437 research outputs found

    ์ž‘์—… ๊ด€๋ จ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ ์ €๊ฐ์„ ์œ„ํ•œ ์ž‘์—… ์ž์„ธ ๋ฐ ๋™์ž‘์˜ ์ธ๊ฐ„๊ณตํ•™ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2022.2. ๋ฐ•์šฐ์ง„.์œก์ฒด์  ๋ถ€ํ•˜๊ฐ€ ํฐ ์ž์„ธ ๋ฐ ๋™์ž‘์œผ๋กœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์€ ์ž‘์—…์ž์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์ž‘์—…์ž์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„์— ๊ฐ€ํ•ด์ง€๋Š” ์œก์ฒด์  ๋ถ€ํ•˜์˜ ์–‘์ƒ์€ ์ˆ˜ํ–‰ํ•˜๋Š” ์ž‘์—…์˜ ์ข…๋ฅ˜์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง„๋‹ค. ์žฅ์‹œ๊ฐ„ ์•‰์€ ์ž์„ธ๋กœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒฝ์šฐ, ์ž‘์—…์ž์˜ ๊ทผ์œก, ์ธ๋Œ€์™€ ๊ฐ™์€ ์—ฐ์กฐ์ง์— ๊ณผ๋„ํ•œ ๋ถ€ํ•˜๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ ๋ชฉ, ํ—ˆ๋ฆฌ ๋“ฑ ๋‹ค์–‘ํ•œ ์‹ ์ฒด ๋ถ€์œ„์—์„œ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์ด ์ฆ๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ฐฉ์ขŒ ์‹œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ €๊ฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ž‘์—…์ž์˜ ์ฐฉ์ขŒ ์ž์„ธ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ , ์ด์— ๋Œ€ํ•œ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค. ๋“ค๊ธฐ ์ž‘์—…๊ณผ ๊ฐ™์€ ๋™์ ์ธ ์›€์ง์ž„์ด ํฌํ•จ๋œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒฝ์šฐ, ์ž‘์—…์ž์˜ ์ฒด์ค‘์ด ์‹ ์ฒด์  ๋ถ€ํ•˜์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ์ „์„ธ๊ณ„์ ์ธ ๋น„๋งŒ์˜ ์œ ํ–‰์œผ๋กœ ์ธํ•ด ๋งŽ์€ ์ž‘์—…์ž๋“ค์ด ์ฒด์ค‘ ์ฆ๊ฐ€๋ฅผ ๊ฒช๊ณ  ์žˆ๊ณ , ๋“ค๊ธฐ ์ž‘์—…๊ณผ ๊ฐ™์€ ๋™์ ์ธ ์ž‘์—…์—์„œ ๋น„๋งŒ์€ ์‹ ์ฒด์  ๋ถ€ํ•˜์— ์•…์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋น„๋งŒ๊ณผ ์ž‘์—… ๊ด€๋ จ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์€ ์ž ์žฌ์ ์ธ ์—ฐ๊ด€์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ , ๋น„๋งŒ์ด ๋“ค๊ธฐ ์ž‘์—…์— ๋ฏธ์น˜๋Š” ์ƒ์ฒด์—ญํ•™์  ์˜ํ–ฅ์„ ๋…ผ์˜ํ•  ํ•„์š”์„ฑ์ด ์žˆ๋‹ค. ์ž‘์—…์žฅ์—์„œ์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ €๊ฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๋“ค์ด ์ˆ˜ํ–‰๋˜์–ด ์™”์ง€๋งŒ, ์ž‘์—… ์‹œ์Šคํ…œ์˜ ์ธ๊ฐ„๊ณตํ•™์  ์„ค๊ณ„ ์ธก๋ฉด์—์„œ ์ถ”๊ฐ€์ ์ธ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์žฅ์‹œ๊ฐ„ ์˜์ž์— ์•‰์•„ ์ •์ ์ธ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์ž‘์—…์ž์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์„ ์ €๊ฐํ•˜๊ธฐ ์œ„ํ•œ ์œ ๋งํ•œ ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜๋กœ, ์ž‘์—…์ž์˜ ์ž์„ธ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ  ๋ถ„๋ฅ˜ํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์ด ์ œ์•ˆ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ์€ ์ž‘์—…์ž๊ฐ€ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์ด ๋‚ฎ์€ ์ž์„ธ๋ฅผ ์ž‘์—… ์‹œ๊ฐ„ ๋™์•ˆ ์œ ์ง€ํ•˜๋„๋ก ๋•๋Š” ๋ฐ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„์˜ ์ž์„ธ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์—์„œ๋Š” ๋ถ„๋ฅ˜ํ•  ์ž์„ธ๋ฅผ ์ •์˜ํ•˜๋Š” ๊ณผ์ •์—์„œ ์ธ๊ฐ„๊ณตํ•™์  ๋ฌธํ—Œ์ด ๊ฑฐ์˜ ๊ณ ๋ ค๋˜์ง€ ์•Š์•˜๊ณ , ์‚ฌ์šฉ์ž๊ฐ€ ์‹ค์ œ๋กœ ํ™œ์šฉํ•˜๊ธฐ์—๋Š” ์—ฌ๋Ÿฌ ํ•œ๊ณ„์ ๋“ค์ด ์กด์žฌํ•˜์˜€๋‹ค. ๋“ค๊ธฐ ์ž‘์—…์˜ ๊ฒฝ์šฐ, ์ฒด์งˆ๋Ÿ‰ ์ง€์ˆ˜(BMI) 40 ์ด์ƒ์˜ ์ดˆ๊ณ ๋„ ๋น„๋งŒ ์ž‘์—…์ž์˜ ๋™์ž‘ ํŒจํ„ด์„ ๋…ผ์˜ํ•œ ์—ฐ๊ตฌ๋Š” ๊ฑฐ์˜ ์ฐพ์•„๋ณผ ์ˆ˜ ์—†์—ˆ๋‹ค. ๋˜ํ•œ, ๋‹ค์–‘ํ•œ ๋“ค๊ธฐ ์ž‘์—… ์กฐ๊ฑด ํ•˜์—์„œ ์ „์‹  ๊ด€์ ˆ๋“ค์˜ ์›€์ง์ž„์„ ์ƒ์ฒด์—ญํ•™์  ์ธก๋ฉด์—์„œ ๋ถ„์„ํ•œ ์—ฐ๊ตฌ๋Š” ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ์˜ ์—ฐ๊ตฌ ๋ชฉ์ ์€ 1) ๋‹ค์–‘ํ•œ ์„ผ์„œ ์กฐํ•ฉ์„ ํ™œ์šฉํ•œ ์‹ค์‹œ๊ฐ„ ์ฐฉ์ขŒ ์ž์„ธ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๊ณ , 2) ๋“ค๊ธฐ ์ž‘์—… ์‹œ ์ดˆ๊ณ ๋„ ๋น„๋งŒ์ด ๊ฐœ๋ณ„ ๊ด€์ ˆ์˜ ์›€์ง์ž„๊ณผ ๋“ค๊ธฐ ๋™์ž‘ ํŒจํ„ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ดํ•ดํ•˜์—ฌ, ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์ž‘์—…์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ €๊ฐํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์—ฐ๊ตฌ ๋ชฉ์ ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์Œ์˜ ๋‘ ๊ฐ€์ง€ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ฒซ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ฐฉ์ขŒ ์ž์„ธ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์€ ๊ฐ๊ฐ ์—ฌ์„ฏ ๊ฐœ์˜ ๊ฑฐ๋ฆฌ ์„ผ์„œ์™€ ์••๋ ฅ ์„ผ์„œ๋ฅผ ์กฐํ•ฉํ•˜์—ฌ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ์ฐฉ์ขŒ ๊ด€๋ จํ•œ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์— ๋Œ€ํ•ด ๋ฌธํ—Œ ์กฐ์‚ฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฒฐ์ •๋œ ์ž์„ธ๋“ค์— ๋Œ€ํ•ด ์„œ๋ฅธ ์—ฌ์„ฏ ๋ช…์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์—์„œ ์ž์„ธ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๊ธฐ ์œ„ํ•ด kNN ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์˜€๊ณ , ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋‹จ์ผ ์ข…๋ฅ˜์˜ ์„ผ์„œ๋กœ ๊ตฌ์„ฑ๋œ ๊ธฐ์ค€ ๋ชจ๋ธ๋“ค๊ณผ ๋น„๊ต๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ, ์„ผ์„œ๋ฅผ ์กฐํ•ฉํ•œ ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์ด ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ๋‘๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋“ค๊ธฐ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ๋•Œ ์ดˆ๊ณ ๋„ ๋น„๋งŒ์ด ๊ฐœ๋ณ„ ๊ด€์ ˆ์˜ ์›€์ง์ž„๊ณผ ๋™์ž‘ ํŒจํ„ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ์…˜ ์บก์ณ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋“ค๊ธฐ ์‹คํ—˜์—๋Š” ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜ ์ด๋ ฅ์ด ์—†๋Š” ์„œ๋ฅธ ๋‹ค์„ฏ ๋ช…์ด ์ฐธ์—ฌํ•˜์˜€๋‹ค. ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ฃผ์š” ๊ด€์ ˆ(๋ฐœ๋ชฉ, ๋ฌด๋ฆŽ, ์—‰๋ฉ์ด, ํ—ˆ๋ฆฌ, ์–ด๊นจ, ํŒ”๊ฟˆ์น˜) ๋ณ„ ์šด๋™์—ญํ•™์  ๋ณ€์ˆ˜๋“ค๊ณผ, ๋“ค๊ธฐ ๋™์ž‘์˜ ํŒจํ„ด์„ ํ‘œํ˜„ํ•˜๋Š” ๋™์ž‘ ์ง€์ˆ˜๋“ค์„ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๋“ค๊ธฐ ์ž‘์—… ์กฐ๊ฑด๊ณผ ๋น„๋งŒ ์ˆ˜์ค€์— ๋”ฐ๋ผ, ๋Œ€๋ถ€๋ถ„์˜ ๋ณ€์ˆ˜์—์„œ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์ฐจ์ด๋ฅผ ๋ณด์˜€๋‹ค. ์ „์ฒด์ ์œผ๋กœ ๋น„๋งŒ์ธ์€ ์ •์ƒ์ฒด์ค‘์ธ์— ๋น„ํ•ด ๋‹ค๋ฆฌ ๋ณด๋‹ค ํ—ˆ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋“ค๊ธฐ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ๋™์ž‘ ์ˆ˜ํ–‰ ์‹œ ์ƒ๋Œ€์ ์œผ๋กœ ์ ์€ ๊ด€์ ˆ ๊ฐ๋„ ๋ณ€ํ™”์™€ ๋Š๋ฆฐ ์›€์ง์ž„์„ ๋ณด์˜€๋‹ค. ๋“ค๊ธฐ ์ž‘์—…์—์„œ ๋ฐ•์Šค์˜ ์ด๋™์— ๊ฐœ๋ณ„ ๊ด€์ ˆ์ด ๊ธฐ์—ฌํ•˜๋Š” ๋น„์œจ๋„ ์ •์ƒ์ฒด์ค‘์ธ๊ณผ ๋น„๋งŒ์ธ์€ ๋‹ค๋ฅธ ํŒจํ„ด์„ ๋ณด์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์‹ ์ฒด์  ๋ถ€ํ•˜์— ๋…ธ์ถœ๋œ ์ž‘์—…์ž๋“ค์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ €๊ฐํ•  ์ˆ˜ ์žˆ๊ณ , ๊ถ๊ทน์ ์œผ๋กœ ์—…๋ฌด์˜ ์ƒ์‚ฐ์„ฑ๊ณผ ๊ฐœ์ธ์˜ ๊ฑด๊ฐ•์„ ์ œ๊ณ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ์ฒซ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœ๋œ ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์€ ๊ธฐ์กด ์ž์„ธ ๋ถ„๋ฅ˜ ์‹œ์Šคํ…œ์˜ ๋‹จ์ ๋“ค์„ ์™„ํ™”ํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœ๋œ ์‹œ์Šคํ…œ์€ ์ €๋ ดํ•œ ์†Œ์ˆ˜์˜ ์„ผ์„œ๋งŒ์„ ํ™œ์šฉํ•˜์—ฌ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์ธก๋ฉด์—์„œ ์ค‘์š”ํ•œ ์ž์„ธ๋“ค์„ ๋†’์€ ์ •ํ™•๋„๋กœ ๋ถ„๋ฅ˜ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ž์„ธ ๋ถ„๋ฅ˜ ์‹œ์Šคํ…œ์€ ์ž‘์—…์ž์—๊ฒŒ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ž์„ธ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•˜์—ฌ, ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์ด ๋‚ฎ์€ ์ž์„ธ๋ฅผ ์œ ์ง€ํ•˜๋Š” ๋ฐ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๋‘๋ฒˆ์งธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ๋™์ ์ธ ์ž‘์—… ์‹œ ์ดˆ๊ณ ๋„ ๋น„๋งŒ์œผ๋กœ ์ธํ•œ ์ž ์žฌ์ ์ธ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ดˆ๊ณ ๋„ ๋น„๋งŒ์ธ๊ณผ ์ •์ƒ์ฒด์ค‘์ธ ๊ฐ„ ๊ด€์ ˆ์˜ ์›€์ง์ž„๊ณผ ๋™์ž‘์˜ ์ฐจ์ด๋ฅผ ์ดํ•ดํ•˜์—ฌ, ๋น„๋งŒ์„ ๊ณ ๋ คํ•œ ์ธ๊ฐ„๊ณตํ•™์  ์ž‘์—…์žฅ ์„ค๊ณ„์™€ ๋™์ž‘ ๊ฐ€์ด๋“œ๋ผ์ธ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.Working in stressful postures and movements increases the risk of work-related musculoskeletal disorders (WMSDs). The physical stress on a workerโ€™s musculoskeletal system depends on the type of work task. In the case of sedentary work, stressful sitting postures for prolonged durations could increase the load on soft connective tissues such as muscles and ligaments, resulting in the incidence of WMSDs. Therefore, to reduce the WMSDs, it is necessary to monitor a workerโ€™s sitting posture and additionally provide ergonomic interventions. When the worker performs a task that involves dynamic movements, such as manual lifting, the workerโ€™s own body mass affects the physical stress on the musculoskeletal system. In the global prevalence of obesity in the workforce, an increase in the body weight of the workers could adversely affect the musculoskeletal system during the manual lifting task. Therefore, obesity could be associated with the development of WMSDs, and the impacts of obesity on workersโ€™ movement during manual lifting need to be examined. Despite previous research efforts to prevent WMSDs, there still exist research gaps concerning ergonomics design of work systems. For sedentary workers, a promising solution to reduce the occurrence of WMSDs is the development of a system capable of monitoring and classifying a seated worker's posture in real-time, which could be utilized to provide feedback to the worker to maintain a posture with a low-risk of WMSDs. However, the previous studies in relation to such a posture monitoring system lacked a review of the ergonomics literature to define posture categories for classification, and had some limitations in widespread use and user acceptance. In addition, only a few studies related to obesity impacts on manual lifting focused on severely obese population with a body mass index (BMI) of 40 or higher, and, analyzed lifting motions in terms of multi-joint movement organization or at the level of movement technique. Therefore, the purpose of this study was to: 1) develop a sensor-embedded posture classification system that is capable of classifying an instantaneous sitting posture as one of the posture categories discussed in the ergonomics literature while not suffering from the limitations of the previous system, and, 2) identify the impacts of severe obesity on joint kinematics and movement technique during manual lifting under various task conditions. To accomplish the research objectives, two major studies were conducted. In the study on the posture classification system, a novel smart chair system was developed to monitor and classify a workerโ€™s sitting postures in real-time. The smart chair system was a mixed sensor system utilizing six pressure sensors and six infrared reflective distance sensors in combination. For a total of thirty-six participants, data collection was conducted on posture categories determined based on an analysis of the ergonomics literature on sitting postures and sitting-related musculoskeletal problems. The mixed sensor system utilized a kNN algorithm for posture classification, and, was evaluated in posture classification performance in comparison with two benchmark systems that utilized only a single type of sensors. The mixed sensor system yielded significantly superior classification performance than the two benchmark systems. In the study on the manual lifting task, optical motion capture was conducted to examine differences in joint kinematics and movement technique between severely obese and non-obese groups. A total of thirty-five subjects without a history of WMSDs participated in the experiment. The severely obese and non-obese groups show significant differences in most joint kinematics of the ankle, knee, hip, spine, shoulder, and elbow. There were also significant differences between the groups in the movement technique index, which represents a motion in terms of the relative contribution of an individual joint degree of freedom to the box trajectory in a manual lifting task. Overall, the severely obese group adopted the back lifting technique (stoop) rather than the leg lifting technique (squat), and showed less joint range of excursions and slow movements compared to the non-obese group. The findings mentioned above could be utilized to reduce the risk of WMSDs among workers performing various types of tasks, and, thus, improve work productivity and personal health. The mixed sensor system developed in this study was free from the limitations of the previous posture monitoring systems, and, is low-cost utilizing only a small number of sensors; yet, it accomplishes accurate classification of postures relevant to the ergonomic analyses of seated work tasks. The mixed sensor system could be utilized for various applications including the development of a real-time posture feedback system for preventing sitting-related musculoskeletal disorders. The findings provided in the manual lifting study would be useful in understanding the potential risk of WMSDs for severely obese workers. Differences in joint kinematics and movement techniques between severely obese and non-obese groups provide practical implications concerning the ergonomic design of work tasks and workspace layout.Chapter 1. Introduction 1 1.1 Research Background 1 1.2 Research Objectives 5 1.3 Dissertation Outline 6 Chapter 2. Literature Review 8 2.1 Work-related Musculoskeletal Disorders Among Sedentary Workers 8 2.1.1 Relationship Between Sitting Postures and Musculoskeletal Disorders 8 2.1.2 Systems for Monitoring and Classifying a Seated Worker's Postures 10 2.2 Impacts of Obesity on Manual Works 22 2.2.1 Impacts of Obesity on Work Capacity 22 2.2.2 Impacts of Obesity on Joint Kinematics and Biomechanical Demands 24 Chapter 3. Developing and Evaluating a Mixed Sensor Smart Chair System for Real-time Posture Classification: Combining Pressure and Distance Sensors 27 3.1 Introduction 27 3.2 Materials and Methods 33 3.2.1 Predefined posture categories for the mixed sensor system 33 3.2.2 Physical construction of the mixed sensor system 36 3.2.3 Posture Classifier Design for the Mixed Sensor System 38 3.2.4 Data Collection for Training and Testing the Posture Classifier of the Mixed Sensor System 41 3.2.5 Comparative Evaluation of Posture Classification Performance 43 3.3 Results 46 3.3.1 Model Parameters and Features 46 3.3.2 Posture Classification Performance 47 3.4 Discussion 50 Chapter 4. Severe Obesity Impacts on Joint Kinematics and Movement Technique During Manual Load Lifting 57 4.1 Introduction 57 4.2 Methods 61 4.2.1 Participants 61 4.2.2 Experimental Task 61 4.2.3 Experimental Procedure 64 4.2.4 Data Processing 65 4.2.5 Experimental Variables 67 4.2.6 Statistical Analysis 71 4.3 Results 72 4.3.1 Kinematic Variables 72 4.3.2 Movement Technique Indexes 83 4.4 Discussion 92 Chapter 5. Conclusion 102 5.1 Summary 102 5.2 Implications 105 5.3 Limitations and Future Directions 106 Bibliography 108 ๊ตญ๋ฌธ์ดˆ๋ก 133๋ฐ•

    Wearable textile elongation sensor

    Get PDF
    This work shows a developed wearable elongation sensor based on an optical fiber. The presented approach to sew a fiber optic into a lycra textile enables the modulation of light amplitude in respect to textile strain. This apparatus in combination with small-size instrumentation enables the development of a wearable textile garment capable of monitoring and acquiring strain data, and send it wirelessly to a base station. The light amplitude increases with the increment of textile strain. The output voltage remains stable over time for the resting and maximum textile strain position

    Detection of Spine curvature using wireless sensors

    Get PDF
    Ankylosing spondylitis (AS) is a progressive disease of the spine where the spine slowly stiffens and can eventually become completely inflexible. It can be difficult to diagnose in primary care, and thus there is often a 10-year delay in diagnosis. Within this study an intelligent wearable system is designed and developed to detect the displacement of the spine and provide the subject with a continuous posture monitoring and feedback signals when an incorrect posture is detected using accelerometer and gyroscope sensors. This wearable system can be used both to diagnose AS in early stages and to prevent subjects from lower back and neck pain caused by incorrect posture. We outline here the system which detects the curvature of the spine by using Shimmer sensors placed on the back and provides relevant exercises based on the userโ€™s pain records

    Low Cost Plastic Optical Fiber Pressure Sensor Embedded in Mattress for Vital Signal Monitoring

    Full text link
    [EN] The aim of this paper is to report the design of a low-cost plastic optical fiber (POF) pressure sensor, embedded in a mattress. We report the design of a multipoint sensor, a cheap alternative to the most common fiber sensors. The sensor is implemented using Arduino board, standard LEDs for optical communication in POF (ยฟ = 645 nm) and a silicon light sensor. The Super ESKAยฎ plastic fibers were used to implement the fiber intensity sensor, arranged in a 4 ร— 4 matrix. During the breathing cycles, the force transmitted from the lungs to the thorax is in the order of tens of Newtons, and the respiration rate is of one breath every 2ยฟ5 s (0.2ยฟ0.5 Hz). The sensor has a resolution of force applied on a single point of 2.2ยฟ4.5%/N on the normalized voltage output, and a bandwidth of 10 Hz, it is then suitable to monitor the respiration movements. Another issue to be addressed is the presence of hysteresis over load cycles. The sensor was loaded cyclically to estimate the drift of the system, and the hysteresis was found to be negligible.This research was supported by FINESSE project, funded by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Action grant agreement No. 722509 and PROMETEO 2017/103 Tecnologias y Aplicaciones Futura de la Fotonica de Microondas.Sartiano, D.; Sales Maicas, S. (2017). Low Cost Plastic Optical Fiber Pressure Sensor Embedded in Mattress for Vital Signal Monitoring. Sensors. 17 (12)(2900):1-11. https://doi.org/10.3390/s17122900S11117 (12)290

    Wearable technology for spine movement assessment: A systematic review

    Get PDF
    Continuous monitoring of spine movement function could enhance our understanding of low back pain development. Wearable technologies have gained popularity as promising alternative to laboratory systems in allowing ambulatory movement analysis. This paper aims to review the state of art of current use of wearable technology to assess spine kinematics and kinetics. Four electronic databases and reference lists of relevant articles were searched to find studies employing wearable technologies to assess the spine in adults performing dynamic movements. Two reviewers independently identified relevant papers. Customised data extraction and quality appraisal form were developed to extrapolate key details and identify risk of biases of each study. Twenty-two articles were retrieved that met the inclusion criteria: 12 were deemed of medium quality (score 33.4-66.7%), and 10 of high quality (score> 66.8%). The majority of articles (19/22) reported validation type studies. Only 6 reported data collection in real-life environments. Multiple sensors type were used: electrogoniometers (3/22), strain gauges based sensors (3/22), textile piezoresistive sensor (1/22) and accelerometers often used with gyroscopes and magnetometers (15/22). Two sensors units were mainly used and placing was commonly reported on the spine lumbar and sacral regions. The sensors were often wired to data transmitter/logger resulting in cumbersome systems. Outcomes were mostly reported relative to the lumbar segment and in the sagittal plane, including angles, range of motion, angular velocity, joint moments and forces. This review demonstrates the applicability of wearable technology to assess the spine, although this technique is still at an early stage of development

    An investigation into the utility of wearable sensor derived biofeedback on the motor control of the lumbar spine

    Get PDF
    Lower back pain (LBP) is a disability that affects a large proportion of the population and treatment for this has been shifting towards a more individualized, patient-centered approach. There has been a recent uptake in the utilization and implementation of wearable sensors that can administer biofeedback in various industrial, clinical, and performance-based settings. The overall aim of this Masterโ€™s thesis was to investigate how wearable sensors can be used in a sensorimotor (re)training approach, including how sensory biofeedback from wearable sensors can be used to improve measures of spinal motor control and proprioception. Two complementary research studies were completed to address this overall aim. As a systematic review, Study #1 focused on addressing the lack of consensus surrounding wearable sensor derived biofeedback and spine motor control. The results of this review suggest that haptic/vibrotactile feedback is the most common and that it is administered in an instantaneous real-time manner within most experimental paradigms. Further, study #1 identified clear gaps within the research literature. Specifically, future research would benefit from more clarity regarding study design, and movement instructions, and explicit definitions of biofeedback parameters to enhance reproducibility. The aim of Study #2 was to assess the acute effects of wearable sensor-derived auditory biofeedback on gross lumbar proprioception. To assess this, participants completed a target repositioning protocol, followed by a training period where they were provided with auditory feedback for two of four targets based on a percentage of their lumbar ROM. Results suggest that mid-range targets benefitted most from the acute auditory feedback training. Further, individuals with poorer repositioning abilities in the pre-training assessment showed the greatest improvements from the auditory feedback training. This suggests that auditory biofeedback training may be an effective tool to improve proprioception in those with proprioceptive deficits. Collectively these complimentary research studies will improve the understanding surrounding the ecological utility of wearable sensor derived biofeedback in industrial, clinical, and performance settings to enhance to sensorimotor control of the lumbar region

    Sensores de fibra รณtica para arquiteturas e-Health

    Get PDF
    In this work, optical fiber sensors were developed and optimized for biomedical applications in wearable and non-intrusive and/or invisible solutions. As it was intended that the developed devices would not interfere with the user's movements and their daily life, the fibre optic sensors presented several advantages when compared to conventional electronic sensors, among others, the following stand out: size and reduced weight, biocompatibility, safety, immunity to electromagnetic interference and high sensitivity. In a first step, wearable devices with fibre optic sensors based in Fiber Bragg gratings (FBG) were developed to be incorporated into insoles to monitor different walking parameters based on the analysis of the pressure exerted on several areas of the insole. Still within this theme, other sensors were developed using the same sensing technology, but capable of monitoring pressure and shear forces simultaneously. This work was pioneering and allowed monitoring one of the main causes of foot ulceration in people with diabetes: shear. At a later stage, the study focused on the issue related with the appearance of ulcers in people with reduced mobility and wheelchair users. In order to contribute to the mitigation of this scourge, a system was developed composed of a network of fibre optic sensors capable of monitoring the pressure at various points of the wheelchair. It not only measures the pressure at each point, but also monitors the posture of the wheelchair user and advises him/her to change posture regularly to reduce the probability of this pathology occurring. Still within this application, another work was developed where the sensor not only monitored the pressure but also the temperature in each of the analysis points, thus indirectly measuring shear. In another phase, plastic fibre optic sensors were studied and developed to monitor the body posture of an office chair user. Simultaneously, software was developed capable of monitoring and showing the user all the acquired data in real time and warning for incorrect postures, as well as advising for work breaks. In a fourth phase, the study focused on the development of highly sensitive sensors embedded in materials printed by a 3D printer. The sensor was composed of an optical fibre with a FBG and the sensor body of a flexible polymeric material called "Flexible". This material was printed on a 3D printer and during its printing the optical fibre was incorporated. The sensor proved to be highly sensitive and was able to monitor respiratory and cardiac rate, both in wearable solutions (chest and wrist) and in "invisible" solutions (office chair).Neste trabalho foram desenvolvidos e otimizados sensores em fibra รณtica para aplicaรงรตes biomรฉdicas em soluรงรตes vestรญveis e nรฃo intrusivas/ou invisรญveis. Tendo em conta que se pretende que os dispositivos desenvolvidos nรฃo interfiram com os movimentos e o dia-a-dia do utilizador, os sensores de fibra รณtica apresentam inรบmeras vantagens quando comparados com os sensores eletrรณnicos convencionais, de entre vรกrias, destacam-se: tamanho e peso reduzido, biocompatibilidade, seguranรงa, imunidade a interferรชncias eletromagnรฉticas e elevada sensibilidade. Numa primeira etapa, foram desenvolvidos dispositivos vestรญveis com sensores de fibra รณtica baseados em redes de Bragg (FBG) para incorporar em palmilhas de modo a monitorizar diferentes parรขmetros da marcha com base na anรกlise da pressรฃo exercida em vรกrias zonas da palmilha. Ainda no รขmbito deste tema, adicionalmente, foram desenvolvidos sensores utilizando a mesma tecnologia de sensoriamento, mas capazes de monitorizar simultaneamente pressรฃo e forรงas de cisalhamento. Este trabalho foi pioneiro e permitiu monitorizar um dos principais responsรกveis pela ulceraรงรฃo dos pรฉs em pessoas com diabetes: o cisalhamento. Numa fase posterior, o estudo centrou-se na temรกtica relacionada com o aparecimento de รบlceras em pessoas com mobilidade reduzida e utilizadores de cadeiras de rodas. De modo a contribuir para a mitigaรงรฃo deste flagelo, procurou-se desenvolver um sistema composto por uma rede de sensores de fibra รณtica capaz de monitorizar a pressรฃo em vรกrios pontos de uma cadeira de rodas e nรฃo sรณ aferir a pressรฃo em cada ponto, mas monitorizar a postura do cadeirante e aconselhรก-lo a mudar de postura com regularidade, de modo a diminuir a probabilidade de ocorrรชncia desta patologia. Ainda dentro desta aplicaรงรฃo, foi publicado um outro trabalho onde o sensor nรฃo sรณ monitoriza a pressรฃo como tambรฉm a temperatura em cada um dos pontos de anรกlise, conseguindo aferir assim indiretamente o cisalhamento. Numa outra fase, foi realizado o estudo e desenvolvimento de sensores de fibra รณtica de plรกstico para monitorizar a postura corporal de um utilizador de uma cadeira de escritรณrio. Simultaneamente, foi desenvolvido um software capaz de monitorizar e mostrar ao utilizador todos os dados adquiridos em tempo real e advertir o utilizador de posturas incorretas, bem como aconselhar para pausas no trabalho. Numa quarta fase, o estudo centrou-se no desenvolvimento de sensores altamente sensรญveis embebidos em materiais impressos 3D. O sensor รฉ composto por uma fibra รณtica com uma FBG e o corpo do sensor por um material polimรฉrico flexรญvel, denominado โ€œFlexibleโ€. O sensor foi impresso numa impressora 3D e durante a sua impressรฃo foi incorporada a fibra รณtica. O sensor demonstrou ser altamente sensรญvel e foi capaz de monitorizar frequรชncia respiratรณria e cardรญaca, tanto em soluรงรตes vestรญveis (peito e pulso) como em soluรงรตes โ€œinvisรญveisโ€ (cadeira de escritรณrio).Programa Doutoral em Engenharia Fรญsic

    A multi-parametric wearable system to monitor neck movements and respiratory frequency of computer workers

    Get PDF
    Musculoskeletal disorders are the most common form of occupational ill-health. Neck pain is one of the most prevalent musculoskeletal disorders experienced by computer workers. Wrong postural habits and non-compliance of the workstation to ergonomics guidelines are the leading causes of neck pain. These factors may also alter respiratory functions. Health and safety interventions can reduce neck pain and, more generally, the symptoms of musculoskeletal disorders and reduce the consequent economic burden. In this work, a multi-parametric wearable system based on two fiber Bragg grating sensors is proposed for monitoring neck movements and breathing activity of computer workers. The sensing elements were positioned on the neck, in the frontal and sagittal planes, to monitor: (i) flexion-extension and axial rotation repetitions, and (ii) respiratory frequency. In this pilot study, five volunteers were enrolled and performed five repetitions of both flexion-extension and axial rotation, and ten breaths of both quite breathing and tachypnea. Results showed the good performances of the proposed system in monitoring the aforementioned parameters when compared to optical reference systems. The wearable system is able to well-match the trend in time of the neck movements (both flexion-extension and axial rotation) and to estimate mean and breath-by-breath respiratory frequency values with percentage errors โ‰ค6.09% and โ‰ค1.90%, during quiet breathing and tachypnea, respectively

    Designing smart garments for rehabilitation

    Get PDF
    • โ€ฆ
    corecore