ops;
int flags;
} }
/[Lock Module implements | struct Im_lockops {
... gulm_mount(); < ... Im_mount();
... gulm_umount(); < ... Im_umount();
... gulm_lock(); < ... Im_lock();
}

Figure 18.2 Plugging a lock module (in blue) into GFS structures (in yellow)

* The calling sequence istount->...->gfs_get_sb->...->gfs_Im_mount->Im_mount()
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Thus, to requestlan_lock operation on a lock living in a GFS file system “described” by

a superblock pointed to Is¢gp , one may write,

sdp -> sd_lockstruct -> Is_ops -> Im_lock(...)

which would execute the appropriate lock routine within the proteset to handle locks in

the file system; e.g., the above sequence when applied taahwplke exhibited in Fig. 18.2

would end up calling thgulm_lock()

18.3 Lock module

function.

The diagram in Fig. 18.3 below is an overview on how GFS usésnimdules (again,

adapted from [openGFS]); it covers calls to the module fromaatk of the file system and

harness code (where some calls have no functionality ifdhleck module is used).

locking.c (mount/unmount)

lock protocol,
mount/unmour

locking.c (mount/unmount)

mount
v
harness.c unmount,
withdraw
y N
register, mount
unregister
!

others_may_mount

glock.c journal.c
All reset_exp(ired
operation
\ 4 y

Lock Module GULMNO_LOCKGDLM

Figure 18.3 GFS usage of Lock module operations

All GFS implementations of a lock protocol must adhere to theesaPl; the interfaceis

very simple, and defines:
e alock type, coded dM_TYPE {..., INODE, RGRP, META, ...} ,
« alock state, coded &8/ ST { UNLOCKED, EXCLUSIVE, DEFERRED, SHARED,

« various lock operations, such as:

« Im_get_lock() , Im_put_lock()

e Im_lock()

e Im_hold_Ivb()

, Im_unlock()
, Im_unhold_Ivb()

, Im_sync_Ivb()

« various flags to control the behaviour of lock sall
e LM_FLAG{TRY, TRY_1CB, NOEXP, ANY, PRIORITY }

Other flags to indicate return conditions frém _lock()

® Seeharness/Im_interface.h

, coded atM_OUT{.}
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» A set of interface operations with Lock Harness fimdun)mount support, such as:
e Im_register_proto() , Im_unregister_proto()
e Im_mount() ,Im_unmount() ,Im_withdraw()

In brief, a GFS implementation of a lock protocol must be &blereate a cluster-wide
visible (unlocked) lock, identified by its lock number and lock fypek it into some allowed
state (and also be able to unlock it); support a Lock ValuekRlo¢B) data type and related
set of operations; and, furthermore, support both synchronous (blockidgsgnchronous
(non-blocking) operations.

The lock operations are the most important thing on this @wena brief summary of
locking and LVB-related functions called by G-Lock layer follows:

Im_get_lock - find an existing, or allocate and initialize @mlm_lock_t  (lock module

per-lock private data) structure on this node. Doatsaccess lock storage,
or make lock known to other nodes.

Im_put_lock - de-allocate atm_lock t  structure on this node, release usage of (perhaps
de-allocate) an attached LVB (by callidgn_unhold_Ivb ). Accesses
lock storage only if LVB action is required.

Im_lock - lock an inter-node lock (allocate a buffer ickostorage, if needed)
Im_unlock - unlock an inter-node lock (de-allocate the hwiifelock storage, if possible)
Im_cancel - cancel a request on an inter-node lock (endy lebp)

Im_hold_Ivb - find an existing, or allocate and initialize @wLock Value Block (LVB)
Im_unhold_Ivb - release usage of (perhaps de-allocate) an LVB

Im_sync_Ivb - synchronize LVB (make its contents visible tbetnodes)

These “abstract” operations are implemented differentlyaaf elistinct lock module, e.g.,
GULMimplements them in according to the client/ser@#LMprotocol, while theGDLM
implementation is quite different, and truly distributed with no sipgi@at of failure; function
names are chosen in order to show up the module’s name, e.@Uthdroutines (see
gulm/gulm.h ) are calledyuim_lock , gulm_unlock |, etc.

We end this overview of the Lock Module by stressing out ek treation, as referred in
the above summary (itm_get _lock ), is purely a node-local operation which does not
involve communicating with any other node; only lock and unlock ope&and some LVB

operations) do require inter-node messages travelling over therketwo

18.4 G-Lock layer

The G-Lock software layer (see Fig. 18.1) provides G-Lockices to the GFS file system
code (the top-level interface), uses the services provided byMhiayer (the bottom-level
interface), and allows for specialized operations to be pluggedhinabehe top and bottom-
level interfaces. Central to the G-Lock layer are tluelgland the GFS holder abstractions;

the most relevant operations againstdgfe glock  structure are (segfs/glock.h ),
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ofs_glock get

find an existing, or if option allows it, alloma and initialize a new
gfs_glock structure orhis node.

ofs_glock_hold - increments the glock usage counter.

ofs_glock put

decrements the glock usage counter; if it reachero, schedule it for
reclaim (it will eventually get destroyed, its memdreed).

while the most relevant operations related togfise holder structure are,

gfs_holder_get - allocate and initialize a negfs_holder  structure.

ofs_holder_init - initialize agfs_holder  structure in the default way and set its owner,
state, flags, and usage counter.

gfs_holder_put - getrid of agfs_holder  structure, freeing its memory.

Finally, we list some of the lock/unlock operations which are, in facsudtref enqueueing
and dequeueing, as well as promoting and demoting holders onto their assooizked gl

ofs_glock_ nq - enqueue a glock holder into its glock (i.e.,#iog or lock, the glock;

we may get lucky and be granted the lock immedjatet we may
have to wait...)

ofs_glock_dq - dequeue a glock holder from its glock (releadecal process’ hold
on the glock and service possible waiters; if thithe last holder of
the glock — in this node — unlock it, and decideether to keep it in
the glock cache or immediately release it clustige)v

ofs_glock_xmote th - call into the Lock Module to lock the glock’s LMck (which
corresponds to placing a lock on the glock), orngeaan already-
acquired lock to a more (promote) or less (demotsjrictive state
(other than unlocked — dwt use it for unlocking).

ofs_glock_drop_th - callinto the Lock Module to unlock the glock:M-lock.

Despite having the same prefigfs glock , the ng and _dqgq functions act on
gfs_holder  structures, while thexmote and_drop act ongfs_glock  structures. The
former, _nqg and_dq, are called in directly by the GFS code layer, while ther|amote
anddrop functions (both top and bottom-halves — not mentioned here) aree’as seen
before, used as a) generic operations for GFS metadata, flocklishoand quota-type
objects; and b) to link to tailored versions»>afiote anddrop functions appropriate for

dinode, resource group, transaction, and “general” type objects.
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19 Locking in GFS: a in-depth look

19.1 Sharing and locking in local file systems

Even a commonly used local file system, such as ext2 or NT&S,qare about concurrent
events that take place in the system: some processesnpaittions that need to access, and
perhaps concurrently update metadata structures used to maragestiim entities such as
files and directories, while other processes may be busy shagmg reading and/or writing
— the same file. At the implementation level, steps mustkente ensure that both file and
file system sharing semantics hold, in spite of multiple caratioperations taking place on
in-core data structures; the problem is further exacathat@perating systems that allow
system call preemption, or support parallel execution of kénnehds in SMP environments.
These problems are usually tackled with widely known OS syndatom mechanisms —
mutexes, spinlocks, semaphores, etc.

The file system model, and patrticularly its sharing semangiésiportant for users because
it defines what to expect when active executing entitiesh sisc threads and processes,
concurrently access file system “objects”; furthermorenaty provide mechanisms, such as
file locks, that can be used to enforce some specific balrawi the presence of concurrent

operations.

19.2 Sharing and locking in distributed file systems

In a distributed file system, where multiple nodes must kdwmgir shared — often
extensively cached in memory for performance reasons — copiéle afystem data and
metadata consistent, we need not only to cater for the twa-riotle issues previously
described, but also a third, new one: how do we solve the shasedateistency problem?
An often used solution is to use a global lock, one that could bd tss implement
synchronized access to these shared data structures, and thiertagd an invalidation
protocol that discards other copies when one of them is modiiéeg, them coherent across
the nodes. But how do we implement this global lock?

For non-distributed operating systems (the ones, such as Linux and Wjndewuse
everyday), global inter-node locks are not an OS provided atistrand, therefore, we must
resort to an add-on software module, a Lock Manager, and modifyotieeto use the new

abstraction to coordinate access to shared data.

19.3 Locking in the GFS world: an overview
In the GFS world, the solution for the three problems previddsiytified — intra-node and
inter-node serialisation, and inter-node coherence of replicatedtdattures — is subsumed

in one concept, the Global Lock (G-Lock): a G-Lock is, as wejamted out before, a
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clustef-wide visible “object” that may be used to support synchronizessac(such as
mutual exclusion) to protected resources shared amongst articipdes; requests may
originate from local, intra-node, or global, inter-node, processespakslLalso support the
serialisation of intra-node accesses which are required farotaperation of GFS on SMP
architectures. A very short introduction to locking in GFS veaently published in a paper
on GFS2 [Whi07].

19.3.1 G-Locks
The G-Lock concept is implemented by thés glock  (glock) structure and its

corresponding set of operations (obviously including some “lock™anbbck” primitives);

we will see more about thus later; for now, it suffiaesdy that G-Lock usage adheres to the
typical lock usage pattern: a) the glock protecting a-imbele shared data structure is locked,;
b) the desired operation is performed on the structure; and c¢) the glatlocked.

To protect each shared, in-core copy of a particular data structurel glémsas created in
every participant node (i.e., each node that holds the sharetusthu and will reflect the
node’s local view of the global G-Lock abstraction. Some operatinribe abstract G-Lock
may be purely local, intra-node, operations, while other operations requirggmesshanges
(that may result in queries and/or changes to each local gktelj between the participating
nodes and (if properly implemented) result in a coherent vieleof5-Lock state among all
nodes, each one storing the appropriate state (view) in its localsitockure.

The G-Lock is also abstract in a sort of object-orienteg: wdaen a glock is created, it is
assigned to be of some predefined type, one which iderttigekind of object it protects; it
has an associated glops vector of operations structure, i.e., af $ahctions whose
implementation depends on the specific type: a glock createatect, for example, a GFS
inode, is assigned the appropriate set of functions for acting on “incelets3bj

A glock is uniguely identified (at inter-node scope) in a GFStetusy a triplet: lock
number, lock type, and lock namespace; we have already seethe/thatk type is; the lock

number and lock namespace concepts are introduced in the next section.

19.3.2 LM-Locks
As the glock allows us to support two very distinct “usage moaeshely being used at

an intra or inter-node scope, the implementers decided to decbeptotal part” from a
lighter, more “generic” structure that supports inter-node logkimgch we call the LM-Lock
(where LM stands for Lock Manager).

Again, this global, inter-node, LM-Lock is a concept; its impletagon resorts to a node-

local structure of typém_lock (abbreviated Imlock) created in each participant node, much

! Our definition of cluster, here, is the approfimne for GFS: a GFS cluster is a set of SAN
connected nodes that share the same “pool” ofgeadavices (LUNS).
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in the same way the G-Lock concept was implemented. The Uddlock is implemented
by a kernel module, the Lock Manager Module (LMM), in a weat tompletely decouples it
from the rest of the GFS world; the cluster-wide LM-Lock abstractiégmplemented by a set
of LMMs (as inGDLN! plus additional software, if required (asGtuLM.

When a G-Lock is created, a cluster-wide LM-Lock entity tnmgsassociated with it; thus,
for each node, the LMM must also create a new local Imlockatiadh it to the local glock;
i.e., each module-provided Imlock will, when plugged into each node’s dpmelt, “turn” it
into a global G-Lock. This Imlock is, similarly to the glocks@a local representative — i.e.,
will hold this node’s vision — of the abstract “cluster-wideklomaintained by the LM
software; for example, if in some designated node the ImlocKdsit¢he “exclusive” state,
then we know that all other nodes must have their own local repatises (of the same LM-
Lock) in the “unlocked” state, and thus only one node effectiveldshtite “cluster-wide
lock”. A LM-Lock may be held in one out of four different statestocked, shared, deferred
and exclusive.

The LM-Lock’s “primary identifier” is the lockname, which istgpe/number pair; this is
also stored in the G-Lock identifier, and thus establishes dla¢ion between these two
entities. The LM-Lock lockname “inherits” the type and number ftbenobject protected by
the G-Lock it is associated with; e.g., if some G-Lock pretectginod& the lockname
structure will hold “type inode” and the block number of the @k@node; for structures that
do not correspond to existing on-disk entities (e.g., the data seubttr holds information
about a mount), the lock number is carved on the code, in a “.h” include file.

As we already know GFS supports the coexistence of multipledtistick managers that
implement different locking protocols, all offering the safuactionalities and adhering to
the same interface; therefore, they may be used interdialyggethe user should choose the
most appropriate for the task at hand. The only added complexityshitrat at file system
mount time the user must specify which LM protocol instance bwil'managing” the GFS
file system being mounted, and this constitutes the creation of donk namespace. From
this point on, all the glocks created within that lock namespadep(otocol/file system pair)
will trigger the creation of Imlocks, by the appropriate lomalinager instance. So, the “full
identifier” for a G-Lock or LM-Lock is in fact the pair nanpeee/lockname, which turns out
to be the triplet namespace/type/number we've previously dedcribe

Finally, we must point out that another level of decomposition meigt in the
implementation of a locking protocol; this may be seen, fanple, in theGULMwhich is a

software-only, client/server implementation of the proposedrfbuiaccepted) SCSI Device

2 A ginode is a GFS inode structure (an in-coregenaf a dinode) linked to the VFS vnode structure
through its generic_ip field.
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Memory Export Protocol (DMEP) [Bar+0Q]where two separate entities are required to
implement the protocol: a “server”, that implements lock agter (a user-level daemon
process, in th&sULM or RAM in a disk or disk array supporting DMEP), and clidtie
kernel lock modules in the nodes), that access the “senyeiweeded. This is not the case

with GDLMwhere no “central point” of storage does exist.

19.3.3 G-Lock holder
“Once a node has acquired a glock, it may be shared withindka by several processes,

even by several recursive requests from the same protéss’statement, extracted from the
include file (“gfs/incore.h ") illustrates the new terminology we will be adopting from
now: several nodes may be able to acquir&-Lock in a shared state (and each of them will
have its local glock in the shared state), or one of them maplbdo get it in the exclusive
state (and others will have their local glock “unlocked”).

A process expresses its interest in issuing an operation tkaly creating a “request
packet”, the GFS holder structure, that will store both thegs@entification (in a owner
field), and the desired conditions under which the operation is todoessfully granted, e.g.,
“l want to hold the glock if nobody else has it”, or “| want to holddlaxk but I'm willing to
share with others”. The request (holder) is then “linked” ¢d'tdrget glock” and submitted
(enqueued); if it gets immediately granted, it is attadbeatie glock holders list; otherwise, it
will be attached (queued) to a waiters list, awaiting promotion.

A holder is, then, a purely node-local structure that allows ws) tacquire a glock in some
desired state; b) coordinate how it is shared among processies node; and c) finally,
release it. Thus, it is possible for a glock to have séwnaultaneous holders: distinct
processes (owners) that were able to share it; severalatibhe “recursive” requests issued

by the same owner; or a mixture of both.

19.3.4 G-Lock operations
The G-Lock operations structure allows us to further refinegaheck by associating an

implementation-specific vector of operations to a G-Lockamsexample, for a glock that
protects an inode, the glock’s vector of operations “gengiac’sync()  function maps to
inode_go_sync() , which triggers a flush of all data and/or metadata &socwith an
inode when, for example, it is unlocked. However, for a glbek protects a RG, the glock’s
“generic”’ go_sync() function maps taneta_go_sync() , which synchronously flushes

all buffered metadata associated with the RG.

® Which originated as the Device Lock (DLOCK) [SB]9
* To acquire a G-Lock, we need to lock the LM-Los#, in a way, acquire (a glock) and lock (its
corresponding Imlock) is equivalent; one “drags® tither.
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19.3.5 Performance-driven implementation decisions
We will now introduce the topic of performance in this discussis;usual, it will

complicate things a bit but we will hope that, having preseatetbar picture before, the
reader will not get confused.

When an object such as a ginode, together with all the “companida’sttactures it
references, is protected by a glock and that glock gets edledata must be flushed to disk;
this is a costly, time consuming operation, that gains by haistponed as long as possible
(much in the same way the Linux page cache supports write-back).

But how long is “as long as possible”? If a node wants to retadtdat has been modified
in another node, the later must flush it before the gloacdgired by the former; but if a set
of processes, all running in the same node, are reading ampverifile, there is no need to
flush data, and we would still get more performance if we'thirefirom repeatedly dropping
and re-acquiring the file’s ginode glock (as these operations beistarried out by
exchanging messages across the network). GFS implementp#reEsenance enhancement
features by tying the flush operation to the drop of a glock, anggrosg the (cluster-wide)
drop of a unheld glock by keeping it in a cache (with the saatessthat was stored by the
time the last holder was dropped) until it expires, or is falge“called back” by another
nodé. So, for “typical” applications, when a process needs to re+@quiecently released
glock it immediately succeeds, getting it from the cache and,side-effect (but a major one,

for increased performance), data that has been recently acd#kbeessin the page cache.

19.4 An example-driven operational overview

We will now try to tie some of the concepts previously introdunadjely Imlocks, glocks
and holders, by resorting to a complete example: in a GFS cltisteiile F is, for the first
time, opened for reading in node A, then, it is opened for writing in node B. Nowce@ssrin
node A starts reading the file, while another process in Boddtes to it; for simplicity, let
us assume that no user-level locking is involved (and thatiti@s not constitute a problem

for the application).

19.4.1 Opening the file

The most relevant (and over simplified) operations for the open are:

1. A pathname transversal (sequence of lookups) ifopeed; at the end, the file’s “inode”
number is found from a dentry, and the ginode efdirectory which contains the file gets a
shared lock on its glock;

2. An new (empty) ginode in-core data structure iatzd, together with its new protecting glock;

the glock is tailored with the appropriate openagifor “(g)inode-type objects”;

® There are situations where this postponing ispossible, but we will not cover them here.
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3. A holder is created to allow us to request a losktee glock; the request will be for a cluster-
wide shared lock, but with an exclusive flag set fbis node only. The request is then
submitted; when granted, the holder is attachebealock holders list: “I hold a shared lock on
this file’s ginode”

3.1. The Lock Manager is called to find an existing loKoor create a new one; the
parameters lock number (drawn from the block nundabéhe file system block that holds
the dinode), lock type, and lock nhamespace areligapphe inter-node lock request is for
“shared”.

3.2. A new LM-Lock must be created (this is th& ltick on that dinode number); storage for
the Imlock object resides, in the GULM case, on@éLM Lock Server, whereas in the
DLM case, it may be “duplicated” in several nodes.

4. The in-core dinode field of the ginode object ifefl in with data retrieved from the on-disk
dinode blocks;

5. The ginode glock’s “local exclusive” flag is dowiagied to “local shared”.

Now, if the file F is to be opened again, but this time on nodedBonly difference is on
step 3.2: a new “cluster-wide” LM-Lock will not be createdtbg LM because one (for that
type, number and lockspace) already exists; only the Imlock “kinadture” will be created,
and its status set to indicate it as being currently loakeshared mode; all the other steps

will be performed exactly in the same way.

19.4.2 Reading a GFS file

Let us assume node B is not yet writing; the relevant (anih,amger simplified, assuming

regular non direct-lI/O) operations are:

1. Theread() call enters the kernel; the normal flow througk ¥S layer is performed, i.e.,
from the VFS file object its vector-of-operatiorsad-function is called:

file->f_op->read(...)
For a GFS file, this function is mapped ingfis_read() ;
Thegfs read()  code enters execution;

3. A holder for a shared lock is created and submiftekl.a. enqueued) onto the ginode’s glock;
upon return, the lock is held;

4. VFS level functions, such ageneric_file_read() are used to get into the node’s page
cache and retrieve data, or, if needed, submitaléwel read to the disk driver; when data is
available, it will be copied to the user buffehi¢t highlights the tight integration of GFS into
the VFS subsystem);

5. The holder is de-queued, unlocking the glock, witfan:

5.1. gets moved to the glock cache, where it stays itni$ requested again; expires and is
released cluster-wide; or is released becausesit'gguested” from another node.

5.2. if released (because it expired or was forcefudljed from other node) a glock operation
is performed, and that operation may act on tleesfillata (e.g., invalidate all cached data)

and/or metadata (such as updating the time oalastss).
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6. Thegfs_read() returns;

7. Theread() returns;

To complement the discussion above, it is worth pointing out tlaat #pplication has one
or more processes that repeatedly read the same file,ithaeinter-node traffic, as the
glock(s) will stay cached in their nodes, making their lodkfti purely local, intra-node,
operations. Only the first locking operation requires a LM sgaehich will need messages

travelling to other node(s).

19.4.3 Writing a GFS file

The flow for thewrite()  call is similar to the one above, but much more complex at the
GFS level; we omit a lot of details, but the important ones are:

1. Thewrite() call enters the kernel; the normal flow througé WS layer is performed, i.e.,

from the VFS file object the vector-of-operationstevis called:
file->f_op->write(...)

which, for a GFS file, is mapped ingds_write() ;

gfs_write() enters execution,

3. A holder for an exclusive lock is created and tleemgueued onto the ginode’s glock; upon
return, the lock is held (we will have to wait iiyaother node has a lock, shared or exclusive, on
the glock);

4. (A lot of details omitted here.) The user buffercapied to kernel space, merged into the page
cache; affected pages are marked dirty and linkedthe vnode’s dirty list; these pages will be
flushed regularly by the Linugdflush  daemon, or synced on demand;

5. The holder is de-queued, unlocking the glock andhé same way to what happened with the
read() above, the glock will stay in the node’s glocklwac

6. gfs_write() returns.

7. Thewrite()  returns.

The above description shows why GFS stumbles when, for example, onis nedding a
file while another is simultaneously writing it: for evenyite, the reader has to release its
glock immediately (and invalidate the data it has cached Bp da the writer needs it
exclusively; so, for every operation, messages are exchaeg®den the node and the global
Lock Manager, and glock caching, as sketched in 4.1-iii absugsaless. To worsen things
up, on the next read, the reverse occurs, more traffic trdwelsgh the interconnects, again,
and the writer must flush all file data and metadata to loli$&re releasing the glock, as the
reader may decide to access data that has been changed biyathehig requires a string of
flush-to-disk operations that, even when a large bandwidthvaslahle from the 1/O
infrastructure, nevertheless cause a latency build-up thatredp degrades each node’s
sustained bandwidth, as inferred in sections 8 and 9 (e.g., as compeigahtion 8.5) and
reported in Figs. 16.4 and 28.9.
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19.5 Keeping metadata coherent across cluster nodes

When talking about a “coherent view across cluster nodes”, ayesaparately address two
aspects: keeping user-visible (or user-level) objects asdiles and directories, coherent, and
keeping file system “internal” metadata structures swchade and data block bitmaps (or
other structures used for free/used accounting of blocks and in@dé®rent; failing to
provide the first may result in application problems, but failimgy $econd will undoubtedly

result in a corrupted file system which, sooner or later, wélsedo function.

19.5.1 Coherent file system metadata management in GFS
A coherent view of free vs. allocated blocks is needed aatbshister nodes which have

mounted some particular file system, to support correctness imethenge of operations such
as concurrent file creation (dinode allocations), remgwaggible dinode de-allocations), and
writing (which may result in a file size increase and tlaggiire metadata and/or data blocks
to support that growth). The problem of a coherent view of blaek)allocation across
cluster nodes is therefore a major issue at the filesysevel (there's, of course, more to
proper metadata management than just managing bitmaps, as we’lhsth@wnext section).
As it happens with many other file systems, GFS use the concept of Resource(B@uUps
which are similar to Berkeley's Fast File System cylngeups [McK+84] and have been
adopted by a legion of followers, including ext2. A RG is a softfi file system” with a
superblock, and two regions, one for inode and another for datksh along with their
corresponding bitmaps. To perform an operation on a specific RGpl@ae&s a lock on the
“RG-type” glock that protects the RG; as expected, allonaéind de-allocation operations
with RGs’ glocks exclusively held are sufficient to guéeana coherent view of those RGs

across cluster nodes.

19.5.2 Coherent file metadata access in GFS
Guaranteeing that every node has a coherent view of freelandtedl resources, such as

disk blocks, however, is not enough, as it could lead to situajigites similar to the problem
of lost updates, but now with the file’'s metadata; as an exampdeprocesses in distinct
nodes could be “filing in” sparse holes, each one in its respgeton-overlapped, even at the
page level) region; if both were modifying the same metadata pgetip, distinct pointers in
the same indirect block, the last writer would superimpode dtda over some part that had
already been modified, and flushed, by the other node.

Obviously, concurrent access to file metadata structures atassbe properly carried out,
and GFS has the right mechanism for the job: while executingfshevrite() the ginode
glock is exclusively locked, and other nodes cannot keep anydatatadata from that file

in their caches.
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Part VII.
PCFS Implementation

In this Part we describe how pCFS is implemented, through thécaddi two kernel
modules, a user-space daemon, and slight modifications to GFS adwdiied GFS code
distributes information about clusterwide open files and actigins, and implements cache

coherency without resorting to expensive disk flushing and cache invatiagtéerations.
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21 PCFS Kernel MOUUIES .........uuiiiiiiiiiiiiiee et 151
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20 Prototype Implementation: introduction

20.1 Overview

The term “prototype” clearly states we're not aiming aitadull or a production-quality
implementation; our primary objective is to show that pCFS, whiigning GFS’ strengths,
can efficiently support HPC applications, so the prototype spaityf target regular files
accessed through the usual read/write and other POSIX csdlseweing direct I1/O and
memory-mapped operations. Furthermore, no modifications were madménpaths that
handle directories, special files, journaling, etc., i.e., nomgitewas made to speedup

metadata operations (such as file creation, deletion or lookup).

20.1.1 Rationale
Some discipline was imposed on the prototype implementation; famaestrictions we

wanted to enforce were: i) no modifications to Linux APl (no sgacall$ or changes to the
VFS layer were allowed; ii) modifications to GFS code shbldkept to a minimum, even at
the expense of having to duplicate GFS code into pCFS-specific @asodRénefits from (i)
are clear: pCFS will run on any distribution that supports @E8ently, Red Hat Enterprise
Edition), and existing applications may run unmodified, while (ii) msetihat it should be
easy to keep pCFS in sync with new GFS releases, as burdenfireed within pCFS’ own
modules (where it should be easy to manage); furthermoreguids be possible to execute

“near native” GFS, which will greatly simplify debugging and pCFS-t&®Enchmarking.

20.1.2 Implementation strategy
We've chosen to incrementally develop the prototype; in the ghiase, we concentrated

on delivering support for high performance I/O for those situaticer® no data or metadata
allocation €.g, indirect blocks) was required — i.e., an existing filesisiply read or

rewritten; in the second phase, we handle cases where metadattoslliscrequired.

20.1.3 Dealing with adversities and uncertainties
As time went by we faced several obstacles; some wstepfainly annoying, but others

forced us re-evaluate our initial goals. The first claskides the Linux kernel internals, quite
undocumented in the file system layer (V&Sal). The second is a consequence of internal
changes in the interfaces, which happen quite often and acines mleases, too; and,
consequently, some particular software becomes stronglytdi@ particular kernel release,
while another one only works with a different release, making itdiffto use them together.
As an example, we were planning to implement pCFS’ cooperatolgrg with Kerrighed
containers [Lot01, Mor+04]; however, this was not possible lsecdhbe version of the

containers module depends on a particular release of the Trmispater-Process
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Communication (TIPC) protocol [TIPC] which was not compatiblehat moment in time,
with any kernel version which would support GFS. Therefore, welrging to bring it all
together, and believe that, afterwards, a full implementatiggCFS’ cooperative cache may

be easily achieved.

20.2 pCFS: architecture and operation overview
Most pCFS code is split between two kernel modules, pCFSk aRS8q@nd a user-level

daemon, pCFSd; furthermore, a very small amount is delivered as patches. to GF

/’\\

pCFSc |« » pCFSc LR pCFSc |« » pCFSc

Figure 20.1 pCFS architecture and module interconnections

Each node has both a pCFSk and a pCFSc module, while there isego€lréd instance
per cluster; a brief description of each component follows:

» Each pCFSk maintains a “local database” that stmfesmation about per-node relevant data
structurese.g, pCFS inodesig., those corresponding to files opened with onehef pCFS
flags), and, for each file, the list of “active regs”. Each pCFSk opens a TCP stream against
the pCFSd, which handles in a separate thread.

» pCFSd maintains a “global database” of cluster-wilevant data structures, a sort of “union”
among the structures pCFSk maintains at each mwaduen necessary, pCFSd sends invalidation
messages to the pCFSc modules in selected tardesno

» Each pCFSc maintains per-node “in-flight” data thaist be shipped to/received from other
nodes and then updated into the VFS page cachthefonore, pCFSc maintains coherence by
flushing out and/or invalidating selected pagesftbe node’s page cache.

To give the reader a brief introduction to the pCFS operatiorstave by stating that, for
pCFS-modified file calls, when the user process performeg apiératione.g, aread() on
a “pCFsS file”, a GFS path that leads to a pCFSk call kertaif call processing can be
handled locally in pCFSk, it “immediately” returns to the Giegular code; otherwise,
pCFSk will exchange information with pCFSd, and will either retor@FS code (for local

data access), or take a different path, fetching/deliveringfidattéto a remote node.
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20.3 Phase 1: High performance R/W with no metadata allocation

HPC applications usually share a file in a way that processesng in different nodes
access disjoint, non-overlapping sections of the file; thisigmphat data coherency is not, in
general, an issue. In the first phase of the prototype impletimntae devised a way to
easily improved bandwidth by explicitly requiring participant peses to define regions
before they access a file, releasing them when they arengerl needed; to be used in
isolation (i.e., not complemented with other approaches), howevegyites that there are no
major metadata changes to the file, i.e., its size must be keptrtomsthin the event the file

is sparse, no “holes” should be “filled in”.

20.3.1 Overlapping vs. non-overlapping file access operations.
But, even when not overlapping at the byte-level, regions mayovetlap when larger

units — blocks or pages — are considered, as shown in Fig. 20.2 below.

Region for Process X Region for Process Z Region for Process Y

N N A
f Y e N

Page n-1 Page n+2 Page n+

Process X Process

Figure 20.2 False sharing and lost update (last writer “wins”)

As previously shown (section 11.2), this may raise coherenggss§iven that the unit of
caching at the file system level (at the page cacht)eipage, we identified the following
issues due to false sharing:

* Un-harmful: There is only one writer node. Even if a readedenhas an out-of-date page
cached, one where a portion written in the writedenis not up-to-date, pCFS processes in the
reader node are not allowed to access that pog@npnsistency issues do not exist.

e Harmful : There are multiple writer nodes. This may trigtpst updates, as follows (Fig. 20.2):
a writer in node X writes into its “side” of thed#d page; another writer in node Z does the
same to its “side” — notice that byte level oveplimyg does not occur; then, it does not matter
which node is the first to write out “its” data ¢man, in the figure) to disk: others (e.g., Y) may
not be able to retrieve the first node’s (e.g.,uilated portion of the data from the moment the

second node (e.g., Z) writes out its image (of pagegain) on disk.
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20.3.2 pCFS major data structures
The two structures depicted in Fig. 20.3 are the foundation of 'p@fpEovements over

GFS: pCFS_inode , which records data about an open pCFS inode p&#t region

which records data about an active region placed by some process over a file

#dinode

rdr_regions

wir_regions

rdr_bmap

wtr_bmap

#dinode

start
end start
node > end
pid node
pid
rht - owner
r ht - owner

region structures

start
end
node
pid

rht - owner

pCFS_inode (s) table

Figure 20.3 pCFS major data structures and their relationships

There are two hash tablesf pCFS _open_inode structures: a “local database”, in

pCFSKk, for files opened in the node; and a global database, in pfoF8kks opened across

the cluster. The structure op&FS_open_inode is:

struct pCFS_open_inode {

uint64_t

unsigned int
unsigned int
unsigned int
unsigned int

dinode;
count;
mode;
owner;
fwrdrs;

struct pCFS_region_| * rdr_regions;
struct pCFS_region_| * wtr_regions;

unsigned long
unsigned long

h

where
dinode
count
mode
owner
fwrdrs
rdr_regions
wtr_regions
rdr_bmap
wtr_bmap

rdr_bmap;
wtr_bmap;

Identifies the on-disk (and in-core, as they aeegtame) file inode.
Number of outstanding opens.

Reserved (currently unused).

If non zero, identifies the file owner.

If non zero, there are owner(s) (for boundary gagethe region lists.
List of regions laid out by reader processes.

List of regions laid out by writer processes.

Bit map of nodes reading this file.

Bit map of nodes writing to this file.

! NamedpCFS_opens, and currently implemented as fixed-size arrayp@FS_open_inode

structures.
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As for a region, its structure is:

struct pCFS_region {
loff t start;
loff t end;
#ifndef _ KERNEL___
node_t node;
#endif
pid_t pid;
node_t ownerL;
node_t ownerR;
unsigned int flags;

h
where,
start Marks the byte offset at the start of the region.
end Marks the byte offset at the end of the region.
node (Only for pCFSd regions) Identifies the node tlat out the region.
pid Identifies the pid that laid out the region.
ownerL Accesses to the left boundary page must be foreatal this node.
ownerR Accesses to the right boundary page must be foledhro this node.
flags Consistency checking: must be eitRreRDLCKor F_ WRLCK

20.3.3 A brief look at the major file operations
We now look at how pCFS changes were introduced in the GFS codégllamdthem

with an execution scenario for a typical application whicksuthe most relevant file
operations: we start with apen() , followed by an “insert region” witfentl()  , then we
perform aread() and awrite() ; before terminating the application, we lift the region

with anotherfcntl()  , and finallyclose()

20.3.3.1 open()
Each time a process in node performs an open of a “GFS fite”avpCFS option flag

or'ed in, when control reachgés_open() , a pCFSk function is invoked to:

1 Check if the file is already open in the node (fay@CFS_inode with a matching dinode)

1.1 If found, a check is made for the presenceQofCLSTXOPENCluster-wide exclusive) or
O_NODEXOPEMode exclusive) — an error situation, in bothesagand we return.

1.2 Else, a message is sent to pCFSd to check onabalglatabase that the open does not conflict
with other outstanding opens of the same filet dides, take an error return.

2 Otherwise, entries may be created and/or updatékealocal and/or global level; this includes

incrementing the inode’s usage count and updagader/writer bitmaps at both “sites”.

We end up either allowing or rejecting the open, and both thé noce and the pCFSd
tables are updated accordingly. Notice that some fielgsaxiat in pCFSd “versions” of the
structures, but not in pCFSk — an example being the node field whkists in the pCFSd
pCFS_region structure, but not in the one for pCFSKk.
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20.3.3.2 Region processing: laying out a new region with fcntl()
When a user process, callifantl() in the same way it does to place a POSIX advisory
lock, lays out a new region over a pCFS file,
1 Normal VFS first, then GFS pre-processing are edraut;
2 GFS sends out a request to the Lock Manager asking shared (for a read lock) or exclusive
(for a write lock) clusterwide LM-lock with a “POXllock” tag as key. (Notice that GFS calls the
LM layer directly, not the G-Lock layer);
3 If successful, we know the lock is clusterwideidiaso we call pCFSk code to:

3.1 Build up a newpCFS_region structure, storing the start and end of the fédgion (byte
offsets), the pid of the requesting process, thk ftag F_RDLCKor F_ WRLCKand inserting
it in the appropriate order (key: start, end, nagid) in the list (eitherdr_regions or
wtr_regions , depending on the flag).

3.2 Send a message to pCFSd with region informatiotiu@ing the node id), in order to get the
region placed in the global “pCFSd database”; thisshere the bitmap structurasir  or
wtr_bmap , depending on the flag, get the node bit updatethe reply packet, the bitmaps
are sent from pCFSd to pCFSk, where they are usegbdate the node’s knowledge about
which nodes are currently using the file, eitherriading or for writing.

3.3 We return to GFS code.

4 GFS code returns to the VFS code, which placesC8tR lock object” into the appropriate inode

(vnode) list and returns to the user.

20.3.3.3 read()
The code is quite similar to the one already sketched in 19.4.2 except fotctmespavhich

we include here bracketed by “pCFS begin” and “pCFS end”

1. Theread() call enters the kernel; the normal flow througé YH=S layer is performed, i.e., the
file object’s vector-of-operations function is et file->f_op->read(...) . For a GFS file,
this function is mapped intgfs_read() ;

2. Thegfs_read()  code enters execution

2.1. /* pCFS begin */ If accessing a pCFS file, we call pCFSk code tesedsthat read

boundaries are within a valid pCFS region; otheewise’'ll bail out with error, and skip to 6.
/* pCFS end */

3. ..

6. Thegfs_read() returns;

7. Theread() returns;

Notice that we do not modify anything else; in particular, we docac if we're reading
from a page that has some portion of stale data — whichawenot accesdecause it is
located outside our region, and we would have take an error return in 2.1 above.

Verifying that the file “is a pCFS file”, locating itsade entry and performing the validity

check in the region list are pure intra-node operations castiedt the pCFSk module and
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are, therefore, very fast; so, the overhead introduced isgil#glias reported in [Lop+08]

where pCFS reads were within 1% of those of GFS.

20.3.3.4 write()
As the user process writes, when théte() code path reachegs_write() it will

execute new code introduced to check if a pCFS file is beiogsaed (if not, regular GFS
processing continues) and, in that case, if the requesthmwitvalid region (if not, an error

is returned).The pCFS difference is thaiow that the access has been verified and granted,
we can even for a writer nodegsk for a shared glock against the file inpdéd resume
regular GFS code (assuming no false sharing problems and/or taesdldaation), which

will access data either from the page cache, or from disk, using thén®Astructure.

To prevent a reader in a node from reading data which has bmifieah by a writer in
another node, that data has to be either flushed to disk odntioraigh an interconnection
infrastructure; flushing data to disk is important becausmkes it permanent, but should not
slow down other nodes’ file access operations — something thatstmeam” CFSs such as
GFS can't do.Our strategy for flushing does not slow down other nodes’ file access
operationsbecause it does not require (in the absence of metadataiaitpedther exclusive
access — locking the ginode glock in exclusive mode, as shown4r8 Ehd which would

trigger invalidations sent to other node’s caches — or “frequenth (@ericall) flushing.

20.3.3.5 fentl() again: region removal and data flushing

As the writer process removes (“lifts”) the region, we ngugtrantee that modified data is
committed to disk before a process in another node may réadnitdisk We opted for the
easy solution: a synchronous flush in the moment the region ivegindelaying the flush up
to the moment where the access is needed by the other nimdecismplex, unless we are
running a SSI operating system, which offers a page flushfitateln mechanism “for free”.
So, when lifting a region, witfentl()
1 Regular VFS first, and then GFS pre-processinguised out;
2  GFS processing includes sending out a Lock Managmguest asking to dréphe cluster-wide

LM-lock with a “POSIX lock type” tag. In case ofsaccessful return, we call pCFSk code to:

2.1 Perform the flush.

2.2 Remove th@CFS_region structure, fronwtr_regions  and free its memory.

2.3 Send a message to pCFSd with the region informatinthat it can also remove that region;
but, before doing it, (i) pCFSd usedr bmap andwtr_bmap to get the list of the nodes
currently using the file and, (ii) sends dovalidation messages to pCF&wdules on those
nodes, noting the region start and end — we ndsdé#tause in reader nodes operating “close”

to the regions’ borders VFS code could have beadimg-ahead into another node’s region, and

2 We're assuming a write lock here, so there is onig!
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if we didn't invalidate that data, once the nodiel laut a valid region over it, it could access
stale data
3  GFS returns to VFS code, which removes the “PO®Ik lobject” from the appropriate inode
(vnode) list and, finally, returns to the user agagion.

In a typical HPC application regions are often quite ldtges of MB or more) so while a
process is writing, file system/OS flushing does occur from time tq tilggered by memory
pressure and/or cache expiration; our lifting mechanism juatagtees that all writes are

flushed before “letting another node in” that same byte range.

20.3.3.6 close()
Currently, pCFS close processing is very simple, because weectwoosturn an error if a

close is attempted on a file that has outstanding activensg.e., we currently require the
programmer to lift every region that was laid out before ofpshe file). If ok to close, we
just decrease theaCFS_inode entry count field and, if it reaches zero, de-allocate (currently
we just clear it) the structure. Although we already proag®CFSd reply message informing
a node that it is the last node in the cluster that is readitigd/closing a particular file, we

do not yet take advantage from that piece of information.

20.3.4 Forwarding: using the LAN to solve the “lost update” problem
To solve the lost update problem (and others which will shortidigmissed) we've added

the left and a right owner fields to tiCFS _region structure; they are used as follows
(using Fig. 20.2 as guidance, assuming all processes are \aritB{days out its region first,
thenY and finallyZ2):

* When a process lays outaaiter region, a check is made to see if it hager neighbours and
if their respective boundaries overlap at a pageljef they do, we signal its neighbour as the
page owner. For example, pageis shared between processésndZ, while pagen+2 is
shared between proces3&tandZ. When theZ writer finally lays out its region, the check tees
if there are pages shared betw&eand a writer region “left-neighbour” (hen€) and/or a writer
region ‘“right-neighbour” (hereY), returns true for both, so the left-owner field B's
pCFS_region is set withX's node id while the right-owner is set witts node id.

» For eachwrite()  we check if the write will touch the regions’ fitand/or last pages and, then,
whether left and/or right owners exist; if they dgpCFSk function is called to forward that data
to the neighbour’'s pCFSc, which then inserts it e node’s page cache.

Furthermore, nodes that “forward” data from the file to othedes (a non-zero in the
pCFS_open_inode frwdrs field) should not be allowed to keep data which belongs to

those shared boundary pages in their page caches; this implies that retsisaifected, and

% Notice that we could disable read-ahead, butvhisid be, as a rule, detrimental to performance.
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if a non-owner writer needs to re-read data “sitting” on a bounpage, that data will be

fetched (through the interconnect) from its neighbour’s cache.

20.4 Phase 2: pCFS support for coherent metadata management

We have previously, in 19.5, mentioned that there are two sepapaetaon coherency:
those related to user-level visible objects, such asdildsdirectories, and those related with
file system “internal” metadata structures, such as inodiedata block bitmaps. Then, we
saw that GFS handles coherent management of file systeatateetstructures using two
different approaches: for resource groups, GFS uses the RGlispdcgdocks (19.5.1); but
for everything else — and this includes both data (file) ancdatt (inodes, index blocks)
structures, GFS uses the same strategy to enforce noleagper-inode global lock enforced
both ingfs_read() = andgfs_write()

In this subsection we look at new ways used in pCFS to promotegeoakiewithout

severely degrading, as GFS does, file system performance.

20.4.1 Resource group handling in pCFS
As previously pointed out, to perform an operation on a specific BS, ilaces a lock on

the “RG-type” glock created to protect that RG; as expectmtation and de-allocation
operations require the RG's glock to be held exclusively. For p@ESound that this does
not, in general, degrade bandwidth and, therefore, we kept the starfelardp@rations for

resource group handling.

20.4.2 Coherent block allocation/de-allocation at the file level
Two operations may result in major changes to a file structurecansequently, to the file

system where it livedruncate() andwrite() . GFS handletruncate() through an
exclusive glock, and we are not interested in pursuing aréiffepath; it is not, after all, a
common operation — and, anyway, if we truncate a file we mudidata all file'’s data and
metadata cached across nodes. As for the write operatiory irigger major changes when
data blocks, index blocks, or both, must be allocated, eitharasult of an increase on the
file's size, or because holes in a sparse file get “filled in”.

To support coherent block allocation across nodes sharing the fdamée region
mechanism is not enough because, if we relied only on regiensould end up in a situation
similar to lost updates, but now with file’s metadata; aexample, two processes in distinct
nodes could be “filing in” sparse holes, each one in its respgeton-overlapped, even at the
page level) region; if both were modifying the same metadata pgetip, distinct pointers in
the same index block, the last writer would superimpose dtdbe over some part that had
already been modified, and flushed, by the other writer, and we coultbesidg a big

amount of data, e.qg., if we lost the “head” of those newly allocated indeksbl
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We have three alternatives to handle coherence:
» Select, whenever there is a possibility of majoargies in the file's metadata, GFS standard
behaviour through a “reguladpen() , loosing the performance we could achieve with CF
» Use the pCFS approach for all I/O which does nquire block allocation and, when needed,
temporarily revert to the standard GFS behaviour;

» Select a “master node” and have all the othersddiig to/get it from that node.

20.4.2.1 On mixing GFS and pCFS opens
In the above list, the first alternative, resort to plain GHough possible is undesirable

and should not be used, for two reasons: first, it may be quiieutiiffor the application

programmer not only to assert if metadata will be changedlbwoitto rewrite the application
in a way it will either execute a GFS or a pG¥ien() , and then follow the exact path with
the appropriate “programming style” for that choice; but, enionportantly, in the current
pCFS prototype one should not concurrently open the same file usingsb& and pCFS

“styles”, because that will lead to data and metadata inconsistermizss nodes.

20.4.2.2 Handling pCFS metadata coherency through lock promotion
For the current prototype, we have implemented the second titeraa follows: if code

execution in thegfs_write() takes a path which leads to block allocation, the file's
ginode glock which, per pCFS changes, was acquired in the shatesdsste-acquired in the
exclusive state; this guarantees that, before the exclatte is granted to the writer, all
other nodes will invalidate both metadata and (unfortunately) pitaining to that file from
their caches and, on subsequent accesses, they will get fresh copiesfroaitidésk, or from
the writer's cache. We expect that, in those situations whleok allocation is an infrequent
event, this strategy of “last minute” promotion of the glock to an exawsate will not result

in a sizeable performance slowddwn

20.4.2.3 Implementing the data shipping approach
For those cases leading to what would be a very high numbepatitiens of the pattern

“region-in; read (and/or) write; region out” for small buffgees, or for those cases where
there is a high number of operations that require allocation afatet/or metadata blocks,
shipping data to a single owner may be the best solution, from the performance pmEnt
The data shipping approach is an extension of the forwardingigeenmtroduced in
20.3.4 to overcome false sharing, and can be implemented througft ded/or right-owner
fields in thepCFS_region structure. A situation where all nodes ship to a singlestera
node can, therefore, be easily implemented — we just need to assigastiee node id to both

owner fields in the file’s region structure for every node but the maste

* Unfortunately there are some stability problemghwhis feature, leading to FS crashes...
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In the current prototype, the following features, although usefailnar yet implemented;
sorted from easiest to the more difficult to implement, they aser-assigned master (at open
time, with a flag, or at runtime, with a call; probaladgtl  or fcntl ); master re-election
(required if the current master retires); automatic megibf regions (based on file access
pattern discovery, “the system” could automatically layreatbve regions so that a route to
pCFS’ performance features could be offered to an applicatibddiea not use regions — see

below).

20.4.3 pCFS access without regions
As explained in 16.3, to perform file access with pCFS the psegammer) may define

non-overlapping regions for each process; when he/she choosks apatcify regions in a
file, data shipment is used to perform file access. To prepare forhiataest, in the ongoing
implementation, thedirst node to perform awrite is elected the master node; a region
covering the whole file is created automatically (the regitso covers file growth, as the
region end is set to infinity). Subsequent nodes accessing ttasfildhave regions covering
the whole file and having the owner fields pointing to the maatéwmatically created for

them. Non-master nodes do not, of course, cache data.

21 pCFS kernel modules

21.1 Introduction, function naming and implementation notes
As shown in Fig. 20.1, the current pCFS prototype is built arounet afstwo kernel
modules per-node (pCFSk and pCFSc), plus a single user-level dentbe fehole cluster.
For ease of reference we'll insert a shortened description of eachaisgoluipose:
» Each pCFSk maintains a “local database” that stimfesmation about per-node relevant data
structures, and opens a TCP stream to pCFSd, whitdndled there by a separate thread.
» pCFSd maintains a “global database” of cluster-wiglevant data structures; when necessary,
pCFSd sends invalidation messages to the pCFScle®miiuselected target nodes.
» Each pCFSc maintains a per-node buffer for datarthest be shipped to/received from other
nodes. Furthermore, when requested to do so, p8R8tains coherence by flushing out and/or

invalidating selected pages from the node’s Linaggcache.

Code inserted (patched) into GFS’ kernel module bridges GFS wilts,p@s it calls
pCFSk functions which, in turn, interact with pCFSd (which ntegntinteract with pCFSc).
In brief, naming rules are:

» Code patched into GFS is referred to as the “pCE§er”, and macros and functions will bear
thepCFSm_prefix.

« Functions exported to GFS will be prefixed wigcFSm ; if a function interacts with other
modules (including pCFSd) it will be also taggedhwheclst_  prefix.
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21.2 Patching GFS: pCFSm code

Currently, the pCFSm layer implements two macros:

#define PCFSm_IS_FILE_PCFS(file) \
((file)->f_flags & (O_CLSTXOPEN|O_NODEXOPEN|O_CLSTS OPEN))

#define PCFSm_IS_GLOCK_PCFS(glock) \
pCFSk_is_ginode_pCFS((&((struct gfs_inode *) \
((glock)->gl_object)) ->i_num)->no_formal_i no)
Their purpose is:

pCFSm_IS FILE PCFS() Tests whether the VA8e  object refers to a pCFS file.

pCFSm_IS GLOCK PCFS() Tests whether the GRgock (is attached to ginode that)
refers to a pCFS file.

21.3 The pCFSk module interface

The list of pCFSk module’s exported functions is:

int pPCFSm_clst_open(uint64_t dinode, unsigned int o _flags);
int pPCFSm_clst_prepare_close(uint64_t dinode);

int pPCFSm_clst_commit_close(uint64_t dinode);

int pPCFSm_clst_region_in(uint64_t dinode, loff_t st
unsigned int flags);

int pPCFSm_clst_region_rm(uint64_t dinode, loff_t st
unsigned int flags);

int pPCFSm_clst_region_vrfy(unsigned int rw, uint64_
loff_t len, int *owner

int pPCFSm_clst_region_segments(struct file *file, s
int retval, loff_t segm

size_t pCFSm_clst_shipFrom(uint64_t dinode, const c
loff_t *offset, int ow

size_t pCFSm_clst_shipTo(uint64_t dinode, const cha
loff_t *offset, int owne

int pPCFSm_is_ginode_pCFS(uint64_t dinode);

art, loff_t end,
art, loff_t end,
t dinode, loff_t offset,

L, int *ownerR);

ize_t size, loff_t *offset,
ent(]);

har *buf, size_t size,
ner);

r __user *buf, size_t size,

r;

Most of the names are self explanatory; however some do deserve fi@sbaption:

pCESm_clst_region_vrfy() checks a pCF8inode for the existence of a region which will
cover areadriv == 0 ) or write fw == 1 ) access starting affset and with a length
of len .

pCFSm_clst_region_segments() is called after region_vrfy() to compute the data
ranges that must be handled by the local node aitd/eft and/or right neighbours.

pCFESm_clst_shipFrom() retrieves from th@wner node an amourgize of data stored in
the file specified bylinode , starting abffset and move it to the user’s buffer pointed to
by buf .

pCFSm_clst_shipTo() forwards to theowner node an amourdize of data stored in the
user’s buffer pointed to blguf ; the data will be written in the file specified dinode ,
starting abffset

pCFSm_is_ginode pCFS() checks ifdinode represents a pCFS file (i.e., a file that was
opened with a pCFS option flag).
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21.4 The pCFSc module interface
The pCFSc module doesn’t export functions to GFS; it handles medsageother nodes
(in the current prototype forwarded via pCFSd) to perforaineaoherency invalidations and

data shipping operations.

21.5 The pCFSd daemon architecture

The overall architecture and major processing steps pextbby the pCFSd daemon are
depicted below: after establishing connections with all nod&s,up to each thread to
communicate with its partnering pCFSk through its TCP chageelQltSkt  array); when
required, a thread may send invalidation requests to pCFSc mdttutreggh TCP channels
in theinvCItSkt  array) in selected target nodes. Access to global sha@disdafrequent,

and serialised through a single mutex.

Create sktgkt Ger)
Bind it
Listen for connections

A\ 4

Create sktgkt | nv)
Bind it

Listen for connections

One descriptor
(connection)
for each node’s
Processing threads ~ PCFSk. ko

A 4

(one for each node) 1 -
Accept connections
< (skt Ger) § Repeat for
(from pCFSk. ko) <n nodes:
\ '
1 Accept connections
2 P (skt 1 nv) § Repeat for
i (from pCFSc. ko) <n nodes:
One descriptor
(connection)
for each node’s
pCFSc. ko \

Wait for threads to finish,
cleanup, terminate daerr

Figure 21.1 pCFSd daemon architecture
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21.6 Selected examples of interaction among pCFS’ components

For each function we now briefly introduce some information onriteradction between
pCFSk, pCFSc and pCFSd; we also flag any inconsistencies WBHXRID our error returns.
For more details about the wire protocol (tags, packettates; etc.) see section 22, further

down.

21.6.1 Opening a pCFSfile
int pCFSk_clst_open(uint64_t dinode, unsigned int o _flags);

pCFSk pCFSsd

l | OPEN l

[

P “Get Command”

Icl opcl ()

op_req o
v
X EPROTC
| pCFSd i open()
| |
inode found? >
Y N EVMFI LE
J i (inode table full)
| lcl open try() | | Icl open in()
Updat e; I nsert;
count ++ _’I count= 1
ETXTBSY
(incompatible) I
W
ETXTBSY g
R4

A

op_rep: EPROTC, EMFILE, ETXTBSY

A

op_rep: K

v

return

Figure 21.2 Opening a pCFS file

Processing overviewin the node issuing thepen() , a check is performed at tiR€FS_opens
table to see if the file was already open (fourdadching dinode id in the table); if found, verthyat
the requested open is compatible (checklags against the stored mode), else drop out with
ETXTBSY If this is the first open, check for availableasp in the table; if full, return witBMFILE. If
no error has occurred, forward the request to pCikigtlawait a reply. At the daemon, the request is
processed, and its globaCFS_opens table is searched for a dinode id match; if nanenfl, a new
entry is created (if the table is fuENFILE); if a compatible entry is found processing comgs, else,
ETXTBSYis returned to the client. If no error has occdysra reply containing the current owner and

sharer bitmap sets is sent back to the node. Batleanode’s pCFSKk, if an error has occurred reiturn
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to the user, therefore denying thigen() else update the local entry and return zBiate: To flag an
incompatible open, we have resortedB®XTBSY which is used in standard POSIX to signal an
attempt to remove an executable file while it iSngeexecuted; and we resorted ERPROTQo0
indicate either communication protocol errors aroimsistencies between the daemon and the kernel
modules (which indicate bugs, as they should rigear

21.6.2 Insert a region in a pCFS file

int pCFSk_clst_region_in(uint64_t dinode, loff t st art, loff_t end,
unsigned int flags);

pPCFSk pCFSd

A 4 | USER l

srv_region_try P “Get Command”

Icl region()

»

regi on_req

\ 4
regi on()

- EPROTC
| porsd i

ENODEV()
ENOVEM

¥

lcl region insert()

(1) If we get here and dinodg
does not exist (which shoul
have been detected pCFSk

asEBADH then we must flag|
itin a way it can be easily b¢
region in() spotted.

Insert region;
process overl aps El NVAL (should not happen —
4 duplicate region)

n

. »
Updat e i node: El NVAL (duplicate region or — should
wtr|rdr_bmap not happen — invalid flags: fo RDLCKor

[ fwrdrs++] F_WRLCHpresent)
Build Reply pkt.

3)
»

‘op_rep: EPROTO, ENCDEV, ENOVEM EI NVAL

P \ 4
b egi on_rep return
\ 4
Updat e i node:

wtr|rdr_bmap

Figure 21.3 Insert a region in a pCFS file

Processing overview:n the node issuing thientl() , (1) check for the existence of the dinode
entry in thepCFS_opens table, else — this should never happen — baiwatlt ENODEV(2) Search
the appropriate listrdr_regions orwtr_regions , depending on the flags) to locate the place to
insert the new region. Bail out if inappropriatedgd returnindeINVAL, or if incompatible with current
regions, pend or retufBAGAIN Else, forward the request to pCFSd, and penditiagia reply. At the
pCFSd daemon, perform (1) and (2) as above; ifethean error, report it back to the pCFSk client;
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else, insert the region structure and report bhaekcurrent file owner and sharer bitmaps. Backat t
node’s pCFSk, if an error has occurred return theouser, else update the local entry with theatgatl
information provided by the daemon and retuxiote: As previously, we resorted 8RPROTQo
indicate communication errors and inconsistencewéen the daemon and the kernel modules (which
indicate bugs, as they should not arise); howewerdecided that if an attempt to insert a regioa in
non-open file has reached this level (it shouldehbgen detected at VFS or GFS layers), it should be

reported aENODEVused in POSIX to signal an attempt to accessaxigtent device.

21.6.3 Remove a region from a pCFS file

int pCFSK_clst_region_rm(uinté4_t dinode, loff t st art, loff_t end,
unsigned int flags);

pCFSk_region_rm pCFSd

v

Lots of Icl processing
here...

RUSER
srv_region_try » “Get Command”
lcl region()

»

EPROTC

| pCFSd r region() |

regi on_req

.

ENCDEV

(see region insert)

v

Icl region renove()

El NVAL (noF_unLcy

Remmove region ENO_CK (no such region)

process forwards &
prep. invalidation

pkt. Updat e inode: > A 4 <
wtr|rdr_bmap El NVAL
[fwrdrs--] ENOLCK

invalidate()
pOFSc g
o |_’7
<

op_rep: EPROTO, ENCDEV, EINVAL, ENOLCK

Build Reply pkt.

<

l .
region_rep

 Z v

return return

Figure 21.4 Remove a region from a pCFS file

Processing overview:n the node issuing thfentl()  , (1) check for the existence of the dinode
entry in thepCFS_opens table, else — this should never happen — baiwgtlt ENODEV(2) Search
the appropriate listrdr_regions orwtr_regions , depending on the flags) to locate the place to

remove the new region, looking for a full matchiwg8) {pid, start, end} . If a region was not
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found, returrENOLCKIf inadequate flags were used, ret@itNVAL. Otherwise, flush out any data to
disk, forward the request to the pCFSd and pendjteng the reply. At the daemon, perform (1) and
(2) as above but, for lookup, ug®de, pid, start, end} . If not found, a consistency error is
logged and reported back; else, remove the redinctare and prepare a successful return packet,
together with the updated owner and sharer seteltlient pCFSk has told us (pCFSd) that data has
been modified, we sendv_req messages to all sharers to invalidate any bytékisnregion they
may have cached with read-ahead. Back at the np@#Sk, if an error (other than inconsistency) has
occurred it is reported to the user; inconsistesrcyrs are logged, but normal processing continthes:
region structure is removed. A return code sigmddat the closing process was: zero, a reader;ane,

writer.

21.6.4 Close a pCFS file
int pCFSK_cluster_close(in: dinode, node, pid)

pCFSk pCFSd

l CLOSE l

»

P» “Get Command”

Icl opcl ()

op_req o
\ 4
EPROTC
pCFSd cl ose()
g
. ENODEV (1)
Updat e i node: (inode not found)
count - -
Q4
(1) If we get here and dinode does not exist
(pCFSk shouldn’t have issued @LOSE
then we must flag it in a way it can Qe
easily be spotte
op_rep: EPROTO, ENODEV
May cl ear
i node
op_rep: K
v
return

Figure 21.5 Close a pCFS file

Processing overview:n the node attempting to close the file, (1) fthe entry for dinode in the
pCFS_opens table (if not found return witiENODEY and (2) assert that its region lists do not
contain entries for this process. If (2) fails, sgpa “must remove regions before closing” error
(currently not implemented; we will opt for the stiard approach of automatically remove all regions
for that process when closing a file). If ok, tHese request is forwarded to the pCFSd and we pend,

awaiting the reply. At the daemon, perform (1) §Aplas above; if failed return the appropriate erro
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reply packet. If this wasn't the last user of tie,fthe current owner and sharer sets are repbdell
to the issuing node’s pCFSk; else, the entry isonead from the daemon’s globaCFS_opens table.
Back at the node’s pCFSK, if errors have occurtikeely are logged, but normal closing continues; if
this was the file’s last user either in the nodelasterwide, the entry is removed from the nodigcsl

pCFS_opens table.

21.6.5 Shipping data to/from an owner node
size t pCFSk_clst_shipTo(uinté4_t dinode, const cha r *buf,
size_t size, loff _t *offset, node_t owner);

size_t pCFSk_clst_shipFrom(uint64_t dinode, char *b uf, size_t size,
loff_t *offset, node_t owner);

pCFSk pCFSd
H P l
(Request or) > P “Get Command”
Shi pDat a()
shp_req R
* ,
" op_rep: DY EPROTC
(ONner)' Fwd shp_req
SH AW Fwd data to / SHIPR Get data ) ERPROTC
————— — o —— - - w— e — o |
SHI_IFI’W Reply from ERPROTC
| O/ DY ["ERPROTC
|
A\
op_rep: KDY
v R4

A late DIY situation should not happen but, if
the owner says it's gone, we nevertheless try to
recover it.

€ — + = - = = = = = = == -
op_rep: EPROTC

v v
return return

Figure 21.6 Shipping data to/from an owner node

Processing overview:(1a) In the requestor node, build a packet spegfyve want to ship size
bytes to/from node owner, to be stored at/retridvech offset, and send it to intermediary pCFSe) (2
At the daemon, the globplCFS_opens table is searched for a dinode match; if not fouarderror is
logged and ENODEY is returned; if found but we knibnat owner “is goneDIY is returned; els€)K
is returned. (1b) Again at the node’s pCFSIENODEMeturn it. IfDIY return O (subsequent code at

the pCFSm layer will perform the write/read locgllifor theOKreturn, build a second packet, this
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time a data packet and send it to pCFSd. (2b) &tdtemon, send the packet to its final destinathe:
pCFSc module in the nodavner . (3) The pCFSc module at the node: a) f@HIPWreceives the
data from the pCFSd and merge it into the nodegeR2ache, linking it to the inode’s dirty list; dx)

for a SHIPR retrieves the data from the file (using VFS fuoes that either get it from the cache or
force a disk read), packs it into a data packed, sends it to the intermediary pCFSd. (2c) Pass the
reply, OKor DIY, back to the pCFSk requestor, which will eithéure the number of bytes processed,

or zero, to flag the pCFSm layer to process thaesglocally.

21.6.6 Closing remarks
Among the details we've chosen to omit, we include communicatiorpantdcol errors:

currently, no attempt is made to recover from communicationserrof a TCP connection
aborts, for some reason, we do not try no re-open it; and any pr@wooolamong two
parties, e.g., pCFSk and pCFSd, is flagged WBROTCQand may be propagated up to the
user — but processing may continue, in some cases. Finallytotddeamount of code
(comments and blank lines included) for this set of independent exdu470 lines (coded

in C); its per-module breakdown is reported below:

include files pCFSg pCFSk pCFSd

user-level| kernel-level common (to user & kernel)
707 1430 1848

N.A. 229 256

Table 21.1 Lines of code breakdown for each module

22 The pCFS wire protocol

22.1 Introduction

The wire protocol refers to data formats used in “convierssit among pCFSk, pCFSc,
and pCFSd. It is quite simple and includes a set of one-byte comitietcre used to tag
packets, and three request packet structures: one for inoddiaperanother for region
operations, and a third one for coherency and shipping operations. Tiwpaeket formats

are used: one for region operations and another for every other case.

22.2 Wire protocol for pCFS inode table management

The “operation request” structur@p_req , is used in requests sent from pCFSk to pCFSd
for inode operations; although there are only two functions in tiSgahterface, one for the
open and another for the close, at the wire protocol there arsearate “open operations”:

IOPEN, for the very first open, andoPENfor subsequent opens of the same file (inode).
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The structure of the operation request packetyeq is

struct op_req {

char cmd,;
uinté4_t  dinode;
unsigned int mode;
unsigned int node;

}1
and the valid “commands” (tags) are

#define IOPEN 'I'
#define UOPEN 'U'
#define CLOSE 'C'

where
cmd Tags the packet for open, update or close, aretbfbove.
dinode Identifies the on-disk (and in-core, as they apedame) file inode.
mode Reserved (currently unused).
node If used, serves only for “double-checking” purposes the TCP stream

already identifies the intervening node(s).

The operation reply packet structure is
struct op_rep {

char cmd,;
uinté4 t  dinode;
int mode;
node_t owner;

unsigned long rdr_bmap;
unsigned long wtr_bmap;

h
where
cmd Tags the packet as a reply for an open, updatose.
dinode Identifies the on-disk (and in-core, as they apedame) file inode.
mode Zero for “no error, acknowledge”; positive whenfoimation is being
returned; negative for error codes.
owner If non-zero, carries the id of the inode’s owner.
rdr_bmap Carries the bit map of the node ids of read skdwarthe file.
wtr_bmap Carries the bit map of the node ids of writer shafor the file.

In the reply,cmd anddinode fields are used for double checking, only. In the prototype

every interaction (message-reply) is synchronously run to complednd cannot be

overlapped with other messages, so there is no need, stricikirgpeof acmd anddinode

fields in the reply packet, as there is no need for sequence numbers.

22.3 Wire protocol for region management

The region request structunesgion_req , is used in requests sent from pCFSk kernel

modules to the pCFSd daemon for region insertion and removal, whileglom_rep

structure is used in replies sent back from pCFSd to pCH&Sk.structure of the region

request packetegion_req is
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struct region_req {
char
uint64_t

g

cmd;
dinode;

struct pCFS_region region;

And thepCFS_region structure is

struct pCFS_region {

loff_t start;
loff t end;

node_t node;

pid_t pid;

node_t ownerL;
node_t ownerr,;
unsigned int flags;

3

Valid commands are (where “user” is a synonym for region):

#define IUSER '

#define RUSER 't

where
cmd
dinode
start
end
node

pid
ownerL
ownerR
flags

Tags the packet for insert or removal, as defatsove.

Identifies the on-disk (and in-core, as they apedame) file inode.

Byte offset where the region starts.

Byte offset where the region ends.

If used, serves only for “double-checking” purposes the TCP stream
already identifies the intervening node(s).

The pid requesting the region.

Not used in requests.

Not used in requests.

The flags argument in the udentl() call.

The reply packet structure for region operations is

struct region_rep {
char cmd;

uinté4 t  dinode;
node_t ownerL;
node_t ownerR;
unsigned long rdr_bmap;
unsigned long wtr_bmap;

%
where

cmd
dinode
ownerL
ownerR
rdr_bmap
wtr_bmap

Tags the packet as a reply for a region inser¢moval.

Identifies the on-disk (and in-core, as they amedame) file inode.

If non-zero identifies a left owner for the figsige of the region inserted.
If non-zero identifies a right owner for the lastge of the region inserted.
Carries the bit map of the node ids of read skdwarthe file.

Carries the bit map of the node ids of writer shafor the file.
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22.4 Wire protocol for coherency management and data shipping
Thecc_req request packet may be used for two different purposes: toipaaitlation
requests from the pCFSd daemon to a subset of nodes via their k&R8cmodules; and to
perform data shipment operations, i.e., moving data from one node to another.
Thecc_req structure is

struct cc_req {

char cmd,;
uinté4 t  dinode;
node_t node;
loff_t start;

loff t end;

5

Valid commands are:

#define INVPG X'
#define SHIPR 'R’
#define SHIPW 'W'

where
cmd Tags the packet for cache invalidation or datpshg, as defined above.
dinode Identifies the on-disk (and in-core, as they apedame) file inode.
node Used only in data shipping operations to iderttify target node.
start Byte offset where the operation starts.
end For invalidations, byte offset where the operatiends; for shipping

operations, amount of data to be shipped.
The structure for the reply packet for cache and data shipgpegations is the same

op_rep structure used for pCFSk/pCFSd interaction, already described in 22.2.

23 pCFS changes to GFS code

23.1 Introduction

We now list some GFS functions and the modifications we hawedinted to implement
the pCFS behaviour, using some of the pCFSm functions previoustyilwerl. The list is,
obviously, not complete; it includes a subset we believe isaeldw give the reader a better
understanding of the prototype implementation. And keeping that in mirige wieosen to
present them in a particular order, starting withgtse write()

When reading the code, one should never forget how it enters iexe@s the user calls,
e.g., awrite() , the flow of execution enters the kernelsgps_write() , then flows

through the VFS layer code until it reaches GFS, in this case gigharite()
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23.2 Selected code fragments

23.2.1 Writing to a pCFS file
The originalgfs_write() function is very simple, just
/**

* gfs_write - Write bytes to a file

* @file: The file to write to @buf: The buffer t 0 copy data from
* @size: The amount of data to write @offset: The current file offset
*
* Qutputs: Offset - updated according to number of bytes written
*
* Returns: The number of bytes written, updates of fset; errno on failure
*/
static
ssize_t gfs_write(struct file *file, const char * buf, size_t size, loff_t *offset)

return(__gfs_read(file, buf, size, offset, NULL));
}

This is, indeed, a very simple piece of code and does not #wenus to show one of the
major changes of pCFS, namely the one were the exclusive |dble amode is replaced by a
shared one, as pointed out in sections 19.4.3 and 20.3.3.4. In fact, tratlgpacthange is
buried very deep into GFS code. But, as we will see below, dimple function has,
nevertheless been extensively changetfadifications to support coherent writes across

write shared “frontier” pages (see Fig. 20.2) — which, foteilgaalso provide us with a

simple way to support data shipping — tgfa_write() into a more complex function:
static
ssize_t gfs_write(struct file *file, const char * buf, size_t size, loff_t *offset)
{

struct inode *inode = file->f_mapping->host;
struct gfs_inode *ip = get_v2ip(inode);
uint64_t dinode;

loff_t segment[3]={0,0,0};
int ownerL, ownerR, retval, retcode; int skew = 0;

/* Take the normal GFS path */ Q)
if (!IS_FILE_PCFS(file) )
return(__gfs_write(file, buf, size, offset, NULL));

/* Downwards for pCFS file with region locks or in D-S mode */ 2
dinode= (&ip->i_num)->no_formal_ino;
retval= pCFSm_clst_region_vrfy(FLOCK_VERIFY_WRITE,
dinode, *offset, (loff_t)si ze, &ownerL, &ownerR);

if (retval < 0) return retval;

/* If we don’t have neighbours, process it local ly */
if (Iretval) (3)
return(__gfs_write(file, buf, size, offset, NULL));

/* We are D-S or have neighbours */
if (retval == O_DATA_SHIP)
segment[0]= size;
else
pCFSm_clst_region_segments(file, size, offset, re tval, segment); 4
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[* Left Owner? failure, try recovery through loc
if (segment[0]) {
retcode= pCFSm_clst_shipTo(dinode, (const
segment|[0],

if (retcode != segment[0])
segment[1]+= segment[0];

else {
skew= segment[0];
*offset += segment|[0];

}

/* Local write? If failure, try recovery through
if (segment[1]) {

retcode= __gfs_write(file, buf+skew, segment[1], of

if (retcode != segment[1]) {
PCFS_INFO("Failure in __gfs_write");
return retcode;

}

skew+= segment[1];

}

/* Right Owner? If failure, try recovery through
if (segment[2]) {

retcode= pCFSm_clst_shipTo(dinode, (const ¢
segment[2], of

if (retcode != segment[2]) {
retcode= __ gfs_write(file, buf+skew, segment[2], of
if (retcode != segment[2]) {
PCFS_INFO("Failure in __gfs_write recovery");
return retcode;
}
}
}

return size;

}

Comments to the modifiegfs_write() code:

al GFS write */

(5)
char __user *)buf,
offset, ownerL);
local (GFS) write */
(6)
fset, NULL);
local (GFS) write*/
)

har __user *)buf+skew,
fset, ownerR);

fset, NULL);

(1) The overhead of the modifications to the GFS regular wsdteas intended,

)

®3)
(4)

negligible: it costs a few variable assignments and th&ation of the if statement
and its macro, which accesses local variables.

For pCFS files, we check withiCFSm_clst_region_vrfy() that the write was
executed in data shipping mode or within a valid region. We ger@ or positive
return: zero indicates we have no neighbours owning pages ¢hatnt to access;
we get a 1 if there is a owner for the leftmost (lowest indegé ) our region, and a
2 if there is a owner for the rightmost (highest index) pageur region; finally, we
get a 3, if we have both left and right neighbours owning “ounitfer pages. This
function is executed against purely local data — it does not access the daemon.
If we have no neighbour owners, we perform the local, GFS regular write.

When we have neighbourg9CFSm_clst_region_segments() — again,
executed against local data — is used to break up zBergb a maximum of three
portions: one to be shipped to a left owner, another to be handlée bycal node,
and the remaining to be shipped to a right owner (of course anynetoail — of the
above mentioned portions may be zero). The writes will be hantlgsg,g6) and

(7), below. An attempt is made to recover any failed shipping with a local writ
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(5) We shipsegment[0] bytes directly from the user buffer to the left neighbour, thus
skipping the page cactlie the local nod€in the owner node, data is injected into its
page cache); if successfully, we update the pointer to thebuffer; else, we try to
recover by adding the amount of data we should have written toettiesegment’s
duties.

(6) We takesegment[l] bytes from the user buffer and perform a local write; upon
failure, we return the error to the user.

(7) We shipsegment[2] bytes from the user buffer (again, skipping the page cache)
to the right neighbour; upon failure, we try to recover witlocal write and, if we

fail again, we return the error to the user.

23.2.2 Reading from a pCFS file
The originalgfs_read()  function (“header” comments removed) is also very simple:

static ssize_t gfs_read(struct file *file, char *bu f, size_t size, loff_t *offset)

return(__gfs_read(file, buf, size, offset, NULL));
}

Interaction among writers and readers, even when they share ntappireg portions of
the same page is guaranteed by the invalidation mechanismplamed in 21.3.1; so, we
should not need to change tifis_read()  function. Change is, in fact, required, but not to
support interactions among readers and writers; it is necegsaypport sharing among
neighbour writers, as the solution adopted for gif@ write() above skips the local
node’s page caches for file segments that are shipped. Thetefsupport reading of up-to-
date data in these frontier segments, a node may have to requaskitffbm the owner.

The majority of the code is quite similar to the onegfa_write() and could be
obtained just replacing calls to write with calls to read;ciweose not to duplicate it here, but
instead focus on one important difference: a read can take gdménst a readr(RDLCH or
write (F_WRLCKregion, so we have to check for both. The (rather) stripped down code is:

static ssize_t gfs_read(struct file *file, char *bu

{

f, size_t size, loff_t *offset)

int rw= FLOCK_VERIFY_READ:

/* Take the normal GFS path */
if (!IS_FILE_PCFS(file) )

return(__gfs_read(file, buf, size, offset

/* Downwards for pCFS file with region locks or in
dinode= (&ip->i_num)->no_formal_ino;

retry:
retval= pCFSm_clst_region_vrfy(rw, dinode,
&ownerL, &o
if (retval == -ENODEV) {
retval= 0;
PCFS_ERROR("pCFSm_clst_region_vrfy: dinod
} else if (retval == -ENOLCK) {

» NULL));

D-S mode */

_ 6
*offset, (loff_t)size,
wnerR);

e not found");

165



if (rw == FLOCK_VERIFY_WRITE) {
return retval;

}else {
rw= FLOCK_VERIFY_WRITE;
goto retry;

}

/* If we don’t have neighbours, process it local ly */
if (Iretval)
return(__gfs_read(file, buf, size, offset , NULL));

/* We have neighbours */
pCFSm_clst_region_segments(file, size, offs et, retval, segment);

skew= 0;

/* Left Owner? If failure, try recovery through local (GFS) read */
if (segment[0]) {

}

/* Local read? If failure, try recovery through local (GFS) read */
if (segment[1]) {

}

/* Right Owner? If failure, try recovery through local (GFS) read*/
if (segment[2]) {

}

return size;

}
The only comment to the modifiegfs_read() code fragment above is that the “retry

loop” is executed as follows: to verify the read againsalaregion, we first assume that a
read region has been laid out and, therefore, exe@@&38m_clst_region_vrfy with a
FLOCK_VERIFY_READBearch option; if we don't find a matching region, we “upgrade” our
option toFLOCK_VERIFY_WRITEand retry the search; only a second failure will lead to

the conclusion that no valid region exists and the read must be aborted.

23.2.3 Removing a region from a pCFS file
As described before (see sections 21.3.3.2, 21.3.3.5, 22.6.2), pCFS regiondaidro bie

and removed using the POSIX lock optiondanitl() . As it happens with other user calls,
fentl) | drops throughsys_fcntl() and, along the way, executes the GFS function
gfs_lock() , sketched below:

static int gfs_lock(struct file *file, int cmd, str uct file_lock *fl)
{
struct gfs_inode *ip = get_v2ip(file->f_mapping->ho st);
struct gfs_sbd *sdp = ip->i_sbd;
struct Im_lockname name = { .In_number = ip->i_num. no_formal_ino,

In_type = LM_TYPE_PLOCK }:

/* pCFS begin */
struct gfs_glock *gl = ip->i_gl;
struct gfs_glock_operations *glops = gl->gl_ops;
int retcode;

/* pCFS end */

/* Check for conflicts on local node and possibl y wait */
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if IS_FILE_PCFS(file)) { 1)
if 1IS_GETLK(cmd))
return gfs_Im_plock_get(sdp, &name, file, fl);
else if (fl->fl_type == F_UNLCK)
return gfs_Im_punlock(sdp, &name, file, fl);
else
return gfs_Im_plock(sdp, &name, file, cmd, fl);

}
/* pCFS begin */

if IS_GETLK(cmd)) )
return gfs_Im_plock_get(sdp, &name, file, fl);
else if (fl->fl_type == F_UNLCK) { 3)

retcode= gfs_Im_punlock(sdp, &nhame, file, fl);
if (Iretcode) {

retcode=pCFSm_clst_region_rm(ip->i_num.no_formal_in o,
fl->fl_start, fl->fl_end, (unsigned int) fl->fl_ type);
if (glops->go_sync) && (retcode == WTR ) 4)
glops->go_sync(gl, DIO_DATA);
else
PCFS_ERROR("REGION Syncing, but no glops->go_sy nc");
}else {
retcode= gfs_Im_plock(sdp, &name, file, cm d, fl); 5)
if (fretcode) {
retcode=pCFSm_clst_region_in(ip->i_num.no_formal_in o,
fl->fl_start, fl- >fl_end,
(unsigned int) fl ->fl_type);

}
}

return retcode;

/* pCFS end */
}

Comments to the modifiegfs lock() code:

(1) The original GFS code is bounded within this if, for non-pCFS files.

(2) For pCFS files, we check for a “get region” command, flaggiid v GETLK using
the standard GFS code, as in (1).

(3) When removing regions from pCFS files, after s _Im_punlock() we
trigger pCFSm_clst_region_rm() to a) remove the region from local and
global pCFS “databases” and b) send invalidation messages to other nodes.

(4) Then, we force a flush of the file (inode); this is the fisékp to guarantee
consistency with other nodes: as they access bytes withifrehieved) region, they
will be forced to get them from disk (or from owner nodes gletthem from disk).
Notes: a) thgo_sync() s, for regular files, mapped toode_go_sync() and
tests if the inode is dirty and, after flushing, clearsdingy flag; b) this version was
not tested against metadata changes (and does not flush them).

(5) Similarly, when inserting regions into pCFS files we starubing the regular GFS
function, i.e., gfs_Im_plock() , and thenpCFSm_clst_region_in() , o

insert the region into local and global pCFS “databases”.
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23.2.4 Closing remarks
The amount of code which has been added (and/or modified) to thén@HS module is

quite small; the current version, which has a fair amount o lirsed for debugging and/or
are commented out waiting for its inclusion in newer revisibas, an excess of 470 lines

when compared with GFS’ original sources. The breakdown is as follows:

Origina] GFS | pCFS m_odified
version version
Number of code files (.c) 39 Unchanged
Number of include files (.h) 42 +1
Total number of lines (.c) 33425 + 410
Total number of lines (.h) 5523 + 60

Table 23.1 Breakdown of the pCFS changes to GFS code
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Part VIII:
Benchmarking pCFS

In this Part we benchmark pCFS against “plain” GFS and othkrknew file systems
such as NFS and PVFS (where both the “regular’ configuratiith,imternal disks, and the
highly available configuration, with disk volumes provided byeaternal disk array, were

benchmarked); these benchmarks go beyond the usual set of bandwidds raettialso
account for CPU consumption.

24 Characterising the infrastructure
25 File System testing
26 NFS tests
27 PVFStests
28 Cluster File System testing: pCFS and GFS







24 Characterising the infrastructure

24.1 The test bed infrastructure
The infrastructure used for the tests was already portrayEiyi 16.2 and is reintroduced

again for ease of reference.

FC Switch

GDbE Switch 6 IBM x335

FAStT200 Disk array

Figure 24.1 Test bed infrastructure

The infrastructure was completely isolated and dedicttetesting; nothing else was
running in the nodes except for the Munin [Munin] data collectiomtag@unin-node )
which were configured to gather just the information needech®rdports; each node was
polled once every minute, and reporting/graphing was carried ouhdthex node, not
represented in the figure, so the load introduced was negliyifien reading the CPU usage
graphs, these are 2-CPU nodes with hyper-threading on, therefone dounts 4 CPUs per
node; thus, if the value reported for, say, “system time” is 20% ifdheuadjusted to 10%.

24.2 Networking: the LAN infrastructure

Network testing focused on determining the highest bandwidthabdiaifrom the hosts’
integrated Broadcom 5703 NICs, and checking if the SMC 8624T Gigéérnet switch
would be able to support all ongoing TCP streams without undue contergsis were
carried out with theetperf  network performance benchméds follows:

* We configured each even numbered node as a sanagteach odd numbered node as a client.

« Each client’'s bandwidth was separately measureeh,tit was again measured while other

clients were also concurrently accessing theiressrv
» Each test ran for 10 minutes, and was repeated thmes. Message size was 16 KB (the Linux

version ofnetperf  does not allow this parameter to be changed).

! http://www.netperf.org
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The set of figures below is self explanative, but we neviedbeadd a few comments: first,
and foremost, Munin-reported results are within 5% of @édeas reported bgetperf  (we
usednetperf —c —C -l 600 —H hostnamg so we decided to include Munin graphs
and dispense theetperf  output.

In summary, we have, for the “slow” (2.66 GHz) nodes a TCP batidwf®75.5 Mb/s, a
CPU usage of 37.6% (system: 19.81, softirg: 55.36, after adjustm2i@RtJs), and a rate of
16.2 k (thousand) interrupts per second issued by the NIC (ethOhd-thast” (3.06 GHZz)
nodes (not shown), both the TCP bandwidth, at 975.4 Mb/s, and the phtexte; at 16.9 k

interrupts per second, are quite similar, the difference being the CB&), as27.9 %.

172.16.1.1 traffic - by hour
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Figure 24.2 TCP bandwidth testing with netperf

We decided to experiment with the so called Jumbo frames, andnfigured the nodes
with 9000 bytes of MTU; the results were impressive: Muejported a bandwidth increase
to 999.04 Mb/s, and CPU usage decreased to 11.22% (system: 12.8718¢ softirg: 8.38);
the largest drop is, clearly, in the softirq usage. Intematet at the controller, as expected,
decreased to 11.5 k/s.

To conclude, movement of data across a gigabit interconnect mdgsbéut quite
expensive in CPU: the client alone can consume about 40% irP&2@de; adding both the
client and the server will easily double that figure. We tioée testing all nodes concurrently
showed no degradation introduced by the SMC 8624T Gigabit Etheritett stvMTU 1500,
and a very slight decrease at MTU 9000 (Munin reported 995.92 Mb/s).
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24.3 Storage: the FC infrastructure and the disk array

Storage infrastructure testing focused on determining the highrdtvidth available from
the FAStT-200 storage array subsystem and, while doing it, agpe$sthe Brocade
Silkworm FC switch would be able to support all six FC sted6 FC adapters on 4 hosts
“connecting” to two FC ports on the disk array) without undue cdiate recall that the FC
infrastructure uses the lowest rate available, at 1 Gb/s perrEC po

To test the array, it is fundamental to understand its intanchitecture; Fig. 24.3 shows
the architecture of an entry-level DelllEMC array, whistguite similar to the FAStT-200

array we’re using, a dual-processor configuration.

Host Application

1/0 request

J—

| Storage processor A | | Storage processor B ‘
v

| Cache ‘ Cache ‘

Logical Link Control (LLC) loop A LLC loop B

Figure 24.3 Entry level, dual storage processor disk array architecture

In disk arrays, identical physical disks are usually grouped togethdarger virtual RAID
volume; in entry-level disk arrays all disks that formgraup are owned by a single storage
processor (SP) — that is to say, only that processor can issurands and transfer data
to/from those disks (if that SP fails, then the other “takes’akie disk group). Thus when an
application issues /O requests targeting a RAID volume, requesys follow different
routes, but they must reach the SP that owns the volume.

Aggregation, at the array level, of disks into a RAID groupallg increases bandwidth
(BW) in the disks/cache/SP path (a disk is the “weakskt in the chain, delivering a
sustained BW which is clearly below the cache and/or SP’<it@pand results in increased
bandwidth to the host. However, the second SP is idle, and cannsedde A common
solution that allows both paths to be used in parallel is goeggte devices at the host using
“storage virtualisation” software such as Linux LVM; as &areple, we could aggregate into
a larger virtual LUN two RAID groups, one owned by “SP A” and another by “SP B”.

For our array we want to assess several configuratiofisg tto get the best “base level”
one to supports the typical HPC environment — large files, afterssed sequentially or in
segmented mode (different processes accessing different dedieats were carried out with

a program we have developed ourselves because widely usderithmark applications
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such as 10zorfedid not provide the features we needed, such as the ability of using direct 1/O
on raw devices. Our objectives were to find out:
« The size of the cache for a storage processore(trertwo in our FAStT-200) and consequently,
its maximum bandwidth — achievable when accessatg dached in the processor.
« If concurrently accessing both storage processotddivdegrade the above result.
* The sustained bandwidth when reading from a diskfflom cache).
e The CPU usage at the host.

Our application performs as follows: a) it starts by sedqalnteading 32 MB from a raw
file (e.g., /dev/sdb) opened with DIRECTto bypass the Linux page cache; b) for each data
size, a cache-fill run is executed — and this also touchegatpe-aligned pages in the user
buffer, preparing it for the next page fault free runs; c) itkad re-read with a given “record
size” — typically starting at 4 KB and going up to, at least,B-Mand each run is separately
timed; finally, size increased by 1 MB (or 2 MB for largde fiizes) and the above steps are

repeated.

24.3.1 Single storage processor / Single drive tests
The graph below was taken with a run against a single dig& dwned by one storage

processor; it shows that although we can read at 75 MB/savili;iMB record size, this only

happens for data sizes smaller than 46 MB; therefore wdutenthat the size array cache
seems to be around 45 MB (which is puzzling because the arragdagprbrief quotes a

cache size of 88 MB). We also conclude that the sole disk dised in the test is able to
sustain sequential reading at 45 MB/s.

BW of Array cache reads
(Bypassing the system Page Cache)
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Record transfer Size

Figure 24.4 Cache size and the sustained read bandwidth (1 processor, 1 drive)

2 http://www.iozone.org
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A set of Munin graphs was taken, and tbstat  graph, showing the read rate in 1/O
blocks per second, is now our primary source for information. Ndtaethe CPU usage is
circa 1% (adding system: 1.55, irg: 0.03, and softirq: 0.69, and thestiadj for 2 CPUSs);
note —owait  signals the amount of CPU that was not used because the process wags waitin
for I/0. Test results show (Fig. 24.5) that a maximum of 50k kleare read per second and
these triggered 440 interrupts per second in the Qlogic FC adap#&2@D0F).

CPU usage - by hour
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Figure 24.5 CPU and interrupt usage, and blocks/s in the array cache read test

24.3.2 Dual drive tests
To try to increase the array’s performance, two new configmsivere tried: the first one

with an array-based RAID-0 volume built from two disks — the volwas then assigned to
one of the array storage processors, which was respofwitilandling all I/G; and a second
configuration, where both SPs were used, each one owning a siivgle-cand, at the host
level, these drives were aggregated into a single RAIMume with the LVM software —
therefore creating the opportunity for using both storage moregand both disks) in

parallel, in an attempt to increase the performance.

% High-end (expensive) disk arrays do exist whergenthan one storage processor can issue 1/O
requests for the drives that make up a RAID volume;do not know of entry level (inexpensive)
disks arrays, such as the FAStT-200, that are dajpdiloloing it.
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Figure 24.6 Read bandwidth for 1 SP, 2 disks in RAID-0

The first configuration enables us to check the array’s ahditaggregate bandwidths of
individual disks that make up an array-based RAID volume;dhaeltris quite poor from the
perspective of the sequential read test — when compared to the dislgcase in Fig. 24.4,
the bandwidth increased by a mere 12% to 50 MB/s. However/Ghete increased from
50k to 70k blocks/s which is an indication that it may penfdretter in random read/write
testing (graphs not included).

BW of Array cache reads

(2 processors; 1 disk/processor; LVM host-based RAID-0)
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Figure 24.7 Read bandwidth for 2 SPs, 1 disk/SP. LVM stripes them in RAIDO

The above graphs confirm that the array does not degradenitsvidth when using both
SPs in parallel; in fact, recalling from Fig. 24.4 thathe&® is able to deliver a maximum of
75 MB/s from its cache, and each disk contributes with a sustained bandvAétivié/s, the
array’s total is fine at 150 MB/s when reading from itshes) and a sustained 90 MB/s
when reading from both disks in parallel. Notice that the grapk#g 24.8 below show the
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CPU usage has increased slightly to 1.6% (system: 2.38, irq: 0.081:9282, halved for 2

CPUs), while a maximum of 50k blocks read per second was reached forsadhati.

CPU usage - by hour
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Figure 24.8 CPU usage and |I/O statistics for 2 SPs, 1 disk/SP and RAIDO LVM

25 File System testing

25.1 Introduction and rationale

The rationale for the set of tests we will perform is the following very crude statement,
this work is aboutlata(file) sharingamong processes accessing “file services” that either run
in the node, or in “remote” nodes; and furthermore, these serdiegeared towards
performance, in a HPC-way. Therefore, tests will have to spebjfieatiet this environment.

Carrying out short, easily reproducible, and yet meaningful testiserefore of primary
importance; but, regrettably, popular /0O benchmarking applicatiansot be used here; as
an example, we refer two widely used ones: Bonnie++ and |IOtoadormer was designed
to test file system performance of single node architecthi@sever, 10zone can be used on
multiple nodes, and furthermore has an optid, briefly referred in the documentation as
“lock files when reading or writing” [Cap+03]; unfortunately, looking at phegram’s source
code, we found that it usémntl() calls with arguments to lock/unlock the file as a whole,
so it is worthless for us.

Another option is to use real applications; for example, an Mpliation such as one we
have developed in-house to process tomography images [Cad+(fjedsas the image file
in big, disjoint regions, for reading and writing. However, wencanuse it (yet) for pCFS
testing, as usage of MPI over pCFS requires a new ROMI@rdfto cater for pCFS open
extensions, etc.). We think that this is probably a small grgjecdocumentation on the

ROMIO internals does exist), but not doable within the timeframe ofvotk.
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25.2 The “benchmarking application”

So the only remaining option left was to develop our own benchmaskiptication, and
that’s just what we have done. It is a fairly simple apids, composed of a controller and a
set of exerciser programs.

The controller runs in a node and accepts a string as its sole parathetstring is a
sequence of characters, S and P, which specifies that an exshmsild be fired (along with
others) either sequentially (S), or in parallel (P). A fewngxlas are:SSS where three
exercisers will be fired in sequencePPS where a first exerciser will start and, when it
finishes, two will be fired in parallel; then, when they are both done rthfone will be run.

An exerciser is an I/O program that reads or writes; it ds@parguments the file size, the
buffer size, the total number of exercisers that will bed usethe test, and its id number.
There are six versions of the exercisers; we'll just shoevreader’s list, the writers being
symmetrical to this one:

e rdr , a simple reader

e rdr-lck , areader which performs full region locks befibr&arts reading

e rdr-sml-lck , a reader which performs a per-record lock/reddfknsequence
When an exerciser is started, it registers with the contrafid computes the offset where it
will start accessing the file (using its id and the fileglf); then itlseek()  there and, if
that’s the case, locks the region with a standaytg-rangefcntl() call; finally, it waits
for the controller's command to enter the /O loop. Upon terminatiomeports to the
controller that its work is done, and waits for the termination command.

This benchmark can be used to exercise a broad range ofosigatiich as modelling /10
behaviour from parallel applications; for example, when a diplication performs I/O over
NFS, the ROMIO library uses a per-call lock/read/unloausace that we can accurately
reproduce with thé-sml-Ick exercisers. We can also, to some extent, simulate multiple
file access by streaming over file regions that are varyrdbm each other (the minus is that
simulation over a single file does not properly exercise thtadata part: for reading, it may
profit too much from metadata caching, while for writing theré & too much locking

contention); however, in our tests, we do not try to simulate accesses farfiés.

25.3 Local file system testing: ext3 performance

We also briefly tested local filesystem performance meaig, ext3 — as this is one of the
most utilised local file systems, and the one we're going &tassupport both NFS and
PVES testing. We use a 32 GB ext3 filesystem on top of the best configwvatfonnd from
previous tests, i.e., a 64K striped LVM RAID-0 created with 2sptay disk partitions, where

each disk was attached to a different storage processor; allegstsun over a 16 GB file.
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25.3.1 Single process testing
Our first experiments where conducted with a single processgtitiisgs particularly when

reading, allows us to get a rough figure on the storage sgstériatency, one that can help
us to understand single-process benchmarks that we will perfdem dn, such as when
reading from a single NFS or PVFS client. Sustained perficeavas tested both for reading
and writing, with both buffered access, through the page cache, mud HO; we also
compared write-though (using tii& SYNCflag option on the open) with fdatasync()
flush triggered at the end of the write loop. Array-based write cachasgiisabled.
ext3 BW for sequential, buffered 1/0
(2 processors; 1 disk/processor; LVM host-based RAID-0)
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Figure 25.1 Buffered I/O in the ext3 striped volume.

We can clearly see that the strategy Linux devisedfdfered reads aims to deliver a
smooth performance over a broad range of transfer sizes; thise®ult of reading 8 pages

4 of

(32 KB) for each new request, as configured/groc/sys/ivm/page_cluster
read-ahead policies, and of fragmenting large reads; thresét is around 45 MB/s over the
whole range. A write-through policy for eaglrite() call is definitively too expensive
except for very large buffers, and periodic flushing widatasync() seems a good
compromise as it allows for write-combining of several pages

On the other side Fig. 25.2 shows that for direct I/O no opdiinizs are attempted, so
small-sized requests result in very low bandwidths, but vege leequests do extract, at 85
MB/s for reads, almost 100% of the sustained bandwidth available frosnréye

It is a disappointment that the highest bandwidth we could get the ext3 filesystem
(Fig. 25.1) is 50% below the measured array’s sustainedrpehce (Fig. 24.7); we

switched to ext2 and got the same results, so we looked fdbleosauses. VFS and the VM

* Increasing this value brought no sizeable benefits
® There has been some going forth and back in diftekernel versions on whether flushing calls
should wait that everything is committed to diskramediately return after triggering the flush...

179



subsystem policies for the page cache, as mentioned above, dbutenfior this decrease,
but other possible explanations include the fact that ext2/3 ringpigtions have been
reported on several online sources to be below what can bevedhiith other better
performing file systems available for Linux, such as XFS [Chi+06].
ext3 BW for sequential, direct 1/0
(2 processors; 1 disk/processor; LVM host-based RAID-0)
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Figure 25.2 Direct I/O in the ext3 striped volume.

25.3.2 Multi-process experiments
A set of experiments involving regular buffered I/O with tiplé executing processes

running on a single node was then performed, the main objectivetheiobaracterisation of
the node’s behaviour when, e.g., the node is used as a file (NFS 8) Bétiver and has to
serve multiple concurrent requests — omitting the “network” thedDFS parts, just to see
how the local file system and storage subsystem do perform.

Segmented reading of a large file in a ext3 volume

Processes fired in parallel, reading distinct regions of the file
Disk is a LVM RAIDO with 2 array LUNSs. Stripe size 64 KB
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Figure 25.3 Segmented reads for increasing number of concurrent readers
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Three sets were run: multiple readers (Fig. 25.3), multipiters (Fig. 25.4), and sharing a
file among a single writer and multiple readers (Fig. 25.5),aatlessing distinct, non-
overlapped ranges within the same file; as the number of agireeesses is increased, so is
the size of the “region” under access, in order to force eigahit to access a minimum of
4GB to avoid any cache effects; for example, with one and two gsesave use a 8 GB
access range; with three processes, a 12 GB accessaadgénally, with four processes, a
total of 16 GB are accessed.

Segmented writing of a large file in a ext3 volume

Clients fired in parallel, writing distinct regions of the file
Disk is a LVM RAIDO with 2 array LUNSs. Stripe size 64 KB
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Figure 25.4 Segmented writes for increasing number of concurrent writers
Single writer/multiple readers over a large file in a ext3 volume
Clients fired in parallel, accessing distinct regions of the file. No locking
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Figure 25.5 Single writer / multiple readers, non-overlapping regions
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In short, every segmented test shows that tried configuratitin avsingle logical disk
made up from an LVM based RAID-0 with two disk drives, oneqoatroller — which fared
well under the sequential tests — cannot, in general, copehaittieimands of the segmented,
large seek inducing access pattern, as exercised by these/Nith a single exception — the
shared single writer/single reader test in Fig. 25.5 -eatbtshow that aggregated bandwidth
decreases as the number of “tasks” (processes, here) increases.

Explaining the anomaly, i.e., the single writer/single readerfaesiy much better than the
rest is not something that we will pursue, as it requiresuah deeper investigation (one
cannot, however, fail to notice that in this test data is moeedss a full duplex link in
opposite directions). We are satisfied to get a baselimesiigle node (in this case, a node

with two HBAS) in order to get a better understanding of multiple note tes

26 NFS tests

26.1 NFS test infrastructure

For the NFS tests we have used the best configuration we geulfiom experiments
carried out in the previous section: for the (single) sewerused a node with two FC
adapters, 4 GB memory and two 3.06 GHz Xeons; the disk amaycenfigured with one
disk per storage processor, and the disks were striped with toVcreate a single volume
that is accessed through both adapters in parallel; the volumdowasatted as an ext3
filesystem and a single 24 GB file was created; findtly the Gigabit adapter, we could not
use Jumbo (MTU 9000) frames, as NFS simply hanged, so we hasbtbteregular sized
frames (MTU 1500).

For all tests we used NFS v3; at the server the ext3 volumsemounted witmoatime
and exported with thasync option while, for clients, read and write sizes of 32 KB aver
TCP client/server channel were usadiZg=32768, wsize=32768 ); furthermore,
unless otherwise noted, all tests were run againfgd daemons, and were performed three
times to get averaged results (except when taking Munin CPU and tatietical data, where

a separate single run was taken in order to get simple, uncluttepéd)gra

26.2 Reading from the server’'s cache

Full file scan tests were carried out to determine the balthvévailable to (seen by)
clients when sequentially reading a file; first, we exgibbuffer sizes from 4K to 4 MB in a
single client test reading from the server’s cache;dheltris a bandwidth of 116 MB/s, quite
close to the value we've predicted in section @8. 9.8) and to the GbE maximum, as
measured witmetperf ; we use it in Fig. 26.1 to denote the “upper limit” in bandwidth for

our configuration. Keeping the amount of data accessed small ermdighnt the server's
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cache and increasing the number of clients results in amBateaggregate bandwidth, but

the bandwidth seen by each individual client drops in proportion (not shown).

26.3 Segmented reading

The next test was to have each client accessing a distowiesit of the file: each one was
given a different starting offset, and then proceeded sequengating its segment (all were
disjoint from each other); tests were carried with cdieht caches and with data either fully
cached at the server (keeping the maximum offset accestms beGB), or un-cached
(forcing each client to access a 4 GB region — anpiaeis the test with only one client,
where 8 GB were accessed). Fig. 26.1 reports our previous fifatitige “small” 1 GB file
fully contained in the server’'s cache, plotted as an upper fonibandwidth under NFS,
together with tests accessing 8 GB (1 and 2 clients), 12 GB (3 clients) aril (#6cEents).

Reading a large NFS file
Clients fired in parallel, reading distinct regions of the file
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Figure 26.1 Read scalability for segmented reads over a large file

The graph above highlights two problems: the first one is the bdtidfer a single client
which, at 26 MB/s, is circa 40% below the file system’s bandwidth capabilit, B4s; the
second one is that adding more clients, in this case with ees¢gpinaccess pattern, results in
very small improvements with diminishing returns every time.

Loosing bandwidth with a single sequential reader is a conseqathoth the application
usage of synchronous reading (even taking into account the'kaead-ahead), i.e., a new
read request is only submitted after data for the previous one diaslélivered, and of the
increased latency introduced by NFS over-the-network requestissp However, the

application can be modified to break its synchronous read behaitiver through the use of
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asynchronous (or non-pending) reads or via multithreading, whichustitlly result in an
improvement in the per-client bandwidth.

Increasing the number of clients will result in more aggexhdandwidth only if the
server's storage subsystem is able to withstand the cliesfgest rate — which, in this
segmented access test, it doesn’t, as it is not able to déigenumber of IOPS (I/O
operations per second) required to sustain the client's requestfaa this access pattern,
because the array is already at its limit, 31 MB/s doal ext3 segmented accesses, shown in
Fig 25.3. This may, however, be mitigated with an interposed Igtottalligent” scheduler
between clients and the server, such as alOLi [Leb06]. al®&tialises, recombines, and
reorders client requests in a way that, in the end, itheitlefully result in a more effective
request sequence being delivered to the NFS server. Howd®éi, dbes not seem to be
designed for situations where files are write shared between cherdtsye could not find if it
does handle request “re-combination” in the presence obfiksl— something that has to be

done if one uses NFS for shared file access, even in HPC applicatiembelaw.

26.4 Segmented writing

26.4.1 Safe file sharing in NFS
NFS writing by multiple clients raises several issues om @aherency. For ease of

reference, we reproduce here a fragment from 11.3.3: “the only waamwguarantee strong
cache consistency in NFS (versions 2, 3 and 4) is through the tessoad (also called byte-
level) locking. Use of file locking in NFS requires some kremlige of its interactions with
caching, otherwise the expected behaviour may not materialibe”weak cache coherency
model of NFS and the fact that MPI doesn’t provide user leaaKirig primitives is the
reason whywhen accessing data with a MPI application over a NFS filesydient nodes
should be configured for synchronous writing with no data or attribute ca¢hhrag+04]

From the synchronicity point of view (to keep it simple and disongsNFS v3) there are
four possible combinations as we “configure” the client/sepegr, ranging from both
configured for asynchronous behaviour, to both being synchronous. Gertrex side (on
/etc/exports ) we may use either the asynchronous optasyric ) which immediately
replies to clients as data is received on the servelinipaw the local filesystem/kernel the
decision on when to flush data out, or use the synchrorsyus | option which will only
reply to the client after having committed the data to'di®k the client side, we can request
synchronous behaviour either globally, by specifying the “no attrilbathing” (oac )
option on the mount command, or for selected files only, usin@ ti&Y NQption on the file

open. We have not tested for synchronous writing on the serveritsisieyell know that it

! Things may be a little bit confusing, as to guéeena true end-to-end synchronous operation one
should also mount the server’s local filesystenhiliiesync option.
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leads to a large drop in performance, and we feel thatsisis difficult to justify on the
grounds of “protecting against data loss”: a typical appticatises several related files
making it difficult to recover when all but the one which viesng written at the time of
failure were successfully committed to disk; it is usually simgeestore all files.

Therefore, tests were carried out always with the serasysc export option. In the next
set of tests we investigate NFS’ write scalabilityibgreasing the number of clients which
are concurrently writing to the server; and we test botlthibest possible performance case
(but an unsafe one which my lead to lost updates) where each elibaiscdata and metadata
at will and writes asynchronously, and for the “correct” (saf@ye, where we use “no

attribute caching’rfoac ) option together with locking.

26.4.2 Unsafe file sharing: searching for maximum performance
From the HPC point of view, write file sharing is not an infrequEse; as such, we will

try to determine what we can achieve as “best case” inpasthce terms when writing a
large file; we start from a situation where clients cadata and metadata at will and
asynchronously write to the server (which also caches ddtaatadata, flushing it at will).
As depicted in Fig. 26.2, a single client writes at 35 MB/s, iging only about 1/3of the
available GbE link bandwidth; increasing the number of cliezgslts in minor variations in
bandwidth usage, with three clients better than a single lartehoth two and four clients
performing worse than just one. Of course, one can only use thigywatidon when
applications do not concurrently share files for writing (thesgmee of a single writer is
enough to trigger coherency issues); in this case our multiptersvtest is grossly unsafe,
possibly suffering from lost updates.
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Clients fired in parallel, writing distinct regions of the file

Client: default (async) mount. Server: export async
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Figure 26.2 Write performance: best values with an “unsafe” configuration
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We have another anomaly, now in the test with three cliegnawe will not try to
explain it, one reason for it being that these configuratisesnat usable in “real life”

situations, as they do not guarantee proper file coherency.

26.4.3 Coherent file sharing: client locks its entire region, writes, and then unlocks it
Now we look at two different ways of using NFS to shardeaaimong writers running in

distinct clients without introducing coherency problems; in bofles&lients mount the NFS
filesystem with thenoac option and the applications uimtl() locks.

Our first case looks at the performance we can geteiftdiaccess non-overlapping regions
of the file in the following way: first, every client, usiniget standardcntl() call, locks
the entire region that it will access; then, it sequentialtites over it. Our findings are
reported in Fig. 26.3; the first thing we notice is thatIsirajent performance is 15 MB/s, a
drop of almost 60% when compared to the single writer in Fig. 26.2, and a consequeace of th
combined action of locking amibac resulting in a write through behaviour. As clients are
added, aggregated bandwidth does increase, reaching a maximum of about 26 MB/s, a drop of
about 30% from the “unsafe case” and a feeble usage of a Gigabit Etimenet

Shared writing over a large NFS file

Clients fired in parallel, locking and writing distinct regions of the file
Client: "noac" mount. Server: export async. Full "region" lock
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Figure 26.3 Write performance with region locking

26.4.4 Coherent file sharing: per record lock/write/unlock
Our investigation on NFS’ performance continues with a simulafievhat would happen

when an MPI application writes over a NFS shared file — vwep kbenoac option, use
“regular” non-MPI processes (clients) which lock just theebythey are going to write into,
write, and finally remove the lock, as performed by the ROMIO driver f@&.NF
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Shared writing over a large NFS file
Clients fired in parallel, locking and writing distinct regions of the file
Client: "noac" mount. Server: export async. One lock/unlock per write
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Figure 26.4 Write performance with record locking

The overhead of the locking protocol becomes quite clear whdnokeat Fig. 26.4: for
small writes, the latency of the request-reply traffic exchamngth the server when the client
asks for a lock (and releases it) becomes an importaot facthe overall performance drop,
particularly if multiple clients are involved; however, farcord sizes above 64 KB the
overhead becomes less importaig-a-visthe time necessary to complete the write, so the
bandwidth is just slightly below the value we've got in the imev “big region lock”
experiment on Fig. 26.3.

26.4.5 File sharing with a single writer/multiple readers
We conclude with a last experiment, one where we deal wsttemario that can be found

in several parallel applications: file sharing among ralsi writer and non-overlapping
multiple readers. It is an interesting test, asndy, under the right circumstances, be
performed without forcing clients to use both locking and synchroncuevioeir together
(even if readers have stale data cached, they won't aitdsswever, it requires the use of
an invalidation protocol, one that would trigger invalidation afhed stale data — and this is
something that does not exist in NFS. Therefore, we stalt avitull region lock/access/
/unlock test similar to the one reported in Fig. 26.3; thesudifice, now, is that tests are
performed with a single writer and an increasing number of readerbefore, the use of
fentl() locking and filesystermoac mounting at the client guarantees correct behaviour

at the expense of reduced performance.
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Single writer/multiple readers over a large NFS file
Clients fired in parallel, locking and writing distinct regions of the file
Client: default (async) mount. Server: export async. Full "region” lock

50,00

40,00 + - === = 53—
—_ Number
2 .
g of clients
E 30,00 - ‘\-‘ —————b—¢ ———— —& Y —e—4 clients
m
3 —a— 3 clients
‘% 20,00 1 —@— 2 clients
>
(=)}
<

10,00 -

0,00 . T T T

4K 8K 16K 32K 64K 128K 256K 512K 1024K 2048K 4096K

Record Size

Figure 26.5 Non-overlapping 1 writer/N readers with region locking

26.5 Resource usage

The last step of this investigation on NFS usage to supportlid®le sharing is a set of
measurements both on the clients and in the server, includiBgshistics (server), disk
access statistics (server) and, both on clients and serge€Rb, Ethernet bandwidth, and
interrupt usage - all taken for a single run of the four client wiiéstsof Fig. 26.4.
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Figure 26.6 (a) Resource usage at the server: LAN, interrupts and CPU usage
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Resource usage at the server shows us that the link is at 22 M®ut 1/8 of its full

capacity, even with four concurrent clients; this is a cpmsece of the write-through policy

applied when bothoac and locking are used. However, CPU usage is already at al86ut 40

i.e., 1/3" of the two CPUs in the server has already been consumedingthétnetperf

used 40% just to move data across the GbE, this roughly irgliteteif more clients are

added and/or a more benign access pattern is used (and thecaarivarease its debit) CPU

will probably become a bottleneck before the server’s link bandwidtkhiausted.
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Figure 26.7 (a) Resource usage at 2.6 GHz clients
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Figure 26.7 (b) Resource usage at 3.06 GHz clients
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Figure 26.7 shows client resource usage; only two clients arenstowe representing
nodes with 2.6 GHz CPUs while the other represents nodes with 3.260BHs. It is

obvious that, at a low rate of 5.5 MB/s (per client), CPU consumpgiaiready becoming

relevant to applications, at about 22 % — the exact amount depending on clock speed.

26.6 Summing up NFS results

Table 26.1 below summarises the NFS results; for shared tests, only results with no

client caching and “big region” locking are included. CPU usageesents the maximum

usage over the whole 4K-4096K range, and occurs in the test with 4 writers

Readers Writers 1 Writer/ N readgdrs CPU usage
KB| 1 2 3 4 1 2 3 4 1 2 3 Clienfs Server

4] 261 | 295| 288/ 294 146 217 240 236 39.2 30.79.32
8| 235 | 287 290 291 147 21y 240 247 394 29.89.37
16| 226 | 28.6| 29.0 2994 147 218 240 296 40.0 29.99.27
32| 225| 282| 290/ 29 148 219 240 238 400 20.89.2 2
64| 223 | 282| 289 201 148 219 24]1 2949 402 20.89.17

128 221 | 281 286 289 148 22p 240 298 401 206904 452 39.3
256 | 21.8 | 27.9| 285/ 284 148 22p 24{1 238 396 20.68.82
512| 21.5| 27.7| 283 284 149 224 24{1 238 39.3 20.38.72
1024| 21.3 | 27.8| 283 284 148 218 240 297 394 202872
2048| 21.3 | 27.7| 283| 284 148 220 24{1 297 383 20.48.97
4096| 21.4 | 27.7| 283| 284 148 221 241 296 374 20.489%

Table 26.1 Summing up NFS results
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26.7 Concluding remarks

Quite surprisingly, NFS testing was a nightmare; we had & $#tver problem with two
kernel versions — Scientific Linux 5 2.6.18-8.1.15.el5 and CentOS 5.2 28.4i5-— and, to
fix them, we had to install version 2.6.18-92.1.18.el5. The problem was reldi€®Gtarites:
performance with a single writer was 2 MB/s before, and went up toB85 (#ig. 26.2) after
the upgrade. Then, we had to abandon the single writer/muléipte tests with small locks
as, when the reader client had already read about the saountaof data as the node’s
memory size, the Linux kernel would sometimes invoke the kéd@M (out-of-memory
killer) and start killing processes, sometimes even hangjirgashing the system. Another
problem we’ve found with the NFS server was that sometiafes, a client crash, it did not
drop the locks left out by the client.

When we changed the client kernels to the newer version (2.6.18-925). W& &e re-run
the tests of figure 26.4 for four clients, and found differendggm3%, which we deem not
relevant; so all NFS client tests reported here use the kdaeel version (2.6.18-8.1.15.el5)

while for the NFS server we've used the newer version (2.6.18-92.1.18.el5).

27 PVES tests

27.1 PVFS test infrastructure

For the PVFS tests we defined a configuration with 6 nddesl/O servers, one metadata
server (doubling as client), and four clients. For I/O ssivere tested two alternative
configurations: one where I/O servers have internal disks diskeper server) as shown in
Fig. 27.1; and another where 1/O servers use LUNs provided bydkeaday, each server

mounting its private volume, as shown in Fig. 27.2.

S

I/O servers

4

| | | [

PVFS clients
sl D server
Figure 27.1 PVFS test configuration: 1/0 servers with internal disks

The reason behind the configuration with external disks, hereaferred as HA-PVFS, is
that 1/0 servers with internal disks cannot withstand node failifras:I/O node fails, the file

system becomes unavailable; with HA-PVFS, a “spare” node mdwetsiN “left over” by
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the crashed node, and restarts the PVFS daemons; clients earg bfief pause, resume

access to the file system.

R ———1 FC Switch

I/O servers @

PVES clients

== MD server

Figure 27.2 HA-PVFS test configuration: 1/0O servers with external disks

For the 1/O servers that access external disks, we sz “fat” nodes: each node has
two FC adapters, two 3.06 GHz Xeons, and 4 GB memory; the dskwas configured as
before, with one disk per storage processor, and the disksstriged with LVM to create a
single volume that is able to be accessed through both adapmagailel. The difference,
now, is that we use one logical volume per server, so we areaisingl of four disk drives.
PVFS data stores were formatted as ext3 file systaeohsaaer the PVFS filesystem, a single
18 GB file was created with PVFS' defaults: a 64Kps&triand a round robin distribution
which places every other stripe in a different I/O ser@n the Gigabit adapter, we used
regular frames so we may do a fair comparison against W&Sing was performed using
version 2.7.0 and the POSIX interface; this allows us to rdwessame applications — with
locking calls disabled; this decision (as explained befo@sid) does, of course, leave out

untested one major aspect in PVFS: its integration with MPI.

27.2 PVFS I/O servers with internal disks

27.2.1 Read-only tests
This set of tests characterises PVFS reading behaviouradoessing large files, ones that

cannot be fully held in the I/O nodes’ caches; for that reason we aleeyssal6 GB, to stick
to the general rule stating that one should access attheastouble of amount of RAM

(which, when both I/O servers are accounted for, is 8 GB).

27.2.1.1 Full file scanning
Fig. 27.3 reports the aggregated bandwidth as the number of di@ntyeased and the

whole file is sequentially scanned; accessing a file semallgh (2 GB) to be fully contained

in the servers’ cache allows us to plot PVFS’ upper bandwidth limit.
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Multiple readers over a large PVFS file
Clients fired in parallel, reading the whole file
Each /O server has an internal disk. PVFS stripe size: 64 KB

60,00

200,00

180.00 | Limiting speed: reading data cached in the server's memory (4 clients)

160,00 ~
— Number
£ 140,00 - of clients
m
§ 120,00 - —e—4 clients
m —A—3 clients
- 100,00 + .
Qo —m—2 clients
T
> 80,00 + —e—1 client
=3
(=]
<

40,00 -

20,00 -

0,00 T T T T
4K 8K 16K 32K 64K 128K 256K 512K 1024K 2048K 4096K

Record Size

Figure 27.3 Read sharing a large file, sequential access (internal disks)

27.2.1.2 Segmented file access
The set of tests performed by PVFS clients is similathtse previously performed to

evaluate NFS. Fig. 27.4 reports the aggregated bandwidth forghmested reading tests as
the number of clients is increased; as before, we accisssaction fully contained in the
servers’ cache (2 GB) to plot the PVFS’ upper bandwidth limit.

Reading a large PVFS file

Clients fired in parallel, reading distinct regions of the file
Each /O server has aninternal disk. PVFS stripe size: 64 KB
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Figure 27.4 Read sharing a large file, segmented access (internal disks)

27.2.1.3 Read tests: conclusion
Our attention is obviously drawn first to the large differenmcéandwidth for 64K and

128K reads — all cases exhibit it, independently of the numbeieots| and whether access
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is sequential (Fig 27.3) or segmented (Fig 27.4) and data is cacheot — effectively
creating two distinct ramps where performance steadily rises asfteedize is increased.

Another interesting result is that bandwidth for cached datasacreaches 185 MB/s for
sequential access (and very close, in segmented access),isvaiobut 20% less than the
maximum reported byetperf  for GbE, at 116 MB/s per port (with two servers, one could
achieve a maximum of 232 MBY/s); thus, capabilities of the GbE medium Hnetiised.

Finally, segmented access confirms that I/O subsystem perfoenia fundamental, and
that I/O latencies incurred can severely limit what we aahieve, regardless of the peak
performance of both subsystems (/O and LAN); here, even girbgsguasi-random” seek

patterns, internal disks were able to deliver 40 MB/s.

27.2.2 Write tests

27.2.2.1 Segmented file access
For multiple writers over the same file, segmented accedbei only test we perform

(contended writes over the same region do not make much sdwse);tésts do not require
special “precautions” with regard to coherency, as we'vereadbin NFS, because PVFS
guarantees coherency in a simple way — clients do not cacharthtarites are atomic in
respect to each other; PVFS’ developers state that, ifagang accesses are tried, the result
is unspecified.

Shared writing over a large PVFS file

Clients fired in parallel, writing distinct regions of the file
Each /O server has aninternal disk. PVFS stripe size: 64 KB
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Figure 27.5 Write sharing a large file, segmented access (internal disks)

When compared with reader tests, the above write graph shows ea aopbsistent

behaviour across buffer sizes; the only unexpected result ieggatgated bandwidth for
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three nodes is worse than for two and four nodes; and, for butfes between 32K and
1024K, it is even slightly worse than single client bandwidth.

Writing data sizes that are small enough to be “containediimihe caches of the PVFS
I/O servers results in bandwidth steadily increasing in praguotd the write buffer size; in
this experiment we reached a maximum of circa 160 MB/sdohed writes, i.e., about 15%

less than the corresponding reading test — but still showing good use dfEHm@dwidth.

27.2.3 Single writer/multiple readers tests
We conclude this set of tests with a single writer/noniapeing multiple readers test; this

test, as the multiple writers test above, can be run with naaspg®ecautions other than
guaranteeing that either readers do not overlap with the writer or, if thehyedardering must
be enforced by the application because PVFS does not suppoudcfiad on its POSIX

interface [Chi+07].

Single writer/multiple readers over alarge PVFS file
Clients fired in parallel, reading and writing distinct regions of the file
Each /O server has aninternal disk. PVFS stripe size: 64 KB
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Figure 27.6 Non-overlapping single writer/multiple readers (internal disks)

Aggregated bandwidth for the single writer/multiple readessdigplayed in Fig 27.6,
shows that performance increases steadily with buffer sidethve exception of the anomaly
in the test with a 128K buffer size, probably a manifestatiothefperformance drop seen
before in the reader tests displayed in Figs. 27.3 and 27.4.

27.2.4 PVFS tests with internal disks: conclusion
Table 27.1 below summarises the test results for the seginaotess tests, with CPU

usage reflecting worst case (4 writers, un-cached) raidding the usage of both metadata
and I/O servers.
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Readers Writers 1 Writer/ N readdrs CPU usage
KB 1 2 3 4 1 2 3 4 1 2 3 Clienfs Servers
4| 79 | 125| 96| 161 7.2/ 132 104 161 132 156 1B.8
8| 145 | 180| 197 232 130 219 140 232 213 2152972
16| 205 | 25.0| 239 271 166 232 156 241 247 25.86.02
32| 318 | 282| 275/ 337 215 294 187 337 340 263173
64| 443 | 30.7| 283 372 277 258 23]1 303 425 29.956 3
128 105 | 21.5| 230/ 319 378 366 280 444 170 218764 796 101.3
256| 225 | 33.6| 334| 44d 337 34D 304 395 284 312184
512 27.8 | 38.7| 43.3| 497 365 352 330 342 382 412894
1024 | 423 | 51.8| 60.6| 644 358 37¢# 331 517 442 50.87.29
2048| 50.2 | 67.9| 77.9| 857 367 39p 370 436 516 59.90.47
4096| 53.4 | 78.9| 91.2| 984 376 414 409 447 545 6510549

Table 27.1 PVFS results for 1/0 servers with internal disks, segmented access

27.3 PVFS 1/O servers with external disks (HA-PVFS)

27.3.1 Finding the appropriate configuration
We conducted our first external disk tests with in a condigom with a single physical

disk per I/O server, one where each server’'s LUN was owyneddifferent storage processor
in order to provide a contention-free path; the accessrpati®s segmented, as before, and

we performed a single test with four readers; results aredextan Table 27.2.

Record Size (KB)
4 8 16 32 64| 128 256 51p 1024 2048 4096
Aggregated

BW (MB/s) | 4.6 7.7 12.3 18.2 27.3 283 354 43[1 455 48.3 6 6f.

Table 27.2 Aggregated BW for I/O servers with a single disk per node

A brief look at the test results shows that bandwidth is i@myfor small sized requests,
namely when compared to what we got with internal disks, asteepior Table 27.1: there,
for a 4 K record size it was about 3.5 times faster, at 1&6sMBan here, at 4.6 MB/s; when
size is increased, BW also increases but values wayslbelow those previously recorded
for the corresponding buffer sizes. We think that this drop in pedioce is a consequence of
the increase in per-request processing latency, as thgestoracessor’'s request processing
overhead (perhaps in the ms range) gets added up with disk drive fatency

The remaining tests were performed with four disks, cordgjais follows: each node was
given a LVM striped volume created from two different diskach one owned by a different
storage processor. The configuration for each volume is thikasito the one previously
used in ext3 and NFS tests, and gives each node access taxtheim available bandwidth,

from the node’s point of view. However, this configuration raises pgossibility of path

! Internal disks and array disks, coincidently, ialentical in everything but the disk interface (F€
the array vs. Ultra-SCSI 320 for the internal djsks
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contention between nodes, as: a) an application request in a nottegggédli one request per
HBA (to serve the two LVM stripes); b) each PVFS 1/O sefivas two HBAs, and each one
will submit one request to each SP; c) therefore, a singikcation request will drive both
storage processors to perform four requests. If two nodes happeirtot their requests
“exactly” at the “same time”, as PVFS does, there wiltwe simultaneous requests per SP,
data will have to be transferred over the same FC link, antkgtion occurs; if this as an

effect on performance is something we will look at, further down.

27.3.2 Read-only tests

This set of tests was a re-run of the set of reading festlarge files, as performed in
27.2.1, and was carried out to evaluate the contribution of the diay &mr PVFS’
performance.

27.3.2.1 Full file scanning
Fig. 27.7 reports aggregated bandwidths as the number of clerntereased, each

sequentially scanning the whole file; in this graph, we don’'tthlBW for cached access, as

it's exactly the same as in previous tests.

Multiple readers over a large PVFS file
Clients fired in parallel, reading the whole file
Each /O server has a LVM RAIDO with 2 array LUNSs. Stripe sizes: LVM=PVFS=64 KB
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Figure 27.7 Read sharing a large file, sequential access (disk array)

27.3.2.2 Segmented file access
In the segmented reading tests each client reads itdilewrgion, repeating the test with

various record sizes, as usual; Fig. 27.8 plots the results,ci@asing numbers of readers
(once again we do not plot cached BW access).
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Reading a large PVFS file
Clients fired in parallel, reading distinct regions of the file
Each /O server has a LVM RAIDO with 2 array LUNSs. Stripe sizes: LVM=PVFS=64 KB
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Figure 27.8 Read sharing a large file, segmented access (disk array)

27.3.2.3 Read tests: conclusion
The benefit of having each per node LUN made up from two physikd dan be seen

when we compare results for segmented read tests with foclients, as reported in Fig
27.6 (and summarised in Table 27.3 further down) with those leT2r.1: they show
bandwidth improvements for requests larger than 256K (for snaikes, it stays essentially
the same).

The array seems to reach its maximum at about 60 MB/s, forlband 2-disk LUNS; this,
we believe, is not caused by the aforementioned contentionragetprocessors and/or FC
links, as ext3 experiments (see Fig 25.3) had already shown ardnog% to 30 MB/s when
multiple readers were executed in a single node. Again, we b&erey introduced by the
SP as the cause of the performance drop; in the current festlgar that the 60 MB/s value
can be obtained through the addition of per LUN bandwidth measured thhedext3 multiple
readers test pattern which is, precisely, 30 MB/s for a single LUN.

If our assumptions are correct, all results for tests withreal LUNs will be worse than
those obtained with internal disks; we claim this does nottreenl resource contention, but
from the array itself. So we are currently unable to prinat & PVFS configuration with
external array disks will suffer from contention problemstf@FC/array infrastructure) and
deliver lower performance than one with internal disks; inroroleorove it, we need to get

hold of a better disk array, and rerun these tests.
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27.3.3 Write tests
In this set of tests we assess the performance of our HA-Pafigweration both under the

segmented file writing test and the single writer/multigladers test; as usual, we perform
these tests with various buffer sizes and an increasing number of.clients

However, we have a new test here: we want to assess K allmcation does hamper
performance: each run of the new “block allocation test” stitts an empty file, one that
writer processes will “fill” as they proceed; this witigger both metadata (indirect blocks
and bitmaps) and data block allocation on the fly. We have not pexfothis test before,
either in the NFS or in the “PVFS with internal disks”upst because we feel that other
results we gathered in those tests were sufficient for opopas, and HA-PVFS is our most
important “HPC filesystem” test.

27.3.3.1 Segmented writing tests, no block allocation
Results gathered in the set of segmented write tests anedpiotfig. 27.9 below show

that our previous assumption — that bandwidths for the exterhataligiguration would be
lower than those for internal disks — still holds; however, diffees among segmented
writing tests with internal vs. external disks are not so obvazuthey were in the readers
test: we have now reached 45 MB/s, not far from the 52 Mig/asured in the setup with
internal disks.

Shared writing over a large PVFS file
Clients fired in parallel, writing distinct regions of the file
Each /O server has a LVM RAIDO with 2 array LUNSs. Stripe sizes: LVM=PVFS=64 KB
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Figure 27.9 Writing a large file, segmented access, no block allocation (disk array)

27.3.3.2 Segmented writing tests, with block allocation
Here, as previously described, the sole file existing in theSPME system is truncated

before each test; this setup guarantees reproducible testimamdits, with no other

applications running, file structures will always be allocatetiénsime disk “areas”.
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Shared "appending" over a large PVFS file
Clients fired in parallel, writing distinct regions of the file. Initial file size =0
Each /O server has a LVM RAIDO with 2 array LUNSs. Stripe sizes: LVM=PVFS=64 KB
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Figure 27.10 Segmented writes over a large, empty file (disk array)

27.3.3.3 Write tests: conclusion
Tests run against an initial empty file, as depicted @ Ev.10, intriguingly show better

performance than those where there is no newly allocated ddtanetadata; a similar
situation was also reported in [Leb06] for NFS writing agaemapty files. We have not
thoroughly investigated this issue, but we think that lower performancéenayxonsequence
of writes, in the pre-allocated file case, needing soxtra evork; they require: 1) reading the
indirect blocks; 2) reading the data itéetherging data gathered in (2) with new data; and
finally, 3) writing the data and metadata. When the file is gnf) and (2) do not take place

(of course, data management structures, e.g., bit maps, must bikecbasd updated in both
cases).

27.3.4 Single writer/multiple readers tests
We conclude the set of PVFS experiments with a test orsliitdging between a single

writer and multiple, non-overlapping, readers.

2This may depend on the file system implementatimely, if record size is less than a filesystem
block (or page, if the FS is page-oriented), ttezbl(or page) has to be read in, first.

200



60.00

50.00 -

Aggregated BW (MB/s)

10.00 -

40.00 ~

30.00 -

20.00 -

Single writer/multiple readers over a large PVFS file
Clients fired in parallel, reading and writing distinct regions of the file
Each /O server has a LVM RAIDO with 2 array LUNSs. Stripe sizes: LVM=PVFS=64 KB

0.00

Number
of clients

—e—4 clients
—a— 3 clients
—@— 2 clients

Figure 27.11 Non-overlapping single writer/multiple readers (disk array)
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27.3.5 PVFS tests with external disks: conclusion
Finally, we summarise the results tests we performed with our (higlalaity) HA-PVFS

configuration with three servers: one metadata server and/®vservers. Each I/O server

was given access to an LVM-based RAIDO LUN, created on tdpi@fdisks in the array;

physical disks were assigned to different storage processa balanced configuration, to

extract the best possible performance. For conservative uksyait space, results were

grouped into two tables: Table 27.3 summarises results gatimetests performed against a

pre-allocated, 16 GB fixed-size file, whereas Table 27.4ided two distinct sets, one (a) for

results gathered from the full file scan reader testse(e the whole file was sequentially

accessed by all readers), and another, (b) for results obtagmdwriter tests performed

against an empty file “filled” by non-overlapping writers.

Readers Writers 1 Writer/N readefs CPU usagd
KB| 1 2 3 4 1 2 3 4 1 2 3 Clienfs Servs
4| 80| 11.3] 52/ 45 69 126 3 194 128 8.2 5.0
8| 146| 74| 71 80 119 208 9 306 20.8 7.1 9.2
16| 19.8| 11.1| 106 129 154 23)7 77 284 245 123 514
32| 312| 17.9| 149 184 214 273 119 294 381 16.804P
64| 36.8| 204| 1871 253 266 26/3 185 296 30.0 20.065P
128 9.2| 207| 233 264 315 315 274 335 162 243 927 59.2 96.3
256 | 18.7| 27.4| 334 492 34p 3209 282 3%5 272 304234
512 16.0| 28.7| 438 604 358 33]8 307 2 245 361904
1024| 246 | 37.3| 512/ 581 364 356 323 392 310 416994
2048 26.6| 415 516 550 373 38/0 337 420 3p4 452065
4096| 28.2| 46.7| 57.2| 59.4 40P 42]3 372 449 374 49.049%

Table 27.3 PVFS results for I/0 servers with external disks, part 1

201



Note: CPU usage reported above is the worst case value, and otthe test where four
writers access the file with a 4K record size; under #iell “servers” we have added

consumption for all PVFS servers: the two 1/O servers and the reetstaer.

Readers (full file scan) Writers (empty file)
KB 1 2 3 4 KBl 1 2 3 4
4 80| 140| 20.7| 251 41 68| 131| 17.1] 225
8| 146| 194| 209| 218 8| 12.7| 235 306 39.4
16| 198| 164 | 239| 33.0 16| 17.0| 29.3| 308 424
32| 31.2| 272| 381| 477 32| 26.8| 36.7| 36.5 40.4
64| 36.8| 61.3| 885 117.3 64| 38.1| 385 367 45.

128 | 9.2 | 233| 346| 434 128 | 53.9| 49.0| 448 5571
256| 18.7| 288| 44.8| 57.6 256 | 62.0| 595| 465 594
512 16.0| 39.0| 54.2| 715 512| 69.3| 625| 59.00 604
1024 | 246 | 534| 67.8| 87.7 1024| 75.0| 64.3| 580 653
2048 26.6| 58.0| 72.0/ 989 2048| 79.0| 632 611 65
4096 | 28.2| 62.9| 84.8| 1217 4096| 795| 650 622 651

(a) (b)

Table 27.4 PVFS results for 1/0 servers with external disks, part 2

27.4 PVFES: resource usage
The graphs exhibited in Figs. 27.12 to 27.14 correspond to the test where fousrwmniteer
over an empty file, reported in Table 27.4 (b) above.
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Figure 27.12 Resource usage at the PVFS 1/O servers (only one server shown)
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Figure 27.14 Resource usage at the PVFS clients (only a single client shown)

These graphs show that link usage at I/O servers peaks at atibot thé full capacity (20
MB/s), while worst case CPU usage is already at 48%/@eserver. To that must also add
the CPU usage at the metadata server, which is about 18%ve have used the metadata
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server to also run a client (because we had a hardware problene of the clients), to
compute the CPU usage at the MD server we must pick thermtaFig. 27.13 and subtract
the client usage taken from Fig. 27.14 (and divide by two, to atlesteported “hyper-

threaded value” to the number of “real” CPUS).

27.5 PVFS: closing remarks

PVES strengths are well known and widely publicised, both inrpapel technical reports;
to start, aggregated bandwidth scales well with I/O node addicimhsan reach high levels
not only in MPIl-based applications (in the order of GB/s if weluohe specialised
interconnects such as Infiniband), but also in POSIX ones.

On the other hand, PVFS “weaknesses” other than the effortredqgia redistribute a
PVFS volume across newly added I/O nodes, or those relatedemitr $ailures (although,
as we said before, they can be quite conveniently handled by tH&HS&-setup) are not so
well understood and/or reported, so we have tried to address a few:

« PVFS is quite sensitive to the stripe size whedingedata, as “two ramp” graphs clearly show.

» Bandwidth is quite low for small record sizédthough the latest PVFS versions allow the user
to specify per directory (and even per file) stigpsizes, and this is something that may improve
BW (thus alleviating the problem above), for stmaliord sizes (below a few KB) bandwidth is
still quite low.

« CPU consumption in I/O servers can be higinless more expensive interconnects are used),
something that discourages users from using seoggs to run applications.

e The costof having dedicated I/O servers and also extedigd arrays completely demolishes

the much touted argument (not by the developefd?M-S being a low cost solution.

Unfortunately, we cannot show that HA-PVFS configuration using aatisly — which is
thede factosetup used in production environments — performs sub-optimally edrmapared
to a similar configuration with internal disks, something vegenaiming to prove; we believe
the entry level disk array used in this tests to be thkblem, as it (we think) introduces a per
request latency overhead that masks out the effects we idtemdkow, namely interconnect
contention that would arise when a client issues a reqgasisa the PVFS servers and the
servers dispatch several concurrent (one could almostsgayltaneous”, here) requests to

the disk array thus (possibly) creating a “contention effect” in thed&Qs to the disks.

28 Cluster File System testing: pCFS and GFS

28.1 Test infrastructure
pCFS and GFS tests were carried out in a configuration ivembdes: four FC-connected

plus an “independent” node used for the pCFSd user-level daemehowa in Fig. 28.1.
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Each node had 4 GB of memory and two Xeon processors; nodes 4, 5 ahthénhaunning
at 3.06 GHz while nodes 2 and 3 had them at 2.6 GHz.

w

FC switch

e

pCFSd

pCFS “clients”
Disk Array

Figure 28.1 pCFS/GFS test infrastructure

All FC links were run at 1 Gbps; nodes 3 and 4 had a single F& (tin links, in the
figure), while nodes 5 and 6 had two FC HBAs (fat links). A srgbst based Clustered
LVM volume was carved out from four disks, two per storage gsmre the logical volume
was defined with a stripe size of 32 KB, thus creating a cowfiigur which was “equivalent”
to the one used for PVFS, in terms of the number of physical ds®. The volume was
formatted as a GFS filesystem and a single 16 GB file anaated; finally, for the Gigabit

links, regular frames (MTU 1500) were used.

28.2 pCFS vs. GFS and cached vs. un-cached testing

As we have shown before [Lop+08], performance differences among @@FSFS both
in single writer and in single or multiple reader tesessr small (less than 1%) that they are
obfuscated by variances in the tests themselves; thereforess unke want to draw the
reader’'s attention to some specific GFS issue, the majafitiie tests reported here were
performed against pCFS, i.e., with tii@ CLSTSOPENCFS flag included in the file
open() call; so, unless marked otherwise, graphs labelled as p@Fsarconsidered valid
GFS graphs.

We did not measure the bandwidth of cached access as, inar sienil to what happened
with local file systems (e.g. ext3), they would only give ghts on the VFS cache
performance itself, as well as on the overheads of the spéitEfisystem (i.e., pCFS)
delivering bandwidths ranging from several hundred MB/s up to a fewfGBdssingle node;
therefore, all our tests access un-cached data. We wengdb lgngths to assure that, for

successive tests, no data stays in the cache: besiiteg aislarge filé, the Linux

! Notice that a 16 GB file in segmented access tisadly 4GB per node in four node tests, which no
longer is the double of the node’s memory.
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/proc/sys/ivm/drop_caches pseudo-file is used to force data in the page cache to be

released, and the file system is un-mounted and remounted before atnestéeted.

28.3 Read-only tests

28.3.1 Full file scanning
The first test was a sequential full file scan: on eamtena reader process would open the

file, start at the beginning and proceeded reading it sequentiatympletion.

Multiple readers over a large pCFS file
Clients fired in parallel, reading the whole file
Shared disk is a LVM RAIDO with 4 disks, 2 per SP. Stripe size 32K
100.00

90.00 -

80.00 -
Number

a ] ;

& 70.00 of clients

i’ 60.00 - —e—4 clients
o —a— 3 clients
- 50.00 .

Q —@—2 clients
<

> 40.00 ~ —e—1 client
>

(2]

<

K R ib
20.00 1

10.00 -

0.00

4K 8K 16K 32K 64K 128K 256K 512K 1024K 2048K 4096K

Record Size
Figure 28.2 Read sharing a large file, sequential access

Test results reported in Fig. 28.2 do not, contrary to what wealipi hoped for,
unambiguously show the positive influence of the array’s canh&mum bandwidth in this
test is 94 MB/s which, although exceeding the advertised sedtaate of the array (at 70
MB/s) is remarkably inferior to 90 MBfser storage processor we got in Fig. 24.6; that would
present us with a total of 180 MB/s. Our explanation is thaipadth processes in reader
nodes were fired in parallel, their ability to proceed ‘e (although somewhat loosely)
and benefit from data already in cache is negated by configuratsues such as node
heterogeneity (number of HBAs) and the small size (88 MB) of thg'sucache.

28.3.2 Segmented file access
Then, a segmented access test was performed over a 16 Gidiés, shown above,

demonstrate a pCFS reading behaviour remarkably similart®seot, shall we say, to the
behaviour of any typical “VFS integrated” local filesystemrfpenance is not adversely
affected by small record sizes, as the VFS read-ahead m&chdmniks in”, raising it. It also
shows that, for our configuration built around a four disks set, 5%sNiBthe maximum

bandwidth achievable under situations where a high number of seeks is performed.
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Segmented reading on alarge pCFS file
Clients fired in parallel, reading distinct regions in the file
Shared disk is a LVM RAIDO with 4 disks, 2 per SP. Stripe size 32K
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50.00 - : ; ::;
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1000 + - - ——— - - = — - m -
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4K 8K 16K 32K 64K 128K 256K 512K 1024K 2048K 4096K

Record Size
Figure 28.3 Read sharing a large file, segmented access

28.4 Write tests

28.4.1 Segmented writing tests, no block allocation
Write sharing a GFS file is, with regard to coherency,lainid PVFS — it does not require

user-level file locking; in fact, as previously noted, GF$laments POSIX single node
equivalent semantics and, therefore, even if two processestimctdisodes concurrently
access overlapping file sections, the result is a satelh of the accesses and a coherent
“disk” image. pCFS is different as, for disk-based data mewenit requires POSIX advisory
locks to define file regions a process is allowed to access.

Shared writing over a large GFS file

Clients fired in parallel, writing distinct regions of the file
Shared disk is a LVM RAIDO with 4 disks, 2 per SP. Stripe size 32K

70.00
o o & o & o & o o
v v v v v v v . 4
60.00 - /
—~ Number
g 50.00 - of clients
=3 —e—4 clients
= 40.00 )
o —a— 3 clients
el .
@ —@— 2 clients
‘© 30.00
i —e—1client
3
2 20.00 -
10.00 +
0.00 +

4K 8K 16K 32K 64K 128K 256K 512K 1024K 2048K 4096K

Record Size

Figure 28.4 GFS: write sharing (full region locks, segmented access pattern)
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GFS’ use of a cluster-wide ginode lock, one which is locked fodtiation of a read or
write call, results in very low bandwidths (less than 2/88r record sizes smaller than 128
KB) as a running writer is forced to flush out all data it aasumulated in memory to disk
(an operation which takes a few milliseconds) before handing out the locktteeanode.

Shared writing over a medium-sized pCFS file

Clients fired in parallel, writing distinct regions of the file
Shared disk is a LVM RAIDO with 4 disks, 2 per SP. Stripe size 32K

70.00

60.00 +—
—~ Number
g 50.00 - of clients
2 40.00 —e—4 clients
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®3000 F+--—-——————— -
2 —e— 1 client
3
2 20.00

10.00

0.00 T T T T T T

4K 8K 16K 32K 64K 128K 256K 512K 1024K 2048K 4096K

Record Size
Figure 28.5 pCFS: write sharing (full region locks, segmented access pattern)

pCFS clearly overcomes GFS in the shared writers tegt:28.5 shows the segmented
write tesf with pCFS, where each node starts out by laying out its regidrhen loops to
perform all writing: aggregated bandwidth is now 60 MB/s, tvitee value GFS offers on
large buffer sizes, and 600 times what it offers on small record sizes

Finally, as a last test in the string of writer tests uge a per-call lock/unlock, i.e., our
exerciser performs afentl(); write(); fentl(); " sequence where the first
fentl  is called with anF_ WRLCKargument while the last uses BhUNLCKargument.
Quite surprisingly, as shown in Fig. 28.6, a single GFS proceasagiwexperiences very low

performance at small record sizes, mimicking what happens ir2&ig where processes in
different nodes share the same file.

2 For an explanation on why the size of the file emiést was changed from “large” to “medium”, see
section 29.3.2.2 at Part IX, “Conclusion”.
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Single writer, lock/write/unlock pattern: pCFS vs. GFS
Highlighting the overheads of pCFSd and fcntl() lock/unlock messages
Shared disk is a LVM RAIDO with 4 disks, 2 per SP. Stripe size 32K
80,00

70,00 4

60,00 -

Filesystem

50,00 under test

—=—GFS
—e—pCFS

40,00 -

0

Aggregated BW (MB/s)

20,00 -

20,00 4~ ——mm e

0,00 +—@ g T T
4K 8K 16K 32K 64K 128K 256K 512K 1024K 2048K 4096K

Record Size

Figure 28.6 GFS and pCFS: writing with per-call locks

To search for the cause for this behaviour, we remounte@ & filesystem on a single
node (172.16.1.6), launched a single writer (starting with a redeed of 4 MB and
descending to 4 KB), and monitored the LAN traffic. Our concludmoking at Fig. 28.7, is
that the time it takes for DLM to exchange messages anatingodes to support the
fentl() causes a start/stop behaviour that severely limits I/O bandwid#hwaehave only

included the graphs for node 172.16.1.5, but those for nodes .4 and .3 are identical).

172.16.1.6 traffic - by hour 172.16.1.5 traffic - by hour
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O sent Cur:  B76.11k Min 4. 26k Avg 541. 62k Max 960. 31k O sent Cur: 1404k Min 4. 26k Avg 135.17k Max 54885k
B received Cur: 138.37k Min 3,19 Avg 124,15k Max 547. 90k B received Cur: 138,99 Min 3.20k Avg 124,10k Max 547. 80k
Last update: Sun Mar 15 ©2:30:02 2009 Last update: Sun Mar 15 ©2:30:02 2009

Figure 28.7 GFS: DLM traffic among nodes to support fcntl() calls

The same conditions were reproduced in order to perform a singéz test under pCFS:
we started the pCFSd daemon on node 172.16.1.2, mounted the pCFS (GFS)rfilesyste
node 172.16.1.6, and launched a single writer on that same node; now, Idokigg28.8
below, we can see that pCFS madifications have caused DLM w@affing nodes to increase
by an order of magnitude (from 100 kbps to 1 Mbps), while pCFS tradfiting from the
writer node (the pCFSk kernel module in .6) to pCFSd (.2) reaches about 80 kbps.
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172.16.1.2 traffic - by hour 172.16.1.5 traffic - by hour
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(a) Node running pCFSd (b) Other cluster nodes
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(c) Node where the filesystem is mounted and where the test was run

Figure 28.8 pCFS: pCFSd and DLM traffic to support fcntl() and write()

The tenfold increase in traffic among nodes does not influenqeXR8/GFS performance
ratio for record sizes up to 512 KB, as we can see that pCESvéotixactly the same “line”
as GFS (Fig. 28.6); however, for larger sizes, pCFS lags belfi8di6G performance getting
progressively worse as buffer sizes are increased.

A major reason for pCFS’ performance loss with regard t& @8- the way pCFS
(currently) maintains coherency: it forces a flush-to-digleration each time a region is
unlocked — something which, in this test, coincides with everewsit we have a per-write
flush. As to what causes the increase in DLM traffic, @ cause is also related with the
way coherency is implemented: as we force a “flush-s&*dive also drop the Glock from the

node’s cache, and this triggers more DLM messages across nodes.

28.4.2 Single writer/multiple readers tests
GFS single writer/multiple reader tests do exhibit the esaype of behaviour as the

segmented writer tests reported in the previous sectiohegpshare the same root cause, the
cluster-wide ginode lock; aggregated bandwidth is again quitd famaecord sizes under

128K, reaching a maximum of 30 MBY/s for a record size of 4 MB (Fig. 28.9).
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Single writer/multiple readers over a large GFS file
Clients fired in parallel, reading and writing distinct regions of the file
Shared disk is a LVM RAIDO with 4 disks, 2 per SP. Stripe size 32K
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Figure 28.9 GFS: non-overlapping single writer/multiple readers
Single writer/multiple readers over a medium-sized pCFsS file
Clients fired in parallel, reading and writing distinct regions of the file
Shared disk is a LVM RAIDO with 4 disks, 2 per SP. Stripe size 32K
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Figure 28.10 pCFS: non-overlapping single writer/multiple readers

Fig. 28.10 shows that, again, pCFS betters GFS by a large marginisi test; the
performance increase for small record sizes is not so proruageit was for the
writer/writer tests (there a 600 time difference between GFS and peH$:ee the difference

is about 60 times) while for large record sizes it is, for both cases tiné GFS bandwidth.
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28.4.3 Segmented writing tests with block allocation
To investigate the influence of intra-file metadata operationthe overall performance of

segmented writing, tests were run against an initially enilgtyrésults under GFS show that
these tests, as those carried out over NFS and PVFS, doligffithy sSncreased bandwidths
with regard to those where writes were over previouslycated data blocks: under GFS
without block allocation (Fig. 28.4) we got 35 MB/s for 4 cliemthen using a 4 MB buffer
size, while the new test with block allocation runs at 40 MB/seas & Fig. 28.11 below.
Shared writing over a large, initially empty, GFS file
Clients fired in parallel, writing distinct regions of the file

Shared disk is a LVM RAIDO with 4 disks, 2 per SP. Stripe size 32K
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Figure 28.11 GFS: Segmented writing over a large, initially empty file

As for pCFS, our prototype does not yet support write sharitiy metadata allocation;
however, as previously referred, two different mechanisms camade available: one which
uses glock promotion to the exclusive state, pCFS thus behavindyee®dBFS does; the
other which resorts to data shipping over the network. We expetglock promotion” path
to deliver the same performance as GFS, i.e., its “test chdit'esemble that of Fig 28.11.
As for the “data shipping” approach, we think its performawidebe similar to NFS’, as
displayed in Fig. 26.3.

28.5 Summarising results for pCFS and GFS

Tables 28.1 and 28.2 summarise the results for our GFS “clulgesybtem setup”;
although they refer mainly to GFS, we note that values gathereehder tests are also
applicable to pCFS. Table 28.3 summarises the results for p@R&uf referring primarily
to pCFS, the first column is also shared with GFS). As befdP&) Gsage is the observed
worst case value, and occurs in tests where four writets-shtare a file accessing it with a

4K record size.
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Readergsame as pCFS) Writers 1 Writer/N reader
CPU usage
KB 1 2 3 4 1 2 3 4 1 2 3
4| 428| 448| 552 544 558 01  0O}1 g1 1.5 0.3 0.4
8| 43.0| 449| 547 5423 5901 0 02 d.2 1.4 D.9 2.3
16| 433 | 452| 551 544 6301 04 03 d.2 1.4 2.0 1.1
32| 42.8| 449| 549 543 634 08 08 d.8 1.5 1.7 2.0
64| 42.9| 45.0| 549 543 637 15 15 15 1.7 D4 2.9
128 | 42.7| 44.7| 474 543 636 28 2|7 47 139 52  11.3 14.0
256| 426 | 44.8| 549 543 635 504 5/4 94 180 D9 149
512 | 426 | 449| 552 543 63F] 9l6 9is 498 194 159 184
1024 | 426 | 448| 552 543 639 17)0 167 167 195 423562
2048 42.6 | 44.7| 487 543 638 260 237 2%5 259 255038
4096 | 425| 447| 553 543 638 349 327 340 312 297268
Table 28.1 GFS tests, part 1
Readers (full file scan) Writers (empty file)
KB 1 2 3 4 KB| 1 2 3 4
4| 428| 69.0 64.4 9375 4| 465 0.1 0.1 0.1
8| 43.0| 69.2| 645 844 8| 69.6 0.2 0.2 0.3
16| 433| 69.3| 64.3 93.6 16| 71.7 0.5 0.4 0.5
32| 428| 69.0| 645 851 32| 79.0 1.1 0.8 1.1
64| 429| 687 641 949 64| 76.7 1.7 15 2.0
128 | 42.7| 68.6| 641 934 128 77.7 2.9 2.8 3.7
256 | 42.6| 50.0| 64.00 85.( 256 | 76.8 5.5 5.3 6.9
512 | 426| 685 639 844 512| 81.0 9.8 94| 124
1024 | 42.6| 685| 587 754 1024 80.8| 15.9| 159  20.1
2048 | 42.6| 685| 63.9 894 2048| 78.9| 24.0| 228 304
4096 425| 68.7| 63.8 84. 4096| 81.4| 33.3| 314 3949
(a) Note: same as pCFS (b)
Table 28.2 GFS tests, part 2
Readergsame as GFS) Writers 1 Writer/N readerd
CPU usage
KB 1 2 3 4 1 2 3 4 1 2 3
4| 428| 448| 552 544 558 595 600 60.2 544 §3987%
8| 43.0| 449| 547 542 591 609 611 617 519 5407965
16| 433 | 45.2| 551 548 63 607 616 620 522 544875
32| 428| 449| 549 543 634 612 617 622 5p1 446825
64| 429 | 45.0| 549 543 63.f 611 619 621 5p1 H4.082%
128 42.7| 44.7| 474 5423 636 607 619 619 412 466285 16.9
256 | 426 | 448| 549 544 635 610 617 622 487 46.428%
512 | 426 | 449| 552 543 63.f 60/8 617 620 486 465974
1024| 42.6| 448| 552 543 6389 612 616 620 488 464175
2048| 42.6 | 44.7| 487 543 638 610 616 618 439 485285
4096 | 425| 447| 553 543 638 612 617 622 4p4 491835

Table 28.3 pCFS segmented access tests
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As for Table 28.4 below, it reports both the GFS and pCFS resulthd single writer
using a per-call lock/unlock, previously shown in Fig. 28.6 and whicprised us with its
low performance.

Aggregated Record Size (KB
BW (MB/s) | 4 8 16 | 32 64| 128 256 51 1024 2048 4096

GFS 0.2 0.4 0.8 160 3.0 6.2 126 25

N

50{3 67.3 71.4

pCFS 0.2 0.4 0.8 160 3.0 6.3 126 25}4 36{7 43.8 46.5

Table 28.4 Single writer with a lock/write/unlock pattern

28.6 Resource usage

The last step of this report on pCFS (and GFS) is to préiseri¥lunin graphs gathered
during the four writer tests. In these graphs, given thatirtieeto run each test (i.e., running
all buffer sizes from 4 KB to 4 MB) was smaller due to theteimed size of the file, the three
runs that were taken are clearly visible; only a single ned#own, all others being quite
similar.
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Figure 28.12 pCFS resource usage
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28.7 pCFS and GFS: closing remarks

GFS performance may be quite insufficient for applicationsrdwgtire write sharing (i.e.,
at least one process is a writer) of a file among processesng in several nodes: when
record sizes below 128K are used, bandwidth is less than 2 MB/s — somethiagfrahfthe
speed of a diskette! Also, there is no scalability, as addodpes does not result in any
sizeable bandwidth increase. GFS single node write performanceydrovgequite good, at
63 MB/s, and we can get about half of it in multi-node write shdfioge uses very large
record sizes, e.g., 4 MB. GFS read scalability is also geog but, unfortunately, limitations
of the disk array we have used do not unmistakably allow sisaw it — although we can get
a glimpse, when we look at the full file scan reader tests reporiebla 28.2 (a).

pCFS delivers high performance sharing, bettering GFS by tvas tan very large record
sizes — e.g., 4 MB records — while the results for small rec@rdibw gains of two orders of

magnitude for write/write sharing and one order of magnitude for reigelsmaring.
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Part IX:

Conclusion

This Part assesses the benefits of pCFS — its use oftegrated approach to data
movement, cooperative caching, and low latency cache coherenegiaper and how they

succeed in overcoming the 1/O bottleneck. Finally, it introduces ide#stime work.

16 CONCIUSION e e e et a e







29 Conclusion

29.1 Reuvisiting the I/O bottleneck

It is a well known fact that a successful computing architecis based on a suitable
balance of three subsystems: processor, memory, and /O toodlges and networking);
however, we currently face a situation where performance oé thassystems (at least for
off-the-shelf components) is increasing at very disparate, ratfsa clear advantage on the
processor side, and the storage being the worst perfornisrreffuires system architects to
foster new storage solutions, both in hardware and in softiearexample, disk arrays have
entered the mainstream and can now be found everywhere, from snwlliraieidually
attached to a single host, to large ones, deployed in storageeswamks and shared across
multiple systems; they have become the basic “building blockitisal to two problems: 1/O
performance and high availability.

But good performance of a single system may come at alsegg cost, and cost is
something that today is regarded to be of utmost importancesfahes one continuously
looks for better price/performance alternatives, and orteeobest calls for the coordinated
use of multiple computer systems — i.e., a cluster — as amtatb solve “bigger” problems
in a cost efficient way. However, sharing data across phelliomputing nodes creates new
problems and, therefore, new solutions must be brought in, in the dbrdistributed”,
“clustered”, or “parallel” data base and file systems.

File systems for multi-node computer architectures havevesohcross two separate
tracks, much in the same way to what happened to distributed ved ghamory: on one
side, distributed-disk file systems were developed on the agsuntpat storage is based on
disks which are private to the nodes and that the “global” filesystsion is implemented by
moving data across network interconnects; on the other filiglesystems for shared-disk
architectures assume that disks are shared across nodeatathe tglobal” filesystem vision

is implemented by writing data to disk in a node and reading it on another.

29.2 Restatement of the objectives

As a preliminary step we have tried to characterise thewbiat fuzzy terminology used
when discussing I/O on multi-node architectures, such as “pat&lel or “parallel”,
“cluster” and “distributed” file systems. As work progressge found that sometimes a
unique concept was being handled as different things when wednamvess layers (with
boundaries not always clearly defined) while in other casefowsd that the opposite was
occurring, i.e., two different concepts where being subsumed mmgke shot very clear one;

therefore we propose a reference model that encompassageadl from (but excluding) the
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application down to the physical disk and, for the most relevast, ae., File System, Object
Storage and Storage Access layers, taxonomies are proposed.

Our pCFS proposal combines two previously divorced approaches, thebared vs.
distributed disks: it assumes a shared-disk architecturerénall nodes have shared access to
all disk volumes), and implements a coherent global vision acadsseither through data
movement across network interconnemtswriting it to disk on a node and reading it from
disk on another. We expected such an approach to have good perforrhiladesaping full
POSIX compliance, allowing pCFS to be used both for generatthais HPC applications in
small to medium-sized clusters, up to, say, a hundred nodes dittatlyeal to a SAN which
caters for the cluster’s shared storage.

The implementation of pCFS was carried out “on top of” RetisHaFS. Using synthetic
benchmarks, we tested pCFS against GFS itself, and then taj&sand PVFS - two
widely used file systems both in HPC as well as in moemégal” file sharing environments
(although both have drawbacks when used outside their primary t@argebnments, e.g.,
NFS may be too slow for HPC use, and PVFS may be unsuited for “$itensharing”

applications).

29.3 Assessment of the contributions

29.3.1 Reference model
Development of the “Reference Model for Data Management #aathires” was carried

out along Part IV, with section 13 introducing the taxonomy for fiigtesm classification,
which was used in section 15 to compare among several “clasfsdistributed file systems,
notably: symmetrical distributed file systems (GPFS an&)s&symmetrical distributed file
systems of the un-partitioned “single-server type” (NF&yd asymmetric partitioned
“multiple-server types” (PVFS, AFS, DCE/DFS). Along with timedel’'s proposal, precise

definitions have been introduced.

29.3.2 pCFS

29.3.2.1 The proposal
pCFS was introduced in Part V, starting with its “conceptualhigegcture, distinguishing

features — most notablyooperative cachingndfine-grain locking Then, we presented the
programmer’s view of pCFS, a strict POSIX compliant $§stem where thenly two things
a programmer must do to choose pCFS behaviour is to add a sing)eflaeto the file's

open() call and, if appropriate, use standard POfIXI() locks.

29.3.2.2 The implementation
The implementation of pCFS is described in Part VII; itscldl a single, clusterwide user

level daemon, pCFSd, and two per-node kernel modules, pCFSk and pCFSmt Curr
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prototype limitations are a consequence of the decision tp K&€S data structures
unmaodified; this has (i) introduced more complexities at the omd,land (ii) deterred us
from supporting VFS-initiated asynchronous operations, such as tiggsrdd by the kernel
VM subsystem to flush out file pages, resulting in failusen writing to very large files as
the page cache gets “full” and VM triggers the Linux kernenaans (e.g.pdflush ) to
flush them out to decrease memory pressure.

We feel confident, however, that we have proved that even the un-implementedseat
viable, and that a production-grade version would be ainéyesting file system to have for

a broad range of applications.

29.3.2.3 The benchmarks
We are quite happy with the benchmark results; they unequivocally show that whirg sha
a file using “large regions” pCFS, from a point of view of:

1. Aggregate Bandwidth

a. When compared to GFS:
« Surpasses GFS in all tests involving write shawficga single file, delivering from
twice up to a600 timesincrease in BW.
* Matches GFS in all tests involving only readers.

b. When compared to NFS:
» Surpasses NFS in all tests, nealybling its performance.

c. When compared to PVFS:
» Performs better than PVFS for small number of tfi€r 4).
« Betters PVFS for all write-sharing situations (iserite/write or read/write)
» Surpasses or runs close to PVFS in the full fingeaders test
 |s quite insensitive to changes in the buffer size

2. Aggregate CPU usage

a. When compared to GFS:
« Uses about theamefraction of CPU (pCFS worst-caselis% whileGFS’ is 14%).

b. When compared to NFS:
* Worst-case NFS uses tkameCPU but its BW is about 2.3 times smaller

c. When compared to PVFS:
* Worst-case PVFS draws cirt&5% (for a third of the pCFS’ BW).

As we have seen, current results are not so shiny forsape#terns which require a per-
-call lock/unlock, as bandwidth is too low for record sizes tiEpe smaller than 128 KB,
being in the region of 0.2 MB/s (for 4K records) to 6.3 MBfs (128 KB records). The
solution for this problem may require i) an application reyror ii) some “hint-based”
approach which would be capable of converting the small regiorrpatte a large region
one, or, finally iii) the data shipping approach which, when finiglemented, may result in
bandwidths that are closer to those available from NFS, tiutfay from the pCFS

bandwidths for “large region” accesses, at 60 MB/s.
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29.4 Future work
Future work on pCFS may progress on two separate tracks: alstendersion for regular

Linux kernels and a specialised version for kernel-level DSNW@WM®) Linux kernels.

29.4.1 Standalone version for regular Linux kernels
Continuing the development of the pCFS into a more robust, productieinskewdalone

with version is feasible as short term task, (i.e., it isasnotsearch project); it would differ
from the current prototype in minor aspects, such as:

< Small changes to GFS data structures
e For example, the ginode could carry a pCFS flaig, would allow us to test for a “pCFS
inode” without accessing the VFS file structuremsthing that can only be referenced
when executing in a user context (and not in, eag.daemon context, such as in
pdflush ).

« Use of the TIPC kernel subsystefar all communication tasks
e This allows much better failure handling; perforecaovery; use of broadcast and/or
multicast; establishment connections on demand, etc

« We may, therefore, dispense with {eFSd forwarding.

* MergepCFSk andpCFSc into a single, multithreaded kernel module
e Using kernel abstractions such as kernel threadsvank queues.
* Increasing the level of concurrence both in intogley inter-node, and node-to-daemon
(pCFSd) operations.

The outcome should be a production-level pCFS version; there areyvdrotomger term
tasks that should also be carried out in the standalonwgessich as: (i) providing a fully
implemented, clusterwide cooperative cache, one which can béousexvide multiple paths
for data transfer (therefore enhancing performance) wharahe current prototype we just
maintain caches coherent across nodes; and, (ii) use itvag to further enhance the high

availability of the file system, via inter-cache replication ofdified pages.

29.4.2 pCFS on DSM Linux kernels
A pCFS version supported over a kernel-level DSM/VSM, sscKearighed, would be a
longer term, research driven, project; some of the ansWwatsstich a project must provide
are:
< Can the DSM-provided consistency mechanisms be asable sole basis for clusterwide page
coherency? Is the performance acceptable?
» Should the global Page Cache be the sole “useth@DSM mechanisms, or should these be
applied to all file system objects (and cacheshsaginodes, dentries, etc., therefore either re-
implementing glocks as DSM-based objects?

! As previously noted, we use the term DSM for hambaaided distributed shared memory and VSM
for pure software implementations

2 We thank the Kerrighed/Kerlabs team for introdgcirs to TIPC in the Kerrighed Summit'08 (some
topics on the panel discussions available on wwsake.com/docs/Kerrighed_summit_08/)
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* Should these new objects be implemented on a lesyfitem basis, or should one try to apply
these concepts to VFS and re-implement it as aeclugle layer (as proposed in kDDM
[Leb+08]) so that any currently available filesyatéhat plugs into VFS can be made available

to all cluster nodes?

29.5 New avenues for pCFS

Longer term research on pCFS will focus on investigating p@e8guacy to efficiently
support the shared disk / shared file system paradigm oderasea networks, e.g., in cluster
federations (with dedicated fibre links).

We believe that the cooperative cache mechanism, whictproged its usefulness in
distributed file systems, will be a major driver for pCB8tcess on these environments, as it
can be the topmost layer that supports three extremely impagpatts: caching, replication

and fault tolerance.

223



224



Acronyms

ADT Abstract Data Type

ACID Atomicity, Consistency, Isolation, Durability

AFS Andrew File System

API Application Programming Interface

BW Bandwidth

cc-NUMA Cache Coherent Non-Uniform Memory Architecture

CAS Content Addressable Storage

CEFT-PVFS Cost Effective, Fault Tolerant, Parallel Virtual File System
CFS Cluster File System (concept)

Cl Cluster Infrastructure

CIFS Common Internet File System

CM Cache Manager (pCFS)

COMA Cache-Only Memory Architecture

COTS Common Off-The-Shelf

CPU Central Processing Unit; here used as synonym for processor
CRC Cyclic Redundancy Check

CVFS Comprehensive Versioning File System

DAS Direct Attached Storage

DASD Direct Access Storage Device

DBL Database Layer (RM-DMA)

DBMS Database Management System

DCE Distributed Computing Environment (from the Open Software Foundation)
DCE/DFS Distributed File System (integrated with DCE)

DD Distributed Disks (a.k.a. PD)

dentry Directory entry (VFS)

DFS Distributed File System (either a concept or an Intel Paragon FS)
dinode Disk inode (on-disk image of a GFS inode)

DLM Distributed Lock Manager

DMA Direct Memory Access

DMD Data Management Domain (RM-DMA)

DMEP Device Memory Export Protocol (GFS)

DML Data Management Layer (RM-DMA)

DOS DistributedOperating System

DSM Distributed Shared Memory (hardware-based)
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EVMS
ext2
ext3
FAT
FC
FLOPS
FS
FSB
FSL
GbE
G-Lock
GDLM
GFS
ginode
glock
glops
GPFS
GULM
HA
HA-NFS
HA-PVFS
HBA
HDF
HiPPI
HPC

IB
INCITS
inode
I/O
IOPS
ISAM
iISCSI
IT
JBOD
LAN
LD
LDAP

Enterprise Volume Manager System

Extended File System, version 2 (a.k.a. Second Extended File System)
Extended File System, version 3

File Allocation Table

Fibre Channel

Floating-point Operations per Second

File System

Front Side Bus

File System Layer (RM-DMA)

Gigabit Ethernet

Global Lock (GFS)

GFS Distributed Lock Manager (GFS)

Global File System

GFS inode (in-core image, linked into the VFS vnode)
an abbreviation for G-Lock (see G-Lock)

an abbreviation for a G-Lock vector of operations
General Parallel File System

Grand Unified Lock Manager (GFS)

High Availability

High Availability Network File System

High Availability PVFS

Host Bus Adapter

Hierarchical Data Format

High Performance Parallel Interface

High Performance Computing

Infiniband

International Committee for Information Technology Standards
Information node

Input/Output

I/O operations per second

Indexed-Sequential Access Method

IP-based SCSI

Information Technology

Just a Bunch Of Disks

Local Area Network

Logical Disk (a.k.a. LV)

Lightweight Directory Access Protocol
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LM
Imlock
LMM
LUN
LV
LVB
LVM
LVM
MM
MPIO
MPP
NAS
NASD
NetCDF
NFS
NFSP
NIC
NIS
NLM
NOS
NowW
NSD
NSM
NTFS
NUMA
OBSD
OCFS
OLAP
OLTP
(0]0)
OOM
oS
OSD
OSF
OSF/1
OSL
PADFS

Lock Manager

Abbreviation of Lock-Manager lock (GFS)
Lock Manager Module (GFS)

Logical Unit (a.k.a. Logic Unit Number)
Logical Volume (a.k.a. LD)

Lock Value Block (see GFS)

Logical Volume Manager (concept)

Logical Volume Manager (Red Hat LVM)
Memory Management

Multi Path 1/O

Massively Parallel Processor

Network Attached Storage

Network Attached Secure Disks

Network Common Data Form

Network File System

Netware File Sharing Protocol

Network Interface Card

Network Information Service (a.k.a. Yellow Pages)
Network Lock Manager (NFS)

Network Operating System

Network of Workstations

Network Shared Disks (GPFS)

Network Status Monitor (NFS)

New Technology File System

Non-Uniform Memory Architecture
Object-Based Storage Device (a.k.a. OSD)
Oracle Clustered File System

On-Line Analytical Processing

On-Line Transaction Processing

Object Oriented

Out Of Memory

Operating System

Object Storage Device (a.k.a. OBSD)
Open Software Foundation

Open Software Foundation’s Operating System/1
Object Storage Layer (RM-DMA)
Partitioned-Asymmetric Distributed File System (RM-DMA)
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PC
PCB
pCFS
PCI
PD
PFS
PoP
POSIX
PVFS
QoS
RAID
RDBMS
RDMA
RG
RM
RM-DMA
RPC
SAL
SAN
SCI
SCSI
SD
SDL
SDM
SMD
SMP
SNIA
SNL
SP
SSI
SVL
TIPC
TOE
UFS
UMA
vnhode
VFS

Personal Computer

Printed Circuit Board

Parallel Cluster File System

Peripheral Component Interconnect

Partitioned Disks (a.k.a. DD)

Parallel File System (Intel)

Pile of PCs

Portable Operating System Interface Architecture
Parallel Virtual File System

Quality of Service

Redundant Array of Inexpensive (a.k.a. independent) Disks
Relational Data Base Management System

Remote DMA

Resource Group

Reference Model

Reference Model for Data Management Architectures
Remote Procedure Call

Storage Access Layer (RM-DMA)

Storage Area Network

Scalable Coherent Interface

Small Computer System Interface

Shared Disk

Storage Device Layer (RM-DMA)

Shared Disk Manager (pCFS)

Storage Management Domain (RM-DMA)

Shared Memory Multiprocessor (unless otherwise noted)
Storage Networks Industry Association

Storage Network Layer (see RM-DMA)

Storage Processor

Single System Image

Storage Virtualisation Layer (RM-DMA)

Transparent Inter-Process Communication

TCP Offload Engine

UNIX File System

Uniform Memory Architecture

Virtual node (VFS)

Virtual File System (a.k.a. Virtual Filesystem Switch)
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VM
VSD
VSM
WAN
WCC
XDR

Virtual Memory

Virtual Shared Disk

Virtual Shared Memory (software-based)
Wide Area Network

Weak Cache Consistency

External Data Representation
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