2,611 research outputs found

    A planar 3-DOF nanopositioning platform with large magnification

    Get PDF
    AbstractPiezo-actuated flexure-based precision positioning platforms have been widely used in micro/nano manipulation. A conventional major challenge is the trade-off between high rigidity, large magnification, high-precision tracking, and high-accuracy positioning. A compact planar three-degrees-of-freedom (3-DOF) nanopositioning platform is described in which three two-level lever amplifiers are arranged symmetrically to achieve large magnification. The parallel-kinematic configuration with optimised sizes increases the rigidity. Displacement loss models (DLM) are proposed for the external preload port of the actuator, the input port of the platform and the flexible lever mechanism. The kinematic and dynamic modelling accuracies are improved by the compensation afforded by the three DLMs. Experimental results validate the proposed design and modelling methods. The proposed platform possesses high rigidity, large magnification, high-precision circle tracking and high-accuracy positioning

    Development of a passive compliant mechanism for measurement of micro/nano-scale planar three DOF motions

    Get PDF
    This paper presents the design, optimization, and computational and experimental performance evaluations of a passively actuated, monolithic, compliant mechanism. The mechanism is designed to be mounted on or built into any precision positioning stage which produces three degree of freedom (DOF) planar motions. It transforms such movements into linear motions which can then be measured using laser interferometry based sensing and measurement techniques commonly used for translational axes. This methodology reduces the introduction of geometric errors into sensor measurements, and bypasses the need for increased complexity sensing systems. A computational technique is employed to optimize the mechanism’s performance, in particular to ensure the kinematic relationships match a set of desired relationships. Computational analysis is then employed to predict the performance of the mechanism throughout the workspace of a coupled positioning stage, and the errors are shown to vary linearly with the input position. This allows the errors to be corrected through calibration. A prototype is manufactured and experimentally tested, confirming the ability of the proposed mechanism to permit measurements of three DOF motions

    Design and control of a 6-degree-of-freedom precision positioning system

    Get PDF
    This paper presents the design and test of a6-degree-of-freedom (DOF) precision positioning system, which is assembledby two different 3-DOF precision positioning stages each driven by three piezoelectric actuators (PEAs). Based on the precision PEAs and flexure hinge mechanisms, high precision motion is obtained.The design methodology and kinematic characteristics of the6-DOF positioning system areinvestigated. According to an effective kinematic model, the transformation matrices are obtained, which is used to predict the relationship between the output displacement from the system arrangement and the amountof PEAsexpansion. In addition, the static and dynamic characteristics of the 6-DOF system have been evaluated by finite element method (FEM) simulation andexperiments. The design structure provides a high dynamic bandwidth withthe first naturalfrequency of 586.3 Hz.Decoupling control is proposed to solve the existing coupling motion of the 6-DOF system. Meanwhile, in order to compensate for the hysteresis of PEAs, the inverse Bouc-Wen model was applied as a feedforward hysteresis compensator in the feedforward/feedback hybrid control method. Finally, extensive experiments were performed to verify the tracking performance of the developed mechanism

    Design and control methodology of a 3-DOF flexure-based mechanism for micro/nano-positioning

    Get PDF
    A 3-DOF (X–Y–θZ) planar flexure-based mechanism is designed and monolithically manufactured using Wire Electro-Discharge Machining (WEDM) technology. The compact flexure-based mechanism is directly driven by three piezoelectric actuators (PZTs) through decoupling mechanisms. The orthogonal configuration in the x and y directions can guarantee the decoupling translational motion in these axes. The rotational motion and translational displacement in the x direction can be decoupled by controlling the piezoelectric actuators in the x axis with the same displacement values in same and opposite motion directions, respectively. The static and dynamic models of the developed flexure-based mechanism have been developed based on the pseudo-rigid-body model methodology. The mechanical design optimization is conducted to improve the static and dynamic characteristics of the flexure-based mechanism. Finite Element Analyses (FEA) are also carried out to verify the established models and optimization results. A novel hybrid feedforward/feedback controller has been provided to eliminate/reduce the nonlinear hysteresis and external disturbance of the flexure-based mechanism. Experimental testing has been performed to examine the dynamic performance of the developed flexure-based mechanism

    An inverse Prandtl–Ishlinskii model based decoupling control methodology for a 3-DOF flexure-based mechanism

    Get PDF
    A modified Prandtl–Ishlinskii (P–I) hysteresis model is developed to form the feedforward controller for a 3-DOF flexure-based mechanism. To improve the control accuracy of the P–I hysteresis model, a hybrid structure that includes backlash operators, dead-zone operators and a cubic polynomial function is proposed. Both the rate-dependent hysteresis modeling and adaptive dead-zone thresholds selection method are investigated. System identification was used to obtain the parameters of the newly-developed hysteresis model. Closed-loop control was added to reduce the influence from external disturbances such as vibration and noise, leading to a combined feedforward/feedback control strategy. The cross-axis coupling motion of the 3-DOF flexure-based mechanism has been explored using the established controller. Accordingly, a decoupling feedforward/feedback controller is proposed and implemented to compensate the coupled motion of the moving platform. Experimental tests are reported to examine the tracking capability of the whole system and features of the controller. It is demonstrated that the proposed decoupling control methodology can distinctly reduce the coupling motion of the moving platform and thus improve the positioning accuracy and trajectory tracking capability

    A macro-micro mechanism design for laser cutting process

    Get PDF
    This paper is organized to provide the novel approaches during the design of a machine to shorten the laser cutting process. Macro-micro manipulation concept is employed for the design of this machine both in the mechanical design and in devising the trajectory planning algorithm. Micro-mechanism design along with its calibration process are also explained since they involve novel approaches in this application domain. Trajectory planning algorithms, which are developed in this work, are discussed based on their applicability to CNC system architecture. Finally, experimental results based on a benchmark workpiece are given and the system design is discussed with respect to these results.Republic of Turkey Ministry of Science, Industry and Technology and Coşkunöz Metal Form Inc. (Project code: 01668.STZ.2012-2

    PKM mechatronic clamping adaptive device

    Get PDF
    This study proposes a novel adaptive fixturing device based on active clamping systems for smart micropositioning of thin-walled precision parts. The modular architecture and the structure flexibility make the system suitable for various industrial applications. The proposed device is realized as a Parallel Kinematic Machine (PKM), opportunely sensorized and controlled, able to perform automatic error-free workpiece clamping procedures, drastically reducing the overall fixturing set-up time. The paper describes the kinematics and dynamics of this mechatronic system. A first campaign of experimental trails has been carried out on the prototype, obtaining promising results

    Characterization and System Identification of XY Flexural Mechanism Using Double Parallelogram Manipulator for High Precision Scanning

    Get PDF
    This article represents modeling of double parallelogram flexural manipulator derived from basic classical mechanics theory. Fourth order vibration wave equation is used for mathematical modeling and its performance is determined for step input and sinusoidal forced input. Static characterization of DFM is carried out to determine stiffness and force deflection characteristics over the entire motion range and dynamic characteristics is carried out using Transient response and Frequency response. Transient response is determined using step input to DFM which gives system properties such as damping, rise time and settling time. These parameters are then compared with theoretical model presented previously. Frequency response of DFM system gives characteristics of system with different frequency inputs which is used for experimental modeling of DFM device. Here, Voice Coil Motor is used as Actuator and optical encoder is used for positioning sensing of motion stage. It is noted that theoretical model is having 5% accuracy with experimental results. To achieve better position and accuracy, PID and LQR (Linear Quadratic Regulator) implementation was carried out on experimental model. PID gains are optimally tuned by using Ziegler Nichols approach. PID control is implemented experimentally using dSPACE DS1104 microcontroller and Control Desk software. Experimentally, it is observed that positioning accuracy is less than 5 ÎĽm. Further multiple DFM blocks are arranged for developing XY flexural mechanism and static characterization was carried out on it. The comparison of experimental and FEA results for X-direction and Y-direction is presented at end of paper

    Overview of out of plane MEMS assembly techniques.

    No full text
    International audienceThis paper deals with a synthesis of the activities of the French FEMTO-ST institute in the field of robotic microassembly. It deals with the tridimensional assembly of objects whose typical size is from 10 microns to 400 microns. We are especially focusing on the automation of micro-assembly based on several principles. Closed loop control based on microvision has been studied and applied on the fully automatic assembly of several 400 microns objects. Force control has been also analyzed and is proposed for optical Microsystems assembly. At least, open loop trajectories of 40 microns objects with a throughput of 1800 unit per hour have been achieved. Scientific and technological aspects and industrial relevance will be presented
    • …
    corecore