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Resumo 

O uso coordenado de múltiplos nós de computação (clusters) como plataforma para 

resolver, em ambientes de cálculo de elevado desempenho (HPC), problemas de grande 

exigência computacional, ou para oferecer, em ambientes de Sistemas de Informação (SI), 

serviços fiáveis e tempos de resposta adequados é hoje uma solução indiscutível, em termos 

de custo/benefício. 

Os ambientes de HPC e SI são razoavelmente dissimilares, particularmente no que se refere 

a sistemas de ficheiros e as arquitecturas de armazenamento; em “ambientes HPC”, favorece- 

-se o uso de sistemas de ficheiros de elevado desempenho, em detrimento de outras 

características (não são, geralmente, compatíveis POSIX), e usam-se discos internos ou 

privados; em “ambientes SI”, preferem-se soluções de alta disponibilidade suportadas em 

armazenamento externo e, quando tal se revela necessário, sistemas de ficheiros para discos 

partilhados (CFS), desde que compatíveis POSIX (mesmo sacrificando o desempenho). 

O parallel Cluster File System (pCFS) é a nossa proposta para mudar este estado de coisas, 

usando o melhor de cada um: a fiabilidade dos CFSs e o excelente desempenho dos sistemas 

de ficheiros paralelos. Não se pretende conseguir máximos absolutos, mas tão somente uma 

compatibilidade total com a norma POSIX, versatilidade, e níveis de fiabilidade e 

desempenho suficientemente bons para uma utilização genérica – aplicações tradicionais e 

HPC, suporte de motores DBMS que armazenem dados em ficheiros, e streaming de vídeo. 

As ideias-chave para o pCFS são: 

• Caching cooperativo, uma técnica usada em sistemas de ficheiros para discos distribuídos que, 

tanto quanto sabemos, nunca foi usada em CFSs em SAN ou sistemas de ficheiros paralelos. 

Resulta daqui que o pCFS pode usar todas as infra-estruturas (LAN e SAN) para aceder a dados. 

• Locking de granularidade fina, que permite definir regiões disjuntas (ao nível do byte) num 

ficheiro podendo os processos, mesmo quando correm em nós distintos, nele ler e escrever em 

paralelo, à velocidade da infra-estrutura SAN (desde que não ocorram mudanças importantes na 

estrutura dos metadados). 

Construímos um protótipo sobre o GFS (um CFS da Red Hat), modificando ligeiramente o 

módulo GFS, acrescentando-lhe dois módulos de sistema suplementares, e ainda um terceiro, 

de nível utilizador. No protótipo, o locking de grão fino está integralmente realizado e a cache 

global é mantida coerente com transferências de fragmentos de páginas realizadas sobre LAN. 

Os testes efectuados para o caso de processos que correm em diferentes nós escrevendo 

sobre um mesmo ficheiro mostram que o pCFS tem um desempenho idêntico ao do Parallel 

Virtual File System (PVFS) e duas vezes superior ao do NFS, consumindo muito menos CPU 

que estes (cerca de 10 vezes); e que, quando comparado com o GFS, tem desempenhos que 

são 2 a 600 vezes superiores (para acessos de 4 MB e 4 KB, respectivamente) com idênticos 

consumos de CPU. 
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Abstract 

Today, clusters are the de facto cost effective platform both for high performance 

computing (HPC) as well as IT environments. HPC and IT are quite different environments 

and differences include, among others, their choices on file systems and storage: HPC favours 

parallel file systems geared towards maximum I/O bandwidth, but which are not fully POSIX-

-compliant and were devised to run on top of (fault prone) partitioned storage; conversely, IT 

data centres favour both external disk arrays (to provide highly available storage) and POSIX 

compliant file systems, (either general purpose or shared-disk cluster file systems, CFSs). 

These specialised file systems do perform very well in their target environments provided that 

applications do not require some lateral features, e.g., no file locking on parallel file systems, 

and no high performance writes over cluster-wide shared files on CFSs. In brief, we can say 

that none of the above approaches solves the problem of providing high levels of reliability 

and performance to both worlds. 

Our pCFS proposal makes a contribution to change this situation: the rationale is to take 

advantage on the best of both – the reliability of cluster file systems and the high performance 

of parallel file systems. We don’t claim to provide the absolute best of each, but we aim at full 

POSIX compliance, a rich feature set, and levels of reliability and performance good enough 

for broad usage – e.g., traditional as well as HPC applications, support of clustered DBMS 

engines that may run over regular files, and video streaming. pCFS’ main ideas include: 

• Cooperative caching, a technique that has been used in file systems for distributed disks but, as 

far as we know, was never used either in SAN based cluster file systems or in parallel file 

systems. As a result, pCFS may use all infrastructures (LAN and SAN) to move data. 

• Fine-grain locking, whereby processes running across distinct nodes may define non-

overlapping byte-range regions in a file (instead of the whole file) and access them in parallel, 

reading and writing over those regions at the infrastructure’s full speed (provided that no major 

metadata changes are required). 

A prototype was built on top of GFS (a Red Hat shared disk CFS): GFS’ kernel code was 

slightly modified, and two kernel modules and a user-level daemon were added. In the 

prototype, fine grain locking is fully implemented and a cluster-wide coherent cache is 

maintained through data (page fragments) movement over the LAN. 

Our benchmarks for non-overlapping writers over a single file shared among processes 

running on different nodes show that pCFS’ bandwidth is 2 times greater than NFS’ while 

being comparable to that of the Parallel Virtual File System (PVFS), both requiring about 10 

times more CPU. And pCFS’ bandwidth also surpasses GFS’ (600 times for small record 

sizes, e.g., 4 KB, decreasing down to 2 times for large record sizes, e.g., 4 MB), at about the 

same CPU usage. 
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Part I: 

Motivation and Background 
 

 

 

In this Part we present the motivations for our work, along with a small introduction that 

covers the transition from the supercomputer architecture to clusters; we include a brief 

overview of applications that need high performance I/O, including scientific, database, and 

multimedia, and lay out the focus and major contributions we anticipate from our dissertation. 
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1 Introduction 

1.1 The evolution of high performance computing architectures 

In the last two decades, two factors were determinant in the architectural shift that made 

high performance computing (HPC) available to broader audiences: technological, in the form 

of high speed microprocessors and interconnects; and economical, as their inclusion in the 

commodity market of personal computers (PCs) resulted in even lower costs. Specialised 

supercomputer architectures have therefore been replaced by clusters1 – originally built 

around piles of commodity PCs, then around small symmetrical shared-memory multi-

processor (SMP) nodes made up from common off-the-shelf (COTS) parts, and recently with 

more “exotic” parts such as multicore processors and blade servers; today, large clusters can 

reach amazing raw performance figures, as we multiply a node’s performance expressed, e.g., 

in floating-point operations per second (FLOPS), by the total number of nodes. 

As clusters replaced Massive Parallel Processors (MPP) and other supercomputer 

architectures, efforts were carried out to simplify their installation, operation, administration, 

and everyday use; the aim was, quite understandably, to present a cluster as a single, although 

large-sized, computer. Efforts were pursued in the programming models arena too, aiming 

either to simplify programming, as proposed by the shared memory model adopters, or 

develop programs that extract the last ounce of performance, as advocated by the proponents 

of message passing programming model. 

1.2 Bottlenecks: when reality crushes in 

But despite the high performance figures we can get out from clusters (even when these 

figures are not merely raw values but ones derived from accepted benchmarks such as the 

LINPACK2 [Don+01] benchmark), some HPC “real world” applications may run at a much 

slower speed than what it should be expected, given the system’s rating. There may be several 

reasons why this may happen; to name a few, and drawing a parallel to what happens in the 

single node world, the application may be CPU bound, memory bound, or I/O bound. 

We all know, just by mere observation of advertisements in the industry, the huge increases 

in processor and interconnect performance that occur, say, every year; so, dealing with a CPU 

bound application is simple, isn’t it? We just need to add another CPU, or replace the current 

one with a faster model… well, it may help; or else, it may just highlight yet another 

bottleneck. Anyway, in a multiple node cluster, what should we do? Replace the CPUs in all 

nodes? Add in some more nodes? The first option is quite cumbersome, but the second is very 

                                                 
1  For a comprehensive survey of computing architectures see Part II, section 4. 
2  Used to rate the world’s top supercomputers in www.top500.org. 



 

2 

practical – although it may be inappropriate for some cases – e.g., when, to use more nodes, 

either the application itself or some of its parameters have to be changed. 

Good observers will also notice that the high rate of improvement in CPUs does not hold in 

other technologies, e.g., disk, and/or memory; therefore, “slow application” behaviour can 

also result from memory latency or bandwidth problems, something that may not be so easy 

to fix as, say, adding more memory to each node when memory is scarce, and cannot for sure 

be fixed just by increasing the CPU clock. 

1.3 The I/O bottlenecks 

In this work we are first and foremost interested in systems that can be made to perform I/O 

at such a rate that it will not hinder the overall progression of the computation, i.e., systems 

that exhibit good I/O performance, and are scalable. 

From a node’s perspective, good I/O performance requires3: reasonably fast disk devices; a 

contention-free or slightly-contended I/O infrastructure to connect the devices to their bus 

adapters; a DMA-capable I/O controller plugged into a high bandwidth, low latency I/O bus; 

and finally, a good I/O stack – from the device driver to the file system layer. 

But these are single-node perspectives and we are interested in clusters where more things 

should be considered; for example, should each node in the cluster have its own set of private 

disks, or share disks with other nodes? Should nodes be symmetrical, i.e., should they run the 

same set of services or, conversely, should some nodes perform one duty only, e.g., I/O 

storage/server, while others are I/O clients? And, finally, is the configuration (hardware, 

architecture, software, etc.) scalable, i.e., does resource addition such as nodes and/or disks 

result in more I/O bandwidth? 

1.4 High availability 

Today’s cluster applications may use large numbers of nodes and run for days, or even 

months. In this scenario, failure of a component (CPU, memory, interconnect, disk, etc.) is a 

certainty, so steps must be taken to assure that the application state can be recovered and, as 

soon as the subsystem containing failed component has been either repaired or taken off, the 

computation can be restarted. From the I/O perspective this requires a highly available (HA) 

architecture, covering both hardware and software – e.g., file system. As a counterexample, 

an I/O architecture where nodes have their own, private, internal disks is not a good choice, as 

data is no longer accessible when a node fails, whereas an architecture where nodes access 

external array-based storage [Pat+89] may be able to offer some sort of service continuity. 

                                                 
3  These aspects will be explored in greater detail in Part II. 
 



 

3 

2 I/O Intensive Applications 

Today, I/O intensive applications are executed in clusters of all sizes; while today’s most 

HPC clusters mimic supercomputers of yore and are usually organised into compute and I/O 

nodes (see sections 4.3 to 4.5), some are configured in a different way; anyway, nodes that 

perform I/O tasks do run a distributed file system – no matter how we call it: parallel, cluster, 

or just plainly distributed1. What do applications, running in those clusters, need from the I/O 

subsystem? How can the operating system (OS), file system, and storage subsystem satisfy 

their needs? 

2.1 Who needs high-performance I/O? 

It is common knowledge that most applications that access very large amounts of data need 

high-performance I/O, and we can find examples in very different fields such as scientific, 

database and multimedia. 

Scientific applications cover domains such as astronomy (galaxy formation), chemistry 

(molecule synthesis), geophysics (climate, ocean), physics (fluid dynamics), high energy 

physics (particle accelerators), and medicine (tomography data mining). Common 

characteristics of “hard” scientific applications are [Nit+95]: they use multidimensional 

arrays, are not embarrassingly parallel, and are memory and/or CPU bound. 

Database applications also benefit a great deal from high-performance I/O; well known 

examples include online transaction processing (OLTP) applications such as airline 

reservations and online shopping, online analytical processing (OLAP) applications such as 

business marketing, sales reporting, data warehousing, and data mining. 

Multimedia applications such as video-on-demand require both high bandwidth, to cope 

with multiple data streams, and good quality of service (QoS), i.e., constant data rate from 

video servers.  

2.2 Scientific applications 

Broadly speaking, reasons to perform I/O in scientific applications can be grouped into two 

categories: compulsory and out-of-core [Cra+04, Sch+99]. Compulsory, i.e., unavoidable I/O, 

includes data and parameter input, and output data. We label here as out-of-core all those 

operations that, while avoidable in principle, are nevertheless convenient to have; examples 

include checkpointing of partial results, both for debugging and to support application restart 

(because of failures or to try “something else” – e.g., a different set of parameters – on 

intermediate results); scratch files; and, finally, true out-of-core support where data 

overlaying is programmed/controlled explicitly by the application programmer because either 
                                                 
1  We will propose, in Part IV, a reference model and a taxonomy that will enable us to establish a file 

system classification and highlight their important aspects. 
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he/she is using legacy code, or knows that performance will be better than if that same task is 

carried out by the kernel’s virtual memory management.  

When performing I/O to a disk file, several transformations may occur; the layout of a data 

structure, when in-memory, may be quite different from its in-file layout, and that one may 

also be distinct from the on-disk layout. Furthermore, the developer has to decide either for a 

data layout that will extract the best performance, or one that will be compatible with a 

sequential version of the application – quite useful for debugging, at the expense of 

performance; one may also choose to store it in a portable format, such as the Hierarchical 

Data Format, HDF [NCSA99] or the Network Common Data Form, NetCDF [Uni06]. User-  

-level libraries provided with these packages do perform those transformations, but they are 

usually available only for POSIX compliant [IEEE04] file systems. 

Therefore, to efficiently support a wide range of existing scientific applications and/or 

libraries (where some were developed to run on MPP platforms, others were tailored to large 

SMPs or vector supercomputers) in a cluster with a minimum of modifications to their source 

code, one must choose a file system that offers POSIX-compatibility (including both the API 

and the sharing semantics) while still providing high aggregated I/O performance.  

2.3 Database applications 

The evolution of high performance database servers followed an interesting path, from 

early shared memory architectures to shared nothing MPPs, and back to “shared something” 

in the form of today’s clustered shared disk SMPs [Nor+96]. 

The shared disk approach was taken mainly because it successfully solves two major 

problems: tolerance to failures, and difficulty to find a good partitioning strategy to distribute 

data among the nodes (and their local disks). This is just another case of trading the 

theoretical peak power of the MPP approach for the apparently simpler, although theoretically 

less scalable, “cluster of SMPs” architecture; for simplicity, we mean that life is much easier 

for database designers/administrators and application programmers; as an example, database 

administrators have to decide about the placement of the physical database structures into 

logical disks, and these onto physical ones, taking into account data de-clustering, RAID 

levels, and multi-path2 I/O; they don’t need to worry on how to partition data among servers. 

Still, for the DBMS engine implementer, the main difficulties for implementing a “Storage 

module” remain: the mapping of logical database structures, such as tables (in a RDBMS), 

indexes, hash tables, etc. into physical database structures, such as files in a filesystem, or 

blocks in raw disks3 (also called raw devices) [Ndi+04]. 

                                                 
2  See Part IV, section 12.1. 
3  Microsoft SQL Server is a major DBMS that does not support raw disks. 
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To efficiently support a file-based DBMS, instead of a raw-disk based one, even general-    

-purpose local file systems such as ext2 [Bov+05] or NTFS [Nai04] must provide high 

performance I/O; to run a file-based DBMS in a cluster with a minimum of modifications to 

the DBMS implementation, the supporting distributed file system must again offer high levels 

of aggregated I/O performance, while still providing POSIX-compliant file system features, 

such as “single-node equivalent semantics” (see 11.1.5 and [Sch+02]).  

2.4 Multimedia applications 

Multimedia environments are yet another example of the distributed client-server paradigm; 

a typical scenario has users at their terminals (TV, PC, PDA, mobile phone, etc.) choosing (in 

a process that may involve something as simple as browsing a list of choices, or as elaborate 

as querying a database) a “rich document”, and accessing it (viewing and/or hearing, or even 

producing/modifying). From end to end, i.e., from the server down to the user’s terminal, the 

whole infrastructure must concurrently support multiple data streams where synchronicity and 

isochronicity are of paramount importance [Ben+02]. 

From the I/O point of view, the “source” (servers and disks), which is our main subject of 

attention, has to cope with these requirements as they impose real-time constraints that must 

be met throughout all the file system layers, down to the bare disks. A common approach for 

today’s multimedia servers is to have a clustered architecture where nodes have external 

SAN-attached disk arrays4 (shared or not) and data is distributed across servers/disks 

according to some user/file system defined policy. One intuitively expects that the usual 

policies for reordering disk requests, such as the elevator algorithm [Bov+05], may not be 

adequate here and that having a richer file system API, one that enables us to communicate 

the above-mentioned requirements down to the file system layer, seems quite logic. 

Finally, processing of streamed data may have to be carried out, e.g., to adapt the stored 

frames resolution to the user’s terminal, something that can be done a) at the server [Ben+02], 

trading CPU for a decrease in network bandwidth; or, b) at the user’s terminal, if that is 

possible and desirable; or, c) in a middle tier of application-specific services/servers, an 

architecture we have never seen but seems a reasonable approach, and is probably an 

interesting research topic. 

Thus, to effectively support rich media environments where multiple independent 

isochronous streams must be fed, a server (parallel) application must be able to specify its 

QoS requirements regarding sustained data delivery bandwidths for each stream. This seems 

possible even on top of a general purpose, POSIX-compliant file system, provided that some 

                                                 
4  Internal disk configurations are not widely used because they constitute single points of failure; 

Storage Area Networks (SANs) are discussed on Part II, section 5. 



 

6 

minor modifications to the API are introduced, e.g., extending the range of options available 

to some calls such as open()  and ioctl() . 

2.5 High performance I/O for all: the case for shared disk storage 

Disk arrays are today’s ubiquitous storage bricks; for performance reasons as well as high 

availability they can be found from the smallest to the largest IT departments, hosting data 

bases, and in research centres, hosting very large data stores. They can be efficiently used 

both as shared storage, as in parallel database clusters and failover configurations (mail, file 

and web servers), and as privately attached storage (local disk “emulation”) in non cluster-     

-aware environments (legacy applications, video servers and scientific parallel I/O). 

In this dissertation, we argue that a high performance, highly available, POSIX-compliant 

file system can be built for SAN-based clusters with shared storage disk arrays. Such a file 

system would be able to efficiently support all but perhaps the most demanding applications, 

from all problem domains, in small to medium sized clusters (up to a few hundred nodes). 

3 Dissertation Focus 

3.1 Problem statement 

Today’s supercomputer is the cluster which, to be conveniently used as a HPC platform, is 

usually configured in a way that emulates its predecessor’s (the MPP) computing and I/O 

subsystems. But HPC clusters are only cost-effective when they are built from COTS parts, 

i.e., mainstream SMP server nodes. Unfortunately, the reliability of “the cluster” as a whole 

falls quickly when the number of nodes increases, and fault tolerant solutions must be used if 

one wants to provide the same service level supercomputer users are accustomed to. Solutions 

that withstand compute node failures rely on the ability of software – usually middleware – to 

perform cluster-wide checkpoint/restart of computations, while those to recover from I/O 

node failures are two-fold: when using internal disks, one could rely on the ability to cross-

replicate data among nodes (a solution not used in HPC because it has an unacceptable 

overhead); or, instead, dispense altogether with internal disks and use external disk arrays and 

additional software to provide fault tolerance. 

The external, array based solution used today in large HPC centres is, in fact, exactly the 

same approach that has been used for quite some time in business data centres to support 

highly available DBMS, mail, web and file servers, etc. However, there are some differences 

between those environments, including both the file system, and the storage access model. 

HPC-oriented file systems are geared towards maximum I/O bandwidth, use partitioned (also 

known as distributed) storage, and usually aren’t fully POSIX-compliant; data centre 

environments favour high availability general purpose file systems, which, conversely, use 
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shared storage and are fully POSIX compliant – and to provide it, if necessary, they sacrifice 

performance. 

In this dissertation we focus on the development of a prototype cluster file system that uses 

the shared storage approach and is fully POSIX compliant, while still being able to provide a 

high bandwidth, low latency access to reliable storage. The POSIX API is enhanced through 

the addition of new “option flags” to the open()  call, although, in the future, new primitives 

may be added; both will allow the user to have a better control of the file system behaviour, 

and increase its performance.  

3.2 Contributions 

The foci of this dissertation are five-fold: 

• To characterise the areas commonly known as “Parallel I/O” and “Parallel”, 

“Cluster”, or “Distributed” file systems and propose a set of rigorous definitions. 

• To propose a reference model that encompasses all layers from the upper, data 

management services down to the device layer, and define a taxonomy for the “File 

System” layer. 

• To propose a new architecture for a shared disk Cluster File System (CFS) that 

overcomes current parallel and cluster file systems inability to simultaneously 

provide full POSIX compliance and high performance. 

• To develop a prototype (based on modifications to Red Hat’s GFS1) for the 

proposed CFS, one that is fully POSIX compliant while still being able to provide a 

high bandwidth, low latency access to SAN-based reliable storage. 

• To assess the prototype, comparing it against well established file systems running 

a synthetic benchmark.  

3.3 Organization 

This document is organised as follows: 

Part I presents the motivations for our work, along with a small introduction that covers the 

transition from the supercomputer architecture to clusters; it also presents a brief overview of 

applications that need high performance I/O, including scientific, database, and multimedia, 

and lays out the focus and major contributions we anticipate from this work. 

Part II presents a brief survey of computer, storage, and operating system architectures used 

when problems do not fit in a “single-box” anymore; we start with SMPs and then move to 

multi-node MPPs, non-uniform memory architectures (NUMAs) and clusters. In the storage 

section, we introduce storage devices (from disks to storage arrays) and interconnect 

                                                 
1  See Part IV, section 15.3.1.2 for a thorough description and references. 
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architectures (from internal I/O busses to storage area networks). Finally, we briefly mention 

operating system choices for single and multi-node architectures. 

Part III discusses fundamental concepts in file systems; we discuss the user-level views of 

file organization and access, sharing semantics and data consistency, and an array of 

techniques commonly used to enhance performance, such as data distribution and caching – 

starting from the perspective of the single-node computer and then moving to multiple node 

architectures. Each concept/technique is then illustrated with a “real world” file system.  

Part IV starts by discussing I/O flow in modern architectures and operating systems, which 

allows us to extract precise definitions for Parallel I/O and Parallel Disk Access. Then a new 

Reference Model for Data Management Architectures (RM-DMA) is proposed, and 

taxonomies for the three topmost layers (File System, Object Storage, and Storage Access) 

are presented. A short evaluation of the model and accompanying taxonomy is carried out as a 

survey of some relevant, widely known, “parallel”, “distributed”, “client/server” and “cluster” 

file systems, I/O software stacks, and storage architectures. 

Part V starts with a critique of traditional shared-disk cluster file systems, listing their 

features and benefits as well as limitations; while we specifically refer to Red Hat’s GFS, 

remarks also apply to other CFSs. To validate whether initial ideas, e.g., using the LAN as a 

secondary path to move data among nodes, were sound, we have developed a pre-prototype 

and some preliminary tests were carried out. Results were very positive and led us to propose 

a new architecture for shared-disk CFSs, one that moves data sharing from the device to the 

file system cache while preserving POSIX semantics across cluster nodes; we call it the 

“parallel Cluster File System”, pCFS. 

Part VI is a prerequisite to understand the pCFS implementation: the first section discusses 

the architecture of the Linux VFS and how it is used to integrate specific file systems; then an 

overview of GFS internals is presented; and finally we describe, with some detail, how GFS 

implements locking and uses it to promote clusterwide coherency. 

Part VII describes how we have implemented pCFS, through the addition of two kernel 

modules, a user-space daemon, and slight modifications to GFS code; the modified GFS code 

distributes information about clusterwide open files and active regions, and implements cache 

coherency without resorting to expensive disk flushing and cache invalidation operations. 

Part VIII benchmarks pCFS against “plain” GFS and other well know file systems such as 

NFS and PVFS (where both the “regular” configuration, with internal disks, and the high 

available configuration, with disk volumes provided by a disk array, were benchmarked); 

these benchmarks go beyond the usual set of metrics and also account for CPU consumption. 

Part IX assesses the benefits of pCFS – its use of an integrated approach to data movement, 

cooperative caching, and low latency cache coherence operations – and how they succeed in 

overcoming the I/O bottleneck. Finally, it introduces ideas for future work. 
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4 Parallel and Distributed Computing Architectures 

4.1 Architectural archetypes  

The topics we are going to cover now are introduced in a simple way by Fig. 4.1, as it 

charts architectures we’re addressing on a two-dimensional grid built along two axes: the 

number of CPUs, and their “distance”, measured in terms of memory access latencies.  

 

Figure 4.1 Architectural archetypes “at a glance” (hardware-biased view) 

To illustrate the placement of an item in the chart let’s look, for example, at a typical SMP: 

it has a few CPUs (so we place it in the “Tens” zone), sitting close to each other on a low 

latency, very high bandwidth interconnect (quite often, a shared bus) and therefore we place it 

close to the “Small” line. We then group (“encircle”) similar architectures into families, 

according to the way CPUs access memory; for example, in shared memory architectures all 

CPU(s) can access the whole memory – and they are either of the Uniform Memory 

Architecture (UMA) variety, when all the CPUs can access all memory modules at the same 

“speed” (latency), or of the Non-Uniform Memory Architecture (NUMA) variety, when a 

CPU may access some memory modules at a faster “speed” (latency) than it may access 

others. 
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4.2 The shared memory multiprocessor  

The symmetrical shared-memory multiprocessor (SMP1) is today’s prevailing architecture 

for small size (up to 4 CPUs) and even medium size (up to 8 CPUs) COTS systems; it is so 

common that one can find a huge amount of literature, including textbooks, manufacturers 

white papers and computer magazine articles, and was scarcely a research topic. However, 

recent developments on multicore architectures have, once again, spurred research on SMPs. 

 

Figure 4.2 Architecture of a common off-the-shelf SMP server 

Current Intel-based SMPs are of the uniform memory architecture (UMA) type, where the 

cost (latency) of accessing a memory location is the same for all CPUs, while AMD has been 

busy selling their Opteron-based SMPs [Jes05], a shared non-uniform memory access 

architecture (NUMA, to be detailed in section 4.4); understandably, NUMAs may need some 

operating system assistance, such as the Linux NUMA extensions [Dob03, Bli+04], in order 

to transparently achieve “optimum” application performance. 

There are some very strong points in favour of the SMP architecture: it is very easy to 

program, as it implements the shared memory programming model; it is, at least with a 

properly designed memory subsystem, very easy to scale CPU performance if the number of 

CPUs is kept low (let’s say less than a dozen); and, with properly designed memory and I/O 

subsystems, it is also relatively easy to scale I/O performance. 

But this easiness is for low numbers; in fact, it is very difficult to simultaneously increase 

both the number of CPUs and the I/O bandwidth because a COTS SMP is designed around a 

                                                 
1 We will, unless otherwise noted, use SMP to refer to shared-memory multiprocessors, a more generic 

architecture that includes the symmetrical shared-memory architecture as a subtype. 
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memory and I/O interconnect topology (usually one or more buses) which is not scalable. For 

cost reasons2, this subsystem is built as PCB lanes onto the motherboard, and can not be 

“widened” to support a larger data path; another way to increase bandwidth is to increase the 

bus clock rate, but that’s not an easy task: the electrical characteristics of the bus dictate the 

fastest clock rate it can sustain, and anything that’s plugged in the bus only contributes to 

deteriorate its characteristics; so, if we succeed in increasing the clock rate in a specific 

motherboard’s bus, it just means that it was being underutilized before. 

Historically, the I/O subsystem has tried very hard to keep up with the CPU performance; 

the Peripheral Component Interconnect (PCI) bus, plugged into a “south bridge”, has evolved 

from the original mid nineties 33 MHz, 32-bit wide PCI (at 133 MB/s) to a 66 MHz 64-bit 

wide bus found in mainstream products in late nineties (at 533 MB/s); now, PCI-X, with a 

bandwidth of circa 1 GB/s (with 2 and 4 GB/s almost ready to take off) can be found directly 

attached into a memory hub [PCI-X]. But high performance disk arrays on Fibre Channel at 

800 MB/s per full-duplex port, and Gigabit Ethernet devices, at 100 MB/s, can still saturate it. 

A solution to this problem includes, among others, the latest generation of serial-based busses 

and interconnects: PCI Express (PCI-e) [Bha01], and Infiniband3 (IB) [Pfi01]. 

4.3 The massive parallel processor 

 

Figure 4.3 Architecture of an MPP 

                                                 
2 To see what can be done in big, expensive shared memory architectures, see Sun’s Starfire [Cha98]. 
3 IB has yet to fulfill the promise of being an alternative to PCI [Pfi01]; tight control, by Intel, of the 

Front Side Bus (FSB) has deterred developers from “plugging” into the memory hub. 
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The Massive Parallel Processor (MPP) is another approach to increase raw computing 

power; the concept is based around a large number of nodes4 sitting close to each other, linked 

together with an expensive, special-purpose, high bandwidth low latency interconnect – 

usually a non-bus topology (e.g., mesh, hypercube, torus, etc.); depending on the architecture 

and/or topology of the interconnect, increasing the number of nodes can vary from reasonably 

easy to very hard; anyway, the available raw computing power will increase accordingly. The 

MPP is obviously well (“naturally”) suited to support the message passing programming 

model, due to its distributed memory architecture. 

The prevailing I/O architecture for MPPs is based on the use of a certain number of I/O 

nodes that either hold internal disks, or have a separated interconnection infrastructure linking 

them to external storage; these I/O nodes are, together with the compute nodes, attached to the 

general-purpose interconnection network [Ber+94]. 

The big advantage of the MPP architecture is its (theoretical) scalability: it is (at least with 

a properly designed interconnect) very easy to scale up raw performance, even in a large 

configuration (thousands of nodes), just by adding more compute nodes; and, similarly, to 

increase raw I/O performance, one may just add I/O nodes. On the down side, it not easy to 

program it, as message passing is the programming model of choice (some authors will 

strongly disagree with this statement). As a consequence a large amount of software originally 

developed for SMPs will not run in MPPs; to solve this problem, two approaches are therefore 

possible: porting the software, which can be a very expensive/time consuming endeavour for 

large products (e.g., the port of a DBMS engine), or simulating a MPP-wide shared memory 

with appropriate middleware – this approach, called Virtual Shared Memory, VSM [Li+86], 

has been shown adequate for some applications. 

A special point must be noted: we have been using the term raw power, which is the 

aggregated sum of the power (computational or other) of all the nodes; but one thing is to 

advertise the raw power, while another one is to be able to use it productively, to run 

applications. MPP applications are very sensitive to the layout of data distribution among 

nodes, as well as to the frequency of communication and amount of data exchanged between 

the nodes; if not properly done (which is no easy thing to do), performance will be much 

lower than what one could expect5. Another sensitive point is I/O: if computing nodes do not 

have direct access to storage, all I/O data must travel through the network interconnect, and 

this should be done in a way that does not interfere, i.e., delay, application message exchange; 

one should strive for a segregation between the I/O data transfer messages and application 

                                                 
4  A node is a package containing a complete system: CPU(s)-memory-I/O. 
5 For example, the performance of a well known proteing-folding application on a 2048-processor 

Blue Gene is about 4 ns/day, while it reaches 15 ps/day in a IBM 595 “big NUMA” with 944 CPUs. 
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communication, and, if possible, overlap them with computations; otherwise, we will be 

increasing the sequential term in Amdahl’s law [Amd67, Gus88], and speedup will suffer. 

Development of MPPs has been lingering for quite some time, losing for the much more 

cost-effective clusters, but recently IBM has been commissioned to develop the Blue Gene 

architecture, a “massive supercomputer” [Gar+05]. 

4.4 Distributed shared memory architectures and NUMAs 

A distributed shared memory (DSM) architecture is a specialised distributed memory 

architecture6 where it is possible for a node to use a separate interconnect (not the CPU-local 

memory interconnect) to access another node’s memory; this remote memory access 

capability is provided by special hardware (which may, or may not, be complemented with 

OS-level software). DSM architectures were developed to overcome both “the” limitation – 

poor scalability – of bus based shared memory multiprocessors, and the low performance of 

software based virtual shared memory implementations while retaining their major strength: 

the shared memory programming model. 

While the most general definition of Non-Uniform Memory Architecture (NUMA) 

encompasses all architectures where the latency of accessing distinct memory addresses may 

differ (e.g., an omega network used for CPU/memory interconnection), it is used today 

mainly to refer to DSM architectures. NUMA research has focused mainly into three different 

architectures: the cache-coherent NUMA (cc-NUMA), the cache-only memory architecture 

(COMA), an implementation with coarse grained shared memory coherence, and the generic, 

non cache coherent, NUMA [Len+95]. Several cc-NUMA architectures were successful 

commercial designs in the past: the Kendall Square Research KSR-1 and KSR-2, the Convex 

(now HP) Exemplar, the Silicon Graphics Origin series, the Sequent (now IBM) NUMA-Q, 

and the Data General (now EMC) AViiON 20000. Silicon Graphics (SGI) is one of the 

companies still on the market with a (cc-)NUMA architecture, the Altix range of high 

performance computing systems (with up to a few thousand nodes); another is IBM with its 

large pSeries systems, e.g., the 128 CPUs p575. 

The advantage of a cc-NUMA over the NUMA is in the hardware-assisted coherence 

between local and remote (also called far) memory; it increases performance and makes the 

development of the operating system much easier, so both user-level software (applications) 

and “middleware” (such as DBMS engines) can run unmodified, although they may need 

tuning if we want to extract adequate performance. 

  

                                                 
6  Notice that we restrict the more generalised use of the terminology, as does [Len+95]: we define 

DSM architectures as hardware-enhanced, thus eschewing software-only solutions, which we call 
VSM. 
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Figure 4.4 cc-NUMA architecture 

Most commercial designs (exceptions were SGI and KSR – this one not exactly a 

“commercial” design) were based on the Scalable Coherent Interface (SCI). SCI is an IEEE 

standard that provides very high performance (both low latency and high bandwidth), bus-like 

functionality, to a large number of nodes [Gus92, IEEE92]. It uses a packet-based 

communication protocol over unidirectional links connected in a ring topology, and provides 

remote memory access capability, which, together with a cache coherence protocol (an 

optional feature on the standard), enables us to offer a unique globally shared memory across 

nodes. SCI was the first of a series of Remote DMA (RDMA) capable, high bandwidth, low 

latency standard interconnects; today, the most prominent ones are Infiniband [IBTA01], and 

Myrinet [Nan+95, VITA98, Myr00]. 

4.5 Cluster architectures 

As the name suggests, a cluster is a group of machines (sitting “close” to each other); from 

this common ground, quite a few different interpretations of what a cluster is can be found, 

particularly if one includes vendor whitepapers and magazine articles. 

Informally, a cluster is a group of nodes (with or without local disks), which we will call 

cluster nodes, interconnected by some sort of networking infrastructure. Thus, from an 

architectural point of view, a cluster is a close relative of the MPP – and thus well suited to 

implement the message passing programming model; it can also be pictured exactly as the 

MPP, and so Fig. 4.3 may also be used to describe a cluster. There are, however, differences: 

the cluster interconnect is often either a general purpose network (e.g., Ethernet), or a more 

specialized (read: expensive) and better performing interconnect (but nevertheless, easy to 

“shop”), while the interconnect used in MPPs is just the opposite – an expensive, purposely 

built one; and a cluster node is usually a complete packaged computer (the “ultimate” cluster 

building block of today is the blade) or, at least, a complete motherboard, while an MPP node 

may be something ranging from a special board that is inserted in a frame (similar to blades, 

but no power supply), to a fully “boxed” item that is inserted into a cabinet – i.e., expansion in 

a MPP can become impossible when the cabinet is full. 
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The strong and weak points of clusters are quite similar to those of MPPs: on the plus side, 

it’s very easy to increase the raw computing power, as one just needs to add new nodes, and 

to increase both the I/O capacity and raw bandwidth, as all one has to do is either add disks to 

existing nodes, or add new nodes with their own disks. The less favourable characteristics of 

cluster architectures are the message passing programming model, and lack of off-the-shelf 

software. But there are two very special points that must be noted: on the positive side, for the 

same raw computer power, a cluster may be one or more orders of magnitude cheaper than its 

MPP counterpart; and, on the negative side, its “usable performance” may be more sensitive 

to the issues of application communication patterns, data distribution and I/O. 

Wishing to eliminate, or at least improve on the weak points of cluster architectures, some 

researchers have successfully experimented with high performance interconnects, instead of 

being tied up to Ethernet only. Today, clusters can be found using Infiniband, Myrinet, or SCI 

making them usable in situations where sensitivity to the data distribution and communication 

patterns precluded the use of cheaper Ethernet (e.g., HPC and parallel DB clusters). Currently 

research efforts are underway to use these interconnects (previously SCI, today Infiniband) to 

implement distributed shared memory – in fact, turning the COTS cluster into a NUMA or 

even a cc-NUMA “single system image” (SSI) computer7. 

4.6 PoP and NoW 

PoP (Pile of PCs) [Rid+97] and NoW (Network of Workstations) [And+95] are ways to 

aggregate small computers, and use them together; these terms have been used in a somewhat 

ad hoc manner, but we think that the term PoP should be used to describe a group of PCs 

sitting close to each other in a single room, perhaps aligned on a rack of shelves, while NoW 

should be used to describe a larger “cloud” of small computers scattered in a large building or 

in a campus. 

If we stick to the above definition, PoPs are in fact “unpackaged” clusters, and so they 

share with them the same configurations and constraints: due to the inter-node distance, for 

example, it is possible to link them with high bandwidth interconnects and create a NUMA. 

But that may not be feasible in a typical NoW, as nodes may be somewhat far away from each 

other; so, NoWs use Ethernet, and if we want to implement a shared memory layer, it will 

have to be a software-only VSM solution. 

4.7 Grid 

The Grid is a structuring vision for a “flexible, secure, coordinated resource sharing among 

virtual organizations – dynamic collections of individuals, institutions, and resources” 

[Fos+01]. From the architectural point of view – the only that we’re interested in here – it’s 

                                                 
7  For a brief description of SSI see section 6.4, “Operating Systems for Clusters”. 
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just like any other large scale distributed system, one that may encompass many different 

resources, from single-user PCs to large clusters, from PDAs and mobile phones to sensors 

and 3D display devices, etc., all interconnected by a wide, geographically dispersed network. 

Notice that, being “the Grid” a very hot research topic, and one that is not covered in our 

work, we’ve added this subsection (and the next one on cluster federations) just for 

completeness of the survey; it is, consequently very brief and incomplete. 

4.8 Cluster federation 

A cluster federation, as the name suggests, is made out of individual clusters; it is a 

federation in the administrative sense, i.e., there is an agreement on policies such as resource 

management and access, user authentication, etc. From the architectural perspective, a cluster 

federation is another large scale distributed system; but, unlike a grid, it is more 

homogeneous, both in site and network homogeneity: each site is a cluster, and the network 

access point at every site is a high bandwidth, dedicated infrastructure. 

As far as we could trace it (as with the grid, cluster federations are not a topic of study in 

this dissertation), the concept of a cluster federation seems to have been originated from two 

opposite directions: as an expansion, from clusters to larger systems (the term “federated 

grids” can also be found), as in the move from single administrative domains, tackled with 

Condor, to multiple administrative domains, through the use of Condor-G [Fre+01], and as a 

smaller, simpler, and more predictable “grid” [Xtreem]. 

5 Storage Architectures 

5.1 Architectural building blocks 

Gone are the days when the only direct access storage device (DASD) that could be 

plugged into a system was the magnetic disk; now we also have optical and hybrid disk 

technologies (which we will ignore together with other technologies, such as tapes), solid 

state disks and, more important, the storage disk cabinet. 

The storage disk cabinet is an external device that has its own power supply (and very often 

redundant power supplies), hosts a fairly large number of discs (tens to hundreds), and has an 

I/O channel8 interface of some sort. The storage cabinet is the basic building block for the 

storage array [Pat+89]; the array “feature” adds memory and processing power to the cabinet, 

allowing us to create logical volumes (also known as logical disks) out of groups of physical 

disks. A group generally adds some property to the “basic disks” that constitute it, such as 

higher performance or some sort of fault tolerance; commonly found groups use the different 

                                                 
8  Here we deviate slightly from the historical IBM/360 I/O channel concept; we use the term to refer to 

an interface that is connected to a DMA-capable adapter which offloads the host’s CPU for the most 
part of an I/O task. 
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RAID levels offered by the array, which often include levels 0 (also called striping, no fault 

tolerance), 1 (mirroring), 0-1 (combined striping and mirroring), 3 (bit interleaving with 

dedicated parity disk) and 5 (block interleaving with rotating parity disk). The host computer 

can only see each logical volume, not the individual physical disks that make the group 

(unless a configuration called Just a Bunch Of Disks – JBOD – where there is no grouping at 

all, is used, and therefore all physical disks in the cabinet are visible). 

5.2 Direct attached Storage 

Direct attached storage (DAS) is the oldest form of interconnection known to computer 

architects, as shown in Fig. 5.1: each storage device – disk or disk array – is connected to one 

and only one host computer, e.g. internal disks are connected to their I/O host adapter(s) in a 

pretty similar way as the array’s storage controller is connected to its own adapter.  

 

Figure 5.1 Direct attached storage with DASDs and Storage Arrays 

5.3 Shared storage and storage area networks 

A very important I/O channel technology that spread in the mid-eighties, and still prevails 

today, is the Small Computer System Interface (SCSI). Developed in 1981 by Shugart 

Associates and the NCR Corporation, it was submitted to the ANSI X3T9 committee and 

became an official standard in 1986 [SCSI-1]. SCSI introduced to the minicomputers of the 

eighties an inexpensive way to connect disk devices (called targets) to one (or more) host 

adapters (called initiators) via a shared bus – shown, in its simplest configuration, in Fig. 5.1. 

The SCSI protocol allows an initiator to send commands to a target; all bus entities are 

uniquely identified by a SCSI ID, or, if they are target devices (e.g., disks, tapes), by a SCSI 

ID/LUN (Logical Unit Number) pair. This has several interesting possibilities, but we will 

discuss just two: i) the SCSI bus can be “driven” by two initiators in the same host, and one 

may use a specialised fault tolerant driver which can detect a failed host adapter and “switch” 

to a good one, which was dormant, as shown in Fig. 5.2; and, ii) the initiators may be plugged 
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into different hosts, as shown in Fig. 5.3, and each host (initiator) may be configured to access 

only a subset of the disks (“its own subset”). 

 

Figure 5.2 Host-based HA: shared SCSI bus over two host adapters 

Option ii) is called a dual-initiator configuration, and requires adequately “enhanced” SCSI 

drivers to support LUN masking, a way to restrict the set of LUNs that the host (driver) is 

allowed to access. It is important to notice that we have moved from internal storage, where 

all disks are accessible only from one host, to an external cabinet with a pool of drives that 

can be configured to satisfy the storage needs of each system at a particular moment, and later 

on be reconfigured to satisfy a different set of needs (e.g., “System A” has now a lot of free 

space, let’s mask out one or more disks so that they can be used on “System B”). 

 

Figure 5.3 Node-based HA: Attaching an external storage cabinet to two hosts 

In SCSI-2 there was an address space of 16 SCSI IDs, so we could connect up to 15 hosts 

(with one adapter each) leaving out one ID for the target device. It’s not an easy task, to 

connect all these cables – in fact it is virtually impossible, so the SCSI hub was developed. A 

SCSI hub is a device that behaves just like an network hub: it’s a star topology that 
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implements a shared bus; and it gives users a string of benefits, such as the possibility of, at 

the flick of a button, removing a device from the bus without causing a total failure – just like 

network hubs (well, almost; network hubs don’t have buttons – one simply unplugs the cable 

to disconnect something). Now the configuration closely resembles a network; in fact, it’s 

called a Storage Area Network, or SAN9. 

 

Figure 5.4 A Storage Area Network (SAN) 

SCSI has been so widely used that has been the target of a lot of enhancements over the 

years, and specifications SCSI-2 [SCSI-2] (which replaces SCSI-1) and the SCSI-3 “family” 

are now part of the standards. SCSI-3 was a major step, because it separated the SCSI 

protocol from the cabling itself, thus allowing it to be used with any transport, as in Serial 

Attached SCSI [SAS-1], and also to be encapsulated in other protocols, as in Fibre Channel, 

where it was integrated in Layer 3 [FC-FCP], and over IP, as defined by the iSCSI protocol 

[Kru+02]. Thus, there is a specific SCSI-3 annex for each combination of protocol and 

interconnect.    

Storage Area Networks are a hot topic: a lot of research has been done over the years, and 

every major player in the hardware arena – both computer manufactures and storage 

companies – has a string of products for SAN. Fibre Channel (FC) was the enabling 

technology, overcoming the 15 m maximum parallel SCSI bus length (with 30 m for copper 

and 10 km for optical fibre) and the complexity and fragility of the connectors (with 68 to 80 

pins for parallel SCSI vs. two twisted pair conductors for copper FC, or two optical fibres in 

optical FC). Fibre Channel also offers aggregate speeds from 200 to 1600 MB/s (over dual 1, 

2, 4 or 8 Gbps serial links) against an initial SCSI-1 offer of 10 MB/s (parallel SCSI now 

                                                 
9  SAN may have another, totally different meaning: System Area Network. It is often used to describe 

a group of hosts interconnected by high bandwidth technologies such as Infiniband, Myrinet and 
SCI; we will use the SAN acronym only to refer to storage area networks. 
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boosts up to 320 MB/s but only in very short, internal cable runs). All previous figures can be 

“updated” to the latest FC technology just by replacing the words “SCSI” with “FC”. 

5.4 Network attached storage 

The concept behind Network Attached Storage (NAS) is, to put it simply, to offer a plug-

and-play file server with the administrative costs of an appliance. 

The file server concept started in the mid-eighties with Sun’s Network File System (NFS) 

[San+85], and progressed through with the integration of file sharing within Network 

Operating Systems (NOS), including Novell’s Netware OS with the Netware File Sharing 

Protocol (NFSP), and Microsoft’s Windows NT with the Common Internet File System 

(CIFS) [Her04]. A file server “internally” stores files and folders that may be remotely 

accessed (shared is term generally used in IT) by client machines, via network – usually, an 

Ethernet LAN. These systems have flourished for the last 15 years or so, but to some users the 

burden of the administration tasks needed to keep them running grew out of proportion – and 

one of the reasons was that the “box” hosting the file server also had a full fledged operating 

system, requiring regular OS system administration tasks (user profile maintenance, selective 

backups, software upgrades, etc.); to make things worse, the three file sharing protocols 

quoted above (CIFS, NFS and NFSP) are incompatible with each other. 

 

Figure 5.5 A Network Attached Storage (NAS) solution 

The NAS appliance, developed throughout the nineties, was the solution: a storage cabinet, 

with CPU, memory, disk and network I/O; a special or general purpose, but stripped down 

version of an operating system, and software to implement one or more file sharing protocols; 

the appliance can interoperate with multiple NOS servers and clients, so the administrative 

costs are trimmed down to a minimum. Current versions of NAS servers are highly developed 

products, including their own proprietary internal file systems (with hardware or software 
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RAID capabilities), and being able to share the same file to several clients using different 

protocols concurrently: for example, the same file can be accessed, for example, on a UNIX 

client using NFS and UNIX file permissions, while on a Windows client using CIFS it will 

use Windows’ Access Control Lists. Fig. 5.5 shows a LAN with two clients and a NAS 

appliance. 

Network Attached Storage is, together with SANs, a hot topic and NAS proponents are 

actively pushing the concept as “the” storage solution; right now NAS is being used mainly to 

replace and consolidate file servers; it is not being used as a general purpose storage box – for 

example, it can not always be used to host a database, as some mainstream database 

technology vendors do not support their products in the NAS environment. 

Network Attached Secure Disks (NASD) [Gib+98] is a research project at Carnegie Mellon 

University rooted on the same ideas of NAS – giving access to storage through the network. 

The idea behind their work is to get rid of all the excessive data movement inside servers and 

clients; for example, in a file server data has to be moved from the disk to the OS buffers and, 

from there, to the network buffers, down the network layers, and into the server’s (or NAS) 

Network Interface Card (NIC); then it must travel through the network to the client’s NIC, up 

the network layers into the client’s OS buffer, from where it finally gets moved to the 

application program that requested it. NASD advocates that each disk must have its own NIC, 

processing power and software, and be directly attached to the network. Another project that 

originated from NASD, Active Disks [Rie+01], proposes that disk devices can be built where 

the device’s processing power is enough to build file or data base management systems 

directly “on disk”, thus eschewing traditional file and database servers. 

5.5 Object storage devices and Object-based storage 

The Object-Based Storage Device (OBSD, also known as Object Storage Device - OSD) is 

an abstraction used to redefine the roles and capabilities of storage devices (disks, tapes, etc.); 

an OBSD is able to accept commands that create object sets (or groups), with or without 

quotas, and then accept the creation of identifiable objects (instances, within the set) 

automatically managing the necessary storage space. To access such an object one may start 

with an “object open” for an identified object, then read and/or write, retrieve and/or store 

some attributes, and end access to the object with an “object close”; OBSDs thus “know” 

when an object is in-use. This approach will move most of the work currently performed by 

the host (running the Object Storage Layer, see section 13.3) to the devices, thus alleviating 

file system implementations, and therefore providing opportunities for performance increases 

in the file system [Mes+03, Fac+05]. 

The OBSD originated from the NASD work and, after years of cooperation between 

industry, academia and standard bodies, was transferred to the Storage Networks Industry 
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Association (SNIA). The SNIA and the International Committee for Information Technology 

Standards (INCITS) T10 committee “Object Based Storage Group” have already ratified a 

standard on SCSI commands for object-based storage devices [And99, T10-04]. 

6 Operating Systems 

6.1 Operating systems for shared memory architectures 

Research on operating systems for small-scale shared memory multiprocessors is quite 

stable at the small size SMP (e.g., Intel IA-32/64, IBM PowerPC) and cc-NUMA (e.g., AMD 

Opteron) architectures; Linux is quickly catching up with commercial UNIX derivatives 

(HP/UX, IBM AIX, Sun Solaris) with enhancements in scheduling (the so called O(1) 

scheduler [Lov03]), POSIX threads support [Dre+05], memory management (support for 

large memory, large pages and NUMA extensions [Gor04]), and I/O (volume managers, 

LVM [Lew05] and EVMS [Pra02, Lor+05], direct I/O [Bov+05], asynchronous I/O [IEEE04, 

Bha+03], and both Linux vectored [Bov+05] and POSIX list-directed I/O [IEEE04]). 

However, the advent of high levels of on-chip parallelism either in the form of multicore 

architectures with tens of cores, such as Intel’s TeraFlops processor [Van+07], or with many 

hardware threads, as implemented in the Sun’s Niagara processor [Kon+05], has once again 

revived OS research; OS support for many-cores must not only address large numbers of 

threads efficiently (a problem that has been researched before), but also dispatch them in a 

way that application efficiency can be increased, e.g., leading to a decrease in execution time 

for parallel applications. Research in OS scheduling, such as on extensions to support gang 

scheduling [Raj+07] of related threads has therefore become a hot topic. 

Furthermore, research efforts are also strong in highly available or near fault-tolerant OS 

extensions, e.g., for on-line subsystem configuration and de-configuration (such as hot 

pluggable memory, CPU, and devices [Bor+05]), self healing software and autonomic 

computing [Gan+03], and support for resource partitioning and virtual machine environments. 

6.2 Distributed operating systems 

The term “distributed system” has been used to describe a system consisting of several 

interconnected computers that do not share either memory or a clock, each one having its own 

memory and processor(s). Distributed systems range from strongly interconnected MPPs, to 

clusters or PoPs in a room, large installations of NoWs in a campus or in a metropolitan area 

network, country or continental-wide cluster federations, world-wide grids, etc. 

Ideally it should be possible to present a distributed system to its users as “a single (big) 

system”, one which would roughly provide them with the same interface and set of services 

they’ve grown accustomed to, and not just a disparate collection of isolated computer 
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systems, each one running its own, independent, OS copy. Under the ideal distributed 

operating system (DOS) users would have to login only once, anywhere, and they would 

always get the same environment, being able to browse through the system’s resources, list 

files, observe the status of running processes, etc.; they’d be able to launch their jobs 

(processes) in the same (or in a very similar) way they are used to do it in a single-node 

computer – and expect the DOS to schedule them on the “best node(s) for the job”, and access 

files irrespectively of where they are stored. And, furthermore, applications would run 

efficiently, increasing user satisfaction! Transparency is the keyword that could be used to 

characterize the behaviour we’ve just described; fundamental in a distributed operating 

system are (adapted from [Tan92]) name, access, and location transparency. Other desirable 

properties which, in a DOS, should also enjoy transparency are (again, adapted from [Tan92]) 

migration, replication, concurrency, parallelism, and failure. 

Unfortunately there is no distributed operating system capable of implementing all features 

on our “wish list”, if we embrace the entire architecture range; however, there are partial 

solutions that come quite close in some cases, as we will see below. 

6.3 Operating systems for MPPs 

Operating systems for MPPs can be either general-purpose, or as specialized as the 

architecture itself; the Intel Paragon [Ber+94], an MPP of the nineties with hundreds of 

computational nodes plus a few I/O and service nodes, is an example of a system that uses 

both a generic and a special purpose OS, depending on the node. 

Users access Paragon through service nodes running the Mach based OSF/1, a UNIX API- 

-compliant OS (for enhanced compatibility with widely available code) that handles the usual 

chores: process management (with lightweight thread support), virtual memory management, 

and inter-process communication services. 

Paragon I/O nodes (either with their own internal SCSI disks, or with fast HiPPI links to 

external disk arrays) also run OSF/1, seamlessly supporting, through the kernel’s Virtual File 

System (VFS) interface, different file systems such as the UNIX File System (UFS), NFS, 

and Intel’s own Parallel File System (PFS). Local file systems can, interestingly, be “unified” 

into a single MPP-wide Paragon Distributed File System (DFS). 

The original design specification mandated that a) a distributed service layer would be 

added to each Paragon node to provide for a single system image (SSI) vision, one where the 

whole system would behave as a “single, although very large computer” for users, 

programmers, and system administrators; and b) that a computational node could be used 

either in “bare” mode, loaded with a message passing library, or in “full” mode, loaded with 

OSF/1. In the end, it turned out that OSF/1 was too inefficient to allow compute nodes to 

perform at their best “rate”, so several installations have chosen to replace it with SUNMOS, 
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a single-task/single-partition OS developed by Sandia Labs and the New University of 

Mexico; as a consequence, the SSI vision was abandoned, too. 

6.4 Operating systems for clusters 

Clusters, when used as “commodity MPPs”, want to provide their users with the “MPP look 

and feel”10 and therefore they segregate nodes into three distinct roles: head, computational, 

and I/O nodes. 

The head node performs the same function as the MPP front-end: it is the single point of 

administration (users, groups, permissions, etc., resource monitoring, and file system 

administration), and, in some cases, the only node where users may login (and thus develop, 

i.e., edit, compile, link their applications); if users are only allowed to log into the head node, 

then the head node must run a job scheduler which accepts user’s requests, places them in a 

queue, and dispatches them to compute nodes according to some specified policy. Finally, I/O 

nodes store information needed by applications that are running in compute nodes together 

with transient files they produce. 

To provide these functionalities, a common approach is to pick a UNIX-based operating 

system, such as Linux, and extend it with the necessary middleware. For example, in the head 

node Network Information Service (NIS, once called Yellow Pages) [Sun02] or Lightweight 

Directory Access Protocol (LDAP) [How95] may be used to centralise the administration of 

users, groups, etc., while resource monitoring applications, such as Ganglia [Ganglia] or 

Munin [Munin] provide vital resource information for cluster administrators; as for batch 

schedulers, openPBS [openPBS], LoadLeveler [Kan+01] and a plethora of others provide the 

required functionality. File systems for clusters are a major subject, and will be left to the next 

section; for now, it suffices to say that the “seamless environment” that we aim to provide 

would require a file system with the same functionalities of Paragon’s DFS; but a usable, 

although less “transparent” environment can still be built with the more prosaic NFS by 

configuring the head node to be a NFS server while compute nodes are NFS clients. 

The other, less used but nevertheless cleaner approach, is to use a “true” DOS to provide 

SSI functionality; recently there have been several efforts, fuelled by the availability of high 

bandwidth low latency interconnects, to provide Linux-based distributed operating systems, 

such as the distributed shared memory Kerrighed [Lot01, Mor+04]. If one provides a VSM at 

the kernel level, as Kerrighed does, then processes (and threads) have their address spaces 

transparently built on top of memory which may be physically scattered among several nodes, 

turning the cluster into a “big SMP”, one who exhibits strong NUMA characteristics but is not 

a “set of independent nodes” anymore. So, ultimately, there is no need to modify existing 

applications, not even “command line utilities” such as ps (which now can report the list of 

                                                 
10 Of course, in a cluster that was not “configured” to behave as a MPP, things can be quite different. 
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processes running in the whole cluster); and there is no need to replace runtime shared 

libraries with specialised versions, a characteristic of some middleware or hybrid approaches. 

A third, remarkably efficient approach, is one that does not strive for a true SSI as above 

but that, for user and administrator tasks, behaves like one, as does Mosix [Bar+98, Bar+99]. 

Mosix provides the cluster with a dynamic load balancing capability (recall that the batch 

scheduler approach balances jobs statically, i.e., resources are evaluated just before launching 

a job), thus allowing a process to dynamically migrate from one node to another. Process 

migration in Mosix is accomplished by leaving a proxy in the original node when a process 

migrates; communication with the user and among the migrated process and other processes 

requires a hop through the proxy, but is completely transparent to the application; execution 

of library/system calls related to a process’ environment, such as gettimeofday() , must 

also take place at the proxy, before the result is sent back to the requesting process. 

6.5 Operating systems for large-scale distributed architectures 

“Large scale distributed” is an expression commonly and loosely used to embrace a 

diversity of architectures, environments, and applications; it includes sensor, and other forms 

of content distribution networks (e.g., peer-to-peer file sharing, video on demand), 

geographically dispersed collaborative applications and data processing, etc. The large scale 

distributed environments that we will cover here are cluster federations and the Grid; as we’ve 

pointed out before these are covered in the spirit of completeness of the survey and, 

consequently, are very brief and incomplete. 

The paradigm for the Grid [Fos+01] is one of a seamless system for resource sharing; 

therefore, efforts to develop a grid-targeted operating system were not actively pursued, as it 

would compromise the grid’s ubiquitous nature; instead, the majority of the research 

proposals is to build on layers of middleware which, if possible, should be operating system 

agnostic and built upon a minimum set of local services, i.e., relying on the most primitive 

widespread functions for process management, communication, and storage access, as Globus 

[Fos+97, Fos05] does. Vigne [Ril06] is a notable exception to this route, aiming to 

demonstrate that a Grid aware operating system is not only possible, but can, by design, 

include mechanisms that offer highly available services. 

At the cluster federation front, driven by such paradigmatic research facilities as Grid 5000 

[Grid5000], where dedicated dark fibre links interconnect distant clusters and have 

bandwidths that are comparable to those commonly found on intra-cluster links (differing 

only in incurred latencies), current operating system research is focusing on the move from 

cluster-aware OSs to the next level, federation-aware OSs. Under the umbrella of the 

XtreemOS project [Xtreem] whose aim is to develop kernel extensions to provide for large 

scale SSI computing systems, the Kerrighed OS is being extended with contributions from the 
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PARIS Research Project [PARIS] (e.g. integrating a mechanism to support checkpoint/restart 

in the kernel) to operate seamlessly and efficiently in cluster federations. 

A different approach, however, has been encouraged by the recent surge in virtual machine 

environments and proposes the use of virtualised resources (machines, networks, applications 

and data) to create virtual grids that run user applications across distributed environments. In- 

-VIGO is one of these virtualisation based projects that advocates raising the level at which 

resources are “gridified”11: instead of dealing with concrete resources, In-VIGO middleware 

[Ada+05] deals with virtualised ones such as virtual machines, virtual (private) networks, and 

virtual data; for example, to provide for single sign-on, it decouples grid accounts from local 

accounts and then uses role-based access control lists to support user/resource access 

verification [Ada+04]. 

                                                 
11 A “gridified” resource is one that can be “shared among a dynamic collection of individuals, and 

institutions in a flexible, secure and coordinated way” i.e., is a Grid resource.  



 

 

Part III: 

File Systems: Concepts and Performance 
 

 

 

In this Part we discuss some fundamental concepts in file systems; we cover topics such as 

user-level views of file organization and access, sharing semantics and data consistency, and 

an array of techniques commonly used to enhance performance, such as data distribution and 

caching – starting from the perspective of a single-node computer and then moving to 

multiple node architectures. Each concept/technique is illustrated with a “real world” file 

system.  
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7 File Systems: Concepts and Performance 

7.1 File systems 

File systems are to computer systems what filing systems once were to archiving rooms: 

filing systems were used to organise records into files and folders, and these into cabinets; 

today’s computer-based file systems organise files and directories in a tree-like structure 

whose root is usually contained within the bounds of a single logical volume, which we call a 

file system instance, or filesystem, for short. 

7.2 File organisation and access methods 

The sequential file is the most widespread file organisation model, one that reflects the 

earliest storage medium – the magnetic tape: an open operation will position the tape’s begin-

of-tape mark over the unit’s head; then, a read command will scan through the tape, reading a 

record, and movement will stop at the next inter-record gap; each read scans towards the 

tape’s end, and no more reads may be issued when the end-of-tape mark is over the unit’s 

head. The disk based file system’s analogy for this behaviour is to define a sequential file and 

a file pointer which is located at a particular offset (e.g., zero on open), incremented after 

each successful read or write, or positioned with a seek operation.  

Logical file organization deals with the file’s logical structure: a file may hold either 

structured (fixed, variable length records, etc.), or unstructured (byte-stream) data; a 

sequential file, i.e., a “file without holes”, mimics a tape and contrasts with a sparse file, 

where “holes” may exist between regions which contain data. Access methods specify how 

one may access, i.e., read or write data to the file; for example, one can read data “forward” 

starting from a given offset in a logically contiguous file, while one cannot (always) do that in 

a sparse file; conversely, for indexed files, a key must specified prior to retrieving the 

corresponding data. 

7.2.1 The UNIX heritage 
 UNIX popularised the byte-stream (unstructured) sequential and sparse file organisations, 

and a very simple file access API, consisting of five major primitives: open, close, read, write 

and seek1; as a consequence, both the sequential and sparse file organisations are supported 

today by the majority of local, as well as distributed file systems. Sequential files, being one 

of the simplest forms of storing data, are used both for persistent data storage and as a 

mechanism for data interchange. 

                                                 
1 Unfortunately, in some texts, adherence to this set of five primitives is all that it takes for them to say 

that a given file system has (or has not) a POSIX API.  
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7.2.2 Business applications and file I/O 
 UNIX file organisations, access methods and primitive operations, although extremely 

powerful (and thus capable of being the building blocks for other, more complex file 

organisations and access methods), are quite detached from the needs of the typical business 

application developer. For example, business applications usually require advanced data 

structures and file organisations such as keyed, indexed sequential (ISAM), or even a fully 

fledged DBMS; these may be the ones needed to narrow the semantic gap between the 

(user’s) problem and tools available to application developers. 

7.2.3 Scientific applications and file I/O 
 Scientific applications commonly use data organisation and access methods that are quite 

different from those appropriate to other fields such as business, multimedia, etc. Regarding 

the amount of data accessed, business applications typically use large numbers of “data 

sources”, be they files or tables (when using a DBMS); for each request, several files are 

accessed, but the amount of data moved to the application is usually quite small: a few 

“records” per accessed file2. Conversely, archetypal scientific codes use few but very large 

data files whose contents are, at first, fully (as much as one can fit) loaded into memory, in an 

I/O burst; then a sizeable amount of time is spent computing – a compute burst; finally, a 

large amount of data is written out, in another long I/O burst; of course, variations do exist, 

such as problems which require almost no input data, or others that do not generate much 

output, while some of them use temporary scratch files for debugging or out-of-core data. 

7.2.3.1 Data storage vs. data distribution 
Another big difference between scientific and business codes relates to file sharing: in 

business applications, several concurrently executing processes share data – they read/modify/ 

/write - and guarantee consistency through the use of file locking, while in scientific codes 

different processes usually access distinct, non-overlapping regions of a file, thus requiring no 

locking – in principle. Multi-process scientific codes may use files both as a way to store data 

and as a mechanism for data distribution; to illustrate this point we resort to a commonly used 

data structure, the 3D array (where each square is an n x m data block). 

 

Figure 7.1 Logical view of a 3D array 
                                                 
2 There are, off course, exceptions: Data Wharehousing and Data Mining spring to mind... 
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Supposing that we’re executing a single-process application, the in-core (memory) image 

of the data array would be, for a row-major layout (e.g., C codes), 

 

Figure 7.2 In-core row-major layout of a 3D array 

while for a column-major layout (e.g., FORTRAN codes) it would be, 

 

Figure 7.3 In-core column-major layout of a 3D array 

Now, suppose that we wanted to store the in-core array out onto a file; in a C program we 

could accomplish it with a single3 call such as write(fd, array, size) , one that 

writes the data out on a file; that would create a (sequential) file layout similar to the in-core 

layout of Fig. 7.2; the physical on-disk layout would, of course, depend on several things such 

as the file system itself, and whether a simple disk or an array of disks is used, etc. 

Now, suppose that we do have eight processes, labelled from 0 to 7, each one holding in 

memory only those data blocks whose label is equal to the process number, and that we 

decide write them to a single file; among several possible layouts for the file, we highlight the 

following three [Mad+04]: 

a) The canonical 3D block distribution, either in row-major or column-major order, just like 

those in Figs. 7.2 and 7.3 (although these figures were sketched to show in-core, not file 

data layouts). Notice that the algorithm for their creation cannot be as easily specified as, 

say, those for (b) and (c) below. 

b) The 1D block distribution (Fig. 7.4), created by, e.g. sequentially executing the 

following: each process (starting with the lowest numbered one and then proceeding to the 

next in sequence) writes all its data onto the file, and then yields to the next process (which 

picks the file pointer offset left from the previous one, and continues writing), 

 

Figure 7.4 File layout of a 1D block distributed array 

c) The interleaved sequential block distribution; again, a possible sequential algorithm for 

this layout is: each process (starting with the lowest numbered one and then proceeding to 

the next in sequence) writes its first block onto the file, and yields to the next, until the first 

                                                 
3  Assuming that size  is within the allowed bounds for the OS/file system call; otherwise, multiple 

calls would be used. 
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set of blocks for all the nodes have been written; then, each process proceeds to write the 

second block, etc. 

 

Figure 7.5 File layout of a sequential block distributed array 

Block distribution algorithms (b) and (c) laid out above were specified in terms of a shared 

file pointer – when a process issues an I/O operation that moves the file pointer, other 

processes will “immediately” see the file pointer’s new value; we could have use private file 

pointers instead, and the lseek()  call; for example, the (b) 1D block distribution algorithm 

requires each process to seek to a location computed as procID*wholeDataSize , and 

then write its whole data chunk onto the file; but, for the interleaved sequential block 

distribution in (c), the algorithm using private file pointers now becomes more complex, as 

each process loops until done, successively seeking to file locations computed by 

procID*DataSize+cnt*nbrOfProcs , writing a portion of data onto the file. 

After a file layout has been decided, and the file stored on disk, sometimes things change; 

for example, the number of processors may be changed (e.g., more processors were bought) 

thus benefiting from an increase in the number of processes, which then leads to a different 

data distribution; or, some obscure bug must be sorted out by resorting to a single-process 

sequential execution. In any case, we now must resort to a different algorithm for loading the 

array and, if we want to cover “all” possible cases, the code may become confusing and 

inefficient. This is why access methods start incorporating the notion of views that “hide” the 

offset between successive data blocks to each process’ eyes, making them look contiguous, 

such as strides for sequential files, or more sophisticated file organisation models, such as the 

sub-files in Galley [Nie+96] and Vesta [Cor+96] parallel file systems. 

7.2.3.2 Closing the semantic gap in scientific applications 
Strided access is very common in parallel applications: in a strided operation, several non-

contiguous data chunks within a file are accessed; for example, in the Galley file system, to 

distribute data from a file with a canonical row-major layout to each of the eight processes, 

each one would perform (assuming that each array block, i.e., each “square” in Fig. 7.1, 

occupies 1024 bytes) 

f_stride= 4096; m_stride= 2048; rec_size= 2048; qua nt= 2; 

offset= procID*f_stride + (even(procID)?0:-rec_size ); 

gfs_read_strided(fid, *buf, offset, rec_size, f_str ide, m_stride, quant); 

Beginning at offset , the file system will read quant  records, of rec_size  bytes each. 

The offset of each record is f_stride  bytes greater than that of the previous record; records 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 
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are stored in memory beginning at buf , and the offset into the buffer is changed by 

m_stride  bytes after each record is transferred. When m_stride  is equal to rec_size , 

data will be gathered from disk, and stored contiguously in memory. When f_stride  is 

equal to rec_size , data will be read from a contiguous region of a file, and scattered in 

memory. It is also possible for both m_stride  and f_stride  to be different than 

rec_size , and possibly different than each other. Galley also allows us to express more 

complex access patterns, in the form of nested strides, and to organise data into sub-files. 

 

Buffer filling: (a) before reading;   (b) quant=1 read;   (c) quant=2 read. 

Figure 7.6 Process 0 getting its data from a 3D array stored in a file. 

The MPI-IO approach to the data partitioning problem [Cor+02] is to define an elementary 

data type, etype , that contains the user “record” type structure, a buftype  which describes 

the arrangement of etype  elements into an application buffer, and a filetype  which 

describes how etype s are laid out onto a file. 

 

Figure 7.7 MPI-IO data partitioning. 

7.3 Delivering high performance 

Delivering powerful abstractions that ease the developer’s burden by narrowing the gap 

between the problem space and its implementation is an important step, but it’s not the only 

one; a file system must also deliver good performance. We will now look at some of the 

options available to tackle the filesystem performance problem. 

7.3.1 Enhancing the file API for efficient data access 
It is well known that local file systems do a better job when serving a small number of 

large-sized requests than when they have to serve large numbers of small requests; for 
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example, Linux places I/O requests in a queue where they are, if possible, coalesced with 

already existing requests before being submitted to the disk controller [Bov+05]. The reasons 

behind this performance increase are twofold: as each disk access experiences rotational and 

seek latencies which dominate vis-à-vis data transfer times, by submitting fewer requests we 

hopefully get better throughput; and, by submitting fewer requests we spend less time in 

system call processing, queue processing, programming DMA engines, responding to 

interrupts, etc., thus decreasing CPU usage (for a more in-depth coverage, see section 8, “The 

case for Caching in a Local File System”). 

APIs that allow programmers to submit fewer requests, such as the one for strided accesses 

shown in Fig. 7.6, or the POSIX API [IEEE04] for vectorised I/O (which allows a contiguous 

file region to be scattered into/gathered from non-contiguous memory locations with readv  

and writev() calls) and list I/O (which allow non-contiguous file regions to be accessed 

with a single lio_listio()  call) are quite important, as they provide information to the 

file system that enables it to perform optimisations that can deliver better application 

performance. 

7.3.2 Parallel access through data distribution 
We have seen how advanced logical file structures and/or file access methods can be used 

to better map the problem-domain to the underlying data storage, or to convey to the file 

systems information on application access patterns, in order to increase their performance. 

Another way to increase performance is through the use of parallelism: if we are able to 

distribute data across multiple disks in a way that, to fulfil a single I/O request, we have to 

access several disks in parallel, we may expect a performance increase due to the higher 

aggregated bandwidth. In the next subsections we will discuss two ways of distributing data 

across disks: one distributes data to multiple disks attached to a single computer system, while 

the other distributes data to disks hosted onto distinct, interconnected computers. 

7.3.2.1 Scaling in: intra-node data distribution 
Data distribution at the device level is implemented by resorting to multiple disks and 

“scattering”, or de-clustering, data over them; this approach obviously increases bandwidth, 

by as much as the aggregated bandwidth of the disks “activated” in parallel to fulfil a single 

I/O request, and is applicable to single-node computers. 

Hardware-based solutions call for RAID-capable processors installed either internally, in 

the host, or externally, in disk array boxes while software-based solutions are provided by 

logical volume managers (LVM) or software-RAID (Linux’ md device driver) modules; both 

offer a set of choices as the RAID level to use. Usually, levels 0 or 5 (or “combined” ones, 

such as 0/1) are used to create a “virtual disk” which is, to the disk driver or file system layer, 

completely undistinguishable from a “real device”; parameters, such as stripe size and width, 
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for the RAID device are usually chosen to optimise a specific item (e.g., application reads), as 

it is quite difficult to optimise everything – e.g., as the file system is unaware of striping, it 

lays out its metadata structures (e.g., superblocks, bitmaps, inodes, etc. – see Part VI) over the 

virtual disk just as it would do on a physical device, unaware of its “real” geometry. 

  Although we have not found any existing implementation of a local file system that 

supports data de-clustering on a per file basis, instead of per volume, there is no obstacle to 

building one; we think that reasons why such a feature is not available in local file systems 

may relate to their general-purpose nature. 

7.3.2.2 Scaling out: inter-node data distribution 
If a computer system, large as it may be, reaches its configuration limits on a resource, one 

has two options: a) replace it with a “bigger” model; b) keep it and add one more, connecting 

both together and using them in “parallel”, hopefully solving the problem. 

Using several interconnected hosts is thus another way to overcome the shortage of I/O 

bandwidth, as each computer gets its own set of disks (internal or external); to be beneficial, 

i.e., to deliver increased performance, several things must happen: first, data will have to be 

de-clustered across the various server nodes and their respective disks in such a way that a 

single I/O request, e.g. a read, issued to the “server group” must be processed by several (if 

not all) hosts, which will respond by accessing their own disks, delivering the data over the 

interconnect; second, the interconnect must not become the new bottleneck – we do not want 

to be replacing one problem with another; and finally, there must be a measurable gain, 

otherwise we may be offering some sort of file sharing server, but not the high performance 

I/O system we were aiming at. 

The use of several hosts in parallel to act as data storage servers requires a distributed file 

system to integrate and coordinate clients and servers; parallel file systems are a subclass of 

distributed file systems whose main target is performance: they support data de-clustering, 

either at the filesystem level, as in PVFS and GPFS4, or at a finer grain, as in Vesta, which is 

able to de-cluster at the file level. 

7.3.3 Caching for high performance 
No modern computer systems can do without caching. Caches have found their way in 

from processors to disk controllers, from file systems to database engines, to web servers, etc. 

From the point of view that interest us, caching is used both by local and distributed file 

systems, although the later sometimes restrict their usage (e.g., PVFS only uses server caches) 

having balanced the cost of maintaining cache coherence against the benefits it provides in 

their target environments. Caching is very important, and we devote the next two sections on 

                                                 
4 PVFS and GPFS are described in detail later on; as for PVFS, it is constantly evolving, and version 

2.7 (end of 2007) allows finer grained data de-clustering. 
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it: in the first one we analyse the benefits of caching in local file systems, while in the next we 

apply the same reasoning to caching in distributed file systems. 

7.4 Closing remarks 

In this section, we have presented some important topics on file systems. First, the 

adequacy of file organisation and access modes to real world problems, where we found that 

the POSIX sequential and sparse models are insufficient for some domains, such as business 

(where ISAM and DBMS are the answers) and scientific (where the five primitives are not 

enough, but vectorised and list I/O may help). Then we raised the issue of performance; to get 

good performance out of a file system several techniques must be used: suitable APIs that 

allow the programmer to convey to the file system information that enables it to optimise data 

access; parallelism, with data de-clustering over multiple disks and/or multiple servers, 

together with an adequate interconnection infrastructure; and, last but not least, caching. 

8 The Case for Caching in a Local File System 

8.1 A simple performance model 

 

Figure 8.1 Contributors to latency and bandwidth on a read() call. 
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Computer systems have been using both hardware and software based buffers and caches to 

speedup tasks; Fig. 8.1 depicts the cache hierarchy commonly found in the I/O path on a local 

file system implementation, along with tags highlighting each one of the major contributors to 

the latency of a read request. A short description of each tag follows: 

Tsyscall , Tsysret   Time spent executing a system call, which involves a transition from 
user to kernel mode, and back. 

Tsearch   Time spent searching a cache for a matching item (block, page, etc.). 

Tdrv queue   Time spent by a request in the driver’s queue, waiting to be submitted 
to the adapter (HBA) or device controller. 

Thba queue   Time spent by a request in the HBA/controller queue, waiting to be 
submitted to the device. 

Tdev req   Time spent to transfer the request packet from the HBA, through the 
device interconnection network, to the device; for simplicity, we 
assume that issuing a device read involves just one packet. 

Tdev rep   Time spent to transfer data (we are reading) from the device to the 
HBA, across the interconnection network; for simplicity, we assume 
the response as a header plus data (so the time actually depends on the 
data size). 

TDMActrl   Time spent to program the DMA engine at the beginning and at the end 
of the data transfer. 

TDMAxfer   Time spent by the DMA engine to copy the data to the cache. 

TCPUxfer   Time spent by the CPU to copy the amount of data requested by the 
user from the cache to the user buffer. 

A short description of the shortest path, i.e., one where data is already in cache, for a user 

read, is as follows: Tsyscall  will be the overhead of entering the read system call in kernel 

space; after a cache lookup that takes us Tsearch , we have a hit and copy the requested amount 

of data to user space in TCPUxfer (Sz)  time; finally we return from the system call in Tsysret . 

To get the breakdown for the write() , we just need to swap the roles of Tdev req  and 

Tdev rep , where Tdev req  will carry the overhead plus data, and Tdev rep  will be just an 

acknowledge packet. 

8.2 Peak bandwidth 

We want to compute approximate values for the bandwidths we can experience if, on a 

read, we: get the data from the file system cache (BWfromCache ); use direct I/O to bypass the file 

system (FS) cache, and move it straight to the user buffer (BWDirectIO ); and, go through the 

cache but end up fetching the data from the device (BWDiskThruCache ). The first thing we’ll do is 

to identify values that are so small that they do not contribute much to the overall result; for 
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current COTS server hardware, Tsyscall , Tsysret  and TDMActrl  take tens to hundreds 

nanoseconds and, as all the other values are in the micro to millisecond range, we’ll ignore 

them. As we’re aiming for a peak value, we will assume no requests are pending on the 

queues, so we’ll also set Tdrv queue  and Thba queue  to zero. Therefore, 

BWfromCache  = Sz/T CPUxfer (Sz)  (8.1) 

BWDirectIO  =  Sz/[T DMAxfer (Sz)+Tdev req +Tdev rep (Sz)]  (8.2) 

BWDiskThruCache  = Sz/[T CPUxfer (Sz)+T DMAxfer (Sz)+Tdev req +Tdev rep (Sz)]  (8.3) 

Expression (8.1) shows that BWfromCache  depends only on CPU speed and memory 

bandwidth, and not on devices, as expected; in the lab servers used for this work1, the peak 

value for memory bandwidth is 6.3 GB/s, while the sustained value we get from the 

STREAM benchmark [McC95] is in the 1.6 to 2 GB/s range. 

Expression (8.2) shows that, if the device is to be accessed, peak I/O is reached when 

resorting to Direct I/O, i.e., bypassing the FS cache; data still has to flow through the system’s 

I/O bus, pumped by the DMA engine in the HBA. In today’s small servers, I/O busses have 

bandwidths of 1.6 GB/s for 4x PCI-e or 1066 MB/s for PCI-X (at 133 MHz and a 64-bit bus) 

[IBM-07], which clearly shows that I/O bus bandwidth is adequate. The expression, 

BWfromDevice  = Sz/[ Tdev req +Tdev rep (Sz)]  (8.4) 

computes the device transfer rate; even today’s medium sized FC disk arrays from such 

companies as EMC, HP and IBM have several GB of cache and deliver aggregate transfer 

rates in excess of 1GB/s across multiple fibre links at 100 to 800MB/s per FC port. 

Finally, expression (8.3) highlights the extra copy operation – from the kernel cache to the 

user buffer – that contributes to a slightly lower performance of (8.3) vis-à-vis (8.2). 

8.3 Latency and sustained bandwidth 

Given that peak bandwidth is quite adequate, we must look closely at expression (8.4), for 

the transfer rate of an I/O device and, along with Fig. 8.2, get a better understanding of what 

contributes to a sustained bandwidth. 

The time taken by the request packet, issued by the HBA, to arrive at the I/O device can be 

approximated as Tdev req ≈ Link BW/Req sz ; likewise, the time spent to transfer the data is 

Link BW/Data sz . The “processing delay”, as tagged in the figure, is the time spent by the 

device to make the data available to be transferred; it may be insignificant if the data is 

available on the device cache and can be quickly located but, if not cached, may become quite 

important, as it could take about 5 ms even for fast (10K rpm) SCSI or FC disks. 

 

                                                 
1 See Part VIII, “Benchmarking pCFS”. 
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Figure 8.2 Contributors to latency and sustained bandwidth 

Assuming a 16 byte request packet, a 200 MB/s FC link, a 5 ms processing delay per 

packet (i.e., no cache at the device) and a “device” capable to sustain the full 200 MB/s 

transfer rate – i.e., not a single disk but, e.g., a RAID-0 volume of 5 disks with a sustained 40 

MB/s per disk – we compute the sustained bandwidth as, 

SustainedBW fromDevice  = Sz/[5*10 -3  + (16+Sz)/200*10 6]  (8.5) 

For blocks of sizes 1K, 8K, 64K and 512KB we get sustained bandwidths of 102K, 162K, 

1230K and 68790 KB/s; so, our best case has a 34% use of the available bandwidth for one 

link only! Thus, as expected, at the end of the I/O chain devices must have caches; only then 

we will be able to exploit the full bandwidth of the I/O channel. But is it enough to have 

caches at the device, i.e., at the end of the I/O chain? How large should they be? And for very 

large caches, is it still possible to perform a cache lookup in a few microseconds, or are we 

beginning to see the build up of another delay factor? 

Today’s large disk arrays “serve” not one but several hosts (in enterprise data centres some 

of these hosts have distinct architectures, and even run different operating systems) and they 

have really huge caches – up to 64 GB; understandably, the time to perform a cache lookup is 

now closer to the millisecond. If, in expression (8.5), we change the 5 ms value to 1 ms, our 

best case turns out to be 145 MB/s now, or 72 % of the single link bandwidth; but small-sized 

requests, such as the Linux default’s page-sized 4KB I/O request, still use the bandwidth very 

poorly at 1ms, with 20% usage. 

All the above intuitively2 reinforces the belief that, even with the today’s high performance 

infrastructures at the end of the chain, we still need a host-based cache if we want to provide 

high sustained bandwidths and faster response times to applications. While on this subject, 

                                                 
2 A detailed study would be very long and complex, and is therefore outside the scope of this work. 
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some authors argue that caches everywhere (on disks, arrays, hosts, etc.) are not always 

beneficial, as, if not accounting for anything else, they surely are expensive [Won+02]. 

8.4 CPU use in I/O operations 

Given that all HBAs worth considering are DMA-capable, and the fraction of CPU spent in 

programming the DMA is negligible when compared to amount of CPU needed to perform a 

copy from the VFS cache into the application buffer (assuming cached I/O), we can easily 

compute an approximate value for the fraction of CPU needed in a full I/O transfer as follows: 

let’s assume that 100% of CPU is consumed in our lab server to perform a memory copy at 2 

GB/s in the STREAM benchmark; then, to move data from the cache to the user buffer at 100 

MB/s (our server’s maximum FC rate), we would wear out 5% of the host CPU. 

8.5 The benefits of caching 

We conclude that caching and pre-fetching are both important to local file systems: reads 

and writes hitting the FS cache experience the memory subsystem bandwidth and latency; 

pre-fetching, for reads, as well as write-combining (whose role was not discussed in this 

section), for writes, both deliver higher I/O subsystem bandwidths as they batch smaller 

requests together into fewer I/O operations with larger sized “blocks”; some decrease in the 

CPU load, resulting from a smaller number of I/O operations, may also be expected as a 

consequence of fewer interrupts, less context switching, etc. 

9 The Case for Caching in a Distributed File System 

9.1 A simple performance model 

For file systems, such as NFS, that access remote data over a network, Fig. 9.1 illustrates 

the contribution of each major step to the latency of a read request when reading a file from a 

remote server. A quick look shows a great resemblance with Fig. 8.1; new are the NFS client 

module and an “upper” network software layer (which includes the remote procedure call – 

RPC – and external data representation – XDR – layers), and the TCP/IP stack. Notice the 

much referenced double buffering/copy problem: from the NIC, data is DMA moved to a 

network buffer, where it may be moved around (for packet reassembly, format “translation”), 

then copied by the host CPU to the OS cache (in a best-case, our 1st copy) and finally from 

there to the user buffer (2nd copy). After some research proved the feasibility and superiority 

of a zero-copy approach in the network stack [Pai+99, Wu+04], NFS releases bundled with 

Linux 2.6 versions do profit from it. 
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Figure 9.1 read() call flow on a NFS client. 
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to the network interface card (NIC). 
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Tsrv rep   Time spent by the server to answer the client’s request and deliver the 
data (we are reading) across the interconnection network; for 
simplicity, we assume the response as a header plus data (so the time 
also depends on the data size). 

TDMActrl   Time spent to program the NIC DMA engine at the beginning and at 
the end of the data transfer. 

TDMAxfer   Time spent by the NIC DMA engine to copy the data to the network 
layer buffers. 

TCPUxfer   Time spent by the CPU to perform a memory copy; for simplicity we 
assume that the size of the data moved between the network buffer and 
the cache is equal to the amount requested by the user, moved from the 
cache to the user buffer. 

9.2 The case for server-side caching 

The read bandwidth, as perceived by the client, may be approximated by 

BWfromNetwork  =  Sz/[2*T CPUxfer (Sz)+T DMAxfer (Sz)+Tclt req +Tsrv rep (Sz)]  (9.1) 

which shows up the double copy (from the network stack to the page cache and from there to 

the user buffer), the client’s request transfer delay and the contribution of the file server, 

which we will now break down. 

To break down the server’s contribution, we will assume the same simplifications made 

before for the client. The first part is essentially the reverse route of the client’s traffic: the 

client request is received at the NIC and “migrates” up the software layers, to the NFS layer, 

at an oversimplified zero cost; then, the NFS server will search in its cache for the requested 

data, at a Tsearch  cost (which, to be coherent, should also be dismissed because it will be 

smaller than the network stack cost we’ve just ignored). At the server, the time to find the 

data is either Tsearch , if data is cached, or Tsearch  plus the time to access the local storage, i.e., 

plus the denominator from (8.3); but, as we’ve done for it we’ll also omit the search time 

now, so (9.3) will be the same as (8.3), 

TdataCached  = T search  (9.2) 

TdataUncached  = T CPUxfer (Sz)+T DMAxfer (Sz)+Tdev req +Tdev rep (Sz)  (9.3) 

We can now proceed to compute the time required for the complete response, which will 

include the copy to the server’s network buffer and the time to transfer it to the client’s NIC; 

if we call the network latency Lnet (s) , to denote it as a function of the packet’s size, 

Tsrv repCached  = L net (Sz)+T CPUxfer (Sz)+T dataCached  (9.4) 

Tsrv repUncached  = L net (Sz)+T CPUxfer (Sz)+T dataUncached  (9.5) 
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We can thus expand (9.1) to its final form (renaming it to BWfromSrvCache  to indicate that 

data is fetched from the NFS server cache) 

BWfromSrvCache = Sz/[3*T CPUxfer (Sz) +2*T DMAxfer (Sz) +L net (Clt pkt ) + 

     + L net (Sz) + T dataCached ]  (9.6) 

i.e., in a NFS environment without client caches (but with server caching) we may clearly see 

that: a) aggregated CPU usage is, at least, three times (we will see later that, in practice, it is 

much more) in a NFS client than in a local file system client; and, b) client bandwidth is 

degraded with respect to the network bandwidth by the amount Lnet (Clt pkt ) . From several 

sources, e.g. [Hug+05], we get round-trip latencies for Gigabit Ethernet (GbE) of circa 25 µs 

for small UDP packets (i.e., client requests) and 12 µs to transfer a 1500 bytes frame (which 

we will assume carries a 1400 bytes payload); so we compute a maximum of 

BWfromSrvCache = 1400*8/(12.5+12) = 457 Mb/s or 57 MB/s  (9.7) 

an utilisation of about 50% of the GbE bandwidth (in fact, much worse if all the contributions 

that we have discarded were brought in). 

9.3 The case for client-side caching 

Instead of using a 1-by-1 request/reply pattern with the limited size of an Ethernet packet, 

such as in (9.7) above, we could use larger requests, in an effort to profit from the TCP 

streaming capabilities, e.g., using a TCP segment of 32KB for the reply (about 22 packets at 

1460 bytes each). Then, we would get 

BWfromSrvCache = 22*1400*8/(12.5+22*12) = 891 Mb/s or 111 MB/s  (9.8) 

Expression (9.7) unequivocally shows that, even using a NFS server that caches data in its 

memory, a NFS client using a request/reply read pattern where only the exact amount of data 

required by the application is transferred, performs very badly if that amount is less than, say, 

one full-length Ethernet packet.  To get suitable performance, one must use read-ahead and 

caching at the client. The value predicted in (9.8) is very close to single-client bandwidth with 

NAS appliances (from companies such as EMC or NetApp) using high performance NICs 

designated TOEs, TCP Offload Engine boards, and heavily tuned software (lightweight 

kernels and network stacks). Small computers acting as NFS servers usually cannot provide 

such levels of bandwidth, due to the overheads of TCP/IP, OS kernel, file system and I/O 

devices; a typical value for sustained bandwidth in small NFS servers is around 30 MB/s, but 

they are nevertheless able to deliver similar peak values when accessing cached data. 

At the client side, for cached data, we have 

BWfromCache  = Sz/T CPUxfer (Sz)  (9.9) 
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Clearly, bandwidth from the client’s cache is the same as (8.1) – obviously there is no 

difference in the bandwidth delivered by a local or a remote file system to its “clients” if data 

is located in the host’s cache 

9.4 CPU use in remote I/O operations 

Network I/O at full bandwidth using either a completely dumb (CRC performed on-board 

and checksuming performed by the host CPU) or even a “medium-smart” NIC (capable of on-

board CRC and checksum processing) consumes a sizeable amount of CPU; in our test 

infrastructure we have measured around 40% of CPU usage with a 2.6 GHz Xeon and 

regular-sized 1500 bytes frames, and about 30% with 9000 bytes Jumbo frames to keep a 

Broadcom GbE NIC at 80MB/s [Lop+05]. Therefore, I/O in distributed file systems may 

require, depending on the “intelligence” of the NICs used, quite more CPU power than the 

corresponding operations in local file systems. 

9.5 The benefits of caching 

We have shown that both caching and pre-fetching (or read-ahead) are important to remote 

file systems and that they should be performed at the client as well as in the server; reads and 

writes hitting the client’s cache experience its memory subsystem bandwidth and latency, 

while those hitting the server’s cache experience the network bandwidth and latency; pre-

fetching, for reads, as well as write-combining (whose role was not discussed in this section), 

for writes, allow requests to be batched into fewer I/O operations on larger sized “blocks” and 

thus require fewer request/reply packets, resulting in higher network utilisation (bandwidth) 

as well as a much reduced CPU load, a consequence from the decrease in the number of 

interrupts raised by the NIC. 

10 Caching and Sharing in Local File Systems 

Modern, widely used local file systems may offer similar basic characteristics but are 

usually quite different from each other when it comes to “advanced” features such as fault 

tolerance and resilience, time to recover from failures, and performance. Most have adopted 

the UNIX file organization model, which supports both (logically) contiguous and sparse 

files, as well as distinct access modes, including sequential and random; they eschewed the 

record-based file model in favor of the byte-stream “unstructured” approach, relegating more 

complex organization and access modes such as keyed, ISAM, etc., to application libraries 

and DBMS systems. 

Local file systems make extensive use of both data and metadata caching to increase 

performance; some take even more steps, such as trying to predict the application’s file access 

behavior and asynchronously reading data ahead, or batching together several reads (or 
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writes) together in order to minimize the number of I/O requests issued while performing 

larger, more productive, I/O transfers. In the next sections, we will show that defining the 

sharing semantics for a file system strongly limits the designer’s choices on the caching 

subsystem architecture as well as on cache coherence policy options. 

10.1 The page cache in modern operating systems 

Modern operating systems, such as Windows and Linux1 have benefited from research that 

was incorporated originally into SunOS 4 and showed the advantages of a unified page cache 

over two separated memory zones – a buffer-cache area for storing file system blocks and a 

page-cache area for storing program pages; those benefits include a cleaner (although more 

complex to implement) interface between the virtual memory and file management kernel 

subsystems (which simplifies the implementation of memory mapped files) and a unified 

approach to file access, independently of the file’s “type” (e.g., program vs. data). 

10.2 The file abstraction and the page cache 

 

Figure 10.1 A file “image” is created from the page cache. 

                                                 
1 From release 2.4.10 onwards. 

Page n 

Page n-1 P1 

. 

. 

. 
 

. 

. 

. 
 

P2 

Page 
Cache 

Host OS 

File System 
Layer 



 

 48 

As a side effect, the adoption of a Page Cache has created another mismatch (an interposed 

page layer) between the byte-stream file abstraction and the block structured I/O devices, 

resulting in a “cache line” increase from the size of a (device) block to a page. A page-sized 

cache motivates us to perform larger sized I/O operations when accessing the filesystem 

devices, and is even more beneficial if a) data is contiguously located, as only a single request 

needs to be issued, and b) if data pre-fetched2 along the way will be used again in the (near) 

future. Figure 10.1 depicts a file, shown a sequence of pages; these pages contain the file data 

“records”, and a record may be spanned across two (or more) pages. It also shows two 

processes accessing (again, we assume both are reading) the same record; and, despite being a 

complex data structure that stores pages from many distinct files, it still allows the upper 

layers in the file system to implement, at the API level, the various “file models” that 

applications expect, and depend on. 

Definition 10.1: file view 

A file view (FV) for some file f is the logical view (of the file) that we get when, at a 

moment t, we select all pages of f stored in the page cache: 

)()( fCachePagefFV −≡  

where Page-Cache(f) is the function that performs the “select” on the page cache, looking for 

pages that hold data from file f (and sorts them by page index). 

When a process performs a read, only a subset of the pages in the FV is involved in the 

operation, i.e., those containing the “record” that must be copied to the process buffer; for 

example, in Fig. 10.1, the requested data spans pages n-1  and n. 

Definition 10.2: request window 

A request window is the smallest set of file pages (stored in the page cache) that satisfies a 

single, contiguous request of size r over a file (pointer) f: 

{ } [ ]),(),,(:),( rfendrfstartiPrfW i ∈≡  

where,   start(f,r) = f div PageSize, 
end(f,r) = start(f,r) + SizeofRequest(r) div PageSize 

If the request is of the scatter/gather type, then the request window is clearly the union of 

the request windows for each contiguous sub-request. 

Definition 10.3: overlapping requests 

Let r and s be two requests made by distinct processes on a file f; they overlap iff 

[ ] [ ] [ ]≠),(),,(),(),,( sfendsfstartrfendrfstart I  

                                                 
2 As usual, we’re using a read operation because it does a simpler job at illustrating the point. 
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Definition 10.4: overlapping request windows 

Let r and s be two requests made by distinct processes on a file f; their request windows 

overlap iff 

{ }≠),(),( sfWrfW I  

False sharing arises when two requests do not overlap but their request windows do; it’s a 

consequence of caching at a granularity level larger than the record itself. 

10.3 Sharing: from the file system down to the file 

An important feature of a file system is its sharing semantics, i.e., how it behaves under 

concurrent access from user applications. In any modern file system there are two major 

“objects” as perceived by the users: files and directories. Files hold user data (and may hold 

other “data” too, such as source programs, executables, etc.) while directories organise files 

e.g., into a tree. File system objects have associated metadata which holds information about 

the objects themselves; examples of file and directory metadata are timestamps (e.g., of 

creation, last access), size, ownership, etc.  

10.3.1 File system sharing semantics 
File system sharing semantics specifies how the file system itself behaves under concurrent 

operations that read and eventually update its own managed structures; it specifies, for 

example, the outcome of an execution where a process is reading a file while another is 

concurrently deletes it – as an example, Linux’ ext2 allows the process to continue, even 

though the file entry is already missing from the directory and won’t be seen by newer 

processes, while PVFS will return an error on the next operation issued by that process. 

10.3.2 File Sharing Semantics 
On the other hand, file sharing semantics specifies how a file behaves3 when processes 

concurrently access it, with mixed operations that may read and write user data within the file 

itself (and, consequently, its metadata); it specifies, for example, the outcome of an execution 

whereby a process is reading a file section while other processes are concurrently writing to 

the same region – as an example, the ext2 file system nearly implements the so called POSIX 

file sharing semantics, as described in section 10.4.3 below.  

10.4 Case study: caching in Linux 

For the Linux operating system, the role of the relevant layers involved in a read or write 

operation from or to a disk device, is sketched in Fig. 10.2; it’s just a starting point for our 

discussion (not the complete picture), but one that highlights the major aspects: it briefly 

shows that application I/O calls enter the kernel and are processed at the file system layer, 

                                                 
3 This is a figure of speech; files do not “behave”, of course... 
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where usually a cache lookup is performed to see if the desired data is already present in the 

cache; for example, if a read()  is being executed and data is found in the cache, it is 

immediately moved to the application buffer; there’s no need to access the disk device, here. 

 

Figure 10.2 Architecture for file I/O in the Linux kernel (from [Rod+05])  

10.4.1 The file system layer 
The Linux file system layer is structured in two parts: an upper, Virtual File System (VFS) 

layer, and a lower file system-specific layer, where modules for each file system do “plug in”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.3 File system layers in the Linux kernel 
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The VFS is based on the Sun UNIX Vnodes architecture [Kle86]: a software framework 

that captures the commonality between different file systems and defines a kernel-level 

interface that enables simpler implementations of both the file-related system calls and the 

specific file system being supported, as depicted in Fig. 10.3. 

10.4.1.1 The VFS layer 
The VFS layer is implemented using an object-oriented (OO) approach, and VFS objects 

have methods to operate on them; methods live at the VFS layer and may be redefined at 

lower level layers, namely at the file system specific layer – in what resembles OO generic 

methods for a class that get specialized in their subclasses; for example, if a vnode object 

holds an inode that represents a regular file living in an ext2 file system, the read()  

method for that vnode ends up invoking the VFS ext2_file_read()  function (see Fig. 

10.3), while if it holds an inode that represents a “file” in the /proc  pseudo file system 

containing information about a SCSI adapter, the read() method for that file ends up 

invoking some device driver function that accesses the hardware adapter and pulls out (reads) 

some information. 

It is important to point out that Linux terminology can sometimes confuse the reader; for 

example, in Linux’ terminology, inode is used to refer to two distinct concepts: the in-core 

VFS generic structure (which we have called vnode previously), and the on-disk inode4; it is 

up to the reader to make the distinction, using the context. There are even cases where the 

same name is used to refer to a third structure, an in-core image which is “slightly” different 

(e.g., the endian-format) from the on-disk layout. 

10.4.1.2 The file system specific layer 
When a disk partition is formatted to hold a specific file system type, such as ext2 or FAT 

file system, some data structures are created and laid on-disk to hold persistent data. The role 

of the specific file system implementation module is to provide methods to access these data 

structures – they must first be read from on-disk to their in-core images, and then re-arranged 

into generic, file system independent, VFS objects; modified objects must be written back to 

disk, later on, to update the persistent file system information – a step requiring a conversion 

from their in-core format(s) back to their on-disk layout. 

Porting an existing (or developing a new) file system to Linux is thus a task that requires 

the developer to: a) understand which VFS objects provide generic file system abstractions 

such as vnodes, superblocks, etc.; b) port (or write from scratch) the code that reads and 

writes the on-disk data structures from/to their in-core data structures – let’s call these the file 

                                                 
4  Provided that the specific file system uses such a structure, as in ext2; if not, as in the FAT, the VFS 

vnode is “virtualised” from other on-disk structures. 
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system specific private methods; and c) implement, the file system specific public methods, 

ones that will be called by the VFS layer to perform the appropriate actions. 

10.4.2 Caching 

10.4.2.1 Introduction and terminology clarification 
Caching is, as we’ve seen before, an important technique to boost file system performance, 

but it also brings in new problems that must be adequately solved, otherwise the whole effort 

will be useless. When using caches, important issues that must be appropriately tackled 

include the cache unit size and cache replacement policies, coherency among various caches 

and/or cache levels, and the possibility of loosing data upon system failures. For data 

(content) caching, Linux has evolved from an implementation based on two separate caches (a 

buffer and a page cache) into a single unified page cache. But caching may also be used to 

speedup accesses to metadata structures, something that will be covered further down. 

It is worth noting that in the memory management (MM) terminology used in the Linux 

kernel, cache refers to a memory area that is used to hold (any) frequently created/destroyed 

objects, not only file system objects. Such a cache is further subdivided into slabs, each 

capable of holding a certain number of objects. That’s why these caches are also referred to as 

slab caches; some, typically used for transient object allocation, may hold dissimilar objects. 

In this work we are interested in those (slab) caches which hold file system objects of one 

type only, e.g., ext2 inodes, or dentries, and are organised in such a way as to be efficiently 

searched (usually by some hash-based lookup function). 

10.4.2.2 The concept of a buffer cache 
An application requests (reads or writes) data in “records” of some specific size, while the 

data transfers between disk and memory are carried out in blocks; buffering is the technique 

used to handle the mismatch between the size of the data requested by the application and the 

amount that needs to be accessed on the device, while caching is a technique used to keep 

data, once retrieved from disk, in memory, hoping that it will be reused again in the near 

future. Due to the differences between access times to in-core and on-disk data, which span 

several orders of magnitude, caching is an important technique for increasing performance in 

file systems. Buffering and caching started out as two distinct, complementary approaches, 

but were soon merged in a unified structure, the buffer cache, available in the first UNIX 

implementations. On those days, the amount of memory to set aside for the buffer cache was a 

kernel configuration parameter, fixed at boot (or even worse, at kernel build) time; this was a 

nuisance for system administrators, who tried to tune it for a compromise between a good hit 

ratio for file access, and not stealing so much memory that forced the kernel to heavily page 

when running “memory intensive” applications. 



 

 53 

10.4.2.3 The concept of a page cache 
In early UNIX and Linux releases, caching of executable program file images was done at a 

page-structured cache (i.e., the unit of caching was a page, containing logically contiguous 

data from a file), while buffering and caching of “regular” file data was handled in a separate 

buffer cache, as described above, one containing frequently accessed disk blocks; starting 

with SunOS 4 (1988), both were merged into a single unified page cache, one where the unit 

size was a full OS page; UNIX System VR4 implementation immediately adopted it, and 

Linux introduced it in version 2.4.10, about 12 years later. 

The unified page cache brought in a number of benefits, such as: a) less code, as code 

needed to maintain the two separate caches consistent was removed and, b) code for regular 

I/O calls may was merged with code for memory mapped (mmap) file access; and c) reduced 

memory pressure – the page cache is dynamic and, when more and more data is cached and 

memory starts to become scarce, the MM and the FS may work together to shrink the page 

cache by discarding unmodified and/or flushing out modified pages. An added benefit, which 

further decreases memory pressure, is that it allows distinct file systems to “plug” themselves 

into the page cache, thus avoiding per-file system private caches which get “polluted” with 

multiple copies of the same data when a file is copied from one FS to another. 

 

Figure 10.4 Read flow for an ext2-hosted regular file (from [Rod+05]) 
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specified in the read  field of the f_op  vector of operations which, when referring to an 

ext2  file, has been “loaded” with the generic_file_read()  function; b) some further 

processing is done, and the do_generic_mapping_read()  function is called to access 

the page cache; c) if data is found, it is copied to the user buffer, etc.; d) if data is not found in 

the cache, the mpage_readpage()  method, stored in the readpage  field of the a_ops  

vector of operations is invoked – this method is the same one which is called when accessing 

the file through the mmap interface, i.e., from this point on, the two call graphs are merged. 

As there is only one place to cache data, coherency between concurrent accesses from both 

user and kernel processes may be maintained by resorting to OS-level mutual exclusion 

mechanisms; the only added complexity here comes from devices performing DMA from, or 

into the cache while processes concurrently access it – the Linux solution is to define a flag in 

the page descriptor structure to signal that an I/O is in progress. The way coherency is 

enforced, thus, guarantees that a strict compliance with POSIX file sharing semantics (see 

10.4.3, below) can be achieved by a particular file system implementation. Cached data may 

be out-of-sync – i.e., be more up-to-date – with respect to data living on-disk, but that does 

not conflict with the sharing semantics, as long as all requests flow through the cache; to keep 

disk data synchronized a kernel daemon periodically flushes out modified pages to disk; data 

can be also flushed on-demand, either on the last close of the file, when explicitly requested 

by the process, or implicitly, when requested in the file open or at file system mount time, 

and/or on every write, if the sync  option is used on the mount . 

File systems usually provide a way for applications to bypass the cache; POSIX specifies 

an O_DIRECT option to request it. Bypassing the cache may create incoherencies if other 

processes are allowed to open the file “with caching”5, so the usual way out is to disallow it, 

i.e., if a process has a “direct open” on the file, any other process subsequently attempting a 

“regular” open will get an error. Direct I/O is used by highly tuned user applications, or, more 

commonly, by DBMS engines which perform their own caching on behalf of their clients. 

10.4.2.4 Metadata caching 
Metadata access must be fast, otherwise it gets in the way of data access and thus hinders 

performance; for example, indirect blocks must be accessed before the data blocks they point 

to, so indirect blocks benefit from caching. Metadata structures may be separated into two 

groups: file system metadata, which users are generally unaware of, and metadata for “user-

visible objects”; examples of file system metadata structures are superblocks and space 

management bitmaps; examples of file metadata are indirect (a.k.a. index) blocks, and inodes. 

                                                 
5  Because data buffered in the user space of a process using direct I/O could be out of sync with data 

maintained in the page cache on behalf of other (non-direct I/O) processes accessing the file. 
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File system metadata structures are block-based, so they do not truly belong to the page 

cache; however, Linux uses pages (called buffer pages) to contain metadata block-based 

structures instead of file data pages; for example, it holds the in-core image of some FS-         

-specific “inode” in a buffer page, but store its VFS counterpart (vnode) in a slab cache (i.e., 

there are functions to translate between the VFS objects and the in-core images – which will 

then mimic the on-disk – data structures). 

10.4.2.5 Caching directory data 
When performing a file open, the file’s pathname must be broken into a series of filenames 

(separated by the slash token) all but the last one identifying directories. For each filename, a 

dentry  object, associating (storing) the filename and its inode, is created and inserted into 

the dentry cache; future references to other filenames which have part of, or the same 

components in their pathnames will be much faster to resolve, as access to these components 

only requires cache lookups, and does not need disk accesses at all. Dentry objects stay in 

cache in a most recently used policy. 

A special case is one of a negative dentry: when, in the “middle” of pathname processing, a 

filename component does not resolve to an existing file, the dentry is still cached, but with the 

inode pointer set to NULL. Negative dentries accelerate the resolution of failed paths. 

10.4.3 File sharing semantics in Linux 
To understand the POSIX [IEEE04] file sharing semantics wording, it helps to join sections 

taken from both its rationale and descriptions for the read()  and write()  calls on the 

issues of concurrency, stated as a) “This volume of IEEE Std 1003.1-2001 does not specify 

behaviour of concurrent writes to a file from multiple processes. Applications should use 

some form of concurrency control.” and atomicity, stated as b) “I/O is intended to be atomic 

to ordinary files and pipes and FIFOs. Atomic means that all the bytes from a single operation 

that started out together end up together, without interleaving from other I/O operations.” 

Furthermore, it is stated that c) “after a write()  to a regular file has successfully returned, 

any successful read()  from each byte position in the file that was modified by the write 

shall return the data specified by that write()  for that position until such byte positions are 

again modified, and any subsequent successful write()  to the same byte positions in the 

file shall overwrite that file data”. 

File sharing semantics is not an operating system, but a file system issue; thus we cannot 

talk about “Linux file sharing semantics” in general but instead we should refer to the specific 

file system being discussed, such as ext2/3 [Bov+05] or XFS [Chi+06]. For example, a 

write()  to an ext2-hosted file follows a call graph similar to the one of Fig. 10.4; the 

generic_file_write()  issued as a result of the file->f_op->write()  does lock 



 

 56 

a semaphore in the file’s vnode, which results in an mutual exclusion between writes against 

the same file. But no call in the read()  path observes that (or any other) semaphore, and 

thus the following is possible: a) in a multiprocessor architecture, a transfer from the page 

cache to satisfy a read is in progress while some remaining portion not yet transferred is being 

modified by a write from another process; or, b) in a uniprocessor architecture, a transfer from 

the page cache to satisfy a read is in progress and it page-faults in the user buffer – and the 

process sleeps, waiting for the page, while another process is scheduled and modifies the 

cached contents, so, when the first process resumes, the data in the user buffer is “half-

old/half-new”. Thus ext2 and all other file systems that use the same VFS generic routines for 

reading and writing will not preserve read, but only write atomicity. So, strictly speaking, ext2 

does not comply with “POSIX file sharing semantics” as clause (b) above is not observed; 

this is contrary to established UNIX implementations which offer full file I/O call atomicity 

(i.e., any I/O call issued against a file is atomic with respect to any other call issued against 

the same file). 

11 Distributed File Systems 

By its own nature, a DFS has many clients1 with whom it shares one or more file system 

“objects”; but, contrary to what is commonly found in local file systems, some distributed file 

systems do not allow processes running on distinct clients to share a file for read/write, while 

others place sharing restrictions that some applications simply cannot tolerate. The reason 

behind it is caching vs. coherence: in order to get an acceptable performance out of a DFS, 

caching must be extensively used; but its use implies that multiple clients sharing the same 

file should agree on how, when, and where modifications made to a file by some process are 

going to be noticed by others, i.e., the sharing semantics offered by the DFS will dictate the 

caching consistency policy, or vice versa. 

In the following discussion we reuse several concepts introduced earlier in this document; 

but we have also drawn some new material (mainly examples) from [Lev+90] which, 

although not covering the current breed of file systems, still covers a lot of fundamental 

ground. 

11.1 Sharing semantics for DFSs 

Different distributed file systems do exist for distinct environments, covering the whole 

spectrum from high latency, wide area distributed architectures, down to the very low latency 

“in-a-box” MPP architectures (the later usually hosting some form of parallel file system). 

Such diversity determines which sharing policies can realistically be offered in some specific 

                                                 
1 Here, client is a system that accesses data in the DFS; it does not imply a client/server architecture. 
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architecture/DFS combination when pursuing such goals as compatibility with existing 

applications and/or good performance. An overview of file sharing semantics offered by some 

well known distributed file systems, starting with more relaxed ones and ending with the 

strictest case, the POSIX single system equivalent semantics, follows. Metadata sharing is 

also important, and will be covered further down. 

Several distributed file systems have been proposed along the years, together with various 

degrees of file sharing, ranging from immutable files to POSIX file sharing semantics; the 

reason behind the wide range of available options is a consequence of design choices: for a 

given environment, e.g., storing user home directories (which generally are not used for 

sharing data among users) across a WAN, a DFS may favour performance over consistency, 

while for a different environment, e.g., storing software development repositories shared 

across a user team, a DFS should favour strong consistency above everything else. 

Applications developed to run on a particular file system, e.g. one which offers a specific 

sharing model, may not run correctly or with adequate performance when moved to a 

different one, which does not offer the same model; this happens quite often when 

applications are, e.g., moved from a local file system to a DFS – there may be a mismatch 

between the application expectations and what the DFS provides. 

11.1.1 Immutable semantics 
The simplest sharing semantic is the one of immutable files: every time a file is designated 

as shareable, its contents cannot be modified ever again. Although this idea has recently been 

pushed in a slightly different way, in Content Addressable Storage (CAS) appliances such as 

EMC Centera [EMCa06], it is not relevant to our work, so we will not continue on this path. 

11.1.2 Versioned semantics 
Versioned is also a simple sharing semantics: every time a modification is done to a file, a 

new version is created, but the previous one is also kept; clients that already had the file 

opened for reading, will continue seeing the “old” version. This idea has been used in 

versioned file systems such as CVFS [Sou+03]; as with the immutable semantics above, 

versioned semantics is not relevant to our work. 

11.1.3 Transaction semantics 
Transaction semantics follows on the same ideas as transactional data base systems and 

applies those ideas to file sharing. The main concepts of transactional data base systems are 

those of transactions, delimited by a begin/end pair, atomicity of changes, consistency of data 

that ends up in the data store, isolation between processes’ views of data, and durability of 

stored data – the often touted ACID [Hae+83] properties. An example of a very simple use of 

transaction semantics is session semantics, described below, which uses open/close as 
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begin/end pairs; other more elaborate implementations include additional file system calls, 

thus deviating from the POSIX API for file access. 

Transaction semantics is often used to guarantee metadata consistency in the presence of 

concurrent operations executing across several nodes in a distributed file system; it is not, 

however, commonly applied to data sharing.  

11.1.4 Session semantics 
Session, also known as close-to-open semantics, is the simplest form of transaction 

semantics: when a file is modified, clients currently accessing it do not immediately get the 

results of the modification; the updated version of the data will only be noticed after the 

updating process issues a close and then, either a new process opens the file, or processes that 

already had it opened, close the file and then re-open it again. Some DFSs do offer different 

semantics depending on whether interactions occur on the same node on or distinct nodes; for 

example, they may offer session semantics if processes sharing the file do not run in the same 

node, but otherwise, they offer regular POSIX semantics. Those DFSs obviously violate the 

transparency property (considered of utmost importance in a “good” distributed system) as 

sharing behaviour will depend on the process’ location. 

As with immutable files, session semantics works well with full file caching: when a client 

opens a file (“begin session”), it gets a copy of the file from the DFS’ storage space2; the copy 

is then placed on a local cache where all accesses, reads and writes, will be handled; when 

closing the file (“end session”), a check is performed to see if the file was modified and, if it 

was, it is pushed back to DFS storage, overwriting the one that sits there. 

The original version of the Andrew File System, AFS [How+88], is an example of a DFS 

with true (as defined above) session semantics; later AFS versions allowed for partial caching 

of a file in 64 KB segments, as a way to decrease cache pressure. NFS also implements “a sort 

of” session semantics, along with other types; we will study NFS in detail, later. 

11.1.5 POSIX single-node equivalent sharing semantics 
In a DFS, compliance with POSIX file sharing semantics is called “POSIX single-node 

equivalent sharing semantics” [Sch+02], and calls for a file sharing behaviour which is 

exactly the same as in a POSIX-compliant local file system (see 10.4.3); consequently, if a 

DFS supports it, then full transparency is preserved, i.e., there is no “impedance mismatch”: 

applications will see the same behaviour, with regard to sharing, when executed either in the 

local, or in the distributed file system. Or, to put it differently, in a DFS (such as GFS) which 

offers POSIX single-node equivalent sharing semantics, concurrent execution of file 

operations (reads and writes) is performed in a sequentially consistent way. 

                                                 
2 Being irrelevant if the storage space is distributed across several nodes or held at a single one. 
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11.1.6 Other file sharing semantics 
We have presented several types of sharing semantics which are both conceptually clear 

and important landmarks. Due to the quest for ever increasing performance, almost every 

distributed file system proposes its own semantics, one which may be close to but not always 

quite the same as those introduced before; they are better understood when we study them 

along with their respective file systems, something that we will do in a moment for a few, 

selected case studies. 

11.1.7 Performance, cache coherency and file sharing semantics 
As clearly stated in [Kaz+88], “many distributed file systems go to great extremes to 

provide exactly the same consistency semantics in a distributed environment as they provide 

in the single machine case, often at great cost to performance. Other distributed file systems 

go to the other extreme, and provide good performance, but with extremely weak consistency 

guarantees. However, a good compromise can be achieved between these two views of 

distributed file system design”. 

So, “strong” semantics, such as POSIX sharing semantics, leads to poor performance in a 

DFS; or vice-versa; but we can add another ingredient, one who may boost performance: 

caching. The problem with caching in a DFS is that strong semantics also requires strong 

cache consistency, and we’re back to poor performance… or not? Breaking this circle is now 

possible by adopting new technologies, such as high speed, low latency, RDMA-capable 

interconnects, and combining them with smaller grained caches, low overhead invalidation 

protocols, and other novel solutions, such as throwing in another, often ignored issue: locking. 

11.1.8 DFS as a part of a distributed operating system 
Distributed file systems offering POSIX single-node sharing semantics are quite scarce 

when compared to the large number of DFSs implementing other semantics; furthermore, it is 

interesting to note that all examples (namely Locus and Sprite) quoted in [Lev+90] of DFSs 

that implemented UNIX semantics, were “embedded” within distributed operating systems. 

These are interesting examples because, besides offering the atomic read/write behaviour, 

they used shared file pointers. In UNIX, for example, when a process forks a child, a shared 

file pointer is “created”; if the child keeps the inherited file open, then an operation that 

changes the file offset in a process, e.g., the father, results in the an observable (offset) change 

in the other process, in this example, the son. This is the current semantics for fork() in 

Linux and other POSIX compliant operating systems. 

In a SSI operating system, where it is possible (performance issues apart) that a process (or 

thread) creation may result in the new one being created in a different node (as in the 

Kerrighed OS [Mor+04, Lot01]). For such an environment, a POSIX compliant file system 

able to support shared file pointers would be quite sought after, whereas for “typical”, HPC 
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clustered or networked environments where each node runs its own private copy of the OS, 

“native” support of shared file pointers at the DFS level is not overly important as, if needed, 

it can be provided by runtime libraries, such as MPI. 

11.1.9 High performance distributed file systems 
High performance distributed file systems, usually referred to as parallel file systems, are 

specialised DFSs used in MPP and HPC cluster architectures, where they offer file models 

that enable carefully programmed and/or tuned applications to extract high performance from 

the underlying I/O subsystem (where “model” stands for organization, access, and sharing 

semantics). 

11.2 The file abstraction and the distributed cache 

 

Figure 11.1:  Global File View created from page caches of all nodes. 

We will now take a look at an hypothetical distributed file system running in a multi-node, 

distributed memory architecture, where each node runs its own separate OS copy with its 

own, separate, page cache; each node also has (for simplicity) a set of local disks, and files are 
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striped across the nodes. Figure 11.1 depicts an example of such architecture: it has two 

nodes, each one running its own operating system copy, and the DFS is tightly integrated into 

the OS and its page cache. For this architecture, we want to apply the same reasoning as 

before: to satisfy a file access request submitted in a node, we want to build a Global File 

View (GFV) by resorting to a union of the page caches of all nodes. 

Definition 11.1: global file view 

A GFV is the view of the file that we get when we perform the union of the pages of a file 

f, stored in the page caches of all i nodes. We can thus express it as 

U
n

i
ifCachePagefGFV

1

)()(
=

>−<≡  

The above definition raises some issues; for example, some particular page of the file f, say 

Pk(f), may be present in more than one page cache at the moment, t, when we perform the 

“select” operation. Clearly there should be no problem for our union operation if the contents 

of that page are the same in all the caches where it can be found; but what to do if it is not?  

Another issue we must look at is time: how do we specify time t across several systems? And 

how do we perform the union operation at time t? 

So, buried in the apparent simplicity of the above formula, there are very important (and 

complex) issues such as cache coherence (or consistency), distributed time, and distributed 

operations. In the next subsections, we will introduce case studies for a few representative 

(i.e., broadly used) DFSs, in order to get a better understanding of the problems we face when 

caching is used in a DFS.  

11.3 Case study: caching in NFS 

NFS is the most utilised DFS. This alone mandates its inclusion as a case study; but NFS is 

also a representative of (distributed) client/server file systems, supports file locking, and 

client-side3 caching – all strong reasons for its inclusion in this set of case studies. The 

following discussion applies, broadly, to NFS versions 2, 3 and 4; we will focus our attention 

mainly on v3; however, we may sometimes refer to v2 or v4, to illustrate some point. 

11.3.1 Cache consistency policies 
The protocols introduced for NFS v2 and v3 do not define policies for client or server 

caching; in particular, there is no support for strict cache consistency between a client and 

server, nor between different clients. Existing client and server implementations do usually 

offer distinct caching policies (detailed below) allowing the administrator to choose the 

appropriate one for each case. 

                                                 
3  NFS’ server-side caching is one of a local file system, and irrelevant for this discussion. 
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11.3.1.1 Time-based cache consistency 
Time-based NFS client cache consistency is a best-effort policy: when a client gets its first 

data for a particular file from the server, it also fetches the file’s time of last modification and 

stores it, along with a reference to the moment, tc, when that piece of data was cached; for an 

access occurring at a later time, t, the data in the cache can be used to satisfy it if t ≤ tc + tTTL, 

i.e., if the access was performed within the time bounds allowed for a cached copy to live in 

the cache. If that limit is exceeded, the client will contact the server to fetch the file’s time of 

last modification, once again; if there was no change, tc is updated (renewed) and the data in 

the cache is still valid, and may be used to satisfy the request; otherwise, the cache has to be 

purged and data will have to be fetched again from the server. 

In the Solaris NFS implementation, for example, the tTTL value can be chosen between 3 

and 30 seconds for regular data files (or 30 to 60 seconds for directories), with smaller values 

guaranteeing better client cache consistency at the expense of increased traffic between the 

clients and the server [Cal00]. 

11.3.1.2 Open-to-close cache consistency 
Open-to-close cache consistency was spurred by the observation that, when UNIX was 

used at university campuses file “sharing” was, most of the time, completely “sequential”: 

first, client A would open a file, write something to it, and then close it; then, client B would 

come in, open the same file, and read the changes. 

Open-to-close cache consistency [Cal00] is implemented in NFS in such a way that, when 

an application tries to open a file stored in an NFS file system, the NFS client first checks, by 

sending the server a GETATTR or ACCESS message, that the file exists and has suitable 

permissions. When the application closes the file, the NFS client writes back any pending 

changes to the file so that the next opener can view the changes. This also gives the NFS 

client an opportunity to report any server write errors to the application via the return code 

from close() . After closing the file, cached data needs not to be discarded, as it can be 

useful for another open; as an example, Linux implements this close-to-open cache 

consistency by caching the results of a GETATTR operation issued just after the file is closed, 

and comparing them to the results of the new GETATTR issued when the file is re-opened. If 

the results are the same, the client’s cache is still valid; otherwise, it is purged. 

Open-to-close cache consistency has certain similarities with session semantics: if all data 

in client A is flushed on the close() , and not before, and client B opens the file afterwards, 

the result is the same. A different situation arises if B had already opened and read some data 

from the file by the time A flushed it, and B continues reading – then it will get modified data; 

the same will happen if A writes periodically to the file, before the close: those are situations 

inconsistent with the definition of session semantics. This is not the case with AFS [How+88], 
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for example, as it offers true session semantics – the client will fetch the whole file to its local 

disk cache on the first open. 

11.3.1.3 Weak cache consistency 
Open-to-close cache consistency can create an enormous memory pressure at the client, as 

it will have to postpone all modifications until the close() . The NFSv3 protocol provides 

procedures and data that clients can use to implement another policy, one designated weak 

cache consistency (WCC) [Cal00, RFC1813]; procedures, and data submitted/returned by 

those calls, provide a way for a client to check a file’s attributes4 before and after a file 

modifying operation, such as a write of file data or setting of its attributes; as a consequence, 

a client can easily identify changes that could have been made to the file by others, and thus 

purge its cache. 

11.3.2 NFS cached objects 
NFS clients usually cache more than just file data; other cached objects include directory 

entries, lookup replies, and other metadata information such as file and directory attributes, 

file system information, etc. 

When NFS clients perform LOOKUP operations they get replies which include file handles 

and file attributes, and they cache those replies; for example, a Linux NFS client caches them 

at the VFS’ dentry  and inode  caches (see 10.4.2.5). When a client detects a change in the 

parent directory’s time of last modification, it purges all cached entries for that directory; 

when the client itself modifies a directory, an NFSv2 client also purges all cached entries for 

that directory (to minimize the risk of changes performed by other client on the same 

directory getting unnoticed), while an NFSv3 client may use the WCC enhancements to avoid 

unnecessary purges (of course, it’s the reloads that are expensive, not the purges themselves). 

The results of READDIR and READDIRPLUS operations may be also cached; caching 

READDIR results is useful to avoid failed LOOKUPs to the server, because having all 

directory entries cached allows the client to reject references to filenames which do not exist 

without even querying the server; on the other hand, caching READDIRPLUS results allows 

us to skip both “negative” LOOKUPs, as above, but also “positive” ones (e.g., with insufficient 

permissions) as the READDIRPLUS call already returns “extended attributes” for the entries. 

11.3.3 File sharing semantics in NFS 
As hinted before, file sharing semantics in NFS (versions 2, 3 and 4) is of the “close to, but 

not quite” variety: a) its close-to-open cache consistency is roughly equivalent to session 

semantics, provided that clients open a shared file in turns, i.e., reader(s) open the file after 

the writer has finished using (closing) it; b) its time-bounded cache consistency is roughly 
                                                 
4  File attributes are NFS’ parlance for file metadata. 



 

 64 

equivalent to POSIX single-node equivalent semantics (strong cache consistency) provided 

that sharers wait enough time between accesses to allow the caches to expire – the limiting 

case being no caching, suffering the performance degradation it brings along; c) WCC just 

provides a faster procedure for a client that performs file modifications (e.g., writes of data or 

attributes) that travel through the server, to detect modifications previously performed by 

other clients and thus invalidate its cache. Another important issue is that NFS is not 

transparent, in the sense of that desired distributed system property, with regard to file 

sharing: behaviour observed by clients will be different depending on whether a set of 

processes that share a file all run in the same, or in distinct NFS client hosts. 

NFS has been designed to perform well in distributed environments where file sharing is an 

infrequent event; for situations where this is not true, the only way we can guarantee 

consistency in NFS (versions 2, 3 and 4) is through the use of record (also called byte-level) 

locking and turning client caching off (use of file locking in NFS requires some knowledge of 

its interactions with caching, otherwise the expected behaviour may not materialise; for a 

more in-depth coverage, see [Cal00]). This is, of course, very detrimental to performance. 

11.4 Case study: caching in PVFS 

PVFS, the Parallel Virtual File System [Car+00], is quickly becoming one of the most 

utilised high performance distributed file systems, at least in the open-source domain; it is 

also a representative of client/server file systems but, contrary to NFS, one which does not 

support client-side caching or file locking at all5. That being said, PVFS is well worth being 

studied as a DFS strictly designed with HPC in mind, an environment where file sharing is 

not uncommon but where processes sharing a file do not, as a rule, engage in “conflicting”, 

i.e., overlapping requests. 

11.4.1 Cache consistency policy 
PVFS does not use client-side caching, as it would compromise its ability to guarantee 

correct operation in a read/write (or write/write) sharing across client nodes; as one of the 

developers puts it, “Many network file systems like NFS have weaker consistency guarantees 

on file system data and meta-data, since they are primarily targeted at workloads where it is 

not common to have many processes accessing the same files or directories from many nodes 

simultaneously. PVFS, on the other hand, cannot afford to have such weaker file system 

semantics guarantees because it is primarily targeted at workloads that exhibit read-write data 

sharing. Therefore, PVFS (at this stage) does not cache file data and meta-data in the Linux 

page cache; in other words, all file system accesses have to incur a network transaction” 

[Vil+04]. Of course, one could implement client-side caching by resorting to a cache 

                                                 
5 Recently, a locking API was proposed for the PVFS’ MPI interface [Chi+07]. 
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consistency protocol, perhaps even supplemented by mechanisms such as locking; but this is 

not the PVFS way, as stated by the original designers: “PVFS has no locking component. 

Instead, the metadata server supplies atomic metadata operations, eliminating the need for 

locking when performing metadata operations. This approach allows for a relatively simple 

system with no file system state held at clients, but it precludes client-side caching, which 

makes for very poor performance in a number of cases, particularly single process workloads” 

[Lig+03]. 

11.4.2 File sharing semantics 
In PVFS, data operations are guaranteed by I/O servers to be consistent for concurrent 

writes that do not overlap at a byte-level granularity, and results are immediately visible to 

other clients; but byte-level overlapping concurrent writes result in an undefined file state, 

while concurrent reader(s) that overlap their accesses with a writer may experience a mixture 

of old and new data [Lig+04, Vil+04], thus violating the “POSIX single-node equivalent 

semantics” (i.e., sequential consistency). 

What is specific to PVFS (and all DFSs) is its distributed nature; thus, there are two issues 

here: one, being how to interpret the “after” in the POSIX fragment “after a write()  to a 

regular file has successfully returned…” (see 10.4.3); the other, being the cost of 

implementing I/O call serialisation. The first issue is not that different from what happens in a 

multiprocessor: when two events occur in separate flows (processes or threads), asserting that 

event B (starting the read) occurs after event A (returning from the write) is only possible if 

both synchronise themselves either by exchanging messages, or through the execution of 

some synchronising call. As for the cost of serialising operations, it is at least one order of 

magnitude higher in a distributed than in a centralised system (such as in the above mentioned 

multiprocessor), where it could be implemented by directly accessing the system’s memory 

(at less than a hundred ns), instead of with resorting to messages exchanged among nodes 

(even if they are carried over a very fast communication infrastructure, such as Infiniband, 

they take a few µs per message); this is the main reason behind PVFS’ decision to drop both 

serialisation (among I/O operations) and file locking. 

To conclude, PVFS does not offer the sequential consistency property of “POSIX file 

sharing semantics” and, furthermore, lacks file locking in its “POSIX” API.  

11.5 Case study: caching in GFS 

GFS, the Global File System [Sol97], is a fully symmetric distributed file system based on 

shared disk storage, where all nodes have equal access to block storage devices; the usual 

configuration is based on a FC SAN interconnecting hosts and disk arrays, but an Ethernet 

based SAN where hosts and arrays communicate through an iSCSI protocol is also possible. 
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11.5.1 Cache consistency policy 
GFS implements strict coherence among its client’s caches, thus paving the way to be able 

to offer POSIX single-node equivalent semantics (as defined in 10.4.3). Cache coherency is 

implemented in GFS by resorting to locking and invalidation; we now briefly present, in an 

overly simplified way, the main concepts used to implement it; for a more detailed study see 

section 19, “GFS internals: an introduction”. 

In GFS, some in-core “objects” have local, intra-node visibility while others may be shared 

among client nodes, i.e., have a broader, global, inter-node (cluster wide), visibility; examples 

of objects having a cluster-wide visibility are ginodes (GFS structures within the VFS 

vnodes). When a ginode (or any other cluster-wide visible object) is “created” for the first 

time in the cluster, a cluster-wide global lock – G-Lock – is also created to protect that object; 

the G-Lock is uniquely identified by a value pair which holds the object’s type (e.g., “regular 

file” inode) and number (e.g., inode number, based on its on-disk location). 

When a process wants to perform an operation on a G-Lock protected object, the following 

protocol must be observed: first, the process must acquire the G-Lock in a suitable locked 

state; then, the process performs the desired operation(s); next, the process unlocks it, and 

finally, the node may release the G-Lock. Acquire/lock and unlock/release are cluster-wide 

operations that may involve a global lock manager (distributed or not) and, as such, incur in 

non-negligible communication latencies and processing overheads; several nodes may hold a 

G-Lock in the shared state, but only one is allowed to hold it in the exclusive state.  

Lock/unlock are used to implement mutual exclusion for intra-node operations. 

As an example, consider a file being opened for the first time in the cluster, for reading: as 

part of the open()  call processing, the node where the process requesting the file open is 

being executed asks to the Lock Manager to create a G-Lock for the new ginode (and vnode) 

object; then, it acquires the G-Lock in the shared state and locks it “local-exclusive” 

(preventing another process in that same node from simultaneously trying to open it), and fills 

the inode with data from the (on-disk) inode image; next, it demotes the lock state to “local-

shared”. Now, each time the user process performs a read() , as the process already holds a 

lock on the G-Lock, standard VFS-level mutual exclusion operations may be performed while 

the page cache is searched, or data is retrieved from disk and placed in the node’s page cache 

and, from there, moved to the user buffer6. Now if another process on the same node happens 

to open the same file, G-Lock creation is skipped, as the node already “has” the G-Lock; all 

the process will have to do is acquire the G-Lock in the shared state and lock it “local-shared” 

– which it will be able to do, because the acquiring and locking intents of the new process are 

compatible with the lock’s current state. 

                                                 
6 We’re assuming a typical file usage pattern, where the page cache is used. 
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If a process in another node opens the same file for writing, the same set of operations is 

carried out: an inode and a G-Lock (identified exactly by the same pair) will be created, and 

the G-Lock acquired in the shared state, and locked in the “local-shared” state. Now, each 

time the process performs a write() , the following sequence will be carried out: the 

process will attempt to lock the G-Lock exclusively, a request which can’t be immediately 

granted because another node already holds the G-Lock in the shared state; the “offending” 

node is called back by the Lock Manager and asked to drop the lock, which it will do after 

invalidating the inode and all cached pages; now the lock may be granted to the writing node. 

11.5.2 File sharing semantics 
We’ve just described is GFS’ implementation of an invalidation-based cache coherency 

policy along with the serialisation of “conflicting” I/O operations, i.e., concurrent read/write 

or write/write calls; together, they enable GFS to easily offer POSIX single-node equivalent 

file sharing semantics. 

Unfortunately GFS’ POSIX-compliance is provided at a cost that is too high, as shown both 

in [Lop+05] and in the performance benchmarks section in this document; two factors 

contribute to the observed performance degradation: on one hand, the unit for coherency is, in 

fact, the whole file, as any attempt to write on any file segment immediately results in data 

cached on other nodes to be discarded, even when the region being written is not cached; on 

the other hand, reading a file region on a reader node forces the writer node to immediately 

flush all data to disk, even when that data does not include the region being read. 

GFS, as currently implemented, is thus more appropriate for situations where write sharing 

of a file among processes running in different nodes is an infrequent event; it may be 

successfully used to replace NFS or CIFS in environments where users have their “home” 

directories, usually private, several read-only shared folders, usually holding executable 

(“binaries”) and/or configuration files, and a few shared directories where files are modified, 

but usually not concurrently. It is not, however, suited to HPC environments where several 

processes in different nodes concurrently share a file for writing and/or read/writing, even if 

accessed regions do not overlap each other. 
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This Part starts by discussing I/O flow in modern architectures and operating systems, and 

from there, we extract precise definitions for Parallel I/O and Parallel Disk Access. Then we 

propose a Reference Model for Data Management Architectures (RM-DMA) and a taxonomy 

for the model’s upper layer (“File System Layer”). A short evaluation of the model and 

accompanying taxonomy is carried out as a survey of some relevant, widely known, 

“parallel”, “distributed”, “client/server” and “cluster” file systems, I/O software stacks, and 

storage architectures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 I/O in modern Operating Systems....................................................................71 
13 A Reference Model for Data Management Architectures ...............................74 
14 A Taxonomy for File Systems .........................................................................80 
15 File Systems for Distributed and Parallel Architectures..................................85 





 

 71 

12 I/O in modern Operating Systems 

12.1 I/O flow in modern operating systems 

In modern operating systems the flow of control in file system related I/O calls is a bit more 

complex than what it used to be just a few years ago; today, operating systems support the 

concept of Logical Volume (LV) [Van+00, Lew05], and they also have I/O drivers that 

support multiple I/O paths (MPIO) to the same storage1 device. Each concept contributes with 

another degree of freedom: LVs allow better storage space management while MPIO allows 

higher availability (by switching to another path on failure), load balancing (using different 

paths to access different storage devices) and “parallel I/O” (using several paths 

simultaneously). We will use Fig. 12.1 below to present, in a very simple way, these concepts 

and layers: 

 

Figure 12.1 I/O data flow in modern Operating Systems 

The rightmost part of Fig. 12.1 enables us to assert a simple fact: every layer, apart from the 

FS layer itself (at least in a typical, single node FS), can introduce a multiplex/de-multiplex 

function on the I/O path; here, the Device Layer multiplexes two distinct paths of the MPIO 

Layer into a single one. We’ve drawn a full mesh at the MPIO Layer (every green circle 

                                                 
1 Multipathing has also been used in network drivers, where it is known as channel bonding, multi-rail, 

trunking, ether-channel (Cisco proprietary protocol), or link aggregation (IEEE 802.3ad). 
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connected to a red one) with dashed-arrows, to show that each volume can be accessed from 

both paths; that enables us to have higher availability (i.e., recover from path failure) and, if 

the driver supports it, load balancing (i.e., use both paths simultaneously to perform data 

movement – not a very interesting situation here, because there is only a single disk). 

Definition 12.1 Parallel I/O : We will say that parallel I/O is being performed 
in a system whenever multiple, concurrent data flows, exist in a layer (any 
layer) in the I/O path. 

This is a broad definition, encompassing a lot of situations that are not commonly regarded 

in the literature as parallel I/O [Sto98]; according to definition 12.1, we do not care which 

layer is involved; but we are particularly interested in cases where multiple access paths to 

different disk devices do exist, so we’ll formulate a definition that covers it. Therefore, we 

turn our attention to Fig. 12.2 which shows two situations where an application is accessing a 

single file whose data happens to be spread across several devices 

 

Figure 12.2 Parallel disk I/O 

There are two ways to achieve the kind of parallelism depicted in the leftmost side of Fig. 

12.2: we could rely on a software solution provided by the LV layer2, which creates a RAID 

                                                 
2 Other possibilities include layers distributed over multiple servers, as we will see later on. 
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logical volume out of aggregating several disks (or partitions in different disks); or, 

conversely, we could rely on a hardware solution provided by a storage array. Either way 

(provided we use an appropriate RAID level), we end up with file blocks being stored on 

different devices, a situation known as data de-clustering [Sto98] or striping, which enables 

disk level parallelism [Sto98], or, as we prefer to say, parallel disk access.  

Definition 12.2 Parallel disk access: We say that parallel disk access is being 
performed in a system whenever, to satisfy a single request for the transfer of 
a number of contiguous disk blocks, several disks are concurrently accessed. 

From the definition above, we can see that the topmost FS layer interface – and thus the 

programmer – is not aware of the parallel disk access. Also, there is not much of a difference 

when we consider the rightmost part of Fig. 12.2: we just added another I/O controller, and 

disk devices were attached to different controllers – we’re now able both to issue requests and 

transfer data in a truly parallel fashion, avoiding the contention that may occur on a shared 

interconnect. Having looked at some techniques that can be used at various levels – server 

architecture, I/O controllers, devices, and operating system layers (below the FS layer) – to 

increase I/O bandwidth in a single-server system when one or more processes are accessing 

one or more files in unrelated computations, we must now look at the case where a “parallel 

computation” is accessing some files, to see if this brings something anew to our findings. 

 

Figure 12.3 Is this parallel file I/O? 
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In Fig. 12.3 processes in a parallel application access single file, concurrently issuing I/O 

requests; the file is stored on a single logical volume, made up of four different disks; the 

system has three I/O adapters, and the disks are attached to different adapters, making 

multiple I/O paths available. Thus, according to definitions 12.1 and 12.2, the system is 

performing both parallel I/O and parallel disk access. Notice that if we wanted to draw a 

figure to represent three unrelated computations accessing a file, instead of a “parallel 

application”, Fig. 12.3 could be reused; general purpose POSIX-like operating systems and 

file systems we use regularly have no API options to enable us to “tag” processes as 

“parallel”, or convey to the FS that processes are sharing a file; so, the answer to the question 

posed in the legend of Fig. 12.3, “Is this parallel file I/O?” has to be, for the moment, “We 

don’t know” – because we’ve not yet seen what the “parallel” adjective means, at the file 

system layer.  

13 A Reference Model for Data Management Architectures 

13.1 Introduction and motivation 

Answering questions such as “Is this parallel file I/O?” and/or comparing features of 

distinct file systems in meaningful ways requires us to have a solid framework, one which 

will cover all aspects involved in I/O, and does not need to be changed to accommodate a new 

file system, storage device, or interconnect. Having looked around, we have not found a 

framework that is, at the same time, simple (i.e., easy to understand) but generic enough – in 

the sense that file systems, storage architectures, and configurations we wanted to study could 

be assessed – so, not unexpectedly, we have developed a new reference model. 

13.2 Data management: the broad picture 

Data management is another step in the quest for closing the gap between data abstractions 

that model “real world entities” and the set of tools at the disposal of application developers. 

Traditionally, data management has been split into two major camps, data base and file 

systems; FSs have been offering very simple file models (sequential, indexed, etc.) for years, 

but recently more sophisticated file storage and access methods in the form of semantic file 

systems [Gif+91] and content addressable storage [EMCa06, Tol+03] were proposed. 

Today we find DBMSs in applications that have to deal with large amounts of data, 

organized as complex interrelated data structures, concurrently accessed by a large number of 

users, where accesses must be isolated in a way that data is kept coherent, and recovery from 

crashes should be “automatic”. Conversely, file systems are used to support file-based 

applications that have requisites and access patterns quite different from those expressed 

above; they hold application files – for example, for office/productivity, multimedia, and 

scientific applications (which may access very large storage repositories) – but also OS 
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storage (for the OS itself plus all the software utilities); business applications usually do not 

use file systems as a major data repository technology anymore, they use DBMSs instead. 

13.3 A reference model for data management architectures 

We now present a Reference Model for Data Management Architectures (RM-DMA) that 

generalises the architecture depicted in the previous section; it is composed of two major 

pieces: the Storage Management Domain (SMD) and the Data Management Domain (DMD). 

 

Figure 13.1 Reference Model for Data Management Architectures 

The Storage Management Domain provides services that are used by DMD software to 

store data; it is structured into five layers: the Storage Device Layer (SDL) models the devices 

themselves; the Storage Network Layer (SNL) deals with protocols (packets, frames, coding 

and physical cabling) that are used to access the (e.g., block addressable) physical devices that 

ultimately store data; the Storage Virtualisation Layer (SVL) handles device virtualisation 

tasks, such as device partitioning and/or aggregation, and increased availability (e.g., RAID); 

the Storage Access Layer (SAL) provides the shared and distributed models of storage; 

finally, the Object Storage Layer (OSL) provides higher level storage abstractions, ones that 

go beyond the usual “array of blocks”. 

The DMD may be split into several “vertical” layers, such as the File System Layer (FSL) 

that models file system software implementing the usual abstractions of files and directories 

as well as links, records, etc., and the Data Base Layer (DBL), for data base management 

software. Outside the scope of this work are DBMSs and some specialised FSs such as 

semantic, content addressable, and peer-to-peer FSs; therefore, the RM-DMA has not (yet) 

been validated against them. 

Our RM is similar to the Storage Network Industry Association (SNIA) Shared Storage 

Model [SNIA03]; the most striking differences are that their model includes the file/data base 
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system software as part of the storage domain, does not cater for the object and access layers, 

and storage is (always) assumed to be shared. 

13.4 RM for file systems: a layer by layer description 

Decoupling a real-world file system into layers, i.e., matching it to our reference model 

may be far from trivial; this is especially true for single node (i.e., not distributed) monolithic 

file systems such as UFS and its descendants (e.g., ext2). The problem is further exacerbated 

because the FSL must interact with the operating system and therefore FS “objects” become 

managed in both worlds (e.g., they are allocated per FSL request, but may be flushed and de- 

-allocated by the OS memory management layer – in close cooperation with the FSL). 

And it gets even worse: in an attempt to reduce memory pressure and increase FS 

performance, UNIX descendants (e.g., Linux) have implemented a Virtual File System (VSL) 

layer [Kle86, Bov+05] and a Page Cache [Bov+05, Rod+05]; the net result is an FS-abstract 

layer (the VFS) whose generic structures (e.g., vnodes and dentries1) may not match with the 

FS “native structures” (ranging from quite similar for some FSs, such as in ext2, through 

similar, such as in GFS, up to completely different – to the point where they simply do not 

exist, such as in the FAT), and this complicates the “slicing” of the real FS into the layers of 

our RM. 

13.4.1 File system layer 
The FSL provides all those well known “objects” such as volumes (FS instances), 

directories and files, together with the API that allows them to be accessed and managed. 

However, there’s more to it: at the “instance” (volume) level the FSL has to address security, 

reliability, fault tolerance and recovery, performance and scalability, and sharing semantics; at 

the “file” level, the FSL should define which file types, organisations, and access modes are 

supported, and what is the proposed semantics for file sharing. And, of course, a major aspect: 

is it distributed or local? 

13.4.2 Object storage layer 
The OSL provides the set of ADTs that will be used by the file system layer to offer the 

user-level data and metadata objects – files, directories, links, etc.; for example, in an ext2 file 

system those structures are the superblock, resource group, inode, and data and index blocks, 

while in a FAT file system they are the boot sector, cluster, root directory and the FAT itself. 

The OSL is responsible to perform transformations needed to map the ADTs it provides into 

the next (downwards) layer structures, e.g., implementing on-disk images in a local, block-     

-based object storage, or accessing a peer OSL in another node in order to map them. 

                                                 
1  For a more detailed description of the VFS layer see section 17, “VFS internals”. 
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In commonly used file systems it may be difficult to identify the OSL, as it may be tightly 

integrated with the FSL; examples include single node local file systems such as ext2 or 

NTFS. Quite the opposite may occur with recent DFSs, where layers are more decoupled and, 

consequently, easier to identify; for example, in PVFS or Lustre [Bra03], the FSL (the 

“client” file system) accesses object storage servers (storage targets, in Lustre parlance) 

running in other nodes, i.e., making it a distributed OSL architecture. 

13.4.3 Storage access layer 
The SAL provides two distinct abstractions to the upper layers, namely distributed and 

shared storage; distributed (a.k.a. private) storage refers to the case where a logical volume 

(see below) is accessed by a single OSL entity (e.g., a single node), whereas in shared storage 

multiple OSL entities (nodes) access the same logical volume. It also implements the 

consistency and security models, defining who (which upper-layer entities) and how 

(credentials, constraints) one has access to the lower layers. 

13.4.4 Storage virtualisation layer 
The SVL is responsible for implementing the logical volume, or logical disk, an abstraction 

of a direct access storage device (DASD) that may, or may not, correspond to a physical 

device. For example, the SVL may present a volume out of a disk partition, while hiding other 

partitions of the same disk; or, it may aggregate two or more disks, or partitions, into a single 

(larger) volume either by appending them one after the other, or by striping their blocks; or 

create a highly available volume out of two identical “mirrored disks” – the possibilities are 

increasing everyday, as this is a fertile R&D ground2.  

Storage virtualisation may be performed at the host, with software products such as LVM 

[Lew05] or EVMS [Pra02, Lor+05]; or inside storage array boxes (or even directly at the 

HBA), where the usual options are RAID levels 0, 1, 0/1, 3 and 5, together with LUN 

virtualisation capabilities; and finally it may also be performed by highly specialised storage 

appliances that operate at the network (SAN) level [Tat+06, EMCb06]. 

13.4.5 Storage networking layer 
The SNL encompasses the protocols layers required to carry out data transfer and control 

operations against storage devices; we call the entity that issues operations an initiator, while 

the “addressed” device is the target.3 For the configurations we’re interested in this work the 

initiator is an Host Bus Adapter (HBA) inserted into a host’s slot (PCI/-X/-e), and the target is 

a “disk device”; an example of a SAL protocol is SCSI, either used directly over a parallel 

cable, encapsulated in FC, or over IP (iSCSI). 

                                                 
2  For a more detailed coverage, refer back to Part II, section 5, “Storage Architectures”. 
3  We have borrowed the SCSI terminology, but we will use it across every technology. 
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It should be noted that communication events that take place among hosts and do not 

involve storage (e.g., initiators and targets, as defined by block-level storage protocols) are 

not relevant for this layer; examples include data transfers triggered by clients accessing data 

in “shared folders” published by NFS or CIFS servers, or host-to-host transfers such as 

moving data over Ethernet or over RDMA-capable interconnects. NFS and CIFS are 

especially suited to illustrate the difference, as the communication between NFS/CIFS clients 

and their servers takes place (depending on where the split among layers is done) either at the 

FSL or OSL, never at the SNL. 

13.4.6 Storage device layer 
The SDL deals with the storage devices themselves – e.g., magnetic media (disks, tapes), 

optical media (CD, DVD), solid state devices, etc. We do not intend to have it thoroughly 

analysed here, but we must mention it, for completeness of the model. 

13.5 Applying the reference model to a few simple cases 

The RM we have developed is, we hope, suitable to accommodate not only those file 

systems covered here, but also other classes (as previously noted); for the small set we will be 

evaluating in the next section, the RM will be used to highlight their most important 

characteristics, derive some properties, and establish a classification. As this will be done with 

a focus on the File System Layer, we now introduce a few simple examples to cover the 

remaining layers and, at the same time, establish a correlation with the model presented in the 

previous section. The examples will be presented as follows: we start with a short description 

on the environment (hardware, disks, RAID levels, FS, etc.), followed by both text and 

pictorial descriptions on how these “components” are mapped into the RM layers. 

  

Figure 13.2 Reference Model for Example 13.1: ext2 with LVM-based RAID-0 
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Example 13.1: A Linux host with two internal SCSI disks aggregated into a RAID-0 volume 

with LVM software. On top of the logical volume, an ext2 file system is used (Fig. 13.2). 

RM: The disks are accessed via the SCSI protocol, implemented at the HBA and its device 

driver – so, SNL is running at the host; the disks are aggregated by LVM software – thus SVL 

is running at the host, too. As for the SAL we can say that, conceptually, it does supply a 

partitioned (unshared) disk volume to the OSL. For an ext2 file system, as well as for the 

majority of local file system implementations, there is no clear line separating the OSL from 

the FSL; anyway, the OSL clearly runs at the host and supplies the needed ADTs (inodes, 

index and data blocks, superblocks, etc.) to the host running the ext2 FSL. 

 

Figure 13.3 Reference Model for Example 13.2: ext2 with array-based RAID-0 

Example 13.2: A Linux host with an external disk array supplying a striped (RAID-0) 

volume. On top of the “disk”, an ext2 file system is created (Fig. 13.3). 

RM: The array’s disk drives are aggregated with SVL software running in the array; the 

access to the virtualised device is via the SNL protocol (but notice that this is protocol 

independent: the result is the same for any block based access protocol, e.g., FC, and the 

optional router is a storage switch; or iSCSI, and the router is an IP router). As for the upper 

layers, their roles are identical to the ones in Example 13.1. 

 

 
Figure 13.4 Reference Model for Example 13.3: a NFS client and a NFS server 
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Example 13.3: A host (Linux or other) as a NFS client of a “NAS appliance” with a “built-

in” disk array supplying to the host a NFS file system. 

RM: The NAS internal array’s disk drives are aggregated with SVL software running in the 

array; the virtualised device is then exported as a NFS-mountable file system. Client/server 

interaction is performed at the FS (here NFS) Layer. 

A final note: we have shown that the proposed Reference Model is able to model both 

internal and external storage, together with storage area networks and different access 

protocols; it also models virtualisation both “at the host” and “in the device”. Space 

constraints forbids us from covering more examples here, but the RM-DMA can also model 

storage objects at higher level than the “disk block”, including operating system entities, such 

as anonymous pages, upon which the Linux /proc file system is built [Bov+05]. 

14 A Taxonomy for File Systems 

Using the reference model we’ve just introduced (one which, you may recall, subsumes the 

simpler layered approach we’ve used before), we now proceed to develop a taxonomy to 

classify file systems, where we will cover the not only the RM’s File System Layer 

(collocated at the DML) but also the OSL and SAL. The proposed taxonomy will be used in 

the forthcoming survey on file systems for parallel and distributed architectures; the reader 

will be asked, sometimes, to look at examples laid out in the next section, to get a better 

understanding of the proposed taxonomy. The classification will, at the end of this Part, be 

presented as a table, such as the one below: 

 

Figure 14.1 Preview of the Classification Table 
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the word “major”: we do not intend to address every possible feature, here and now; in the 

survey we will study some influential file systems, and, there, as innovative concepts are 

introduced, other attributes will be added to our classification grid. 

14.1 Data Management Layer (DML) 

With regard to how the FSL is deployed, there are clearly only two major file system 

architectures: local and distributed. 

Definition 14.1 Local File System: Control and data flows in the file system layer 

are restricted to a single computing node. 

 

Definition 14.2 Distributed File System: Control and data flows in the file system 

layer are distributed across several computing nodes. 

From the above definitions we assert that, no matter what happens in the layers of the 

Storage Management Domain, it will not influence our classification at the file system layer; 

for example, if virtualisation of a storage device is performed by distributed software running 

across several nodes, as in Petal [Lee+96], but the file system layer only runs in a single node 

(where the “virtual device” is mounted) the file system is local; furthermore, it should be clear 

that any file system which is not of the local type is distributed, and vice-versa. 

Having defined what a DFS is, we now proceed to identify another important characteristic 

of distributed file systems: symmetry. This attribute sets apart distributed file systems where 

some nodes play specific roles (such as metadata or data servers) while others perform 

another, complementary role (such as file system clients) from those where all nodes play the 

exactly the same role, i.e., run exactly the same set of services. 

Definition 14.3 Asymmetric DFS: One or more nodes may assume distinct (file 

system) roles. 

 

Definition 14.4 Symmetric DFS: All nodes perform the same (file system) roles. 

Of course, many more attributes can be used to characterise a distributed file system; as 

always, in a taxonomy one strives to retain those which are important (in the sense that, here, 

they really set a DFS apart from others) and discard those which aren’t; we have thus selected 

partitioning and scalability as very important characteristics in a DFS. As an interim format 

we will present those attributes in a tree-like structure in Fig. 14.2, before moving later to a 

table layout format; for completeness, we will start with DFS at the tree top. 
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Figure 14.2 Characterising DFS architectures (FSL-only attributes) 

Service partitioning allows us to express whether the DFS has some crucial set of services 

that must be deployed in a single-node as an aggregated/monolithic entity (e.g., an NFS v3 

server), or, conversely, they may de deployed across multiple nodes, where those nodes may 
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Definition 14.5 Partitioned Service Architecture: File system (server) services run 
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same set of file system (server) services. 

 

Definition 14.8 Heterogeneous Service Architecture: (server) Nodes may run 

distinct sets of file system (server) services. 
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multiple nodes, and we expect increased performance both for metadata and data accesses; 

consequently we tag GFS’ scalability as “full”. But PVFS1 is tagged as a “partially scalable” 

architecture because while we can add more data (I/O) servers, only one metadata server may 

exist, while PVFS2 allows for multiple metadata servers, so it’s “fully scalable”. 

All file systems used here as examples will be covered in detail later, and we hope that a 

thorough description of each one will help the reader to get a better understanding of the 

characterisation attributes and their “values”. 

14.2 Object Storage Layer (OSL) 

Very few file systems (noteworthy exceptions are Lustre and PVFS) allow a clear 

separation between the OSL and FSL; generally these layers are “glued” together, in a sort of 

“monolithic” approach. 

Just like in the file system layer, deployment is chosen as a major OSL attribute: a 

centralised object store is one where the OSL is confined to a single node (which may, or may 

not, be the same node where the file system layer it serves also runs), whereas in a distributed 

object store, the OSL runs across several nodes. 

Definition 14.9 Centralised Object Store: Control and data flows in the object 

storage layer are restricted to a single node. 

 

Definition 14.10 Distributed Object Store: Control and data flows in the object 

storage layer are distributed across several (object storage server) nodes. 

Another important attribute is object partitioning across servers and how to accomplish it, 

vis-à-vis homogeneity and scalability; for example, distributed object stores may exist where 

each object server node plays a specific role (such as metadata server, or data server), thus 

being heterogeneous, while other object stores may be homogeneous, i.e., all nodes provide 

exactly the same set of services. The scalability attribute assesses how many servers of a 

specific type are supported – either one, or many. 

Definition 14.11 Heterogeneous Object Store Partitioning: Separate server nodes 

may implement distinct storage object types. 

 

Definition 14.12 Homogeneous Object Store Partitioning: Every server node 

implements the full set of storage object types. 
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The scalability attribute allows us to characterise how to increase object store capabilities 

(e.g. bandwidth, capacity, fault tolerance); allowed values are once again none, full, and 

partial (this one to cover those architectures where some capabilities may be increased while 

others may not). For example, the PVFS1 architecture supports separate metadata and data 

servers (thus being an example of a heterogeneous object storage architecture, as objects in 

the OSL of a metadata server are distinct from those in a data – file – server); it has a fully 

scalable data architecture, but an un-scalable metadata architecture, as the number of 

supported metadata servers can not grow (so, it is tagged as a partially scalable architecture, 

or as “data-only scalable”). 

Definition 14.13 Scalable Object Storage Architecture: The number of object 

storage servers may be increased and may result in a perceivable increase in the 

subsystem capabilities (bandwidth, fault tolerance, capacity). 

Note that this classification is based on architectural features, not an evaluation of some 

implementation; i.e., tagging an architecture as fully scalable does not imply that a product’s 

implementation of that architecture is highly scalable, or conversely, that one that is partially 

scalable is not scalable enough for its application environment. 

14.3 Storage Access Layer (SAL) 

The SAL is the first (downwards) layer that deals with “raw” storage blocks, how they are 

accessed and whether they are shared. The two paradigms for storage sharing are: partitioned 

(a.k.a. private or distributed) and shared.  

Definition 14.14 Partitioned Storage: All nodes access disjoint sets of storage 

resources (disks). 

 

Definition 14.15 Shared Storage: Nodes access the same set of storage resources 

(disks). 

The shared storage approach may be fully supported by an underlying architecture that goes 

all the way down to hardware devices, such as multiported disks, or by virtual shared disks 

(VSD) implemented by resorting to internode communication, much in the same way a 

distributed shared memory is implemented. For the shared storage case, allowed attribute 

values in our classification will be shared disk (SD) and virtual shared disk (VSD); to record 

the opposite case, unshared disks, we will use the private or partitioned disks (PD) tag. 
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14.4 Conclusion 

Part IV of this dissertation starts with a question; we ask, in a slightly rephrased way, “what 

is parallel file system?”, referring to issues raised in figures 12.2 and 12.3. It may seem we 

have not answered it, after all. The simple answer is that “parallel file system” is, together 

with other often used labels such as “cluster file system” an imprecise term. The taxonomy we 

have presented is used in the next section (the focus being the two topmost layers, FSL and 

OSL) to guide us through some distributed file system case studies, hopefully allowing us to 

get a clearer picture out of a blurred field created by the above mentioned imprecise 

terminology or from marketing hype and/or terminology abuse from some FS “pushers”. 

We have not covered some important attributes, such as security, resilience, and 

availability; we simply do not intend to cover them here; these aspects are pervasive to all 

layers, but time and space constraints deter us from pursuing this line of work. However, if 

something close to a definitive taxonomy is to be developed, they surely must be tackled. 

15 File Systems for Distributed and Parallel Architectures 

15.1 Introduction 

Again, a simple figure will be used to chart the different file system types we are 

introducing in this section. 

 

Figure 15.1 File system types “at a glance” 
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Fig. 15.1 is a two-dimensional grid built along the same axes used before in Fig. 4.1, but 

now with computing architectures grouped according to the kind of file system they 

commonly use. To illustrate the placement of “groups” in the chart, we use the SMP and 

NUMA architectures as examples: in a SMP, disks are completely managed by the node’s 

operating system which runs a standard local file system (e.g., ext2 ), while in multiple node 

NUMA/DSM architectures, either a local or a distributed file system may be used – local file 

systems may be used if nodes are running a true single system image (SSI) operating system 

(as in tightly coupled cc-NUMAs), while distributed file systems (with or without the 

“parallel” tag) of various “types” must be used in all other cases. 

15.2 Local file systems 

Local file systems, running both on uniprocessors and SMPs, are well known, and were 

already covered in Part III (sections 8 and 10), where we looked not only at features they 

make available to users, but also at some architectural and implementation details. As we’re 

now focused on surveying relevant distributed/parallel file systems, we will no longer refer to 

local file systems in this section.  

15.3 Distributed file systems 

The taxonomy we have proposed will now be used to characterise those file systems we 

deem particularly relevant, ones that have been somehow loosely being called distributed, 

parallel, and cluster file systems; it will be used in the “File System Classification” entries 

one can find for each case we’re surveying. File systems will be presented in the same (left-   

-to-right) order they were depicted in Fig. 14.2.  

15.3.1 Symmetric distributed file systems 
A distributed file system with a symmetric architecture (with regard to node roles) must be 

based on shared storage – either physically or virtually shared; we will be surveying GPFS 

and GFS, two of the most representative “global” file systems – where global is a keyword 

commonly used to tag shared storage file systems (another, often used terminology is “cluster 

file system”, which is also used to refer to Lustre, an asymmetrical DFS). 

15.3.1.1 GPFS 
Description: The General Parallel File System, GPFS [Sch+02], is a “closed-source” IBM 

proprietary “parallel shared-disk file system for cluster architectures”, which runs on the AIX 

operating system based p-Series SMP clusters, and on IBM-certified Linux clusters; for the 

remainder of this overview we will focus on the Linux version. 

File System Classification: GPFS is a fully-scalable, distributed services, symmetric DFS. 
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File System Architecture: GPFS is targeted to cluster configurations with very high node 

counts, such as the one depicted in Fig. 15.2; in those large configurations, not all nodes are 

required to be homogeneous when it comes to storage – some may be SAN-attached while 

others are not, being used mainly as computational nodes; non SAN-attached nodes, however, 

may still run GPFS, accessing Network Shared Disks (NSD) which are “virtual shared disks” 

implemented by a software layer that runs on top of a network infrastructure. Hence, GPFS is 

symmetric from the file system layer viewpoint, because all nodes access the same set of 

shared disks. 

Storage Architecture: Storage devices are enclosed into storage arrays which are 

connected to the hosts through a SAN built around FC switches. General-purpose host 

interconnection is achieved either with IBM proprietary “cluster switches”, or via more 

common infrastructures such as Ethernet, Myrinet or Infiniband; the interconnect is used for 

all non-FC traffic: application, inter-node locking and, if NSDs are used, FSL/OSL traffic. 

 

Figure 15.2 Architecture of a GPFS site 
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Performance: Data: Under GPFS a file is built from relatively large sized blocks, from 

16K up to 1MB; block size is chosen at filesystem creation time. Very small files (and the last 

data block on large block-sized files) can use sub-blocks, which are 1/32nd of the size of a 

regular block. Consecutive data blocks may be stripped onto different disk units, to achieve 

load balancing across host adapters, storage controllers, and disks – e.g., two LUNs on 

different arrays, each accessed through a different host adapter. Metadata: When creating a 

new filesystem the administrator may individually select which disks will hold the metadata 

and, consequently, stripe metadata across them, resulting in increased I/O bandwidth for 

metadata accesses. GPFS supports efficient file name lookup in very large directories 

(reportedly millions of files) using extensible hashing to organize directory entries. Like 

Linux (and all UNIX-like file systems) GPFS uses inodes and indirect blocks, but not the 

allocation strategy of either “standard UNIX” or the “Berkeley Fast File System” cylinder 

groups. The allocation map is geared towards minimizing conflicts between nodes accessing 

it; further information can be gathered in [Sch+02]. Caching: GPFS for Linux implements its 

own private cache, independent from the Linux page cache; this is probably to reduce 

differences between the AIX and Linux versions to a minimum. Caching is used extensively 

to increase performance, both for data and metadata. Prefetching: GPFS recognizes 

sequential, reverse sequential, and some forms of strided access patterns, and prefetches data 

into its buffer pool, issuing I/O requests in parallel; in the case of a single-threaded 

application, this results in requests to as many disks as necessary to achieve the highest 

bandwidth possible in the fabric. Flushes out of the buffer pool are also carried out in parallel, 

and the write-behind technique may also be used to increase performance. Irregular access 

patterns can be hinted by the application programmer, in an attempt to increase performance. 

Availability:  GPFS is a highly available file system: fault tolerance of storage devices is 

provided by disk arrays; each node maintains a separate journal for each file system it mounts 

and all metadata updates that affect file system consistency are recorded in the journal; if a 

node fails, any other node can immediately start the recovery of the failed node’s journal. 

Concurrency, Consistency and Sharing: GPFS guarantees single-node equivalent POSIX 

semantics for most file system operations across the cluster except when “data shipment” 

mode is used; also, when “time attributes” (mtime /atime /ctime ) are modified in a node, it 

takes some time to propagate them to other nodes. Performance of concurrent file sharing is 

satisfactory thanks to dynamically elected “metanodes” for centralized management of file 

metadata; fine grain sharing applications that do not require POSIX semantics, such as MPI-

IO applications, can use data shipping to achieve better performance; data shipping resorts to 

a technique where file blocks are assigned to nodes, in round-robin fashion, so each data 

block will only be accessed by a single node; other nodes requiring that block will get it 

shipped from the general-purpose interconnection network. A Distributed Lock Manager 
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(DLM), which uses both a centralized global lock manager (running on a node of the cluster), 

as well as local lock managers (running on all other nodes), is used to support both user-level 

file locking and cache consistency; the global lock manager hands out lock tokens to local 

lock managers, conveying them the right to distribute locks without the need for message 

exchange each time a lock is acquired or released. 

Locking:  GPFS supports POSIX byte-range locking. 

Further references: Other than the previously mentioned [Sch+02], interested readers can 

consult “Concepts, Planning and Installation Guide” [IBMa06], the “Administration and 

Programming Reference” [IBMb06] and browse the IBM Redbooks site for documents such 

as Redbooks and Redpapers. 

15.3.1.2 GFS 
Description: The Global File System (GFS) is a shared-disk file system that runs on Linux 

clusters. It started out (in 1995) from the desire to exploit FC technology to post-process large 

scientific data sets, and was implemented on top of Silicon Graphics hardware and the IRIX 

operating system (GFS-1); later, it was refined, re-implemented, and reported on a PhD thesis 

(GFS-2) [Sol97]. The key objective for GFS-2 was to design, prototype and test a shared file 

system based on well known distributed file system research, with a novel extension: the file 

system consistency mechanism was to be based on Device Locks (D-Locks), a proposed 

extension to the SCSI standard [Pre+99]. GFS-3 was a re-write and porting to Linux, and a 

company, Sistina Software Inc., was formed to sell GFS; source code was then closed, and 

versions 4 and 5 were released. Later, Red Hat Inc. bought Sistina, and source code was 

released again to the open source community. D-Locks, although proved useful (initial testing 

was done on modified Seagate disk drives and Ciprico disk arrays), were never included in 

the SCSI standard and were replaced by another concept, the SCSI Device Memory Export 

Protocol (DMEP), an extension to the SCSI protocol [Bar+00], which was not accepted, too.  

File System Classification: GFS is a fully-scalable, distributed services, symmetric DFS. 

File System Architecture: GFS is targeted to medium-sized (currently, 300 nodes) Linux 

clusters where nodes, which we will call GFS clients, are homogeneous when it comes to 

storage: all access the same set of SAN-provided shared disks. Fig. 15.2 may be used to 

depict a GFS setup if all nodes are drawn as SAN-attached. 

Storage Architecture: Storage devices are enclosed into storage arrays, and these are 

connected to the hosts through a SAN built with FC switches or with an iSCSI-capable 

infrastructure. The only requirement for the general-purpose interconnection infrastructure is 

that it must support TCP/IP, so anything from plain Ethernet to Infiniband can be used. 

Storage System Classification: GFS is a shared storage system. 
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Target Application Environments: GFS guarantees single-node equivalent POSIX 

semantics for file system operations across the cluster; in file sharing situations, concurrent 

readers executed across distinct nodes can benefit from the aggregated I/O bandwidth, but 

write sharing of a file across multiple nodes has very low performance. GFS is then quite 

appropriate for situations where one needs sharing of mostly-read data, such as directories 

containing application binaries and configuration files, or where files are shared, but not 

concurrently updated across nodes, such as in home directories. 

OS integration: GFS is delivered as a single Linux kernel module (but depends on others, 

such as lock managers); GFS is closely integrated both into VFS and the Linux page cache. 

File System Organization, Resources and Metadata: A GFS file system volume is based 

on SAN-exported LUN(s) and organized into several Resource Groups (RG); RGs are similar 

to the BSD Fast File System cylinder groups (and Linux ext2  block groups [Bov+05]) and 

include a superblock, bitmap, dinodes and data blocks. A dinode is similar to the UNIX inode; 

key differences are: dinodes use a full file system block (4096 bytes), so files that are small 

enough can be stuffed into the dinode; and the indirect block tree is uniformly deep. 

Performance: Data: in GFS a large file is automatically spanned onto resource groups, 

and as different RGs may reside in different devices, it is consequently striped out onto 

different disk units, allowing applications to achieve disk-level parallelism. Metadata: The 

resource group metadata structure previously described contributes to enhance performance 

by minimizing conflicts between nodes accessing metadata that happens to reside in different 

RGs. Caching: GFS nodes keep both data and metadata cached as long as no other node 

needs to access the file. Write caching is write-back: modified blocks in cache are marked 

dirty and flushed by Linux daemons when appropriate, or a by a user requested sync 

operation. Prefetching: GFS resorts to the Linux standard VFS functions to perform device 

access and populate the page cache; so, GFS prefetchs are, in fact, Linux prefetches.  

Availability:  GFS is a journaled file system, and each node maintains a separate journal for 

metadata transactions. Any node can start the recovery of a failed node journal without having 

to wait for the failed node to come back online – either by detecting, at mount time, a 

previously “unclean shutdown”, or by detecting an “expired” client node. 

Concurrency, Consistency and Sharing: GFS guarantees single-node equivalent POSIX 

semantics for file system operations across the cluster, so multiple nodes may issue 

concurrent reads and writes to the same file. GFS locks are used to maintain cluster-wide 

coherency; in short, every read()  or write()  places, respectively, a shared or exclusive 

lock over the file’s inode for the duration of the operation. Two locking protocols are 

available – one based on DMEP, and another based on DLM. As no DMEP-capable hardware 

exists, a user-level TCP/IP daemon that implements a DMEP server is provided. GFS clients 

specify the locking protocol they wish to use at filesystem mount time. 
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Locking:  GFS supports POSIX byte-range locking. 

Further references: The Red Hat site (www.redhat.com) has both Administrator and User 

Guides available for downloading. 

15.3.2 Asymmetric distributed file systems 
Asymmetric distributed file systems (also designated client-server DFSs) are those where a 

functional separation exists between server nodes, which do run the “server part” of the file 

system layer and provide services that are used by client nodes, which run the “client part” of 

the FSL to access stored data. 

In a distributed system, a protocol is defined to regulate interactions among members; in a 

DFS, it is used to specify how the client’s FSL talks with its peers – and it may define that 

interactions strictly happen between a client and a server, such as in NFS, or that they may be 

of a broader nature, and involve not only multiple servers, as in PVFS, but also other clients. 

15.3.2.1 Single-server asymmetric DFS 
A single-server asymmetric distributed file system is, as its name suggests, a client-server 

DFS where multiple clients access stored data through services provided by a single server. 

15.3.2.1.1 NFS 
Description: The Network File System is one of the most well-known client-server 

distributed file systems; once extensively used in all domains, it has been replaced by 

Microsoft’s CIFS (Common Internet File System), namely in Windows environments. NFS 

originated around 1984 at Sun Microsystems, and has been improved over the years; the 

currently most widespread release is NFS version 3 (NFSv3), which is available for all 

general purpose operating systems, and even for some more “esoteric” ones; version 4 has 

been available for some time, but has not yet displaced v3. A parallel version (similar to 

PVFS) initially designated Parallel NFS, or pNFS (now NFS 4.1) was scheduled for inclusion 

in the Linux mainstream release in 2008, but has yet to appear. 

Classification: NFS is an un-scalable, single-service asymmetric DFS. 

File System Architecture: As shown in Fig. 15.3, NFS is a client-server DFS where a 

single server is accessed by multiple clients over a TCP/IP interconnection network; a typical 

NFS usage scenario resorts to UDP to perform data transfers between clients and servers, 

while more demanding environments (e.g., HPC) use TCP to perform data transfers.  

Storage Architecture: A typical NFS server is a single SMP node with DAS storage, i.e., 

with its own local disks; storage may either be internal or else LUNs provided by external 

disk arrays. NFS may be also found in “bridge” configurations, e.g., to gain access to data 

stored/mediated by other file systems. For example, a GFS file system may be exported on a 
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(cluster) node and then mounted by NFS clients – however, this is not an architecturally 

different configuration, as the exporting node becomes “the” single-server. 

 Figure 15.3 Architecture of a NFS site 
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daemon, called lockd . Through the use of locking (even in situations where one should not 

normally need to use it) it is then possible to guarantee correct execution for processes sharing 

a file, albeit at the expense of reduced performance caused by lock traffic and repeatedly 

flushing of data blocks cached in clients. 

OS integration: As shown in Fig. 15.3, the NFS client code is tightly integrated into the 

kernel (in the UNIX/Linux VFS); conversely, server code needs not to be in the kernel, 

although most implementations do it, for performance reasons.  

File System Organization, Resources and Metadata: As any other DFS, NFS is both a 
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caching in NFS”. The NFS protocol does not address client caching and cache coherency, 

although return data provided by the protocol calls does provide some help for 

implementations. A strategy commonly used by NFSv2 clients to reduce the chance of using 

stale data is to ask the server for the file’s modification time (mtime ) periodically; if it 

matches the one stored in the client, cached data is valid. This procedure does not guarantee 

full consistency because the client only asks for the file’s mtime  on file opens and whenever 

cached attributes (which include mtime ) expire; between those events, a second client may 

modify data that is cached by the first client. Weak Consistency is a policy available on 

NFSv3 that may offer a performance increase over the previously described NFSv2 strategy, 

but still suffers from the stale data problem [Paw+94]. Metadata Caching: Caching of 

metadata at clients is performed as a result of (remote) access operations; metadata cached 

objects include, among others, directory entries, file handles and file attributes. Policies used 

to promote consistency are the same ones previously described. Prefetching: Data 

prefetching occurs both at the client and in the server; at the client, prefetching may be 

triggered by assigning successive “NFS read calls” to distinct threads (biod s); at the server, 

as a consequence of standard Linux read-ahead behaviour; if the server can process the 

requests arriving at the nfsd s in parallel, the client will see a high prefetch rate; if not, it will, 

at least, benefit from the reduced latency that results from the overlapping of the client 

requests. Complementary to the read-ahead is the write-behind; the same threading approach 

can be used by the client to submit multiple “NFS write calls” against the server [Cal00]. 

Availability:  The NFS protocol is stateless, i.e., each request carries enough information to 

be processed independently from other requests, past and future. Server crash recovery is then 

simple: a client keeps retrying a request until the server responds; a client is not able to 

differentiate between a slow server and one that crashed and was subsequently rebooted 

[Paw+94]. Failover NFS solutions do exist, where data is stored in an external array and when 

a “primary NFS server” fails, the dormant backup server (a configuration usually called 

active-passive) will mount and export the disks (and it may even grab the primary server’s IP 

address); Highly-Available NFS (HA-NFS) [Bhi+91] is a similar solution that uses an active-  

-active, load balancing approach, with both servers acting as independent NFS servers (each 

one is a backup of the other), dual-ported disks (made obsolete by today’s disk arrays) and 

mirroring software, to be able to recover from disk failures. 

Concurrency, Consistency and Sharing: Default consistency semantics for NFS can be 

very easily stated: data written by a client is noticed by others at most 3 seconds later; 

metadata (file, directory, symbolic link) changed (created, removed) by a client will be 

noticed by others at most 30 seconds later. These are NFS’ time-to-live policies for cached 

data and metadata: default values are respectively 3 and 30 seconds, but the minimum value 
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could be as low as zero – no caching at all; these policies are not a part of the NFS protocol, 

but are fully dependent on client’s implementations [Cal00]. 

Locking:  NFS’ consistency model does not, per se, provide sufficient guarantees for 

consistent updating between cooperating clients in the absence of explicit locking, as won’t 

any other FS. Advisory byte-range locking is provided by the Network Lock Manager (NLM) 

in conjunction with the Network Status Monitor (NSM); NLM provides the locking calls and 

maintains state, while NSM provides information about crash/restart so that NLM can initiate 

lock recovery. Locking and caching, when used together, create some delicate problems, e.g. 

a client locks, writes, and then unlocks the first byte of the file, while another does the same 

for the second byte; the “performance road” would be to get the first 8KB of data for the first 

client, and change the first byte while the same sequence was repeated for the second client, 

but now acting upon the second byte. At the end, the 8KB of data would be pushed to the 

server at distinct times, possible resulting in a lost update. A solution adopted by Solaris NFS 

client implementations is to disable caching and transfer the exact amount of data requested 

by the clients [Cal00]. Another would be to extend the lock range to cover the full amount of 

data transferred (but that would decrease the degree of concurrency). 

Further references: NFS is extensively covered in of books, papers, technical reports, etc. 

and, furthermore, several implementations have their source code freely available; therefore 

we feel no more references are necessary. 

15.3.2.2 Partitioned asymmetric DFS 
Partitioned asymmetric distributed file systems (PADFS) distinguish themselves from the 

previous group, single-server asymmetric, because in PADFSs the server side of the file 

system service is itself distributed across multiple nodes. A PADFS where all server nodes 

must run exactly the same set of services, is a homogeneous PADFS, while another, where 

some nodes may run some services, such as data access services (data movers), while others 

run different set of services, such as directory services, is designated heterogeneous. 

15.3.2.2.1 PVFS 
Description: The Parallel Virtual File System (PVFS)1 is an open source file system that 

was developed at Clemson University and Argonne National Laboratories; its primary 

objective is to provide high performance I/O for MPI applications running on COTS Linux 

clusters [Car+00]. PVFS is widely used today, including in environments where it is not the 

most appropriate FS (e.g., in environments, where Samba/CIFS is used on top of PVFS to 

provide “shares” for Windows PCs) because it’s free and offers good scalability, provided 

some conditions are met. In production mode PVFS I/O nodes should store data on external 

                                                 
1  The PVFS discussed here is the latest version, called PVFS2, available since November 2004. 
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disk array LUNs; that’s because if an I/O node fails, then its LUNs can be “transferred” to 

another node, and PVFS may be restarted; PVFS is not, contrary to “popular belief” (lying 

around on several HPC-oriented web sites), an inexpensive solution anymore. 

Classification: PVFS2 is a fully-scalable heterogeneous partitioned asymmetric DFS 

(PVFS1 was partially scalable, as only one metadata manager was supported). 

File System Architecture: As shown in Fig. 15.4, PVFS has a client-server architecture 

where multiple clients (compute nodes), data servers (I/O nodes) and metadata servers 

communicate via a general-purpose interconnection network; typical networks found on small 

cost effective PVFS installations use Gigabit Ethernet, while more demanding ones resort to 

high bandwidth low latency interconnects, such as Infiniband or Myrinet (using their native 

transport interfaces, not just simply TCP/IP on top of them).  

Storage Architecture: PVFS is based on metadata and I/O nodes with private disks, which 

may be either DAS internal disks, or LUNs provided by SAN-attached disk arrays; it is, 

consequently, a file system for a distributed storage architecture. 

 

Figure 15.4 Architecture of a PVFS site 

Target Application Environments: PVFS is particularly well suited to support MPI 

parallel applications that require high bandwidth access to data; it efficiently supports 

concurrent access both to distinct files, and to distinct, non-overlapping regions of a single 

file. PVFS is accessible via two2 different APIs, each addressing a different need: a standard 

POSIX interface (with the exception of locking), and an MPI-IO interface. The POSIX 

                                                 
2  Access to the native API referenced in PVFS1 papers is not documented under PVFS2, and traffic on 

the pvfs2-users mailing list discourages its use. 
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interface extends the applicability of PVFS to support generic, i.e., non-parallel applications, 

at the probable expense of reduced performance [Vil+04]; the MPI-IO interface supports 

parallel MPI applications, and is the main PVFS raison d’être. 

OS integration: Both server code and client code for the MPI-IO interface, run in user 

space; only the client’s POSIX interface is implemented as a Linux kernel module that plugs 

into the VFS and thus allows applications to use a subset of the POSIX file interface API. 

File System Organization, Resources and Metadata: A typical PVFS installation has a 

few, say i , I/O nodes, where each one contributes with a locally managed (using a local file 

system, e.g., ext2) storage area of size s , to form a “storage pool” of size S = i x s , and 

one or more metadata managers to store and track metadata information about existing files 

and support the filesystem hierarchy. When a client wants to read an existing file, it (the 

PVFS library) contacts the metadata manager, which returns the file’s base node (b), striping 

size (s), and number of stripes (n); then, the client gets the first stripe of data from node b, 

the second stripe from node b+1 , etc., up to the last stripe, which comes from node b+n  (a 

file striped across all nodes would have n = i ). 

Performance: Data striping: a file is striped across I/O nodes either according to a 

predefined striping policy (for the POSIX interface), or via parameter values supplied when 

the file was created (MPI-IO interface, only). Metadata striping: PVFS supports multiple 

metadata servers, each one handling a non-overlapping partition of the full metadata space 

and storing information about files and directories it manages in a Berkeley DB [Ols+99] 

database. Data Caching:  PVFS clients do not cache data – a decision taken to greatly 

simplify the PVFS implementation – but I/O servers automatically benefit from the standard 

Linux page cache; client writes reaching a server are submitted as local file system writes, and 

thus share the same cache policies, i.e., cached pages are marked dirty and periodically 

flushed by a Linux daemon, or immediately as a result from a user initiated sync or close. 

Metadata Caching: Caching of metadata is tuneable at clients (from 0 – no caching, up to 

some duration, in seconds) and handled by the Berkeley DB at the metadata servers. 

Prefetching: Data prefetching only occurs at the I/O servers, as a consequence of standard 

Linux read-ahead behaviour. There is, however, a sort of metadata prefetching at the client’s 

POSIX kernel module: to reduce multiple network “transactions” when fetching directory 

entries (e.g., for the ls  command) a directory read operation issued at the kernel module 

triggers the metadata server to perform an aggregated read of at most 64 entries and report 

those to the client kernel module, where they will be used to fill up VFS dentries; however, it 

is not clear if this feature reported on PVFS1 [Vil+04] is still available on PVFS2. 

Availability:  When using internal disk storage PVFS does not withstand any permanent 

server failure, be it data or metadata. However, with external storage and failover software, 
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one can recover from a node failure by re-mounting LUNs on another node and re-starting the 

PVFS daemons. Some attempts to provide software based replication solutions that still keep 

the internal disk storage approach have been proposed, such as CEFT-PVFS [Zhu02]. 

Concurrency, Consistency and Sharing: PVFS guarantees consistent data from file 

system operations across the cluster, allowing concurrent readers and writers, as long as they 

operate on disjoint locations within the file (as, then, reads and writes are atomic with regard 

to each other). 

Locking:  Recently, a locking API was proposed for the MPI interface [Chi+07]. 

Further references: The documentation page on the PVFS2 site (www.pvfs.org/pvfs2). 

15.3.2.2.2 AFS and DCE/DFS 
Description: The Andrew File System (AFS) is a client-server distributed file system, 

pioneered at Carnegie Mellon University in the mid-eighties, and supported and developed as 

a product by Transarc Corporation (now IBM Pittsburgh Labs). IBM branched the source of 

the AFS product (in Sep, 2000), made a copy available for community development and 

maintenance, and called the release openAFS. The OSF (Open Software Foundation, now 

Open Group) Distributed Computing Environment (DCE) endorsed a distributed file system, 

called DCE/DFS, which was also based on AFS (DCE does not seem to be supported by any 

vendor or group for quite some years). 

Classification: Both AFS and DCE/DFS are fully-scalable heterogeneous partitioned 

asymmetric DFSs. 

 

Figure 15.5 Architecture of an AFS site 
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File System Architecture: As shown in Fig. 15.5, both AFS and DCE/DFS have client-

server architectures, where multiple clients and servers communicate over an interconnection 

network. They are different from other distributed file systems in the degree of specialisation 

they confer to servers: each File Server Machine3 runs a local file system that holds a portion 

of the global filesystem tree and exports it, contributing with the stored data (files) and 

metadata (directories) to the global filesystem; Volume Location Servers maintain databases 

that are queried by clients to discover which File Server holds the volume containing the file 

(see File System Organization, Resources and Metadata below); Database Server Machines 

maintain replicated administrative databases (configuration and runtime information); other 

servers (i.e., services) exist, such as Authentication, Protection, Update, Backup, etc., but we 

are not covering them in this short survey. 

Storage Architecture: AFS and DCE/DFS are based on I/O nodes with local disks, be they 

DAS internal disks (as in Fig. 15.5), or LUNs provided by SAN-attached disk arrays; it is, 

consequently, a file system with a distributed disk architecture. 

Target Application Environments: File sharing, in AFS’ view – motivated by research 

into UNIX file usage patterns mostly on academic environments – is that users infrequently 

perform concurrent read/write sharing of a file, but, conversely, frequently read-share the 

same binaries, i.e., executable files; therefore, AFS efficiently supports concurrent access to 

distinct data files, and read-sharing of file among concurrent users. It does not, however, 

support any flavour of file locking. AFS is particularly well suited to support environments 

that require highly available access to data, as its architecture includes automatic replication, 

data backup, and redundant services distributed across multiple machines. DCE/DFS is quite 

more general, and provides POSIX single-node equivalent semantics. 

OS integration: AFS is supported on Linux, several UNIX flavours, and Windows. AFS 

client code, the Cache Manager, plugs into the Linux’ VFS and therefore allows applications 

to use a subset of the standard POSIX file interface, while AFS server code has kernel-level 

as well as user-level components. DCE/DFS’ Linux integration is similar to AFS’. 

File System Organization, Resources and Metadata: A typical AFS or DFS installation, 

such as the one depicted in Fig. 15.5, has a few File Server machines, where each one 

contributes with a locally managed (using a local file system, e.g., ext2 ) storage area called 

partition; each partition then holds one or more volumes, and each volume stores a portion of 

the global AFS/DFS filesystem hierarchy in the form of data (files) and metadata (directories, 

etc.). When a client wants to read an existing file, it (the Cache Manager) contacts a Volume 

                                                 
3  We will deviate for a moment from the usual terminology of servers (computers) running services, 

and adhere to the AFS terminology of machines running servers (processes); the reader is warned 
that although DFS and AFS concepts are quite similar, they use different terminologies. 
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Location Server, which informs the client about the file’s File Server location; from that 

moment on, all traffic is exchanged solely between that client / server pair. 

Performance: Data and Metadata Load Balancing: both in AFS and DCE/DFS, a file 

system “object” (file, directory) must be contained in a single volume, so it can’t be striped 

across multiple file servers; so, these are not solutions for high performance I/O to a single 

file; however, load balancing can be achieved by separating regions in the file space across 

multiple volumes, and then segregate volumes to multiple file servers. Data Caching and 

Prefetching: early versions of AFS clients performed caching at file granularity, i.e., when 

they opened a file, a private copy of the whole file was fully transferred to the client’s local 

cache, implemented either in memory or in a local disk (depending on the client’s 

configuration); recent AFS and DCE/DFS versions, however, perform file caching in 

contiguous chunks of 64KB for file data, and 8KB for memory data (these are default values). 

Availability:  Both AFS and DFS provide an architecture where a complete fault tolerant 

solution can be built, at the expense of replication of data (volumes), services (multiple 

servers), configuration databases, etc.; it is up to the site administrator to choose the desired 

level of availability, and appropriately configure the site servers. 

Concurrency, Consistency and Sharing: AFS semantics, known as private copy until 

close [Hog+02] (a.k.a. session semantics) is highly scalable, under the assumption that 

read/write sharing is a rare event, and does not guarantee client side caches: each client is 

supplied, at open()  time, with a copy of the file, a callback promise; if the node modifies 

the cached copy, when the close()  is performed, the modified file is sent back to the 

server, which calls back other clients so they can invalidate their cached copies on the next 

(re-)open. If two or more clients are concurrently modifying their local copies, the last one to 

perform the close operation is the one who gets its file onto the server. AFS’ version of the 

copy-on-close is an improvement over the standard version because an AFS client can keep 

on using a cached copy until the callback expires or is reclaimed by the server; otherwise, it 

does not need to contact the server, and LAN traffic is reduced. As for DCE/DFS, it uses a 

complex token manager to provide POSIX single-node equivalent semantics [Aga95]. 

Locking:  From a practical perspective, no file locking in available in AFS – it only 

supports full file locking, and the lock state is guaranteed to be visible only within the node 

that initially locked the file; however, DCE/DFS supports POSIX advisory locking [Sal96, 

And96]. 

Further references: The AFS Administration Guide and other IBM AFS documentation, is 

available online at [IBMafs], and also available from the openAFS documentation page at 

[openAFS]. For DCE (including DFS) the Open Group’s DCE bookstore [OG-DCE] has the 

most up-to-date documentation. 
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15.3.2.2.3 Other partitioned asymmetric heterogeneous DFSs 
There are several file systems in this class, besides those surveyed here, PVFS and AFS; 

the two most important ones are the new NFS v4, and particularly the NFS v4.1, also known 

as Parallel NFS, or pNFS [Hil+06], and Lustre [Bra03]. pNFS is architecturally similar to 

PVFS1: multiple clients, multiple data servers, and a single metadata server; therefore, pNFS 

is only partially scalable, as it does not support addition of more metadata servers. 

Conversely, Lustre is architecturally similar to PVFS2: multiple clients and multiple data and 

metadata servers; therefore, Lustre is fully scalable. 

15.4 Conclusion 

We conclude our survey with Table 15.1, a classification of all file systems and storage 

paradigms that make up the case studies previously presented, plus some that were briefly 

mentioned; we do it according to the taxonomies proposed for the File System (FSL) and 

Object Storage (OSL) layers. We also include the ext2/3 file systems to show how a local file 

system compares with distributed file systems. 

 

Deployment Roles Partitioning Scalability Deployment Partitioning Scalability

ext2/3 Centralised N.A. Monolithic None Centralised Aggregated None

GFS

GPFS

NFS3 Monolithic None Centralised Aggregated None

NFS4.1/pNFS

PVFS1

PVFS2

Lustre

File System layer Object Storage layer

Distributed

Asymmetric

Symmetric

Heterogeneous Full

Aggregated Full

Full

Homogeneous Full Distributed

Heterogeneous

Partial

Distributed

 

Table 15.1 Classification of some well known file systems 

 



 

 

Part V: 

The parallel Cluster File System proposal  
 

 

 

In this Part we start with a critique of traditional shared-disk cluster file systems, listing 

their features and benefits as well as limitations; while we specifically refer to Red Hat’s GFS 

here, remarks also apply to other CFSs. To overcome those limitations, we propose a new 

architecture for shared-disk CFSs, one that moves data sharing from the device to the file 

system cache while preserving POSIX semantics across cluster nodes; we call it the “parallel 

Cluster File System”, pCFS. To validate whether fundamental ideas, e.g., using the LAN as a 

secondary path to move data among nodes, were sound, we have developed a pre-prototype 

and some preliminary tests were carried out. 
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16 pCFS, the parallel Cluster File System 

16.1 Introduction 

As we previously pointed out, it’s easy to perceive a division among academy/research and 

general IT communities on both storage and file systems endorsement. From a storage point 

of view, the former group favours an approach based on I/O nodes with internal disks while 

the later adopt SAN infrastructures based on disk arrays supporting a variety of RAID levels 

(providing users with high availability, a basic requirement for “near continuous operation” of 

their data centres). Also, file systems used in these environments are quite dissimilar: IT 

choices span from the run of the mill ext3 and NTFS to the more sophisticated cluster file 

systems, such as Red Hat’s GFS or Oracle’s OCFS, Oracle Cluster File System [OCFS, 

Fas06], both supporting continuous access to stored data even in the presence of node 

failures; on the other hand, HPC communities do prefer parallel file systems such as PVFS or 

GPFS. 

Definitely, the above mentioned “advanced” – parallel, cluster shared disk – file systems 

perform very well in their target environments, provided that applications do not require some 

“lateral features”, e.g., no file locking on parallel file systems, and no high performance on 

cluster-wide write-shared files on CFSs. In brief, we can say that no approach has provided 

high levels of reliability and performance to both worlds. 

Our pCFS proposal makes a contribution to change this situation: the rationale is to take 

advantage on the best of both – the reliability of cluster file systems and the high performance 

of parallel file systems. We don’t claim to provide the absolute best of each, but we aim at full 

POSIX compliance, a rich feature set, and levels of reliability and performance good enough 

for broad usage – e.g., “regular” as well as HPC applications, support of clustered DBMS 

engines that may run over regular files (i.e., the engine should not be required to bypass the 

file system to access clustered raw partitions), and video streaming. 

16.2 Sharing and caching 

File sharing is something that sets apart IT and HPC environments; having watched for 

quite some time both sides of the “fence”, we have noticed that 

• The IT paradigm of choice is primarily one of file system sharing, not file sharing; in the typical 

IT environment multiple clients access the same file system, sharing some of its “folders” 

(directories), but use files either exclusively or share them with other readers. Notable 

exceptions are DBMS engines (where multiple processes running in the same node RW share a 

set of files) and collaborative applications. File systems endorsed in this environment must 

efficiently support various file locking paradigms, such as POSIX locks (to support a broad 

range of applications), and mandatory locks or leases (for more “collaborative-oriented” ones).  
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• In the “HPC world” there are two major file sharing patterns: 

o Read sharing of input data file(s), e.g., for parameter scanning or pattern searching, 

usually in embarrassingly parallel applications. 

o Read/write (or even write/write) sharing of a single file by processes accessing disjoint 

(i.e., non-overlapping) segments of the file. 

 

Sharing semantics in a distributed file system is of paramount importance because it is 

closely related to caching, something that we’ve discussed in section 11 “Distributed File 

Systems”, particularly 11.1 to 11.3; and caching is one of the most important ways to enhance 

performance in any case, let alone a distributed file system: it gives applications a low latency 

and high bandwidth path to data. For pCFS to succeed in both environments (HPC and IT) it 

must support byte range locking and make good use of caching. 

16.3 Caching in pCFS: an introduction 

 

Figure 16.1: pCFS page caches are not fully coherent across all nodes 

The way cache is implemented in pCFS is explained with the aid of Fig. 16.1, where P1 is a 

reader while P2 is a writer. P1 is allowed to access a file segment that starts “in the middle” of 

page n and ends somewhere further down; conversely, P2 is allowed to access a file segment 

that ends precisely in page n, just before P1’s segment starts. Notice that page n is coloured 

light green while page n-1  is light blue, and that P2 writes onto page n, so a dark blue record 

is superimposed on both pages (because the records are not page-aligned); however, the 

cached images are different on both nodes: data cached in node 2 is up-to-date, as both page n 
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and n-1  have been superimposed by the record’s respective fragments, but page n’s cached 

image in node 1 is a “before image” (data modified by P2 does not show up). 

Caching, as implemented by pCFS, does preserve POSIX sharing semantics because it is 

complemented by the byte range locking mechanism which prevents processes, such as P1 

above, from accessing data belonging to other processes’ segments (which we call regions), 

such as P2’s. Only when P2 removes its region lock, it’s time to enforce coherence: modified 

data is written back to disk and other nodes are sent invalidation messages for that page. 

Notice that these “slight un-coherencies” can only develop in “frontier pages” between 

segments that are accessed by processes running in different nodes, and which carry 

incompatible lock states, such as read/write or write/write. 

The whole subject of pCFS caching will be detailed in Part VII “pCFS implementation”, 

but while we’re on it let’s just briefly describe how things would be handled if both P1 and P2 

were writers: there, writes triggered to the frontier page by the last process to lay out its lock 

would be forwarded – shipped – to the other process’ node, and there it would be merged into 

the node’s page cache (the node would be called the owner of that page). 

In short, pCFS, while adopting files system techniques – such as caching and locking – that 

are applicable both to distributed as well as shared-disk architectures, nevertheless uses them 

in innovative ways; when compared to other file system architectures, pCFS’ major 

differences are: 

• pCFS uses a cooperative cache approach, a technique that has been used in file systems for 

distributed disks (e.g., xFS [And+96]) but, as far as we know, was never used either in SAN 

based cluster file systems or in parallel file systems. As a result, pCFS may use all 

infrastructures (LAN and SAN) to move data. 

• pCFS uses fine-grain locking, allowing the user to explicitly lock byte-range regions instead of 

the whole file, and that fine-grained approach is carried out down to the FS implementation. 

16.4 Cooperative Caching 

pCFS uses cooperative caching: where a local file system only has its host cache to access, 

in a distributed file system such as pCFS, a node can access data that is cached in the 

memory of another node – and that’s exactly what pCFS does, as described in [Lop+05, 

Lop+06]. Accessing another node’s cache may improve performance because latency on a 

LAN is about one order of magnitude smaller (a hundred µs at worst) than for a local disk (a 

few ms). 

File systems for distributed disk architectures move data (and lock/coherency traffic, when 

applicable) over LAN interconnects, while those for shared disk architectures1 only use the 

LAN to move coherency (control/lock) traffic and the SAN to move data. Using cooperative 

                                                 
1  We have not found any file system – shared or not – that uses both infrastructures. 



 

 106 

caching means that pCFS can effectively explore all available infrastructures (LAN and SAN) 

to move data and, therefore, its I/O bandwidth should be able to approach the sum of all 

interconnect bandwidths – at least in some cases.  

To validate our fundamental assumption i.e., that in a CFS, using the LAN to move cached 

data around may decrease the latency and increase bandwidth both by an order of magnitude 

when compared to the established approach (using disk writes/reads to move data around), we 

decided to make small modifications to a well established, production-level CFS, in order to 

prove (or dispel) its feasibility. After carefully evaluating Oracle’s OCFS (a pre-release at the 

time) and openGFS [openGFS] (seemingly phased out when GFS moved to “open source” 

status), both somehow documented, our choice was to use GFS. We ended up studying 

thousands of lines of GFS code (as “internals” documentation was/is not available) and 

decided to carry out tests through a mixture of real and simulated operations inside GFS 

kernel code. We have modified GFS’ kernel module to follow one out of two different code 

paths when reading a file: 

• SAN path: When a process in a node is reading a file, the regular GFS code path is followed: a 

shared read lock is placed on the file’s ginode for the duration of the read; if another node wants 

to modify one or more file blocks, the node has to wait for the read to complete, get an exclusive 

lock over the ginode – which forces other nodes to release any shared locks they may hold and 

invalidate all cached data for that file – modify the blocks, flush them out to disk, and then, if 

necessary, release the lock to other nodes (e.g., they’re waiting to resume their reads). 

• LAN path:  When directed to do so, by the simulation test, kernel code on the reader node 

follows another code path, where a) locks (requests and grants) are simulated by message 

exchange between the nodes, and b) the writer node supplies, from its own page cache, a copy 

of the modified page(s) to the readers. 

 

To implement the LAN path we have built two kernel modules: a client module, which is 

called by the modified GFS code when a decision has been made to get data directly from 

another node, and forwards the request to the other node; and a server module, which handles 

a client request and ships the data back (for the proof-of-concept we opted for minor 

modifications to GFS, without any changes to the locking subsystem; but we nevertheless 

simulated the latency of lock messages through packet exchange). 

Assessment of the proof-of-concept was carried out with a single-writer/multiple-readers 

parallel application where a single file is shared across nodes: after producing new data, the 

writer node signals reader(s) to consume it. Tests were run on the infrastructure depicted in 

Fig. 16.2. We used four IBM x335 dual-Xeon nodes, with clock speeds ranging from 2.6 

(node 3) to 3.03 GHz (nodes 4, 5 and 6) and 4 GB of RAM per node. Two of the nodes were 

connected to the SAN through just one FC HBA, while others had two adapters per node; all 

HBAs were Qlogic QLA-2200F working at a speed of 1 Gbps. This heterogeneous 
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configuration allowed us to experiment with the use of dual vs. single paths to access the 

SAN and the array. The FC switch was an IBM 3534-F08 (a re-badged Brocade SilkWorm 

2800) and the disk array was an IBM FAStT-200 model 3542-2RU with two storage 

processors (SP) and a total amount of 88MB of usable data cache per SP. For the experiments 

reported here, one independent 36 GB 7200 rpm FC disk has been “attached” to each 

controller, and both were visible on the SAN as LUNs 0 and 1. 

 

Figure 16.2 Proof-of-concept tests infrastructure 

The nodes were running Red Hat EL3 (Kernel 2.4) and GFS (6.0). Each LUN was 

partitioned in half (18 GB) and both halves were joined together with GFS’ clustered LVM 

version (CLVM) to form a 36 GB logical disk; on each node a different path was configured 

to access each LUN, which in fact doubles the bandwidth on the nodes which have two FC 

adapters; the 36 GB logical disk was then mounted by all cluster nodes. 
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Figure 16.3 GFS’ scalability: single file, multiple-readers with sequential access 
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Results were reported in [Lop+05] and we copy them here, for ease of reference. GFS’ 

scalability with the configuration under test is shown in Fig. 16.3, where multiple readers 

were started in parallel to sequentially read a file; each reader was run in a different node, 

and, for each test, a new node was added. The test with four readers was able to reach the 

sustained rate quoted by IBM for the FAStT 200 disk array, which is 70 MB/s; the read buffer 

size used for the reads was 4 KB (bandwidth was computed dividing the total amount of data 

read by the time – taken at the slowest node – it took to read it). 

Figure 16.4 below highlights the common problem of most SAN-based shared disk file 

systems: a single GFS writer is able do produce data (write a file) at 14 MB/s, but this rate 

decreases drastically if the file is shared with processes – readers, in this test – running on 

different nodes. Here, when a single writer shares the file with a single reader (1 W – 1 R 

test), the bandwidth is 0.16 MB/s for a 4 KB buffer; increasing the buffer size and/or the 

number of readers also increases bandwidth, and a maximum of 18 MB/s is reached for a 512 

KB buffer when, following every write, three reads are fired in parallel (1 W – 3 R test); this 

behaviour shows that, for very large request sizes, write sharing files across nodes with GFS 

may provide an acceptable performance for some applications. 
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Figure 16.4 GFS’ poor sharing: single file, one writer/multiple readers 

Our assumption that using the LAN to move cached data around decreases the latency of 

data movement and increases bandwidth, both by an order of magnitude, is validated by 

results exhibited in Fig. 16.5: even for a single writer and a single reader, both using a 4 KB 

buffer, bandwidth jumped from GFS’ 0.16 MB/s to 35 MB/s, a 200 times increase. The price 

to pay is an increase on the CPU usage; and this is a sharp increase, as we were using 

inexpensive Ethernet adapters, and those consume much more CPU to move the same amount 

of data than FC adapters (as reported in Part VIII, “Benchmarking pCFS”). 



 

 109 

14

35

44

52
46

56

65

0

10

20

30

40

50

60

70

1 Writer 1 W - 1 R 1 W - 2 R 1 W - 3 R

Node Roles

A
g

g
re

g
at

ed
 B

W
 (

M
B

/s
)

1 Writer, 4K

4K

8K

 

Figure 16.5 pCFS proof-of-concept: single file, one writer/multiple readers 

16.5 Caching, fine-grain locking, and regions: the complete picture 

Caches are only effective if they provide good hit ratios; in a distributed file system, a 

node’s cache can only be effective if it satisfies both reads and writes and keeps them “away” 

from disks as long as possible; and that won’t be possible if the cache is invalidated often, as 

it happens with GFS. 

16.5.1 Caching and locking in GFS 
But if shared disk cluster file systems such as GFS implement byte range locking, why do 

they invalidate all data cached in other nodes when a write occurs? The answer in GFS’ case 

is that every write operation requires an exclusive lock against a ginode, and this triggers 

cache invalidations on other nodes; this is GFS’ way to provide the so called “POSIX single 

node equivalent semantics” [Sch+02], and is a necessary step because GFS allows processes 

in a node to unreservedly access (for reading and/or writing) data that is concurrently being 

modified by processes in another node. GFS makes no effort to use, at the implementation 

level, the fine-grain locking mechanism it provides at the user level (byte range locks). 

16.5.2 Regions, fine grain locking and caching in pCFS 
Concurrent file sharing, as offered by pCFS requires processes to lock regions (with byte 

range locks) before accessing them, and this makes cache invalidation an infrequent event, as 

it occurs only when a writer region is removed (unlocked) and, even then, only frontier pages 

cached in other nodes get invalidated. This is possible because pCFS uses fine-grain locking 

also at the implementation level, and writes that do not result in major changes to the file’s 

metadata (such as when its size grows, or “holes” in a sparse file are filled-in) can be carried 

out concurrently while the file’s ginode is locked in shared mode (as described in [Lop+08]) 
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and any access is checked to be valid within its region. However, operations that trigger major 

metadata changes still require us to use an exclusive lock (on the ginode and, if necessary, on 

other relevant metadata structures, e.g., resource groups, bitmaps, etc.). 

16.5.3 Data forwarding vs. data shipping 
pCFS, as we have seen, keeps coherent caches through updating, in writer nodes, and 

invalidation, in reader nodes. Updating is used when two writer nodes share a (frontier) page; 

there, one must forward all writes over that page to the other node – the so called page owner. 

Data shipping is an extended form of data forwarding where “all” data – and not only some 

portion of a frontier page – is shipped to/from another node; it may be used, e.g., in situations 

where a) major metadata changes are quite frequent (such as in the producer-consumers 

sharing reported in [Lop+05], with a file that was initially empty), or b) regions are so small 

that there are many frontier pages2 and, for performance reasons, it is better that a node is 

elected the file’s data and metadata owner while all the other nodes ship data to/from it (in a 

NFS-like way, where the owner acts as an NFS server).  

16.6 Programming with pCFS 

Our proposal for pCFS requires that programming should not deviate from the use of the 

standard POSIX API; in fact, we merely propose a few additional option flags for the 

open()  call, and a new way of looking at the semantics of existent locking primitives. Both 

were the result of some observations on currently available file systems, namely that there is 

no way of specifying the degree of sharing for a file at open time in the POSIX API (which in 

a distributed file system, results in all sorts of tricks being used to “implement” it), and that 

our region concept is closely related to the one of mandatory locks. 

16.6.1 pCFS files and the extended open()  options 

We add three, mutually exclusive, options to the open()  call: 

• O_CLSTXOPEN, to request a cluster-wide exclusive open (i.e., if a process is able to open the 

file, any subsequent attempt by any other process to open the same file will fail); 

• O_NODEXOPEN, to request a node exclusive open (i.e., if a process in a node was able to open 

the file, any subsequent attempt by any other process to open the file on the same node will fail); 

• O_CLSTSOPEN, the flag for a cluster-wide (un-restricted) shared open. 

The introduction of these flags was carried out without violating our premises, namely the 

“no VFS changes”: all code was confined to the GFS layer (fortunately Linux does not check 

all flag combinations and allowed these new flags to “flow in”). And, furthermore, they have 

a very important side effect: they allow the user to choose between “pure GFS” or pCFS 

                                                 
2 This will happen in access patterns with a per-record lock/access/unlock sequence where a small 

record is locked, accessed and then immediately unlocked. 



 

 111 

behaviour just by omitting or including these flags. The simplicity of this process is also 

highly beneficial to the debugging and benchmarking tasks. 

Definition 16.1 A pCFS file is a file that lives in a GFS filesystem and is opened 

with one of the following flags: O_CLSTXOPEN, O_NODEXOPEN, or O_CLSTSOPEN. 

16.6.2 pCFS regions 
After the open (which, for a pCFS regular file must include one of the above flags), the user 

may declare a region over which accesses will be made, by specifying its start and end byte 

offsets, and how the region will be used (for reading or writing – i.e., in shared or exclusive 

mode). Region declaration is performed with fcntl() , and region modes are expressed and 

enforced at declaration time, but can later be changed by choosing a mode which is more or 

less restrictive than the current one (e.g., going from exclusive to shared, or vice-versa). 

Regions may overlap if their modes are compatible, i.e., both are shared. 

pCFS regions behave as a sort of mandatory locks: every pCFS file access (read or write) is 

checked against the region boundaries; if an access would violate them, an error is returned 

and the operation is not performed. Regions also guarantee consistency among sharers on the 

file: readers striving to access a region occupied by a writer may either try to get in (and keep 

retrying if they can’t) or queue up waiting for the writer to leave; when a process is granted 

access, it is guaranteed that it will see the latest version of the data. 

16.7 The pCFS prototype 

16.7.1 pCFS conceptual architecture 
The conceptual architecture we propose for pCFS does not differ from other typical SAN-

based CFS architectures, as Fig. 16.6 shows. 

 

Figure 16.6 pCFS high-level module architecture 
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The Cluster Infrastructure (CI)3 is the core building block for a true cluster service (setting 

it apart from “cluster setups” which are no more than just a collection of nodes), and usually 

encompasses: 

• A membership service that keeps track of which nodes belong to the cluster, taking care of node 

admission, leave, and eviction (e.g., when a node fails to comply with some basic policy 

requirement, such as failing to answer a predefined number of heartbeats); 

• An inter-node communication service which provides reliable communication among enrolled 

cluster nodes, gracefully handling dynamic reconfiguration events, such as nodes entering or 

leaving the cluster (may provide an API for message broadcast and/or multicast support); 

• A publish/subscribe database that allows “producers” to register themselves and advertise 

services or resources they provide, and “consumers” to specify what services and/or resources 

they need to operate; 

• And a failover/failback database that allows the administrator to specify “logical resources” 

(such services or disks) and rules for the transference/restart of those resources in case of node 

failure (failover) and resume (failback). 

Multi-Path I/O (MPIO), as described here, is an extension for what once was a device-        

-specific concept: that one can aggregate multiple I/O devices of the same class (e.g., LAN 

interfaces or disk devices) under a common umbrella and use them together to provide higher 

bandwidth and/or availability. It has been widely used for LAN interfaces, where it is 

commonly referred to as bonding, link aggregation or trunking. Less known, as it requires 

either multi-ported disks or a SAN infrastructure (see section 5), is disk-based MPIO; in 

Linux, disk-based MPIO has long been provided by manufacturers for their own FC drivers; 

however, recently, it has received enough attention to be regarded as a separate kernel upper- 

-layer module where adapter-specific driver modules should plug-in. 

The Shared Disk Manager (SDM) is the module that accesses disk data blocks (requesting 

them to flow through the appropriate lower-level I/O stack paths) and guarantees coherency 

among copies of the same shared data blocks when they are kept in different nodes. The level 

of coherency can vary, as dictated by the usage policy of the layers above the SDM; one can 

imagine a strict policy where all copies of the same block must be in-sync all the time, or a 

less restrictive one which, for example, allows data that has been cached but cannot be 

accessed by a node (e.g., only some part of a block which has not been modified elsewhere, 

can be accessed) to stay un-coherent for some time; furthermore, it is not obvious that the 

block is the unit of choice for coherence (see CM, below). The Shared Disk Metadata 

Manager has detailed knowledge of both on-disk and in-core layouts for metadata structures, 

and is called when it is necessary to transfer them from/to disk; it also takes care, in the same 

vein of SDM, of keeping them coherent across nodes. 

                                                 
3  CI software has been developed to support commercial-grade clusters (e.g., Windows Cluster, 

Compaq TruCluster, Red Hat Enterprise Linux) 
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The Cache Manager (CM) is the module that handles data caching; one can devise either a 

completely separated cache, i.e., one that does not integrate with the operating system page 

cache (see 15.3.1.1, GPFS implementation on Linux) or the approach followed by most Linux 

file systems, a tightly integrated one. Here, the issue of coherency must be again tackled; as 

the element of caching is a page, it is “natural” to promote cache coherency at the page level, 

a decision which may seem to contradict the block approach previously suggested. In fact, we 

could have both in place: a page-grained coherency for I/O requests that flow through the 

page cache, and a block-grained coherency for requests that do not use the page cache. 

In a distributed file system the Lock Manager (LM) is of paramount importance, because it 

is commonly used to implement both cache coherency and user-level locking primitives 

(when available). The LM supplies “global locks” that are used, at a cluster-wide level, to 

lock target objects; e.g., when a request to place a shared global lock over some data structure 

(residing in the node) is issued, the LM of the requestor node interacts either with a 

centralised lock server (in a client/server implementation) or with the LM in other nodes (in a 

truly distributed implementation) to “get hold” of the lock; if successful, i.e., the lock was 

granted to the requester, the lock is now held at the node (where it protects some data 

structure). The locked object may be a purely internal file system object, such as a superblock 

or inode, or the internal representation for a user-level object, such as a file lock. 

Finally, the character-special and block-special file managers (CSF and BSF) are used here 

as mere illustrations of two abstract concepts that represent the two standard UNIX interfaces 

to access devices: character and block-oriented. 

16.7.2 Objectives of the pCFS prototype 
Global objectives of the pCFS prototype are: 

• New concepts brought in should require a minimum of change in user programming habits, i.e., 

they should resort to concepts already familiar to programmers, which should not be forced to 

use new APIs (although new parameter options for commonly used file calls are acceptable). 

• Evaluation should be carried out over regular file access, i.e., we do not intend (for now) to 

improve the speed of memory mapped I/O or metadata operations (e.g., increase the speed of 

file creation, deletion, directory listings, etc.). 

Specific objectives of the pCFS prototype are: 

• True file sharing – that is, sharing a file among processes running in distinct nodes for 

simultaneously reading and writing – operations should have performances which are close to 

those exhibited in non-sharing situations. Of paramount importance is the situation that arises in 

typical HPC applications: files often need to be shared across nodes, but each node accesses a 

file region which does not overlap, at the byte-level, with regions accessed on other nodes. 

• Proposed contributions should either be implemented (completely or partially), or else proved to 

be possible to implement. 
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16.7.3 Methodology for the pCFS prototype implementation 
Developing from scratch a new shared disk file system with the proposed features would be 

a huge task, unattainable in the realm of this work; conversely, a feature-light implementation 

would preclude a fair head-to-head comparison against other file systems. Therefore, we 

decided to build on the work carried out for the proof-of-concept, keeping GFS as the basis 

for our prototype. 

Before we can plunge into Part VII, “pCFS implementation”, we must have a more detailed 

look at VFS and GFS; the reason is quite simple: GFS is strongly coupled with VFS. 

Therefore, a description on how VFS provides the fundamental abstractions for different file 

systems (and how they plug themselves into VFS) as well as an overview on GFS’ 

architecture (followed by an in-depth look at its global locking mechanisms) is a pre-requisite 

to understand both the prototype and design decisions that were taken along the path. 



 

 

Part VI: 

Inside the Kernel: VFS and GFS 
 
 

 

 

This Part constitutes a prerequisite to understand the pCFS implementation: in the first 

section, we discuss the architecture of the Linux VFS and how it is used to integrate specific 

file systems; in the second section we present an overview of the internals of GFS; and, 

finally, in the last section we describe, with some detail, how GFS implements locking and 

uses it to promote clusterwide coherency among nodes. 
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17 VFS internals 

In this section, a very short description of the fundamental abstractions provided by VFS is 

presented, with an eye on what happens on two important operations: filesystem mounting 

and opening a file. VFS internals are quite adequately covered in several books, including 

[Bov+05] and [Rod+05]. 

17.1 The Linux Virtual File System  

The Linux Virtual File System is a layer that captures the commonality between different 

file system types; it’s model is, unsurprisingly, closely related to the UNIX file system model, 

where a file system instance is described by a superblock, a file by an inode, and a directory is 

a (special) file that contains names of files and other directories, together with inode numbers. 

The major VFS objects represented in Fig. 17.1 are: 

superblock 

Stores information about a mounted filesystem; when a filesystem is mounted, this object is 

created and gets populated with data retrieved from a filesystem “control block” stored on disk1. 

inode 

Stores information about a particular file; gets populated with data retrieved from the file’s 

metadata, stored on disk. Each inode2 object is identified by an inode number that uniquely 

identifies the file within the filesystem instance. 

file 

Stores information about the interaction between an open file and processes accessing it; this is 

where, for example, the file pointer abstraction is implemented. 

dentry 

Is the representation of a directory entry in the VFS world; stores information about a file by 

linking the filename to the file’s inode. 

For some kernel data structures it necessary to check, very quickly, whether a particular 

instance exists or not, in memory; this is why slab caches for those structures are further 

organised into hash tables: inode and dentry instances, for example, are stored in hash-

searchable caches. Also, the page cache is used to store file page descriptors – a data structure 

that points to the “real” file page (notice that previously we have referred to the page cache as 

if it had the “real data” in it, not pointers…). 

                                                 
1  Here we are interested in disk based file systems, and our examples assume just those. 
2  Notice that the Linux VFS uses exactly the same terminology – inode – for the VFS and on-disk data 

structure while, e.g., Sun uses vnode for the VFS structure and inode for the on-disk structure. 
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Figure 17.1 Architecture of the Linux Virtual File System layer (and relationships with other layers) 
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17.2 A closer look at the Linux Virtual File System 

17.2.1 Begin in the beginning: file system mounting 
The first step for plugging a file system into the VFS happens at the mount ; we will now 

briefly describe a subset of the most important VFS objects accessed when a mount  is 

performed, as well as their relationships; we also describe how the liaison between the VFS 

and the specific file system is established, i.e., how VFS generic code ends up calling the file 

system’s specific code. 

17.2.1.1 Providing the kernel with the file system implementation module 
Whether a module that implements a specific file system is built-in at kernel compile time 

or dynamically inserted at runtime, it must be register itself with the Linux kernel, an 

operation that causes a new object (of struct file_system_type ) to be created and 

appended to the single-linked list whose head is stored in the file_systems  global 

variable (see Fig. 17.2); the object must have been previously initialized with, among other 

information, the filesystem name (e.g., the object describing an available ext2 file system 

implementation module would have an “ext2” string on the name field), a pointer to the 

function that will be invoked on the mount operation to read the filesystem superblock (the 

read_super  field), and a pointer to the implementation module (the owner  field). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.2 VFS objects involved in file system mounting 
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17.2.1.2 Mounting a filesystem 
The simplest (and even so, oversimplified) execution path on a mount operation is: 

a) an object (of type struct super_block ) is created and initialized (for example, a field 

pointing to the desired device gets filled), and then gets populated with data retrieved from disk 

when the function read_super()  is executed (what happens is that the read_super  field of 

the appropriate file_system_type  object is set to point to a filesystem specific function 

supplied with the module; that function usually resorts either to the “buffer cache” bread()  or 

breada()  to do the actual read); 

b) on a successful return, make the superblock object operations pointer s_op  (see 17.2.1.3 below) 

point to the struct super_block_operations  provided by the module implementing the 

file system – these are the functions implementing operations such as “read inode”, “write inode”, 

“write the superblock”, etc., that are specific to that file system type (and are called via pointer 

dereferencing as usual, e.g., sb->s_op->read_inode() ); 

c) the superblock object is appended to the double-linked list whose head is the fs_supers  field of 

the file_system_type  object, which keeps track of all the mounted superblocks of the same 

file system type; 

d) an inode and a dentry are allocated for the “root directory” of the file system, and these objects are 

then linked to the appropriate VFS data structures; 

e) a struct vfsmount  object is created and filled in, then linked to the appropriate lists and 

other VFS objects; it stores information about the mount point, mount flags, and relationships 

between the file system being mounted and other, already mounted, file systems. 

In short, the mount operation is the one that, for the specific instance being mounted, 

“glues” the file system implementation module to the VFS layer, in such a way that the same 

set of user-level file operations can be used with every file, independently of the specifics of 

the file system where the file “lives”. 

17.2.1.3 The superblock object 
A shortened listing of the superblock data structure (see include/linux/fs.h ) is: 

 struct super_block { 
struct list_head s_list; 
kdev_t  s_dev; 
unsigned long  s_blocksize; 
… 

unsigned char  s_dirt; 
… 

struct file_system_type  *s_type; 
struct super_operations  *s_op; 
… 

struct dentry  *s_root; 
… 

struct list_head s_dirty;      /* dirty inodes */  
struct list_head s_locked_inodes; /* inodes being synced */ 

struct list_head s_files; 
struct block_device *s_bdev; 
struct list_head s_instances; 
… 
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union { 
  … 

  struct ext2_sb_info  ext2_sb; 
  … 

  struct msdos_sb_info  msdos_sb; 
  struct isofs_sb_info  isofs_sb; 
  … 

  struct udf_sb_info  udf_sb; 
  … 

  void     *generic_sbp; 
} u; 
… 

 } 

We can easily identify a fixed part, containing several items and corresponding to the VFS 

superblock object, and a variable, possibly empty union that is used to extend the “base” VFS 

object with a file system-specific data structure; that structure is, from the VFS point of view, 

opaque, and should be accessed only by the file system-specific code, not by VFS code. In the 

union we can find the “add-on” structure pointers for disk-based file systems such as ext2 or 

MS-DOS, for CD-ROM devices with ISO or UDF formats, as well as a “catch all” for file 

systems not included in the standard kernel release, in the form of an opaque pointer. 

For some of the above mentioned fields, we now briefly describe their usage: 

• The s_list  field is used to attach the superblock to the global linked list of all the 

superblocks, while s_instances  is used to attach the superblock to a list of all the other 

superblocks of the same file system type; s_dev  and s_bdev  identify the device where the 

file system (and thus the superblock) lives, while s_blocksize  indicates the size (in bytes) of 

a block on that particular device; 

• The s_files  field is used to build a list of all file objects “in-use” that refer to files living in 

this file system; this greatly simplifies work needed to get a list of the files currently opened on 

a particular file system, because all one needs to do is walk through this list; 

• If the in-core superblock image has been modified, s_dirt  is set; when some in-core inode has 

been modified, it is appended to the s_dirty  list; then, it becomes easy to update the on-disk 

images for all inodes, as all we’ll have to do is go through the s_dirty  list updating each 

inode at a time. All inodes (that belong to this superblock file system) involved in an I/O 

operation at a particular time are collected in the s_locked_inodes  list. 

Now let’s look at the superblock object methods, i.e., the superblock operations. These are 

“bound” via the s_op  field. How does one define these operations? We must always 

remember that the VFS layer is immutable, i.e., it’s “structure” and “code” are already written 

… but with a lot of generic VFS code, as well as pointers to prototype functions not yet 

defined (NULL pointers) – and those are the ones that a file system developer which wants to 

add a new file system to the kernel must code in the new FS module; to do it properly, he/she 

must adhere to the VFS predefined superblock (function) operations (also in 

include/linux/fs.h ): 
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struct super_operations { 
struct inode *(*alloc_inode) (struct super_block *s b); 
void (*destroy_inode)  (struct inode *); 
void (*read_inode)  (struct inode *); 

 
void (*dirty_inode)  (struct inode *); 
void (*write_inode)  (struct inode *, int); 
… 
void (*delete_inode)  (struct inode *); 
… 
void (*put_super)   (struct super_block *); 
void (*write_super)  (struct super_block *); 
… 
int  (*statfs)   (struct super_block*, struct 

 statfs *); 
… 
void (*clear_inode)  (struct inode *); 
… 

} 

The developer must implement those functions that are needed to map the new file system 

into the VFS model; for example, ext2’s developers have defined a function to read 

information from a disk data structure and fill in the VFS inode  structure, and they called 

this function ext2_read_inode() ; then, they went on to define functions to write VFS 

inodes to their on-disk inode images, to write the VFS superblock to its on-disk image, etc. 

Then, they defined a structure in the module that implements the “real” (ext2) file system, and 

“assigned” all (functions) operations to the correct fields of the structure, as in the following 

code fragment from the ext2  implementation module (fs/ext2/super.c ): 

static struct super_operations ext2_sops = { 
read_inode:     ext2_read_inode, 
write_inode:    ext2_write_inode, 
put_inode:      ext2_put_inode, 
delete_inode:   ext2_delete_inode, 
put_super:      ext2_put_super, 
write_super:    ext2_write_super, 
statfs:         ext2_statfs, 
remount_fs:     ext2_remount, 

} 

Notice that not all functions have to be implemented: one may leave some as NULL 

pointers, while others may point to generic VFS (pre-defined) functions. 

Finally, when mounting an ext2 file system one must link the superblock’s s_op  field to 

the above structure, thus “binding” the VFS abstract operations to the “real” functions 

implemented in the ext2’s module. The last step of this “binding” is performed in the 

ext2_read_super()  function, (also in fs/ext2/super.c ) where we find, 

struct super_block *sb 

… 
sb->s_op = &ext2_sops; 

… 
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So, when a VFS superblock is being filled by the “abstract” read_super()  function 

(bound to the “real” ext2_read_super()  function which reads the on-disk superblock), 

at some point of the code’s execution the VFS superblock operations pointer is set to point to 

the “real” functions living in the ext2  module. 

To conclude, the VFS layer has several major “abstract objects” along with their “abstract 

methods”; some of these methods are already pre-bound to VFS code, while others must be 

implemented as functions within the filesystem specific module. The explanation of how this 

is done is a blueprint that can be applied to many other similar VFS objects. 

17.2.2 Opening a file 
From the set of the most frequently used file operations, open, close, read and write, we 

will look only at one, the open()  system call: on one hand, it makes an interesting study 

because in bridges together two kernel layers, namely Process Management and VFS; on the 

other hand, studying each call is both tedious and not strictly necessary; the interested reader 

can refer to [Bov+05, Rod+05]. 

An open()  system call is invoked with the following parameters: the pathname of the file 

to be opened, option flags and access mode flags, and a permission bit mask mode if the file is 

to be created. If the system call succeeds, it returns a file descriptor – that is, the index 

assigned to a new entry in the current->files->fd  array of pointers which will point to 

the file object, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.3 Some VFS objects involved in the open()  system call 
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The oversimplified (e.g., we will leave out file creation performed through the open call) 

execution path on an open()  is: 

a) getname()  is invoked to extract the file pathname from the process address space; 

b) get_unused_fd()  is invoked to find an empty slot in the current->files->fd  array. 

The corresponding index (the new file descriptor) is stored in the fd  local variable; 

c) next, filp_open()  is invoked, with the following parameters: pathname, access mode flags, 

and permission bit mask. This function, in turn, executes the following steps: 

1- open_namei()  is invoked to perform a lookup operation, with the following parameters: 

pathname, access mode flags (encoded in a different way), and a pointer to a local struct 

nameidata ; if successful, it returns in its fields dentry  and mnt  the addresses of the 

dentry object and mounted file system objects associated with the successfully looked up file. 

2- dentry_open()  is invoked, with the access mode flags, and the pointers to the dentry and 

mounted filesystem objects returned by the lookup operation as parameters. This function: 

a) allocates a new file object, and initializes the fields f_flags  and f_mode  according to 

the access mode flags passed to the open()  call; 

b) initializes the f_fentry  and f_vfsmnt  fields according to the addresses of the dentry 

and the mounted filesystem objects passed as parameters to the dentry_open()  call. 

c) sets the f_op  field to the contents of the i_fop  field of the corresponding inode  object; 

this sets up all the methods for future file operations. 

d) inserts the file object into the list of opened files pointed to by the s_files  field of the 

filesystem superblock; 

e) if the O_DIRECT flag is set, pre-allocates a direct access buffer; 

f) if the open method of the file operations is defined, invokes it. 

d) Sets current->files->fd[fd]  to the address of the file object returned by 

dentry_open() ; 

e) Returns fd . 

Two important things to note are: the file access operations (function pointers) are defined 

in the file object and are copied from the file’s inode object operations, as 2-c) shows; and, a 

“file system-specific open”, if set (i.e., not NULL) , will get executed almost at the end of the 

code path, in 2-f). 

17.2.3 Closing remarks and GFS preview 
VFS code for file operations, as seen above for the open()  function, allows for calling 

specific code provided by the target file system; we will shortly see that, when opening a GFS 

file, gfs_open()  will be called at the location 2-f), thus bridging the VFS and GFS worlds, 

and opening the door for file system specific actions, when necessary – for example, in ext2 

there are no specific actions to perform, so the function pointer in 2-f) is NULL. 
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18 GFS internals: an introduction 

18.1 GFS architecture 

Figure 18.1 is an overview of the GFS architecture and its locking hierarchy (adapted from 

[openGFS]); the left side shows lock module loading/unloading (registering/un-registering 

with the lock harness) and lock protocol mounting, while the right side shows all other 

operations. GFS is tightly integrated into VFS, with some GFS objects linked to VFS ones, 

e.g., VFS superblock’s generic_sbp  points to the GFS in-core superblock image. 

 

Figure 18.1 GFS fundamental software modules and layers 

GFS supports three inter-node lock protocol implementations: the client-server “Grand 

Unified Lock Manager” (GULM)1; the distributed “GFS Distributed Lock Manager” (GDLM); 

and the “no lock” (NO_LOCK) implementation which allows GFS to be used as a single node 

local file system. The lock harness serves two simple purposes: 

• Maintaining the list of the implementations (e.g., GULM, GDLM) currently available for 

filesystem mounting and, 

• “Connecting” a selected LM module to a filesystem, at mount time. 

                                                 
1  Now seemingly discontinued. 
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As an example, assume we have two distinct locking protocols available: GULM, which will 

allow us to use shared disks across nodes, and NO_LOCK, for disks we want to mount locally 

at a single node, without incurring in inter-node locking overheads. When a locking protocol 

module is brought into the kernel (issuing, e.g., modprobe lock_gulm  or modprobe 

no_lock ) it registers itself with the harness module; then, when the user performs a GFS 

filesystem mount, e.g., with mount –t gfs … -lockproto=no_lock , the harness 

module is accessed to extract the appropriate pointers to the lock protocol functions, and all 

locking operations within GFS will “trigger” the chosen module’s locking functions. 

The locking modules and lock storage facility take care of: 

• Managing and storing inter-node locks and lock value blocks (LVBs, see further down). 

• Handling lock expiration (lock request timeout) and deadlock detection. 

• Heartbeat functionality2 (are other nodes alive and healthy?). 

• Fencing nodes2, recovering locks, and triggering journal replay in case of a node failure). 

The G-Lock software layer is a part of the GFS file system code. It handles: 

• Caching and coordinating locks and LVBs among processes on this node. 

• Communication with the locking backend (lock module) for inter-node locks. 

• Executing glops when appropriate (see below). 

• Journal replay in case of a node failure. 

The Global Lock (G-Lock, a.k.a. glock) is a fundamental GFS concept, one which will be 

studied in more detail in the next section; for the moment it is sufficient to say that it is an 

abstract cluster-wide visible “object” that may be used to support synchronized access to 

protected resources (e.g., GFS inodes) shared among nodes; access requests may originate 

from local, intra-node, or global, inter-node, processes; G-Locks also support serialisation of 

intra-node accesses for correct GFS operation on SMP architectures. The G-Lock operations 

layer is also a part of GFS file system code, implementing the file system-specific, 

architecture-specific, and protected-item-specific operations that must occur right after 

locking or just before unlocking, such as: 

• Reading items from disk, or from another node3 via a LVB, after locking a lock, 

• Flushing items to disk, or to other nodes via a LVB, before unlocking a lock, 

• Invalidating kernel buffers, once flushed to disk, so that a node can’t keep on using them while 

another node is changing their contents. 

Each glock has a type-dependent vector of operations (glops) structure attached to it; this is 

the key to porting the locking system to other environments, and/or creating different types of 

glocks, and defining their associated behaviour. 

                                                 
2  In recent revisions, some of these tasks have been, or are in the process of being moved to a new 

module that implements generic Cluster Infrastructure functionalities. 
3  The only items currently “moved around” from node to node in LVBs are resource group bitmaps. 
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Finally, an LVB is an opaque data type that is used to carry information across cluster 

nodes, and is a performance enhancement path for maintaining frequently updated data 

structures coherent across nodes; for example, it is used to maintain resource group bitmaps in 

sync across nodes, e.g., a node that updated some bitmap does not need to flush it to disk first 

so that it can be re-read from disk in other nodes. An LVB is attached to the lock that protects 

the GFS object it holds, and has its own set of operations; currently, LVB size is fixed, at 32 

bytes. 

18.2 Lock harness 

When a lock manager module is inserted into the kernel, as part of the module initialization 

it registers itself with the lock harness via the lm_register_proto()  call; this adds the 

protocol implemented by that module to the list of available locking protocols in the cluster, 

ultimately allowing GFS to access to the set of operations it provides.  

At the top layer, the lock harness layer offers a set of services to aid in file system 

mounting (and un-mounting) by performing the remaining part of the LM initialization (or 

removal); these are: lm_mount() , lm_unmount() , and lm_withdraw() . 

To illustrate the use of the functions listed above, let’s look at a GFS file system mount 

operation: at mount time, when asked – via options string, as in lockproto=gulm  – to use 

some available lock protocol, the lock harness layer will plug the module’s supplied set of 

operations into the mounted file system GFS in-core “superblock” structure: first, by 

executing lm_mount() 4, which fills in some information within the sd_lockstruct  

structure; then calling the “mount” operation provided by that protocol’s implementation 

module, e.g., gulm_mount()  for GULM; this will, in turn, fill in other information, 

particularly the ls_ops  field with the appropriate vector of operations. 

 

Figure 18.2 Plugging a lock module (in blue) into GFS structures (in yellow) 

                                                 
4  The calling sequence is: mount->…->gfs_get_sb->…->gfs_lm_mount->lm_mount()  

sdp  struct gfs_super { 
... 
struct ... *sd_lockstruct; 
... 
} 

struct lm_lockops { 
... lm_mount(); 
... lm_umount(); 
... 
... lm_lock(); 
... 
} 

//Lock Module implements 
... gulm_mount(); 
... gulm_umount(); 
... 
... gulm_lock(); 
... 
 

struct lm_lockstruct { 
... 
struct ... *ls_ops; 
int flags; 
} 
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Thus, to request a lm_lock  operation on a lock living in a GFS file system “described” by 

a superblock pointed to by sdp , one may write, 

sdp -> sd_lockstruct -> ls_ops -> lm_lock(…) 

which would execute the appropriate lock routine within the protocol used to handle locks in 

the file system; e.g., the above sequence when applied to the example exhibited in Fig. 18.2 

would end up calling the gulm_lock()  function. 

18.3 Lock module 

The diagram in Fig. 18.3 below is an overview on how GFS uses lock modules (again, 

adapted from [openGFS]); it covers calls to the module from all parts of the file system and 

harness code (where some calls have no functionality if the no_lock  module is used). 

 

Figure 18.3 GFS usage of Lock module operations 

All GFS implementations of a lock protocol must adhere to the same API; the interface5 is 

very simple, and defines: 

• a lock type, coded as LM_TYPE_{…, INODE, RGRP, META, …} , 

• a lock state, coded as LM_ST_{ UNLOCKED, EXCLUSIVE, DEFERRED, SHARED}, 

• various lock operations, such as: 

• lm_get_lock() , lm_put_lock()  

• lm_lock() , lm_unlock()  

• lm_hold_lvb() , lm_unhold_lvb() , lm_sync_lvb() 

• various flags to control the behaviour of lock calls: 

• LM_FLAG_{ TRY, TRY_1CB, NOEXP, ANY, PRIORITY }  

• Other flags to indicate return conditions from lm_lock() , coded as LM_OUT_{ …} 

                                                 
5  See harness/lm_interface.h  
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• A set of interface operations with Lock Harness and for (un)mount support, such as: 

• lm_register_proto() , lm_unregister_proto()  

• lm_mount() , lm_unmount() , lm_withdraw()  

In brief, a GFS implementation of a lock protocol must be able to create a cluster-wide 

visible (unlocked) lock, identified by its lock number and lock type; lock it into some allowed 

state (and also be able to unlock it); support a Lock Value Block (LVB) data type and related 

set of operations; and, furthermore, support both synchronous (blocking) and asynchronous 

(non-blocking) operations. 

The lock operations are the most important thing on this overview; a brief summary of 

locking and LVB-related functions called by G-Lock layer follows: 

lm_get_lock  - find an existing, or allocate and initialize a new lm_lock_t  (lock module 
per-lock private data) structure on this node. Does not access lock storage, 
or make lock known to other nodes. 

lm_put_lock  - de-allocate an lm_lock_t  structure on this node, release usage of (perhaps 
de-allocate) an attached LVB (by calling lm_unhold_lvb ). Accesses 
lock storage only if LVB action is required. 

lm_lock  - lock an inter-node lock (allocate a buffer in lock storage, if needed) 

lm_unlock  - unlock an inter-node lock (de-allocate the buffer in lock storage, if possible) 

lm_cancel  - cancel a request on an inter-node lock (ends retry loop) 

lm_hold_lvb  - find an existing, or allocate and initialize a new Lock Value Block (LVB) 

lm_unhold_lvb  - release usage of (perhaps de-allocate) an LVB 

lm_sync_lvb  - synchronize LVB (make its contents visible to other nodes) 

These “abstract” operations are implemented differently by each distinct lock module, e.g., 

GULM implements them in according to the client/server GULM protocol, while the GDLM 

implementation is quite different, and truly distributed with no single point of failure; function 

names are chosen in order to show up the module’s name, e.g., the GULM routines (see 

gulm/gulm.h ) are called gulm_lock , gulm_unlock , etc. 

We end this overview of the Lock Module by stressing out that lock creation, as referred in 

the above summary (in lm_get_lock ), is purely a node-local operation which does not 

involve communicating with any other node; only lock and unlock operations (and some LVB 

operations) do require inter-node messages travelling over the network. 

18.4 G-Lock layer 

The G-Lock software layer (see Fig. 18.1) provides G-Lock services to the GFS file system 

code (the top-level interface), uses the services provided by the LM layer (the bottom-level 

interface), and allows for specialized operations to be plugged in both at the top and bottom-

level interfaces. Central to the G-Lock layer are the glock and the GFS holder abstractions; 

the most relevant operations against the gfs_glock  structure are (see gfs/glock.h ), 
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gfs_glock_get  - find an existing, or if option allows it, allocate and initialize a new 
gfs_glock  structure on this node. 

gfs_glock_hold  - increments the glock usage counter. 

gfs_glock_put  - decrements the glock usage counter; if it reaches zero, schedule it for 
reclaim (it will eventually get destroyed, its memory freed). 

while the most relevant operations related to the gfs_holder structure are, 

gfs_holder_get  - allocate and initialize a new gfs_holder  structure. 

gfs_holder_init  - initialize a gfs_holder  structure in the default way and set its owner, 
state, flags, and usage counter. 

gfs_holder_put  - get rid of a gfs_holder  structure, freeing its memory. 

Finally, we list some of the lock/unlock operations which are, in fact, a result of enqueueing 

and dequeueing, as well as promoting and demoting holders onto their associated glocks, 

gfs_glock_nq  - enqueue a glock holder into its glock (i.e., acquire, or lock, the glock; 
we may get lucky and be granted the lock immediately, or we may 
have to wait…) 

gfs_glock_dq  - dequeue a glock holder from its glock (release a local process’ hold 
on the glock and service possible waiters; if this is the last holder of 
the glock – in this node –  unlock it, and decide whether to keep it in 
the glock cache or immediately release it cluster-wide) 

gfs_glock_xmote_th  - call into the Lock Module to lock the glock’s LM-lock (which 
corresponds to placing a lock on the glock), or change an already-
acquired lock to a more (promote) or less (demote) restrictive state 
(other than unlocked – do not use it for unlocking). 

gfs_glock_drop_th  - call into the Lock Module to unlock the glock’s LM-lock. 

Despite having the same prefix, gfs_glock , the _nq  and _dq  functions act on 

gfs_holder  structures, while the _xmote  and _drop  act on gfs_glock  structures. The 

former, _nq  and _dq , are called in directly by the GFS code layer, while the later, xmote  

and drop  functions (both top and bottom-halves – not mentioned here) are, as we’ve seen 

before, used as a) generic operations for GFS metadata, flock, non-disk and quota-type 

objects; and b) to link to tailored versions of xmote  and drop  functions appropriate for 

dinode, resource group, transaction, and “general” type objects. 
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19 Locking in GFS: a in-depth look 

19.1 Sharing and locking in local file systems 

Even a commonly used local file system, such as ext2 or NTFS, must care about concurrent 

events that take place in the system: some processes perform actions that need to access, and 

perhaps concurrently update metadata structures used to manage file system entities such as 

files and directories, while other processes may be busy sharing – e.g. reading and/or writing 

– the same file. At the implementation level, steps must be taken to ensure that both file and 

file system sharing semantics hold, in spite of multiple concurrent operations taking place on 

in-core data structures; the problem is further exacerbated in operating systems that allow 

system call preemption, or support parallel execution of kernel threads in SMP environments. 

These problems are usually tackled with widely known OS synchronization mechanisms – 

mutexes, spinlocks, semaphores, etc. 

The file system model, and particularly its sharing semantics, is important for users because 

it defines what to expect when active executing entities, such as threads and processes, 

concurrently access file system “objects”; furthermore, it may provide mechanisms, such as 

file locks, that can be used to enforce some specific behaviour in the presence of concurrent 

operations. 

19.2 Sharing and locking in distributed file systems 

In a distributed file system, where multiple nodes must keep their shared – often 

extensively cached in memory for performance reasons – copies of file system data and 

metadata consistent, we need not only to cater for the two intra-node issues previously 

described, but also a third, new one: how do we solve the shared data consistency problem? 

An often used solution is to use a global lock, one that could be used to implement 

synchronized access to these shared data structures, and thus, together with an invalidation 

protocol that discards other copies when one of them is modified, keep them coherent across 

the nodes. But how do we implement this global lock?  

For non-distributed operating systems (the ones, such as Linux and Windows, we use 

everyday), global inter-node locks are not an OS provided abstraction and, therefore, we must 

resort to an add-on software module, a Lock Manager, and modify the code to use the new 

abstraction to coordinate access to shared data. 

19.3 Locking in the GFS world: an overview 

In the GFS world, the solution for the three problems previously identified – intra-node and 

inter-node serialisation, and inter-node coherence of replicated data structures – is subsumed 

in one concept, the Global Lock (G-Lock): a G-Lock is, as we’ve pointed out before, a 
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cluster1-wide visible “object” that may be used to support synchronized access (such as 

mutual exclusion) to protected resources shared amongst participant nodes; requests may 

originate from local, intra-node, or global, inter-node, processes; G-Locks also support the 

serialisation of intra-node accesses which are required for correct operation of GFS on SMP 

architectures. A very short introduction to locking in GFS was recently published in a paper 

on GFS2 [Whi07]. 

19.3.1 G-Locks 
 The G-Lock concept is implemented by the gfs_glock  (glock) structure and its 

corresponding set of operations (obviously including some “lock” and “unlock” primitives); 

we will see more about thus later; for now, it suffices to say that G-Lock usage adheres to the 

typical lock usage pattern: a) the glock protecting a inter-node shared data structure is locked; 

b) the desired operation is performed on the structure; and c) the glock is unlocked. 

To protect each shared, in-core copy of a particular data structure, a local glock is created in 

every participant node (i.e., each node that holds the shared structure), and will reflect the 

node’s local view of the global G-Lock abstraction. Some operations on the abstract G-Lock 

may be purely local, intra-node, operations, while other operations require message exchanges 

(that may result in queries and/or changes to each local glock state) between the participating 

nodes and (if properly implemented) result in a coherent view of the G-Lock state among all 

nodes, each one storing the appropriate state (view) in its local glock structure. 

The G-Lock is also abstract in a sort of object-oriented way: when a glock is created, it is 

assigned to be of some predefined type, one which identifies the kind of object it protects; it 

has an associated glops vector of operations structure, i.e., a set of functions whose 

implementation depends on the specific type: a glock created to protect, for example, a GFS 

inode, is assigned the appropriate set of functions for acting on “inode objects”. 

A glock is uniquely identified (at inter-node scope) in a GFS cluster by a triplet: lock 

number, lock type, and lock namespace; we have already seen what the lock type is; the lock 

number and lock namespace concepts are introduced in the next section. 

19.3.2 LM-Locks 
 As the glock allows us to support two very distinct “usage modes”, namely being used at 

an intra or inter-node scope, the implementers decided to decouple the “local part” from a 

lighter, more “generic” structure that supports inter-node locking, which we call the LM-Lock 

(where LM stands for Lock Manager). 

Again, this global, inter-node, LM-Lock is a concept; its implementation resorts to a node-

local structure of type lm_lock  (abbreviated lmlock) created in each participant node, much 

                                                 
1  Our definition of cluster, here, is the appropriate one for GFS: a GFS cluster is a set of SAN 

connected nodes that share the same “pool” of storage devices (LUNs). 
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in the same way the G-Lock concept was implemented. The local LM-Lock is implemented 

by a kernel module, the Lock Manager Module (LMM), in a way that completely decouples it 

from the rest of the GFS world; the cluster-wide LM-Lock abstraction is implemented by a set 

of LMMs (as in GDLM) plus additional software, if required (as in GULM). 

 When a G-Lock is created, a cluster-wide LM-Lock entity must be associated with it; thus, 

for each node, the LMM must also create a new local lmlock, and attach it to the local glock; 

i.e., each module-provided lmlock will, when plugged into each node’s local glock, “turn” it 

into a global G-Lock. This lmlock is, similarly to the glock, also a local representative – i.e., 

will hold this node’s vision – of the abstract “cluster-wide lock” maintained by the LM 

software; for example, if in some designated node the lmlock is held in the “exclusive” state, 

then we know that all other nodes must have their own local representations (of the same LM-

Lock) in the “unlocked” state, and thus only one node effectively holds the “cluster-wide 

lock”. A LM-Lock may be held in one out of four different states: unlocked, shared, deferred 

and exclusive. 

The LM-Lock’s “primary identifier” is the lockname, which is a type/number pair; this is 

also stored in the G-Lock identifier, and thus establishes the relation between these two 

entities. The LM-Lock lockname “inherits” the type and number from the object protected by 

the G-Lock it is associated with; e.g., if some G-Lock protects a ginode2, the lockname 

structure will hold “type inode” and the block number of the on-disk inode; for structures that 

do not correspond to existing on-disk entities (e.g., the data structure that holds information 

about a mount), the lock number is carved on the code, in a “.h” include file. 

As we already know GFS supports the coexistence of multiple distinct lock managers that 

implement different locking protocols, all offering the same functionalities and adhering to 

the same interface; therefore, they may be used interchangeably – the user should choose the 

most appropriate for the task at hand. The only added complexity here is that at file system 

mount time the user must specify which LM protocol instance will be “managing” the GFS 

file system being mounted, and this constitutes the creation of a new lock namespace. From 

this point on, all the glocks created within that lock namespace (LM protocol/file system pair) 

will trigger the creation of lmlocks, by the appropriate lock manager instance. So, the “full 

identifier” for a G-Lock or LM-Lock is in fact the pair namespace/lockname, which turns out 

to be the triplet namespace/type/number we’ve previously described. 

Finally, we must point out that another level of decomposition may exist in the 

implementation of a locking protocol; this may be seen, for example, in the GULM, which is a 

software-only, client/server implementation of the proposed (but not accepted) SCSI Device 

                                                 
2  A ginode is a GFS inode structure (an in-core image of a dinode) linked to the VFS vnode structure 

through its generic_ip field. 
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Memory Export Protocol (DMEP) [Bar+00]3, where two separate entities are required to 

implement the protocol: a “server”, that implements lock storage (a user-level daemon 

process, in the GULM, or RAM in a disk or disk array supporting DMEP), and clients (the 

kernel lock modules in the nodes), that access the “server” when needed. This is not the case 

with GDLM, where no “central point” of storage does exist. 

19.3.3 G-Lock holder 
“Once a node has acquired a glock, it may be shared within that node by several processes, 

even by several recursive requests from the same process”. This statement, extracted from the 

include file (“gfs/incore.h ”) illustrates the new terminology we will be adopting from 

now: several nodes may be able to acquire4 a G-Lock in a shared state (and each of them will 

have its local glock in the shared state), or one of them may be able to get it in the exclusive 

state (and others will have their local glock “unlocked”). 

A process expresses its interest in issuing an operation on a glock by creating a “request 

packet”, the GFS holder structure, that will store both the process identification (in a owner 

field), and the desired conditions under which the operation is to be successfully granted, e.g., 

“I want to hold the glock if nobody else has it”, or “I want to hold the glock but I’m willing to 

share with others”. The request (holder) is then “linked” to its “target glock” and submitted 

(enqueued); if it gets immediately granted, it is attached to the glock holders list; otherwise, it 

will be attached (queued) to a waiters list, awaiting promotion. 

A holder is, then, a purely node-local structure that allows us to: a) acquire a glock in some 

desired state; b) coordinate how it is shared among processes in the node; and c) finally, 

release it. Thus, it is possible for a glock to have several simultaneous holders: distinct 

processes (owners) that were able to share it; several compatible “recursive” requests issued 

by the same owner; or a mixture of both. 

19.3.4 G-Lock operations 
The G-Lock operations structure allows us to further refine the G-Lock by associating an 

implementation-specific vector of operations to a G-Lock; as an example, for a glock that 

protects an inode, the glock’s vector of operations “generic” go_sync()  function maps to 

inode_go_sync() , which triggers a flush of all data and/or metadata associated with an 

inode when, for example, it is unlocked. However, for a glock that protects a RG, the glock’s 

“generic” go_sync()  function maps to meta_go_sync() , which synchronously flushes 

all buffered metadata associated with the RG. 

                                                 
3  Which originated as the Device Lock (DLOCK) [Sol97] 
4  To acquire a G-Lock, we need to lock the LM-Lock, so, in a way, acquire (a glock) and lock (its 

corresponding lmlock) is equivalent; one “drags” the other. 
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19.3.5 Performance-driven implementation decisions 
We will now introduce the topic of performance in this discussion; as usual, it will 

complicate things a bit but we will hope that, having presented a clear picture before, the 

reader will not get confused. 

When an object such as a ginode, together with all the “companion” data structures it 

references, is protected by a glock and that glock gets released, data must be flushed to disk; 

this is a costly, time consuming operation, that gains by being postponed as long as possible 

(much in the same way the Linux page cache supports write-back). 

But how long is “as long as possible”? If a node wants to read data that has been modified 

in another node, the later must flush it before the glock is acquired by the former; but if a set 

of processes, all running in the same node, are reading and writing a file, there is no need to 

flush data, and we would still get more performance if we’d refrain from repeatedly dropping 

and re-acquiring the file’s ginode glock (as these operations must be carried out by 

exchanging messages across the network). GFS implements these performance enhancement 

features by tying the flush operation to the drop of a glock, and postponing the (cluster-wide) 

drop of a unheld glock by keeping it in a cache (with the same status that was stored by the 

time the last holder was dropped) until it expires, or is forcefully “called back” by another 

node5. So, for “typical” applications, when a process needs to re-acquire a recently released 

glock it immediately succeeds, getting it from the cache and, as a side-effect (but a major one, 

for increased performance), data that has been recently accessed still lives in the page cache. 

19.4 An example-driven operational overview 

We will now try to tie some of the concepts previously introduced, namely lmlocks, glocks 

and holders, by resorting to a complete example: in a GFS cluster, the file F is, for the first 

time, opened for reading in node A; then, it is opened for writing in node B. Now, a process in 

node A starts reading the file, while another process in node B writes to it; for simplicity, let 

us assume that no user-level locking is involved (and that this does not constitute a problem 

for the application). 

19.4.1 Opening the file 
The most relevant (and over simplified) operations for the open are: 

1. A pathname transversal (sequence of lookups) is performed; at the end, the file’s “inode” 

number is found from a dentry, and the ginode of the directory which contains the file gets a 

shared lock on its glock; 

2. An new (empty) ginode in-core data structure is created, together with its new protecting glock; 

the glock is tailored with the appropriate operations for “(g)inode-type objects”; 

                                                 
5  There are situations where this postponing is not possible, but we will not cover them here. 
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3. A holder is created to allow us to request a lock on the glock; the request will be for a cluster-

wide shared lock, but with an exclusive flag set for this node only. The request is then 

submitted; when granted, the holder is attached to the glock holders list: “I hold a shared lock on 

this file’s ginode” 

3.1. The Lock Manager is called to find an existing lmlock or create a new one; the 

parameters lock number (drawn from the block number of the file system block that holds 

the dinode), lock type, and lock namespace are supplied; the inter-node lock request is for 

“shared”. 

3.2. A new LM-Lock must be created (this is the 1st lock on that dinode number); storage for 

the lmlock object resides, in the GULM case, on the GULM Lock Server, whereas in the 

DLM case, it may be “duplicated” in several nodes. 

4. The in-core dinode field of the ginode object is filled in with data retrieved from the on-disk 

dinode blocks; 

5. The ginode glock’s “local exclusive” flag is downgraded to “local shared”. 

Now, if the file F is to be opened again, but this time on node B, the only difference is on 

step 3.2: a new “cluster-wide” LM-Lock will not be created by the LM because one (for that 

type, number and lockspace) already exists; only the lmlock “local structure” will be created, 

and its status set to indicate it as being currently locked in shared mode; all the other steps 

will be performed exactly in the same way. 

19.4.2 Reading a GFS file 
Let us assume node B is not yet writing; the relevant (and, again, over simplified, assuming 

regular non direct-I/O) operations are: 

1. The read()  call enters the kernel; the normal flow through the VFS layer is performed, i.e., 

from the VFS file object its vector-of-operations read-function is called: 

file->f_op->read(…)  

For a GFS file, this function is mapped into gfs_read() ; 

2. The gfs_read()  code enters execution; 

3. A holder for a shared lock is created and submitted (a.k.a. enqueued) onto the ginode’s glock; 

upon return, the lock is held; 

4. VFS level functions, such as generic_file_read()  are used to get into the node’s page 

cache and retrieve data, or, if needed, submit a low level read to the disk driver; when data is 

available, it will be copied to the user buffer; (this highlights the tight integration of GFS into 

the VFS subsystem); 

5. The holder is de-queued, unlocking the glock, which then: 

5.1. gets moved to the glock cache, where it stays until it: is requested again; expires and is 

released cluster-wide; or is released because it was “requested” from another node. 

5.2. if released (because it expired or was forcefully called from other node) a glock operation 

is performed, and that operation may act on the file’s data (e.g., invalidate all cached data) 

and/or metadata (such as updating the time of last access). 
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6. The gfs_read()  returns; 

7. The read()  returns; 

To complement the discussion above, it is worth pointing out that if an application has one 

or more processes that repeatedly read the same file, there is no inter-node traffic, as the 

glock(s) will stay cached in their nodes, making their lock/unlock purely local, intra-node, 

operations. Only the first locking operation requires a LM access which will need messages 

travelling to other node(s). 

19.4.3 Writing a GFS file 
The flow for the write()  call is similar to the one above, but much more complex at the 

GFS level; we omit a lot of details, but the important ones are: 

1. The write()  call enters the kernel; the normal flow through the VFS layer is performed, i.e., 

from the VFS file object the vector-of-operations write is called:  

file->f_op->write(…)  

which, for a GFS file, is mapped into gfs_write() ; 

2. gfs_write()  enters execution, 

3. A holder for an exclusive lock is created and then enqueued onto the ginode’s glock; upon 

return, the lock is held (we will have to wait if any other node has a lock, shared or exclusive, on 

the glock); 

4. (A lot of details omitted here.) The user buffer is copied to kernel space, merged into the page 

cache; affected pages are marked dirty and linked into the vnode’s dirty list; these pages will be 

flushed regularly by the Linux pdflush  daemon, or synced on demand; 

5. The holder is de-queued, unlocking the glock and, in the same way to what happened with the 

read()  above, the glock will stay in the node’s glock cache. 

6. gfs_write()  returns. 

7. The write()  returns. 

The above description shows why GFS stumbles when, for example, one node is reading a 

file while another is simultaneously writing it: for every write, the reader has to release its 

glock immediately (and invalidate the data it has cached so far), as the writer needs it 

exclusively; so, for every operation, messages are exchanged between the node and the global 

Lock Manager, and glock caching, as sketched in 4.1-iii above, is useless. To worsen things 

up, on the next read, the reverse occurs, more traffic travels through the interconnects, again, 

and the writer must flush all file data and metadata to disk before releasing the glock, as the 

reader may decide to access data that has been changed by the writer; this requires a string of 

flush-to-disk operations that, even when a large bandwidth is available from the I/O 

infrastructure, nevertheless cause a latency build-up that severely degrades each node’s 

sustained bandwidth, as inferred in sections 8 and 9 (e.g., as computed in equation 8.5) and 

reported in Figs. 16.4 and 28.9. 
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19.5 Keeping metadata coherent across cluster nodes 

When talking about a “coherent view across cluster nodes”, we may separately address two 

aspects: keeping user-visible (or user-level) objects such as files and directories, coherent, and 

keeping file system “internal” metadata structures such as inode and data block bitmaps (or 

other structures used for free/used accounting of blocks and inodes), coherent; failing to 

provide the first may result in application problems, but failing the second will undoubtedly 

result in a corrupted file system which, sooner or later, will cease to function. 

19.5.1 Coherent file system metadata management in GFS 
A coherent view of free vs. allocated blocks is needed across all cluster nodes which have 

mounted some particular file system, to support correctness in the presence of operations such 

as concurrent file creation (dinode allocations), removal (possible dinode de-allocations), and 

writing (which may result in a file size increase and thus require metadata and/or data blocks 

to support that growth). The problem of a coherent view of block (de-)allocation across 

cluster nodes is therefore a major issue at the file system level (there’s, of course, more to 

proper metadata management than just managing bitmaps, as we’ll show in the next section). 

As it happens with many other file systems, GFS use the concept of Resource Groups (RG), 

which are similar to Berkeley’s Fast File System cylinder groups [McK+84] and have been 

adopted by a legion of followers, including ext2. A RG is a sort of “mini file system” with a 

superblock, and two regions, one for inode and another for data blocks, along with their 

corresponding bitmaps. To perform an operation on a specific RG, GFS places a lock on the 

“RG-type” glock that protects the RG; as expected, allocation and de-allocation operations 

with RGs’ glocks exclusively held are sufficient to guarantee a coherent view of those RGs 

across cluster nodes. 

19.5.2 Coherent file metadata access in GFS 
Guaranteeing that every node has a coherent view of free and allocated resources, such as 

disk blocks, however, is not enough, as it could lead to situations quite similar to the problem 

of lost updates, but now with the file’s metadata; as an example, two processes in distinct 

nodes could be “filing in” sparse holes, each one in its respective (non-overlapped, even at the 

page level) region; if both were modifying the same metadata portion, e.g., distinct pointers in 

the same indirect block, the last writer would superimpose stale data over some part that had 

already been modified, and flushed, by the other node. 

Obviously, concurrent access to file metadata structures must also be properly carried out, 

and GFS has the right mechanism for the job: while executing the gfs_write()  the ginode 

glock is exclusively locked, and other nodes cannot keep any data or metadata from that file 

in their caches. 
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pCFS Implementation 
 
 

 

 

In this Part we describe how pCFS is implemented, through the addition of two kernel 

modules, a user-space daemon, and slight modifications to GFS code; the modified GFS code 

distributes information about clusterwide open files and active regions, and implements cache 

coherency without resorting to expensive disk flushing and cache invalidation operations. 
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20 Prototype Implementation: introduction 

20.1 Overview 

The term “prototype” clearly states we’re not aiming either a full or a production-quality 

implementation; our primary objective is to show that pCFS, while retaining GFS’ strengths, 

can efficiently support HPC applications, so the prototype specifically target regular files 

accessed through the usual read/write and other POSIX calls, eschewing direct I/O and 

memory-mapped operations. Furthermore, no modifications were made in code paths that 

handle directories, special files, journaling, etc., i.e., no attempt was made to speedup 

metadata operations (such as file creation, deletion or lookup). 

20.1.1 Rationale 
Some discipline was imposed on the prototype implementation; important restrictions we 

wanted to enforce were: i) no modifications to Linux API (no new syscalls) or changes to the 

VFS layer were allowed; ii) modifications to GFS code should be kept to a minimum, even at 

the expense of having to duplicate GFS code into pCFS-specific modules. Benefits from (i) 

are clear: pCFS will run on any distribution that supports GFS (currently, Red Hat Enterprise 

Edition), and existing applications may run unmodified, while (ii) means that it should be 

easy to keep pCFS in sync with new GFS releases, as burden is confined within pCFS’ own 

modules (where it should be easy to manage); furthermore, it should be possible to execute 

“near native” GFS, which will greatly simplify debugging and pCFS-to-GFS benchmarking. 

20.1.2 Implementation strategy 
We’ve chosen to incrementally develop the prototype; in the first phase, we concentrated 

on delivering support for high performance I/O for those situations were no data or metadata 

allocation (e.g., indirect blocks) was required – i.e., an existing file is simply read or 

rewritten; in the second phase, we handle cases where metadata allocation is required. 

20.1.3 Dealing with adversities and uncertainties 
As time went by we faced several obstacles; some were just plainly annoying, but others 

forced us re-evaluate our initial goals. The first class includes the Linux kernel internals, quite 

undocumented in the file system layer (VFS et al). The second is a consequence of internal 

changes in the interfaces, which happen quite often and across minor releases, too; and, 

consequently, some particular software becomes strongly tied to a particular kernel release, 

while another one only works with a different release, making it difficult to use them together. 

As an example, we were planning to implement pCFS’ cooperative caching with Kerrighed 

containers [Lot01, Mor+04]; however, this was not possible because the version of the 

containers module depends on a particular release of the Transparent Inter-Process 
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Communication (TIPC) protocol [TIPC] which was not compatible, at that moment in time, 

with any kernel version which would support GFS. Therefore, we are trying to bring it all 

together, and believe that, afterwards, a full implementation of pCFS’ cooperative cache may 

be easily achieved. 

20.2 pCFS: architecture and operation overview 

Most pCFS code is split between two kernel modules, pCFSk and pCFSc, and a user-level 

daemon, pCFSd; furthermore, a very small amount is delivered as patches to GFS. 

 

Figure 20.1 pCFS architecture and module interconnections 

Each node has both a pCFSk and a pCFSc module, while there is a single pCFSd instance 

per cluster; a brief description of each component follows: 

• Each pCFSk maintains a “local database” that stores information about per-node relevant data 

structures, e.g., pCFS inodes (i.e., those corresponding to files opened with one of the pCFS 

flags), and, for each file, the list of “active regions”. Each pCFSk opens a TCP stream against 

the pCFSd, which handles in a separate thread. 

• pCFSd maintains a “global database” of cluster-wide relevant data structures, a sort of “union” 

among the structures pCFSk maintains at each node; when necessary, pCFSd sends invalidation 

messages to the pCFSc modules in selected target nodes. 

• Each pCFSc maintains per-node “in-flight” data that must be shipped to/received from other 

nodes and then updated into the VFS page cache. Furthermore, pCFSc maintains coherence by 

flushing out and/or invalidating selected pages from the node’s page cache. 

To give the reader a brief introduction to the pCFS operation, we start by stating that, for 

pCFS-modified file calls, when the user process performs a file operation, e.g., a read()  on 

a “pCFS file”, a GFS path that leads to a pCFSk call is taken; if call processing can be 

handled locally in pCFSk, it “immediately” returns to the GFS regular code; otherwise, 

pCFSk will exchange information with pCFSd, and will either return to GFS code (for local 

data access), or take a different path, fetching/delivering data from/to a remote node. 

pCFSd 

pCFSc pCFSc pCFSc pCFSc 

pCFSk pCFSk pCFSk pCFSk 
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20.3 Phase 1: High performance R/W with no metadata allocation 

HPC applications usually share a file in a way that processes running in different nodes 

access disjoint, non-overlapping sections of the file; this implies that data coherency is not, in 

general, an issue. In the first phase of the prototype implementation we devised a way to 

easily improved bandwidth by explicitly requiring participant processes to define regions 

before they access a file, releasing them when they are no longer needed; to be used in 

isolation (i.e., not complemented with other approaches), however, it requires that there are no 

major metadata changes to the file, i.e., its size must be kept constant and, in the event the file 

is sparse, no “holes” should be “filled in”. 

20.3.1 Overlapping vs. non-overlapping file access operations. 
But, even when not overlapping at the byte-level, regions may well overlap when larger 

units – blocks or pages – are considered, as shown in Fig. 20.2 below. 

 

Figure 20.2 False sharing and lost update (last writer “wins”) 

As previously shown (section 11.2), this may raise coherency issues. Given that the unit of 

caching at the file system level (at the page cache) is the page, we identified the following 

issues due to false sharing: 

• Un-harmful : There is only one writer node. Even if a reader node has an out-of-date page 

cached, one where a portion written in the writer node is not up-to-date, pCFS processes in the 

reader node are not allowed to access that portion, so consistency issues do not exist. 

• Harmful : There are multiple writer nodes. This may trigger lost updates, as follows (Fig. 20.2): 

a writer in node X writes into its “side” of the cached page; another writer in node Z does the 

same to its “side” – notice that byte level overlapping does not occur; then, it does not matter 

which node is the first to write out “its” data (page n, in the figure) to disk: others (e.g., Y) may 

not be able to retrieve the first node’s (e.g., X) updated portion of the data from the moment the 

second node (e.g., Z) writes out its image (of page n, again) on disk. 

Region for Process X           Region for Process Z            Region for Process Y 

        Process X           Process Y 

Page n-1    Page n  Page n+1         Page n+2        Page n+3 
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20.3.2 pCFS major data structures 
The two structures depicted in Fig. 20.3 are the foundation of pCFS’ improvements over 

GFS: pCFS_inode , which records data about an open pCFS inode, and pCFS_region , 

which records data about an active region placed by some process over a file. 

 

Figure 20.3 pCFS major data structures and their relationships 

There are two hash tables1 of pCFS_open_inode  structures: a “local database”, in 

pCFSk, for files opened in the node; and a global database, in pCFSd, for files opened across 

the cluster. The structure of a pCFS_open_inode  is: 

struct pCFS_open_inode { 
  uint64_t              dinode; 
  unsigned int          count; 
  unsigned int          mode; 
  unsigned int          owner; 
  unsigned int          fwrdrs; 
  struct pCFS_region_l  * rdr_regions; 
  struct pCFS_region_l  * wtr_regions; 
  unsigned long         rdr_bmap; 
  unsigned long         wtr_bmap; 
}; 

where 
  dinode  Identifies the on-disk (and in-core, as they are the same) file inode. 
  count  Number of outstanding opens. 
  mode  Reserved (currently unused). 
  owner  If non zero, identifies the file owner. 
  fwrdrs  If non zero, there are owner(s) (for boundary pages) in the region lists. 
  rdr_regions  List of regions laid out by reader processes. 
  wtr_regions  List of regions laid out by writer processes. 
  rdr_bmap  Bit map of nodes reading this file. 
  wtr_bmap  Bit map of nodes writing to this file. 

                                                 
1 Named pCFS_opens , and currently implemented as fixed-size arrays of pCFS_open_inode  

structures. 
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As for a region, its structure is: 

struct pCFS_region { 
  loff_t        start; 
  loff_t        end; 
#ifndef __KERNEL__ 
  node_t        node; 
#endif 
  pid_t         pid; 
  node_t        ownerL; 
  node_t        ownerR; 
  unsigned int  flags; 
}; 

where, 
  start  Marks the byte offset at the start of the region. 
  end  Marks the byte offset at the end of the region. 
  node  (Only for pCFSd regions) Identifies the node that laid out the region. 
  pid  Identifies the pid that laid out the region. 
  ownerL  Accesses to the left boundary page must be forwarded to this node. 
  ownerR  Accesses to the right boundary page must be forwarded to this node. 
  flags  Consistency checking: must be either F_RDLCK or F_WRLCK. 

20.3.3 A brief look at the major file operations 
We now look at how pCFS changes were introduced in the GFS code, and follow them 

with an execution scenario for a typical application which uses the most relevant file 

operations: we start with an open() , followed by an “insert region” with fcntl() , then we 

perform a read()  and a write() ; before terminating the application, we lift the region 

with another fcntl() , and finally close() .  

20.3.3.1 open()  

Each time a process in node performs an open of a “GFS file” with a pCFS option flag 

or’ed in, when control reaches gfs_open() , a pCFSk function is invoked to: 

1 Check if the file is already open in the node (find a pCFS_inode  with a matching dinode) 

1.1 If found, a check is made for the presence of O_CLSTXOPEN (cluster-wide exclusive) or 

O_NODEXOPEN (node exclusive) – an error situation, in both cases, and we return. 

1.2 Else, a message is sent to pCFSd to check on the global database that the open does not conflict 

with other outstanding opens of the same file; if it does, take an error return. 

2 Otherwise, entries may be created and/or updated at the local and/or global level; this includes 

incrementing the inode’s usage count and updating reader/writer bitmaps at both “sites”. 

We end up either allowing or rejecting the open, and both the local node and the pCFSd 

tables are updated accordingly. Notice that some fields may exist in pCFSd “versions” of the 

structures, but not in pCFSk – an example being the node field which exists in the pCFSd 

pCFS_region  structure, but not in the one for pCFSk. 
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20.3.3.2 Region processing: laying out a new region with fcntl()  

When a user process, calling fcntl()  in the same way it does to place a POSIX advisory 

lock, lays out a new region over a pCFS file,  

1 Normal VFS first, then GFS pre-processing are carried out;  

2 GFS sends out a request to the Lock Manager asking for a shared (for a read lock) or exclusive 

(for a write lock) clusterwide LM-lock with a “POSIX lock” tag as key. (Notice that GFS calls the 

LM layer directly, not the G-Lock layer); 

3 If successful, we know the lock is  clusterwide valid, so we call pCFSk code to: 

3.1 Build up a new pCFS_region  structure, storing the start and end of the file region (byte 

offsets), the pid of the requesting process, the lock flag (F_RDLCK or F_WRLCK) and inserting 

it in the appropriate order (key: start, end, node, pid) in the list (either rdr_regions  or 

wtr_regions , depending on the flag). 

3.2 Send a message to pCFSd with region information (including the node id), in order to get the 

region placed in the global “pCFSd database”; this is where the bitmap structures, rdr_  or 

wtr_bmap , depending on the flag, get the node bit updated; in the reply packet, the bitmaps 

are sent from pCFSd to pCFSk, where they are used to update the node’s knowledge about 

which nodes are currently using the file, either for reading or for writing. 

3.3 We return to GFS code. 

4 GFS code returns to the VFS code, which places a “POSIX lock object” into the appropriate inode 

(vnode) list and returns to the user.  

20.3.3.3 read()  

The code is quite similar to the one already sketched in 19.4.2 except for the patches, which 

we include here bracketed by “pCFS begin” and “pCFS end”: 

1. The read()  call enters the kernel; the normal flow through the VFS layer is performed, i.e., the 

file object’s vector-of-operations function is called: file->f_op->read(…) . For a GFS file, 

this function is mapped into gfs_read() ; 

2. The gfs_read()  code enters execution 

2.1. /* pCFS begin */  If accessing a pCFS file, we call pCFSk code to assert that read 

boundaries are within a valid pCFS region; otherwise, we’ll bail out with error, and skip to 6. 

/* pCFS end */  

3. … 

6. The gfs_read()  returns; 

7. The read()  returns; 

Notice that we do not modify anything else; in particular, we do not care if we’re reading 

from a page that has some portion of stale data – which we can not access because it is 

located outside our region, and we would have take an error return in 2.1 above. 

Verifying that the file “is a pCFS file”, locating its inode entry and performing the validity 

check in the region list are pure intra-node operations carried out at the pCFSk module and 
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are, therefore, very fast; so, the overhead introduced is negligible, as reported in [Lop+08] 

where pCFS reads were within 1% of those of GFS. 

20.3.3.4 write()  

As the user process writes, when the write()  code path reaches gfs_write()  it will 

execute new code introduced to check if a pCFS file is being accessed (if not, regular GFS 

processing continues) and, in that case, if the request is within a valid region (if not, an error 

is returned). The pCFS difference is that, now that the access has been verified and granted, 

we can, even for a writer node, ask for a shared glock against the file inode, and resume 

regular GFS code (assuming no false sharing problems and/or metadata allocation), which 

will access data either from the page cache, or from disk, using the SAN infrastructure. 

To prevent a reader in a node from reading data which has been modified by a writer in 

another node, that data has to be either flushed to disk or moved through an interconnection 

infrastructure; flushing data to disk is important because it makes it permanent, but should not 

slow down other nodes’ file access operations – something that “mainstream” CFSs such as 

GFS can’t do. Our strategy for flushing does not slow down other nodes’ file access 

operations because it does not require (in the absence of metadata allocation) either exclusive 

access – locking the ginode glock in exclusive mode, as shown in 19.4.3 and which would 

trigger invalidations sent to other node’s caches – or “frequent” (as in per-call) flushing. 

20.3.3.5 fcntl()  again: region removal and data flushing 

As the writer process removes (“lifts”) the region, we must guarantee that modified data is 

committed to disk before a process in another node may read it from disk. We opted for the 

easy solution: a synchronous flush in the moment the region is removed; delaying the flush up 

to the moment where the access is needed by the other node is too complex, unless we are 

running a SSI operating system, which offers a page flush/invalidation mechanism “for free”. 

So, when lifting a region, with fcntl() , 

1 Regular VFS first, and then GFS pre-processing is carried out;  

2 GFS processing includes sending out a Lock Manager request asking to drop2 the cluster-wide 

LM-lock with a “POSIX lock type” tag. In case of a successful return, we call pCFSk code to: 

2.1 Perform the flush. 

2.2 Remove the pCFS_region  structure, from wtr_regions  and free its memory. 

2.3 Send a message to pCFSd with the region information so that it can also remove that region; 

but, before doing it, (i) pCFSd uses rdr_bmap  and wtr_bmap  to get the list of the nodes 

currently using the file and, (ii) sends out invalidation messages to pCFSc modules on those 

nodes, noting the region start and end – we need this because in reader nodes operating “close” 

to the regions’ borders VFS code could have been reading-ahead into another node’s region, and 

                                                 
2 We’re assuming a write lock here, so there is only one! 
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if we didn’t invalidate that data, once the node laid out a valid region over it, it could access 

stale data3. 

3 GFS returns to VFS code, which removes the “POSIX lock object” from the appropriate inode 

(vnode) list and, finally, returns to the user application.  

In a typical HPC application regions are often quite large (tens of MB or more) so while a 

process is writing, file system/OS flushing does occur from time to time, triggered by memory 

pressure and/or cache expiration; our lifting mechanism just guarantees that all writes are 

flushed before “letting another node in” that same byte range. 

20.3.3.6 close()  

Currently, pCFS close processing is very simple, because we choose to return an error if a 

close is attempted on a file that has outstanding active regions (i.e., we currently require the 

programmer to lift every region that was laid out before closing the file). If ok to close, we 

just decrease the pCFS_inode  entry count field and, if it reaches zero, de-allocate (currently 

we just clear it) the structure. Although we already provide a pCFSd reply message informing 

a node that it is the last node in the cluster that is reading/writing/closing a particular file, we 

do not yet take advantage from that piece of information. 

20.3.4 Forwarding: using the LAN to solve the “lost update” problem 
To solve the lost update problem (and others which will shortly be discussed) we’ve added 

the left and a right owner fields to the pCFS_region  structure; they are used as follows 

(using Fig. 20.2 as guidance, assuming all processes are writers and X lays out its region first, 

then Y and finally Z): 

• When a process lays out a writer  region, a check is made to see if it has writer  neighbours and 

if their respective boundaries overlap at a page level; if they do, we signal its neighbour as the 

page owner. For example, page n is shared between processes X and Z, while page n+2  is 

shared between processes Y and Z. When the Z writer finally lays out its region, the check to see 

if there are pages shared between Z and a writer region “left-neighbour” (here, X) and/or a writer 

region “right-neighbour” (here, Y), returns true for both, so the left-owner field of Z’s 

pCFS_region  is set with X’s node id while the right-owner is set with Y’s node id. 

• For each write()  we check if the write will touch the regions’ first and/or last pages and, then, 

whether left and/or right owners exist; if they do, a pCFSk function is called to forward that data 

to the neighbour’s pCFSc, which then inserts it into the node’s page cache. 

Furthermore, nodes that “forward” data from the file to other nodes (a non-zero in the 

pCFS_open_inode  frwdrs  field) should not be allowed to keep data which belongs to 

those shared boundary pages in their page caches; this implies that reads are also affected, and 

                                                 
3 Notice that we could disable read-ahead, but this would be, as a rule, detrimental to performance. 
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if a non-owner writer needs to re-read data “sitting” on a boundary page, that data will be 

fetched (through the interconnect) from its neighbour’s cache. 

20.4 Phase 2: pCFS support for coherent metadata management 

We have previously, in 19.5, mentioned that there are two separate aspects on coherency: 

those related to user-level visible objects, such as files and directories, and those related with 

file system “internal” metadata structures, such as inode and data block bitmaps. Then, we 

saw that GFS handles coherent management of file system metadata structures using two 

different approaches: for resource groups, GFS uses the RG-specialised glocks (19.5.1); but 

for everything else – and this includes both data (file) and metadata (inodes, index blocks) 

structures, GFS uses the same strategy to enforce coherency: a per-inode global lock enforced 

both in gfs_read()  and gfs_write() . 

In this subsection we look at new ways used in pCFS to promote coherency without 

severely degrading, as GFS does, file system performance.  

20.4.1 Resource group handling in pCFS 
As previously pointed out, to perform an operation on a specific RG, GFS places a lock on 

the “RG-type” glock created to protect that RG; as expected, allocation and de-allocation 

operations require the RG’s glock to be held exclusively. For pCFS, we found that this does 

not, in general, degrade bandwidth and, therefore, we kept the standard GFS operations for 

resource group handling. 

20.4.2 Coherent block allocation/de-allocation at the file level 
Two operations may result in major changes to a file structure and, consequently, to the file 

system where it lives: truncate()  and write() . GFS handles truncate()  through an 

exclusive glock, and we are not interested in pursuing a different path; it is not, after all, a 

common operation – and, anyway, if we truncate a file we must invalidate all file’s data and 

metadata cached across nodes. As for the write operation, it may trigger major changes when 

data blocks, index blocks, or both, must be allocated, either as a result of an increase on the 

file’s size, or because holes in a sparse file get “filled in”. 

To support coherent block allocation across nodes sharing the same file, the region 

mechanism is not enough because, if we relied only on regions, we could end up in a situation 

similar to lost updates, but now with file’s metadata; as an example, two processes in distinct 

nodes could be “filing in” sparse holes, each one in its respective (non-overlapped, even at the 

page level) region; if both were modifying the same metadata portion, e.g., distinct pointers in 

the same index block, the last writer would superimpose stale data over some part that had 

already been modified, and flushed, by the other writer, and we could end loosing a big 

amount of data, e.g., if we lost the “head” of those newly allocated index blocks. 
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We have three alternatives to handle coherence: 

• Select, whenever there is a possibility of major changes in the file’s metadata, GFS standard 

behaviour through a “regular” open() , loosing the performance we could achieve with pCFS; 

• Use the pCFS approach for all I/O which does not require block allocation and, when needed, 

temporarily revert to the standard GFS behaviour; 

• Select a “master node” and have all the others ship data to/get it from that node. 

20.4.2.1 On mixing GFS and pCFS opens 
In the above list, the first alternative, resort to plain GFS, although possible is undesirable 

and should not be used, for two reasons: first, it may be quite difficult for the application 

programmer not only to assert if metadata will be changed, but also to rewrite the application 

in a way it will either execute a GFS or a pCFS open() , and then follow the exact path with 

the appropriate “programming style” for that choice; but, more importantly, in the current 

pCFS prototype one should not concurrently open the same file using both GFS and pCFS 

“styles”, because that will lead to data and metadata inconsistencies across nodes. 

20.4.2.2 Handling pCFS metadata coherency through lock promotion 
For the current prototype, we have implemented the second alternative as follows: if code 

execution in the gfs_write()  takes a path which leads to block allocation, the file’s 

ginode glock which, per pCFS changes, was acquired in the shared state, is re-acquired in the 

exclusive state; this guarantees that, before the exclusive state is granted to the writer, all 

other nodes will invalidate both metadata and (unfortunately) data pertaining to that file from 

their caches and, on subsequent accesses, they will get fresh copies – either from disk, or from 

the writer’s cache. We expect that, in those situations where block allocation is an infrequent 

event, this strategy of “last minute” promotion of the glock to an exclusive state will not result 

in a sizeable performance slowdown4. 

20.4.2.3 Implementing the data shipping approach 
For those cases leading to what would be a very high number of repetitions of the pattern 

“region-in; read (and/or) write; region out” for small buffer sizes, or for those cases where 

there is a high number of operations that require allocation of data and/or metadata blocks, 

shipping data to a single owner may be the best solution, from the performance point of view. 

The data shipping approach is an extension of the forwarding technique introduced in 

20.3.4 to overcome false sharing, and can be implemented through the left and/or right-owner 

fields in the pCFS_region  structure. A situation where all nodes ship to a single “master” 

node can, therefore, be easily implemented – we just need to assign the master node id to both 

owner fields in the file’s region structure for every node but the master. 

                                                 
4 Unfortunately there are some stability problems with this feature, leading to FS crashes... 
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In the current prototype, the following features, although useful, are not yet implemented; 

sorted from easiest to the more difficult to implement, they are: user-assigned master (at open 

time, with a flag, or at runtime, with a call; probably ioctl  or fcntl ); master re-election 

(required if the current master retires); automatic resizing of regions (based on file access 

pattern discovery, “the system” could automatically lay-out/remove regions so that a route to 

pCFS’ performance features could be offered to an application that does not use regions – see 

below). 

20.4.3 pCFS access without regions 
As explained in 16.3, to perform file access with pCFS the user (programmer) may define 

non-overlapping regions for each process; when he/she chooses not to specify regions in a 

file, data shipment is used to perform file access. To prepare for data shipment, in the ongoing 

implementation, the first node to perform a write  is elected the master node; a region 

covering the whole file is created automatically (the region also covers file growth, as the 

region end is set to infinity). Subsequent nodes accessing the file also have regions covering 

the whole file and having the owner fields pointing to the master automatically created for 

them. Non-master nodes do not, of course, cache data. 

21 pCFS kernel modules 

21.1 Introduction, function naming and implementation notes 

As shown in Fig. 20.1, the current pCFS prototype is built around a set of two kernel 

modules per-node (pCFSk and pCFSc), plus a single user-level demon for the whole cluster. 

For ease of reference we’ll insert a shortened description of each module’s purpose: 

• Each pCFSk maintains a “local database” that stores information about per-node relevant data 

structures, and opens a TCP stream to pCFSd, which is handled there by a separate thread. 

• pCFSd maintains a “global database” of cluster-wide relevant data structures; when necessary, 

pCFSd sends invalidation messages to the pCFSc modules in selected target nodes. 

• Each pCFSc maintains a per-node buffer for data that must be shipped to/received from other 

nodes. Furthermore, when requested to do so, pCFSc maintains coherence by flushing out and/or 

invalidating selected pages from the node’s Linux page cache. 
 

Code inserted (patched) into GFS’ kernel module bridges GFS with pCFS, as it calls 

pCFSk functions which, in turn, interact with pCFSd (which may then interact with pCFSc). 

In brief, naming rules are: 

• Code patched into GFS is referred to as the “pCFSm layer”, and macros and functions will bear 
the pCFSm_ prefix. 

 

• Functions exported to GFS will be prefixed with pCFSm_; if a function interacts with other 
modules (including pCFSd) it will be also tagged with the clst_  prefix. 
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21.2 Patching GFS: pCFSm code 

Currently, the pCFSm layer implements two macros: 

#define PCFSm_IS_FILE_PCFS(file) \ 
((file)->f_flags & (O_CLSTXOPEN|O_NODEXOPEN|O_CLSTS OPEN)) 

 
#define PCFSm_IS_GLOCK_PCFS(glock) \ 

pCFSk_is_ginode_pCFS((&((struct gfs_inode *) \ 
        ((glock)->gl_object)) ->i_num)->no_formal_i no) 

 

Their purpose is: 

  pCFSm_IS_FILE_PCFS()   Tests whether the VFS file  object refers to a pCFS file. 

  pCFSm_IS_GLOCK_PCFS() Tests whether the GFS glock  (is attached to a ginode  that) 
refers to a pCFS file. 

 

21.3 The pCFSk module interface 

The list of pCFSk module’s exported functions is: 

int pCFSm_clst_open(uint64_t dinode, unsigned int o _flags); 

int pCFSm_clst_prepare_close(uint64_t dinode); 

int pCFSm_clst_commit_close(uint64_t dinode); 

int pCFSm_clst_region_in(uint64_t dinode, loff_t st art, loff_t end, 
                           unsigned int flags); 

int pCFSm_clst_region_rm(uint64_t dinode, loff_t st art, loff_t end, 
                            unsigned int flags); 

int pCFSm_clst_region_vrfy(unsigned int rw, uint64_ t dinode, loff_t offset, 
                             loff_t len, int *owner L, int *ownerR); 

int pCFSm_clst_region_segments(struct file *file, s ize_t size,  loff_t *offset, 
                            int retval, loff_t segm ent[]); 

size_t pCFSm_clst_shipFrom(uint64_t dinode, const c har *buf, size_t size, 
                             loff_t *offset, int ow ner); 

size_t pCFSm_clst_shipTo(uint64_t dinode, const cha r __user *buf, size_t size, 
                           loff_t *offset, int owne r); 

int pCFSm_is_ginode_pCFS(uint64_t dinode); 
 

Most of the names are self explanatory; however some do deserve further description: 

pCFSm_clst_region_vrfy()  checks a pCFS dinode  for the existence of a region which will 
cover a read (rw == 0 ) or write (rw == 1 ) access starting at offset  and with a length 
of len . 

 
pCFSm_clst_region_segments()  is called after _region_vrfy()  to compute the data 

ranges that must be handled by the local node and/or its left and/or right neighbours. 
 
pCFSm_clst_shipFrom()  retrieves from the owner  node an amount size  of data stored in 

the file specified by dinode , starting at offset  and move it to the user’s buffer pointed to 
by buf . 

 
pCFSm_clst_shipTo()  forwards to the owner  node an amount size  of data stored in the 

user’s buffer pointed to by buf ; the data will be written in the file specified by dinode , 
starting at offset . 

 
pCFSm_is_ginode_pCFS() checks if dinode  represents a pCFS file (i.e., a file that was 

opened with a pCFS option flag). 
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21.4 The pCFSc module interface 

The pCFSc module doesn’t export functions to GFS; it handles messages from other nodes 

(in the current prototype forwarded via pCFSd) to perform cache coherency invalidations and 

data shipping operations. 

21.5 The pCFSd daemon architecture 

The overall architecture and major processing steps performed by the pCFSd daemon are 

depicted below: after establishing connections with all nodes, it’s up to each thread to 

communicate with its partnering pCFSk through its TCP channel (genCltSkt  array); when 

required, a thread may send invalidation requests to pCFSc modules (through TCP channels 

in the invCltSkt  array) in selected target nodes. Access to global shared data is infrequent, 

and serialised through a single mutex. 

 

Figure 21.1 pCFSd daemon architecture 
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21.6 Selected examples of interaction among pCFS’ components  

For each function we now briefly introduce some information on the interaction between 

pCFSk, pCFSc and pCFSd; we also flag any inconsistencies with POSIX on our error returns. 

For more details about the wire protocol (tags, packet structures, etc.) see section 22, further 

down. 

21.6.1 Opening a pCFS file 

int pCFSk_clst_open(uint64_t dinode, unsigned int o _flags); 

 

Figure 21.2 Opening a pCFS file 

Processing overview: In the node issuing the open() , a check is performed at the pCFS_opens  

table to see if the file was already open (found a matching dinode id in the table); if found, verify that 

the requested open is compatible (check o_flags  against the stored mode), else drop out with 

ETXTBSY. If this is the first open, check for available space in the table; if full, return with EMFILE. If 

no error has occurred, forward the request to pCFSd and await a reply. At the daemon, the request is 

processed, and its global pCFS_opens  table is searched for a dinode id match; if none found, a new 

entry is created (if the table is full, ENFILE ); if a compatible entry is found processing continues, else, 

ETXTBSY is returned to the client. If no error has occurred, a reply containing the current owner and 

sharer bitmap sets is sent back to the node. Back at the node’s pCFSk, if an error has occurred return it 
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to the user, therefore denying the open()  else update the local entry and return zero. Note: To flag an 

incompatible open, we have resorted to ETXTBSY, which is used in standard POSIX to signal an 

attempt to remove an executable file while it is being executed; and we resorted to ERPROTO to 

indicate either communication protocol errors or inconsistencies between the daemon and the kernel 

modules (which indicate bugs, as they should not arise). 

21.6.2 Insert a region in a pCFS file 

int pCFSk_clst_region_in(uint64_t dinode, loff_t st art, loff_t end, 
   unsigned int flags); 

 

Figure 21.3 Insert a region in a pCFS file 
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else, insert the region structure and report back the current file owner and sharer bitmaps. Back at the 

node’s pCFSk, if an error has occurred return it to the user, else update the local entry with the updated 

information provided by the daemon and return. Note: As previously, we resorted to ERPROTO to 

indicate communication errors and inconsistencies between the daemon and the kernel modules (which 

indicate bugs, as they should not arise); however, we decided that if an attempt to insert a region in a 

non-open file has reached this level (it should have been detected at VFS or GFS layers), it should be 

reported as ENODEV, used in POSIX to signal an attempt to access an inexistent device. 

21.6.3 Remove a region from a pCFS file 

int pCFSk_clst_region_rm(uint64_t dinode, loff_t st art, loff_t end, 
   unsigned int flags); 

 

Figure 21.4 Remove a region from a pCFS file 
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found, return ENOLCK; if inadequate flags were used, return EINVAL. Otherwise, flush out any data to 

disk, forward the request to the pCFSd and pend, awaiting the reply. At the daemon, perform (1) and 

(2) as above but, for lookup, use {node, pid, start, end} . If not found, a consistency error is 

logged and reported back; else, remove the region structure and prepare a successful return packet, 

together with the updated owner and sharer sets. If the client pCFSk has told us (pCFSd) that data has 

been modified, we send inv_req  messages to all sharers to invalidate any bytes in this region they 

may have cached with read-ahead. Back at the node’s pCFSk, if an error (other than inconsistency) has 

occurred it is reported to the user; inconsistency errors are logged, but normal processing continues: the 

region structure is removed. A return code signals what the closing process was: zero, a reader; one, a 

writer. 

21.6.4 Close a pCFS file 

int pCFSk_cluster_close(in: dinode, node, pid) 

 

Figure 21.5 Close a pCFS file 

Processing overview: In the node attempting to close the file, (1) find the entry for dinode in the 

pCFS_opens  table (if not found return with ENODEV) and (2) assert that its region lists do not 

contain entries for this process. If (2) fails, report a “must remove regions before closing” error 

(currently not implemented; we will opt for the standard approach of automatically remove all regions 

for that process when closing a file). If ok, the close request is forwarded to the pCFSd and we pend, 

awaiting the reply. At the daemon, perform (1) and (2) as above; if failed return the appropriate error 
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reply packet. If this wasn’t the last user of the file, the current owner and sharer sets are reported back 

to the issuing node’s pCFSk; else, the entry is removed from the daemon’s global pCFS_opens  table. 

Back at the node’s pCFSk, if errors have occurred, they are logged, but normal closing continues; if 

this was the file’s last user either in the node or clusterwide, the entry is removed from the node’s local 

pCFS_opens  table. 

21.6.5 Shipping data to/from an owner node 

size_t pCFSk_clst_shipTo(uint64_t dinode, const cha r *buf, 
  size_t size, loff_t *offset, node_t owner); 
 

size_t pCFSk_clst_shipFrom(uint64_t dinode, char *b uf, size_t size, 
       loff_t *offset, node_t owner); 

 

 

Figure 21.6 Shipping data to/from an owner node 

Processing overview: (1a) In the requestor node, build a packet specifying we want to ship size 

bytes to/from node owner, to be stored at/retrieved from offset, and send it to intermediary pCFSd. (2a) 
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time a data packet and send it to pCFSd. (2b) At the daemon, send the packet to its final destination: the 

pCFSc module in the node owner . (3) The pCFSc module at the node: a) for a SHIPW receives the 

data from the pCFSd and merge it into the node’s Page Cache, linking it to the inode’s dirty list; or, b) 

for a SHIPR retrieves the data from the file (using VFS functions that either get it from the cache or 

force a disk read), packs it into a data packet, and sends it to the intermediary pCFSd. (2c) Pass the 

reply, OK or DIY , back to the pCFSk requestor, which will either return the number of bytes processed, 

or zero, to flag the pCFSm layer to process the request locally. 

21.6.6 Closing remarks 
Among the details we’ve chosen to omit, we include communication and protocol errors: 

currently, no attempt is made to recover from communication errors – if a TCP connection 

aborts, for some reason, we do not try no re-open it; and any protocol error among two 

parties, e.g., pCFSk and pCFSd, is flagged with EPROTO and may be propagated up to the 

user – but processing may continue, in some cases. Finally, the total amount of code 

(comments and blank lines included) for this set of independent modules is 4470 lines (coded 

in C); its per-module breakdown is reported below: 

 

include files pCFSc pCFSk pCFSd 

user-level kernel-level common (to user & kernel) 

N.A. 229 256 
707 1430 1848 

Table 21.1 Lines of code breakdown for each module  

22 The pCFS wire protocol 

22.1 Introduction 

The wire protocol refers to data formats used in “conversations” among pCFSk, pCFSc, 

and pCFSd. It is quite simple and includes a set of one-byte commands that are used to tag 

packets, and three request packet structures: one for inode operations, another for region 

operations, and a third one for coherency and shipping operations. Two reply packet formats 

are used: one for region operations and another for every other case. 

22.2 Wire protocol for pCFS inode table management 

The “operation request” structure, op_req , is used in requests sent from pCFSk to pCFSd 

for inode operations; although there are only two functions in the pCFSk interface, one for the 

open and another for the close, at the wire protocol there are two separate “open operations”: 

IOPEN, for the very first open, and UOPEN, for subsequent opens of the same file (inode). 
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The structure of the operation request packet, op_req  is 

struct op_req { 
  char          cmd; 
  uint64_t      dinode; 
  unsigned int  mode; 
  unsigned int  node; 
}; 

 

and the valid “commands” (tags) are 

#define IOPEN  'I' 
#define UOPEN  'U' 
#define CLOSE  'C' 

 

where 

  cmd  Tags the packet for open, update or close, as defined above. 
  dinode  Identifies the on-disk (and in-core, as they are the same) file inode. 
  mode  Reserved (currently unused). 
  node  If used, serves only for “double-checking” purposes as the TCP stream 

already identifies the intervening node(s). 
 

The operation reply packet structure is 

struct op_rep { 
  char          cmd; 
  uint64_t      dinode; 
  int           mode; 
  node_t        owner; 
  unsigned long rdr_bmap; 
  unsigned long wtr_bmap; 
}; 

 

where 

  cmd  Tags the packet as a reply for an open, update or close. 
  dinode  Identifies the on-disk (and in-core, as they are the same) file inode. 
  mode  Zero for “no error, acknowledge”; positive when information is being 

returned; negative for error codes. 
  owner  If non-zero, carries the id of the inode’s owner. 
  rdr_bmap  Carries the bit map of the node ids of read sharers for the file. 
  wtr_bmap  Carries the bit map of the node ids of writer sharers for the file. 
 

In the reply, cmd and dinode  fields are used for double checking, only. In the prototype 

every interaction (message-reply) is synchronously run to completion, and cannot be 

overlapped with other messages, so there is no need, strictly speaking, of a cmd and dinode 

fields in the reply packet, as there is no need for sequence numbers. 

22.3 Wire protocol for region management 

The region request structure, region_req , is used in requests sent from pCFSk kernel 

modules to the pCFSd daemon for region insertion and removal, while the region_rep  

structure is used in replies sent back from pCFSd to pCFSk. The structure of the region 

request packet, region_req  is 
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struct region_req { 
  char cmd; 
  uint64_t dinode; 
  struct pCFS_region region; 
}; 

 

And the pCFS_region  structure is 

struct pCFS_region { 
  loff_t        start; 
  loff_t        end; 
  node_t        node; 
  pid_t         pid; 
  node_t        ownerL; 
  node_t        ownerR; 
  unsigned int  flags; 
}; 

 

Valid commands are (where “user” is a synonym for region): 

#define IUSER  'i' 
#define RUSER  'r' 

 

where 
  cmd  Tags the packet for insert or removal, as defined above. 
  dinode  Identifies the on-disk (and in-core, as they are the same) file inode. 
  start  Byte offset where the region starts. 
  end  Byte offset where the region ends. 
  node  If used, serves only for “double-checking” purposes as the TCP stream 

already identifies the intervening node(s). 
  pid  The pid requesting the region. 
  ownerL  Not used in requests. 
  ownerR  Not used in requests. 
  flags  The flags argument in the user fcntl()  call. 
 
 

The reply packet structure for region operations is 

struct region_rep { 
  char          cmd; 
  uint64_t      dinode; 
  node_t        ownerL; 
  node_t        ownerR; 
  unsigned long rdr_bmap; 
  unsigned long wtr_bmap; 
}; 

 

where 

  cmd  Tags the packet as a reply for a region insert or removal. 
  dinode  Identifies the on-disk (and in-core, as they are the same) file inode. 
  ownerL  If non-zero identifies a left owner for the first page of the region inserted. 
  ownerR  If non-zero identifies a right owner for the last page of the region inserted. 
  rdr_bmap  Carries the bit map of the node ids of read sharers for the file. 
  wtr_bmap  Carries the bit map of the node ids of writer sharers for the file. 
 



 

162 

22.4 Wire protocol for coherency management and data shipping 

The cc_req  request packet may be used for two different purposes: to send invalidation 

requests from the pCFSd daemon to a subset of nodes via their pCFSc kernel modules; and to 

perform data shipment operations, i.e., moving data from one node to another. 

The cc_req  structure is 

struct cc_req { 
  char          cmd; 
  uint64_t      dinode; 
  node_t        node; 
  loff_t        start; 
  loff_t        end; 
}; 

 

Valid commands are: 

#define INVPG  'X' 
#define SHIPR  'R' 
#define SHIPW  'W' 

 

where 
  cmd  Tags the packet for cache invalidation or data shipping, as defined above. 
  dinode  Identifies the on-disk (and in-core, as they are the same) file inode. 
  node  Used only in data shipping operations to identify the target node. 
  start  Byte offset where the operation starts. 
  end  For invalidations, byte offset where the operation ends; for shipping 

operations, amount of data to be shipped. 
 

The structure for the reply packet for cache and data shipping operations is the same  

op_rep  structure used for pCFSk/pCFSd interaction, already described in 22.2. 

23 pCFS changes to GFS code 

23.1 Introduction 

We now list some GFS functions and the modifications we have introduced to implement 

the pCFS behaviour, using some of the pCFSm functions previously described. The list is, 

obviously, not complete; it includes a subset we believe is relevant to give the reader a better 

understanding of the prototype implementation. And keeping that in mind, we’ve chosen to 

present them in a particular order, starting with the gfs_write() . 

When reading the code, one should never forget how it enters execution: as the user calls, 

e.g., a write() , the flow of execution enters the kernel in sys_write() , then flows 

through the VFS layer code until it reaches GFS, in this case in the gfs_write() . 
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23.2 Selected code fragments 

23.2.1 Writing to a pCFS file 
The original gfs_write()  function is very simple, just 

/** 

 * gfs_write - Write bytes to a file 

 * @file: The file to write to   @buf: The buffer t o copy data from 

 * @size: The amount of data to write  @offset: The  current file offset 

 * 

 * Outputs: Offset - updated according to number of  bytes written 

 * 

 * Returns: The number of bytes written, updates of fset; errno on failure 

 */ 

static 
  ssize_t gfs_write(struct file *file, const char * buf, size_t size, loff_t *offset) 
{ 

return(__gfs_read(file, buf, size, offset, NULL)); 
} 

This is, indeed, a very simple piece of code and does not even allow us to show one of the 

major changes of pCFS, namely the one were the exclusive lock on the inode is replaced by a 

shared one, as pointed out in sections 19.4.3 and 20.3.3.4. In fact, that particular change is 

buried very deep into GFS code. But, as we will see below, this simple function has, 

nevertheless been extensively changed… Modifications to support coherent writes across 

write shared “frontier” pages (see Fig. 20.2) – which, fortunately, also provide us with a 

simple way to support data shipping – turn gfs_write()  into a more complex function: 

static 
  ssize_t gfs_write(struct file *file, const char * buf, size_t size, loff_t *offset) 
{ 

struct inode *inode = file->f_mapping->host; 
struct gfs_inode *ip = get_v2ip(inode); 
uint64_t dinode; 

loff_t segment[3]= {0,0,0}; 
int ownerL, ownerR, retval, retcode; int skew = 0; 

 
   /* Take the normal GFS path */ (1) 

if ( !IS_FILE_PCFS(file) ) 
return(__gfs_write(file, buf, size, offset, NULL));  

   /* Downwards for pCFS file with region locks or in D-S mode */ (2) 
dinode= (&ip->i_num)->no_formal_ino; 
retval= pCFSm_clst_region_vrfy(FLOCK_VERIFY_WRITE, 

                        dinode, *offset, (loff_t)si ze, &ownerL, &ownerR); 

if (retval < 0) return retval; 

   /* If we don’t have neighbours, process it local ly */ 
if (!retval)  (3) 

return(__gfs_write(file, buf, size, offset, NULL));  
 
   /* We are D-S or have neighbours */ 
 if ( retval == O_DATA_SHIP ) 
   segment[0]= size; 
 else 

  pCFSm_clst_region_segments(file, size, offset, re tval, segment);  (4) 
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   /* Left Owner? failure, try recovery through loc al GFS write */ 
if (segment[0]) { (5) 

          retcode= pCFSm_clst_shipTo(dinode, (const  char __user *)buf, 
                                        segment[0],  offset, ownerL); 

if (retcode != segment[0]) 
segment[1]+= segment[0]; 

else { 
skew= segment[0]; 
*offset += segment[0]; 

} 
} 

   /* Local write? If failure, try recovery through  local (GFS) write */ 
if (segment[1]) { (6) 

retcode= __gfs_write(file, buf+skew, segment[1], of fset, NULL); 

if (retcode != segment[1]) { 
PCFS_INFO("Failure in __gfs_write"); 
return retcode; 

} 

skew+= segment[1]; 
} 

   /* Right Owner? If failure, try recovery through  local (GFS) write*/ 
if (segment[2]) { (7) 

        retcode= pCFSm_clst_shipTo(dinode, (const c har __user *)buf+skew, 
                                     segment[2], of fset, ownerR); 

if (retcode != segment[2]) { 
retcode= __gfs_write(file, buf+skew, segment[2], of fset, NULL); 
if (retcode != segment[2]) { 
   PCFS_INFO("Failure in __gfs_write recovery"); 
   return retcode; 
} 

} 
} 

return size; 
} 

Comments to the modified gfs_write()  code: 

(1) The overhead of the modifications to the GFS regular write is, as intended, 

negligible: it costs a few variable assignments and the evaluation of the if statement 

and its macro, which accesses local variables.  

(2) For pCFS files, we check with pCFSm_clst_region_vrfy()  that the write was 

executed in data shipping mode or within a valid region. We get a zero or positive 

return: zero indicates we have no neighbours owning pages that we want to access; 

we get a 1 if there is a owner for the leftmost (lowest index) page in our region, and a 

2 if there is a owner for the rightmost (highest index) page in our region; finally, we 

get a 3, if we have both left and right neighbours owning “our” frontier pages. This 

function is executed against purely local data – it does not access the daemon. 

(3) If we have no neighbour owners, we perform the local, GFS regular write. 

(4) When we have neighbours, pCFSm_clst_region_segments()  – again, 

executed against local data – is used to break up the size into a maximum of three 

portions: one to be shipped to a left owner, another to be handled by the local node, 

and the remaining to be shipped to a right owner (of course any – but not all – of the 

above mentioned portions may be zero). The writes will be handled at (5), (6) and 

(7), below. An attempt is made to recover any failed shipping with a local write. 
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(5) We ship segment[0]  bytes directly from the user buffer to the left neighbour, thus 

skipping the page cache in the local node (in the owner node, data is injected into its 

page cache); if successfully, we update the pointer to the user buffer; else, we try to 

recover by adding the amount of data we should have written to the next segment’s 

duties. 

(6) We take segment[1]  bytes from the user buffer and perform a local write; upon 

failure, we return the error to the user. 

(7) We ship segment[2]  bytes from the user buffer (again, skipping the page cache) 

to the right neighbour; upon failure, we try to recover with a local write and, if we 

fail again, we return the error to the user. 

23.2.2 Reading from a pCFS file 

The original gfs_read()  function (“header” comments removed) is also very simple: 

static ssize_t gfs_read(struct file *file, char *bu f, size_t size, loff_t *offset) 
{ 

return(__gfs_read(file, buf, size, offset, NULL)); 
} 

Interaction among writers and readers, even when they share non-overlapping portions of 

the same page is guaranteed by the invalidation mechanism, as explained in 21.3.1; so, we 

should not need to change the gfs_read()  function.  Change is, in fact, required, but not to 

support interactions among readers and writers; it is necessary to support sharing among 

neighbour writers, as the solution adopted for the gfs_write()  above skips the local 

node’s page caches for file segments that are shipped. Therefore, to support reading of up-to-

date data in these frontier segments, a node may have to request it “back” from the owner. 

The majority of the code is quite similar to the one in gfs_write()  and could be 

obtained just replacing calls to write with calls to read; we choose not to duplicate it here, but 

instead focus on one important difference: a read can take place against a read (F_RDLCK) or 

write (F_WRLCK) region, so we have to check for both. The (rather) stripped down code is: 

 
static ssize_t gfs_read(struct file *file, char *bu f, size_t size, loff_t *offset) 
{ 

... 
int rw= FLOCK_VERIFY_READ; 

 
 

/* Take the normal GFS path */ 
        if ( !IS_FILE_PCFS(file) ) 
          return(__gfs_read(file, buf, size, offset , NULL)); 
 

/* Downwards for pCFS file with region locks or in D-S mode */ 
        dinode= (&ip->i_num)->no_formal_ino; 
 
retry:  (1) 
        retval= pCFSm_clst_region_vrfy(rw, dinode, *offset, (loff_t)size, 
                                        &ownerL, &o wnerR); 
        if (retval == -ENODEV) { 
          retval= 0; 
          PCFS_ERROR("pCFSm_clst_region_vrfy: dinod e not found"); 
        } else if (retval == -ENOLCK) { 
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          if (rw == FLOCK_VERIFY_WRITE) { 
            return retval; 
          } else { 
            rw= FLOCK_VERIFY_WRITE; 
            goto retry; 
          } 
        } 
 
   /* If we don’t have neighbours, process it local ly */ 
        if (!retval) 
          return(__gfs_read(file, buf, size, offset , NULL)); 
 
   /* We have neighbours */ 
        pCFSm_clst_region_segments(file, size, offs et, retval, segment); 
 
        skew= 0; 
 
   /* Left Owner? If failure, try recovery through local (GFS) read */ 
        if (segment[0]) { 
      ... 
        } 
 
   /* Local read? If failure, try recovery through local (GFS) read */ 
        if (segment[1]) { 
      ... 
        } 
 
   /* Right Owner? If failure, try recovery through  local (GFS) read*/ 
        if (segment[2]) { 
      ... 
        } 
 
        return size; 
} 

The only comment to the modified gfs_read()  code fragment above is that the “retry 

loop” is executed as follows: to verify the read against a valid region, we first assume that a 

read region has been laid out and, therefore, execute a pCFSm_clst_region_vrfy  with a 

FLOCK_VERIFY_READ search option; if we don’t find a matching region, we “upgrade” our 

option to FLOCK_VERIFY_WRITE and retry the search; only a second failure will lead to 

the conclusion that no valid region exists and the read must be aborted.  

23.2.3 Removing a region from a pCFS file 
As described before (see sections 21.3.3.2, 21.3.3.5, 22.6.2), pCFS regions can be laid out 

and removed using the POSIX lock options of fcntl() . As it happens with other user calls, 

fcntl() l drops through sys_fcntl()  and, along the way, executes the GFS function 

gfs_lock() , sketched below: 

 
static int gfs_lock(struct file *file, int cmd, str uct file_lock *fl) 
{ 

struct gfs_inode *ip = get_v2ip(file->f_mapping->ho st); 
struct gfs_sbd *sdp = ip->i_sbd; 
struct lm_lockname name = { .ln_number = ip->i_num. no_formal_ino, 

      .ln_type = LM_TYPE_PLOCK }; 

   /* pCFS begin */ 
struct gfs_glock *gl = ip->i_gl; 
struct gfs_glock_operations *glops = gl->gl_ops; 
int retcode; 

   /* pCFS end */ 
 
   /* Check for conflicts on local node and possibl y wait */ 

... 
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if (!IS_FILE_PCFS(file)) { (1) 
if (IS_GETLK(cmd)) 

return gfs_lm_plock_get(sdp, &name, file, fl); 
else if (fl->fl_type == F_UNLCK) 

return gfs_lm_punlock(sdp, &name, file, fl); 
else 

return gfs_lm_plock(sdp, &name, file, cmd, fl); 
 } 
 
   /* pCFS begin */ 

if (IS_GETLK(cmd))  (2) 
    return gfs_lm_plock_get(sdp, &name, file, fl); 
else if (fl->fl_type == F_UNLCK) { (3) 
    retcode= gfs_lm_punlock(sdp, &name, file, fl); 
    if (!retcode) { 

retcode=pCFSm_clst_region_rm(ip->i_num.no_formal_in o, 
   fl->fl_start, fl->fl_end, (unsigned int) fl->fl_ type); 

             if (glops->go_sync) && (retcode == WTR ) (4) 
    glops->go_sync(gl, DIO_DATA); 
else 
    PCFS_ERROR("REGION Syncing, but no glops->go_sy nc"); 

    } 
} else { 

         retcode= gfs_lm_plock(sdp, &name, file, cm d, fl);  (5) 
         if (!retcode) { 

retcode=pCFSm_clst_region_in(ip->i_num.no_formal_in o, 
                                  fl->fl_start, fl- >fl_end, 
                                  (unsigned int) fl ->fl_type); 

} 
} 

return retcode; 

   /* pCFS end */ 
} 

Comments to the modified gfs_lock()  code: 

(1) The original GFS code is bounded within this if, for non-pCFS files.  

(2) For pCFS files, we check for a “get region” command, flagged with F_GETLK, using 

the standard GFS code, as in (1). 

(3) When removing regions from pCFS files, after the gfs_lm_punlock()  we 

trigger pCFSm_clst_region_rm()  to a) remove the region from local and 

global pCFS “databases” and b) send invalidation messages to other nodes. 

(4) Then, we force a flush of the file (inode); this is the final step to guarantee 

consistency with other nodes: as they access bytes within this (removed) region, they 

will be forced to get them from disk (or from owner nodes that get them from disk). 

Notes: a) the go_sync()  is, for regular files, mapped to inode_go_sync()  and 

tests if the inode is dirty and, after flushing, clears the dirty flag; b) this version was 

not tested against metadata changes (and does not flush them). 

(5) Similarly, when inserting regions into pCFS files we start by using the regular GFS 

function, i.e., gfs_lm_plock() , and then pCFSm_clst_region_in() , to 

insert the region into local and global pCFS “databases”. 
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23.2.4 Closing remarks 
The amount of code which has been added (and/or modified) to the GFS “main” module is 

quite small; the current version, which has a fair amount of lines used for debugging and/or 

are commented out waiting for its inclusion in newer revisions, has an excess of 470 lines 

when compared with GFS’ original sources. The breakdown is as follows: 
 

 Original GFS 
version 

pCFS modified 
version 

Number of code files (.c) 39 Unchanged 

Number of include files (.h) 42 + 1 

Total number of lines (.c) 33425 + 410 

Total number of lines (.h) 5523 + 60 

Table 23.1 Breakdown of the pCFS changes to GFS code 

 



 

 

Part VIII: 

Benchmarking pCFS 
 

 

 

In this Part we benchmark pCFS against “plain” GFS and other well know file systems 

such as NFS and PVFS (where both the “regular” configuration, with internal disks, and the 

highly available configuration, with disk volumes provided by an external disk array, were 

benchmarked); these benchmarks go beyond the usual set of bandwidth metrics and also 

account for CPU consumption. 
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24 Characterising the infrastructure 

24.1 The test bed infrastructure 

The infrastructure used for the tests was already portrayed in Fig. 16.2 and is reintroduced 

again for ease of reference. 

 

Figure 24.1 Test bed infrastructure 

The infrastructure was completely isolated and dedicated to testing; nothing else was 

running in the nodes except for the Munin [Munin] data collection agents (munin-node ) 

which were configured to gather just the information needed for the reports; each node was 

polled once every minute, and reporting/graphing was carried out in another node, not 

represented in the figure, so the load introduced was negligible. When reading the CPU usage 

graphs, these are 2-CPU nodes with hyper-threading on, therefore Linux counts 4 CPUs per 

node; thus, if the value reported for, say, “system time” is 20% it should be adjusted to 10%. 

24.2 Networking: the LAN infrastructure 

 Network testing focused on determining the highest bandwidth available from the hosts’ 

integrated Broadcom 5703 NICs, and checking if the SMC 8624T Gigabit Ethernet switch 

would be able to support all ongoing TCP streams without undue contention; tests were 

carried out with the netperf  network performance benchmark1 as follows: 

• We configured each even numbered node as a server, and each odd numbered node as a client. 

• Each client’s bandwidth was separately measured; then, it was again measured while other 

clients were also concurrently accessing their servers. 

• Each test ran for 10 minutes, and was repeated three times. Message size was 16 KB (the Linux 

version of netperf  does not allow this parameter to be changed). 

                                                 
1 http://www.netperf.org 
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The set of figures below is self explanative, but we nevertheless add a few comments: first, 

and foremost, Munin-reported results are within 5% of the values reported by netperf  (we 

used netperf –c –C –l 600 –H hostname) so we decided to include Munin graphs 

and dispense the netperf  output. 

In summary, we have, for the “slow” (2.66 GHz) nodes a TCP bandwidth of 975.5 Mb/s, a 

CPU usage of 37.6% (system: 19.81, softirq: 55.36, after adjustment to 2 CPUs), and a rate of 

16.2 k (thousand) interrupts per second issued by the NIC (eth0). For the “fast” (3.06 GHz) 

nodes (not shown), both the TCP bandwidth, at 975.4 Mb/s, and the interrupt rate, at 16.9 k 

interrupts per second, are quite similar, the difference being the CPU usage, at 27.9 %. 

 

                 

Figure 24.2 TCP bandwidth testing with netperf 

We decided to experiment with the so called Jumbo frames, and we configured the nodes 

with 9000 bytes of MTU; the results were impressive: Munin reported a bandwidth increase 

to 999.04 Mb/s, and CPU usage decreased to 11.22% (system: 12.87, irq: 1.18, softirq: 8.38); 

the largest drop is, clearly, in the softirq usage.  Interrupt rate at the controller, as expected, 

decreased to 11.5 k/s.  

To conclude, movement of data across a gigabit interconnect may be fast but quite 

expensive in CPU: the client alone can consume about 40% in a 2 CPU node; adding both the 

client and the server will easily double that figure. We note that testing all nodes concurrently 

showed no degradation introduced by the SMC 8624T Gigabit Ethernet switch at MTU 1500, 

and a very slight decrease at MTU 9000 (Munin reported 995.92 Mb/s). 
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24.3 Storage: the FC infrastructure and the disk array 

Storage infrastructure testing focused on determining the highest bandwidth available from 

the FAStT-200 storage array subsystem and, while doing it, assessing if the Brocade 

Silkworm FC switch would be able to support all six FC streams (6 FC adapters on 4 hosts 

“connecting” to two FC ports on the disk array) without undue contention; recall that the FC 

infrastructure uses the lowest rate available, at 1 Gb/s per FC port. 

To test the array, it is fundamental to understand its internal architecture; Fig. 24.3 shows 

the architecture of an entry-level Dell/EMC array, which is quite similar to the FAStT-200 

array we’re using, a dual-processor configuration. 

 

Figure 24.3 Entry level, dual storage processor disk array architecture 

In disk arrays, identical physical disks are usually grouped together in a larger virtual RAID 

volume; in entry-level disk arrays all disks that form a group are owned by a single storage 

processor (SP) – that is to say, only that processor can issue commands and transfer data 

to/from those disks (if that SP fails, then the other “takes over” the disk group). Thus when an 

application issues I/O requests targeting a RAID volume, requests may follow different 

routes, but they must reach the SP that owns the volume. 

Aggregation, at the array level, of disks into a RAID group usually increases bandwidth 

(BW) in the disks/cache/SP path (a disk is the “weakest link” in the chain, delivering a 

sustained BW which is clearly below the cache and/or SP’s capacity) and results in increased 

bandwidth to the host. However, the second SP is idle, and cannot be used. A common 

solution that allows both paths to be used in parallel is to aggregate devices at the host using 

“storage virtualisation” software such as Linux LVM; as an example, we could aggregate into 

a larger virtual LUN two RAID groups, one owned by “SP A” and another by “SP B”.  

For our array we want to assess several configurations, trying to get the best “base level” 

one to supports the typical HPC environment – large files, often accessed sequentially or in 

segmented mode (different processes accessing different regions). Tests were carried out with 

a program we have developed ourselves because widely used file benchmark applications 
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such as IOzone2, did not provide the features we needed, such as the ability of using direct I/O 

on raw devices. Our objectives were to find out: 

• The size of the cache for a storage processor (there are two in our FAStT-200) and consequently, 

its maximum bandwidth – achievable when accessing data cached in the processor. 

• If concurrently accessing both storage processors would degrade the above result. 

• The sustained bandwidth when reading from a disk (not from cache). 

• The CPU usage at the host. 

Our application performs as follows: a) it starts by sequentially reading 32 MB from a raw 

file (e.g., /dev/sdb) opened with O_DIRECT to bypass the Linux page cache; b) for each data 

size, a cache-fill run is executed – and this also touches the page-aligned pages in the user 

buffer, preparing it for the next page fault free runs; c) the file is re-read with a given “record 

size” – typically starting at 4 KB and going up to, at least, 1 MB – and each run is separately 

timed; finally, size increased by 1 MB (or 2 MB for larger file sizes) and the above steps are 

repeated. 

24.3.1 Single storage processor / Single drive tests 
The graph below was taken with a run against a single disk drive owned by one storage 

processor; it shows that although we can read at 75 MB/s with a 16 MB record size, this only 

happens for data sizes smaller than 46 MB; therefore we conclude that the size array cache 

seems to be around 45 MB (which is puzzling because the array’s product brief quotes a 

cache size of 88 MB). We also conclude that the sole disk drive used in the test is able to 

sustain sequential reading at 45 MB/s. 
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Figure 24.4 Cache size and the sustained read bandwidth (1 processor, 1 drive) 

                                                 
2 http://www.iozone.org 
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A set of Munin graphs was taken, and the iostat  graph, showing the read rate in I/O 

blocks per second, is now our primary source for information. Notice that the CPU usage is 

circa 1% (adding system: 1.55, irq: 0.03, and softirq: 0.69, and then adjusting for 2 CPUs); 

note – iowait  signals the amount of CPU that was not used because the process was waiting 

for I/O. Test results show (Fig. 24.5) that a maximum of 50k blocks were read per second and 

these triggered 440 interrupts per second in the Qlogic FC adapter (QLA-2200F). 

 

 

                

Figure 24.5 CPU and interrupt usage, and blocks/s in the array cache read test 

24.3.2 Dual drive tests 
To try to increase the array’s performance, two new configurations were tried: the first one 

with an array-based RAID-0 volume built from two disks – the volume was then assigned to 

one of the array storage processors, which was responsible for handling all I/O3; and a second 

configuration, where both SPs were used, each one owning a single drive – and, at the host 

level, these drives were aggregated into a single RAID-0 volume with the LVM software – 

therefore creating the opportunity for using both storage processors (and both disks) in 

parallel, in an attempt to increase the performance. 

                                                 
3 High-end (expensive) disk arrays do exist where more than one storage processor can issue I/O 

requests for the drives that make up a RAID volume; we do not know of entry level (inexpensive) 
disks arrays, such as the FAStT-200, that are capable of doing it. 
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BW of Array cache reads
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Figure 24.6 Read bandwidth for 1 SP, 2 disks in RAID-0 

The first configuration enables us to check the array’s ability to aggregate bandwidths of 

individual disks that make up an array-based RAID volume; the result is quite poor from the 

perspective of the sequential read test – when compared to the single disk case in Fig. 24.4, 

the bandwidth increased by a mere 12% to 50 MB/s. However, the I/O rate increased from 

50k to 70k blocks/s which is an indication that it may perform better in random read/write 

testing (graphs not included). 
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Figure 24.7 Read bandwidth for 2 SPs, 1 disk/SP. LVM stripes them in RAID0 

The above graphs confirm that the array does not degrade its bandwidth when using both 

SPs in parallel; in fact, recalling from Fig. 24.4 that each SP is able to deliver a maximum of 

75 MB/s from its cache, and each disk contributes with a sustained bandwidth of 45 MB/s, the 

array’s total is fine at 150 MB/s when reading from its cache(s) and a sustained 90 MB/s 

when reading from both disks in parallel. Notice that the graphs in Fig 24.8 below show the 
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CPU usage has increased slightly to 1.6% (system: 2.38, irq: 0.03, softirq: 0.82, halved for 2 

CPUs), while a maximum of 50k blocks read per second was reached for each disk drive. 

                 

Figure 24.8 CPU usage and I/O statistics for 2 SPs, 1 disk/SP and RAID0 LVM 

25 File System testing 

25.1 Introduction and rationale 

The rationale for the set of tests we will perform is the following: in a very crude statement, 

this work is about data (file) sharing among processes accessing “file services” that either run 

in the node, or in “remote” nodes; and furthermore, these services are geared towards 

performance, in a HPC-way. Therefore, tests will have to specifically target this environment. 

Carrying out short, easily reproducible, and yet meaningful tests is therefore of primary 

importance; but, regrettably, popular I/O benchmarking applications cannot be used here; as 

an example, we refer two widely used ones: Bonnie++ and IOzone; the former was designed 

to test file system performance of single node architectures. However, IOzone can be used on 

multiple nodes, and furthermore has an option, -W, briefly referred in the documentation as 

“lock files when reading or writing” [Cap+03]; unfortunately, looking at the program’s source 

code, we found that it uses fcntl()  calls with arguments to lock/unlock the file as a whole, 

so it is worthless for us. 

Another option is to use real applications; for example, an MPI application such as one we 

have developed in-house to process tomography images [Cad+08]: it accesses the image file 

in big, disjoint regions, for reading and writing. However, we cannot use it (yet) for pCFS 

testing, as usage of MPI over pCFS requires a new ROMIO driver (to cater for pCFS open 

extensions, etc.). We think that this is probably a small project (if documentation on the 

ROMIO internals does exist), but not doable within the timeframe of our work. 
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25.2 The “benchmarking application” 

So the only remaining option left was to develop our own benchmarking application, and 

that’s just what we have done. It is a fairly simple application, composed of a controller and a 

set of exerciser programs. 

The controller  runs in a node and accepts a string as its sole parameter; the string is a 

sequence of characters, S and P, which specifies that an exerciser should be fired (along with 

others) either sequentially (S), or in parallel (P). A few examples are: SSS, where three 

exercisers will be fired in sequence; SPPS, where a first exerciser will start and, when it 

finishes, two will be fired in parallel; then, when they are both done, a fourth one will be run. 

An exerciser is an I/O program that reads or writes; it accepts as arguments the file size, the 

buffer size, the total number of exercisers that will be used in the test, and its id number. 

There are six versions of the exercisers; we’ll just show the reader’s list, the writers being 

symmetrical to this one: 

• rdr , a simple reader 

• rdr-lck , a reader which performs full region locks before it starts reading 

• rdr-sml-lck , a reader which performs a per-record lock/read/unlock sequence 

When an exerciser is started, it registers with the controller and computes the offset where it 

will start accessing the file (using its id and the file length); then it lseek()  there and, if 

that’s the case, locks the region with a standard, byte-range fcntl()  call; finally, it waits 

for the controller’s command to enter the I/O loop. Upon termination, it reports to the 

controller  that its work is done, and waits for the termination command. 

This benchmark can be used to exercise a broad range of situations, such as modelling I/O 

behaviour from parallel applications; for example, when a MPI application performs I/O over 

NFS, the ROMIO library uses a per-call lock/read/unlock sequence that we can accurately 

reproduce with the *-sml-lck  exercisers. We can also, to some extent, simulate multiple 

file access by streaming over file regions that are very far from each other (the minus is that 

simulation over a single file does not properly exercise the metadata part: for reading, it may 

profit too much from metadata caching, while for writing there will be too much locking 

contention); however, in our tests, we do not try to simulate accesses to multiple files.  

25.3 Local file system testing: ext3 performance 

We also briefly tested local filesystem performance – namely, ext3 – as this is one of the 

most utilised local file systems, and the one we’re going to use to support both NFS and 

PVFS testing. We use a 32 GB ext3 filesystem on top of the best configuration we found from 

previous tests, i.e., a 64K striped LVM RAID-0 created with 2 physical disk partitions, where 

each disk was attached to a different storage processor; all tests were run over a 16 GB file. 
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25.3.1 Single process testing 
Our first experiments where conducted with a single process; this setting, particularly when 

reading, allows us to get a rough figure on the storage system’s I/O latency, one that can help 

us to understand single-process benchmarks that we will perform later on, such as when 

reading from a single NFS or PVFS client. Sustained performance was tested both for reading 

and writing, with both buffered access, through the page cache, and direct I/O; we also 

compared write-though (using the O_SYNC flag option on the open) with a fdatasync()  

flush triggered at the end of the write loop. Array-based write caching was disabled. 

ext3 BW for sequential, buffered I/O
(2 processors; 1 disk/processor; LVM host-based RAID-0)
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Figure 25.1 Buffered I/O in the ext3 striped volume. 

We can clearly see that the strategy Linux devised for buffered reads aims to deliver a 

smooth performance over a broad range of transfer sizes; this is a result of reading 8 pages 

(32 KB) for each new request, as configured in /proc/sys/vm/page_cluster 4, of 

read-ahead policies, and of fragmenting large reads; the net result is around 45 MB/s over the 

whole range. A write-through policy for each write()  call is definitively too expensive 

except for very large buffers, and periodic flushing with fdatasync()  seems a good 

compromise as it allows for write-combining of several pages5. 

On the other side Fig. 25.2 shows that for direct I/O no optimizations are attempted, so 

small-sized requests result in very low bandwidths, but very large requests do extract, at 85 

MB/s for reads, almost 100% of the sustained bandwidth available from the array. 

It is a disappointment that the highest bandwidth we could get from the ext3 filesystem 

(Fig. 25.1) is 50% below the measured array’s sustained performance (Fig. 24.7); we 

switched to ext2 and got the same results, so we looked for possible causes. VFS and the VM 

                                                 
4 Increasing this value brought no sizeable benefits. 
5 There has been some going forth and back in different kernel versions on whether flushing calls 

should wait that everything is committed to disk or immediately return after triggering the flush... 
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subsystem policies for the page cache, as mentioned above, do contribute for this decrease, 

but other possible explanations include the fact that ext2/3 implementations have been 

reported on several online sources to be below what can be achieved with other better 

performing file systems available for Linux, such as XFS [Chi+06]. 

ext3 BW for sequential, direct I/O
(2 processors; 1 disk/processor; LVM host-based RAID-0)
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Figure 25.2 Direct I/O in the ext3 striped volume. 

25.3.2 Multi-process experiments 
A set of experiments involving regular buffered I/O with multiple executing processes 

running on a single node was then performed, the main objective being the characterisation of 

the node’s behaviour when, e.g., the node is used as a file (NFS or PVFS) server and has to 

serve multiple concurrent requests – omitting the “network” and the DFS parts, just to see 

how the local file system and storage subsystem do perform.  

Segmented reading of a large file in a ext3 volume
Processes fired in parallel, reading distinct regions of the file
Disk is a LVM RAID0 with 2 array LUNs. Stripe size 64 KB
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Figure 25.3 Segmented reads for increasing number of concurrent readers 
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Three sets were run: multiple readers (Fig. 25.3), multiple writers (Fig. 25.4), and sharing a 

file among a single writer and multiple readers (Fig. 25.5), all accessing distinct, non-

overlapped ranges within the same file; as the number of actives processes is increased, so is 

the size of the “region” under access, in order to force each client to access a minimum of 

4GB to avoid any cache effects; for example, with one and two processes we use a 8 GB 

access range; with three processes, a 12 GB access range; and, finally, with four processes, a 

total of 16 GB are accessed. 

Segmented writing of a large file in a ext3 volume
Clients fired in parallel, writing distinct regions of the file
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Figure 25.4 Segmented writes for increasing number of concurrent writers 

Single writer/multiple readers over a large file in a ext3 volume
Clients fired in parallel, accessing distinct regions of the file. No locking

Disk is a LVM RAID0 with 2 array LUNs. Stripe size 64 KB
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Figure 25.5 Single writer / multiple readers, non-overlapping regions 
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In short, every segmented test shows that tried configuration with a single logical disk 

made up from an LVM based RAID-0 with two disk drives, one per controller – which fared 

well under the sequential tests – cannot, in general, cope with the demands of the segmented, 

large seek inducing access pattern, as exercised by these tests. With a single exception – the 

shared single writer/single reader test in Fig. 25.5 – all tests show that aggregated bandwidth 

decreases as the number of “tasks” (processes, here) increases. 

Explaining the anomaly, i.e., the single writer/single reader test faring much better than the 

rest is not something that we will pursue, as it requires a much deeper investigation (one 

cannot, however, fail to notice that in this test data is moved across a full duplex link in 

opposite directions). We are satisfied to get a baseline of a single node (in this case, a node 

with two HBAs) in order to get a better understanding of multiple node tests. 

26 NFS tests 

26.1 NFS test infrastructure 

For the NFS tests we have used the best configuration we could get from experiments 

carried out in the previous section: for the (single) server we used a node with two FC 

adapters, 4 GB memory and two 3.06 GHz Xeons; the disk array was configured with one 

disk per storage processor, and the disks were striped with LVM to create a single volume 

that is accessed through both adapters in parallel; the volume was formatted as an ext3 

filesystem and a single 24 GB file was created; finally, for the Gigabit adapter, we could not 

use Jumbo (MTU 9000) frames, as NFS simply hanged, so we had to resort to regular sized 

frames (MTU 1500). 

For all tests we used NFS v3; at the server the ext3 volume was mounted with noatime  

and exported with the async  option while, for clients, read and write sizes of 32 KB over a 

TCP client/server channel were used (rsize=32768, wsize=32768 ); furthermore, 

unless otherwise noted, all tests were run against 8 nfsd  daemons, and were performed three 

times to get averaged results (except when taking Munin CPU and other statistical data, where 

a separate single run was taken in order to get simple, uncluttered graphs). 

26.2 Reading from the server’s cache 

Full file scan tests were carried out to determine the bandwidth available to (seen by) 

clients when sequentially reading a file; first, we explored buffer sizes from 4K to 4 MB in a 

single client test reading from the server’s cache; the result is a bandwidth of 116 MB/s, quite 

close to the value we’ve predicted in section 9.3 (eq. 9.8) and to the GbE maximum, as 

measured with netperf ; we use it in Fig. 26.1 to denote the “upper limit” in bandwidth for 

our configuration. Keeping the amount of data accessed small enough to fit in the server’s 
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cache and increasing the number of clients results in an increased aggregate bandwidth, but 

the bandwidth seen by each individual client drops in proportion (not shown). 

26.3 Segmented reading 

The next test was to have each client accessing a distinct segment of the file: each one was 

given a different starting offset, and then proceeded sequentially reading its segment (all were 

disjoint from each other); tests were carried with cold client caches and with data either fully 

cached at the server (keeping the maximum offset accessed below 1 GB), or un-cached 

(forcing each client to access a 4 GB region – an exception is the test with only one client, 

where 8 GB were accessed). Fig. 26.1 reports our previous finding for the “small” 1 GB file 

fully contained in the server’s cache, plotted as an upper limit for bandwidth under NFS, 

together with tests accessing 8 GB (1 and 2 clients), 12 GB (3 clients) and 16 GB (4 clients). 

Reading a large NFS file
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Figure 26.1 Read scalability for segmented reads over a large file 

The graph above highlights two problems: the first one is the bandwidth for a single client 

which, at 26 MB/s, is circa 40% below the file system’s bandwidth capability, at 45 MB/s; the 

second one is that adding more clients, in this case with a segmented access pattern, results in 

very small improvements with diminishing returns every time. 

Loosing bandwidth with a single sequential reader is a consequence of both the application 

usage of synchronous reading (even taking into account the kernel’s read-ahead), i.e., a new 

read request is only submitted after data for the previous one has been delivered, and of the 

increased latency introduced by NFS over-the-network request/response. However, the 

application can be modified to break its synchronous read behaviour either through the use of 
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asynchronous (or non-pending) reads or via multithreading, which will usually result in an 

improvement in the per-client bandwidth. 

Increasing the number of clients will result in more aggregated bandwidth only if the 

server’s storage subsystem is able to withstand the client’s request rate – which, in this 

segmented access test, it doesn’t, as it is not able to deliver the number of IOPS (I/O 

operations per second) required to sustain the client’s request rates for this access pattern, 

because the array is already at its limit, 31 MB/s for local ext3 segmented accesses, shown in 

Fig 25.3. This may, however, be mitigated with an interposed global “intelligent” scheduler 

between clients and the server, such as aIOLi [Leb06]. aIOLi serialises, recombines, and 

reorders client requests in a way that, in the end, it will hopefully result in a more effective 

request sequence being delivered to the NFS server. However, aIOLi does not seem to be 

designed for situations where files are write shared between clients, and we could not find if it 

does handle request “re-combination” in the presence of file locks – something that has to be 

done if one uses NFS for shared file access, even in HPC applications – see below.   

26.4 Segmented writing 

26.4.1 Safe file sharing in NFS 
NFS writing by multiple clients raises several issues on data coherency. For ease of 

reference, we reproduce here a fragment from 11.3.3: “the only way we can guarantee strong 

cache consistency in NFS (versions 2, 3 and 4) is through the use of record (also called byte-

level) locking. Use of file locking in NFS requires some knowledge of its interactions with 

caching, otherwise the expected behaviour may not materialise”. The weak cache coherency 

model of NFS and the fact that MPI doesn’t provide user level locking primitives is the 

reason why, when accessing data with a MPI application over a NFS filesystem client nodes 

should be configured for synchronous writing with no data or attribute caching [Tha+04]. 

From the synchronicity point of view (to keep it simple and discuss only NFS v3) there are 

four possible combinations as we “configure” the client/server pair, ranging from both 

configured for asynchronous behaviour, to both being synchronous. On the server side (on 

/etc/exports ) we may use either the asynchronous option (async ) which immediately 

replies to clients as data is received on the server, leaving to the local filesystem/kernel the 

decision on when to flush data out, or use the synchronous (sync ) option which will only 

reply to the client after having committed the data to disk1. On the client side, we can request 

synchronous behaviour either globally, by specifying the “no attribute caching” (noac ) 

option on the mount command, or for selected files only, using the O_SYNC option on the file 

open. We have not tested for synchronous writing on the server side; it is well know that it 

                                                 
1 Things may be a little bit confusing, as to guarantee a true end-to-end synchronous operation one 

should also mount the server’s local filesystem with the sync  option. 
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leads to a large drop in performance, and we feel that its use is difficult to justify on the 

grounds of “protecting against data loss”: a typical application uses several related files 

making it difficult to recover when all but the one which was being written at the time of 

failure were successfully committed to disk; it is usually simpler to restore all files. 

Therefore, tests were carried out always with the server’s async  export option. In the next 

set of tests we investigate NFS’ write scalability by increasing the number of clients which 

are concurrently writing to the server; and we test both for the best possible performance case 

(but an unsafe one which my lead to lost updates) where each client caches data and metadata 

at will and writes asynchronously, and for the “correct” (safe) case, where we use “no 

attribute caching” (noac ) option together with locking. 

26.4.2 Unsafe file sharing: searching for maximum performance 
From the HPC point of view, write file sharing is not an infrequent case; as such, we will 

try to determine what we can achieve as “best case” in performance terms when writing a 

large file; we start from a situation where clients cache data and metadata at will and 

asynchronously write to the server (which also caches data and metadata, flushing it at will). 

As depicted in Fig. 26.2, a single client writes at 35 MB/s, i.e., using only about 1/3rd of the 

available GbE link bandwidth; increasing the number of clients results in minor variations in 

bandwidth usage, with three clients better than a single one, but both two and four clients 

performing worse than just one. Of course, one can only use this configuration when 

applications do not concurrently share files for writing (the presence of a single writer is 

enough to trigger coherency issues); in this case our multiple writers test is grossly unsafe, 

possibly suffering from lost updates. 

Shared writing over a large NFS file
Clients fired in parallel, writing distinct regions of the file
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Figure 26.2 Write performance: best values with an “unsafe” configuration 
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We have another anomaly, now in the test with three clients; again, we will not try to 

explain it, one reason for it being that these configurations are not usable in “real life” 

situations, as they do not guarantee proper file coherency. 

26.4.3 Coherent file sharing: client locks its entire region, writes, and then unlocks it 
Now we look at two different ways of using NFS to share a file among writers running in 

distinct clients without introducing coherency problems; in both cases clients mount the NFS 

filesystem with the noac  option and the applications use fcntl()  locks. 

Our first case looks at the performance we can get if clients access non-overlapping regions 

of the file in the following way: first, every client, using the standard fcntl()  call, locks 

the entire region that it will access; then, it sequentially writes over it. Our findings are 

reported in Fig. 26.3; the first thing we notice is that single client performance is 15 MB/s, a 

drop of almost 60% when compared to the single writer in Fig. 26.2, and a consequence of the 

combined action of locking and noac  resulting in a write through behaviour. As clients are 

added, aggregated bandwidth does increase, reaching a maximum of about 26 MB/s, a drop of 

about 30% from the “unsafe case” and a feeble usage of a Gigabit Ethernet link. 

Shared writing over a large NFS file
Clients fired in parallel, locking and writing distinct regions of the file
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Figure 26.3 Write performance with region locking 

26.4.4 Coherent file sharing: per record lock/write/unlock 
Our investigation on NFS’ performance continues with a simulation of what would happen 

when an MPI application writes over a NFS shared file – we keep the noac  option, use 

“regular” non-MPI processes (clients) which lock just the bytes they are going to write into, 

write, and finally remove the lock, as performed by the ROMIO driver for NFS. 
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Shared writing over a large NFS file
Clients fired in parallel, locking and writing distinct regions of the file
Client: "noac" mount. Server: export async. One lock/unlock per write
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Figure 26.4 Write performance with record locking 

The overhead of the locking protocol becomes quite clear when we look at Fig. 26.4: for 

small writes, the latency of the request-reply traffic exchanged with the server when the client 

asks for a lock (and releases it) becomes an important factor in the overall performance drop, 

particularly if multiple clients are involved; however, for record sizes above 64 KB the 

overhead becomes less important vis-à-vis the time necessary to complete the write, so the 

bandwidth is just slightly below the value we’ve got in the previous “big region lock” 

experiment on Fig. 26.3. 

26.4.5 File sharing with a single writer/multiple readers 
We conclude with a last experiment, one where we deal with a scenario that can be found 

in several parallel applications: file sharing among a single writer and non-overlapping 

multiple readers. It is an interesting test, as it may, under the right circumstances, be 

performed without forcing clients to use both locking and synchronous behaviour together 

(even if readers have stale data cached, they won’t access it); however, it requires the use of 

an invalidation protocol, one that would trigger invalidation of cached stale data – and this is 

something that does not exist in NFS. Therefore, we start with a full region lock/access/ 

/unlock test similar to the one reported in Fig. 26.3; the difference, now, is that tests are 

performed with a single writer and an increasing number of readers. As before, the use of 

fcntl()  locking and filesystem noac  mounting at the client guarantees correct behaviour 

at the expense of reduced performance.  
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Single writer/multiple readers over a large NFS file
Clients fired in parallel, locking and writing distinct regions of the file
Client: default (async) mount. Server: export async. Full "region" lock

0,00

10,00

20,00

30,00

40,00

50,00

4K 8K 16K 32K 64K 128K 256K 512K 1024K 2048K 4096K

Record Size

A
g

g
re

g
at

ed
 B

W
 (

M
B

/s
)

4 clients

3 clients

2 clients

Number
 of clients

 

Figure 26.5 Non-overlapping 1 writer/N readers with region locking 

26.5 Resource usage 

The last step of this investigation on NFS usage to support HPC-like file sharing is a set of 

measurements both on the clients and in the server, including NFS statistics (server), disk 

access statistics (server) and, both on clients and server, the CPU, Ethernet bandwidth, and 

interrupt usage - all taken for a single run of the four client writers test of Fig. 26.4. 

 

Figure 26.6 (a) Resource usage at the server: LAN, interrupts and CPU usage 
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Resource usage at the server shows us that the link is at 22 MB/s, about 1/5th of its full 

capacity, even with four concurrent clients; this is a consequence of the write-through policy 

applied when both noac  and locking are used. However, CPU usage is already at about 40%, 

i.e., 1/5th of the two CPUs in the server has already been consumed; recalling that netperf  

used 40% just to move data across the GbE, this roughly indicates that if more clients are 

added and/or a more benign access pattern is used (and the server can increase its debit) CPU 

will probably become a bottleneck before the server’s link bandwidth is exhausted. 

 

Figure 26.6 (b) Resource usage at the server: disk and NFS request rates 

 

Figure 26.7 (a) Resource usage at 2.6 GHz clients 
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Figure 26.7 (b) Resource usage at 3.06 GHz clients 

Figure 26.7 shows client resource usage; only two clients are shown, one representing 

nodes with 2.6 GHz CPUs while the other represents nodes with 3.06 GHz CPUs. It is 

obvious that, at a low rate of 5.5 MB/s (per client), CPU consumption is already becoming 

relevant to applications, at about 22 % – the exact amount depending on clock speed. 

26.6 Summing up NFS results 

Table 26.1 below summarises the NFS results; for shared write tests, only results with no 

client caching and “big region” locking are included. CPU usage represents the maximum 

usage over the whole 4K-4096K range, and occurs in the test with 4 writers. 

 Readers Writers 1 Writer/ N readers CPU usage 

KB 1 2 3 4 1 2 3 4 1 2 3 Clients Server 
4 26.1 29.5 28.8 29.0 14.6 21.7 24.0 25.6 39.2 30.7 29.3 

8 23.5 28.7 29.0 29.1 14.7 21.7 24.0 25.7 39.4 29.8 29.3 

16 22.6 28.6 29.0 29.0 14.7 21.8 24.0 25.6 40.0 29.9 29.2 

32 22.5 28.2 29.0 29.0 14.8 21.9 24.0 25.8 40.0 29.8 29.2 

64 22.3 28.2 28.9 29.1 14.8 21.9 24.1 25.9 40.2 29.8 29.1 

128 22.1 28.1 28.6 28.9 14.8 22.0 24.0 25.8 40.1 29.6 29.0 

256 21.8 27.9 28.5 28.8 14.8 22.2 24.1 25.8 39.6 29.6 28.8 

512 21.5 27.7 28.3 28.6 14.9 22.1 24.1 25.8 39.3 29.3 28.7 

1024 21.3 27.8 28.3 28.6 14.8 21.8 24.0 25.7 39.4 29.2 28.7 

2048 21.3 27.7 28.3 28.5 14.8 22.0 24.1 25.7 38.3 29.4 28.9 

4096 21.4 27.7 28.3 28.6 14.8 22.1 24.1 25.6 37.4 29.4 28.9 

45.2 39.3 

Table 26.1 Summing up NFS results 
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26.7 Concluding remarks 

Quite surprisingly, NFS testing was a nightmare; we had a NFS server problem with two 

kernel versions – Scientific Linux 5 2.6.18-8.1.15.el5 and CentOS 5.2 2.6.18-92.el5 – and, to 

fix them, we had to install version 2.6.18-92.1.18.el5. The problem was related to NFS writes: 

performance with a single writer was 2 MB/s before, and went up to 35 MB/s (Fig. 26.2) after 

the upgrade. Then, we had to abandon the single writer/multiple read tests with small locks 

as, when the reader client had already read about the same amount of data as the node’s 

memory size, the Linux kernel would sometimes invoke the kernel OOM (out-of-memory 

killer) and start killing processes, sometimes even hanging or crashing the system. Another 

problem we’ve found with the NFS server was that sometimes, after a client crash, it did not 

drop the locks left out by the client. 

When we changed the client kernels to the newer version (2.6.18-92.1.18.el5) we’ve re-run 

the tests of figure 26.4 for four clients, and found differences within 3%, which we deem not 

relevant; so all NFS client tests reported here use the older kernel version (2.6.18-8.1.15.el5) 

while for the NFS server we’ve used the newer version (2.6.18-92.1.18.el5). 

27 PVFS tests 

27.1 PVFS test infrastructure 

For the PVFS tests we defined a configuration with 6 nodes: two I/O servers, one metadata 

server (doubling as client), and four clients. For I/O servers, we tested two alternative 

configurations: one where I/O servers have internal disks (one disk per server) as shown in 

Fig. 27.1; and another where I/O servers use LUNs provided by the disk array, each server 

mounting its private volume, as shown in Fig. 27.2. 

 

Figure 27.1 PVFS test configuration: I/O servers with internal disks 

The reason behind the configuration with external disks, hereafter referred as HA-PVFS, is 

that I/O servers with internal disks cannot withstand node failures: if an I/O node fails, the file 

system becomes unavailable; with HA-PVFS, a “spare” node mounts the LUN “left over” by 

PVFS clients 

I/O servers  

MD server  

 
GbE 
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the crashed node, and restarts the PVFS daemons; clients can, after a brief pause, resume 

access to the file system. 

 

Figure 27.2 HA-PVFS test configuration: I/O servers with external disks 

For the I/O servers that access external disks, we have chosen “fat” nodes: each node has 

two FC adapters, two 3.06 GHz Xeons, and 4 GB memory; the disk array was configured as 

before, with one disk per storage processor, and the disks were striped with LVM to create a 

single volume that is able to be accessed through both adapters in parallel. The difference, 

now, is that we use one logical volume per server, so we are using a total of four disk drives. 

PVFS data stores were formatted as ext3 file systems and, over the PVFS filesystem, a single 

18 GB file was created with PVFS’ defaults: a 64K stripe and a round robin distribution 

which places every other stripe in a different I/O server. On the Gigabit adapter, we used 

regular frames so we may do a fair comparison against NFS. Testing was performed using 

version 2.7.0 and the POSIX interface; this allows us to reuse the same applications – with 

locking calls disabled; this decision (as explained before in 25.1) does, of course, leave out 

untested one major aspect in PVFS: its integration with MPI. 

27.2 PVFS I/O servers with internal disks 

27.2.1 Read-only tests 
This set of tests characterises PVFS reading behaviour when accessing large files, ones that 

cannot be fully held in the I/O nodes’ caches; for that reason we always access 16 GB, to stick 

to the general rule stating that one should access at least the double of amount of RAM 

(which, when both I/O servers are accounted for, is 8 GB). 

27.2.1.1 Full file scanning 
Fig. 27.3 reports the aggregated bandwidth as the number of clients is increased and the 

whole file is sequentially scanned; accessing a file small enough (2 GB) to be fully contained 

in the servers’ cache allows us to plot PVFS’ upper bandwidth limit. 
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Multiple readers over a large PVFS file
Clients fired in parallel, reading the whole file

Each I/O server has an internal disk. PVFS stripe size: 64 KB
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Figure 27.3 Read sharing a large file, sequential access (internal disks) 

27.2.1.2 Segmented file access 
The set of tests performed by PVFS clients is similar to those previously performed to 

evaluate NFS. Fig. 27.4 reports the aggregated bandwidth for the segmented reading tests as 

the number of clients is increased; as before, we access a file section fully contained in the 

servers’ cache (2 GB) to plot the PVFS’ upper bandwidth limit. 

Reading a large PVFS file
Clients fired in parallel, reading distinct regions of the file

Each I/O server has an internal disk. PVFS stripe size: 64 KB
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Figure 27.4 Read sharing a large file, segmented access (internal disks) 

27.2.1.3 Read tests: conclusion 
Our attention is obviously drawn first to the large difference in bandwidth for 64K and 

128K reads – all cases exhibit it, independently of the number of clients, and whether access 
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is sequential (Fig 27.3) or segmented (Fig 27.4) and data is cached or not – effectively 

creating two distinct ramps where performance steadily rises as the buffer size is increased. 

Another interesting result is that bandwidth for cached data access reaches 185 MB/s for 

sequential access (and very close, in segmented access), which is about 20% less than the 

maximum reported by netperf  for GbE, at 116 MB/s per port (with two servers, one could 

achieve a maximum of 232 MB/s); thus, capabilities of the GbE medium are well utilised. 

Finally, segmented access confirms that I/O subsystem performance is fundamental, and 

that I/O latencies incurred can severely limit what we can achieve, regardless of the peak 

performance of both subsystems (I/O and LAN); here, even stressed by “quasi-random” seek 

patterns, internal disks were able to deliver 40 MB/s. 

27.2.2 Write tests 

27.2.2.1 Segmented file access 
For multiple writers over the same file, segmented access is the only test we perform 

(contended writes over the same region do not make much sense); these tests do not require 

special “precautions” with regard to coherency, as we’ve enforced in NFS, because PVFS 

guarantees coherency in a simple way – clients do not cache data and writes are atomic in 

respect to each other; PVFS’ developers state that, if overlapping accesses are tried, the result 

is unspecified. 

Shared writing over a large PVFS file
Clients fired in parallel, writing distinct regions of the file

Each I/O server has an internal disk. PVFS stripe size: 64 KB
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Figure 27.5 Write sharing a large file, segmented access (internal disks) 

When compared with reader tests, the above write graph shows a more consistent 

behaviour across buffer sizes; the only unexpected result is that aggregated bandwidth for 



 

195 

three nodes is worse than for two and four nodes; and, for buffer sizes between 32K and 

1024K, it is even slightly worse than single client bandwidth. 

Writing data sizes that are small enough to be “contained” within the caches of the PVFS 

I/O servers results in bandwidth steadily increasing in proportion to the write buffer size; in 

this experiment we reached a maximum of circa 160 MB/s for cached writes, i.e., about 15% 

less than the corresponding reading test – but still showing good use of the GbE bandwidth. 

27.2.3 Single writer/multiple readers tests 
We conclude this set of tests with a single writer/non-overlapping multiple readers test; this 

test, as the multiple writers test above, can be run with no special precautions other than 

guaranteeing that either readers do not overlap with the writer or, if they do, the ordering must 

be enforced by the application because PVFS does not support file locking on its POSIX 

interface [Chi+07].  

Single writer/multiple readers over a large PVFS file
Clients fired in parallel, reading and writing distinct regions of the file

Each I/O server has an internal disk. PVFS stripe size: 64 KB
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Figure 27.6 Non-overlapping single writer/multiple readers (internal disks) 

Aggregated bandwidth for the single writer/multiple readers, as displayed in Fig 27.6, 

shows that performance increases steadily with buffer size, with the exception of the anomaly 

in the test with a 128K buffer size, probably a manifestation of the performance drop seen 

before in the reader tests displayed in Figs. 27.3 and 27.4. 

27.2.4 PVFS tests with internal disks: conclusion 
Table 27.1 below summarises the test results for the segmented access tests, with CPU 

usage reflecting worst case (4 writers, un-cached) and including the usage of both metadata 

and I/O servers. 
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 Readers Writers 1 Writer/ N readers CPU usage 

KB 1 2 3 4 1 2 3 4 1 2 3 Clients Servers 
4 7.9 12.5 9.6 16.1 7.2 13.2 10.4 16.1 13.2 15.6 16.8 

8 14.5 18.0 19.7 23.2 13.0 21.9 14.0 23.2 21.3 21.5 22.9 

16 20.5 25.0 23.9 27.1 16.6 23.2 15.6 27.1 24.7 25.8 26.0 

32 31.8 28.2 27.5 33.7 21.5 29.4 18.7 33.7 34.0 26.3 31.7 

64 44.3 30.7 28.3 37.2 27.7 25.8 23.1 30.3 42.5 29.9 35.6 

128 10.5 21.5 23.0 31.9 37.8 36.6 28.0 40.4 17.0 21.8 27.6 

256 22.5 33.6 33.4 44.0 33.7 34.0 30.4 35.5 28.4 31.2 41.8 

512 27.8 38.7 43.3 49.7 36.5 35.2 33.0 38.2 38.2 41.2 48.9 

1024 42.3 51.8 60.6 64.4 35.8 37.4 33.1 51.7 44.2 50.8 57.2 

2048 50.2 67.9 77.9 85.7 36.7 39.2 37.0 43.6 51.6 59.9 70.4 

4096 53.4 78.9 91.2 98.8 37.6 41.4 40.9 46.7 54.5 65.1 80.5 

79.6 101.3 

Table 27.1 PVFS results for I/O servers with internal disks, segmented access 

27.3 PVFS I/O servers with external disks (HA-PVFS) 

27.3.1 Finding the appropriate configuration 
We conducted our first external disk tests with in a configuration with a single physical 

disk per I/O server, one where each server’s LUN was owned by a different storage processor 

in order to provide a contention-free path; the access pattern was segmented, as before, and 

we performed a single test with four readers; results are recorded in Table 27.2. 

 Record Size (KB) 
4 8 16 32 64 128 256 512 1024 2048 4096 

Aggregated 
BW (MB/s) 4.6 7.7 12.3 18.2 27.3 28.3 35.4 43.1 45.5 48.3 61.6 

Table 27.2 Aggregated BW for I/O servers with a single disk per node 

A brief look at the test results shows that bandwidth is very low for small sized requests, 

namely when compared to what we got with internal disks, as reported in Table 27.1: there, 

for a 4 K record size it was about 3.5 times faster, at 16 MB/s, than here, at 4.6 MB/s; when 

size is increased, BW also increases but values are always below those previously recorded 

for the corresponding buffer sizes. We think that this drop in performance is a consequence of 

the increase in per-request processing latency, as the storage processor’s request processing 

overhead (perhaps in the ms range) gets added up with disk drive latency1. 

The remaining tests were performed with four disks, configured as follows: each node was 

given a LVM striped volume created from two different disks, each one owned by a different 

storage processor. The configuration for each volume is thus similar to the one previously 

used in ext3 and NFS tests, and gives each node access to the maximum available bandwidth, 

from the node’s point of view. However, this configuration raises the possibility of path 

                                                 
1 Internal disks and array disks, coincidently, are identical in everything but the disk interface (FC for 

the array vs. Ultra-SCSI 320 for the internal disks)  
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contention between nodes, as: a) an application request in a node will trigger one request per 

HBA (to serve the two LVM stripes); b) each PVFS I/O server has two HBAs, and each one 

will submit one request to each SP; c) therefore, a single application request will drive both 

storage processors to perform four requests. If two nodes happen to submit their requests 

“exactly” at the “same time”, as PVFS does, there will be two simultaneous requests per SP, 

data will have to be transferred over the same FC link, and contention occurs; if this as an 

effect on performance is something we will look at, further down. 

27.3.2 Read-only tests 
This set of tests was a re-run of the set of reading tests for large files, as performed in 

27.2.1, and was carried out to evaluate the contribution of the disk array to PVFS’ 

performance. 

27.3.2.1 Full file scanning 
Fig. 27.7 reports aggregated bandwidths as the number of clients is increased, each 

sequentially scanning the whole file; in this graph, we don’t plot the BW for cached access, as 

it’s exactly the same as in previous tests. 

Multiple readers over a large PVFS file
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Figure 27.7 Read sharing a large file, sequential access (disk array) 

27.3.2.2 Segmented file access 
In the segmented reading tests each client reads its own file region, repeating the test with 

various record sizes, as usual; Fig. 27.8 plots the results, for increasing numbers of readers 

(once again we do not plot cached BW access). 
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Reading a large PVFS file
Clients fired in parallel, reading distinct regions of the file

Each I/O server has a LVM RAID0 with 2 array LUNs. Stripe sizes: LVM=PVFS=64 KB
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Figure 27.8 Read sharing a large file, segmented access (disk array) 

27.3.2.3 Read tests: conclusion 
The benefit of having each per node LUN made up from two physical disks can be seen 

when we compare results for segmented read tests with for four clients, as reported in Fig 

27.6 (and summarised in Table 27.3 further down) with those in Table 27.1: they show 

bandwidth improvements for requests larger than 256K (for smaller ones, it stays essentially 

the same). 

The array seems to reach its maximum at about 60 MB/s, for both 1 and 2-disk LUNs; this, 

we believe, is not caused by the aforementioned contention at storage processors and/or FC 

links, as ext3 experiments (see Fig 25.3) had already shown a drop from 45 to 30 MB/s when 

multiple readers were executed in a single node. Again, we blame latency introduced by the 

SP as the cause of the performance drop; in the current test, it is clear that the 60 MB/s value 

can be obtained through the addition of per LUN bandwidth measured under the ext3 multiple 

readers test pattern which is, precisely, 30 MB/s for a single LUN. 

If our assumptions are correct, all results for tests with external LUNs will be worse than 

those obtained with internal disks; we claim this does not result from resource contention, but 

from the array itself. So we are currently unable to prove that a PVFS configuration with 

external array disks will suffer from contention problems (on the FC/array infrastructure) and 

deliver lower performance than one with internal disks; in order to prove it, we need to get 

hold of a better disk array, and rerun these tests. 
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27.3.3 Write tests 
In this set of tests we assess the performance of our HA-PVFS configuration both under the 

segmented file writing test and the single writer/multiple readers test; as usual, we perform 

these tests with various buffer sizes and an increasing number of clients. 

However, we have a new test here: we want to assess if block allocation does hamper 

performance: each run of the new “block allocation test” starts with an empty file, one that 

writer processes will “fill” as they proceed; this will trigger both metadata (indirect blocks 

and bitmaps) and data block allocation on the fly. We have not performed this test before, 

either in the NFS or in the “PVFS with internal disks” setups because we feel that other 

results we gathered in those tests were sufficient for our purposes, and HA-PVFS is our most 

important “HPC filesystem” test. 

27.3.3.1 Segmented writing tests, no block allocation 
Results gathered in the set of segmented write tests and plotted in Fig. 27.9 below show 

that our previous assumption – that bandwidths for the external disk configuration would be 

lower than those for internal disks – still holds; however, differences among segmented 

writing tests with internal vs. external disks are not so obvious as they were in the readers 

test: we have now reached 45 MB/s, not far from the 52 MB/s measured in the setup with 

internal disks. 
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Figure 27.9 Writing a large file, segmented access, no block allocation (disk array) 

27.3.3.2 Segmented writing tests, with block allocation 
Here, as previously described, the sole file existing in the PVFS file system is truncated 

before each test; this setup guarantees reproducible test conditions as, with no other 

applications running, file structures will always be allocated in the same disk “areas”. 
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Shared "appending" over a large PVFS file
Clients fired in parallel, writing distinct regions of the file. Initial file size = 0

Each I/O server has a LVM RAID0 with 2 array LUNs. Stripe sizes: LVM=PVFS=64 KB
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Figure 27.10 Segmented writes over a large, empty file (disk array) 

27.3.3.3 Write tests: conclusion 
Tests run against an initial empty file, as depicted in Fig. 27.10, intriguingly show better 

performance than those where there is no newly allocated data and metadata; a similar 

situation was also reported in [Leb06] for NFS writing against empty files. We have not 

thoroughly investigated this issue, but we think that lower performance may be a consequence 

of writes, in the pre-allocated file case, needing some extra work; they require: 1) reading the 

indirect blocks; 2) reading the data itself2; merging data gathered in (2) with new data; and 

finally, 3) writing the data and metadata. When the file is empty, (1) and (2) do not take place 

(of course, data management structures, e.g., bit maps, must be consulted and updated in both 

cases). 

27.3.4 Single writer/multiple readers tests 
We conclude the set of PVFS experiments with a test on file sharing between a single 

writer and multiple, non-overlapping, readers.  

                                                 
2 This may depend on the file system implementation; surely, if record size is less than a filesystem 

block (or page, if the FS is page-oriented), the block (or page) has to be read in, first. 
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Single writer/multiple readers over a large PVFS file
Clients fired in parallel, reading and writing distinct regions of the file

Each I/O server has a LVM RAID0 with 2 array LUNs. Stripe sizes: LVM=PVFS=64 KB
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Figure 27.11 Non-overlapping single writer/multiple readers (disk array) 

27.3.5 PVFS tests with external disks: conclusion 
Finally, we summarise the results tests we performed with our (high availability) HA-PVFS 

configuration with three servers: one metadata server and two I/O servers. Each I/O server 

was given access to an LVM-based RAID0 LUN, created on top of two disks in the array; 

physical disks were assigned to different storage processors in a balanced configuration, to 

extract the best possible performance. For conservative use of layout space, results were 

grouped into two tables: Table 27.3 summarises results gathered in tests performed against a 

pre-allocated, 16 GB fixed-size file, whereas Table 27.4 includes two distinct sets, one (a) for 

results gathered from the full file scan reader tests (where the whole file was sequentially 

accessed by all readers), and another, (b) for results obtained from writer tests performed 

against an empty file “filled” by non-overlapping writers. 

 Readers Writers 1 Writer/N readers CPU usage 

KB 1 2 3 4 1 2 3 4 1 2 3 Clients Servers 
4 8.0 11.3 5.2 4.5 6.9 12.6 3.3 19.4 12.8 8.2 6.0 

8 14.6 7.4 7.1 8.0 11.9 20.3 4.9 30.6 20.8 7.1 9.2 

16 19.8 11.1 10.6 12.9 15.4 23.7 7.7 28.4 24.5 12.3 14.5 

32 31.2 17.9 14.9 18.6 21.4 27.3 11.9 29.4 33.1 16.8 20.4 

64 36.8 20.4 18.7 25.3 26.6 26.3 18.5 29.6 39.0 20.0 26.5 

128 9.2 20.7 23.3 26.4 31.5 31.5 27.4 33.5 16.2 24.3 27.9 

256 18.7 27.4 33.4 49.2 34.2 32.9 28.2 35.5 27.2 30.4 42.3 

512 16.0 28.7 43.8 60.6 35.8 33.8 30.7 38.2 24.5 36.1 49.0 

1024 24.6 37.3 51.2 58.1 36.4 35.6 32.3 39.2 31.0 41.6 49.9 

2048 26.6 41.5 51.6 55.0 37.3 38.0 33.7 42.0 36.4 45.2 50.6 

4096 28.2 46.7 57.2 59.8 40.2 42.3 37.2 44.9 37.4 49.0 54.9 

59.2 96.3 

Table 27.3 PVFS results for I/O servers with external disks, part 1 
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Note: CPU usage reported above is the worst case value, and occurs in the test where four 

writers access the file with a 4K record size; under the label “servers” we have added 

consumption for all PVFS servers: the two I/O servers and the metadata server.  

 
 Readers (full file scan)   Writers (empty file) 

KB 1 2 3 4  KB 1 2 3 4 
4 8.0 14.0 20.7 25.1  4 6.8 13.1 17.1 22.5 

8 14.6 19.4 20.9 21.8  8 12.7 23.5 30.6 39.8 

16 19.8 16.4 23.9 33.0  16 17.0 29.3 30.8 42.0 

32 31.2 27.2 38.1 47.7  32 26.8 36.7 36.5 40.0 

64 36.8 61.3 88.5 117.3  64 38.1 38.5 36.7 45.6 

128 9.2 23.3 34.6 43.6  128 53.9 49.0 44.8 55.5 

256 18.7 28.8 44.8 57.6  256 62.0 59.5 46.5 59.6 

512 16.0 39.0 54.2 71.5  512 69.3 62.5 59.0 60.9 

1024 24.6 53.4 67.8 87.7  1024 75.0 64.3 58.0 65.3 

2048 26.6 58.0 72.0 98.9  2048 79.0 63.2 61.1 65.7 

4096 28.2 62.9 84.8 121.7  4096 79.5 65.0 62.2 65.7 

(a)  (b) 

Table 27.4 PVFS results for I/O servers with external disks, part 2 

27.4 PVFS: resource usage 

 The graphs exhibited in Figs. 27.12 to 27.14 correspond to the test where four writers write 

over an empty file, reported in Table 27.4 (b) above.  

        

         

Figure 27.12 Resource usage at the PVFS I/O servers (only one server shown) 
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Figure 27.13 Resource usage at the PVFS MD server (see text) 

 

Figure 27.14 Resource usage at the PVFS clients (only a single client shown) 

These graphs show that link usage at I/O servers peaks at about 1/5th of the full capacity (20 

MB/s), while worst case CPU usage is already at 48% per I/O server. To that must also add 

the CPU usage at the metadata server, which is about 10% – as we have used the metadata 
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server to also run a client (because we had a hardware problem in one of the clients), to 

compute the CPU usage at the MD server we must pick the total from Fig. 27.13 and subtract 

the client usage taken from Fig. 27.14 (and divide by two, to adjust the reported “hyper-

threaded value” to the number of “real” CPUs). 

27.5 PVFS: closing remarks 

PVFS strengths are well known and widely publicised, both in papers and technical reports; 

to start, aggregated bandwidth scales well with I/O node addictions and can reach high levels 

not only in MPI-based applications (in the order of GB/s if we include specialised 

interconnects such as Infiniband), but also in POSIX ones. 

On the other hand, PVFS “weaknesses” other than the effort required to redistribute a 

PVFS volume across newly added I/O nodes, or those related with server failures (although, 

as we said before, they can be quite conveniently handled by the HA-PVFS setup) are not so 

well understood and/or reported, so we have tried to address a few: 

• PVFS is quite sensitive to the stripe size when reading data, as “two ramp” graphs clearly show. 

• Bandwidth is quite low for small record sizes. Although the latest PVFS versions allow the user 

to specify per directory (and even per file) striping sizes, and this is something that may improve 

BW (thus alleviating the problem above), for small record sizes (below a few KB) bandwidth is 

still quite low. 

• CPU consumption in I/O servers can be high (unless more expensive interconnects are used), 

something that discourages users from using server nodes to run applications. 

• The cost of having dedicated I/O servers and also external disk arrays completely demolishes 

the much touted argument (not by the developers!) of PVFS being a low cost solution. 

 

Unfortunately, we cannot show that HA-PVFS configuration using a disk array – which is 

the de facto setup used in production environments – performs sub-optimally when compared 

to a similar configuration with internal disks, something we were aiming to prove; we believe 

the entry level disk array used in this tests to be the problem, as it (we think) introduces a per 

request latency overhead that masks out the effects we intended to show, namely interconnect 

contention that would arise when a client issues a request against the PVFS servers and the 

servers dispatch several concurrent (one could almost say “simultaneous”, here) requests to 

the disk array thus (possibly) creating a “contention effect” in the FC paths to the disks. 

28 Cluster File System testing: pCFS and GFS 

28.1 Test infrastructure 

pCFS and GFS tests were carried out in a configuration with five nodes: four FC-connected 

plus an “independent” node used for the pCFSd user-level daemon, as shown in Fig. 28.1. 
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Each node had 4 GB of memory and two Xeon processors; nodes 4, 5 and 6 had them running 

at 3.06 GHz while nodes 2 and 3 had them at 2.6 GHz.  

 

Figure 28.1 pCFS/GFS test infrastructure 

All FC links were run at 1 Gbps; nodes 3 and 4 had a single FC HBA (thin links, in the 

figure), while nodes 5 and 6 had two FC HBAs (fat links). A single host based Clustered 

LVM volume was carved out from four disks, two per storage processor; the logical volume 

was defined with a stripe size of 32 KB, thus creating a configuration which was “equivalent” 

to the one used for PVFS, in terms of the number of physical disks used. The volume was 

formatted as a GFS filesystem and a single 16 GB file was created; finally, for the Gigabit 

links, regular frames (MTU 1500) were used. 

28.2 pCFS vs. GFS and cached vs. un-cached testing 

As we have shown before [Lop+08], performance differences among pCFS and GFS both 

in single writer and in single or multiple reader tests are so small (less than 1%) that they are 

obfuscated by variances in the tests themselves; therefore, unless we want to draw the 

reader’s attention to some specific GFS issue, the majority of the tests reported here were 

performed against pCFS, i.e., with the O_CLSTSOPEN pCFS flag included in the file 

open()  call; so, unless marked otherwise, graphs labelled as pCFS are also considered valid 

GFS graphs. 

We did not measure the bandwidth of cached access as, in a similar vein to what happened 

with local file systems (e.g. ext3), they would only give insights on the VFS cache 

performance itself, as well as on the overheads of the specific file system (i.e., pCFS) 

delivering bandwidths ranging from several hundred MB/s up to a few GB/s for a single node; 

therefore, all our tests access un-cached data. We went to great lengths to assure that, for 

successive tests, no data stays in the cache: besides using a large file1, the Linux 

                                                 
1 Notice that a 16 GB file in segmented access is actually 4GB per node in four node tests, which no 

longer is the double of the node’s memory. 

pCFS “clients” 

FC switch  
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/proc/sys/vm/drop_caches  pseudo-file is used to force data in the page cache to be 

released, and the file system is un-mounted and remounted before a new test is started. 

28.3 Read-only tests 

28.3.1 Full file scanning 
The first test was a sequential full file scan: on each node, a reader process would open the 

file, start at the beginning and proceeded reading it sequentially to completion.  

Multiple readers over a large pCFS file
Clients fired in parallel, reading the whole file

Shared disk is a LVM RAID0 with 4 disks, 2 per SP. Stripe size 32K
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Figure 28.2 Read sharing a large file, sequential access 

Test results reported in Fig. 28.2 do not, contrary to what we initially hoped for, 

unambiguously show the positive influence of the array’s cache; maximum bandwidth in this 

test is 94 MB/s which, although exceeding the advertised sustained rate of the array (at 70 

MB/s) is remarkably inferior to 90 MB/s per storage processor we got in Fig. 24.6; that would 

present us with a total of 180 MB/s. Our explanation is that, although processes in reader 

nodes were fired in parallel, their ability to proceed “in sync” (although somewhat loosely) 

and benefit from data already in cache is negated by configuration issues such as node 

heterogeneity (number of HBAs) and the small size (88 MB) of the array’s cache. 

28.3.2 Segmented file access 
Then, a segmented access test was performed over a 16 GB file; results, shown above, 

demonstrate a pCFS reading behaviour remarkably similar to ext3’s or, shall we say, to the 

behaviour of any typical “VFS integrated” local filesystem: performance is not adversely 

affected by small record sizes, as the VFS read-ahead mechanism “kicks in”, raising it. It also 

shows that, for our configuration built around a four disks set, 55 MB/s is the maximum 

bandwidth achievable under situations where a high number of seeks is performed. 
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Segmented reading on a large pCFS file
Clients fired in parallel, reading distinct regions in the file

Shared disk is a LVM RAID0 with 4 disks, 2 per SP. Stripe size 32K
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Figure 28.3 Read sharing a large file, segmented access 

28.4 Write tests 

28.4.1 Segmented writing tests, no block allocation 
Write sharing a GFS file is, with regard to coherency, similar to PVFS – it does not require 

user-level file locking; in fact, as previously noted, GFS implements POSIX single node 

equivalent semantics and, therefore, even if two processes in distinct nodes concurrently 

access overlapping file sections, the result is a serialisation of the accesses and a coherent 

“disk” image. pCFS is different as, for disk-based data movement, it requires POSIX advisory 

locks to define file regions a process is allowed to access. 

Shared writing over a large GFS file
Clients fired in parallel, writing distinct regions of the file

Shared disk is a LVM RAID0 with 4 disks, 2 per SP. Stripe size 32K

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

4K 8K 16K 32K 64K 128K 256K 512K 1024K 2048K 4096K

Record Size

A
g

g
re

g
at

ed
 B

W
 (

M
B

/s
)

4 clients

3 clients

2 clients

1 client

Number
 of clients

 

Figure 28.4 GFS: write sharing (full region locks, segmented access pattern) 
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GFS’ use of a cluster-wide ginode lock, one which is locked for the duration of a read or 

write call, results in very low bandwidths (less than 2 MB/s for record sizes smaller than 128 

KB) as a running writer is forced to flush out all data it has accumulated in memory to disk 

(an operation which takes a few milliseconds) before handing out the lock to another node. 

Shared writing over a medium-sized pCFS file
Clients fired in parallel, writing distinct regions of the file

Shared disk is a LVM RAID0 with 4 disks, 2 per SP. Stripe size 32K
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Figure 28.5 pCFS: write sharing (full region locks, segmented access pattern) 

pCFS clearly overcomes GFS in the shared writers test: Fig. 28.5 shows the segmented 

write test2 with pCFS, where each node starts out by laying out its region and then loops to 

perform all writing: aggregated bandwidth is now 60 MB/s, twice the value GFS offers on 

large buffer sizes, and 600 times what it offers on small record sizes. 

Finally, as a last test in the string of writer tests we use a per-call lock/unlock, i.e., our 

exerciser performs a “fcntl(); write(); fcntl(); ” sequence where the first 

fcntl  is called with an F_WRLCK argument while the last uses an F_UNLCK argument. 

Quite surprisingly, as shown in Fig. 28.6, a single GFS process writing experiences very low 

performance at small record sizes, mimicking what happens in Fig. 28.4 where processes in 

different nodes share the same file. 

                                                 
2 For an explanation on why the size of the file under test was changed from “large” to “medium”, see 

section 29.3.2.2 at Part IX, “Conclusion”. 
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Single writer, lock/write/unlock pattern: pCFS vs. GFS
Highlighting the overheads of pCFSd and fcntl()  lock/unlock messages

Shared disk is a LVM RAID0 with 4 disks, 2 per SP. Stripe size 32K
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Figure 28.6 GFS and pCFS: writing with per-call locks 

To search for the cause for this behaviour, we remounted the GFS filesystem on a single 

node (172.16.1.6), launched a single writer (starting with a record size of 4 MB and 

descending to 4 KB), and monitored the LAN traffic. Our conclusion, looking at Fig. 28.7, is 

that the time it takes for DLM to exchange messages among all nodes to support the 

fcntl()  causes a start/stop behaviour that severely limits I/O bandwidth (here we have only 

included the graphs for node 172.16.1.5, but those for nodes .4 and .3 are identical). 

   

Figure 28.7 GFS: DLM traffic among nodes to support fcntl() calls 

The same conditions were reproduced in order to perform a single writer test under pCFS: 

we started the pCFSd daemon on node 172.16.1.2, mounted the pCFS (GFS) filesystem on 

node 172.16.1.6, and launched a single writer on that same node; now, looking at Fig. 28.8 

below, we can see that pCFS modifications have caused DLM traffic among nodes to increase 

by an order of magnitude (from 100 kbps to 1 Mbps), while pCFS traffic coming from the 

writer node (the pCFSk kernel module in .6) to pCFSd (.2) reaches about 80 kbps. 
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(a) Node running pCFSd   (b) Other cluster nodes 

   

(c) Node where the filesystem is mounted and where the test was run 

Figure 28.8 pCFS: pCFSd and DLM traffic to support fcntl() and write() 

 

The tenfold increase in traffic among nodes does not influence the pCFS/GFS performance 

ratio for record sizes up to 512 KB, as we can see that pCFS follows exactly the same “line” 

as GFS (Fig. 28.6); however, for larger sizes, pCFS lags behind GFS, its performance getting 

progressively worse as buffer sizes are increased. 

A major reason for pCFS’ performance loss with regard to GFS is the way pCFS 

(currently) maintains coherency: it forces a flush-to-disk operation each time a region is 

unlocked – something which, in this test, coincides with every write, so we have a per-write 

flush. As to what causes the increase in DLM traffic, the root cause is also related with the 

way coherency is implemented: as we force a “flush-to-disk” we also drop the Glock from the 

node’s cache, and this triggers more DLM messages across nodes. 

28.4.2 Single writer/multiple readers tests 
GFS single writer/multiple reader tests do exhibit the same type of behaviour as the 

segmented writer tests reported in the previous section, as they share the same root cause, the 

cluster-wide ginode lock; aggregated bandwidth is again quite small for record sizes under 

128K, reaching a maximum of 30 MB/s for a record size of 4 MB (Fig. 28.9). 
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Single writer/multiple readers over a large GFS file
Clients fired in parallel, reading and writing distinct regions of the file
Shared disk is a LVM RAID0 with 4 disks, 2 per SP. Stripe size 32K
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Figure 28.9 GFS: non-overlapping single writer/multiple readers 

Single writer/multiple readers over a medium-sized pCFS file
Clients fired in parallel, reading and writing distinct regions of the file
Shared disk is a LVM RAID0 with 4 disks, 2 per SP. Stripe size 32K
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Figure 28.10 pCFS: non-overlapping single writer/multiple readers 

Fig. 28.10 shows that, again, pCFS betters GFS by a large margin in this test; the 

performance increase for small record sizes is not so pronounced as it was for the 

writer/writer tests (there a 600 time difference between GFS and pCFS and here the difference 

is about 60 times) while for large record sizes it is, for both cases, twice the GFS bandwidth. 
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28.4.3 Segmented writing tests with block allocation 
To investigate the influence of intra-file metadata operations on the overall performance of 

segmented writing, tests were run against an initially empty file; results under GFS show that 

these tests, as those carried out over NFS and PVFS, do offer slightly increased bandwidths 

with regard to those where writes were over previously allocated data blocks: under GFS 

without block allocation (Fig. 28.4) we got 35 MB/s for 4 clients when using a 4 MB buffer 

size, while the new test with block allocation runs at 40 MB/s, as seen in Fig. 28.11 below. 

Shared writing over a large, initially empty, GFS file
Clients fired in parallel, writing distinct regions of the file

Shared disk is a LVM RAID0 with 4 disks, 2 per SP. Stripe size 32K
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Figure 28.11 GFS: Segmented writing over a large, initially empty file 

As for pCFS, our prototype does not yet support write sharing with metadata allocation; 

however, as previously referred, two different mechanisms can be made available: one which 

uses glock promotion to the exclusive state, pCFS thus behaving exactly as GFS does; the 

other which resorts to data shipping over the network. We expect the “glock promotion” path 

to deliver the same performance as GFS, i.e., its “test chart” will resemble that of Fig 28.11. 

As for the “data shipping” approach, we think its performance will be similar to NFS’, as 

displayed in Fig. 26.3. 

28.5 Summarising results for pCFS and GFS 

Tables 28.1 and 28.2 summarise the results for our GFS “cluster file system setup”; 

although they refer mainly to GFS, we note that values gathered in reader tests are also 

applicable to pCFS. Table 28.3 summarises the results for pCFS (although referring primarily 

to pCFS, the first column is also shared with GFS). As before, CPU usage is the observed 

worst case value, and occurs in tests where four writers write-share a file accessing it with a 

4K record size.  
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 Readers (same as pCFS) Writers 1 Writer/N readers 

KB 1 2 3 4 1 2 3 4 1 2 3 
CPU usage 

4 42.8 44.8 55.2 54.4 55.8 0.1 0.1 0.1 1.5 0.3 0.4 

8 43.0 44.9 54.7 54.2 59.1 0.2 0.2 0.2 1.4 0.9 2.3 

16 43.3 45.2 55.1 54.8 63.1 0.4 0.3 0.2 1.4 2.0 1.1 

32 42.8 44.9 54.9 54.3 63.4 0.8 0.8 0.8 1.5 1.7 2.0 

64 42.9 45.0 54.9 54.3 63.7 1.5 1.5 1.5 1.7 2.4 2.9 

128 42.7 44.7 47.4 54.2 63.6 2.8 2.7 2.7 13.9 5.2 11.3 

256 42.6 44.8 54.9 54.2 63.5 5.4 5.4 5.4 18.0 9.9 14.9 

512 42.6 44.9 55.2 54.3 63.7 9.6 9.8 9.8 19.4 15.9 18.4 

1024 42.6 44.8 55.2 54.3 63.9 17.0 16.7 16.7 19.5 22.3 25.6 

2048 42.6 44.7 48.7 54.3 63.8 26.0 23.7 25.5 25.9 25.5 30.3 

4096 42.5 44.7 55.3 54.2 63.3 34.9 32.7 34.0 31.2 29.7 32.6 

14.0 

Table 28.1 GFS tests, part 1 

 

 Readers (full file scan)   Writers (empty file) 
KB 1 2 3 4  KB 1 2 3 4 

4 42.8 69.0 64.4 93.5  4 46.5 0.1 0.1 0.1 

8 43.0 69.2 64.5 84.6  8 69.6 0.2 0.2 0.3 

16 43.3 69.3 64.3 93.6  16 71.7 0.5 0.4 0.5 

32 42.8 69.0 64.5 85.1  32 79.0 1.1 0.8 1.1 

64 42.9 68.7 64.1 94.2  64 76.7 1.7 1.5 2.0 

128 42.7 68.6 64.1 93.9  128 77.7 2.9 2.8 3.7 

256 42.6 50.0 64.0 85.0  256 76.8 5.5 5.3 6.9 

512 42.6 68.5 63.9 84.4  512 81.0 9.8 9.4 12.4 

1024 42.6 68.5 58.7 75.2  1024 80.8 15.9 15.9 20.3 

2048 42.6 68.5 63.9 89.2  2048 78.9 24.0 22.8 30.4 

4096 42.5 68.7 63.8 84.2  4096 81.4 33.3 31.4 39.9 

(a) Note: same as pCFS  (b) 

Table 28.2 GFS tests, part 2 

 

 Readers (same as GFS) Writers 1 Writer/N readers 

KB 1 2 3 4 1 2 3 4 1 2 3 
CPU usage 

4 42.8 44.8 55.2 54.4 55.8 59.5 60.0 60.2 54.4 53.9 58.7 

8 43.0 44.9 54.7 54.2 59.1 60.9 61.1 61.7 51.9 54.0 57.9 

16 43.3 45.2 55.1 54.8 63.1 60.7 61.6 62.0 52.2 54.4 58.7 

32 42.8 44.9 54.9 54.3 63.4 61.2 61.7 62.2 52.1 54.6 58.2 

64 42.9 45.0 54.9 54.3 63.7 61.1 61.9 62.1 52.1 54.0 58.2 

128 42.7 44.7 47.4 54.2 63.6 60.7 61.9 61.9 41.2 46.6 52.8 

256 42.6 44.8 54.9 54.2 63.5 61.0 61.7 62.2 43.7 46.4 52.8 

512 42.6 44.9 55.2 54.3 63.7 60.8 61.7 62.0 43.6 46.5 49.7 

1024 42.6 44.8 55.2 54.3 63.9 61.2 61.6 62.0 43.8 46.4 51.7 

2048 42.6 44.7 48.7 54.3 63.8 61.0 61.6 61.8 43.9 48.5 52.8 

4096 42.5 44.7 55.3 54.2 63.3 61.2 61.7 62.2 40.4 49.1 58.3 

16.9 

Table 28.3 pCFS segmented access tests 
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As for Table 28.4 below, it reports both the GFS and pCFS results for the single writer 

using a per-call lock/unlock, previously shown in Fig. 28.6 and which surprised us with its 

low performance. 

 

Record Size (KB) Aggregated 
BW (MB/s) 4 8 16 32 64 128 256 512 1024 2048 4096 

GFS 0.2 0.4 0.8 1.60 3.10 6.2 12.5 25.2 50.3 67.3 71.4 

pCFS 0.2 0.4 0.8 1.60 3.10 6.3 12.6 25.4 36.7 43.8 46.5 

Table 28.4 Single writer with a lock/write/unlock pattern 

28.6 Resource usage 

The last step of this report on pCFS (and GFS) is to present the Munin graphs gathered 

during the four writer tests. In these graphs, given that the time to run each test (i.e., running 

all buffer sizes from 4 KB to 4 MB) was smaller due to the shortened size of the file, the three 

runs that were taken are clearly visible; only a single node is shown, all others being quite 

similar. 

   

   

Figure 28.12 pCFS resource usage 
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28.7 pCFS and GFS: closing remarks 

GFS performance may be quite insufficient for applications that require write sharing (i.e., 

at least one process is a writer) of a file among processes running in several nodes: when 

record sizes below 128K are used, bandwidth is less than 2 MB/s – something not far from the 

speed of a diskette! Also, there is no scalability, as adding nodes does not result in any 

sizeable bandwidth increase. GFS single node write performance, however, is quite good, at 

63 MB/s, and we can get about half of it in multi-node write sharing if one uses very large 

record sizes, e.g., 4 MB. GFS read scalability is also very good but, unfortunately, limitations 

of the disk array we have used do not unmistakably allow us to show it – although we can get 

a glimpse, when we look at the full file scan reader tests reported in Table 28.2 (a). 

pCFS delivers high performance sharing, bettering GFS by two times on very large record 

sizes – e.g., 4 MB records – while the results for small record I/O show gains of two orders of 

magnitude for write/write sharing and one order of magnitude for read/write sharing. 

 





 

 

Part IX: 

Conclusion 
 

 

 

 

This Part assesses the benefits of pCFS – its use of an integrated approach to data 

movement, cooperative caching, and low latency cache coherence operations – and how they 

succeed in overcoming the I/O bottleneck. Finally, it introduces ideas for future work. 
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29 Conclusion 

29.1 Revisiting the I/O bottleneck 

It is a well known fact that a successful computing architecture is based on a suitable 

balance of three subsystems: processor, memory, and I/O (both storage and networking); 

however, we currently face a situation where performance of these subsystems (at least for 

off-the-shelf components) is increasing at very disparate rates, with a clear advantage on the 

processor side, and the storage being the worst performer. This requires system architects to 

foster new storage solutions, both in hardware and in software; for example, disk arrays have 

entered the mainstream and can now be found everywhere, from small ones, individually 

attached to a single host, to large ones, deployed in storage area networks and shared across 

multiple systems; they have become the basic “building block” solution to two problems: I/O 

performance and high availability. 

But good performance of a single system may come at a very large cost, and cost is 

something that today is regarded to be of utmost importance; therefore, one continuously 

looks for better price/performance alternatives, and one of the best calls for the coordinated 

use of multiple computer systems – i.e., a cluster – as a platform to solve “bigger” problems 

in a cost efficient way. However, sharing data across multiple computing nodes creates new 

problems and, therefore, new solutions must be brought in, in the form of “distributed”, 

“clustered”, or “parallel” data base and file systems. 

File systems for multi-node computer architectures have evolved across two separate 

tracks, much in the same way to what happened to distributed vs. shared memory: on one 

side, distributed-disk file systems were developed on the assumption that storage is based on 

disks which are private to the nodes and that the “global” filesystem vision is implemented by 

moving data across network interconnects; on the other side, file systems for shared-disk 

architectures assume that disks are shared across nodes and that the “global” filesystem vision 

is implemented by writing data to disk in a node and reading it on another. 

29.2 Restatement of the objectives 

As a preliminary step we have tried to characterise the somewhat fuzzy terminology used 

when discussing I/O on multi-node architectures, such as “parallel I/O”, or “parallel”, 

“cluster” and “distributed” file systems. As work progressed, we found that sometimes a 

unique concept was being handled as different things when we moved across layers (with 

boundaries not always clearly defined) while in other cases we found that the opposite was 

occurring, i.e., two different concepts where being subsumed in a single, not very clear one; 

therefore we propose a reference model that encompasses all layers from (but excluding) the 
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application down to the physical disk and, for the most relevant ones, i.e., File System, Object 

Storage and Storage Access layers, taxonomies are proposed. 

Our pCFS proposal combines two previously divorced approaches, those of shared vs. 

distributed disks: it assumes a shared-disk architecture (where all nodes have shared access to 

all disk volumes), and implements a coherent global vision across nodes either through data 

movement across network interconnects or writing it to disk on a node and reading it from 

disk on another. We expected such an approach to have good performance while keeping full 

POSIX compliance, allowing pCFS to be used both for general as well as HPC applications in 

small to medium-sized clusters, up to, say, a hundred nodes directly attached to a SAN which 

caters for the cluster’s shared storage. 

The implementation of pCFS was carried out “on top of” Red Hat’s GFS. Using synthetic 

benchmarks, we tested pCFS against GFS itself, and then against NFS and PVFS – two 

widely used file systems both in HPC as well as in more “general” file sharing environments 

(although both have drawbacks when used outside their primary target environments, e.g., 

NFS may be too slow for HPC use, and PVFS may be unsuited for some “file sharing” 

applications).  

29.3 Assessment of the contributions 

29.3.1 Reference model 
Development of the “Reference Model for Data Management Architectures” was carried 

out along Part IV, with section 13 introducing the taxonomy for file system classification, 

which was used in section 15 to compare among several “classes” of distributed file systems, 

notably: symmetrical distributed file systems (GPFS and GFS); asymmetrical distributed file 

systems of the un-partitioned “single-server type” (NFS); and asymmetric partitioned 

“multiple-server types” (PVFS, AFS, DCE/DFS). Along with the model’s proposal, precise 

definitions have been introduced. 

29.3.2 pCFS 

29.3.2.1 The proposal 
pCFS was introduced in Part V, starting with its “conceptual” architecture, distinguishing 

features – most notably cooperative caching and fine-grain locking. Then, we presented the 

programmer’s view of pCFS, a strict POSIX compliant file system where the only two things 

a programmer must do to choose pCFS behaviour is to add a single (new) flag to the file’s 

open()  call and, if appropriate, use standard POSIX fcntl()  locks. 

29.3.2.2 The implementation 
The implementation of pCFS is described in Part VII; it calls for a single, clusterwide user 

level daemon, pCFSd, and two per-node kernel modules, pCFSk and pCFSc. Current 
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prototype limitations are a consequence of the decision to keep GFS data structures 

unmodified; this has (i) introduced more complexities at the code level, and (ii) deterred us 

from supporting VFS-initiated asynchronous operations, such as those triggered by the kernel 

VM subsystem to flush out file pages, resulting in failures when writing to very large files as 

the page cache gets “full” and VM triggers the Linux kernel daemons (e.g., pdflush ) to 

flush them out to decrease memory pressure. 

We feel confident, however, that we have proved that even the un-implemented features are 

viable, and that a production-grade version would be a very interesting file system to have for 

a broad range of applications. 

29.3.2.3 The benchmarks 
We are quite happy with the benchmark results; they unequivocally show that when sharing 

a file using “large regions” pCFS, from a point of view of: 

1. Aggregate Bandwidth 

a. When compared to GFS: 
• Surpasses GFS in all tests involving write sharing of a single file, delivering from 

twice up to a 600 times increase in BW. 
• Matches GFS in all tests involving only readers. 

b. When compared to NFS: 
• Surpasses NFS in all tests, nearly doubling its performance. 

c. When compared to PVFS: 
• Performs better than PVFS for small number of clients (< 4). 
• Betters PVFS for all write-sharing situations (i.e., write/write or read/write) 
• Surpasses or runs close to PVFS in the full file scan readers test 
• Is quite insensitive to changes in the buffer size 

2. Aggregate CPU usage 

a. When compared to GFS: 
• Uses about the same fraction of CPU (pCFS worst-case is 17% while GFS’ is 14%). 

b. When compared to NFS: 
• Worst-case NFS uses the same CPU but its BW is about 2.3 times smaller. 

c. When compared to PVFS: 
• Worst-case PVFS draws circa 155% (for a third of the pCFS’ BW). 

 

As we have seen, current results are not so shiny for access patterns which require a per-     

-call lock/unlock, as bandwidth is too low for record sizes which are smaller than 128 KB, 

being in the region of 0.2 MB/s (for 4K records) to 6.3 MB/s (for 128 KB records). The 

solution for this problem may require i) an application rewrite, or ii) some “hint-based” 

approach which would be capable of converting the small region pattern into a large region 

one, or, finally iii) the data shipping approach which, when fully implemented, may result in 

bandwidths that are closer to those available from NFS, but still far from the pCFS 

bandwidths for “large region” accesses, at 60 MB/s. 
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29.4 Future work 

Future work on pCFS may progress on two separate tracks: a standalone version for regular 

Linux kernels and a specialised version for kernel-level DSM (or VSM1) Linux kernels. 

29.4.1 Standalone version for regular Linux kernels  
Continuing the development of the pCFS into a more robust, production level standalone 

with version is feasible as short term task, (i.e., it is not a research project); it would differ 

from the current prototype in minor aspects, such as: 

• Small changes to GFS data structures 
• For example, the ginode could carry a pCFS flag; this would allow us to test for a “pCFS 

inode” without accessing the VFS file structure, something that can only be referenced 
when executing in a user context (and not in, e.g., a daemon context, such as in 
pdflush ). 

 

• Use of the TIPC kernel subsystem2 for all communication tasks 
• This allows much better failure handling; perform recovery; use of broadcast and/or 

multicast; establishment connections on demand, etc. 
• We may, therefore, dispense with the pCFSd forwarding. 

 

• Merge pCFSk and pCFSc into a single, multithreaded kernel module 
• Using kernel abstractions such as kernel threads and work queues. 
• Increasing the level of concurrence both in intra-node, inter-node, and node-to-daemon 

(pCFSd) operations. 
 

The outcome should be a production-level pCFS version; there are, however, longer term 

tasks that should also be carried out in the standalone version, such as: (i) providing a fully 

implemented, clusterwide cooperative cache, one which can be used to provide multiple paths 

for data transfer (therefore enhancing performance) whereas in the current prototype we just 

maintain caches coherent across nodes; and, (ii) use it as a way to further enhance the high 

availability of the file system, via inter-cache replication of modified pages. 

29.4.2 pCFS on DSM Linux kernels  
A pCFS version supported over a kernel-level DSM/VSM, such as Kerrighed, would be a 

longer term, research driven, project; some of the answers that such a project must provide 

are:  

• Can the DSM-provided consistency mechanisms be used as the sole basis for clusterwide page 

coherency? Is the performance acceptable? 

• Should the global Page Cache be the sole “user” of the DSM mechanisms, or should these be 

applied to all file system objects (and caches) such as inodes, dentries, etc., therefore either re-

implementing glocks as DSM-based objects? 

                                                 
1 As previously noted, we use the term DSM for hardware-aided distributed shared memory and VSM 

for pure software implementations 
2 We thank the Kerrighed/Kerlabs team for introducing us to TIPC in the Kerrighed Summit’08 (some 

topics on the panel discussions available on www.kerlabs.com/docs/Kerrighed_summit_08/) 
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• Should these new objects be implemented on a per-filesystem basis, or should one try to apply 

these concepts to VFS and re-implement it as a clusterwide layer (as proposed in kDDM 

[Leb+08]) so that any currently available filesystem that plugs into VFS can be made available 

to all cluster nodes? 

29.5 New avenues for pCFS 

Longer term research on pCFS will focus on investigating pCFS’ adequacy to efficiently 

support the shared disk / shared file system paradigm over wide area networks, e.g., in cluster 

federations (with dedicated fibre links). 

We believe that the cooperative cache mechanism, which has proved its usefulness in 

distributed file systems, will be a major driver for pCFS’ success on these environments, as it 

can be the topmost layer that supports three extremely important aspects: caching, replication 

and fault tolerance.   
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Acronyms 

 

ADT Abstract Data Type 

ACID Atomicity, Consistency, Isolation, Durability 

AFS Andrew File System 

API Application Programming Interface 

BW Bandwidth 

cc-NUMA Cache Coherent Non-Uniform Memory Architecture 

CAS Content Addressable Storage 

CEFT-PVFS Cost Effective, Fault Tolerant, Parallel Virtual File System  

CFS Cluster File System (concept) 

CI Cluster Infrastructure  

CIFS Common Internet File System  

CM Cache Manager (pCFS) 

COMA Cache-Only Memory Architecture 

COTS Common Off-The-Shelf 

CPU Central Processing Unit; here used as synonym for processor 

CRC Cyclic Redundancy Check 

CVFS Comprehensive Versioning File System 

DAS Direct Attached Storage  

DASD Direct Access Storage Device 

DBL Database Layer (RM-DMA) 

DBMS Database Management System 

DCE Distributed Computing Environment (from the Open Software Foundation) 

DCE/DFS Distributed File System (integrated with DCE) 

DD Distributed Disks (a.k.a. PD) 

dentry Directory entry (VFS) 

DFS Distributed File System (either a concept or an Intel Paragon FS) 

dinode Disk inode (on-disk image of a GFS inode) 

DLM Distributed Lock Manager 

DMA Direct Memory Access 

DMD Data Management Domain (RM-DMA) 

DMEP Device Memory Export Protocol (GFS) 

DML Data Management Layer (RM-DMA) 

DOS Distributed Operating System 

DSM Distributed Shared Memory (hardware-based) 
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EVMS Enterprise Volume Manager System  

ext2 Extended File System, version 2 (a.k.a. Second Extended File System) 

ext3 Extended File System, version 3 

FAT File Allocation Table 

FC Fibre Channel 

FLOPS Floating-point Operations per Second 

FS File System 

FSB Front Side Bus 

FSL File System Layer (RM-DMA) 

GbE Gigabit Ethernet 

G-Lock Global Lock (GFS) 

GDLM GFS Distributed Lock Manager (GFS) 

GFS Global File System  

ginode GFS inode (in-core image, linked into the VFS vnode) 

glock an abbreviation for G-Lock (see G-Lock) 

glops an abbreviation for a G-Lock vector of operations 

GPFS General Parallel File System  

GULM Grand Unified Lock Manager (GFS) 

HA High Availability 

HA-NFS High Availability Network File System  

HA-PVFS High Availability PVFS 

HBA Host Bus Adapter 

HDF Hierarchical Data Format 

HiPPI High Performance Parallel Interface 

HPC High Performance Computing 

IB Infiniband 

INCITS International Committee for Information Technology Standards 

inode Information node 

I/O Input/Output 

IOPS I/O operations per second 

ISAM Indexed-Sequential Access Method 

iSCSI IP-based SCSI 

IT Information Technology 

JBOD Just a Bunch Of Disks 

LAN Local Area Network 

LD Logical Disk (a.k.a. LV)  

LDAP Lightweight Directory Access Protocol   
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LM Lock Manager 

lmlock Abbreviation of Lock-Manager lock (GFS) 

LMM Lock Manager Module (GFS) 

LUN Logical Unit (a.k.a. Logic Unit Number)  

LV Logical Volume (a.k.a. LD)  

LVB Lock Value Block (see GFS) 

LVM Logical Volume Manager (concept) 

LVM Logical Volume Manager (Red Hat LVM) 

MM Memory Management 

MPIO Multi Path I/O  

MPP Massively Parallel Processor  

NAS Network Attached Storage  

NASD Network Attached Secure Disks  

NetCDF Network Common Data Form 

NFS Network File System  

NFSP Netware File Sharing Protocol 

NIC Network Interface Card  

NIS Network Information Service (a.k.a. Yellow Pages)  

NLM Network Lock Manager (NFS) 

NOS Network Operating System  

NoW Network of Workstations  

NSD Network Shared Disks (GPFS) 

NSM Network Status Monitor (NFS) 

NTFS New Technology File System  

NUMA Non-Uniform Memory Architecture 

OBSD Object-Based Storage Device (a.k.a. OSD) 

OCFS Oracle Clustered File System 

OLAP On-Line Analytical Processing 

OLTP On-Line Transaction Processing 

OO Object Oriented 

OOM Out Of Memory 

OS Operating System 

OSD Object Storage Device (a.k.a. OBSD) 

OSF Open Software Foundation 

OSF/1 Open Software Foundation’s Operating System/1 

OSL Object Storage Layer (RM-DMA) 

PADFS Partitioned-Asymmetric Distributed File System (RM-DMA) 
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PC Personal Computer 

PCB Printed Circuit Board 

pCFS Parallel Cluster File System  

PCI Peripheral Component Interconnect 

PD Partitioned Disks (a.k.a. DD) 

PFS Parallel File System (Intel) 

PoP Pile of PCs 

POSIX Portable Operating System Interface Architecture 

PVFS Parallel Virtual File System  

QoS Quality of Service 

RAID Redundant Array of Inexpensive (a.k.a. independent) Disks 

RDBMS Relational Data Base Management System 

RDMA Remote DMA 

RG Resource Group 

RM Reference Model 

RM-DMA Reference Model for Data Management Architectures 

RPC Remote Procedure Call 

SAL Storage Access Layer (RM-DMA) 

SAN Storage Area Network 

SCI Scalable Coherent Interface 

SCSI Small Computer System Interface 

SD Shared Disk 

SDL Storage Device Layer (RM-DMA) 

SDM Shared Disk Manager (pCFS) 

SMD Storage Management Domain (RM-DMA) 

SMP Shared Memory Multiprocessor (unless otherwise noted) 

SNIA Storage Networks Industry Association 

SNL Storage Network Layer (see RM-DMA) 

SP Storage Processor 

SSI Single System Image 

SVL Storage Virtualisation Layer (RM-DMA) 

TIPC Transparent Inter-Process Communication 

TOE TCP Offload Engine 

UFS UNIX File System  

UMA Uniform Memory Architecture  

vnode Virtual node (VFS) 

VFS Virtual File System (a.k.a. Virtual Filesystem Switch) 
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VM Virtual Memory 

VSD Virtual Shared Disk 

VSM Virtual Shared Memory (software-based) 

WAN Wide Area Network 

WCC Weak Cache Consistency 

XDR External Data Representation 
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