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Abstract 
 

Ergonomics Studies on Working Posture and 

Movement for Reducing Risk of Work-related 

Musculoskeletal Disorders 
 

Haesuk Jung 

Department of Industrial Engineering 

The Graduate School 

Seoul National University 

 

Working in stressful postures and movements increases the risk of work-related 

musculoskeletal disorders (WMSDs). The physical stress on a worker’s musculoskeletal 

system depends on the type of work task. In the case of sedentary work, stressful sitting 

postures for prolonged durations could increase the load on soft connective tissues such 

as muscles and ligaments, resulting in the incidence of WMSDs. Therefore, to reduce 

the WMSDs, it is necessary to monitor a worker’s sitting posture and additionally 

provide ergonomic interventions. When the worker performs a task that involves 

dynamic movements, such as manual lifting, the worker’s own body mass affects the 

physical stress on the musculoskeletal system. In the global prevalence of obesity in the 

workforce, an increase in the body weight of the workers could adversely affect the 

musculoskeletal system during the manual lifting task. Therefore, obesity could be 



 

 

ii 

associated with the development of WMSDs, and the impacts of obesity on workers’ 

movement during manual lifting need to be examined. 

 Despite previous research efforts to prevent WMSDs, there still exist research 

gaps concerning ergonomics design of work systems. For sedentary workers, a promising 

solution to reduce the occurrence of WMSDs is the development of a system capable 

of monitoring and classifying a seated worker's posture in real-time, which could be 

utilized to provide feedback to the worker to maintain a posture with a low-risk of 

WMSDs. However, the previous studies in relation to such a posture monitoring system 

lacked a review of the ergonomics literature to define posture categories for 

classification, and had some limitations in widespread use and user acceptance. In 

addition, only a few studies related to obesity impacts on manual lifting focused on 

severely obese population with a body mass index (BMI) of 40 or higher, and, analyzed 

lifting motions in terms of multi-joint movement organization or at the level of 

movement technique.  

Therefore, the purpose of this study was to: 1) develop a sensor-embedded 

posture classification system that is capable of classifying an instantaneous sitting 

posture as one of the posture categories discussed in the ergonomics literature while 

not suffering from the limitations of the previous system, and, 2) identify the impacts 

of severe obesity on joint kinematics and movement technique during manual lifting 

under various task conditions. To accomplish the research objectives, two major studies 
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were conducted.  

 In the study on the posture classification system, a novel smart chair system 

was developed to monitor and classify a worker’s sitting postures in real-time. The 

smart chair system was a mixed sensor system utilizing six pressure sensors and six 

infrared reflective distance sensors in combination. For a total of thirty-six participants, 

data collection was conducted on posture categories determined based on an analysis 

of the ergonomics literature on sitting postures and sitting-related musculoskeletal 

problems. The mixed sensor system utilized a kNN algorithm for posture classification, 

and, was evaluated in posture classification performance in comparison with two 

benchmark systems that utilized only a single type of sensors. The mixed sensor system 

yielded significantly superior classification performance than the two benchmark 

systems.  

 In the study on the manual lifting task, optical motion capture was conducted 

to examine differences in joint kinematics and movement technique between severely 

obese and non-obese groups. A total of thirty-five subjects without a history of WMSDs 

participated in the experiment. The severely obese and non-obese groups show 

significant differences in most joint kinematics of the ankle, knee, hip, spine, shoulder, 

and elbow. There were also significant differences between the groups in the movement 

technique index, which represents a motion in terms of the relative contribution of an 

individual joint degree of freedom to the box trajectory in a manual lifting task. Overall, 
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the severely obese group adopted the back lifting technique (stoop) rather than the leg 

lifting technique (squat), and showed less joint range of excursions and slow movements 

compared to the non-obese group.  

 The findings mentioned above could be utilized to reduce the risk of WMSDs 

among workers performing various types of tasks, and, thus, improve work productivity 

and personal health. The mixed sensor system developed in this study was free from 

the limitations of the previous posture monitoring systems, and, is low-cost utilizing 

only a small number of sensors; yet, it accomplishes accurate classification of postures 

relevant to the ergonomic analyses of seated work tasks. The mixed sensor system could 

be utilized for various applications including the development of a real-time posture 

feedback system for preventing sitting-related musculoskeletal disorders. The findings 

provided in the manual lifting study would be useful in understanding the potential 

risk of WMSDs for severely obese workers. Differences in joint kinematics and 

movement techniques between severely obese and non-obese groups provide practical 

implications concerning the ergonomic design of work tasks and workspace layout. 

 

Keywords: Work-related musculoskeletal disorders, Physical load, Posture 

classification system, Sitting posture, Manual lifting, Obesity, Joint kinematics, 

Movement technique 

Student Number: 2015-21150 
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Chapter 1 

 

Introduction 

 

1.1 Research Background 

Working in stressful sitting postures has been associated with physical discomfort in 

the upper body areas [1]–[3] and increased risks of work-related musculoskeletal 

disorders (WMSD) [4]–[7]. Much research has been conducted to determine and 

characterize high- and low-risk sitting postures [8]–[17]. Existing studies and 

recommendations generally portray stressful, high-risk sitting postures as possessing 

some of the following characteristics: lumbar lordosis with excessive anterior pelvic tilt, 

sideward bending of the neck or trunk, convex low back, excessive trunk inclination, 

trunk unsupported by seatback, twisted trunk, and unbalanced postures [8]–[12]. On 

the other hand, low-risk, recommendable postures were typically described in terms of 

normal lumbar lordosis with lower back support, normal thoracic kyphosis, and lateral 

symmetry [8]–[10], [13]–[17].  

Working in high-risk sitting postures for prolonged durations must be avoided. 

However, most individuals find it difficult to avoid adopting high-risk sitting postures 

because it requires continually monitoring one’s own posture and making corrective 

adjustments upon detecting the occurrence of undesirable postural changes while 

simultaneously conducting one or more primary cognitive tasks. The postural task and 
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the primary cognitive tasks would compete for a limited attention capacity [18]–[20]. 

As the worker directs attention to the primary cognitive tasks at hand, the postural 

task may become unattended, and, adverse postural changes may occur without the 

worker’s awareness. 

A promising solution to the above-mentioned problem is to develop an external 

posture feedback or warning system, which continually monitors the worker's posture, 

detects the occurrence of a stressful posture, and, provides a warning through an 

effective yet non-distracting display. Such a feedback/warning system would help 

workers easily detect and correct stressful postures with minimal distractions, and, 

therefore, would help reduce prolonged use of high-risk postures. Creating it, on the 

other hand, requires developing a sub-system capable of monitoring and classifying a 

seated worker’s postures in real-time. 

When the worker performs a task that involves dynamic movements, such as 

manual lifting, the worker's own body mass could affect the physical stress on the 

musculoskeletal system. In the global prevalence of obesity in the workforce, an increase 

in the body weight of the workers could adversely affect the musculoskeletal system 

during the manual lifting task. In addition, obesity not only increases the weight of the 

body segments but also reduces the work capacity, as there may be decreased joint 

range of motion (ROM) and muscle strength per body mass. Therefore, obesity could 

be associated with the development of WMSDs, and the impacts of obesity on lifting 
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movement need to be examined. 

Obesity is a physical condition defined as abnormal or excessive fat 

accumulation of the body [21]. The body mass index (BMI), calculated as mass/height2 

(unit: kg/m2), is an indicator of overall adiposity and is moderately correlated with 

percent body fat [22], [23]. A person is classified as non-obese if the BMI is less than 

25 kg/m2, overweight if it is greater than or equal to 25 kg/m2 and less than 30 kg/m2, 

and obese if it falls within the range of 30 kg/m2 or higher. The condition of obesity is 

further subdivided into different categories: obesity class I (30 kg/m2 ≤ BMI < 35 

kg/m2), obesity class II (35 kg/m2 ≤ BMI < 40 kg/m2), and obesity class III (40 kg/m2 

≤BMI) corresponding to severe or morbid obesity [24], [25]. 

Overweight and obesity have increased in the last several decades and are 

currently prevalent worldwide. From 1975 to 2014, the worldwide prevalence of obesity 

has increased from 3.2% to 10.9% in men, and from 6.4% to 14.9% in women; if the 

trends continue, 18% of men and 21% of women are expected to be obese by 2025 [26]. 

According to the World Health Organization, 1.9 billion adults worldwide were 

estimated to be overweight in 2016, of which 650 million, or 13% of adults, were obese 

[21]. Severe obesity also accounts for a nontrivial portion of the global population. For 

example, in the United States, the prevalence of severe obesity was 7.7% among adults 

aged 20 years or older in 2015-2016 [27]. The obesity prevalence of the workforce follows 

that of the general population and obesity rates among various occupational groups 
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increased significantly over time [28]. In the United States workforce, the obesity rate 

doubled from about 15% to 30% between 1986 and 2011 [29]. 

Obesity is associated with decreases in work capacity. The presence of excessive 

adipose tissue adversely affects the capacity of the neuromusculoskeletal system, 

including the joint range of motion, muscle strength, power generation, and reaction 

time [30]–[37]. Work task design that does not take into account the characteristics of 

obese workers is thought to be part of the causes of work-related musculoskeletal 

disorders (WMSDs) in the obese workforce. It may also be related to the productivity 

loss, higher absenteeism, and higher lifetime cost due to disabilities of obese workers 

[38]–[40]. 
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1.2 Research Ob jectives  

This study developed a sensor-embedded smart chair system that is capable of 

monitoring and correctly classifying a sitting posture, and investigated the impacts of 

severe obesity on joint kinematics and movement techniques during manual lifting. The 

dissertation consisted of two major studies in relation to the research objectives. The 

objectives of this study were as follows: 

 Study 1) Develop a sensor-embedded smart chair system that is capable of 

monitoring and classifying an instantaneous sitting posture as one of the 

posture categories discussed in the ergonomics literature while not suffering 

from the limitations of the previous posture monitoring systems. 

 Study 2) Examine the impacts of severe obesity on joint kinematics and 

movement techniques during manual lifting under various task conditions, 

and provide a basis for ergonomic interventions or work task design for high 

BMI individuals. 
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1.3 Dissertation Outline 

This dissertation consisted of two major studies in relation to the research objectives 

presented in Chapter 1.2. In the study on the posture classification system, a sensor-

embedded smart chair system was developed. In the study on the manual lifting task, 

obesity impacts on joint kinematics and movement technique during manual load lifting 

were investigated. The overall structure of this dissertation took the form of five 

chapters (Figure 1.1). Brief descriptions of the chapters were presented below.  

In Chapter 1, the research background and objectives were described. The 

overall structure of the dissertation was also presented. 

In Chapter 2, previous studies on sitting-related musculoskeletal disorders and 

systems for monitoring a seated worker’s postures were reviewed. Then, the impacts of 

obesity on work capacity and biomechanical demands were described.  

In Chapter 3, the process of developing the sensor-embedded smart chair 

system for posture classification was described in detail. The mixed sensor system and 

two benchmark systems were compared in posture classification performance.  

In Chapter 4, the impacts of obesity on manual lifting were investigated. 

Participant groups were divided into two levels based on the BMI (non-obese and 

severely obese), and a total of four lifting task conditions were considered in this study. 

Kinematic variables and movement technique indexes were utilized to characterize the 

lifting movements.  
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In Chapter 5, the summary and implications of this study were presented. 

Then, some limitations were described along with future directions. 

 

 

Figure 1.1: The overall structure of the dissertation 
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Chapter 2 

 

Literature Review 

 

2.1 Work-related M usculoskeletal Disorders Among 

Sedentary Workers 

 

2.1.1 Relationship Between Sitting Postures and M usculoskeletal 

Disorders 

Working in stressful sitting postures has been associated with physical discomfort in 

the upper body areas [1]–[3] and increased risks of work-related musculoskeletal 

disorders (WMSD) [4]–[7]. Genaidy et al. [1] reviewed the literature on postural-work 

activity classification and postural stress analysis in the industry. Liao and Drury [2] 

demonstrated the relationship between the working posture, discomfort, and 

performance in a video display terminal (VDT) task. Grandjean and Hünting [3] 

reviewed standing and sitting postures accompanied by pains in muscle and soft 

connective tissues of tendons, joints and ligaments. Faucett and Rempel [4] investigated 

work postures related to the VDT workplace and risk factors for potential 

musculoskeletal disorders. Head rotation and height of keyboard were significantly 

related to pain and stiffness in upper body. Ortiz-Hernández et al. [5] analyzed the 

relationship between WMSDs and use of the computer, and estimated prevalence of 
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WMSDs among office workers. Healy et al. [7] reviewed practical workplace strategies 

for reducing prolonged sitting associated with WMSDs, and provided ergonomic 

interventions at organizational levels.  

Much research has been conducted to determine and characterize high- and 

low-risk sitting postures [8]–[17]. Dul and Hildebrandt [8] discussed the ergonomic 

guidelines for preventing work-related low back pain. They showed that sitting with a 

bent posture could be considered a risk factor for low back pain. Some studies [9], [10], 

[15] discussed standards on working postures and movements concerning the WMSDs, 

and suggested that excessive motions related to trunk inclination, head inclination, 

neck flexion/extension, upper arm elevation should be avoided. Vergara and Page [11] 

measured comfort, postural, and mobility parameters to analyze the cause of trunk 

discomfort in the sitting posture. Gallagher [12] showed that workers who adopt 

unusual or restricted postures (e.g., kneeling) are more prone to injury. Kee and 

Karwowski [13] proposed an assessment technique for postural loading on the upper 

body. The postural classification scheme of the assessment technique was based on a 

set of joint motions, including hand, arm, neck, and back, and provided the relative 

discomfort score for evaluating stress of working posture. Torén [14] quantified the 

trunk muscle activity according to the angle of axial trunk rotation in sitting posture. 

The result implies that a twisted trunk could be a risk factor for WMSDs. Tüzün et 

al. [16] assessed the spine angles of thoracic kyphosis, lumbar lordosis, and sacral 

inclination with radiological methods, and showed the relationship between the low 
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back pain and the spine angles. Bodén [17] determined the relationship between passive 

resistance at trunk rotation and angle of rotation in sitting position. The results show 

that passive resistance increases progressively with the twisting angle of the trunk, and 

twisting of the trunk could be a risk factor for low back pain. 

Existing studies and recommendations generally portray stressful, high-risk 

sitting postures as possessing some of the following characteristics: lumbar lordosis with 

excessive anterior pelvic tilt, sideward bending of the neck or trunk, convex low back, 

excessive trunk inclination, trunk unsupported by seatback, twisted trunk, and 

unbalanced postures [8]–[12]. On the other hand, low-risk, recommendable postures 

were typically described in terms of normal lumbar lordosis with lower back support, 

normal thoracic kyphosis, and lateral symmetry [8]–[10], [13]–[17]. 

 

2.1.2 Systems for M onitoring and Classifying a Seated Worker ’ s 

Postures  

A promising solution to reduce the sitting-related musculoskeletal disorder is to develop 

an external posture feedback or warning system, which continually monitors the 

worker's posture, detects the occurrence of a stressful posture, and, provides a warning 

through an effective yet non-distracting display. Such a feedback/warning system would 

help workers easily detect and correct stressful postures with minimal distractions, and, 

therefore, would help reduce prolonged use of high-risk postures. Creating it, on the 
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other hand, requires developing a sub-system capable of monitoring and classifying a 

seated worker’s postures in real-time.  

Multiple research studies have developed systems for monitoring and classifying 

a seated worker’s postures in real-time [41]-[63]. These existing systems may be 

categorized into three types according to the type of sensors employed: the wearable, 

image-based, and pressure sensor-embedded systems. The wearable systems typically 

employed acceleration sensors and/or optical fibers – these sensors were adhered to the 

skin or were sewn into a garment. These systems classified upper body postures based 

on the measurement data from the body-worn sensors representing the orientations of 

the body segments [41]–[43]. Arteaga et al. [41] developed a low-cost wearable system 

based on the three-axial accelerometer. This system consisted of the accelerometer, 

beeper, LED light, and vibrator to provide posture warning. Dunne et al. [42] developed 

and evaluated a system utilizing wearable plastic optical fiber sensors to monitor spinal 

posture in a sitting position. Nine sensors attached along the spine were used to 

measure spine flexions and extensions. As a result of comparing spinal posture 

monitored by the system and expert visual analysis, the system approximated the 

accuracy in expert visual analysis, and had sufficient reliability. Abyarjoo et al. [43] 

presented the development and verification of a simple wearable posture monitor 

system based on the inertial measurement unit. The system also aided in the corrective 

adjustment of the posture by providing a real-time warning when the user takes a 

posture with a large deviation from predefined postures. 
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The image-based systems analyzed video images of a seated worker to classify 

instantaneous sitting postures [44]–[46]. One or multiple cameras were placed to 

capture the sagittal and/or frontal plane images of the seated worker. Through the use 

of a commercial depth camera, Lee et al. [44] proposed a system to prevent forward 

head posture associated with WMSDs, including chronic neck pain. The system was 

evaluated in terms of performance and user preference according to the modality 

utilized in the warning. As the results, very high accuracy was achieved in detecting 

forward head postures, and the haptic warning showed superior results in the subjective 

evaluation. Nayak et al. [45] developed a system for providing workers with feedback 

about their head movements using two cameras. The camera tracked the worker's face, 

and calculated the distance between the face and the computer screen. The other side-

camera monitored the worker’s neck posture to calculate the neck orientation described 

in Euler angles. The system aggregated posture information and working time, and 

provided graphical feedback when a worker is in a bad posture or needs a break. Manzi 

et al. [46] presented an activity recognition system based on the joint detection 

algorithm utilizing depth camera. A support vector machine was employed for activity 

classification. The developed system was evaluated on two public datasets including 

various activities as well as sitting posture. The system outperformed state-of-the-art 

classification methods in terms of precision and recall. 

The pressure sensor-embedded systems typically utilized a large array of 

pressure sensors or a pressure mat placed inside the seat cushion of an office chair to 
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classify a worker’s sitting postures. Many of the recent sitting posture monitoring and 

classifying systems belonged to this category [47]–[63]. The pressure sensor-embedded 

systems have been referred to as “smart chairs.” They typically employed machine-

learning models, such as k-Nearest Neighbor (kNN), neural network, Naïve Bayes, and 

support vector machine classifiers, for real-time posture classification [47]–[49], [62], 

[63]. The previous smart chair systems were summarized in Table 2.1. 

Mota and Picard [47] presented a system for classifying sitting postures utilizing 

two matrices of pressure sensors located on the seat pan and seat back of a chair. The 

system employed a neural network to classify nine sitting postures. The classifier 

achieved an overall accuracy of 87.6% for postures coming from new subjects. Meyer 

et al. [48] developed a pressure measurement system adopting textile sensor arrays on 

the seat pan and seat back. The textile sensor with 240 elements was used for sitting 

posture classification. A Naive Bayes classifier was used to classify sixteen sitting 

postures, and showed an accuracy rate of 84%. Ma et al. [49] proposed a posture 

monitoring system to classify sitting postures in the wheelchair. The system consisted 

of a total of twelve pressure sensors, and classified five types of sitting postures. The 

classification models were trained using five supervised classification techniques; 

decision tree, support vector machines, multilayer perceptron, Naïve Bayes, and k-

nearest neighbors. As a result of comparing the models, the decision tree had the 

highest accuracy of about 99%. Mutlu et al. [50] presented the performance of the 

posture classification system according to the number of pressure sensors utilized in 
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the seat back and seat pan. In the case of utilizing thirty-one sensors, the classification 

accuracy was 87%. Using a near-optimal sensor placement strategy, the system achieved 

an accuracy of 78% with nineteen sensors while reducing cost and computational 

complexity. Kamiya et al. [51] classified nine posture categories by attaching sixty-four 

pressure sensors to the seat pan. Support vector machine was adopted as a classifier, 

and showed classification rates of 98.9% when the subject was known and 93.9% when 

the subject was unknown. An intelligent chair that uses pressure sensors to detect and 

correct posture was developed by Martins et al. [52]. The authors defined eleven posture 

categories, and achieved a posture classification accuracy of about 80% using neural 

networks. Xu et al. [53] presented a textile-based sensing system that monitors the 

sitting posture being accurately and non-invasively. The system was developed by 

embedding the pressure sensor array in the seat pan. Seven postures were utilized for 

classification. The recognition rate of the system was in excess of 85.9%. A prototype 

sensing system was developed by Fu [54] using eight force sensing resistors to detect 

sitting postures. The sitting posture was defined by dividing it into a leg posture and 

a spine posture, and classified through a support vector machine. The posture 

classification performance for unknown subjects was 80.7% for spine posture and 42.3% 

for leg posture. Scena and Steindler [55] developed a system for characterizing sitting 

posture by measuring the axial rotation of the trunk and pelvic movement. The axial 

rotation of trunk and pelvis movement were measured using a potentiometer and 

pressure distribution of the seat pan, respectively. Shirehjini et al. [56] designed a 
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system that classifies six postures utilizing decision rules. Each seat back and seat pan 

was equipped with four pressure sensors. Suzuki et al. [57] measured a time series of 

the pressure distributions from 16 x 16 pressure sensors on a chair. In this study, various 

sitting postures were quantified by the distance from the pressure values of neutral 

posture. Liang et al. [58] developed a low-cost and non-intrusive posture classification 

system. Fifteen posture categories were considered in this study. An Ensemble method 

combining a number of different classifiers was adopted for classification. As a result 

of the classification performance, with more than ten pressure sensors, the precision 

and recall were at least 85% and 86%, respectively. Zhou and Lukowicz [59] presented 

a sensing system in the form of a wireless blanket covering seat pan and seat back. 

Pressure sensors had 1024 sensitive points. Classification was performed on twelve 

postures, and the accuracy was about 80%. Kim et al. [60] developed a system for real-

time sitting posture detection based on washable and highly durable textile pressure 

sensors. In this study, seven types of sitting postures were successfully classified based 

on the pressure measurements under the hip, thigh, and back. Roh et al. [61] proposed 

a system that measures a total of six sitting postures. Four pressure sensors were 

mounted on the seat pan, and support vector machines using radial basis function 

kernels achieved a classification rate of 97%. Huang et al. [62] developed a system that 

utilized pressure sensor arrays to monitor the sitting postures accurately with the 

neural network classifier. The experimental results showed that the system could 

classify eight sitting with accuracy of 92%. Zemp et al. [63] developed an chair system 
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with force and acceleration sensors to identify the user’s sitting position by applying 

five machine learning techniques. A total of sixteen force sensor values and the backrest 

angle were utilized for classification. The best performance was achieved using the 

random forest algorithm with classification accuracy of 90.9%.
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Table 2.1: Summary of previous smart chair systems 

Author Sensor type Posture category Posture classifier 
Classification 

accuracy (%) 

Mota and Picard 

[47] 

42 by 48 array of 

pressure sensors 

Leaning forward, leaning forward left, 

leaning forward right, sitting upright, 

leaning back, leaning back left, leaning back 

right, sitting on the edge of seat, slumping 

back 

Neural networks 87.6 

Meyer et al. [48] Textile sensor with 

240 elements 

Seated upright, leaning right, leaning left, 

leaning forward, leaning back, left leg crossed 

over the right, right leg crossed over the left, 

once seated upright and once leaning back, 

once while the knees are touching and once 

with the ankle rested on the leg, slouching, 

sitting on the leading edge, slouched down 

Naïve Bayes 84 

Ma et al. [49] 12 force sensitive 

resistor pressure 

sensors 

Proper sitting, lean left, lean right, lean 

forward, lean backward 

J48 decision tree, 

Support vector  

machine, 

multilayer 

perceptron, Naïve 

Bayes, k-Nearest 

Neighbors 

99.48 (J48) 
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Table 2.1: (Continued) 

Author Sensor type Posture category Posture classifier 
Classification 

accuracy (%) 

Mutlu et al. [50] 31 force sensing 

resistors 

Left leg crossed, right leg crossed, leaning 

back, leaning forward, leaning left, leaning 

right, left leg crossed and leaning right, right 

leg crossed and leaning left, seated upright, 

slouching 

Logistic regression 87 

Kamiya et al. [51] 64 pressure sensors Normal, leaning forward, leaning backward, 

leaning right, leaning left, right leg crossed, 

leaning right with right leg crossed, left leg 

crossed, leaning left with left leg crossed 

Support vector 

machine 

93.9 

Martins et al. [52] 8 pressure sensors Seated upright, leaning forward, leaning 

back, leaning back with no lumbar support, 

leaning left, leaning right, right leg crossed, 

left leg crossed 

Neural networks 93.4 

Xu et al. [53] Textile sensor array Sit up, forward, backward, left lean, right 

lean, right foot over left, left foot over right 

Naïve Bayes 85.9 
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Table 2.1: (continued) 

Author Sensor type Posture category Posture classifier 
Classification 

accuracy (%) 

Liang et al. [58] 40 pressure sensors Sitting upright, slouching, leaning back, 

leaning forward (angle<30 degrees), 

leaning forward (angle>45 degrees), 

leaning left (angle<10 degrees), leaning 

left (angle>20 degrees), leaning right 

(angle<10 degrees), leaning right 

(angle>20 degrees), left leg crossed in 

ankle, left leg crossed in knee, right leg 

crossed in ankle, right leg crossed in 

knee, left leg crossed, leaning right,  

right leg crossed, leaning left. 

Naïve Bayes, SVM, 

ensemble method 

(AdaBoost) 

85 (AdaBoost) 

Zhou and 

Lukowicz [59] 

Pressure mat with 

32 by 32 sensing 

points 

Sit straight up, sit with flexed spine and 

look forward, sit with flexed spine and 

look deep downward, lean back, lie on 

chair, reach to left, lean left, slight lean 

left, reach to right, lean right, slight lean 

right, not a posture 

Simple algorithm 

proposed by the 

authors 

72.1 
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Table 2.1: (continued) 

Author Sensor type Posture category Posture classifier 
Classification 

accuracy (%) 

Kim et al. [60] Textile pressure 

sensors with 10 

sensing points 

Standing, right leg over the left leg, left 

leg over the right leg, upright sitting, 

sitting with both legs lifted, back to 

standing position, leaning back to the 

left, leaning back to the right, slouching 

Decision algorithm - 

Roh et al. [61] 4 load cells upright sitting with backrest, upright 

sitting without backrest, front sitting 

with backrest, front sitting without 

backrest, left sitting, right sitting 

Support vector 

machine, linear 

discriminant 

analysis, quadratic 

discriminant 

analysis, Naïve 

Bayes, random 

forest, decision tree 

97.2 (SVM) 

Huang et al. [62] 8 by 8 piezo-resistive 

sensor array 

Upright sitting, slumped sitting, leaning 

forward, leaning backward, leaning left, 

leaning right, right leg crossed, left leg 

crossed 

Artificial neural 

network 

92.2 
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Table 2.1: (continued) 

Author Sensor type Posture category Posture classifier 
Classification 

accuracy (%) 

Zemp et al. [63] 16 force sensors and 

accelerometer 

upright position, reclined position, 

forward inclined position, laterally tilted 

right position, laterally tilted left 

position, left leg over the right one, right 

leg over the left one 

Support vector 

machines, 

multinomial 

regression, 

boosting, neural 

networks, random 

forest 

90.9 (random 

forest) 
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2.2 Impacts of Obesity on M anual Works 

 

2.2.1 Impacts of Obesity on Work Capacity 

Obesity is associated with decreases in work capacity. The presence of excessive adipose 

tissue adversely affects the capacity of the neuromusculoskeletal system, including the 

joint range of motion, muscle strength, power generation, and reaction time [30]–[37]. 

Work task design that does not take into account the characteristics of obese workers 

is thought to be part of the causes of work-related musculoskeletal disorders (WMSDs) 

in the obese workforce. It may also be related to productivity loss, higher absenteeism, 

and higher lifetime cost due to disabilities of obese workers [38]–[40]. 

Capodaglio et al. [30] reviewed the physiological and biomechanical causes of 

reduced work capacity in obese people. In their study, the authors noted that a 

reduction in work capacity could be attributed to limited or impaired function of the 

following factors: spine flexibility, endurance, range of movement, muscle strength, 

posture holding capacity, respiratory capacity, and visual control. Park et al. [31] 

investigated the effects of obesity on active joint range of motion (ROM). In the 

measured ROM data, obese people had significantly smaller ROM in the following nine 

motions: shoulder extensions and adductions, lumbar spine extension and lateral 

flexions and knee flexions. The decrease in ROM was attributed to mechanical 

interference and obstruction of joint motion caused by fat accumulation in obese people. 
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Jeong et al. [32] examined the impacts of pre-obesity and obesity on passive joint ROM. 

In this study, twenty-two joint ROMs were analyzed based on obesity level by utilizing 

a publicly available passive ROM dataset. The pre-obese and obese groups showed 

significantly smaller ROMs in six motions (elbow flexion and supination, hip extension 

and flexion, knee flexion and ankle plantar flexion) compared to the non-obese group, 

but there was no significant difference except for knee flexion between the pre-obese 

and obese groups. Gilleard and Smith [33] identified the effects of obesity on trunk 

forward flexion in sitting and standing, and hip joint moment during the standing task. 

The results showed that forward flexion motion of the thoracic segment and 

thoracolumbar spine was decreased for obese people, and no significant difference was 

found in the pelvic segment and hip joint motion. As a result, the hip joint moment 

calculated through these results was significantly greater in obese people, which may 

provide an explanation for the increased the risk of WMSDs in obese people. Maffiuletti 

et al. [34] compared the quadriceps femoris muscle strength and fatigue between obese 

and non-obese groups. Muscle fatigue was quantified by voluntary torque loss during 

the protocol, and the voluntary torque loss of the obese group was significantly higher 

than that of the non-obese group. Also, the relative muscle strength normalized with 

a body mass of the obese group was lower than that of the non-obese group, despite 

higher absolute muscle strength than the non-obese group. Lafortuna et al. [35] 

evaluated the difference in muscle strength and power output between the obese and 

non-obese groups. The maximum muscle strength of the upper and lower limbs was 
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evaluated by an isotonic machine, and the power output of the lower limbs was 

measured by a jumping test. The maximum isotonic strength was higher in the obese 

group than in the non-obese group, but the power generation was similar between the 

two groups. The findings indicate that the excess fat mass of obese individuals could 

impair the power generation during jumping. Miyatake et al. [36] examined the 

differences in leg and grip strength according to age and gender. For both sexes under 

60 years of age, grip and leg strength were significantly higher in the obese group than 

in the non-obese group. On the other hand, the weight-bearing index obtained by 

dividing leg strength by body weight was significantly lower in the obese group than in 

the non-obese group. Baek et al. [37] investigated the impacts of obesity on task 

performance and perceived discomfort during seated foot target reaches. Compared to 

the non-obese group, the obese group showed longer movement time, reaction time, 

and performance time. The findings implied that excess fat mass in an obese body 

could adversely affect physiological and cognitive aspects. The functional impairments 

associated with obesity in the aforementioned studies may have contributed to the 

reduction of work capacity in obese individuals. 

 

2.2.2 Impacts of Obesity on Joint Kinematics and Biomechanical 

Demands 

To alleviate the occupational musculoskeletal problems of obese workers and to improve 
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productivity in the workforce, research has been conducted on the impacts of obesity 

on physical load and task performance in a variety of physical works. Previous studies 

examined how obesity affects biomechanical loads in manual lifting [64] and carrying 

[65], movement kinematics in manual lifting [66]–[69], perceived postural stress in static 

posture holding [70], functional limitation in reaching [71]–[73], postural stability in 

manual lifting [74], [75] and quiet standing [76], tolerance limit in manual lifting [70], 

[77], reaction time in seated foot reaching [37]. These studies provided implications of 

their findings concerning the ergonomic work task design for obese workers. 

Among the above-mentioned studies, several studies examined the impacts of 

obesity on the joint kinematics, biomechanical loadings, and psychophysical tolerance 

limits during manual load lifting [64], [66]–[70]. Manual lifting is one of the important 

risk factors for low back disorders [78]–[80]. Singh et al. [64] and Corbeil et al. [66] 

predicted the stresses at L5/S1 disc during manual load lifting by utilizing a 

biomechanical model and found that obese individuals had greater lumbar loading, and, 

thus, they could be more vulnerable to lifting-related musculoskeletal disorders (MSDs) 

than non-obese individuals. Colim et al. [69] examined trunk flexion, knee flexion, and 

pelvis inclination in the presence of a barrier that replicates the industrial bin, and the 

results demonstrated that the obese subjects had greater trunk acceleration and larger 

horizontal distance between the ankle and the knuckle, suggesting that they were 

exposed to a higher risk of MSDs. According to Xu et al. [67], high BMI subjects had 

significantly higher peak trunk acceleration and velocity when performing free dynamic 
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lifting. The author's hypothesis that obese people might lift slowly to minimize loading 

caused by greater body mass and acceleration was not supported by the results. 

Sangachin and Cavuoto [68] compared the trunk kinematics, heart rate, and task 

duration of obese and non-obese groups when performing prolonged repetitive lifting. 

When fatigue occurred due to prolonged lifting, trunk acceleration increased in the 

obese group over time, which was explained by a change in lifting technique caused by 

obesity-related characteristics. Singh [70] investigated the psychophysical effects of 

obesity on lifting tolerance limit and there was no significant difference in the maximum 

acceptable weights of lift according to the worker’s obesity level. 
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Chapter 3 

 

Developing and Evaluating a M ixed Sensor Smart Chair 

System for Real-time Posture Classification: Combining 

Pressure and Distance Sensors 

 

3.1 Introduction 

Working in stressful sitting postures has been associated with physical discomfort in 

the upper body areas [1]–[3] and increased risks of work-related musculoskeletal 

disorders (WMSD) [4]–[7]. Much research has been conducted to determine and 

characterize high- and low-risk sitting postures [8]–[17]. Existing studies and 

recommendations generally portray stressful, high-risk sitting postures as possessing 

some of the following characteristics: lumbar lordosis with excessive anterior pelvic tilt, 

sideward bending of the neck or trunk, convex low back, excessive trunk inclination, 

trunk unsupported by seatback, twisted trunk, and unbalanced postures [8]–[12]. On 

the other hand, low-risk, recommendable postures were typically described in terms of 

normal lumbar lordosis with lower back support, normal thoracic kyphosis, and lateral 

symmetry [8]–[10], [13]–[17].  

Working in high-risk sitting postures for prolonged durations must be avoided. 

However, most individuals find it difficult to avoid adopting high-risk sitting postures 
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because it requires continually monitoring one’s own posture and making corrective 

adjustments upon detecting the occurrence of undesirable postural changes while 

simultaneously conducting one or more primary cognitive tasks. The postural task and 

the primary cognitive tasks would compete for a limited attention capacity [18]–[20]. 

As the worker directs attention to the primary cognitive tasks at hand, the postural 

task may become unattended, and, adverse postural changes may occur without the 

worker’s awareness. 

A promising solution to the above-mentioned problem is to develop an external 

posture feedback or warning system, which continually monitors the worker's posture, 

detects the occurrence of a stressful posture, and, provides a warning through an 

effective yet non-distracting display. Such a feedback/warning system would help 

workers easily detect and correct stressful postures with minimal distractions, and, 

therefore, would help reduce prolonged use of high-risk postures. Creating it, on the 

other hand, requires developing a sub-system capable of monitoring and classifying a 

seated worker’s postures in real time. 

Multiple research studies have developed systems for monitoring and classifying 

a seated worker’s postures in real time. These existing systems may be categorized into 

three types according to the type of sensors employed: the wearable, image-based, and 

pressure sensor-embedded systems [41]-[63]. 

The wearable systems typically employed acceleration sensors and/or optical 
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fibers – these sensors were adhered to the skin or were sewn into a garment. These 

systems classified upper body postures based on the measurement data from the body-

worn sensors representing the orientations of the body segments [41]–[43]. The image-

based systems analysed video images of a seated worker to classify instantaneous sitting 

postures [44]–[46]. One or multiple cameras were placed to capture the sagittal and/or 

frontal plane images of the seated worker. Some of these image-based systems were 

designed to classify the worker’s head postures [44], [45]. 

The pressure sensor-embedded systems typically utilized a large array of 

pressure sensors or a pressure mat placed inside the seat cushion of an office chair to 

classify a worker’s sitting postures. Many of the recent sitting posture monitoring and 

classifying systems belonged to this category [47]–[63]. The pressure sensor-embedded 

systems have been referred to as “smart chairs.” They typically employed machine-

learning models, such as k-Nearest Neighbor (kNN), neural network, Naïve Bayes, and 

support vector machine classifiers, for real-time posture classification [47]–[49], [62], 

[63]. 

Each of the existing systems mentioned above has been reported to successfully 

classify seated working postures within its own set of pre-defined posture categories. 

These systems, however, have some limitations. The wearable systems require the users 

to wear them, and, thus, are perceived as invasive and inconvenient. The invasiveness 

and inconvenience can make it difficult for the system to gain a wide user acceptance. 
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The image-based systems could not serve their purpose when the worker is out of the 

camera view or obstacles occlude the worker’s body parts. In addition, the image-based 

systems require the user to be exposed to the cameras at all times; this could cause 

psychological discomfort, which can hinder user acceptance. 

The pressure sensor-embedded systems are free from the invasiveness and 

inconvenience of wearable systems, and the occlusion and psychological discomfort 

problems of image-based systems. However, these systems relying solely on pressure 

sensors seem to have some limitations in the posture classification capability – for 

example, none of the existing systems has been shown to be capable of accurately 

recognizing trunk rotation, which is important for the ergonomics evaluation of sitting 

postures. Also, many of these systems require integrating a pressure mat or utilizing a 

large number of pressure sensors, which makes them rather expensive for wide-spread 

use. 

The long-term goal of our research is to develop an effective real-time posture 

feedback system that contributes to reducing sitting-related discomfort and 

musculoskeletal problems. As an initial effort towards this goal, the purpose of the 

current study was to: 1) develop a novel, affordable, sensor-embedded smart chair 

system that is capable of monitoring and correctly classifying an instantaneous sitting 

posture as one of the major sitting posture categories discussed in the ergonomics 

literature while not suffering from the limitations of the previous posture monitoring 
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and classification systems, and, 2) empirically validate its posture classification 

performance. Eleven posture categories relevant to the ergonomics analyses of seated 

work tasks were identified through an analysis of the ergonomics literature on sitting 

postures and sitting-related musculoskeletal problems. They included both high- and 

low-risk sitting postures.  

To accomplish the research objectives of the current study, this study adopted 

a new design strategy of utilizing a small set of infrared reflective distance sensors in 

combination with a small number of pressure sensors – the distance and pressure 

sensors were embedded in the seatback and cushion areas, respectively. Thus, the 

resulting smart chair system was termed the mixed sensor system. The mixed sensor 

system utilized a kNN algorithm for posture classification - for a given set of sensor 

measurements, it classified the corresponding posture as one of the predefined posture 

categories on the basis of a training dataset.  

The mixed sensor system was empirically evaluated in posture classification 

performance in comparison with matching smart chair systems that utilized only a 

single type of sensors - a pressure sensors only system and a distance sensors only 

system. The two benchmark systems were identical to the mixed sensor system except 

that each of them utilized only a single type of sensors; also, they employed a kNN 

classifier. The comparative evaluation was intended to confirm the utility of the unique 

design feature of the mixed sensor system, that is, combining seatback distance sensors 
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and seat cushion pressure sensors, in terms of posture classification performance. In 

particular, the comparative evaluation was focused on examining if the two sensor 

clusters (the 6 pressure sensors and the 6 distance sensors) both contribute significantly 

to the overall performance of the mixed sensor system. 10-fold cross-validation was 

conducted for the comparative evaluation. 

The rest of this article is organized as follows. Section 3.2 describes the design 

of the mixed sensor system, and, the methods for the comparative evaluation. Section 

3.3 describes the results of the posture classification performance evaluation. Finally, 

Section 3.4 provides a discussion of the study findings. 
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3.2 M aterials and M ethods 

This section describes the design and development of the mixed sensor system, and, 

the methods for evaluating its posture classification performance. 

 

3.2.1 Predefined Posture Categories for the M ixed Sensor System  

The mixed sensor system was intended to classify an instantaneous sitting posture as 

one of the predefined posture categories relevant to the ergonomics evaluation of seated 

work tasks. A total of eleven posture categories were considered in this study (Figure 

3.1). They were identified through a review of the existing ergonomics literature on 

sitting postures and sitting-related musculoskeletal problems, including low back pain, 

shoulder and back disorders [8]–[17].  

The eleven posture categories (Figure 3.1) included both high- and low-risk 

postures. Posture categories 1 and 2 are considered low in the level of bodily stresses 

and have been recommended for office workers [10], [13] The other posture categories 

have been associated with increased risks of WMSD. Forward trunk flexion 

characterizing posture category 3 has been shown to increase the compression forces 

on the intervertebral discs [81]. Increased loads on the intervertebral discs have been 

related to low back pain [82]. 
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Trunk lateral bending depicted in posture categories 4 and 5 generates 

asymmetrical compressive loadings on the intervertebral discs. During trunk lateral 

Figure 3.1: Eleven sitting posture categories: (1) Leaning on the seatback while 

keeping the back straight, (2) detaching the back from the seatback and keeping the 

trunk erect, (3) flexing the trunk forward about 45 degrees (slouch), (4) leaning 

against an armrest with lateral bending (left), (5) leaning against an armrest with 

lateral bending (right), (6) sitting on the leading edge with convex trunk, (7) leaning 

back with hips slightly forward (slump), (8) legs crossed (left), (9) legs crossed 

(right), (10) rotating the trunk about 20 degrees (left), and (11) rotating the trunk 

about 20 degrees (right) 
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bending, the trunk is maintained by imbalanced activities of the erector spinae muscles 

of the ipsilateral and contralateral sides [83]. Trunk lateral bending during sitting 

increased antagonistic contractions in the trunk muscle activity and resulted in 

increased stress concentration in the intervertebral discs [84]. Repetitive lateral bending 

and unequal stress concentration in the intervertebral discs have been associated with 

increased risks of low back pain [85]. 

Posture categories 6 and 7 are characterized by the lack of lumbar support use. 

The use of a lumbar support reduces the loads exerted on the ischial tuberosities; such 

off-loading was found to be beneficial to individuals with low back pain [86]. The lack 

of lumbar support, on the other hand, is known to flatten the lumbar spine, cause 

tension on the ligaments and other connective tissues in the spine area, and, lead to 

excessive loads on the discs [87]. 

The “legs crossed” postures (posture categories 8 and 9) are known to create 

asymmetric high-pressure regions and increase peak pressures in the hips and thighs, 

resulting in pain and discomfort [88]. Also, unbalanced gluteal pressure distributions 

could cause trunk forward leaning during prolonged sitting [89].  

Posture categories 10 and 11 involve trunk rotation. Prolonged twist of trunk 

increases passive resistance that needs to be overcome [17] and has been associated 

with increased risks of low back pain and WMSDs [14], [90]. The existing smart chair 

studies did not consider identifying trunk rotation despite its relevance to the 
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ergonomics evaluation of seated work activities [41]-[63]. 

 

3.2.2 Physical Construction of the M ixed Sensor System  

The proposed mixed sensor system utilized sensor measurements of seat cushion 

pressure distribution and seatback-trunk distances to classify sitting postures. A typical 

height-adjustable office chair with armrests and a headrest was adopted to develop the 

system (Figure 3.2(a)).  

 

 

Figure 3.2: Physical construction of the mixed sensor system: (a) placement of sensors, 

and (b) distance and pressure sensors. 

 



 

 

37 

The seat cushion and seatback were equipped with six force sensing resistors 

(FSRs; “P1” to “P6”) and six infrared reflective sensors (“D1” to “D6”), respectively 

(Figure 3.2(b)). Each batch of six sensors was arranged in two columns of three. The 

FSRs embedded beneath the seat cushion surface were to gather the seat cushion 

pressure distribution data. Each FSR measured the pressure applied to an active 

surface of a 3.8 cm × 3.8 cm square. One FSR could stably measure up to 10 kgf. The 

infrared reflective sensors were embedded into small pits created in the seatback 

cushion in advance. They were to determine the horizontal distances between the 

seatback and the trunk at different heights for both the left and right sides of the back; 

therefore, they reflected the upper body posture of the seated worker. The infrared 

reflective sensors provided stable measurements from 2 cm to 50 cm. 

The infrared reflective sensors in the seatback represented a novel design feature, 

which was not considered in the previous smart chair studies [41]-[63]. 

The locations of the FSRs and the infrared reflective sensors were determined 

to ensure that all of the twelve sensors produce valid measurements for at least 99 

percent of the Korean adult population – to do so, the anthropometric dataset of the 

SizeKorea survey was utilized [91]. That is, when a participant with a body size of 

more than 1 percentile sits in the center of the chair, all pressure sensors could measure 

valid data by contacting the participant's thigh and seat pan, and the distance sensors 

could provide the distances between the participant's upper back and the seat back. 
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The SizeKorea survey was conducted on the basis of ISO 7250 (1996) and ISO 8559 

(1989), and the survey participants consisted of 2,196 males and 2,293 females aged 

between 20 and 69 years. The anthropometric dimensions considered for the 

determination of the sensor locations were: shoulder height, chest breath, and hip 

breadth in sitting position (Figure 3.3). 

 

 

Figure 3.3: Anthropometric dimensions considered for the sensor placement 

 

3.2.3 Posture Classifier Design for the M ixed Sensor System  

The mixed sensor system employed a kNN classifier for posture classification. It 

classifies an instantaneous sitting posture as one of the eleven posture categories in 
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Figure 3.1, on the basis of the corresponding sensor measurements. 

The kNN algorithm is simple and intuitive, and is widely used for various 

engineering applications that require pattern classification [92]–[94]. A kNN classifier 

stores a set of training set (training cases and their classes). Each case is a vector in a 

feature space.  

A test case (a new observation to be classified) is classified based on the classes 

of the k most similar cases (the k nearest neighbors) found in the training dataset - the 

class of the test case is determined by a majority vote among the classes of the k 

nearest neighbors. 

A weighted Euclidean distance shown in Equation 3.1 was used as the distance 

function for the kNN classifier; it represents how close the i-th training case x i is to the 

test case xt. In Equation 3.1, x i represents the normalized N-dimensional feature vector 

of the i-th training case, and x i,j denotes its j-th element. Similarly, xt and x t,j denote 

the normalized feature vector of the test case and its j-th feature value, respectively. 

The feature vectors were normalized by min-max normalization. w j is the weight 

assigned to the j-th feature. The weight w j reflects the relative importance of the j-th 

feature [95], [96]. 

 

𝑑(𝐱𝒊, 𝐱𝒕) = √∑ 𝑤𝑗(x𝑖,𝑗 − x𝑡,𝑗)2𝑁
𝑗=1  𝑤𝑖𝑡ℎ ∑ 𝑤𝑗

𝑁
𝑗=1 = 1 (3.1) 
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The feature vector elements, that is, the features, were selected from a set of 

candidate features. The candidate features included the normalized pressure and/or 

distance sensor measurements and the pairwise differences of the normalized sensor 

measurements within each sensor type. The normalized pressure sensor measurements 

were obtained by dividing each of the original pressure sensor measurements by their 

sum. The candidate features utilized in the classifier is shown in Table 3.1 – the features 

are grouped into laterally symmetric pairs. 

 

Table 3.1: List of candidate features 

 Candidate features  

Pressure-related 

P1 & P4, P2 & P5, P3 & P6,  

P1-P3 & P4-P6, P1-P2 & P4-P5, 

P2-P3 & P5-P6, P1-P4, P2-P5, P3-P6 

Distance-related 

D1 & D4, D2 & D5, D3 & D6, 

D1-D3 & D4-D6, D1-D2 & D4-D5, 

D2-D3 & D5-D6, D1-D4, D2-D5, D3-D6 

Pressure- and 

distance-related 
(D1-D3)*(P3-P1) & (D4-D6)*(P6-P4), (D4-D1)*(P1-P4) 
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Feature selection was performed utilizing the domain knowledge-guided forward 

selection method [97]. The feature weights, w j, in Equation 3.1 were optimized using 

the grid search method [98], [99] - the model parameters, the feature weights and the 

number of nearest neighbors, were determined to maximize the match between the 

class of each case in the training dataset and the class determined through majority 

voting of k nearest neighbors excluding itself. The weights of the laterally symmetric 

features were constrained to be identical. The hyperparameter k was determined within 

the range from 2 to 15. Each weight w j was determined within the grid range from 0 

to 2 with the increment of 0.02, and, was divided by the total sum of the weight. 

 

3.2.4 Data Collection for Training and Testing the Posture Classifier 

of the M ixed Sensor System   

Data collection was conducted to gather labeled sensor measurement data for training 

and testing the kNN classifier of the mixed sensor system. A total of thirty-six 

individuals participated in the data collection. The demographic information of the 

participants is summarized in Table 3.2. The participants performed a single posture 

measurement trial for each of the eleven posture categories shown in Figure 3.1. In each 

trial, the participants were asked to maintain the corresponding posture for 10 seconds 

while sitting on the chair of the mixed sensor system. The order of the eleven posture 

categories was randomized for each participant. In order to help the participants 
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correctly adopt and maintain the postures shown in Figure 3.1, the experimenters 

utilized external visual references (markings on the side wall and the desktop) depicting 

the trunk forward flexion angle (45 degrees) for posture category 3 and the trunk 

rotation angle (20 degrees) for posture categories 10 and 11. For the rest of the posture 

categories, the participants and the experimenters relied on the visual images shown in 

Figure 3.1 and the associated verbal descriptions.  

Detailed instructions for each posture category were as follows. All posture 

categories were based on positioning the hip close to the seat back, placing both hands 

on the desk, and facing the front (base posture). For the posture category 1, 

participants were instructed to lean the trunk on the seat back with the base posture. 

For the posture categories 2 and 3, the participants were additionally guided to erect 

the trunk or tilt it forward about 45 degrees. For the posture categories 4 and 5, 

participants tilted their upper body to the left or right by about 30 degrees. For the 

posture category 6, the hip was moved to the midpoint of the seat pan so that lumbar 

support was not used. For the posture category 7, the upper back was leaned against 

the seat back while the hip was moved to the midpoint of the seat pan. For the posture 

categories 8 and 9, participants crossed the right (left) leg over the left (right) leg. For 

the posture categories 10 and 11, participants were instructed to rotate the upper back 

and shoulder together about 20 degrees according to an external visual reference. 

In each trial, the measurements from the twelve sensors were collected at a 
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sampling frequency of 10Hz, and, their median values were transformed to the 

corresponding SI units of distance or pressure. For each trial, the distance and pressure 

values along with the posture category label were recorded. The data collection protocol 

was approved by the Institutional Review Board of Seoul National University (IRB No. 

1605/003-008). 

 

 Table 3.2: Participant demographic information 

aMean±Standard deviation 

 

3.2.5 Comparative Evaluation of Posture Classification Performance  

The posture classification performance of the mixed sensor system was evaluated in 

comparison with those of two benchmark systems. The benchmark systems employed 

only a single type of sensors. They were: the pressure sensors only and the distance 

sensors only system. This comparative evaluation was aimed at quantifying the 

effectiveness of combining seatback distance and seat cushion pressure sensors, which 

was the unique design feature of the mixed sensor system. 

Gender N Agea (year) Height (mm) Weight (kg) 

Male 21 
26.7±2.0 175.9±6.4 77.1±15.0 

Female 15 
25.0±2.3 162.8±4.6 51.4±4.3 
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The pressure sensors only system chosen for the comparative evaluation 

consisted of an office chair and an array of six FSRs embedded inside the seat cushion, 

which were identical to those of the mixed sensor system – in other words, the pressure 

sensors only system was the same as the mixed sensor system with the distance sensors 

deactivated. In the same way, the distance sensors only system was identical to the 

mixed sensor system with the pressure sensors deactivated. Thus, the pressure and 

distance sensors measurement data contained in the dataset for training and testing 

the posture classifier of the mixed sensor system (Section 3.2.4) were utilized to build 

and evaluate the kNN classifier for each of the two benchmark systems - the entire 

dataset was utilized for the mixed sensor system. The subset of the entire dataset 

containing the FSR measurement data was utilized for the pressure sensors only system; 

and, the subset containing the distance sensors measurement data, for the distance 

sensors only system. 

While all of the eleven posture categories were considered in training and testing 

the classifiers, for each of the left and right posture pairs in Figure 3.1 (posture 

categories 4 & 5, posture categories 8 & 9, and posture categories 10 & 11), only the 

left one (posture categories 4, 8 and 10) was considered in describing the performance 

of the classifiers. In other words, the right postures (posture categories 5, 8 and 11) 

were removed from the confusion matrices constructed for the three classifiers. This 

was to avoid double counting identical evaluation results - for each of the three posture 

category pairs, the classifier performance evaluation results were almost identical for 
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the left and right postures as the two (left and right) postures as well as the sensor 

placements were bilaterally symmetric and also the instructions for the two postures 

were identical except for the asymmetry. 

For each of the three systems, the posture classifier performance was evaluated 

through stratified 10-fold cross-validation. For each system, the corresponding sensor 

measurement dataset collected from the thirty-six individuals was divided into ten 

equal-sized partitions. In one iteration of the cross-validation process, the classifier was 

trained utilizing nine of the partitions as the training dataset, and was validated using 

the remaining partition as the test dataset. Ten iterations of this procedure were 

performed, each time using a different partition as the test dataset. The kNN classifier 

classified a test case (to be classified) utilizing its nearest neighbors within the training 

dataset – in other words, the test dataset served as an independent, unseen dataset for 

cross validation. 

In order to evaluate the classification performances of the smart chair systems, 

four performance measures for multi-class classification were employed: overall accuracy, 

precision, recall, and F1-score. Overall accuracy is the ratio of the number of correctly 

classified cases to the number of test cases. Precision is the ratio of the number of 

correctly classified cases to the number of cases labeled by the system as positive. 

Recall is the ratio of correctly classified cases to the number of positive cases in the 

data. F1-score is the harmonic mean of precision and recall. 
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3.3 Results 

 

3.3.1 M odel Parameters and Features 

For each of the three smart chair systems, the set of model parameters and features 

trained on the entire dataset collected from the thirty-six individuals is shown in Table 

3.3. 

 

 Table 3.3: Model parameters and features 

 

System 
Number of 

nearest neighbors 
Feature (weight) 

Pressure sensors only 9 P1 & P4 (0.20), P2 & P5 (0.14),  

and P3 & P6 (0.15) 

Distance sensors only 5 D1 & D4 (0.19), D2 & D5 (0.16), 

and D3 & D6 (0.15) 

Mixed sensor 3 P1 & P4 (0.16), P2 & P5 (0.07),  

D2 & D5 (0.06), D1-D3 & D4-D6 

(0.14), and D1-D4 (0.15) 



 

 

47 

3.3.2 Posture Classification Performance 

For each of the three smart chair systems, the normalized confusion matrices for the 

10-fold cross validation results is provided in Figure 3.4(a)-(c). Each confusion matrix 

was normalized by the number of cases in each class - sum of the values in a column is 

equal to one. The overall accuracies of the pressure sensors only, distance sensors only 

and mixed sensor systems were 0.59, 0.82 and 0.92, respectively. Figure 3.5(a) provides 

the mean precision values of the three smart chair systems for each posture category. 

Similarly, Figure 3.5(b) and 5(c) provide mean recall and mean F1-score values. 

 



 

 

48 

 

Figure 3.4: The confusion matrices of the posture classification results: (a) the pressure 

sensors only system, (b) the distance sensors only system, and (c) the mixed sensor 

system 
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Figure 3.5: Posture classification performance of the three smart chair systems for each 

posture category: (a) precision, (b) recall, and (c) F1-score 

 



 

 

50 

3.4 Discussion 

This study developed a novel mixed sensor smart chair system for monitoring and 

classifying a worker’s sitting postures in real time. The mixed sensor system performed 

posture classification by combining information from six seat cushion-embedded 

pressure sensors with that from six seatback-embedded distance sensors. It utilized a 

kNN algorithm for posture classification - for a given set of sensor measurements, it 

classified the corresponding posture as one of the eleven predefined posture categories, 

on the basis of a training dataset. The eleven posture categories were determined based 

on analyzing the relevant ergonomics literature. 

The mixed sensor system was evaluated comparatively against two benchmark 

systems in posture classification performance. The benchmarks were: the pressure 

sensors only and distance sensors only systems. They were identical to the mixed sensor 

system except that they employed only a single type of sensors. An independent, unseen 

test dataset was utilized for the comparative evaluation. 

The mixed sensor system was found to achieve a high overall posture 

classification accuracy (0.92). On the other hand, the overall accuracies of the pressure 

sensors only and the distance sensors only system were much lower – they were only 

0.59 and 0.82, respectively. Also, it was found that the mixed sensor system was able 

to perform accurate classifications robustly across all of the posture categories 

considered (Figure 3.4 and Figure 3.5) - the F1-score of the mixed sensor system ranged 
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from 0.83 to 0.97 (Figure 3.5(c)). Its performance was better than or comparable to 

those of the benchmarks consistently across the posture categories considered (Figure 

3.5). 

The excellent posture classification performance of the mixed sensor system 

observed in this study is thought to result from combining the two types of sensors - 

the two sensor types seem to be complementary. In what follows, the impacts of the 

sensor combination are described focusing on the limitations of the pressure sensors 

and the roles of the distance sensors. 

The mixed sensor system showed far more accurate classification performance 

than the pressure sensors only system for posture category 10 labeled “Rotating the 

trunk and keeping the trunk erect.” Recall for the posture category 10 was 0.88 and 

0.25, respectively (Figure 3.5(b)). The poor performance of the pressure sensors only 

system is thought to result from the fact that in the upright sitting posture, trunk 

rotation around the vertical axis by itself does not affect the position of the upper body 

center of mass (CoM) position or its projection on the seat cushion surface. Therefore, 

the pressure sensors alone cannot detect or differentiate trunk axial rotations. The 

distance sensors embedded in the seat back, on the other hand, provide information 

directly reflecting trunk axial rotations; thus, combining them with the pressure sensors 

results in improved posture classification performance. 

The mixed sensor system was far superior to the pressure sensors only system 
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in differentiating posture categories 1, 2 and 3, and, posture categories 6 and 7 for 

which different degrees of trunk flexion account for much of the differences (Figure 

3.4(a) and 4(c)). The result seems to reflect the difficulties in differentiating different 

trunk configurations using only the pressure sensor measurements. One possible 

scenario in which the pressure sensor measurements would not be able to differentiate 

trunk configurations is when the back of the thighs does not make a full contact with 

the seat cushion surface and the weight of the upper body is concentrated on a small 

area around the ischial tuberosities. For example, if the back of the thighs does not 

make a contact with the pressure sensors embedded in the front and middle parts of 

the seat cushion (“P2”, “P3”, “P5” and “P6”), then the pressure would be concentrated 

on the rear part of the seat cushion (“P1” and “P4”) regardless of trunk configuration. 

In such situation, only the distance sensors embedded in the seat back would provide 

information useful for discerning different degrees of trunk flexion.  

Another reason why the pressure sensors only system could not accurately 

classify different trunk configurations is the redundant degrees of freedom of the spinal 

column. The spinal column consists of twenty-three intervertebral discs with each joint 

having six degrees of freedom. Consequently, different spinal curvatures may result in 

the same CoM projections on the seat cushion surface and the same seat cushion 

pressure distributions. Therefore, the CoM projection alone is not enough to determine 

the spinal curvature or differentiate different trunk configurations due to trunk flexion 

or axial trunk rotation, and, neither are the pressure sensor measurements. Again, the 
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distance sensors are free from this problem and reflect the curvature of spine in a 

relatively direct manner.  

The impacts of the sensor combination could also be described in terms of the 

roles of the pressure sensors, in other words, how they complemented the distance 

sensors only system. One observation concerning the distance sensors only system was 

that it did not accurately classify posture category 10 (labeled “Rotating the trunk and 

keeping the trunk erect”). Recall for posture category 10 was only 0.7 (Figure 3.4 and 

Figure 3.5). This is possibly because 1) left trunk rotation occurred simultaneously 

with some trunk flexion due to the interference between the left shoulder and the 

seatback, and 2) some participants did not sit exactly in the center of the seat cushion. 

Sitting off the center of the seat cushion could made deviations of the distance sensor 

measurements and worsen classification performance. The pressure sensor measurement 

data may have captured and contributed to correcting such offsets.  

The distance sensors only system showed relatively better performance than 

the pressure sensors only system except for posture category 8 labeled “Legs crossed.” 

For posture category 8, recall of the distance sensors only system was only 0.42 while 

that of the pressure sensors only system was 0.88 (Figure 3.4 and Figure 3.5). This is 

not surprising, as the distance sensors could not provide information about the user’s 

leg posture. It is thought that the information from the pressure sensors complemented 

that from the distance sensors to correctly portray posture category 8 “Legs crossed.”  
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It may be worth providing some discussion on the hyperparameters of the kNN 

classifiers. First, regarding the results on the hyperparameter k (the number of nearest 

neighbors of a kNN algorithm), the optimal k value was the smallest for the mixed 

sensor system; and, between the two benchmark systems, it was smaller for the distance 

sensors only system than for the pressure sensors only system (Table 3.3). In general, 

the optimal k value of a kNN classifier is known to increase as the boundaries between 

the classes become less obvious [100]. The observation is thought to confirm the 

strength of the design strategy combining the two types of sensors. 

Second, for each smart chair system considered in this study, the feature 

weights help determine the relative importance of the sensors located at different 

locations [95], [96], [101]. As shown in Table 3.3, the pressure sensor measurements 

near the hip segment (“P1” and “P4”) had larger feature weights than those near the 

knees (“P3” and “P6”) and thighs (“P2” and “P5”) in the systems that adopted pressure 

sensors. This suggests that the pressure sensor measurements of the hip region were 

more important than the rest. In the mixed sensor system and the distance sensors 

only system, the uppermost of distance sensor-related feature (“D1-D4”) had the largest 

feature weights among the distance-related features. This implies that the position of 

the upper part of the trunk played a major role in posture classification. It may be 

that the sensors involving large feature weights are the targets for design changes when 

attempting to optimize the sensor placement. 
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Overall, this pilot study demonstrated the feasibility and utility of a novel, 

non-invasive, chair-based posture monitoring system, which combined the pressure 

distribution and the seatback-trunk distances data. The results of the posture 

classification performance evaluation (Figure 3.4 and Figure 3.5) revealed that: 1) the 

mixed sensor system was capable of accurately classifying sitting postures robustly 

across major posture categories that are ergonomically relevant, and, 2) the excellent 

performance of the mixed sensor system was attributable to the design strategy of 

combining pressure and distance sensors. The proposed mixed sensor system is 

considered an improvement over the existing pressure sensor-based smart chair systems 

in that it enables classifying a wide variety of ergonomically important sitting postures, 

economically using a small number of sensors. 

The mixed sensor system presented in this study may have various applications. 

The mixed sensor system could be combined with a real-time feedback/warning system 

to help the users adjust their postures and thereby contribute to reducing the risk of 

WMSDs. Another possible application of the mixed sensor system currently under our 

consideration is estimating the seated worker’s mental workload from conducting a 

cognitive task on the basis of real-time posture measurements. Such mental workload 

estimation could serve as a basis for optimizing job scheduling. 

Further research may be conducted to improve the current mixed sensor 

system. It is expected that posture classification accuracy is affected by the locations 
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of the pressure and distance sensors [50]. By exploring different sensor placement 

possibilities, it may be possible to identify new designs that achieve equivalent or 

enhanced performance with a smaller number of sensors. Also, a future study is 

warranted to compare the mixed sensor system of the current study against smart chair 

systems that employ the same number of sensors of a single type, that is, a pressure 

sensors only system with 12 pressure sensors and a distance sensors only system with 

12 distance sensors. Such a study may provide additional information regarding the 

benefits of combining different types of sensors.  
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Chapter 4 

 

Severe Obesity Impacts on Joint Kinematics and 

M ovement Technique During M anual Load Lifting  

 

4.1 Introduction 

Obesity is a physical condition defined as abnormal or excessive fat accumulation of 

the body [21]. The body mass index (BMI), calculated as mass/height2 (unit: kg/m2), 

is an indicator of overall adiposity and is moderately correlated with percent body fat 

[22], [23]. A person is classified as normal-weight if the BMI is greater than 18.5 and 

less than 25 kg/m2, pre-obese if it is greater than or equal to 25 kg/m2 and less than 

30 kg/m2, and obese if it falls within the range of 30 kg/m2 or higher. The condition of 

obesity is further subdivided into different categories: obesity class I (30 kg/m2 ≤ BMI 

< 35 kg/m2), obesity class II (35 kg/m2 ≤ BMI < 40 kg/m2), and obesity class III (40 

kg/m2 ≤ BMI) corresponding to severe or morbid obesity [25], [102]. 

Pre-obesity and obesity have increased in the last several decades and are 

currently prevalent worldwide. From 1975 to 2014, the worldwide prevalence of obesity 

has increased from 3.2% to 10.9% in men, and from 6.4% to 14.9% in women; if the 

trends continue, 18% of men and 21% of women are expected to be obese by 2025 [26]. 

According to the World Health Organization, 1.9 billion adults worldwide were 
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estimated to be pre-obese or obese in 2016, of which 650 million, or 13% of adults, were 

obese [21]. Severe obesity also accounts for a nontrivial portion of the global population. 

For example, in the United States, the prevalence of severe obesity was 7.7% among 

adults aged 20 years or older in 2015-2016 [27]. The obesity prevalence of the workforce 

follows that of the general population and obesity rates among various occupational 

groups increased significantly over time [28]. In the United States workforce, the obesity 

rate doubled from about 15% to 30% between 1986 and 2011 [29]. 

Obesity is associated with decreases in work capacity. The presence of excessive 

adipose tissue adversely affects the capacity of the neuromusculoskeletal system, 

including joint range of motion, muscle strength, power generation, and reaction time 

[30]–[37], [103]. Work task design that does not take into account the characteristics of 

obese workers is thought to be part of the causes of work-related musculoskeletal 

disorders (WMSDs) in the obese workforce [33], [103], [104]. It may also be related to 

productivity loss, higher absenteeism, and higher lifetime cost due to disabilities of 

obese workers [38]–[40]. 

To alleviate the occupational musculoskeletal problems of obese workers and 

to improve productivity in the workforce, much research has been conducted on the 

impacts of obesity on physical loads and task performance during various physical work 

tasks. Previous studies examined how obesity affects biomechanical loads in manual 

lifting [64] and carrying [65], movement kinematics of manual lifting [66]–[69], perceived 
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postural stress during static posture holding [70], functional limitations in reaching 

[71]–[73], postural stability in manual lifting [74], [75] and quiet standing [76], tolerance 

limits in manual lifting [70], and reaction time in seated foot reaching [37]. These 

studies provided implications of their findings concerning the ergonomics work task 

design for obese workers. 

Among the above-mentioned studies, several studies examined the impacts of 

obesity on manual load lifting [64], [66]–[70]. Manual lifting is one of the important risk 

factors for low back disorders [78]–[80]. Singh et al. [64] and Corbeil et al. [66] predicted 

the stresses at the L5/S1 disc joint during manual load lifting by utilizing a 

biomechanical model and reported that obese individuals had greater lumbar loadings, 

and, thus, they could be more vulnerable to low back disorders than normal-weight 

individuals. Colim et al. [69] examined trunk flexion, knee flexion, and pelvis inclination 

during vertical handling tasks in the presence of a barrier that replicates a typical 

industrial bin, and the results demonstrated that the obese subjects had greater trunk 

acceleration and larger horizontal distance between the ankle and the knuckle, 

suggesting that they were exposed to a higher risk of musculoskeletal disorders (MSDs) 

development. According to Xu et al. [67], high BMI subjects had significantly higher 

peak trunk acceleration and velocity when performing free-style dynamic lifting. The 

authors’ hypothesis that obese people might lift slowly to minimize loadings caused by 

greater body mass and acceleration was not supported by the results. Sangachin and 

Cavuoto [68] compared the trunk kinematics, heart rate, and task duration of obese 
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and normal-weight groups when performing prolonged repetitive lifting. When fatigue 

occurred due to prolonged lifting, trunk acceleration increased in the obese group over 

time, which was explained in terms of a change in lifting strategy caused by obesity-

related characteristics. Singh et al. [70] investigated the psychophysical effects of 

obesity on lifting tolerance limits and it was found that there was no significant 

difference in the maximum acceptable weights of lift between the obesity levels. 

Despite previous research efforts, however, there still remain knowledge gaps 

concerning the impacts of obesity on manual load lifting. Especially, little research has 

been conducted on the impacts of severe obesity (BMI  40 kg/m2) on the way workers 

organize lifting motion patterns. Although the proportion of individuals with a BMI of 

40 or higher in the entire obese population has been gradually increasing [105], and 

severe obesity has been reported to have a greater impact on the musculoskeletal 

system than obesity class II or less [106], [107], the authors are not aware of any studies 

examining the impacts of severe obesity on manual load lifting, except for Singh et al. 

[64]. Also, the existing studies in general did not analyze lifting motions in terms of 

multi-joint movement organization or at the level of movement technique. 

To address the above knowledge gap, and, contribute to the ergonomics design 

of lifting tasks, this study aimed to identify the impacts of severe obesity on joint 

kinematics and movement technique during manual lifting under four different task 

conditions, and, further provide design information for ergonomic interventions or work 
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task design for high BMI individuals.  

 

4.2 M ethods  

 

4.2.1 Participants  

Eighteen normal-weight (18.5 kg/m2  BMI < 25 kg/m2) and 17 severely obese (BMI 

≥ 40 kg/m2) participants participated in this study. Individuals without a history of 

severe low back disorder and other obvious musculoskeletal disorders were considered 

in the study. The demographic information of the participants is summarized in Table 

4.1. 

 

Table 4.1: Summary of participants’ demographic information. 

 

 

4.2.2 Experimental Task  

 Non-obese (n=18) Obese (n=17) p value 

Age (years) 28.00 (6.62) 28.92 (7.99) 0.768 

Height (m) 173.36 (7.89) 168.65 (11.35) 0.157 

Weight (kg) 67.85 (15.90) 134.78 (33.32) <0.001 

BMI (kg/m2) 22.61 (5.09) 47.17 (8.93) <0.001 
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The participants performed low-lying box lifting with box weights equal to the 

recommended weight limits (RWLs) calculated by the revised National Institute for 

Occupational Safety and Health (NIOSH) lifting equation. The revised NIOSH lifting 

equation was developed to determine the limit of hand load weight (that is, RWL) for 

a given task condition, which could be lifted without an increased risk of developing 

lifting-related musculoskeletal disorders [77]. Lifting with a weight less than the RWL 

is known to result in an L5/S1 disc compressive force less than 3400N, which is 

considered safe for most healthy workers [77]. 

A total of four lifting task conditions were considered in this study, all of which 

were sagittally symmetric. The origins of the four lifting task conditions were identical, 

and the destinations were determined by combining two levels of horizontal location 

with two levels of vertical location (Table 4.2). The horizontal location of the load was 

defined as the horizontal distance between the midpoint of both the ankle joints and 

the box center, and the vertical location was determined as the vertical distance from 

the ground to the box handle (Figure 4.1(a)). These locations were part of the task 

parameters of the revised NIOSH lifting equation. The origin and the destination of 

each lift were created using wooden slabs and a height-adjustable shelf (Figure 4.1(b)). 

For each task condition, the box weight (the RWL) was calculated using the revised 

NIOSH lifting equation. See Waters et al. [77] for detailed descriptions of the 

parameters of the revised NIOSH lifting equation and the RWL calculation.  
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Table 4.2: Lifting task conditions 

 

 

Task 

Condition 

Origin  Destination  Box 

weight 

(kg) 

Horizontal 

location (m) 

Vertical 

location (m) 

Horizontal 

location (m) 

Vertical 

location (m) 

1 

0.33 0.18 

0.66 1.05 12.6 

2 0.66 1.52 12.3 

3 0.75 1.05 12.6 

4 0.75 1.52 12.3 

Note: as for the other parameters of the revised NIOSH lifting equation, the coupling quality and the lifting frequency 

were ‘good’ and 'infrequent' (<0.1 lift per minute) for the work duration of less than 1 hour, respectively, and, the 

angle of asymmetry was zero in all of the four lifting task conditions. 

Figure 4.1: Experimental setup: (a) Horizontal and vertical location at the origin, 

(b) Illustration of the lifting task. 
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4.2.3 Experimental Procedure 

In this study, a lifting motion in each trial was recorded using a twelve-camera Vicon 

motion capture system (Vicon, Oxford, UK), sampled at 120Hz using a Vicon Nexus 

software. Prior to the experimental session, for each participant, a set of optical markers 

were placed on the specific body anatomical landmarks according to the Plug-in-Gait 

model of the Vicon motion capture system [108].  

For some of the severely obese participants, excessive fat in the abdomen 

occluded or distorted the positions of the markers on the front waist (the right and left 

anterior superior iliac spine [ASIS] markers) necessary to define the pelvis segment. 

This caused difficulties in properly estimating the positions of the hip joint centers, 

which were the outputs of the Plug-in-Gait model. To solve the problem, the following 

measures were taken: first, each participant was laid on a flat surface, and the 

experimenter palpated the ASIS bony landmarks. The distance between the two bony 

landmarks was measured using a pair of calipers - this distance was used to estimate 

the positions of the hip joint centers based on the Plug-in-Gait model. Second, the 

ASIS markers were moved laterally outward from the ASIS bony landmark positions 

by an equal amount, along the right-left ASIS axis found through the palpation. This 

was to avoid the marker occlusion by the abdominal fat and make the markers visible 

to the cameras during the lifting task trials. The marker position adjustments did not 

affect the coordinate system of the pelvis segment and thus the estimation of the 
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positions of the hip joint centers based on the Plug-in-Gait model. The markers 

attached to the other anatomical landmarks (e.g., knee, shoulder) did not cause the 

problem of occlusion by body fat for the severely obese participants.  

During each lifting trial, each participant was standing on the marked feet 

position with minimal flexion of upper and lower extremities, and with a start signal, 

the participant began the movement. The participant grabbed the box at the origin of 

the lift, lifted it using a self-selected, free-style lifting technique, and placed the box at 

the destination of the lift. Each participant performed a single trial for each of the four 

lifting task conditions. The order of the trials was randomized for each participant, and 

sufficient rest time was given between consecutive trials. The experimental protocol 

was approved by a local Institutional Review Board. 

 

4.2.4 Data Processing 

Since the lifting task conditions were sagittally symmetric, the participants were 

represented by the kinematic chain shown in Figure 4.2. The lifting movements were 

characterized by the flexion-extension angles of the following joints: ankle, knee, hip, 

spine, shoulder, and elbow. Note that the inclination of the pelvis segment was 

calculated by the positions of the waist markers, that is, the anterior and posterior 

superior iliac spine markers (the ASIS and PSIS markers), and the hip and the spine 

angle were defined as the relative angle between the pelvis and the thigh segment, and, 
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that between the pelvis and the thorax segment, respectively.  

 

 

Figure 4.2: Six-segment, six-angle kinematic chain representing the human body in the 

sagittal plane 

 

In each lifting trial, the trajectories of the optical markers were recorded, and 

both the position- and the angle-time trajectory of each joint were calculated by the 

Plug-in-Gait model (Figure 4.3). In this study, we analyzed each participant’s 

movement while the box moved from the origin to the destination of the lift. The 

outputs of the model were filtered using a fourth-order Butterworth low-pass filter with 

a cut-off frequency of 3Hz. All data processing was conducted using Vicon 2.11.0 and 
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Matlab R2020b. 

 

 

Figure 4.3: Example of recording the optical markers in a lifting trial for each 

participant group: (a) Non-obese participant and (b) severely obese participant 

 

4.2.5 Experimental Variables 

The independent variables of this study were Obesity Level (normal-weight and obese) 

and Task Condition (four load destinations). The dependent measures were a set of 

kinematic variables and two movement technique indexes derived from the joint angle 

trajectories.  

The kinematic variables were the duration of movement and the joint range of 
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excursion (ROE), the mean of absolute joint angular velocity, and the peak joint 

angular acceleration at each body joint. These kinematic variables were obtained from 

the joint angle-time trajectory as the box moved from the origin to the destination of 

the lift. For each lifting trial, the duration was defined as the time from the moment 

the box leaves the origin to the moment it arrives at the destination. The ROE was 

defined as the difference between the maximum and the minimum angle for each joint. 

The mean absolute angular velocity and peak angular acceleration were determined 

from the joint angular velocity and acceleration trajectories, which were calculated 

with numerical differentiation. 

The movement technique of a lifting trial could be characterized on the basis 

of the posture (joint angles) adopted at the start of the lift. Burgess-Limerick and 

Abernethy [109] proposed a postural index to quantify the lifting techniques from stoop 

to squat. Postural index was defined as the ratio of knee flexion to the sum of the ankle, 

hip, and spine flexion at the start of a lift (Equation 4.1 and Figure 4.2). When the 

knee flexion from the normal standing position is small and the forward inclination of 

the trunk is large, postural index approaches zero and describes that the lifting 

technique is closer to a stoop than to a full squat (Figure 4.4(b)). Conversely, postural 

index of close to one suggests that the participant adopted a squat technique with high 

knee flexion and low trunk inclination (Figure 4.4(a)). Postural index was empirically 

shown to be robust to changes in task parameters such as the vertical location of origin 

and load weight [109]. 
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𝑝𝑜𝑠𝑡𝑢𝑟𝑎𝑙 𝑖𝑛𝑑𝑒𝑥 =
𝑘𝑛𝑒𝑒 𝑓𝑙𝑒𝑥𝑖𝑜𝑛 (°)

𝑎𝑛𝑘𝑙𝑒+ℎ𝑖𝑝+𝑠𝑝𝑖𝑛𝑒 𝑓𝑙𝑒𝑥𝑖𝑜𝑛 (°)
 (4.1) 

 

 

Figure 4.4: Examples of postural indexes according to lifting techniques 

 

The other movement technique index utilized in this study was the joint 

contribution vector (JCV) index proposed by Park et al. [110] to characterize goal-

directed motions in movement technique. The JCV index represents the movement 

technique underlying a goal-directed motion in terms of the relative contributions of 

the individual joint degrees of freedom (DOFs) to the end-effector (e.g., hand) 

trajectory formation. The individual joint contributions constituting the JCV were 

utilized as dependent measures. 

The following are the details of calculating the JCV index. A discrete, goal-
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directed human motion is defined as a set of joint angle-time trajectories with N DOFs 

during a time interval t  [0, T] (Equation 4.2). The contribution of the ith joint DOF 

could be assessed by comparing the motion with an "almost identical" motion in 

Equation 4.3 that eliminates (freezes) the ith joint DOF in the motion (Figure 4.5). The 

x-axis component of the contribution of the ith joint DOF is defined as Equation 4.4, 

where 𝑥(𝑡) and 𝑥𝑖(𝑡) are the x-coordinates of the end-effector corresponding to 𝜽(𝒕) 

and 𝜽𝒊(𝑡), respectively. The contribution of the ith joint DOF in the x-axis could be 

further normalized to the percent contribution (PC) ranging from -100 to 100 

(Equation 4.5). Likewise, the contribution of the ith joint DOF in the y-axis is calculated 

and normalized as Equations 4.4 and 4.5. In this study, the lifting motions in the 

sagittal plane were characterized by the JCVs with the horizontal (JCV x) and vertical 

(JCV y) components (Equation 4.6). 

 

𝜽(𝑡) = [𝜃1(𝑡) … 𝜃𝑖(𝑡) … 𝜃𝑁(𝑡)] (4.2) 

 

𝜽𝒊(𝑡) = [𝜃1(𝑡) … 𝜃𝑖(0) … 𝜃𝑁(𝑡)]  (4.3) 

 

𝐶𝑥
𝑖 = ∫ (𝑥(𝑡) − 𝑥𝑖(𝑡)) 𝑑𝑡

𝑇

0
, 𝐶𝑦

𝑖 = ∫ (𝑦(𝑡) − 𝑦𝑖(𝑡)) 𝑑𝑡
𝑇

0
  (4.4) 

 

𝑃𝐶𝑥
𝑖 =

100×𝐶𝑥
𝑖

∑ |𝐶𝑥
𝑗
|𝑁

𝑗=1

, 𝑃𝐶𝑦
𝑖 =

100×𝐶𝑦
𝑖

∑ |𝐶𝑦
𝑗

|𝑁
𝑗=1

  (4.5) 
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𝐉𝐂𝐕𝐱 = [𝑃𝐶𝑥
1 … 𝑃𝐶𝑥

𝑖 … 𝑃𝐶𝑥
𝑁], 𝐉𝐂𝐕𝐲 = [𝑃𝐶𝑦

1 … 𝑃𝐶𝑦
𝑖 … 𝑃𝐶𝑦

𝑁]  (4.6) 

 

 

Figure 4.5: Example of a lifting motion and “almost identical” motion that eliminates 

the knee joint DOF. 

 

4.2.6 Statistical Analysis 

The experiment was based on the design with the between-subject factor of Obesity 

Level (two levels; normal-weight and obese) and the within-subject factor of Task 

Condition (four levels). For each dependent measure, a series of two-way mixed 

ANOVAs were conducted to test the effects of Obesity Level, Task Condition, and their 

interaction on each of the dependent variables. Prior to analysis, the assumption of 

independent observations, normality of residuals, and homogeneous variance of 
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residuals was tested using the approaches proposed by Montgomery [111]. In the case 

of violation of the homogeneous variance or normality assumption, natural log 

transformation was applied to those dependent variables, and the transformation 

remedied the violation. The sphericity assumption of repeated-measures ANOVA was 

tested using Mauchly’s sphericity test, and Greenhouse-Geisser correction was applied 

in case of a violation. Post hoc analyses using the Tukey HSD test were conducted for 

the dependent variables if the main or interaction effects were significant. Statistical 

significance was set at p < .05. Analyses were conducted using the R statistical software, 

version 3.5.1. 

 

4.3 Results   

 

4.3.1 Kinematic Variables  

The statistical analysis results for the kinematic variables are summarized in Tables 

4.3-4.6. Obesity Level and Task Condition was found to have significant effects on the 

duration (Table 4.3 and Figure 4.6). None of the interactions were found to be 

significant for the duration (Table 4.3). 

Obesity Level was found to have significant effects on the ROEs of the ankle, 

knee, hip, and elbow joints (Table 4.4 and Figure 4.7). Task Condition showed a 

significant effect on the ROEs of all joints (Table 4.4 and Figure 4.7). The Obesity 
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Level × Task Condition interaction effects were significant for the ROE of the ankle 

joint (Table 4.4 and Figure 4.10(a)). 

As shown in Table 4.5 and Figure 4.8, Obesity Level had a significant effect 

on the mean absolute angular velocity for all joints except the spine joint, and Task 

Condition was found to have significant effects on the mean absolute angular velocity 

for all joints. The Obesity Level × Task Condition interaction effects were significant 

on the mean absolute angular velocity of the ankle and knee joints (Table 4.5 and 

Figure 4.10(b) and 4.10(c)). 

Obesity Level significantly affected the peak angular acceleration of the knee 

and elbow joints, and Task Condition significantly affected that of the spine, shoulder, 

and elbow joints (Table 4.6 and Figure 4.9). None of the interactions were found to be 

significant for the peak angular acceleration (Table 4.6).
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Table 4.3: Summary of descriptive statistics and ANOVA results for the duration. 

 Task condition 1 Task condition 2 Task condition 3 Task condition 4 p-values 

 Normal-weight Obese Normal-weight Obese Normal-weight Obese Normal-weight Obese 
Obesity 

Level 

Task 

Condition 
Interaction 

Duration (s)            

 2.41 (0.35) 2.67 (0.69) 2.59 (0.26) 3.04 (0.66) 1.98 (0.32) 2.26 (0.4) 2.36 (0.34) 2.75 (0.57) 0.026 <0.001 0.321 

Note: Means and standard deviations are provided for descriptive statistics (standard deviations are presented in parentheses). Significant p-values are in bold. 
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Table 4.4: Summary of descriptive statistics and ANOVA results for the range of excursion. 

 Task condition 1 Task condition 2 Task condition 3 Task condition 4 p-values 

 Normal-weight Obese Normal-weight Obese Normal-weight Obese Normal-weight Obese 
Obesity 

Level 

Task 

Condition 
Interaction 

Range of excursion (°) 

Ankle 34.6 (8.39) 31.02 (12.09) 31.42 (9.3) 25.15 (17.11) 36.39 (10.64) 22.44 (13.88) 34.06 (8.97) 20.35 (12.01) 0.014 0.008 0.003 

Knee 94.13 (23.35) 67.48 (27.85) 90.79 (21.42) 57.99 (32.16) 89.01 (22.73) 47.94 (31.4) 92.4 (19.74) 50.23 (31.21) <0.001 0.002 0.064 

Hip 88.22 (10.79) 69.03 (13.55) 101.73 (10.96) 81.79 (17.82) 81.42 (10.94) 61.98 (16.58) 97.3 (11.93) 76.07 (16.82) <0.001 <0.001 0.867 

Spine 25.32 (6.93) 25.66 (7.06) 38.87 (8.42) 34.41 (8.25) 23.91 (6.37) 23.24 (5.39) 35.82 (8.31) 33.53 (6.42) 0.45 <0.001 0.056 

Shoulder 87.31 (12.61) 72.45 (14.63) 99.22 (12.77) 90.29 (17.39) 86.99 (12.38) 84.74 (21.58) 103.37 (16.84) 91.75 (15.38) 0.053 <0.001 0.066 

Elbow 71.1 (9.82) 55.26 (10.31) 89.42 (8.57) 78.84 (11.07) 70.02 (11.14) 58.3 (10.66) 88.52 (8.16) 75.05 (9.66) <0.001 <0.001 0.376 

Note: Means and standard deviations are provided for descriptive statistics (standard deviations are presented in parentheses). Significant p-values are in bold. 
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Table 4.5: Summary of descriptive statistics and ANOVA results for the mean absolute angular velocity. 

 Task condition 1 Task condition 2 Task condition 3 Task condition 4 p-values 

 Normal-weight Obese Normal-weight Obese Normal-weight Obese Normal-weight Obese 
Obesity 

Level 

Task 

Condition 
Interaction 

Mean absolute angular velocity (°/s) 

   Ankle 14.58 (4.01) 12.42 (3.86) 12.23 (3.92) 8.83 (5.35) 17.95 (5.75) 10.88 (5.71) 14.3 (4.14) 8.28 (4.43) 0.004 <0.001 <0.001 

   Knee 42.4 (13.49) 26.9 (15.78) 37.53 (11) 19.17 (11.94) 48.17 (19.29) 21.81 (13.92) 40.68 (11.04) 18.8 (11.9) <0.001 <0.001 0.041 

   Hip 38.97 (7.1) 29.99 (8.01) 41.67 (6.12) 29.94 (9.51) 44.62 (7.7) 32.54 (10.39) 45.43 (8.66) 31.25 (10.46) <0.001 <0.001 0.083 

   Spine 11.04 (2.82) 10.46 (3.94) 15.61 (3.44) 12.33 (4.36) 12.8 (3.71) 11.12 (3.07) 16.13 (4.39) 13.28 (4.26) 0.112 <0.001 0.132 

   Shoulder 50.7 (9.69) 40.41 (11.74) 49.03 (7.85) 37.1 (10.96) 52.79 (10.93) 47.66 (11.42) 51.07 (11.03) 40.66 (12.37) 0.003 <0.001 0.81 

   Elbow 49.2 (9.1) 37.31 (9.71) 62.19 (7.65) 47.87 (10.2) 59.39 (12.78) 47.19 (12.43) 69.9 (8.88) 51.05 (11.4) <0.001 <0.001 0.402 

Note: Means and standard deviations are provided for descriptive statistics (standard deviations are presented in parentheses). Significant p-values are in bold. 
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Table 4.6: Summary of descriptive statistics and ANOVA results for the peak angular acceleration. 

 

 Task condition 1 Task condition 2 Task condition 3 Task condition 4 p-values 

 Normal-weight Obese Normal-weight Obese Normal-weight Obese Normal-weight Obese 
Obesity 

Level 

Task 

Condition 
Interaction 

Peak angular acceleration (°/s2) 

   Ankle 101.7 (46.32) 104.1 (38.43) 87.56 (42.26) 64.43 (32.23) 109.29 (50.99) 73.71 (37.29) 96.31 (40.94) 64.06 (34.32) 0.134 0.232 0.208 

   Knee 310.77 (128.29) 225.62 (180.63) 276.15 (96.7) 142.22 (80.86) 313.35 (149.95) 158.86 (95.64) 291.65 (102.7) 152.03 (102.39) 0.014 0.443 0.196 

   Hip 226.17 (59.9) 183.41 (60.77) 233.9 (56.07) 172.82 (50.71) 281.13 (81.04) 220.46 (80.99) 254.68 (68.85) 181.61 (70.51) 0.639 0.189 0.566 

   Spine 67.27 (20.8) 71.6 (30.61) 91.75 (25.52) 74.89 (28.66) 89.28 (35.29) 79.28 (28.83) 94.97 (36.14) 90.25 (28.29) 0.447 0.027 0.844 

   Shoulder 486.66 (77.59) 288.87 (101.29) 403.69 (101.77) 280.6 (99.72) 558.71 (117.48) 414.16 (135.09) 465.5 (117.97) 350.47 (115.82) 0.264 <0.001 0.512 

   Elbow 440.95 (90.52) 298.64 (99.39) 440.36 (111.06) 331.52 (90.86) 582.52 (130.8) 381.41 (129.03) 559.12 (114.16) 372.19 (108.29) 0.001 <0.001 0.936 

Note: Means and standard deviations are provided for descriptive statistics (standard deviations are presented in parentheses). Significant p-values are in bold. 

 

 

 

  



 

 

78 

 

Figure 4.6: Box plots summarizing the duration data for the two obesity levels in each 

task condition.  
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Figure 4.7: Box plots summarizing the range of excursion data for the two obesity levels 

in each task condition. 
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Figure 4.8: Box plots summarizing the mean absolute angular velocity data for the two 

obesity levels in each task condition. 
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Figure 4.9: Box plots summarizing the peak angular acceleration data for the two 

obesity levels in each task condition. 
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Figure 4.10: Obesity Level × Task Condition interaction effects on kinematic variables: 

(a) the ROE of the ankle joint, (b) the mean absolute angular velocity of the ankle 

joint, and (c) the mean absolute angular velocity of the knee joint. ‘*’ denotes 

significant pairwise differences on Obesity Level or Task Condition. 
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4.3.2 M ovement Technique Indexes 

The statistical analysis results for the movement technique indexes (postural index, 

JCV x, and JCV y) are summarized in Tables 4.7-4.9. Obesity Level, Task Condition, 

and their interaction were found to have significant effects on postural index (Table 4.7 

and Figure 4.10). 

Obesity Level showed a significant effect on all the components of JCVx except 

for the spine joint and Task Condition except for the knee joint (Table 4.8 and Figure 

4.11). The Obesity Level  Task Condition interaction effects were significant for the 

ankle, hip, and spine joint components of JCVx (Table 4.8 and Figure 4.14). 

Obesity Level had a significant effect on the ankle, knee, spine and elbow joint 

components of JCVy, and Task Condition had a significant effect on all the components 

of JCVy (Table 4.9 and Figure 4.12). The Obesity Level  Task Condition interaction 

effects were found to be significant for the ankle, knee, hip, and elbow joints 

components of JCVy (Table 4.9 and Figure 4.15). 
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Table 4.7: Summary of descriptive statistics and ANOVA results for postural index. 

 Task condition 1 Task condition 2 Task condition 3 Task condition 4 p-values 

 Normal-weight Obese Normal-weight Obese Normal-weight Obese Normal-weight Obese 
Obesity 

Level 

Task 

Condition 
Interaction 

Postural index 

 0.59 (0.13) 0.46 (0.21) 0.57 (0.09) 0.36 (0.26) 0.55 (0.11) 0.25 (0.3) 0.56 (0.1) 0.26 (0.29) 0.001 0.006 0.037 

Note: Means and standard deviations are provided for descriptive statistics (standard deviations are presented in parentheses). Significant p-values are in bold. 
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Table 4.8: Summary of descriptive statistics and ANOVA results for JCVx. 

 Task condition 1 Task condition 2 Task condition 3 Task condition 4 p-values 

 Normal-weight Obese Normal-weight Obese Normal-weight Obese Normal-weight Obese 
Obesity 

Level 

Task 

Condition 
Interaction 

JCVx (horizontal) components (%) 

   Ankle -22.32 (4.1) -21.52 (9.31) -28.83 (4.3) -14.96 (24.2) -21.75 (3.83) -11.34 (18.65) -27.35 (4.72) -9.73 (23.48) 0.043 <0.001 0.01 

   Knee 46.45 (6.84) 40.66 (15.98) 58.33 (3.45) 42.57 (25.35) 47.39 (8.3) 27.94 (26.14) 59.47 (4.82) 34.79 (33.33) 0.009 0.248 0.14 

   Hip 15.1 (5.1) 9.46 (9.25) 0.08 (6.28) -9.46 (11.47) 15.04 (6.63) 11.77 (11.08) 2.92 (6.87) -8.55 (12.53) 0.012 <0.001 0.013 

   Spine 3.64 (1.71) 6.31 (5.12) -1.65 (1.59) -3.26 (2.81) 4.23 (2.21) 9.11 (7.86) -1.14 (1.69) -3.33 (3.5) 0.38 <0.001 0.027 

   Shoulder -6.58 (3.86) -11.85 (10.38) -2.6 (1.46) -7.57 (9.46) -5.46 (4.35) -13.49 (10.45) -2.5 (1.9) -11.2 (10.47) 0.004 <0.001 0.263 

   Elbow 5.88 (2.63) 9.51 (7.94) 3.56 (2.98) 5.78 (5.17) 5.76 (2.39) 11.33 (5.8) 3.69 (3.27) 8.1 (6.72) 0.006 0.002 0.305 

Note: Means and standard deviations are provided for descriptive statistics (standard deviations are presented in parentheses). Significant p-values are in bold. 
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Table 4.9: Summary of descriptive statistics and ANOVA results for JCVy. 

 Task condition 1 Task condition 2 Task condition 3 Task condition 4 p-values 

 Normal-weight Obese Normal-weight Obese Normal-weight Obese Normal-weight Obese 
Obesity 

Level 

Task 

Condition 
Interaction 

JCVy (vertical) components (%) 

   Ankle 28.71 (8.55) 27.73 (15.18) 18.48 (5.42) 14.06 (13.01) 30.43 (10.12) 16.57 (17.66) 21.71 (5.9) 11.29 (13.17) 0.009 0.001 0.022 

   Knee 5.25 (11.49) -4.32 (8.06) 17.31 (9.71) 5.04 (11.37) -2.06 (10.65) -5.9 (11.55) 13.97 (8.86) 3.43 (9.51) 0.007 <0.001 0.029 

   Hip 36.26 (3.93) 34.05 (6.66) 41.52 (6.66) 44.16 (10.85) 36.66 (3.98) 38.17 (7.68) 42.36 (6.46) 46.71 (9.65) 0.464 <0.001 0.045 

   Spine 8.16 (2.17) 11.16 (4.71) 11.04 (2.85) 14.68 (7.73) 9.69 (2.91) 13.96 (6.58) 10.97 (2.67) 16.15 (6.62) 0.018 <0.001 0.529 

   Shoulder -12.07 (8.45) -13.71 (9.17) -5.01 (6.25) -6.21 (7.62) -8.74 (7.68) -11.71 (8.52) -1.69 (7.25) -5.8 (7.04) 0.325 <0.001 0.444 

   Elbow 5 (1.82) 6.15 (2.64) 5.47 (2.12) 8.75 (4.24) 4.91 (2.15) 5.89 (1.92) 4.87 (2) 8.53 (5.58) 0.018 0.001 0.006 

 

Note: Means and standard deviations are provided for descriptive statistics (standard deviations are presented in parentheses). Significant p-values are in bold. 
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Figure 4.11: Box plots summarizing the JCVx data for the two obesity levels in each 

task condition. 
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Figure 4.12: Box plots summarizing the JCVy data for the two obesity levels in each 

task condition. 
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Figure 4.13: Obesity Level × Task Condition interaction effects on postural index. ‘*’ 

denotes significant pairwise differences on Obesity Level or Task Condition. 
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Figure 4.14: Obesity Level × Task Condition interaction effects on PCx values: (a) the 

ankle joint, (b) the hip joint, and (c) the spine joint. ‘*’ denotes significant pairwise 

differences on Obesity Level or Task Condition. 
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Figure 4.15: Obesity Level × Task Condition interaction effects on PCy values: (a) the 

ankle joint, (b) the knee joint, (c) the hip joint, and (d) the elbow joint. ‘*’ denotes 

significant pairwise differences on Obesity Level or Task Condition. 
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4.4 Discussion 

 

This study investigated the impacts of severe obesity on the joint kinematics and 

movement technique during sagittally symmetric manual lifting under four task 

conditions. Obese and normal-weight participants performed manual lifting with box 

weights equal to the RWLs, and the lifting movements were recorded by a motion 

capture system. The obese and normal-weight groups were compared in a set of 

kinematics variables and movement technique indexes.  

Some major study findings were as follows: 

<Obesity Level impacts on kinematic variables> 

• The obese group showed a larger mean task duration than the normal-weight 

group (Table 4.3 and Figure 4.6).  

• Mean ROE was smaller for the obese group than the normal-weight group for 

the ankle, knee, hip and elbow joints (Table 4.4 and Figure 4.7). 

• The obese group showed a smaller mean absolute joint angular velocity than 

the normal-weight group at all but the spine joint (Table 4.5 and Figure 4.8). 

• The obese group showed a smaller peak angular acceleration than the normal-

weight group for the knee and elbow joints (Table 4.6 and Figure 4.9). 
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<Obesity Level impacts on movement technique indexes> 

• The obese group had a smaller mean postural index value than the normal-

weight group (Table 4.7). 

• For JCVx, mean absolute PC values for the ankle and knee joints were smaller 

for the obese group than the normal-weight group; on the other hand, mean 

absolute PC values for the shoulder and elbow joints were larger for the obese 

group than the normal-weight group (Table 4.8 and Figure 4.11). 

• For JCVy, mean absolute PC values for the ankle and knee joints were smaller 

for the obese group than the normal-weight group; on the other hand, mean 

absolute PC values for the spine and elbow joints were larger for the obese group 

than the normal-weight group (Table 4.9 and Figure 4.12). 

<Task Condition effects & interaction effects> 

• Task Condition was found to be significant for many of the dependent variables 

(Table 4.3-4.9, Figure 4.6-4.9, and Figures 4.11-4.12).  

• Some significant Obesity Level × Task Condition interaction effects were found 

(Table 4.3-4.9, Figure 4.10, and Figures 4.13-4.15). 

The relatively slow lifting movements in the obese group (Table 4.3, Tables 4.5 

and 4.6, Figure 4.6, and Figures 4.8 and 4.9) could be attributed to difficulties in 
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shifting the body center of mass (COM) into the base of support (BOS) to maintain 

postural balance. Obesity is associated with increased postural sway amplitude [70], 

[112], [113], and the increased postural sway could reduce the postural stability by 

reducing the distance between the boundary of the BOS and the COM [114]. In 

addition, obese participants were expected to require the larger ankle plantar flexion 

moment to avoid loss of stability under postural perturbation [115].  

Moreover, the inverted pendulum model with foot segment [116] could simulate 

the feasible region of the body COM to maintain the balance under physical constraints 

such as ankle strength, foot geometry, and contact force. Maktouf et al. [117] showed 

that the maximum voluntary force in ankle dorsal/plantar flexion was not significantly 

different between the obese and normal-weight groups. For the inverted pendulum 

model [116] with the ankle strength condition [117], it could be expected that the 

feasible region of the COM of the obese participant would be narrower than that of 

the normal-weight participant. Therefore, the slower movements of the obese 

participants could be a lifting technique to compensate for the reduction of stability. 

Also, it has been consistently observed that the obese participants performed the tasks 

slowly in manual material handling [118] and seated foot reaches [37]. 

The muscle force-velocity relationship might be associated with the slower 

movements in the obese participants. The contraction of the muscle is driven by the 

sliding of actin and myosin filaments [119], and the force generated by the muscle 
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depends on the number of actin and myosin cross-bridges [120]. As the actin and myosin 

slide over each other slowly, both the muscle’s ability to form cross-bridges and the 

muscle force-generating capacity increase [120]. Since the obese participant with heavier 

body mass required greater muscle forces to lift a box, they might select slower lifting 

movements, which are advantageous in terms of muscle force generation. 

The slow movements of the obese group might also be associated with slowed 

information processing and motor control due to obesity-related cognitive dysfunction. 

Several experimental studies support that obesity is associated with deterioration of 

gross motor skill performance such as upper-limb coordination and difficulty with 

perceptual-motor coordination [121]–[123]. Additionally, functional magnetic resonance 

imaging (fMRI) studies were used to investigate the effects of obesity on white matter 

dysfunction in the brain [124], [125]. The disruption of white matter is associated with 

a decrease in neural transmission speed and slow information processing [124], [125], 

which is characterized by the less anisotropic orientation of the nerve fiber bundles 

measured by fMRI [125], [126]. Several studies found a negative correlation between 

BMI and the anisotropy in the white matter [123]–[125], and, therefore, obesity is 

associated with impairment of neurocognitive function, suggesting that it has the 

potential to interfere with sensory integration for motor control, resulting in the slow 

movements. 

Compared to the normal-weight participants, the obese participants showed 



 

 

96 

smaller ROEs at the joints other than the spine joints (Table 4.4 and Figure 4.7), which 

could be explained in terms of muscle strength and mechanical work. The absolute 

strength of weight-bearing muscles (e.g., quadriceps and trunk muscles) of the obese 

group generally exceeds that of the normal-weight group [34], [103], [127], [128]. 

However, the relative strength (%body mass) of the weight-bearing muscles was lower 

in the obese participant than in the normal-weight participant [36], [129]. Excursion 

angles of the joints are associated with external mechanical work in body segment 

motions. As the obese participants had heavier body segments [130]–[132] and lower 

relative muscle strengths [36], [129] than the normal-weight participants, it appears 

that lifting with smaller joint ROEs were likely chosen for the obese participants to 

reduce the mechanical work done in lifting movements. 

The peak angular acceleration of the obese group, which is significantly lower 

than that of the normal-weight group (Table 4.6 and Figure 4.9), could be explained 

by simple physics considering the increase of body mass. Acceleration of body segments 

during the dynamic task increases the loads on the musculoskeletal system [77], [133], 

[134] such as the joint force, and the load caused by the acceleration constitutes a 

significant proportion of the net load in the dynamic task [133], [134]. For obese 

participants, the load increased by the acceleration could be further adversely affected 

by their excess body mass (F=ma), and, therefore, it is possible that the obese 

participant consciously or unconsciously adopted the movement technique that reduces 

the peak angular acceleration.  
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Moreover, obesity has been associated with increases in the moment of inertia 

of body segments [130], [131] and reduction of the relative muscle strength, such as 

knee extensor strength normalized to body weight [34], [36]. These obesity-related 

physiological changes might have contributed to the decrease in the angular 

acceleration of the knee joint in obese participants (τ=Iα), and, thus, could result in 

decelerated lifting movement. 

In contrast to the other joints, Obesity Level did not have a significant effect 

on the spine kinematics (Tables 4.4-4.6 and Figures 4.7-4.9). Previous studies also have 

shown that the spine movements were not affected by box load [135] and movement 

technique [136] during manual lifting, as well as obesity [137] during trunk forward 

flexion. The studies identified that a greater trunk inclination induces an increase in 

anterior pelvic tilt and hip flexion while maintaining lumbar flexion [135], [137]. The 

degree of lumbar flexion is related to the L5/S1 moment and the risk of MSDs such as 

low back pain [135], [137]. These suggest that Obesity Level might not exacerbate the 

risk of spine injury caused by increased lumbar flexion. 

The obese participants adopted a lifting technique close to the stoop that 

extends the knee and hip at the onset of a lift (Table 4.7 and Figure 4.13). This appears 

to be due to mechanical obstruction caused by excessive fat and loss of stability when 

the obese participant tried to take the squat technique. Obesity reduces the range of 

motion (ROM) for knee flexion due to interposition of inter-segment [31], and the obese 
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participant experienced mechanical obstruction during trunk forward flexion as the 

abdomen contacts the anterior thigh [72]. If the obese participant grasps the box with 

sufficient knee flexion, the mechanical obstruction due to the abdomen-thigh contact 

makes the hip and spine flexion difficult. As the obese participant attempts the full 

squat with knee flexion, the COM deviated from the BOS in the posterior direction, 

resulting in a fall on the buttocks. Consequently, the obese participants had difficulty 

taking a full squat due to the limited ROM and postural instability, so it is more likely 

they would adopt the stoop at the onset of a lift. 

The JCV indexes characterized the lifting movements of the normal-weight 

and obese participants through the contributions of individual joints to the box 

trajectories. The JCV x values identified that the ankle and knee joints were major 

contributors to the box trajectory for both participant groups (Table 4.8 and Figure 

4.11). Also, the JCV y values revealed that the lifting motions of the two participant 

groups primarily rely on the ankle and hip joints (Table 4.9 and Figure 4.12). 

The obese group had lower contributions of the ankle and knee joints in 

horizontal (JCV x) and vertical directions (JCV y) compared to the normal-weight 

group. The elbow joint, however, showed a greater contribution in both horizontal and 

vertical directions (Tables 4.8-4.9 and Figures 4.11-4.12). The relative mass (%total 

body mass) of the hands and forearms of obese participants was smaller than that of 

normal-weight participants, but the total relative mass of the trunk, neck, and head 
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was greater [132]. Therefore, the obese participants might show an efficient movement 

technique in terms of energy expenditure by reducing the contribution of the joints 

supporting heavy upper segments, and increasing the contribution of the joints 

associated with the relatively light segments. 

The results showed that significant interaction effects between Obesity Level 

and Task Condition on postural index (Table 4.7 and Figure 4.13). The normal-weight 

group showed no significant difference in postural index by Task Condition, but the 

obese group showed a decrease in postural index in Task Condition where the horizontal 

location of the destination increased. In other words, recognizing the task goal 

influenced the selection of motor planning that determines the initial lifting posture of 

the obese participants. The lifting technique close to stoop has the following advantages: 

1) more efficient than squat in terms of energy expenditure and ventilation [138]–[140], 

2) lower quadriceps activation [141], [142], 3) less mechanical obstruction and reduced 

need for flexibility [31], and 4) reduction of the net moment of the hip joint due to 

abdomen-thigh contact [72]. Biomechanical studies indicate that with increasing 

horizontal distance of the load from the ankle, the loads such as L5/S1 compression 

force and hip moment increase [77], [143]. Therefore, the selection of the stoop 

technique in horizontally distant lifting might be associated with the alleviation of the 

loads on the obese participants.  

The interaction effects between Obesity Level and Task Condition on the ROE 
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and mean absolute angular velocity were shown in Figure 4.10. When the horizontal 

location of the destination increased, the obese group took the lifting technique close 

to the stoop (Figure 4.13), which made the ankle and knee joint angles of the obese 

participants closer to 0 degrees. This posture left little room for changes in the angle 

of the ankle and knee joints during load lifting. Reduced ROEs due to the stoop 

technique might result in the ROE of the ankle joint and angular velocities of the ankle 

and knee joints being less sensitive to Task Condition. 

The study findings would provide useful knowledge for the ergonomic design 

of the work system that accommodates obese individuals. The following design 

implications could be suggested on the basis of the current study findings. First, 

workplace layout should take into account obesity-related characteristics, such as the 

mechanical obstruction in forward reaching, so that obese workers could adopt the 

stoop lifting technique. Obese workers could be at risk of losing stability or falling if 

they are forced to use the squat technique during manual lifting. Second, the work 

system design would also consider the slow movements of obese people. In a 

manufacturing process such as an assembly line, it is imperative that obese workers are 

given sufficient time to process a work unit (e.g., standard time). Third, the results of 

this study could be utilized to design wearable equipment such as personal lift assist 

devices and military exoskeletons. Existing personal lift assist devices were mainly 

designed to assist the spine and hip joints [144]–[149]. In the light of the high 

contribution of the knee joint during manual lifting (Tables 4.8-4.9 and Figures 4.11-
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4.12), a design that includes a function to assist the knee needs to be considered.  

Some limitations of the current study are described, and future research ideas 

are provided. First, it is acknowledged that the current study did not examine the 

asymmetric task conditions, which are considered as a risk factor of WMSDs in the 

manual lifting task [77]. Motions such as axial trunk rotation in asymmetric tasks 

increase the stress on the passive connective tissues of the lumbar spine [14], [79]. Thus, 

future studies are needed to investigate the impacts of obesity on lifting movements in 

asymmetric task conditions. Second, future studies may need to examine the impact of 

body shape type on joint kinematics and lifting techniques in obese individuals. Obese 

individuals could be characterized into two types according to the distribution of 

adipose tissue; android and gynoid somatotypes, involving central/abdominal and 

peripheral fat distributions, respectively [150], [151]. The accumulation of adiposity 

tissue could be related to the mechanical obstruction between inter-segments, which 

would help to explain the large within-group variability in postural index of the obese 

group. Third, the BMI was utilized as an indicator of overall adiposity in the current 

study. Since the BMI is not an index that is directly related to body composition, 

participants could have high fat-free mass or high fat mass even if they have identical 

BMIs; yet, it would be difficult to find cases with low fat mass in severely obese 

participants. In a future study, it would be necessary to define the participant groups 

based on measures such as a fat-free mass index [152] to investigate the impacts of 

excessive fat mass on the movement techniques.  
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Chapter 5 

 

Conclusion 

 

5.3 Summary 

Working in stressful postures and movements increases the risk of work-related 

musculoskeletal disorders (WMSDs). The physical stress on a worker’s musculoskeletal 

system depends on the type of work task. In the case of sedentary work, stressful sitting 

postures for prolonged durations could increase the load on soft connective tissues such 

as muscles and ligaments, resulting in the incidence of WMSDs. Therefore, to reduce 

the WMSDs, it is necessary to monitor a worker’s sitting posture and additionally 

provide ergonomic interventions. When the worker performs a task that involves 

dynamic movements, such as manual lifting, the worker’s own body mass affects the 

physical stress of the manual task. In the global prevalence of obesity in the workforce, 

an increase in the body weight of the workers could adversely affect the musculoskeletal 

system during the manual lifting task. Therefore, obesity could be associated with the 

development of WMSDs, and the impacts of obesity on workers’ movement during 

manual lifting need to be examined. 

Therefore, the purpose of this study was to: 1) develop a sensor-embedded 

posture classification system that is capable of classifying an instantaneous sitting 
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posture as one of the posture categories discussed in the ergonomics literature while 

not suffering from the limitations of the previous system, and, 2) identify the impacts 

of severe obesity on joint kinematics and movement technique during manual lifting 

under various task conditions. To accomplish the research objectives, two major studies 

were conducted.  

In the study on the posture classification system, a novel sensor-embedded 

smart chair system was developed to monitor and classify a worker’s sitting postures 

in real time. The smart chair system was a mixed sensor system utilizing six pressure 

sensors and six infrared reflective distance sensors in combination. The pressure sensors 

were embedded in the seat cushion to gather seat cushion pressure distribution data. 

The distance sensors were placed in the seatback to measure seatback-trunk distances 

at different locations in the frontal plane. The use of the seatback distance sensors 

represented a unique design feature, which distinguished the mixed sensor system from 

the previous posture monitoring systems. Employing a k-Nearest Neighbor algorithm, 

the mixed sensor system classified an instantaneous posture as one of posture categories 

determined based on an analysis of the ergonomics literature on sitting postures and 

sitting-related musculoskeletal problems. The mixed sensor system was evaluated in 

posture classification performance in comparison with two benchmark systems that 

utilized only a single type of sensors. The purpose of the comparisons was to determine 

the utility of the design combining seat cushion pressure sensors and seatback distance 

sensors. The mixed sensor system yielded significantly superior classification 
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performance than the two benchmark systems. The mixed sensor system is low-cost 

utilizing only a small number of sensors; yet, it accomplishes accurate classification of 

postures relevant to the ergonomic analyses of seated work tasks. The mixed sensor 

system could be utilized for various applications including the development of a real-

time posture feedback system for preventing sitting-related musculoskeletal disorders. 

In the study on the manual lifting task, optical motion capture was conducted 

to examine differences in joint kinematics and movement technique between severely 

obese and non-obese groups. A total of thirty-five subjects without a history of WMSDs 

participated in the experiment. The kinematic variables based on joint angles were 

obtained to represent the movement of individual joints. The two indexes including 

postural index and joint contribution vectors were utilized to characterize the lifting 

movement techniques. Two participant groups were statistically compared in kinematic 

variables and movement technique indexes. The severely obese and non-obese groups 

show significant differences in most joint kinematics of the ankle, knee, hip, spine, 

shoulder, and elbow. There were also significant differences between the groups in the 

movement technique index, which represents a motion in terms of the relative 

contribution of an individual joint degree of freedom to the box trajectory in a manual 

lifting task. Overall, the severely obese group adopted the back lifting technique (stoop) 

rather than the leg lifting technique (squat), and showed less joint range of excursion 

and slow movements compared to the non-obese group.  
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5.4 Implications 

The mixed sensor system presented in this study may have various applications. The 

mixed sensor system could be combined with a real-time feedback/warning system to 

help the users adjust their postures and thereby contribute to reducing the risk of 

WMSDs. Another possible application of the mixed sensor system currently under our 

consideration is estimating the seated worker’s mental workload from conducting a 

cognitive task on the basis of real-time posture measurements. Such mental workload 

estimation could serve as a basis for optimizing job scheduling. 

The findings in the manual lifting study would provide useful knowledge for 

the ergonomic design of the work system that accommodates obese individuals. The 

following design implications could be suggested on the basis of the current study 

findings. First, workplace layout should take into account obesity-related characteristics, 

such as the mechanical obstruction in forward reaching, so that obese workers could 

adopt the stoop lifting technique. Obese workers could be at risk of losing stability or 

falling if they are forced to use the squat technique during manual lifting. Second, the 

work system design would also consider the slow movements of obese people. In a 

manufacturing process such as an assembly line, it is imperative that obese workers are 

given sufficient time to process a work unit (e.g., standard time). Third, the results of 

this study could be utilized to design wearable equipment such as personal lift assist 

devices and military exoskeletons. Existing personal lift assist devices were mainly 
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designed to assist the spine and hip joints [144]–[149]. In the light of the high 

contribution of the knee joint during manual lifting (Tables 4.8-4.9 and Figures 4.11-

4.12), a design that includes a function to assist the knee needs to be considered.  

 

5.5 Limitations and Future Works 

Some limitations of the current study are described here along with future research 

ideas. In the study on the posture classification system, further research may be 

conducted to improve the current mixed sensor system. It is expected that posture 

classification accuracy is affected by the locations of the pressure and distance sensors 

[50]. By exploring different sensor placement possibilities, it may be possible to identify 

new designs that achieve equivalent or enhanced performance with a smaller number 

of sensors. Also, a future study is warranted to compare the mixed sensor system of 

the current study against smart chair systems that employ the same number of sensors 

of a single type, that is, a pressure sensors only system with 12 pressure sensors and a 

distance sensors only system with 12 distance sensors. Such a study may provide 

additional information regarding the benefits of combining different types of sensors. 

In the study on the manual lifting, some limitations and future research ideas 

are provided. First, it is acknowledged that the current study did not examine the 

asymmetric task conditions, which are considered as a risk factor of WMSDs in the 

manual lifting task [77]. Motions such as axial trunk rotation in asymmetric tasks 
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increase the stress on the passive connective tissues of the lumbar spine [14], [79]. Thus, 

future studies are needed to investigate the impacts of obesity on lifting movements in 

asymmetric task conditions. Second, future studies may need to examine the impact of 

body shape type on joint kinematics and lifting techniques in obese individuals. Obese 

individuals could be characterized into two types according to the distribution of 

adipose tissue; android and gynoid somatotypes, involving central/abdominal and 

peripheral fat distributions, respectively [150], [151]. The accumulation of adiposity 

tissue could be related to the mechanical obstruction between inter-segments, which 

would help to explain the large within-group variability in postural index of the obese 

group. Third, the BMI was utilized as an indicator of overall adiposity in the current 

study. Since the BMI is not an index that is directly related to body composition, 

participants could have high fat-free mass or high fat mass even if they have identical 

BMIs; yet, it would be difficult to find cases with low fat mass in severely obese 

participants. In a future study, it would be necessary to define the participant groups 

based on measures such as a fat-free mass index [152] to investigate the impacts of 

excessive fat mass on the movement techniques.  
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국 문 초 록 

 

육체적 부하가 큰 자세 및 동작으로 작업을 수행하는 것은 작업자의 근골격계 질환의 

위험성을 증가시킨다. 작업자의 근골격계에 가해지는 육체적 부하의 양상은 수행하는 

작업의 종류에 따라 달라진다. 장시간 앉은 자세로 작업을 수행하는 경우, 작업자의 

근육, 인대와 같은 연조직에 과도한 부하가 발생하여 목, 허리 등 다양한 신체 

부위에서 근골격계 질환의 위험성이 증가할 수 있다. 따라서, 착좌 시 발생할 수 있는 

근골격계 질환의 위험성을 저감하기 위해서는 작업자의 착좌 자세를 실시간으로 

모니터링하고, 이에 대한 피드백을 제공하는 것이 필요하다. 들기 작업과 같은 동적인 

움직임이 포함된 작업을 수행하는 경우, 작업자의 체중이 신체적 부하에 영향을 미칠 

수 있다. 전세계적인 비만의 유행으로 인해 많은 작업자들이 체중 증가를 겪고 있고, 

들기 작업과 같은 동적인 작업에서 비만은 신체적 부하에 악영향을 미칠 수 있다. 

따라서, 비만과 작업 관련 근골격계 질환의 위험성은 잠재적인 연관성을 가지고 있고, 

비만이 들기 작업에 미치는 생체역학적 영향을 논의할 필요성이 있다. 

 작업장에서의 근골격계 질환의 위험성을 저감하기 위해 다양한 연구들이 

수행되어 왔지만, 작업 시스템의 인간공학적 설계 측면에서 추가적인 연구가 

필요하다. 장시간 의자에 앉아 정적인 작업을 수행하는 작업자의 근골격계 질환을 

저감하기 위한 유망한 방법 중 하나로, 작업자의 자세를 실시간으로 모니터링하고 
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분류하는 시스템을 개발하는 것이 제안되고 있다. 이러한 시스템은 작업자가 

근골격계 질환의 위험성이 낮은 자세를 작업 시간 동안 유지하도록 돕는 데 활용될 

수 있을 것이다. 기존의 대부분의 자세 모니터링 시스템에서는 분류할 자세를 

정의하는 과정에서 인간공학적 문헌이 거의 고려되지 않았고, 사용자가 실제로 

활용하기에는 여러 한계점들이 존재하였다. 들기 작업의 경우, 체질량 지수(BMI) 40 

이상의 초고도 비만 작업자의 동작 패턴을 논의한 연구는 거의 찾아볼 수 없었다. 

또한, 다양한 들기 작업 조건 하에서 전신 관절들의 움직임을 생체역학적 측면에서 

분석한 연구는 부족한 실정이다.  

따라서, 본 연구에서의 연구 목적은 1) 다양한 센서 조합을 활용한 실시간 

착좌 자세를 분류하는 시스템을 개발하고, 2) 들기 작업 시 초고도 비만이 개별 

관절의 움직임과 들기 동작 패턴에 미치는 영향을 이해하여, 다양한 종류의 작업에서 

발생할 수 있는 근골격계 질환의 위험성을 저감하는 것이다. 연구 목적을 달성하기 

위해 다음의 두 가지 연구를 수행하였다.  

 첫번째 연구에서는 실시간으로 착좌 자세를 분류하는 스마트 의자 시스템을 

개발하였다. 스마트 의자 시스템은 각각 여섯 개의 거리 센서와 압력 센서를 

조합하여 구성되었다. 착좌 관련한 근골격계 질환에 대해 문헌 조사를 수행하였고, 

이를 바탕으로 결정된 자세들에 대해 서른 여섯 명의 데이터를 수집하였다. 스마트 

의자 시스템에서 자세를 분류하기 위해 kNN 알고리즘을 활용하였고, 성능을 
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검증하기 위해 단일 종류의 센서로 구성된 기준 모델들과 비교를 수행하였다. 분류 

성능을 비교한 결과, 센서를 조합한 스마트 의자 시스템이 가장 우수한 결과를 

보였다.   

 두번째 연구에서는 들기 작업을 수행할 때 초고도 비만이 개별 관절의 

움직임과 동작 패턴에 미치는 영향을 분석하기 위해 모션 캡쳐 실험을 수행하였다. 

들기 실험에는 근골격계 질환 이력이 없는 서른 다섯 명이 참여하였다. 수집된 

데이터를 바탕으로 주요 관절(발목, 무릎, 엉덩이, 허리, 어깨, 팔꿈치) 별 운동역학적 

변수들과, 들기 동작의 패턴을 표현하는 동작 지수들을 계산하였다. 들기 작업 조건과 

비만 수준에 따라, 대부분의 변수에서 통계적으로 유의한 차이를 보였다. 전체적으로 

비만인은 정상체중인에 비해 다리 보다 허리를 사용하여 들기 작업을 수행하였고, 

동작 수행 시 상대적으로 적은 관절 각도 변화와 느린 움직임을 보였다. 들기 

작업에서 박스의 이동에 개별 관절이 기여하는 비율도 정상체중인과 비만인은 다른 

패턴을 보였다. 

 본 연구의 결과를 활용하여 다양한 종류의 신체적 부하에 노출된 작업자들의 

근골격계 질환의 위험성을 저감할 수 있고, 궁극적으로 업무의 생산성과 개인의 

건강을 제고할 수 있을 것이다. 첫번째 연구에서 개발된 스마트 의자 시스템은 기존 

자세 분류 시스템의 단점들을 완화하였다. 개발된 시스템은 저렴한 소수의 센서만을 

활용하여 근골격계 측면에서 중요한 자세들을 높은 정확도로 분류하였다. 이러한 
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자세 분류 시스템은 작업자에게 실시간으로 자세 피드백을 제공하여, 근골격계 

질환의 위험성이 낮은 자세를 유지하는 데 활용될 수 있을 것이다. 두번째 연구의 

결과는 동적인 작업 시 초고도 비만으로 인한 잠재적인 근골격계 질환의 위험성을 

이해하는 데 활용될 수 있다. 초고도 비만인과 정상체중인 간 관절의 움직임과 

동작의 차이를 이해하여, 비만을 고려한 인간공학적 작업장 설계와 동작 

가이드라인을 제공할 수 있을 것이다. 

 

주요어: 작업 관련 근골격계 질환, 육체적 부하, 자세 분류 시스템, 착좌 자세, 들기 

작업, 비만, 관절 운동학, 동작 패턴 

학번: 2015-21150 


	Chapter 1. Introduction
	1.1  Research Background
	1.2  Research Objectives
	1.3  Dissertation Outline

	Chapter 2. Literature Review
	2.1  Work-related Musculoskeletal Disorders Among Sedentary Workers
	2.1.1  Relationship Between Sitting Postures and Musculoskeletal Disorders
	2.1.2  Systems for Monitoring and Classifying a Seated Worker's Postures

	2.2  Impacts of Obesity on Manual Works
	2.2.1  Impacts of Obesity on Work Capacity
	2.2.2  Impacts of Obesity on Joint Kinematics and Biomechanical Demands


	Chapter 3. Developing and Evaluating a Mixed Sensor Smart Chair System for Real-time Posture Classification: Combining Pressure and Distance Sensors
	3.1 Introduction
	3.2 Materials and Methods
	3.2.1 Predefined posture categories for the mixed sensor system
	3.2.2 Physical construction of the mixed sensor system
	3.2.3 Posture Classifier Design for the Mixed Sensor System
	3.2.4 Data Collection for Training and Testing the Posture Classifier of the Mixed Sensor System
	3.2.5 Comparative Evaluation of Posture Classification Performance

	3.3 Results
	3.3.1 Model Parameters and Features
	3.3.2 Posture Classification Performance

	3.4 Discussion

	Chapter 4. Severe Obesity Impacts on Joint Kinematics and Movement Technique During Manual Load Lifting 
	4.1 Introduction
	4.2 Methods
	4.2.1 Participants
	4.2.2 Experimental Task
	4.2.3 Experimental Procedure
	4.2.4 Data Processing
	4.2.5 Experimental Variables
	4.2.6 Statistical Analysis

	4.3 Results
	4.3.1 Kinematic Variables
	4.3.2 Movement Technique Indexes

	4.4 Discussion

	Chapter 5. Conclusion
	5.1 Summary 
	5.2 Implications
	5.3 Limitations and Future Directions

	Bibliography
	국문초록


<startpage>14
Chapter 1. Introduction 1
 1.1  Research Background 1
 1.2  Research Objectives 5
 1.3  Dissertation Outline 6
Chapter 2. Literature Review 8
 2.1  Work-related Musculoskeletal Disorders Among Sedentary Workers 8
  2.1.1  Relationship Between Sitting Postures and Musculoskeletal Disorders 8
  2.1.2  Systems for Monitoring and Classifying a Seated Worker's Postures 10
 2.2  Impacts of Obesity on Manual Works 22
  2.2.1  Impacts of Obesity on Work Capacity 22
  2.2.2  Impacts of Obesity on Joint Kinematics and Biomechanical Demands 24
Chapter 3. Developing and Evaluating a Mixed Sensor Smart Chair System for Real-time Posture Classification: Combining Pressure and Distance Sensors 27
 3.1 Introduction 27
 3.2 Materials and Methods 33
  3.2.1 Predefined posture categories for the mixed sensor system 33
  3.2.2 Physical construction of the mixed sensor system 36
  3.2.3 Posture Classifier Design for the Mixed Sensor System 38
  3.2.4 Data Collection for Training and Testing the Posture Classifier of the Mixed Sensor System 41
  3.2.5 Comparative Evaluation of Posture Classification Performance 43
 3.3 Results 46
  3.3.1 Model Parameters and Features 46
  3.3.2 Posture Classification Performance 47
 3.4 Discussion 50
Chapter 4. Severe Obesity Impacts on Joint Kinematics and Movement Technique During Manual Load Lifting  57
 4.1 Introduction 57
 4.2 Methods 61
  4.2.1 Participants 61
  4.2.2 Experimental Task 61
  4.2.3 Experimental Procedure 64
  4.2.4 Data Processing 65
  4.2.5 Experimental Variables 67
  4.2.6 Statistical Analysis 71
 4.3 Results 72
  4.3.1 Kinematic Variables 72
  4.3.2 Movement Technique Indexes 83
 4.4 Discussion 92
Chapter 5. Conclusion 102
 5.1 Summary  102
 5.2 Implications 105
 5.3 Limitations and Future Directions 106
Bibliography 108
국문초록 133
</body>

