684 research outputs found

    Evolvability signatures of generative encodings: beyond standard performance benchmarks

    Full text link
    Evolutionary robotics is a promising approach to autonomously synthesize machines with abilities that resemble those of animals, but the field suffers from a lack of strong foundations. In particular, evolutionary systems are currently assessed solely by the fitness score their evolved artifacts can achieve for a specific task, whereas such fitness-based comparisons provide limited insights about how the same system would evaluate on different tasks, and its adaptive capabilities to respond to changes in fitness (e.g., from damages to the machine, or in new situations). To counter these limitations, we introduce the concept of "evolvability signatures", which picture the post-mutation statistical distribution of both behavior diversity (how different are the robot behaviors after a mutation?) and fitness values (how different is the fitness after a mutation?). We tested the relevance of this concept by evolving controllers for hexapod robot locomotion using five different genotype-to-phenotype mappings (direct encoding, generative encoding of open-loop and closed-loop central pattern generators, generative encoding of neural networks, and single-unit pattern generators (SUPG)). We observed a predictive relationship between the evolvability signature of each encoding and the number of generations required by hexapods to adapt from incurred damages. Our study also reveals that, across the five investigated encodings, the SUPG scheme achieved the best evolvability signature, and was always foremost in recovering an effective gait following robot damages. Overall, our evolvability signatures neatly complement existing task-performance benchmarks, and pave the way for stronger foundations for research in evolutionary robotics.Comment: 24 pages with 12 figures in the main text, and 4 supplementary figures. Accepted at Information Sciences journal (in press). Supplemental videos are available online at, see http://goo.gl/uyY1R

    Fast Damage Recovery in Robotics with the T-Resilience Algorithm

    Full text link
    Damage recovery is critical for autonomous robots that need to operate for a long time without assistance. Most current methods are complex and costly because they require anticipating each potential damage in order to have a contingency plan ready. As an alternative, we introduce the T-resilience algorithm, a new algorithm that allows robots to quickly and autonomously discover compensatory behaviors in unanticipated situations. This algorithm equips the robot with a self-model and discovers new behaviors by learning to avoid those that perform differently in the self-model and in reality. Our algorithm thus does not identify the damaged parts but it implicitly searches for efficient behaviors that do not use them. We evaluate the T-Resilience algorithm on a hexapod robot that needs to adapt to leg removal, broken legs and motor failures; we compare it to stochastic local search, policy gradient and the self-modeling algorithm proposed by Bongard et al. The behavior of the robot is assessed on-board thanks to a RGB-D sensor and a SLAM algorithm. Using only 25 tests on the robot and an overall running time of 20 minutes, T-Resilience consistently leads to substantially better results than the other approaches

    Interactive Co-Design of Form and Function for Legged Robots using the Adjoint Method

    Get PDF
    Our goal is to make robotics more accessible to casual users by reducing the domain knowledge required in designing and building robots. Towards this goal, we present an interactive computational design system that enables users to design legged robots with desired morphologies and behaviors by specifying higher level descriptions. The core of our method is a design optimization technique that reasons about the structure, and motion of a robot in coupled manner in order to achieve user-specified robot behavior, and performance. We are inspired by the recent works that also aim to jointly optimize robot's form and function. However, through efficient computation of necessary design changes, our approach enables us to keep user-in-the-loop for interactive applications. We evaluate our system in simulation by automatically improving robot designs for multiple scenarios. Starting with initial user designs that are physically infeasible or inadequate to perform the user-desired task, we show optimized designs that achieve user-specifications, all while ensuring an interactive design flow.Comment: 8 pages; added link of the accompanying vide

    Parallel manipulators: practical applications and kinematic design criteria. Towards the modular reconfigurable robots

    Get PDF
    Post-PrintModern robotic manipulators play an essential role in industry, developing several tasks in an easy way, enhancing the accuracy of the final product and reducing the executing time. Also they can be found in other fields as aerospace industry, several medical applications, gaming industry, and so on. In particular, the parallel manipulators have acquired a great relevance in the last years. Indeed, many research activities and projects deal with the study and develop-ment of this type of robots. Nevertheless, usually, a bilateral communication between industry and research does not exist, even among the different existing research areas. This causes a lack of knowledge regarding works that have been carried out, the ones that are under devel-opment and the possible future investigations. Hence, once a specific field of knowledge has acquired a certain level of maturity, it is convenient to reflect its current state of the art. In this sense, the authors of this paper present a review of the different fields in which parallel ma-nipulators have a significant participation, and also the most active research topics in the anal-ysis and design of these robots. Besides, several contributions of the authors to this field are cited.The authors wish to acknowledge the financial support received from the Spanish Government through the "Ministerio de Economía y Competitividad" (Project DPI2015-67626-P (MINECO/FEDER, UE)), the financial support from the Uni-versity of the Basque Country (UPV/EHU) under the program UFI 11/29 and the support to the research group, through the project with ref. IT949-16, given by the "Departamento de Educación, Política Lingüística y Cultura" of the Regional Government of the Basque Country

    Novel Integrated System Architecture for an Autonomous Jumping Micro-Robot

    Get PDF
    As the capability and complexity of robotic platforms continue to evolve from the macro to micro-scale, innovation of such systems is driven by the notion that a robot must be able to sense, think, and act [1]. The traditional architecture of a robotic platform consists of a structural layer upon which, actuators, controls, power, and communication modules are integrated for optimal system performance. The structural layer, for many micro-scale platforms, has commonly been implemented using a silicon die, thus leading to robotic platforms referred to as "walking chips" [2]. In this thesis, the first-ever jumping microrobotic platform is demonstrated using a hybrid integration approach to assemble on-board sensing and power directly onto a polymer chassis. The microrobot detects a change in light intensity and ignites 0.21mg of integrated nanoporous energetic silicon, resulting in 246µJ of kinetic energy and a vertical jump height of 8cm

    Analytical Workspace, Kinematics, and Foot Force Based Stability of Hexapod Walking Robots

    Get PDF
    Many environments are inaccessible or hazardous for humans. Remaining debris after earthquake and fire, ship hulls, bridge installations, and oil rigs are some examples. For these environments, major effort is being placed into replacing humans with robots for manipulation purposes such as search and rescue, inspection, repair, and maintenance. Mobility, manipulability, and stability are the basic needs for a robot to traverse, maneuver, and manipulate in such irregular and highly obstructed terrain. Hexapod walking robots are as a salient solution because of their extra degrees of mobility, compared to mobile wheeled robots. However, it is essential for any multi-legged walking robot to maintain its stability over the terrain or under external stimuli. For manipulation purposes, the robot must also have a sufficient workspace to satisfy the required manipulability. Therefore, analysis of both workspace and stability becomes very important. An accurate and concise inverse kinematic solution for multi-legged robots is developed and validated. The closed-form solution of lateral and spatial reachable workspace of axially symmetric hexapod walking robots are derived and validated through simulation which aid in the design and optimization of the robot parameters and workspace. To control the stability of the robot, a novel stability margin based on the normal contact forces of the robot is developed and then modified to account for the geometrical and physical attributes of the robot. The margin and its modified version are validated by comparison with a widely known stability criterion through simulated and physical experiments. A control scheme is developed to integrate the workspace and stability of multi-legged walking robots resulting in a bio-inspired reactive control strategy which is validated experimentally

    Design Issues for Hexapod Walking Robots

    Get PDF
    Hexapod walking robots have attracted considerable attention for several decades. Many studies have been carried out in research centers, universities and industries. However, only in the recent past have efficient walking machines been conceived, designed and built with performances that can be suitable for practical applications. This paper gives an overview of the state of the art on hexapod walking robots by referring both to the early design solutions and the most recent achievements. Careful attention is given to the main design issues and constraints that influence the technical feasibility and operation performance. A design procedure is outlined in order to systematically design a hexapod walking robot. In particular, the proposed design procedure takes into account the main features, such as mechanical structure and leg configuration, actuating and driving systems, payload, motion conditions, and walking gait. A case study is described in order to show the effectiveness and feasibility of the proposed design procedure

    Force Sensors in Hexapod Locomotion

    Get PDF

    Realization and Lateral Stable Workspace Analysis of an Axially Symmetric Scalable Hexapod Robot

    Get PDF
    The maintenance and inspection of societal structures and equipment such as skyscrapers, bridges, and ship hulls are important to maintaining a safe lifestyle. Improper maintanance and delayed inspection can lead to catastrophic failure. In lieu of placing humans in potential harm, mobile robotic machining systems can be used to enable remote repair and maintenance within constrictive, hazardous, and inaccessible environments. Due to their intrinsic high mobility and 6-DOF control, hexapod walking robots are a salient solution to mobile machining. However, the static structure of traditional hexapod robots can be rather limiting when attempting to traverse over irregular terrain or manipulating objects. This research realizes a new scalable hexapod robot and analyzes the lateral stable workspace of the robot under different external loading conditions. The scalable design allows the robot to extend its legs which enhances the workspace and improves stability while manuevering through constrictive and irregular terrain. The design incorporates two additional prismatic joints into the legs of the traditional hexapod robot design providing a compact, rigid, and efficient design. The electronic printed circuit boards were designed and assembled in-house. A distributed control architecture was implemented to off-load low-level leg control to dedicated leg controllers. An analysis on the lateral stable workspace of the scalable hexapod robot under different external loading conditions is presented. A dynamic stable workspace criterion is derived. The stable workspace criterion provides a metric for comparing stable workspaces between hexapod robots with different configurations. Multiple simulations and physical experiments were conducted to demonstrate the advantages of a scalability in hexapod designs
    corecore