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Abstract. This article represents modeling of double parallelogram flexural 

manipulator derived from basic classical mechanics theory. Fourth order 

vibration wave equation is used for mathematical modeling and its performance 

is determined for step input and sinusoidal forced input. Static characterization 

of DFM is carried out to determine stiffness and force deflection characteristics 

over the entire motion range and dynamic characteristics is carried out using 

Transient response and Frequency response. Transient response is determined 

using step input to DFM which gives system properties such as damping, rise 

time and settling time. These parameters are then compared with theoretical 

model presented previously. Frequency response of DFM system gives 

characteristics of system with different frequency inputs which is used for 

experimental modeling of DFM device. Here, Voice Coil Motor is used as 

Actuator and optical encoder is used for positioning sensing of motion stage. It 

is noted that theoretical model is having 5% accuracy with experimental results. 

To achieve better position and accuracy, PID and LQR (Linear Quadratic 

Regulator) implementation was carried out on experimental model. PID gains 

are optimally tuned by using Ziegler Nichols approach. PID control is 

implemented experimentally using dSPACE DS1104 microcontroller and 

Control Desk software. Experimentally, it is observed that positioning accuracy 

is less than 5 micron. Further multiple DFM blocks are arranged for developing 

XY flexural mechanism and static characterization was carried out on it. The 

comparison of experimental and FEA results for X-direction and Y-direction is 

presented at end of paper.  
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1   Introduction 

The demand for high precision positioning has been increased rapidly with the 

advancement in the domain of mechatronics, control systems and its integration with 

mechanical systems [1-3]. Nano-positioning stages are widely used in various 

applications such as biomedical, stereo-lithography for development of prototypes, 

laser scanning, micromachining and scanning probe microscopy etc. [4-6]. Hence, the 

use of accurate and precise instruments has almost become inevitable that eventually 

lead to research work related up to submicron level accuracy and resolution [5-7]. 

Different XY scanning mechanisms are under development but have several 

constrains such as limited range of scanning, restricted performance in sense of 

accuracy, backlash, fixed degrees of freedom, reliance of motion on one another etc. 

Moreover the main aspect is to design a proper control system and interface it to 

provide precise control for desirable working [8-10]. In the recent years, more focus 

has been given to compliant or flexural mechanisms for improving the performance of 

such devices [11-13]. Flexures are nothing but the bending members which deforms 

in a particular direction on the application of load. Flexures are more suitable due 

their distributed flexibility in providing the desired motion in the required direction 

along with the advantage of absence of development of assembly; no wear/tear hence 

no need of greasing/oiling and exclusion of backlash [14]. 

Present work is one of the attempts to design, manufacture, system identification, 

integration and PID control implementation on basic building block of flexural 

mechanism i.e. Double Flexural Manipulator (DFM) [15]. Section 1 gives 

comparative study of fundamentals of flexural mechanisms and applications. Section 

2 explains proposed mechanism, its manufacturing, assembly and monolithic structure 

of XY mechanism (presented in Awatar’s Thesis) which uses DFM as building block. 

Section 3 presents PID control implementation on proposed system. It outlines system 

integration (i.e. interfacing of sensor and actuator to PC via dSPACE DS1104 

microcontroller. Further this section explains system identification and comparison of 

predicted model and experimental results. Section 4 presents the tuning of system 

using PID control and application on DFM and design and implementation of LQR 

control strategy. Section 5 presents development of XY flexural mechanism and its 

static characterization. Section 6 gives concluding remarks and future scope of the 

work. 

2   Review of Flexural Mechanisms 

The flexural mechanism yields a relative motion between the rigid links and 

connection between these rigid links decides a path of motion [16-19]. These 

connections in case of rigid links are pin joints, roller joints, ball bearings etc. But 

conventional joints have a friction and backlash during motion and degrade the 

quality of motion (i.e. smoothness, repeatability, positioning accuracy etc.) [20-22]. 

Hence new era of flexural mechanism is invented to overcome these difficulties. 

These flexural mechanisms generate a motion between rigid links via flexible joints. 

In general, flexural mechanisms classified into two types based on joints used in 



mechanism. Firstly one domain rely on mechanism with flexural hinges (where 

compliance is at single point), and another domain uses flexible planar joints (where 

compliance is distributed over the entire joint) such as flexible plates and beams to 

achieve desired pattern of motion. Flexural mechanisms with hinges typically used for 

rotational type of motion and planar type joints are used for linear type of motion [23-

24]. Different types of mechanisms and its building blocks are outlined as below.  

Fig.1 shows a flexural hinge (single axis and multi-axis) and mechanisms 

developed. It also illustrates 3 degrees of freedom tripod mechanism, 2 degrees of 

freedom motion stage, and positioning stage with six axes. Second domain of 

mechanism uses flexible plates, beams and its combinations (see Fig.2) as building 

block. Compared to Flexural hinges, Flexible planar joints have distributed 

compliance which is more suitable where linear motion is needed.   Fig.2 shows 

flexible planar joints and mechanisms developed. Different flexible planar joints are 

designed and developed, basically these developments mainly concentrates on 

reduction or to achieve a zero parasitic motion and rotation of motion stage for linear 

scanning. 

Finite Element Analysis is performed to compare the performance parameters 

(such as parasitic motion, rotation of motion stage and stiffness of mechanism in 

orthogonal directions) using ANSYS FEA tool. It is identified that double 

parallelogram flexural manipulator exhibits zero parasitic error motion theoretically 

and little amount of rotation. Theoretical and FEA simulations shows cantilever beam 

has a large parasitic error motion and DFM shows zero parasitic error motion. DFM 

gives zero parasitic error motion but gives a small rotation of motion stage. DFM is 

best suitable flexible planar joint for linear scanning type mechanism. Hence, 

experimental setup for DFM is developed and static and dynamic characteristics have 

been determined using experimental identification. Next section discusses the DFM 

experimental setup and its system integration with PC via dSPACE DS1104 

microcontroller. 

  

 

Figure 1.  Various flexural mechanisms. 



 

Figure 2.  Mechanisms developed using planar flexible joints 

3   Experimental Setup: DFM 

Experimental setup for DFM testing, characterization, control implementation is 

developed. It consists of DFM, sensor (optical encoder with 50 µm positioning 

resolution from Renishaw Inc.), Actuator (voice coil motor by BEI-Kimco Inc.), 

dSPACE DS1104 microcontroller, Linear Current Amplifier, and PC.  Fig. 3 shows 

DFM with sensor and actuator mounted on it [25-26]. Fig.4 & fig.5 shows DFM 

system integration with PC via dSPACE DS 1104 microcontroller. Fig.5 shows entire 

setup mounted on optical table. Optical table is used for ground vibration isolations. 

PC consists of MATLAB, Simulink and Control Desk software which runs in 

synchronization with each other and collects the data from sensor and generates a 

signal to actuator according to logic created in SIMULINK model. 

 

 

Figure 3.  Manufactured Double Flexural Manipulator (DFM) 



A. Evaluation of Stiffness: 

Stiffness is a system property to be determined at very low speed on operation which 

is typically less than the three times of its natural frequency. An experimental 

stiffness characteristic (extension and retraction motion) of DFM Mechanism is 

shown in graph of deflection Vs Force in fig 6. An experimental result shows forward 

path motion and backward path motion having close match. Table 1 shows 

experimental results i.e. deflection and stiffness; it is observed error between 

theoretical results and experiments within less than 1%. 

Table 1.Observation Table and Calculations 

Load 

 

Deflection  Stiffness  % 
Error Th. Pr. Th. Pr. 

-5 -7.692 -7.73 0.65 0.6468 0.49 

-2.5 -3.846 -3.874 0.65 0.6453 0.724 

2.5 3.846 3.877 0.65 0.6448 0.802 

5 7.692 7.711 0.65 0.6484 0.243 

 

B. Evaluation of Damping Factor: 

Transient force is applied to give initial displacement is given to motion stage and 

then permitted to pulsate without restrictions up till it arises to end; that is to achieve a 

Transient Response. Experimental results are obtained and graph of deflection vs time 

is plotted as shown in fig.7 and transient response in fig.8. The damping coefficient is 

determined from Logarithmic decrement.  Eq.(1) for Logarithmic decrement is stated 

as,   

                                                                                                         (1) 

Eq.(2) for damping factor is given by, 

                                                                                                              (2) 

The value of Logarithmic decrement was observed as 0.218308 and damping factor as 

0.034785 experimentally. 



 

Figure 4.  Mechatronic integration of proposed system 

 

Figure 5.  Development of Experimental Setup of proposed system 

C. Identification of the System 

To develop transfer function experimentally it necessitates achieving the system 

identification for the proposed system. The ratio of actuator input signal to location of 

motion stage with constant amplitude and variable frequency will give transfer 

function of the system. Initial conditions are assumed to be zero. The frequency 

response is obtained by providing input voltage in sinusoidal form and monitoring 

resultant output positions. For real time monitoring of frequency response, an 

algorithm is designed in MATLAB Simulink. A frequency response curve as shown 

in fig.7 is used to investigate the natural frequency and the phase change with 0.08 

volts amplitude as input and 1 to 70 Hz frequency range. The highest frequency of 

24.51 rad s-1 is identified. 



Here, though we are finding movements in X and Y both directions, we are concerned 

about double flexural mechanism which is having single degree of freedom (DOF). 

Therefore only one input output transfer function of is estimated as Eq.(3) below, 

                                                                                                 (3) 

Fig.8 shows comparison of experimental and model results of DFM. It shows close 

matching with each other. Next section onward PID Control design and 

implementation on DFM is discussed in details. 

 

Figure 6.  Stiffness Characteristics of DFM 

 

Figure 7.  Logarithmic decrement curve 



 

Figure 8.  Comparison of Transient Response for Experimental and Model 

4   PID Control Implementation 

For achieve control of motion stage position in high precision applications the design 

and implementation of PID controller is carried out on proposed system. PID control 

consists of three elements proportional element, integral element and derivative 

element. PID takes care of error in all three tenses (i.e. present, past and future). 

Tuning of constant parameters gives precise control of position of motion stage. The 

control equation for PID control system is shown as Eq.(4) below,  

                                                                     (4) 

Where, : Proportional, : Integral and : derivative gains 

 

Ziegler–Nichols approach is adopted for optimal tuning of PID gains. As in the 

mentioned above, the Ki and Kd gains are set to zero. The output of the loop starts to 

oscillate when proportional gain reaches the ultimate gain Ku with gradual increment 

of proportional gain. To set the gains, ultimate gain Ku and oscillation period Pu are 

used. Tuned PID parameters are applied in real time for precise control of position of 

DFM motion stage. Fig.9 shows a real-time control of position motion stage and 

shows a comparison between reference signal and actual signal. Fig.10 shows error 

between reference and actual position.  

PID control strategy further can be used for precise control of position of motion 

stage. Further LQR is also designed and implemented on DFM and its performance is 

compared with PID control strategy. 



 

Figure 9.  Comparison of actual and reference position 

 

Figure 10.  Actual error signal observed 

5   LQR Implementation  

The LQR was used on the setup. Full state feedback is central to the LQR designs. 

Therefore, we use the Kalman Filter to estimate state variables. The aim of the 

standard LQR problem is to converge the state trajectories to zero in an optimal way.  

Choosing  as the state variables, the equations can be written in the form: 

Where 

 

and A, B, C matrices are given by 



 

 

The general criterion used to arrive at the control law is in Eq.(5) 

 

Subject to 

 

and 

 

The deviation of x from the desired trajectory is penalized quadratically with a 

symmetric positive semi definite weighting matrix Q. Also, the input u is 

quadratically weighted with positive definite (symmetric) matrix R in order to keep 

all inputs within the range of the particular actuator. The pf term allows the designer 

to specifically penalize the state trajectory at the final time. The solution of the above 

problem can be derived to be: 

 

Where, 

 

 

With the boundary condition   

 

Suppose the designer wishes the system to attain a desired state x ref. The above 

control law will then have to be modified. 

Define a new state variable:  

 

The system equations take the form:  

 

and 

 

The optimal control input then becomes: 

 



Hence 

                                                                        (6) 

To represent this new system in the standard form, we want equations of the form 

 

With the input of the form  

 

Comparing, 

 

Also, since LQR control will take x to zero, the new system output y will approach  

 

As seen in the curve (see Fig.11), there is a distinct steady state error. This is partly 

because we generated our reference input based on model information which is 

subject to error. Also, ‘zero shifting’ due to existence of fields, presence of stiffness in 

the beams at the y = 0 might have caused this steady state error. The choice of 

weighting matrices is extremely important. If you choose a Q that gives more 

importance to the first state variable, you’ll see visible oscillations in position after 

settling. Notice the shape of the curve in the fig.12. It can be clearly seen that the 

position curve closely follows the shape of the amplified and shifted disturbance 

curve. 

DFM gives better control performance for linear scanning and accuracy of position of 

motion stage can be further improved by tightly tuning PID control parameters. DFM 

can be further used for development of XY flexural mechanism to achieve an 

orthogonal linear scanning and has numerous applications in precision scanning. 

Shourya Awtar developed family of such mechanisms and we have used one of the 

mechanisms for further investigation [1]. Next section discusses about XY flexural 

mechanism and its static characterization. 



 

Figure 11.  Position plot for regulation using LQR 

 

Figure 12.  Simulated response plotted against generated disturbance (LQR) 

6   Development of XY Flexural Mechanism 

Multiple DFM blocks are arranged such that XY scanning is achieved. Fig.13 shows a 

XY mechanism manufactured for XY for precision scanning.  

Fig.14 shows a block diagram representation of experimental setup, it consists of 

sensors (dial gauges), it’s mounting and loading platform. Fig.15 shows an 

arrangement of mounting of XY flexural mechanism on optical table and alignment of 

dial gauges for recording X and Y direction motions.  



 

Figure 13.  Developed XY Flexural Mechanism 

 

Figure 14.  Layout of experimental setup 

Fig.15 illustrates an experimental setup with two dial gauges which measures 

displacement of motion stage in X & Y directions respectively. These dial gauges 

have a resolution of 10 m and range of measurement is 25 mm maximum. Red color 

flexible wires are tied at actuator location to provide an appropriate actuation in X & 

Y directions. Load is applied using weight pan with an increment of 25 grams. For 

each increment of load deflection of motion stage is recorded. Load in weight pan 

(maximum 35 N i.e. 3.5 Kg) is given such that maximum of 7.5 mm displacement is 

achieved. 



Static Characterization 

Fig.16 & fig.17 shows comparison of experimental results and FEA results. It is noted 

that the finite element analysis results yields good matching with experimental results. 

During the actuation of X-stage, Y-stage deflection was recorded continuously by 

other dial gauge to record motion in X-stage. It is observed experimentally 25 micron 

motion in X-direction when actuation is given in Y-direction. Further, it is noted that 

motion is not due to parasitic or cross coupling but due to manufacturing error or 

surface finish.  Similar, results are observed in other direction, hence, it can be 

concluded that zero parasitic motion in y-direction eliminated for the desired x-

direction motion and zero parasitic motion in x-direction eliminated for the desired y-

direction motion. Slope of force deflection curve is a stiffness of flexural mechanism 

in the direction of actuation. 

 

Figure 15.  Developed of Experimental Setup l  

 

Figure 16.  Comparison of experimental and FEA results for X-direction 



 

Figure 17. Comparison of experimental and FEA results for Y-direction 

7   Conclusion 

The modeling of double parallelogram flexural manipulator (DFM) is presented and 

further experimentally investigated. DFM is characterized in two different domains 

(1) Static characterization is carried out to determine force deflection characteristics 

over the entire motion range; (2) Dynamic characterization are carried out using 

Transient response and Frequency response. Transient response is determined using 

step input to DFM which gives system property damping. It is noted that theoretical 

model is having 5% accuracy with experimental results. Frequency response plots for 

the mechanism denotes behaviour of system for different frequency inputs. This 

frequency response plot is utilized to model DFM device experimentally. 

Experimental model i.e. transfer function of DFM with input as analog voltage signal 

and output as displacement of motion stage is used to obtain frequency response using 

constrained minimization approach. Experimental model is then compared with 

analytical model developed using fourth order wave equation and it is seen that results 

of both the models have very good agreement. PID control implementation was done 

on developed experimental model. To achieve better position and accuracy, PID and 

LQR implementation was carried on developed experimental model. PID parameters 

(Proportional, Integral, Derivative gains) are tuned using Ziegler Nichols Method. 

PID control is applied using dSPACE DS1104 microcontroller and Control Desk 

software. Experimentally, it is observed that positioning accuracy is less than 5 

microns. XY flexural mechanism was developed by arranging multiple DFM blocks 

and static characterization was carried out. It is observed 25 micron motion in X-

direction when actuation is given in Y-direction experimentally. This motion is not 

due to parasitic or cross coupling but due to manufacturing error or surface finish. 

Hence we concluded that zero parasitic motion in y-direction eliminated for the 

desired x-direction motion and zero parasitic motion in x-direction eliminated for the 

desired y-direction motion. 
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