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Summary

With the trend that wireless network and mobile devices have become more and

more prevalent, there is an increasing need to build a wireless storage system that

can access information efficiently and correctly. iSCSI (internet Small Computer

Systems Interface) is a protocol to enable remote storage access through the ubiq-

uitous TCP/IP network. The performance of iSCSI over wireless network is an

interesting research topic due to the impacts of the low bandwidth, unreliability

and long latency of the wireless network.

This thesis focuses on the performance analysis of block level storage protocol

iSCSI over wireless network and the design of new iSCSI architecture to improve

the wireless storage performance and network utilization of wireless network.

First, the theoretical analysis is focused on different factors which may affect

the performance of wireless storage in different layers including MAC layer, TCP/IP

layer, iSCSI storage layer and file layer. The TCP layer net throughput, the packet

failure pattern and the impact of multi-hop wireless network on wireless storage

performance are analyzed. The analysis shows that for small I/O request, the

normal single connection iSCSI’s throughput should be far less than the maximum

throughput in theory and it is very low compared to big I/O request. This is

because the time for the initiator to wait for the status before sending the next

I/O request and many frames in the lower layer that do not sufficiently use the

frame size.

Then a new iSCSI architecture is proposed with the concepts of multiple

virtual TCP connections in an iSCSI session and parallel working mechanism in

iSCSI layer over wireless LAN 802.11. The new iSCSI design not only improves

the iSCSI performance by increasing the utilization of limited wireless network
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bandwidth, but also provides a better mechanism to handle the packet failure in

wireless channel and the long latency issues in multi-hop wireless network.

After that, the iSCSI prototype based on the proposed multiple connection

design has been developed by Linux kernel level programming on commercial PC

over wireless LAN 802.11b for performance analysis. The prototype is different from

single connection implementation but is compatible with iSCSI standard. Some

implementation issues such as login phase, information exchange, SCSI command

implementation and semaphore implementation are also explained in detail.

Finally, various experiments are conducted to test the performance of the self-

developed iSCSI prototype and normal single connection iSCSI. The test results

show that multiple virtual connection iSCSI design for wireless storage can achieve

significant throughput improvement for small I/O request (2K ∼ 8K). For example,

for 2K request size, the multiple connection iSCSI can achieve 112% improvement.

For big I/O request (128K), the maximum throughput can reach 0.62 MB/s, which

is closed to the theoretical analysis result. In order to identify the key issues of the

iSCSI performance, the experiments are also conducted to test the iSCSI perfor-

mance with different network parameters, different network latency and different

queue length. Experiment results show that multiple connection iSCSI can achieve

high performance even in multi-hop, unreliable and long latency wireless network.
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Chapter 1

Introduction

1.1 Network Storage

The information is exploding. According to Berkeley’s research report, the amount

of digital data stored doubles every 24 months [1]. The dramatic growing demand

on storage puts a lot of challenges to network storage, management and security.

These challenges make the storage architecture keep changing. Nowadays the net-

work storage technology has become a hot research field in the world. The key

issues of network storage technology include the following:

• Access: Keeping data on-line and accessible all the time.

• Utilization: Sufficiently utilizing the bandwidth and storage capacity.

• Scalability: Easily adding more storage when needed in the future.

• Movement: Ensuring data mobility and data sharing.

• Security: Ensuring data access with security.

• Management: Establishing a single point from which to manage growing

complexity and heterogeneity.
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Currently, there are three main network storage architectures: DAS (Direct

Attached Storage), NAS (Network Attached Storage) and SAN (Storage Area Net-

work) which are shown in Figure 1.1, 1.2 and 1.3 respectively.

LAN

Ethernet
Switch

Clients

ServersStorage Storage

Figure 1.1: Direct Attached Storage

LAN

Ethernet
Switch

Clients

Servers

NAS Server

Figure 1.2: Network Attached Storage

• DAS: In DAS architecture, storage devices are directly attached to the server.

Data are transferred using block level transfer protocol such as SCSI (Small

Computer System Interface).



3

LAN
Ethernet
Switch

Clients

Servers

Ethernet
Switch

FC
Switch

RaidRaid Secondary
Storage

Secondary
Storage

SAN

Figure 1.3: Storage Area Network

• NAS: NAS is a thin file server. The connection between NAS storage system

and servers is based on IP network. Data are transferred using file level

transfer protocol such as NFS (Network File System) and CIFS (Common

Internet File System).

• SAN: SAN is a dedicated, high speed network among servers and storage

devices. Data are transferred in block level. The current storage protocols

include FC (Fiber Channel) and iSCSI (internet Small Computer Systems

Interface).

Researches on network storage performance are emerging in recent years.

Several papers have provided theory models and simulations [2, 3, 4, 5, 6, 7, 14] for

improving the performance of the network storage. However their works are based

on the communication networks such as Ethernet and FC (Fiber Channel) which

are fast and reliable compared to wireless network. Until now, few research has

been conducted to achieve high storage performance in wireless environment. This

is a challenging topic due to the low bandwidth, long latency and unreliability of
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wireless network.

1.2 Wireless Network Storage

The end user market for portable and mobile devices keeps increasing every year.

The mobile devices such as notebook computer, PDA, mobile phone, tablet PC

and even digital video and camera, are playing more and more important role in

people’s life. Compared to their desktop counterparts in wired environment, mobile

devices have created new challenges [8, 9, 10, 11, 12] for data accessibility, security

and transmission due to the relative low bandwidth, unreliability and the limited

storage capacity. With more and more implementations of wireless network and

mobile computing, there is a need to build a wireless storage system that can access

information efficiently and correctly.

The objective of wireless storage is to provide a fast, stable and abundant

external storage system to support a variety of wireless interfaces and reach out

to as many different types of portable devices as possible for wireless users. The

wireless storage can be designed in different machines based on different protocols

and interfaces as shown in Figure 1.4.

Although mobile computing offers the benefits of having their work and data

available at all times, there are still risks in terms of data reliability and dependabil-

ity in the event of a device related failure [13]. The wireless environment’s features

such as low transmission rate, frequent packet loss, unreliable transmission and

long latency make great impact on the network storage system and create new

challenges for the performance of data accessibility. Mobile devices exhibit major

differences from their desktop counterparts. They may travel across a variety of

networks, each with its own bandwidth limitation and quality of service. Typically,

they are designed with mobility in mind and therefore must sacrifice their perfor-

mance leaving the limited connectivity due to the unreliability of wireless network

and the limited data transmission rate which is due to the low bandwidth.
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Interfaces 

Wireless Storage 
Unit 

Compact 
Flash 

CF 
Interface 

Cardbus / 
PCM CIA 

Bluetooth 

Wireless 
LAN  Infrared 

Wireless Conn ection 

Mobile 
Phone 

Pen 
Computer  Server 

MP3 
Digital 
Video 
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Digital  
Camera 

Computer  Notebook  PDA 

Clients 

Figure 1.4: Wireless Storage

In order to solve above mentioned challenges and problems, the current re-

search field of wireless storage can be separated to two subfields. The first one is

to address accessibility problem to achieve high data accessibility under different

quality of network service. The second one is to deal with transmission problem to

achieve high storage performance and network utilization under wireless network’s

limited bandwidth.

1.3 Organization

The remainder of this thesis is organized in six chapters. The next chapter, Chapter

2, provides the background for the specific wireless storage problem addressed in

this thesis. The related works in wireless storage are reviewed and the relative

merit of this thesis is highlighted. IP storage and related work in iSCSI are also

introduced in this chapter.

Chapter 3 presents the theoretical analysis of storage performance over wire-

less network. First, the lower layers such as MAC layer and TCP/IP layer are
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discussed. The TCP layer net throughput, packet failure pattern and TCP perfor-

mance of Multi-hop channel in wireless LAN 802.11 environment are also analyzed.

Then, the analysis of upper storage layers such as block level iSCSI and file level

NFS are conducted.

Chapter 4 focuses on the new iSCSI design. The basic concepts and the

general iSCSI storage model are illustrated. Then, the different phases of the

iSCSI design such as login phase and full feature phase are explained in detail.

The new concept of multiple virtual TCP connection is presented. Finally the

queuing models are used to analyze the new iSCSI architecture.

Chapter 5 focuses one some implementation issues of the multiple virtual

TCP connection iSCSI design. The experiment methodology and its system setup

are also illustrated.

Chapter 6 presents the performance evaluation of iSCSI and result discus-

sion. The performances of iSCSI and NFS are compared. Next, test results of

the multiple connection iSCSI are compared with that of normal single connection

iSCSI in both wired and wireless environment. The results illustrate that the new

iSCSI design can achieve high performance in wireless environment. The analysis

of the multiple connection iSCSI performance under different network conditions

and different network parameters are also conducted to identify some key issues of

iSCSI performance.

Finally, the conclusion of this thesis and the discussion of future research are

presented in Chapter 7.
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Chapter 2

Background

In this chapter, some previous works in wireless storage are reviewed. The compar-

ison to the work done in this thesis is highlighted to emphasize the contributions.

Then iSCSI protocol and related works of iSCSI are analyzed. The analysis and

design of the multiple connection iSCSI to solve wireless storage issue are also

illustrated. Finally, the motivation of this work is presented.

2.1 Current Status of Wireless Storage

Although wireless storage did not attract as much attention as what did in wired

environment, the pervasiveness of mobile devices and wireless network has led to

the increased researches in the area of wireless storage.

Researchers have proposed a variety of solutions to deal with the first subfield

of wireless storage as what is discussed in Section 1.2, which is the mobile data

access, in file level. The approaches to mobile data access can be divided into

three phases: preparing for disconnection, disconnected operation, and update

propagation and conflict resolution, which are shown in Figure 2.1.

The main method of preparing file for disconnection is to cache part or all

of the data on servers before disconnection, which can be divided into predictive
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caching (also known as pre-fetching) and hoarding. Lei and Duchamp designed

a system [15] by which the file system would analyze the computing activities of

a user and selectively pre-fetch files. The paper [16] provided aggregating cache

which can be used to reduce the number of file retrieval requests made by a caching

client. In UCSC, the researchers introduced a file pre-fetch method [17] by using

actions from prior events. As to the hoarding method, Kistler studied disconnected

operation in Coda file system in his Ph. D. dissertation [18]. Also in paper [19,

20, 21, 32, 33, 34, 35], the authors provided various hoarding methods for mobile

computers.

Finish Reintegration (Logical Reconnection)

Time Out

Time Out

Resume
(Physical

Reconnection)

Connected Phase
(Prepare for

Disconnection)

Disconnected
Phase

(Disconnected
Operation)

Reintegration
 Phase (Update

and Conflict
Resolution)

Figure 2.1: Phases for Mobile Data Access Solutions

During disconnected phase, the client should work based on the local copy of

the data. Paper [22] provided a cache policy based on semantics. A research group

investigated how standard CORBA mechanisms (Objects By Value and Portable

Interceptors) can be used for enhancing legacy CORBA based distributed applica-

tion to support disconnections [23]. The paper [24] extended the Coda file system

to handle the cache misses on isolated clients in wireless environment. Cache coop-

eration for clustered disconnected computers [25] was proposed by Kinuko Yasuda,

which resolved cache misses in a coordinated manner among the clients. Cache Co-

operation allows each client to retrieve missing data from the other remote clients.

During reintegration phase, any operations during disconnected phase must

be propagated to the server side, which may introduce the cache inconsistency

between client and server side. If two mobile clients reside in different network

partitions and they modify the same data object, data conflict will occur. Some
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researches focused on the topic of conflict resolution. In Chinese University of

Hong Kong, Dr. Liu developed an open platform [26] which can resolve the above

mentioned problem. The paper [27] provided a propagation algorithm to support

disconnected write operations for update propagation. Paper [28] introduced the

parameter of conflict probability to submit the propagation to the server and trans-

fer transactions in groups. There are other researches on propagation and conflict

resolution [29, 30, 31].

The researches for mobile data access have been conducted for years. Vari-

ous algorithms, systems and methods, which were mentioned above, were proposed

to deal with mobile data access problem, especially for disconnected operation, in

the wireless storage. In addition to the mobile data accessibility, achieving high

network utilization, high data transmission rate and better storage performance

are also critical issues in wireless storage because the mobile users also want their

mobile data to be transferred as fast as possible. However, so far no research work

has been reported in literature which exclusively focused on the second subfield

of wireless storage as what is mentioned in Section 1.2, how to sufficiently utilize

the limited bandwidth of wireless network to achieve high storage performance

over wireless network. Nevertheless, there are some researches reported in litera-

ture which have attempted to distribute or parallelize the transmission to achieve

performance enhancement either at the lower layers of wireless network or at the

storage level over wired network. Kim and Lee presented a parallel transmission of

DS/CDMA signal by orthogonal bases and repeated spreading - the chip-spreading

OCDM [49]. The result shows that the bit error rate of the proposed system is much

lower than that of the conventional DS/CDMA system which uses the maximal ra-

tio combing. Reference [50] presented a prioritized parallel transmission MAC pro-

tocol and conducted performance evaluation in a simplified All-IP wireless WAN

system. Reference [51, 52] also reported the researches on parallel transmission

over mobile communication system or ATM connections. Data Storage Institute

Singapore proposed a multiple addresses parallel transmission architecture for stor-
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age area network to improve the storage performance [53]. Reference [54] presented

a distributed parallel storage system which can achieve scalability and high data

throughput over wired network. There are other researches on how to use parallel

and distributed mechanism to address storage problem over wired network [55, 56].

The above mentioned solutions to address transmission problems provided us valu-

able clues to address transmission problem of storage data over wireless network.

The current status of wireless storage makes us pay the attention to this new and

valuable field of wireless storage. In order to achieve high storage performance and

sufficiently utilize the limited bandwidth in wireless environment, the block level

data access approach such as iSCSI [36] is the better choice than file level data

access approach such as NFS [73], which will be discussed in detail in Section 3.5

and 3.6. However, so far no research work has been reported in literature focusing

on the block level data storage, such as iSCSI, over wireless network.

2.2 Storage Protocol

2.2.1 IP Storage

IP storage refers to a group of technologies that allows block-level storage data

to be transmitted over an IP-based network. There are two key concepts in this

definition: “the use of IP” and “block-level storage”. Transferring block level

storage data over a network topology is not a new concept. Today’s SANs use the

Fibre Channel (FC) technology to do just that. The promise of the new IP storage

protocols is the interconnection, as well as the complete construction of these SANs

with prevalent IP enabled technologies such as Ethernet (802.3) or Wireless LAN

(802.11). The use of IP to transfer data is also not a new concept. Familiar

protocols such as CIFS (Common Internet File System) and NFS (Network File

System) have been used to access file level storage data over IP networks for years.

The difference between these protocols and the IP storage protocols lies in how the
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data is accessed: at the“file level” or at the“block level”. iSCSI is a block level

storage protocol while NFS or CIFS is a file level storage protocol.

2.2.2 Introduction to iSCSI

The iSCSI (internet Small Computer Systems Interface) [36] protocol is based on

SCSI, which is used on host computer systems to perform block data input and

output with various peripheral devices. These devices include disk and tape devices,

as well as printers and scanners.

In iSCSI, SCSI commands are sent over TCP/IP, which is widely used in

corporate networks. Hence, iSCSI defines a means to enable end-to-end block data

transfer between targets and initiators over an IP network. With the widespread

use of IP based network (Ethernet and Wireless LAN) and the SCSI command

set being used throughout all storage configurations, iSCSI is set to become the

protocol of choice in storage solutions.

In addition to iSCSI, several other protocols have been defined to transport

storage over an IP network such as FCIP (Fiber Channel over TCP/IP) [37] and

iFCP (internet Fiber Channel Protocol) [38]. Whereas FCIP and iFCP are used to

allow the connection of existing Fibre Channel infrastructures to each other and to

IP networks, iSCSI enables the creation of SANs completely independent of Fibre

Channel.

iSCSI has attracted a lot of attention recently due to the following advantages

and features [48]:

• Good scalability: iSCSI is based on SCSI protocol and TCP/IP network,

which can provide good scalability.

• Low cost: iSCSI can share and be compatible with existing TCP/IP net-

works. The user does not need to add any new infrastructure hardware.
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• Remote data transferring capability: TCP/IP network can extend to

metro area, which makes iSCSI suitable for remote backup and disaster re-

covery applications.

The iSCSI based storage is quite different from a traditional one. A tradi-

tional storage system is often physically restricted to a limited environment, e. g. in

a data center. It also adopts a transport protocol specially tailored to this envi-

ronment, e. g. parallel SCSI, Fiber Channel, etc. While in an iSCSI storage, the

transport is no longer restricted to a small area. The initiator and the target can be

far away from each other. The network technology in between can be diverse and

heterogeneous. The network condition can be congested and dynamically changing.

Thus, the iSCSI storage solution deserves more careful design, implementation and

performance analysis.

2.2.3 Related Works of iSCSI

Most current iSCSI implementations use software solutions in which iSCSI device

drivers are added on top of the TCP/IP layer for off-the-shelf NICs (Network

Interface Cards). It may cause performance issue. Many researches and projects

have been carried out to analyze and implement iSCSI. A prior research project of

iSCSI - Netstation project of USC showed that it was possible for iSCSI to achieve

80% performance of direct-attached SCSI device [39]. IBM Haifa Research Lab

carried out research on the design and the performance analysis of iSCSI [40, 41].

Bell Laboratories also did some test and performance study of iSCSI over metro

network [42]. University of Minnesota carried out research on the performance

analysis of iSCSI [43]. University of Colorado also did some tests and performance

studies of iSCSI in both hardware and software [44]. A research group proposed

a solution to use a log disk along with a piece of non-volatile RAM to cache the

iSCSI traffic [45]. Other solutions included using a TOE (TCP/IP Offload Engine)

[46] and even iSCSI adapter [47] to reduce the burden of host CPU by offloading
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the processing of TCP/IP and iSCSI protocol into the hardware on the network

adapter. But these hardware solutions will add extra cost compared to a software

solution.

Until now, the researches and implementations of iSCSI are based on FE

(Fast Ethernet) and GE (Gigabit Ethernet). No research work has been performed

that focused on the performance of iSCSI over wireless environment. Because the

wireless LAN 802.11 is also an IP based network, iSCSI can work properly and

does not need to care about whether the low layer is run on Ethernet or wireless

LAN. But due to the limited bandwidth of wireless network, how to optimize the

utilization of the limited bandwidth to achieve high storage performance is an

interesting topic.

2.3 iSCSI over Wireless Network

Currently, people rarely explore running block level storage such as iSCSI over

wireless network because the performance would be a critical issue due to the

inherent characters of wireless network.

Current iSCSI design and implementation is sensitive to the network relia-

bility and latency. In low speed and unreliable wireless environment, the normal

iSCSI may encounter serious performance problem caused by packet failure and

long latency. The initiator need to wait for a long time to receive the ACK status

from the target before issuing the next I/O request.

In some scenario, the small I/O request is sent frequently compared to big

I/O request, more time is wasted when waiting for the ACK status. And for small

I/O request, if the request size can not be divided exactly by the maximum frame

size, there will be a lot of 802.11 frame that do not sufficiently utilize each frame

size. Thus the storage performance problem of iSCSI over wireless network is even

worse.
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The key problem of wireless storage is how to optimize the storage commu-

nication mechanism based on the fundamental features of wireless network which

is much more unreliable and has longer latency than wired network. This thesis

addresses this issue by designing an new iSCSI architecture with multiple virtual

TCP connection.

With the multiple virtual TCP connection design, the iSCSI initiator may

utilize multiple virtual TCP connections to request or send data from or to the

target and do not need to wait for the ACK status before sending the next I/O

request. Such an iSCSI design may achieve high network utilization and better

storage performance for iSCSI over wireless network.
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Chapter 3

Theoretical Analysis of Wireless

Network and Storage

Since the overall research field of this thesis is wireless storage, before the design

and implementation of the wireless storage system, the general analysis of the

characteristics of the lower layers such as MAC layer and TCP/IP layer, and the

upper storage layers such as block layer and file layer is necessary. The storage

system is built on top of the wireless network, thus the characteristics of wireless

network such as the TCP net throughput, the packet failure pattern and the multi-

hop network make great impacts on the upper storage system. The most pervasive

standard of wireless LAN, 802.11b, is used for the purpose of analyzing the lower

layer. The storage system in the upper layer can only be designed and implemented,

which is the main focus of this thesis and will be discussed in the following chapters,

to adapt the wireless environment very well with the understanding of wireless

network in this chapter. The theoretical analysis of the block level and file level

storage is also conducted to provide the theoretical ground. Special care has been

taken to carefully choose the storage protocol to achieve high network utilization

and storage performance.
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3.1 Introduction of Wireless LAN 802.11

IEEE 802.11 [57] is a standard for wireless systems, it focuses on the MAC layer

and PHY layer for access point based networks and ad-hoc networks. Although

industry is seeking data rates as high as possible, even over 100 Mbps data rates [59,

60, 61, 62, 63], 802.11b [58] is the most pervasively used standard nowadays. The

802.11b supports DSSS (Direct Sequence Spread Spectrum) in the 2.4GHz band

with bit rates of 1, 2, 5.5 and 11 Mbps. The last two bit rates are achieved through

CCK (Complementary Code Keying). Different from Ethernet 802.3, IEEE 802.11

employs a CSMA/CA (Carries Sense Multiple Access with Collision Avoidance)

protocol with binary exponential backoff, called DCF (Distributed Coordination

Function). DCF defines a basic access mechanism and RTS (Request To Send)

and CTS (Clear To Send) mechanism.

The Communication process of 802.11 is shown in Figure 3.1. A station with

a packet to be transmitted monitors the channel activities until an idle period equal

to a DIFS (Distributed Inter Frame Space) is detected. After sensing an idle DIFS,

the station waits for a random backoff interval before transmission. The backoff

time counter is decremented in terms of slot time as long as the channel is sensed

idle. The counter is stopped when a transmission is detected on the channel and

reactivated when the channel is sensed idle again for more than a DIFS. The station

transmits its packet when the backoff time reaches zero. At each transmission, the

backoff time is uniformly chosen in the range (0, CW-1), where CW is the current

backoff window size. At the very first transmission attempt, CW equals to the

minimum backoff window size. After each unsuccessful transmission, CW is dou-

bled until a maximum backoff window size value is reached. After the destination

station successfully receives the packet, it transmits an ACK (Acknowledgment)

packet following a SIFS (Short Inter Frame Space) time. If the transmitting station

does not receive the ACK within a specified ACK Timeout, or it detects the trans-

mission of a different packet on the channel, it reschedules the packet transmission
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Figure 3.1: Communication Process of 802.11

according to the previous backoff rules. For more detail, please refer to [57].

3.2 TCP Layer Net Throughput Analysis of 802.11b

3.2.1 Net Throughput Introduction

The theoretical modelling to evaluate the throughput in a LAN is often based on

a large number of stations. Each station provides a traffic load, which in the-

oretical analysis is often characterized by Poisson arrival process with a certain
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average arrival rate and negative exponential packet size distribution. In practice

the number of active stations is limited and gives rise to a bursty packet generation

process for most applications each station gives. Therefore, the measurement of net

throughput in a wireless LAN should be done by registration of the time it takes

to transfer large files between the server and wireless clients. The net throughput

metric is based on the file transfer time. The effective net throughput depends

on the data rate, but there is a lot of overhead, for example, the preamble of the

transmitted frame, the MAC header, ACK frames, transmission protocol overhead

and processing delay in local and remote computer. Then the net throughput of

802.11b is far less than the raw data rate, which is 11 Mbps.

3.2.2 802.11 Overhead

IEEE 802.11 defines the frame structure and MAC scheme. Thus the overhead

involved in the PHY and MAC can be simply modelled and the maximum MAC

layer throughput can be calculated. The maximum MAC layer throughput reflects

the effective payload transfer with a continuous stream of packets with a payload of

1,500 bytes in one direction and providing an ACK in the other direction. Figure 3.2

illustrates the overhead of 802.11. The overhead and throughput with consecutive

1,500 byte payload data frames for 802.11 can be determined which reflects the

MAC layer’s throughput limitation.

3.2.3 MAC Throughput Calculation

To derive the MAC throughput, the system should be at the best scenario: 1) the

channel is an ideal channel without errors and 2) at any transmission cycle, there

is one and only one active station which always has a packet to send. In a real

channel, the real throughput should be less than net throughput. The notations of

the calculation are shown in Table 3.1.
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Figure 3.2: Overhead of 802.11

A transmission cycle of DCF (Distributed Coordination Function) consists

of DIFS deferral, backoff time, data transmission, SIFS deferral and ACK trans-

mission.

The average backoff time is denoted as:

CW =
CWmin · Tslot

2
(3.1)

The data transmission delay is

TDelay DATA = Tp + TPHY + TMAC + TDATA (3.2)

The ACK transmission delay is

TDelay ACK = Tp + TPHY + TMAC + TACK (3.3)

Then the MAC throughput can be expressed as:

Throughput =
8LDATA

TDelay DATA + TDelay ACK + 2τ + TDIFS + TSIFS + CW
(3.4)
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Table 3.1: The Notations of 802.11b MAC Throughput Calculation
Tslot A slot time

TSIFS SIFS time
TDIFS DIFS time
CWmin Minimum backoff window size

Tp Transmission time of the physical preamble
TPHY Transmission time of the PHY header
LMAC MAC overhead in bytes
LACK ACK size in bytes
TMAC Transmission time of MAC overhead
TACK Transmission time of ACK
LDATA Payload size in bytes

LDATA TCP Payload size with TCP hearer in bytes
TDATA Transmission time of payload

τ Propagation delay
RDATA Data rate
RACK Control rate

For IEEE 802.11, the transmission time equals to the ratio of the packet size

and the transmission rate, then

TDelay DATA = Tp + TPHY +
8LMAC + 8LDATA TCP

RDATA

(3.5)

TDelay ACK = Tp + TPHY +
8LMAC + 8LACK

RACK

(3.6)

Thus the MAC throughput can be determined by the following formula:

Throughput=

8LDATA

Tp + TPHY + 8LMAC+8LDATA TCP

RDATA
+ Tp + TPHY + 8LMAC+8LACK

RACK
+ 2τ + TDIFS + TSIFS + CW

(3.7)

From the 802.11 specification [57, 58], the following parameters of 802.11b

can be gotten, which are shown in Table 3.2.

Usually the packet size is 1,500 bytes, but the TCP header consumes 40

bytes, thus the real payload size reduces to 1,460 bytes. From equation (3.7) with
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Table 3.2: The Parameters of 802.11b
Parameter Value

Tslot 20 µs
TSIFS 10 µs
TDIFS 50 µs
CWmin 31

Tp 144 µs
TPHY 48 µs
LMAC 34 bytes
LACK 14 bytes

τ 1 µs

parameters in Table 3.2, the MAC throughput of wireless LAN 802.11b with default

packet size of 1,500 bytes can be calculated that approximately equals to 6.1 Mbps.

3.2.4 TCP Layer Net Throughput of 802.11b

The above MAC layer throughput does not encompass the overhead of transport

layer (TCP). The overhead of TCP layer include the header overhead and the

overhead caused by the flow control mechanism. So the total net throughput with

TCP is about 15% to 20% lower than the numbers based on the MAC layer which

is calculated above, ignoring the overhead from transport protocol (included in

packets) and request response frames (extra short frames) [64].

From what has been discussed above, the conclusion can be drawn that the

net throughput with TCP of 802.11b is around 45% to 47% (4.9 Mbps to 5.2 Mbps

or 0.61 MB/s to 0.65 MB/s) with default 1,500 bytes packet size of the raw data

rate which is 11 Mbps.

This theoretical calculation result of TCP layer net throughput is the actual

throughput that the TCP layer can provide for the upper block layer and file layer.

This calculation result is verified by the experiment that will be discussed in detail

in Chapter 6. The throughput of the storage system designed and implemented in

this thesis is also compared with this TCP layer net throughput calculation result

in Chapter 6 to highlight the advantage of the proposed storage system which will
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be discussed in the following chapters.

3.3 Packet Failure Analysis of Wireless LAN 802.11

Wireless LAN 802.11 uses CSMA protocol. In CSMA protocol, if there are multiple

stations that use the protocol to share a wireless channel without a coordinating

base station, the packet transmission failure may occur due to the hidden terminal

problem, which is when carrier sensing is not perfect, a node may not hear another

node even when they are in the same cell. In such case, the packet collision occurs

due to the contending of the wireless channel from stations. This problem has been

studied in [65, 66].

There are the other reason for packet transmission failure which is packet

error. The packet error refers to the packet transmission failures between a pair

of wireless stations, which are due to reasons other than collisions. Packet errors

usually occur due to non-ideal channel condition [67]. Multi-path fading, ambient

noise, partition loss and decrease SNR (Signal to Noise) may cause packet errors.

Packet errors cause packet retransmission at sender station and reception errors

at receiver station. When the reception error occurs, unless the receiver station

receives another frame correctly after the error, the receiver station waits for TEIFS

(Extended Inter Frame Space) instead of TDIFS. The analysis of packet error

concerns unreliable packet transmission ability.

Pf is defined to be the transmission failure probability, Pc to be packet colli-

sion probability and Pe to be the packet error probability. Also rtransmit is denoted

as the rate of transmission (including failures) and rsuccess as the rate of successful

transmission respectively. Let rcollision and rerror be the rate of collision and the

rate of packet errors respectively.
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Then the probability of successful transmission can be expressed as:

rsuccess

rtransmit

= 1− Pf (3.8)

Multiple transmissions that collide can be counted as one collision. Approx-

imately each collision is between just two transmissions, then 2rcollision contributes

to the rate of transmission failure, therefore

rtransmit − rsuccess = 2rcollision + rerror (3.9)

2rcollision

rerror

=
Pc

Pe

(3.10)

Tcycle is defined to be the average time between the starts of two payload

transmissions. The transmissions colliding with each other occur at the same time,

therefore rcollision contributes to 1/Tcycle. Then the following equation can be gotten

1

Tcycle

= rsuccess + rcollision + rerror (3.11)

From equations (3.8), (3.9), (3.10) and (3.11), rsuccess can be expressed as

rsuccess =
2(1− Pf )

2− Pf + Pe

1

Tcycle

(3.12)

Finally, channel utilization is expressed by successful transmission of payload

bits as:

S = rsuccess × Tpayload =
2(1− Pf )

2− Pf + Pe

× Tpayload

Tcycle

(3.13)

In the existing analytical model [68], it derived the expression of Pc as:

Pc = 1− (1− 2(1− 2Pf )

1− Pf − Pf (2Pf )m

1

W
)n−1 (3.14)
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Where n is the number of stations in a wireless cell and W is the minimum window

size.

Thus the transmission failure probability Pf is given by

Pf = Pc + Pe−PcPe ≈ Pc + Pe = 1− (1− 2(1− 2Pf )

1− Pf − Pf (2Pf )m

1

W
)n−1 + Pe (3.15)

Pc increases as the number of stations in a wireless cell increases. As to the

Pe, in [69], it is stated that if the channel condition varies over time, packet errors

would have the corresponding variability and it is difficult to predict the variability

of packet errors. If there are only two stations in a cell, which forms the peer to

peer ad hoc network, Pc will not be there, and Pf = Pe. From equation (3.13), it

can be seen that whether Pc or Pe increases, the channel utilization by successful

transmission of payload bits S, also known as saturation throughput, will decrease.

In order to improve S, both the probability of collisions and probability of packet

errors need to be reduced.

Since packet collision and packet error are the intrinsic characteristics and

Pc and Pe are determined by the lower MAC and PHY layers, such as CSMA

protocol, non-ideal channel condition and multi-path fading and so on, in order

to improve S, further researches are needed to be done in lower layers, which are

not the main concern of this thesis. As to the upper storage layers such as block

layer and file layer, because they are built on top of the lower layers and can only

utilize the bandwidth the lower MAC and PHY layers provide for them, in order

to sufficiently utilize the bandwidth, the only way is to reduce the waiting time of

the transmission acknowledgement before sending the next I/O request in storage

layer and send as many packets as possible to lower layer to prevent the occurrence

of the time gap between 802.11 frames.
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3.4 The Impact of Multi-hop Wireless Network

on TCP Performance

Multi-hop network is not a new concept in wired environment, whereas relatively

few researches focused on the multi-hop wireless networks. Multi-hop wireless

networks have several characters different from wired networks. Firstly, in a typical

wireless network that uses IEEE 802.11 MAC, packets may be dropped due to

either packet collision caused by hidden terminals or packet error. Such losses

directly affect TCP window adaptation. Secondly, wireless channel is a scarce,

shared resource. Thus the performance of multi-hop wireless networks deserves

some analysis. The IP packet forwarding and concurrent packet transmission are

two key issues in multi-hop networks.

3.4.1 IP Packet Forwarding

The concept of a forwarding node, which receives packets from upstream nodes

and then transmits these packets to downstream nodes, is a key element of any

multi-hop network, wired or wireless, however the data forwarding operation in the

wireless environment differs from the corresponding function in wired networks in

a fundamental way.

In a wired network, a forwarding node typically has at least two physical net-

work interfaces, with the forwarding functionality consisting of receiving a packet

over one physical interface and subsequently sending it out over a second interface.

In contrast, a node A, with a single wireless interface, may act as a forwarding

node simply by retransmitting a packet that it received, over the same interface.

In effect, A acts as an intermediary for two nodes that are each within the com-

munication range of A but not directly within the range of each other.

Accordingly, packet forwarding in wireless environment does not typically

imply the transfer of a packet between distinct interfaces on a single host. A
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conventional implementation of packet forwarding thus involves the reception of

a packet on the wireless interface, transfer of the packet up the host’s protocol

stack to the IP layer where a routing lookup is used to determine the IP and MAC

address of the next hop, and subsequent transmission of the packet using the same

wireless interface to the MAC address of the next hop. This form of forwarding

suffers from two key deficiencies:

• The forwarding node is thus involved in two separate contention-based chan-

nel access attempts during the forwarding process: once to receive the packet

(from the upstream node) and again to“forward” it (to the downstream node),

and must thus suffer the contention resolution overhead twice.

• The same IP packet makes an unnecessary round-trip between the memory on

the NIC and the hosts memory (accessed by the host software). This round-

trip not only loads the processor of the forwarding node, but also suffers

from additional delays in transfers between the NIC and the host operating

system.

The current IEEE 802.11 DCF MAC algorithm has been designed implicitly

for either receiving or transmitting a packet, but not for a forwarding operation

(i.e., receiving a packet from an upstream node and then immediately transmitting

the packet to a downstream node as an atomic channel access operation).

In order to improve the packet forwarding performance, a research group

proposed a MPLS + DCMA solution to solve this problem [70]. But this is a

wireless LAN 802.11 MAC inherent problem, the performance can not be improved

by proposing the solutions in the upper file and block layer.

3.4.2 Concurrent Packet Transmission

The 802.11 MAC protocol and its variants, are primarily designed for a single-

hop wireless environment, where nodes typically form a clique and communication
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always takes place over a single wireless hop (often to a base station providing

connectivity to the wired infrastructure). In such a “single-cell” environment, the

802.11 MAC contention resolution mechanism focuses primarily on ensuring that

only a single sender - receiver node pair receives collision - free access to the channel

at any single instant.

The fundamental MAC constraint in a shared wireless medium is that no

receiving node can be within the transmission range of more than one simultane-

ously transmitting node, since such concurrent transmissions will lead to collision

and incorrect reception at the receiver. While any MAC should prohibit only par-

allel transmissions, the 802.11 DCF MAC imposes a more rigorous constraint: any

node that is a neighbor of either participant (sender or receiver) in an ongoing

RTS/CTS/DATA/ACK exchange must remain quiet for the entire duration of the

four-way exchange; it can neither initiate a parallel transmission (by sending an

RTS) nor respond with a CTS during this period.

Solving the above mentioned problem by improving channel utilization through

spatial channel reuse is highly desirable. Multiple nodes that do not interfere with

each other should be encouraged to transmit concurrently.

C D EA B F G H I
ACK

DATA

ACK

DATA

Figure 3.3: Spatial Reuse and Contention

Figure 3.3 illustrates an example of 8 hop chain. Optimal spatial reuse is

achieved when nodes {A, D, G} and nodes {B, C, E} are scheduled for transmission

alternatively. Node D is the hidden terminal for transmission A→ B. Two adjacent

nodes are about 200 m apart. The current hardware specifies that for each wireless

node, its transmission range is about 250 m, its carrier sensing range is 550 m and

its interference range is about 550 m. The potential sending node D is a hidden
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terminal of the current transmission pair (A, B). When A and B are initiating RTS

- CTS handshake, D cannot hear CTS since it is out of the 250 m transmission

range of node B. Besides, D can not sense A’s data transmission since A is out

of D’s 550 m carrier sensing range. Therefore, D may transmit to its intended

receiver E at any time. When D is transmitting to E, it will cause collisions at B,

since D is within the 550 m interference range for B. Therefore, hidden terminal D

will cause contention loss at node B. Location dependent contention, together with

multi-hop packet forwarding, also allows for spatial channel reuse. Specifically, any

two transmissions that are not interfering with each other can potentially occur

simultaneously; this improves aggregate channel utilization. Pairs of (A, B) and

(E, F) may transmit simultaneously, but simultaneous transmissions from pairs of

(A, B) and (C, D) will collide. Improving spatial reuse will result in increased TCP

throughput.

From what has been discussed above, it can seen that multi-hop wireless

network may make great impacts on the performance of TCP layer, which are

due to the IP packet forwarding and concurrent packet transmission mechanism of

wireless LAN 802.11. Some researches have proposed some solutions to reduce the

impacts of multi-hop wireless networks in the lower layers [70, 71, 72]. However,

for the upper layers such as file layer and block layer, since they are above TCP/IP

layer, they can not control the TCP performance, which is determined by the

mechanism of lower MAC layer. What storage layers should do is to send as many

downstream packets as possible to reduce the waiting time for I/O request in lower

layers. To do so, whenever the IP packet forwarding or spatial reuse method is

further improved and the MAC layer can address the multi-hop wireless network

problem more efficiently, the continuous data packets from the upper storage layer

will allow the storage system to sufficiently utilize the wireless bandwidth and

significantly improve the storage performance.
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3.5 Block Level Storage

One approach for accessing remote data is to use an IP based storage area network-

ing (SAN) protocol such as iSCSI. In block level storage, a remote disk exports a

portion of its storage space to a client. The client handles the remote disk the same

as its local disk. It runs a local file system that reads and writes data blocks to the

remote disk. Rather than accessing blocks from a local disk, the I/O operations

are carried out over a network using a block access protocol which is shown in Fig-

ure 3.4. Block level storage access remote data at the granularity of disk blocks.

The network I/O consists of block operations (block reads and writes). In case of

iSCSI, remote blocks are accessed by encapsulating SCSI commands into TCP/IP

packets. The iSCSI design is discussed in detail in Chapter 4.

Block
server
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Block
 I/O

Block
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protocol

Network

Block
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Applications
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system

File I/O

Figure 3.4: Block Level Access Storage

Figure 3.5 shows components of TCP/IP packet when it carries iSCSI pro-

tocol. The data are encapsulated into SCSI commands, to which iSCSI header is

added, and iSCSI message is the part of TCP/IP message. Since iSCSI only use

TCP as transmission protocol, for large data transfers in wireless environment, the

iSCSI transfer is efficient.

TCP/IP iSCSI SCSI DATA

Figure 3.5: TCP/IP Packet Components for iSCSI Protocol
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3.5.1 iSCSI Protocol Analysis

The basic iSCSI protocol of read command under the condition of no queue is

analyzed. In the initiator, the application, which needs to read data from the

storage device, issues file requests. The file system converts file requests to block

requests from application to the SCSI layer. The initiator iSCSI driver encapsulates

SCSI commands in iSCSI Protocol Data Units (PDUs) and sends them to the

network via the TCP/IP layer. After receiving iSCSI PDUs from TCP/IP layer,

the target iSCSI driver de-capsulates them. The target driver then sends response

data and status back via TCP/IP.

The read command used to analyze the iSCSI protocol is shown in Figure

3.6. The average command time is

Initiator Target

Delay 1

TransferCommand

Delay 2

Data

DataTransfer

Data

Status

Delay 3

Figure 3.6: Average Read Command Time Analysis

Taverage command time = Tdelay + Ttransfer (3.16)

Where Tdelay is



31

Tdelay = Tdelay1 + Tdelay2 + Tdelay3 (3.17)

Tdelay1 is the time gap between the time one command has finished and the

next command is issued. Tdelay2 is the time gap between the time target receives one

command and issues the data to be transferred. Tdelay3 is pure drive delay. Target

should send all the data and then prepare the status data. Ttransfer is determined

by the speed of the wireless network, thus it can not be decreased.
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NIC hardware
driver 802.11 low
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command

iSCSI driver done
the command

iSCSI driver
handle the data

iSCSI driver get
data

Middle layer done
the command

Middle layer send
next command

Application and file
system

Figure 3.7: Delay 1 for iSCSI Protocol Analysis

Figure 3.7 shows every part of delay 1. From Figure 3.7, it can be seen that

delay 1 should include wireless LAN low level hardware and software, iSCSI driver
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and middle layer delays.

Tdelay1 = TNIC driver (receive status)

+ TiSCSI driver (receive and analyze status and send done)

+ Tmiddle layer

+ TNIC driver (send command)
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iSCSI driver get
command

Send request Response

Hard disk

Disk I/O

Figure 3.8: Delay 2 for iSCSI Protocol Analysis

The delay 2 is shown in Figure 3.8. Delay 2 is almost the same as delay 1.

The delay in the low level network is the same except that now sending more data

is needed. It will take more time, the same as iSCSI driver. If RAM I/O is used,
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there is no delay of the hard disk. If the file I/O or disk I/O is used, reading data

from hard disk is needed and it will take more time.

Tdelay2 = TNIC driver (receive status)

+ TiSCSI driver (receive and analyze command and send data)

+ Tlow level (read data from hard disk if disk I/O or file I/O)

+ TNIC driver (send data)

Although as less time as possible in RAM I/O is used, delay 2 still can not

be decreased. No memory copy, just use a point to the right memory site. But

delay 3 can be decreased. The last data packet with the status can be combined

to let delay 3 equal to 0. The maximum delay which cause the performance worse

can be analyzed. During delay 1, TCP also reply the ACK to the sender, which

means the receiver also need to free the buffer to prepare more data during delay

1. Thus one big buffer to receive all the data of one command and then done the

command can be defined. It should be the fastest way to the sender and receiver

to transmit data in wireless environment.

3.6 File Level Storage

Traditionally, the file level storage is to simply setup a NAS [74] by using file level

access protocol such as NFS (Network File System) [73].

Figure 3.9 illustrates the architecture of NAS. NAS is just another name

for file serving, which was introduced to enable data sharing across platforms.

With NAS, the meta-data describing how files are stored on devices is managed

completely on the file server. NAS enables cross-platform data sharing but comes

at the cost of directing all I/O through the single file server. The server makes

a subset of its local namespace available to clients. Clients access meta-data and

files on the server using a RPC (Remote Procedure Call) based protocol which is
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Figure 3.9: Network Attached Storage Architecture
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Figure 3.10: File Level Access Storage

shown in Figure 3.10.

Figure 3.11 illustrates the communication process of NFS. NFS gives all net-

work users access to files that may be stored on different types of computers. In

a client - server environment, NFS enables computers connected to the network

to operate as clients to access remote files. The same computers also can act as

servers by allowing remote users to access their files. In other words, NFS makes

files stored on a file server accessible to any computer on a network and eliminates

the need to transfer files between users.

3.6.1 Analysis of NFS

In NFS, the file system is located at the server and so is the file system cache (hits

in this cache incur a network hop). NFS clients also employ a cache that can hold
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Figure 3.11: Communication Process of NFS

both data and meta-data. To ensure consistency across clients, NFS version 2 and

version 3 (Although NFS version 4 can avoid this message exchange for data reads

if the server supports file delegation, the most common version of NFS is 3) require

that clients perform consistency checks with the server on cached data and meta-

data. The validity of cached data at the client is implementation-dependent, in

Linux, cached meta-data is treated as potentially stale after 3 seconds and cached

data after 30 seconds. Thus, meta-data and data reads may trigger a message

exchange (i.e., a consistency check) with the server even in the event of a cache hit,

which will consume more times for data transferring and consume more wireless

network bandwidth.

From the perspective of writes, both data and meta-data writes in NFS ver-

sion 2 are synchronous. NFS version 3 and version 4 supports asynchronous data

writes, but meta-data updates continue to be synchronous. Thus, depending on

the version, NFS has different degrees of write-through caching. The write-through
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caching may slows down performance as the system waits for the data to be written

to hard disk and then send the ACK status back to client.

NFS is a stateless protocol. In other words, when a client sends a request to

a server, the server carries out the request, sends the reply and then removes from

its internal tables all information about the request. Between requests, no client

specific information is kept on the NAS server. The advantages of stateless scheme

are shown in Table 3.3.

Table 3.3: Advantages of Stateless Scheme
Advantages of stateless scheme

Fault tolerance
No open or close call needed

No server space wasted on tables
No limits on number of open files
No problems if a client crashes

For each file access, since NFS runs on the file level, it requires the exchange

of several commands before data communication can occur. For example, to read

a file, the client side needs to send an ACCESS command several times to check

the access permission for the directories of the file. It then issues a command to

look up the specified file and checks its access permission by sending an ACCESS

command. These waste several round trip times for the exchange of command,

consume more wireless bandwidth and downgrade the storage performance.

TCP/IP RPC NFS DATA

Figure 3.12: TCP/IP Packet Components for NFS Protocol

Figure 3.12 shows components of TCP/IP packet carrying NFS packets. The

data are enclosed into NFS messages, which are further encapsulated into RPC

messages. The latter are the part of TCP/IP packets. NFS uses RPC over TCP,

due to these two transmission protocols, for large data transfers in wireless envi-

ronment, the NFS transfer is not very efficient compared to iSCSI.
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Advantages of file level data access provide high level abstraction that enables

cross-platform data sharing as well as policy-based security, which come at the

cost of more time for information exchange and consuming more limited wireless

bandwidth.
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Chapter 4

Multiple Virtual TCP Connection

iSCSI Design

In this chapter, the new iSCSI design is discussed in detail. The explanations of the

basic concepts and iSCSI storage model are given. The login phase, data transfer

in full feature phase are discussed. The idea of multiple virtual TCP connection

is discussed and the iSCSI design and working principle are presented in detail. A

typical queuing model of the multiple connection design is established and used to

illustrate the implication of the multiple connection design.

4.1 iSCSI Storage General Model

4.1.1 iSCSI Session and Connection

Figure 4.1 reflects the currently approved SCSI family. iSCSI is one of members

of SCSI family. iSCSI is a storage protocol on top of the TCP/IP network similar

to FCP (Fiber Channel Protocol) on top of the FC (Fiber Channel) and SBP

(Serial Bus Protocol) on top of the IEEE 1394 to transfer SCSI command. SCSI

commands are typically issued by a storage initiator (client) to a storage target

(server). The relationship between SCSI entities is referred to as a nexus. The
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Figure 4.1: SCSI Standard Architecture

iSCSI entity corresponding to an initiator-target nexus is an iSCSI session. An

iSCSI session is a collection of TCP connections between an iSCSI initiator and an

iSCSI target used to pass SCSI commands and data between the initiator and the

target.

Connections exist within a session, TCP connections carry control messages,

SCSI commands, parameters and data. A session can encompass one or multiple

TCP connections over one or more physical links connecting an initiator and a

target.

There are four phases in a session, which are:

• Phase 1 - Initial login phase: In the initial login phase, an initiator sends

the name of the initiator and target. It also specifies the authentication

options. The target responds to the authentication options the target selects.

• Phase 2 - Security authentication phase: To ensure that each party is

actually talking to its intended party, this phase is used to exchange authen-
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tication information.

• Phase 3 - Operational negotiating phase: This phase is used to exchange

certain operational parameters such as PDU length, buffer size and burst

length.

• Phase 4 - Full featured phase: In this phase, SCSI commands and data

are transferred between an initiator and a target.

4.1.2 iSCSI Storage Architecture
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SCSI Layer

NIC Driver
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TCP/IP Layer TCP/IP Layer

iSCSI Layer

SCSI Layer
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Data copy
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Figure 4.2: iSCSI Storage Model

Figure 4.2 shows the iSCSI storage model including an initiator and a target.

iSCSI builds on top of TCP layer. For the communication between initiator and

target, a session must be established. The data and command exchange occurs

within the context of the session. In the initiator, the application, which needs to

store and access data to or from the storage device, issues file requests. The file

system converts file requests to block requests from application to the SCSI layer.

A SCSI command execution consists of three phases: Command, Data and Status
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Response which are shown in Figure 4.3. The initiator iSCSI driver encapsulates

SCSI commands in iSCSI Protocol Data Units (PDUs) and sends them to the

network via the TCP/IP layer. After receiving iSCSI PDUs from TCP/IP layer,

the target iSCSI driver de-capsulates them. Then SCSI commands are mapped

to the storage device. If the SCSI commands are mapped to RAM, it is called

RAM I/O. If the SCSI commands are mapped to an actual magnetic storage disk,

it is called disk I/O. The target driver then sends response data and status back

via TCP/IP. There are two data copies and one DMA in the initiator during one

I/O access and there are one data copy and one DMA for RAM I/O and two data

copies and one DMA for disk I/O in the target side.

initiator target

data

status

Read

initiator target

Write command

data

Write

Read command

data data

data

data

status

Figure 4.3: iSCSI Command Sequence

Besides iSCSI parameter such as PDU size, MaxBurstLength and First-

BurstLength, factors in the lower layer such as TCP flow control algorithm, maxi-

mum frame size and MAC mechanism all significantly affect iSCSI performance.

4.1.3 iSCSI Protocol Data Units

iSCSI PDUs are defined as the communication messages between iSCSI initiator

and target. Table 4.1 describes some of the most commonly used PDU types.
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Table 4.1: iSCSI PDU Types
iSCSI PDU Description
Command Informs target of read or write request
Response Report status of command
Data-out Data from initiator to target
Data-in Data from target to initiator

Ready To Transfer (R2T) Informs initiator to send next set of data
Reject Indicate iSCSI error condition

All iSCSI PDUs have a BHS (Basic Header Segment), which is a fixed-length

48 byte header segment. The BHS contains various parameters, including an op-

code to indicate the type of iSCSI PDUs the headers encapsulate. The PDUs

may also contain AHS (Additional Header Segments), which helps to transfer ad-

ditional parameters, header-digest, data-digest and data segments. The optional

data-digest and header-digest help to protect the integrity of the data segment

and the header respectively. The data segment contains PDUs associated data. It

is optional and is included usually in read and write commands to transfer data.

Figure 4.4 shows the format and content of an iSCSI PDU.

Preamble
Destination

Address
Source

Address Type IP TCP Data FCS

8 6 6 2

46 - 1500 Bytes

4 Octet

BHS (Basic Header Segment)

AHS (Additional Header Segment)
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Sequence Number

Acknowledgement Number

Offset Reserved U A P R S F Window

Checksum Urgent Pointer

Options and Padding

TCP Header

Well Known Ports:
       21 FTP
       23 Telnet
       25 SMTP
       80 HTTP

3260 iSCSI

Figure 4.4: iSCSI PDU Format

The data segmentation and encapsulation is shown in Figure 4.5. The iSCSI

PDUs after encapsulation are transferred to the TCP/IP layer, MAC layer and
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Figure 4.5: Data Segmentation and Encapsulation

PHY layer sequentially. In such process, the data requires segmentation of the

initial data and the encapsulation of the data using headers such as TCP/IP header

and MAC header.

4.2 iSCSI Phase Design

4.2.1 Thread Design

Initiator Target

Rx_thread1

Rx_thread2

Rx_thread3

Rx_thread1

Rx_thread2

Rx_thread3

Tx_thread1

Tx_thread2

Tx_thread3

Tx_thread1

Tx_thread2

Tx_thread3

A session

Figure 4.6: Tx thread and Rx thread

In programming, thread is defined as a part of a program that can execute
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independently of other parts. Operating systems that support multi-threading en-

able programmers to design programs to execute multiple thread concurrently. In

the iSCSI design, after a session has been built up, the initiator and the target

can set several TCP connections whether they are across one or several physical

connections. Threads run in the programs of the initiator and target. In both ini-

tiator and target, each connection spawns to two threads: tx thread and rx thread.

They are responsible for transferring and receiving command, data and response

respectively. Thus the command, data and response can be transferred by multiple

threads in different connections. Figure 4.6 shows the tx thread and rx thread.

In the multiple virtual connection design which will be discussed in Section 4.3 in

detail, multiple sockets and multiple threads are used. Every tx thread handles a

sending sockets, rx thread handle a receiving sockets.

4.2.2 Login Phase Design

There are four phases in an iSCSI session as what is discussed in Section 4.1.1. It

is noted that phases 2 and 3 are optional. In the iSCSI design, phase 1 and 4 are

focused, as to the necessary information and parameter exchanges, they are merged

into phase 1 because the main objective to achieve high data storage performance

and it is not to realize every function of iSCSI. The works in this thesis focuses on

the basic functions of iSCSI.

4.2.2.1 Login Phase

Before iSCSI initiator can send SCSI commands to target, it must first establish an

iSCSI session. login command is the first commands used to build session between

initiator and target. After a session is setup, several connections can be built

between initiator and target within a session.

During login phase, the initiator initiates the session, gets all target IP

addresses from a pre-defined global session data structure. After that, initiator



45

builds connection to each target in each session. It sends login command PDU,

as shown in Figure 4.7 through the connection and then waits for login response

from the target. After login is successful, initiator creates several connections

to the target (the number of connections is defined by the session parameter:

MAX CONNECTION PER SESSION), each connection will spawn to a tx thread

and a rx thread, which is discussed in Section 4.2.1.
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Figure 4.7: Login PDU Format
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Figure 4.8: Login Response PDU Format

Target can only receive connection passively at the beginning. It creates a
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socket, binds listen and sends response PDU, which is shown in Figure 4.8, with

the authentication options the initiator selects. Then it creates a server thread in

the target part. It can receive new connection from initiator in one session. Every

connection in the target will also spawn to a tx thread and a rx thread. The overall

process of iSCSI login command can be illustrated in Figure 4.9.
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setup
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Connection
setup
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Figure 4.9: iSCSI Login Process

As what is mentioned in the beginning of this section, the necessary informa-

tion exchange between initiator and target is merged into login phase. From now

on, the information exchange is discussed.

4.2.2.2 Information Exchange

Information exchange is also called text command, which is to allow the exchange

of information such as parameters and for future extensions according to the iSCSI

draft [36]. Text command should be the second command next to login command.

The status of a iSCSI session is set to several stages which are shown in Table 4.2.

Only after the necessary information exchange, iSCSI can enter full feature phase.
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Table 4.2: iSCSI Session Stages
iSCSI activities iSCSI stages

Before build a sock between
initiator and target SESSION STATUS NOT CONNECT
After build a sock SESSION STATUS CONNECT

After initiator successfully login SESSION STATUS LOGIN
After information exchange SESSION STATUS FULLFEATURE

After initiator logout SESSION STATUS LOGOUT

Text command involves many rounds of information exchange. Every round

the initiator or target tries to do some parsing of text contents which come from

other part. When initiator wants to end text exchange, it sent a text command

with F bit set and target reply a text response with F bit set.

iSCSI draft [36] lists 36 kinds of parameters, because the main objective of

this thesis is to achieve high storage performance, the information exchange is not

the main concern, only 6 kinds of them are used in the iSCSI design, which are

TEXT MAXCONNECTIONS (maximum Connections), TEXT TARGETNAME

(target name), TEXT INITIATORNAME (initiator name), TEXT TARGETADD

RESS (target address), TEXT IMMEDIATEDATA (immediate data) and TEXT D

ATAPDULENGTH (data PDU length). In the model, text command is finished

just in one time of text request and response. So in the first text command, F bit

is set and so does the text response.

After both sides satisfy with authentication and the information exchange,

the login process in the design is completed and the connection can used to pass

SCSI command and data.

4.2.3 Data Transfer in Full Feature Phase Design

Once the initiator and the target authenticate each other and exchange necessary

information and parameters, the initiator registers to SCSI middle layer to emulate

a SCSI device. The iSCSI session is in data transfer phase, also called full feature

phase.
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4.2.3.1 Data Transfer

Data transfer in iSCSI can also refer to read and write operation. How we design

the read and write command is discussed.

Initiator receives SCSI command from SCSI middle layer by scsi queuecommand.

Then it searches for a session according to current session scsi target id. If the com-

mand is a write command for unsolicited data (immediate data), the offset is set

to 0 in the initiator SCSI write buffer and the initiator prepares for data transfer.

The command is queued in the current session’s pending commands and the ini-

tiator waits for its tx thread to send the command and data. Initiator’s rx thread

receives any response including read data, R2T (Read to Transfer) and status from

the target.

Queuecommand

SCSI
middle layer

Tx_thread

Send command

Rx_thread

Receive command

SCSI target

Handle the
command

Return
SCSI

response

Tx_thread

Send response

Rx_thread

Receive response

Done
SCSI

Figure 4.10: Model of Data Transfer

In the iSCSI design, the model of data transfer can be illustrated in Figure

4.10. The target receives command by rx thread, it examines the header of iSCSI

command and handles the command. Target should handle command with iSCSI

target disk by using one of memory I/O, file I/O or disk I/O. When the target

finishes the reading or writing process, it sets the status of command to scsi done



49

and waits for the target tx thread sending the response and status of the com-

mand. Tx thread of target search for the command list of current connection and

current session, check the status of the command, if the status is scsi done, it sends

the response data and status.

4.2.3.2 iSCSI Target Design

File IO

Disk IO

Memory IO

SCSI request

SCSI target
Open, look for the file

and read or write

SCSI_middle layer

Read or write from or to
some position of RAM

Response

Response

Response

Figure 4.11: SCSI Request Types

SCSI target is in charge of handling data between buffer and disk (file I/O,

memory I/O or disk I/O). The parameter of the disk is set in the login phase of

the initialization process of target. These parameters include LUNs (Logical Unit

Numbers), block len and num blocks. When initiator issue read capacity command,

the target will reply the result of LUN capacity.

The SCSI request types are shown in Figure 4.11. For the file I/O and mem-

ory I/O, the target translates the read or write LBA (Logical Block Addressing)

to the position in the file or memory and read or write data. For the disk I/O,

SCSI requests are sent to the scsi middle layer and replay is gotten from the middle

layer.
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4.3 Multiple Virtual TCP Connection Design

4.3.1 Multiple Virtual Connection Solution

Since TCP connection is used to transport iSCSI command, iSCSI initiator is

connected to iSCSI target by TCP connection. It might be impossible to achieve

the full bandwidth capability of the underlying physical transport by a single TCP

connection. However normal iSCSI design and implementation is based on the

single TCP connection, which may not sufficiently utilize the wireless network

bandwidth due to the TCP window size and the round trip time of TCP ACK

status. Compared to wired environment, the wireless network is low speed and

unreliable, in normal iSCSI design, the initiator needs to wait for a long time before

sending the next I/O request because of the packet retransmission over low speed

wireless network due to the packet failure and the long latency as what is discussed

in Chapter 3. Especially for small I/O, the single connection iSCSI may face more

serious performance problem because the requests are sent more frequently than

big I/O, more time is wasted when waiting for the ACK status. And for small

I/O request, if the request size can not be divided exactly by the maximum frame

size in the low layer, there will be a lot of 802.11 frames, which do not sufficiently

utilize each frame size.

Due to the limited bandwidth of wireless network, it is supposed that all

other system resources such as CPU, memory and the speed of hard disk are pow-

erful enough compared to the limited bandwidth to make it possible to achieve

good performance and high network utilization in wireless environment for iSCSI

software solutions.

Since TCP is responsible for end to end data integrity and precedes reliable,

full duplex connections and reliable service through positive acknowledgment with

retransmission strategy, if the network is unreliable, the system throughput is low

due to the time to wait for the acknowledgment and retransmission. Furthermore,
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TCP does not have the mechanism to distribute traffic across multiple interfaces

when that traffic is part of a single TCP connection. Fortunately, TCP enables

hosts to maintain multiple, simultaneous connections, thus distribute traffic across

multiple TCP connections. Multiple connections will provide better performance

and availability. Multiple connections are more likely invisible to the upper layer

since there is still single session for the application. For wireless network, the

physical connection is weak and unreliable, however having multiple connections

could help to reduce the risk of single TCP transmission failure. Also, the parallel

transmission, resulted from the multiple connections, is obviously faster than serial,

because more than one packet is sent at a time.

From what has been discussed above and in previous chapters, a new iSCSI

design with the multiple virtual TCP connections in an iSCSI session and parallel

working mechanism in iSCSI layer is proposed. The key idea of this new architec-

ture actually employs multiple virtual TCP connections over one physical wireless

connection and efficiently spread its traffic over multiple virtual TCP connections.

The working principle will be discussed in detail in Section 4.3.3. It is supposed

that the iSCSI driver can utilize the wireless channel more efficiently and the iSCSI

performance would achieve significant improvement especially for small I/O with

multiple virtual TCP connections.

With multiple connections, the iSCSI driver can continuously send I/O re-

quests to the lower MAC layer via different virtual connection and do not need

to wait for the ACK status before issuing the next I/O request. Also due to the

continuous requests from the iSCSI layer, each 802.11 frame can be sufficiently

used to carry the data. The multiple virtual connection design supposes not only

to improve the iSCSI performance by increasing the utilization of limited wireless

network bandwidth, but also to provide a better mechanism to handle the packet

failure in wireless channel and the long latency issues in multi-hop network envi-

ronment. In wireless storage, since the demand for data is not as large as in wired

network, multiple connection iSCSI design that significantly improve throughput
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for small I/O is very valuable for the application in wireless storage.

The multiple virtual TCP connection iSCSI design is compatible with iSCSI

draft [36], because the draft states that iSCSI protocol allows multiple connections,

not all of which need to go over the same network adaptor within an iSCSI session.

Although it is possible to design multiple TCP connections in one iSCSI

session over several physical connections [36], it costs more with the new hardware.

In addition, even though multiple connection over several physical network adapters

may achieve higher storage performance, each physical connection still can not be

sufficiently utilized as what is discussed above of the single connection iSCSI.

The multiple virtual connection iSCSI, which is different from general idea

of single connection iSCSI or multiple physical connections, can achieve higher

utilization of available bandwidth and better storage performance with minimum

hardware costs over wireless network.

4.3.2 Symmetric and Asymmetric Approach

With the multiple connections, one of the issues that is concerned with is whether

data should travel over the same connections as commands and control informa-

tion. There are two approaches: symmetric approach and asymmetric approach.

Symmetric approach is to transfer data over the same connection on which the cor-

responding command is sent. In this approach, all connections are treated equally.

The other approach is called asymmetric approach because there would be different

types of connections: control and data. The asymmetric approach is to send all

SCSI commands, SCSI responses and task management information over a control

channel, while all data transfers go over separate data channels. The symmetric

and asymmetric models are shown in Figure 4.12.

A major concern with the symmetric model is the possibility of filling up a

connection with data of some commands and then being unable to deliver a high
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Target TargetInitiator Initiator

Command1 + data + status

Command2 + data + status

Command3 + data + status

Command + status

Data

(a) (b)

Figure 4.12: (a) Symmetric Model; (b) Asymmetric Model

priority task management request over the same channel. In the asymmetric model,

only commands and task management requests are sent over the control channel.

These are all relatively short messages, so connection will almost never be filled

up and the control channel would not block. The major drawback of asymmetric

model is that when using multiple processors and iSCSI adapters, if control channel

and its data channels are handled by different processors or adapters, the handling

of a command would require the interaction between different processors and iSCSI

adapters. This is deemed most undesirable. Fortunately multiple virtual connec-

tion design is chosen with single processors and iSCSI adapters, thus the overhead

imposed by the inter-processor or inter-adapter communication do not need to be

concerned. The asymmetric model is used in this iSCSI design.

4.3.3 Working Principle

The detailed working principle is shown in Figure 4.13 . Multiple virtual TCP

connections are built on one physical wireless connection (one wireless LAN adaptor

in the initiator and one in the target). Half of the connections are used for sending

SCSI requests from initiator to target, the other half of the connections are used

for sending responses including data and status from target to initiator. One pair

of transmitting thread (tx thread) and receiving thread (rx thread), which locates
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in initiator and target respectively, are responsible for data communication within

one connection.

Virtual
Connection 2

Virtual
Connection 1

Virtual
Connection n

Virtual
Connection n+1

Virtual
Connection n+2

Virtual
Connection 2n

1 Physical
Connection

Tx_thread n

Tx_thread 2

Tx_thread 1

Rx_thread 1

Rx_thread 2

Rx_thread n

Rx_thread n

Rx_thread 2

Rx_thread 1

Tx_thread 1

Tx_thread 2

Tx_thread n

Command
Queue

Command
Queue

Done
Queue

Response
Queue

Queuecommand ()

Handling command

Done ()

Initiator
SCSI Layer

Initiator
iSCSI
Driver

Target
iSCSI
Driver

Figure 4.13: Multiple Virtual TCP Connection Architecture

The detailed communication procedure is illustrated by illustrating a typi-

cal read operation. The SCSI middle layer is a standard interface for SCSI layer

to communicate with iSCSI device driver. The two main functions of SCSI mid-

dle layer are queuecommand ( ) which issues SCSI command to the iSCSI driver

and done ( ) which informs SCSI middle layer that the command is finished by

iSCSI driver. The iSCSI initiator driver gets read commands from SCSI middle

layer. These commands are encapsulated in iSCSI request PDUs and queued in

the initiator command queue.

As shown in Figure 4.13, in the initiator the transmitting threads (tx threads)
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(1, 2,....,n) of connections (1, 2,....,n) send these PDUs from command queue

to the target. The target driver receives these PDUs by the receiving threads

(rx threads) (1, 2,....,n) of their corresponding connections. The target driver then

de-encapsulate iSCSI request PDUs and map SCSI commands to the storage de-

vice (memory or disk). After getting data from storage device and forming iSCSI

response PDUs (status or data), the target driver queues these iSCSI response

PDUs in response queue. Tx thread (1, 2,....,n) in the target send these PDUs by

connection (n+1, n+2,....,2n). The initiator driver receives response through the

rx threads (1, 2,....,n) of their corresponding connections. Then the initiator driver

put it to done queue to call the done ( ) function to finish the SCSI exchange.

It is noted that in the iSCSI design, the number of connections must be even

(2, 4,...., 2n), because the issue of data transmission balance is considered. The

transmitting thread (tx thread) and receiving thread (rx thread) are separated.

They work independently and the number of tx thread and the number of rx thread

is equal. In the initiator, for example, virtual connections 1 to n are used to transmit

request PDUs to target and virtual connections n+1 to 2n are used to receive data

and status from the target. This mechanism is a scalable design. High bandwidth

utilization can be achieved by adding a pair of connections even when the wireless

bandwidth become wider and wider in the future.

As multiple connections are used, synchronization becomes an important is-

sue. The parallel transmission means several commands and data are transferred

synchronously. In such a situation, each PDU must be distinguished even though

the receiver’sequence of PDU is not the same as sender’s sequence of PDU. Ac-

cording to iSCSI draft [36], the “initiator task tag” is used to record the sequence

number of the iSCSI command in every iSCSI PDU. Related data and Status

PDUs of the iSCSI command attach the same “initiator task tag”. Even if mul-

tiple connections are used and command queue is enabled in both initiator and

target, the device driver can easily find respective data or status PDUs from the

pending queue. Although the sequence number of the iSCSI command is the extra
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overhead which may introduce the delay and decrease the storage performance,

this mechanism is necessary to solve the synchronization problem of multiple TCP

connection design.

4.3.4 Queuing Model for Multiple Virtual Connections

The multiple virtual connection queuing model is established here to analyze the

performance of single connection iSCSI and multiple virtual connection iSCSI, and

illustrate the implication of the multiple virtual connection design on system per-

formance. The queuing model is shown in Figure 4.14. The single connection

model is a typical M/M/1 queuing model and the multiple connection model is a

M/M/m model.

For M/M/1 model, suppose the packet arrival rate is λ and service time is

exponentially distributed with mean 1/µ1. For M/M/m model, suppose a com-

munication link serving m independent Poisson traffic streams with overall rate λ

and the link is divided into m separate channels with one channel assigned to each

traffic stream. However, if a traffic stream has no packet awaiting transmission, its

corresponding channel is used to transmit a packet of another traffic stream. The

transmission times of packet on each of the channels are exponentially distributed

with mean 1/µm.

For M/M/1 model, the average delay can be expressed as

T1 =
1

µ1 − λ
(4.1)

For M/M/m model, the average delay can be expressed as

Tm =
1

µm

+
PQ

mµm − λ
(4.2)

Where PQ denotes the queuing probability of M/M/m model and can be
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Figure 4.14: Single Connection and Multiple Connection Queuing Model

expressed as [75]

PQ =
p0(mρ)m

m!(1− ρ)
(4.3)

Since the multiple virtual connections are based on one physical connection,

the value of µm depends on the workload and the number of connections m. Here

M/M/2 is discussed as a typical example.

In equation (4.2) when ρ << 1 (lightly loaded system), PQ
∼= 0 and

T2
∼= 1/µ2 (4.4)

For lightly loaded system in the multiple virtual connection over one physical

link design, since one physical link can not be sufficiently used by single TCP

connection, the multiple virtual connections do not need to contend for one physical

link and the service rate µ2 is approximately equal to µ1. From equation (4.1) and

(4.4), it can be seen that in lightly loaded system, M/M/2 model’s packet delay is

much less than M/M/1 model’s packet delay.

In equation (4.2) when ρ is only slightly less than 1 (heavily loaded system),

PQ
∼= 1, 1/µ2 << 1/(mµ2 − λ) and
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T ∼= 1

mµ2 − λ
(4.5)

For heavily loaded system in the design, since one physical link almost can

be used by single TCP connection, the multiple virtual connections usually need

to contend for one physical link and the service rate µ2 is much less than µ1 but

slightly greater than µ1/2. From equation (4.1) and (4.5), it can be seen that in

heavily loaded system, M/M/2 model’s packet delay is a little less than M/M/1

model’s delay.

On average, the multiple connection iSCSI design is more efficient for packet

transmission than single connection iSCSI. The improvement is more remarkable

for lightly loaded system than heavily loaded system. In the iSCSI design, small

I/O is considered as light loaded system and big I/O is considered as heavy loaded

system. The experiment and test results stated in Chapter 6 will verify what we

discuss here.
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Chapter 5

Implementation and Experiment

In this chapter some implementation issues of the multiple virtual TCP connec-

tion iSCSI is explained. The experiment methodology and system setup are also

illustrated.

5.1 Implementation Issues

The iSCSI prototype is developed in the commercial PC. All programs are based

on Linux open source code (2.4.18-14).

5.1.1 Login Phase

During the iSCSI login phase, after the socket is created and bound, read and write

operation can be achieved by using recvmsg() and sendmsg() functions.

Sendmsg(sock fd, &msg, len);

recvmsg(sock fd, &msg,len);

where msg is of the struct msghdr defined in /include/linux/socket.h

struct iovec

{
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void *iov base;

size t iov len;

};

The above iovec structure is filled with the data pointer and the length of

the data to be passed to the kernel

memcpy fromiovec(skb put(skb,len), msg→msg iov, len);

The data to be sent is filled up, the iovec structure initialized. The data from

the iovec is copied and processed in the kernel.

The below lines are used to map the above iovec structure to TCP/IP

iov.iov len = ISCSI HDR LEN;

iov.iov base=login;

msg.msg iov=&iov;

msg.msg iovlen =1;

After the above mapping, the TCP connection can be established between

the initiator and the target, then the login command PDU which was discussed in

Section 4.2.2.1 can be used through the TCP connection.

5.1.2 Information Exchange

The text command and text response structures are defined totally the same as

iSCSI draft [36]. Also the text parameters are set as follow:

struct text parameter

{

char text parameter name[128];

unsigned int text int value;
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int text boolean value;

char text char value[128];

};

One parameter includes a parameter name and its value. The value type can

be integer, boolean or char. In the initiator part, There is a text parameter array

with includes the six parameters stated in Section 4.2.2.2.

The status after login is
SESSION_STATUS_LONGIN

Accept parameter as cmdsn
and init_task_flag

Opening rx_thread waiting for
the response

Setup a text PDU including
iscsi_text_pdu and parameter

Setup sock message parameter

Sending text_pdu and
parameter through the sock

Figure 5.1: Initiator Sending Text Command

Figure 5.1 illustrates the flow chart of the initiator sending text command

(parameter exchange). Figure 5.2 illustrates the flow chart of the target sending

the text response to the initiator. The target will send a text response to initiator

after handling all the text parameters. Then the target set the status to full feature

phase. The initiator receives the text response by rx thread and sets the status to

full feature phase too.
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Rx_thread receive iscsi_header

iscsi_header

Login Text scsi else

status = login ?

Return
fail

Check the text parameter length
from iscsi_header

Receive parameter from sock

Analyze the parameter and return
the value to the target

Return OK

YesNo

Figure 5.2: Target Sending Text Response

5.1.3 SCSI Command Implementation

Login command and text command (Information Exchange) should be the first

two commands. After that, the initiator registers to SCSI middle layer, then SCSI

middle layer will automatically send inquiry, test unit ready and read capacity

commands. These commands are discussed below:

• INQUIRY: The initiator typically issues several INQUIRY commands to

detect which devices are on the SCSI bus. It starts at SCSI ID 0, LUN

(Logical Unit Number) 0. If a device is located, the scan continues with

SCSI ID 0, LUN 1, then LUN 2, and so on until either no device is located

or LUN 7 has been scanned. At this point, the scan continues with SCSI ID

1, LUN 0, proceeding through to SCSI ID 7, LUN 7. The results from this
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initial scan sends to upper layer. The operating system sees one LUN as one

disk. The results from this initial scan may also be available to application

and driver software through the use of the host’s SCSI system routines.

The information returned by the INQUIRY command includes the periph-

eral qualifier and peripheral device type, vendor and product identification

(DSI SSIA, iSCSI) and the product revision level.

The CDB (command descriptor block ) for an INQUIRY command for LUN

0 would be 12h 00h 00h 00h FFh 00h and indicates the initiator has set aside

a buffer of FFh bytes to receive the response.

The INQUIRY command will always return with GOOD status unless the

initiator has set unsupported bits in the CDB.

A basic test of the INQUIRY data should include verification of the peripheral

qualifier and peripheral device type.

• TEST UNIT READY: In the implementation this command is used to

test the target’s status. If the target can accept a medium-access command,

e. g. a READ or a WRITE, it returns with a GOOD status. Otherwise, the

command returns with a CHECK CONDITION status and a sense key of

NOT READY. This response usually indicates that the target is completing

power-on self-tests.

• READ CAPACITY: This command has the standard structure of 10 byte

commands and returns eight bytes of response. Four bytes reflect the last

LBA (Logical Block Addressing) of the drive while the remaining four reflect

the block length.

5.1.4 Data Transfer Operation

The read operation is discussed in Section 4.3.3. The write operation implemen-

tation is illustrated here. In the SCSI write, the R2T (Ready to Transfer) PDUs
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fulfill the role of iSCSI layer flow control between target and initiator. The R2T

PDUs are issued by the target device as buffers become available to receive more

data. At the completion of the write, the target issues status and sense, indicat-

ing a successful transaction. Outgoing SCSI data (initiator write to target data or

command parameters) will be sent as either solicited data or unsolicited data which

depends on the negotiation in login phase. Solicited data are sent in response to

R2T PDUs. Unsolicited data can be part of an iSCSI command PDU (“immediate

data”) or an iSCSI data PDU. An initiator may send unsolicited data (immediate

or in a separate PDU) up to the negotiated limit (initial burst size ). All subse-

quent data have to be solicited. The maximum size of an individual data PDU is

negotiated at login phase.

During write operation, an initiator must hold data until it has received the

status for the corresponding command. Even if the initiator sends immediate data

or unsolicited data, the target may discard the data in case it does not have the

resources to handle the data at that instant. The target may then request that the

data to be resent.

A target does not need to keep a copy of the data buffers it has sent, if

such data can be regenerated from the storage device. However, the target must

keep around the status information until the initiator has acknowledged it. The

initiator sends status acknowledge information to the target. If strict ordering

between commands is needed (such as reading and writing of the same device)

then the application must perform the proper synchronization by not issuing the

second command until it has received the status of the first command (as in linked

commands). The flow chart of the write operation in the implementation is in

Figure 5.3.
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Initiator sends write cmd to target

Initiator receives R2T ?

iSCSI allocates resource for the
I/O (RAM memory)

Target iSCSI sends R2T to
initiator

Initiator sends the write data to
target

Target iSCSI sends status to
initiator (do not de-allocate the
resource associated with I/O)

Initiator receives status ?

Initiator acknowledges the status
back to target iSCSI via the next

command ExpStatSN

Target iSCSI receives the
ExpStatSN and de-allocate the

resource for I/O

Initiator performs session recover
to re-establish communication

with target
Target receives data ?

Error or recovery
handling

Yes

Yes

Yes

Error or recovery
handling

Error or recovery
handling

Figure 5.3: Flow Chart of iSCSI Write Operation

5.1.5 Semaphore Implementation

Since multiple threads (tx thread and rx thread) is used in the iSCSI design, some-

times semaphore should be used. Semaphores can be described as counters used to

control access to shared resources by multiple processes or threads. They are most

often used as a locking mechanism to prevent processes from accessing a particular

resource while another process is performing operations on it or they are used for

synchronization between threads. Semaphore has two basic operations: up and

down. Up operation is an atomic operation that waits for semaphore to become

positive, then decrements it by 1. Down operation is an atomic operation that
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increments by 1. In Linux, up and down operating is used as P and V operation.

In the program, semaphore is used in two circumstances. One is for making

a thread blocked and active under some conditions, another is for different threads

to use the same special data structure.

For example, in the initiator, these two kinds of semaphore are used. Tx sem

is used between queuecommand and tx thread (queuecommand is called by SCSI

mid-layer and can be seen as another separate thread). Every time queuecommand

adds a SCSI command to the end of the command queue. Then it processes a

up operation to wake up tx sem. In the tx thread, it uses a down operation to

block itself. Figure 5.4 illustrates this kind of semaphore. Another semaphore

initiator sem is needed for mutual exclusion when visiting a command queue in

different threads. Figure 5.5 illustrates this kind of semaphore in the program.

Tx_thread Queuecommand

Loop

Block: down
(&tx_sem)

Loop

Queue a command:
up (&tx_sem)

Wake up

Figure 5.4: Tx sem Semaphore

5.2 Experiment Setup

The main storage testbed used in the experiments consists of a target and an initia-

tor connected by wireless LAN 802.11b. Figure 5.6 shows the main platform of the

iSCSI experiments. Table 5.1 shows the system configuration and experimental pa-
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Tx_thread Queuecommand

BlockBlock

Visit command queue:
down(&initiator_sem)

After visit command queue:
up(&initiator_sem)

Add command to queue
down(&initiator_sem)

After add:
up(&initiator_sem)

Access public
area

Figure 5.5: Initiator sem Semaphore

Wireless LAN 802.11b/g
or Fast Ethernet

Storage
device

iSCSI
target

(server)

iSCSI
initiator
(client)

iSCSI
initiator
(client)

Testing tools
is run in the
initiator side

Figure 5.6: Main iSCSI Experiment Setup

rameters. The hardware configuration of the iSCSI target includes a 866MHz PIII

processor, 256M RAM and a Cisco Aironet 350 series PCMCIA 802.11b Wireless

LAN Adaptor. The Adaptec 39160 SCSI card is used to connect an IBM 18.2G

SCSI hard disk. The initiator is implemented in a 733MHz PIII machine with 256M

RAM and a Cisco Aironet 350 series PCMCIA 802.11b Wireless LAN Adaptor. In

order to test the performance of iSCSI under various connection environments, for

some tests, 3com 3c59x fast ethernet cards in target and initiator are used to test

the iSCSI performance under wired environment, for other tests, Linksys Wireless-

G notebook adapter and SMC 802.11g wireless PCI card in target and initiator

respectively are used to test the iSCSI performance under 802.11g.



68

Table 5.1: Experiment Configuration
Target Initiator

Intel PIII 866 MHz CPU Intel PIII 733 MHz CPU
256M RAM 256M RAM

Cisco PCMCIA 802.11b adapter Cisco PCMCIA 802.11b LAN adapter
Hardware 3com 3c59x FE card 3com 3c59x FE card

SMC 802.11g wireless PCI card Linksys wireless-G adapter
Adaptec 39160 SCSI card

IBM 18.2G hard disk
Redhat 8.0 Redhat 8.0

Software Linux kernel 2.4.18-14 Linux kernel 2.4.18-14 (modified)
ext 3 ext3

NFS version 3

Table 5.2: Testing Tools
Chariot 5.0 TCP layer Throughput in Windows

Netperf TCP layer Throughput in Linux
dd command Comparison of iSCSI and NFS (throughput and latency)

Multiple connection iSCSI throughput
IOMeter Multiple connection iSCSI IOPS

Multiple connection iSCSI response time

Both machines run Redhat 8.0 with the Linux kernel version 2.4.18-14. De-

fault Linux implementation of NFS version 3 is used for the experiment to compare

the performance of iSCSI and NFS. The default file system used in the experiments

is ext3 (Linux Extended File System 3). The ext3 file system resides at the client

for iSCSI experiments and at the server for NFS experiments respectively. The

TCP is used as the default transport protocol in the experiments.

5.3 Methodology

Table 5.2 simply lists the tools used in the experiments. The TCP network per-

formance is tested by Netperf in Linux environment and Chariot 5.0 in Windows

environment. The objective of this test is to verify the TCP layer throughput that

can provide for the upper iSCSI layer and compare it with theoretical analysis re-

sults of wireless 802.11 as discussed in Section 3.2. The performance of two storage

schemes: file level storage (NFS) and block level storage (iSCSI) is also compared.
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Throughput, which is the sustained data transfer rate between an initiator and

the storage device, and the response time, which is the time interval for an initia-

tor from issuing an iSCSI command to the request has been served by the target,

are used as two main metrics in the performance study. dd command is used as

the application benchmark tool to copy to or from iSCSI disk. For example, “dd

write” is “dd if=/dev/zero of=/dev/sda bs=4k count=250000” and “dd read” is

“dd if=/dev/sda of=/dev/zero bs=4k count=250000”. It will generate 1GB data

to be written to iSCSI disk and generate 1GB data to be read from iSCSI disk

respectively.

IOMeter, an industry standard I/O benchmark tool, is used to test the per-

formance of the multiple virtual connection iSCSI with respect to throughput with

different number of connections and network latency, IOPS with different queue

length for small I/O. The experiments are also conducted to show the effect of

lower layer parameter to iSCSI performance. Multiple virtual connection iSCSI is

also tested under wired environment and 802.11g environment to further analyze

its performance.

In order to reduce the effect of the storage device on the iSCSI performance

under wired environment, RAM I/O mode is set in iSCSI target side in that ex-

periment. All of the I/O data are directly mapped to the RAM rather than to the

logical block of the actual magnetic disk. But in the other experiments of the iSCSI

over wireless network, since the main bottleneck is the low wireless bandwidth, disk

I/O mode is chosen.

In Linux kernel 2.4.18-14 or 2.4.20, if the kernel source code is not modified,

the benchmark tools (“dd” and “IOMeter”) will generate SCSI command, which

request 128K data to SCSI layer. In the small I/O test, the kernel source code

in /usr/src/linux-2.4.18-14/drivers/block/ll rw blk.c needs to be modified to allow

the initiator to generate 2K ∼ 32K small I/O request to SCSI layer. It is also noted

that no matter what test is conducted, the whole request size must be set much

bigger than initiator’s memory to avoid the impact of local cache.
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Chapter 6

Performance Evaluation and

Result Discussion

In this chapter, the performance of the prototype is evaluated and analyzed. The

TCP layer net throughput and the comparison of the results of iSCSI and NFS are

also discussed in this chapter. The multiple connection iSCSI results are compared

with normal single connection iSCSI results in both wired and wireless environment.

The analysis is extended to the multiple connection iSCSI performance under dif-

ferent network conditions, different network parameters to identify some of the key

issues of iSCSI performance. It is noted that all experiments are conducted with

disk I/O if no specific illustration.

6.1 TCP Layer Throughput Result

Since TCP layer throughput is a very important factor that affect the performance

of iSCSI as what is discussed in Section 3.2, the TCP performance of the system

in Windows and Linux operating system is tested by Netperf and Chariot 5.0
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respectively. Figure 6.1 is the test result from Chariot 5.0. The sample time is 26s,

the maximum throughout is 5.195 Mbps, the minimum throughput is 3.582 Mbps

and the average throughput of the TCP layer is 4.903 Mbps which accord with the

theoretical analysis in Section 3.2.

Figure 6.1: TCP Layer Throughput in Windows (P2P)
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Figure 6.2: TCP Layer Throughput in Linux (P2P)

Figure 6.2 shows the results under Linux environment. The TCP throughput

is tested 10 times and the average throughput is 5.06 Mbps which is also in the

range of the theoretical analysis.

The TCP performance test is also conducted by using Linksys wireless access
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Figure 6.3: TCP Layer Throughput with Access Point

point router connected to LAN or directly to the other computer. The results are

shown in Figure 6.3. All test results are less than the results with P2P connection.

This is because connecting to access point adds one more hop to the communication

link, the packet loss and the overhead definitely increase. From what has been

discussed above, it can be seen that the theoretical calculation in Section 3.2 that

TCP layer net throughput of 802.11b is around 45% to 47% (4.9 Mbps to 5.2 Mbps

or 0.61 MB/s to 0.65 MB/s) with default 1,500 bytes packet size of the raw data

rate 11 Mbps accords with the test results (for Windows: 4.903 Mbps or 0.61 MB/s

and for Linux: 5.06 Mbps or 0.63 MB/s), thus it is verified by the experiment test

results. These results will also be used to compare with throughput of the multiple

connection iSCSI tested in block level to highlight the contribution of this thesis.

6.2 Performance Comparison of iSCSI and NFS

Figure 6.4 shows the read throughput comparison of normal single connection iSCSI

and NFS. The throughput of iSCSI always outweighs NFS. For small I/O request,

4K for example, normal single connection iSCSI throughput is almost 50% higher

than NFS and for big I/O request (128K), iSCSI throughput is still about 4%
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 Read Throughput of Normal iSCSI and NFS
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Figure 6.4: Read Throughput of Normal iSCSI and NFS version 3

higher than NFS. This is because to access the raw device from block level such

as iSCSI can achieve higher throughput than access storage device from file level

such as NFS as what is discussed in Section 3.5 and 3.6.

Figure 6.5 displays the latency on the access of file objects with the iSCSI

and NFS schemes respectively. The test is conducted to transfer a 1G file between

the client (initiator) and the server (target). For the write operations, the iSCSI

significantly outperforms the NFS. As what can be seen, the read operations also

have a similar trend. The lower data transfer latency of iSCSI is mainly because

the asynchronous operation in initiator ext3 file system of iSCSI. In addition, NFS

is a stateless protocol and runs on the file level, it requires the exchange of several

commands before data communication can occur which consumes more time.

The test results show that iSCSI based storage can reach high bandwidth

utilization and provide higher storage performance than NFS based system. In

order to achieve higher throughput and network utilization, the iSCSI gain an

advantage over NFS as what is discussed in Section 3.5 and 3.6.
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Data Transfer Comparison of iSCSi and NFS (1G)
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Figure 6.5: Data Transfer Time Comparison of Normal iSCSI and NFS version 3

6.3 Normal iSCSI Test Result Analysis
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Figure 6.6: Normal Single Connection iSCSI Throughput

Figure 6.6 shows the normal single connection iSCSI throughput by using

wireless LAN 802.11b. The I/O request size range from 2K to 128K and the low

layer 802.11 frame size is set as default size of 1,500 bytes. From Figure 6.6 it

can be seen that for small I/O request (2K ∼ 8K), the throughput is far less than

the maximum throughput in theory (0.61 MB/s ∼ 0.65 MB/s or 4.9 Mbps ∼ 5.2
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Mbps) as what is discussed in Section 3.2 and it is less half compared to big I/O

request. This is because the occurrence of the time gap between the consecutive

802.11 frames, the waiting time for the status before sending the next I/O request

in iSCSI layer and the overhead imposed by frequent small I/O request.

The other experiment is conducted by manually opening several ports in tar-

get side to form several targets in one machine with the same IP address using

the normal iSCSI and establishing several connections between single initiator and

target. One wireless LAN 802.11b physical channel is used for all of these connec-

tions. Figure 6.7 and Figure 6.8 shows the read and write test results from the

experiment.
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Figure 6.7: Read Throughput of Manually Setting Multiple Target iSCSI 802.11b

From the figures, it can be seen that whether for read throughput or write

throughput, two targets can achieve 10% throughput improvement for small I/O

and for big I/O, throughput is 0.58 MB/s which is still less than theoretical analysis

result as what is discussed in Section 3.2. However, the throughput of two targets

has the similar trend as normal single connection iSCSI. For small I/O request,

the throughput is still quite low and far less than the maximum throughput the

wireless channel can achieve. This is because that each connection is for one target

and although multiple connection within the same channel can further utilize the
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Figure 6.8: Write Throughput of Manually Setting Multiple Target iSCSI 802.11b

time gap between the consecutive frames of the low layer in a certain extent, the

initiator still need to wait for the status before issuing the next I/O request. In

addition, since more connections may add more overheads to the system due to the

handover among different independent connections and threads, the throughput of

3, 4 and 5 connections is lower than the throughput of 2 connection.
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Figure 6.9: Read Throughput of Manually Setting Multiple Target iSCSI 802.11g

The same experiment is also conducted under wireless LAN 802.11g, the test

results are shown in Figure 6.9 and Figure 6.10. The test results have the same
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Figure 6.10: Write Throughput of Manually Setting Multiple Target iSCSI 802.11g

trend as the test results under 802.11b. Thus in order to achieve high storage

performance, multiple virtual connection within one session should be adopted.

6.4 Multiple Connection iSCSI over Wireless Net-

work Result Analysis

6.4.1 Comparison of Normal iSCSI and Multiple Connec-

tion iSCSI

Figure 6.11 and Figure 6.12 show the read and write throughput comparison of

multiple connection iSCSI with normal iSCSI in disk I/O mode by using wireless

LAN 802.11b. The I/O request size range from 2K to 128K and the frame size is

set as default size of 1,500 bytes. From Figure 6.11 and Figure 6.12, it can be seen

that for small I/O (2K ∼ 8K), the normal single connection iSCSI’s throughput is

far less than the maximum throughput in theory (0.61 MB/s ∼ 0.64 MB/s) and it

is very low compared to big I/O request. However for small I/O request (2K ∼ 8K),

the multiple connection iSCSI can achieve a significant throughput improvement
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Figure 6.11: Read Throughput of Multiple Connection iSCSI and Normal iSCSI

compared to normal single connection iSCSI. For 2K request size, for example,

the throughput is improved from 0.25 MB/s to 0.53 MB/s, which is about 112%

improvement. The wireless environment is very unreliable. In normal iSCSI, the

initiator needs to wait for a long time before sending the next I/O request because

of the packet retransmission for the ACK status. Especially for small I/O, the

requests are sent frequently compared to big I/O, so much time is wasted when

waiting for the status. And for small I/O request, if the request size can not be

divided exactly by the maximum frame size in the low layer, there are a lot of

802.11 frames, which do not sufficiently utilize each frame size.

In multiple TCP connection iSCSI design, the above mentioned problems can

be solved. By using the multiple virtual TCP connections in an iSCSI session and

the parallel working mechanism, the iSCSI driver can utilize the wireless channel

more efficiently, which means the iSCSI driver can continuously send I/O requests

to low layer via different connections and does not need to wait for the ACK status

before sending the next I/O request. Also due to the continuous requests from

the iSCSI layer, each 802.11 frame can be sufficiently used to carry the data. In

wireless storage, since the demand for data is not as large as in wired network,

multiple connection iSCSI design that significantly improve throughput for small
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Figure 6.12: Write Throughput of Multiple Connection iSCSI and Normal iSCSI

I/O is very valuable for the application in wireless environment.

For big I/O request (128K), there are also some improvements. The iSCSI

maximum throughput can reach 0.62 MB/s, which is very close to the the TCP

layer net throughput tested in Section 6.1 (0.63 MB/s for Linux) and in the range

of the theoretical analysis result stated in Section 3.2. The maximum throughput

of the upper iSCSI layer, which is very close to both the theoretical and experiment

TCP layer net throughput, verifies that the system overhead within block level in

multiple connection iSCSI is very small. For the system, by using 2 connections, it

can achieve the maximum throughput. Adding more connections, the test results

show that the system performance reduces due to imposing more overheads on the

system.

The test is also conducted over 100 Mbps FE (Fast Ethernet) wired network.

The results are shown in Figure 6.13. It can be seen that the multiple connection

iSCSI cannot achieve such a significant throughput improvement compared to nor-

mal single connection iSCSI over wired network. In addition, the performance of

multiple connection iSCSI increases with the request size, which is the same trend

as normal iSCSI. This is because wired network is reliable, the overhead caused

by retransmission is small, the normal iSCSI can already achieve a relatively high
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Figure 6.13: iSCSI Performance over Wired Network

throughput. What’s more, the overhead caused by the header and the driver to

process a SCSI command, such as checking the command, preparing data and

preparing status is the inherent overhead of the system and cannot be reduced,

thus the multiple connection iSCSI cannot achieve a great improvement.
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Figure 6.14: Response Time of Multiple Connection iSCSI and Normal iSCSI

The average response time of normal iSCSI and multiple connection iSCSI

is tested over wireless LAN 802.11b. The test results are shown in Figure 6.14.

The response time of multiple connection iSCSI is always lower than the response
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time of normal single connection iSCSI. For small I/O, the response times are only

half of the normal iSCSI. As to the big I/O, the response times are also a little

lower (6%) than normal iSCSI. This is also because the multiple connection iSCSI

design. The upper layer does not need to wait for the status sent back before it

can issue the next I/O request, which save the time and make the response times

lower than normal single connection iSCSI.
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Further experiment is conducted to analyze the CPU utilization of big I/O

(128K) request. In this experiment, the read and write operation is tested with

disk I/O mode and RAM I/O mode. The test results are shown in Figure 6.15. It

can be seen that if disk I/O mode is used, the initiator side and the target side CPU

utilizations is almost the same for normal iSCSI and 2 connection iSCSI respec-

tively.While if the RAM I/O is used, whether it is normal iSCSI or 2 connection

iSCSI, the CPU utilization in the initiator side is always higher than that of the

target side. This is because the initiator needs to handle one more data copy in

memory than that of the target as shown in Figure 4.2. Also Figure 6.15 shows

that the CPU utilization of the multiple connection iSCSI is only a little higher

than normal iSCSI. For example, in initiator side, when disk I/O mode and read

operation is used, the CPU utilizations of normal iSCSI and multiple connection
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iSCSI is 41% and 53% respectively. Because in GE (Gigabit Ethernet) environ-

ment, the CPU utilization can almost reach 100%, a conclusion can be drawn that

the system’s main bottleneck is still on the low wireless bandwidth itself.

6.4.2 iSCSI Throughput with Different Network Latency

It is commonly supposed that network latency has a great impact on the iSCSI

performance, especially in wireless environment. The experiment is conducted to

test the network latency’s impact on the multiple connection iSCSI to illustrate

that this new iSCSI design can still achieve good performance in long latency and

unreliable wireless environment.
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Figure 6.16: Read Throughput vs. Network Latency

Figure 6.16 shows the read throughput with different network latency over

wireless LAN 802.11b. The network latency in this experiment is estimated by

the ping command. The 1.2 ms delay refers to peer to peer ad-hoc network while

the 2.5 ms delay and 3.8 ms refers to the communication between initiator and

target with one hop and two hops respectively. From Figure 6.16, it can be seen

that although the network latency is significantly increased, the throughput of the

multiple virtual connection iSCSI can still achieve good storage performance. For
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big I/O request, e. g. 128K, although the delay is doubled (2.5 ms)or tripled (3.8

ms), the throughput is only 8% or 11% less than peer to peer network scenario (1.2

ms). For small I/O request, e. g. 2K, the decrease is only 2% and 5% for 2.5 ms

delay and 3.8 ms delay respectively. Normal iSCSI is also tested with the network

latency of 2.5 ms, the throughput decrease is around 15% and 30% for small I/O

request and big I/O request respectively.

The above mentioned achievement for long latency wireless network is due to

the multiple virtual TCP connection design and the architecture that can support

long queue. In wireless environment, the multi-hop channel and the unreliable

signal strength can delay the data transmission and make the network latency

quite long. The experiment verifies that the multiple connection iSCSI design is

effective enough to achieve high throughput in such scenario.

6.4.3 The Impact of Network Parameters on iSCSI Perfor-

mance
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Figure 6.17: Read Throughput vs. MTU size

The packet size’s effect on the iSCSI transmission performance over wireless

LAN 802.11b is discussed. The experiment is designed working on different packet
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size to demonstrate the influence of packet size on the multiple connection iSCSI

data transmission performance. Figure 6.17 shows the achieved throughput of 2

virtual connection iSCSI with different MTU (Maximum Transmission Unit) size.

Cisco Aironet 350 series PCMCIA 802.11b Wireless LAN Adaptor’s maxi-

mum MTU size is 2,260 bytes, thus the maximum packet size used in the experiment

is 2,260 bytes. From Figure 6.17, it can be seen that for large MTU size, e. g. 2,260

bytes, the throughput for 128K request is 0.72 MB/s, while for default MTU size,

e. g. 1,500 bytes, the throughput for 128K is only 0.62 MB/s. A conclusion can

be drawn that the iSCSI performance is increased as the MTU size is increased all

the time. This is mainly because the big frame can carry more data, which make

the payload size greater in proportion to TCP header overhead than that of small

frame size and the big frame can decrease the frequency of interruption of wireless

adapter for the same size of data transmission.

6.4.4 The Impact of Queue Length on I/O Rate
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Figure 6.18: I/O Rate for Small I/O on Different Queue Length

The performance of the multiple connection iSCSI for small I/O request is

tested. Since the queue depth is an important parameter that affects the iSCSI
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performance for small I/O, the multiple connection iSCSI is designed to support

different queue length. The impacts of the queue length on iSCSI performance is

summarized in Figure 6.18. The test is conducted with the request size of 4K bytes

and the MTU (Maximum Transmission Unit) size of 1,500 bytes.
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When the queue length equals to 1, the iSCSI performance is poor and the

I/O rate is only about 94 IOPS. This is because all iSCSI commands, data and

status are transmitted one by one. Figure 6.19 shows that the big delay appears

between two iSCSI commands. When the queue length is more than 1, the multiple

iSCSI commands can be issued continuously. The network bandwidth utilization

increases. When the queue length is greater or equals to 8, the I/O rate can reach

around 140 IOPS. The big delay appear only after a group of iSCSI commands

finished, which is shown in Figure 6.20. The test results show that the I/O rate

increases with the queue length until the queue length equals to 8 when I/O rate

reach is peak value of around 140 IOPS. Further increasing the queue length can

not increase the I/O rate anymore. This is because when queue length is 8, the
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bandwidth has already been sufficiently used by iSCSI and it may also be restricted

by interruption response frequency of wireless adapter.
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Chapter 7

Conclusion and Future Works

This chapter presents the conclusion and highlights the contributions of this thesis

based on the performance evaluation and result analysis conducted in previous

chapters. Possible future work is briefly introduced here.

7.1 Conclusion

This thesis presents a new iSCSI design based on the concepts of multiple virtual

TCP connections and parallel working mechanism over wireless LAN 802.11. The

various experiments are conducted to identify some key issues of iSCSI performance

over wireless network.

The background for the specific wireless storage problem is presented in Chap-

ter 2. The theoretical analysis, which covers the overhead from the lower MAC layer

to storage block layer and file layer, is presented in Chapter 3 in order to achieve

high performance of wireless storage.

Multiple virtual TCP connection iSCSI design and the implementation issues

are the topics of Chapter 4 and Chapter 5. The general iSCSI storage model is dis-

cussed to identify the working mechanism of iSCSI. Then the multiple virtual TCP

connection iSCSI design is illustrated with respect to the comparison of symmetric
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and asymmetric approach. After that the working principle of new iSCSI archi-

tecture and queuing models are discussed. Some implementation issues such as

login phase, information exchange, SCSI command implementation and semaphore

implementation are explained in Chapter 5.

The multiple connection iSCSI design and normal iSCSI are tested over wire-

less LAN 802.11 by using two popular benchmark tools, dd command and IOMeter.

The experiment results are compared, analyzed and evaluated in Chapter 6. In or-

der to identify the key issues of the iSCSI performance, the experiments are also

conducted to test the iSCSI performance with different network parameters, differ-

ent network latency and different queue length.

The main contributions of this thesis are as follows:

1. The characteristics of wireless LAN 802.11 are analyzed with respect to the

TCP layer net throughput, packet failure pattern and the multi-hop channel

impact on TCP performance. The storage level protocol such as block level

iSCSI and file level NFS are also discussed in detail. The key performance

problem of wireless storage is that the unreliability and packet retransmission

of wireless network serious affects the storage performance. Especially for

small I/O requests, the performance is even worse due to the more frequently

requested ACK storage communication mechanism over unreliable wireless

network.

2. An iSCSI design is proposed with the concepts of multiple virtual TCP con-

nections in an iSCSI session and parallel working mechanism in iSCSI layer

over wireless LAN 802.11. The new iSCSI design not only improves the iSCSI

performance by increasing the utilization of limited wireless network band-

width, but also provides a better mechanism to handle the packet failure in

wireless channel and the long latency issues in multi-hop wireless environ-

ment.

3. The iSCSI prototype based on the multiple connection design has been devel-
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oped by Linux kernel level programming on commercial PC. The prototype is

different from single connection implementation but is compatible with iSCSI

standard [36].

4. Various experiments are conducted to test the performance of the self-developed

iSCSI prototype and normal single connection iSCSI. The test results show

that multiple virtual connection iSCSI design for wireless storage can achieve

significant throughput improvement for small I/O request and some through-

put improvement which is close to the theoretical analysis result for big I/O

request. The iSCSI can achieve high performance even in multi-hop, unreli-

able and long latency wireless network.

The main results are as follows:

1. TCP layer throughput in Windows and Linux is 4.903 Mbps (0.61 MB/s)

and 5.06 Mbps (0.63 MB/s) respectively, which accords with the theoretical

analysis result and verifies the correctness of the theoretical calculation (4.9

Mbps to 5.2 Mbps or 0.61 MB/s to 0.65 MB/s) in Section 3.2.

2. For small I/O request (2K ∼ 8K), the multiple connection iSCSI can achieve

significant throughput improvements compared to normal single connection

iSCSI. For 2K I/O request, for example, the throughput is improved from

0.25 MB/s to 0.53 MB/s, which is about 112% improvement.

3. For big I/O request (128K), the maximum throughput of iSCSI can reach

0.62 MB/s, which is very close to the experiment results of TCP layer net

throughput (0.63 MB/s for Linux) in Section 6.1 and in the range of theoreti-

cal analysis of TCP layer net throughput (4.9 Mbps to 5.2 Mbps or 0.61 MB/s

to 0.65 MB/s) in Section 3.2. This result verifies that the system overhead

within iSCSI is very small.

4. For small I/O request (2K ∼ 8K), the response times are only half of the

response time of normal single connection iSCSI.
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5. For big I/O request (128K), the response times are also 6% lower than normal

single connection iSCSI.

6. In initiator side, when disk I/O mode is used, for read operation, CPU uti-

lization increases only from 41% to 53% although the storage performance

has been significant improved.

7. When network latency is doubled, the throughput decrease is only about 2%

for 2K small I/O request and 8% for 128K big I/O request. When network

latency is tripled, the throughput decrease is about 5% for 2K small I/O

request and 11% for 128K big I/O request.

8. The throughput increases with MTU size increase. When MTU is equal to

2,260 bytes, for big request size (128K), the throughput can reach 0.72 MB/s.

When default MTU size 1,500 bytes is used, the throughput is 0.62 MB/s for

big request size (128K).

9. The multiple connection iSCSI supports different queue length. When queue

length is equal to 8, the IOPS can reach its peak value of 140.

10. For small I/O request, 4K for example, normal single connection iSCSI through-

put is almost 50 % higher than NFS and for 128K big I/O request, iSCSI

throughput is still about 4% higher than NFS.

7.2 Future Works

In this thesis, the main concern is to achieve high storage performance and network

utilization. However, in wireless environment, network security is also an important

issue needed to be solved.

When storage devices are directly attached to host machines, the data on the

storage devices can be considered secure by its being inaccessible to the outside

world. With iSCSI attached storage devices, this is no longer the case. A security



91

problem may arise if sensitive storage data is accessed over a general data network,

especially in wireless network. Thus in order to perfect the design of multiple

connection iSCSI, wireless security and authentication issues of iSCSI deserve to

be studied and considered.
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