108 research outputs found

    Module-per-Object: a Human-Driven Methodology for C++-based High-Level Synthesis Design

    Full text link
    High-Level Synthesis (HLS) brings FPGAs to audiences previously unfamiliar to hardware design. However, achieving the highest Quality-of-Results (QoR) with HLS is still unattainable for most programmers. This requires detailed knowledge of FPGA architecture and hardware design in order to produce FPGA-friendly codes. Moreover, these codes are normally in conflict with best coding practices, which favor code reuse, modularity, and conciseness. To overcome these limitations, we propose Module-per-Object (MpO), a human-driven HLS design methodology intended for both hardware designers and software developers with limited FPGA expertise. MpO exploits modern C++ to raise the abstraction level while improving QoR, code readability and modularity. To guide HLS designers, we present the five characteristics of MpO classes. Each characteristic exploits the power of HLS-supported modern C++ features to build C++-based hardware modules. These characteristics lead to high-quality software descriptions and efficient hardware generation. We also present a use case of MpO, where we use C++ as the intermediate language for FPGA-targeted code generation from P4, a packet processing domain specific language. The MpO methodology is evaluated using three design experiments: a packet parser, a flow-based traffic manager, and a digital up-converter. Based on experiments, we show that MpO can be comparable to hand-written VHDL code while keeping a high abstraction level, human-readable coding style and modularity. Compared to traditional C-based HLS design, MpO leads to more efficient circuit generation, both in terms of performance and resource utilization. Also, the MpO approach notably improves software quality, augmenting parametrization while eliminating the incidence of code duplication.Comment: 9 pages. Paper accepted for publication at The 27th IEEE International Symposium on Field-Programmable Custom Computing Machines, San Diego CA, April 28 - May 1, 201

    Towards hardware as a reconfigurable, elastic, and specialized service

    Get PDF
    As modern Data Center workloads become increasingly complex, constrained, and critical, mainstream CPU-centric computing has had ever more difficulty in keeping pace. Future data centers are moving towards a more fluid and heterogeneous model, with computation and communication no longer localized to commodity CPUs and routers. Next generation data-centric Data Centers will compute everywhere, whether data is stationary (e.g. in memory) or on the move (e.g. in network). While deploying FPGAs in NICS, as co-processors, in the router, and in Bump-in-the-Wire configurations is a step towards implementing the data-centric model, it is only part of the overall solution. The other part is actually leveraging this reconfigurable hardware. For this to happen, two problems must be addressed: code generation and deployment generation. By code generation we mean transforming abstract representations of an algorithm into equivalent hardware. Deployment generation refers to the runtime support needed to facilitate the execution of this hardware on an FPGA. Efforts at creating supporting tools in these two areas have thus far provided limited benefits. This is because the efforts are limited in one or more of the following ways: They i) do not provide fundamental solutions to a number of challenges, which makes them useful only to a limited group of (mostly) hardware developers, ii) are constrained in their scope, or iii) are ad hoc, i.e., specific to a single usage context, FPGA vendor, or Data Center configuration. Moreover, efforts in these areas have largely been mutually exclusive, which results in incompatibility across development layers; this requires wrappers to be designed to make interfaces compatible. As a result there is significant complexity and effort required to code and deploy efficient custom hardware for FPGAs; effort that may be orders-of-magnitude greater than for analogous software environments. The goal of this dissertation is to create a framework that enables reconfigurable logic in Data Centers to be targeted with the same level of effort as for a single CPU core. The underlying mechanism to this is a framework, which we refer to as Hardware as a Reconfigurable, Elastic and Specialized Service, or HaaRNESS. In this dissertation, we address two of the core challenges of HaaRNESS: reducing the complexity of code generation by constraining High Level Synthesis (HLS) toolflows, and replacing ad hoc models of deployment generation by generalizing and formalizing what is needed for a hardware Operating System. These parts are unified by the back-end of HLS toolflows which link generated compute pipelines with the operating system, and provide appropriate APIs, wrappers, and software runtimes. The contributions of this dissertation are the following: i) an empirically guided set of systematic transformations for generating high quality HLS code; ii) a framework for instrumenting HLS compiler to identify and remove optimization blockers; iii) a framework for RTL simulation and IP generation of HLS kernels for rapid turnaround; and iv) a framework for generalization and formalization of hardware operating systems to address the {\it ad hoc}'ness of existing deployment generation and ensure uniform structure and APIs

    Fully Programming the Data Plane: A Hardware/Software Approach

    Get PDF
    Les réseaux définis par logiciel — en anglais Software-Defined Networking (SDN) — sont apparus ces dernières années comme un nouveau paradigme de réseau. SDN introduit une séparation entre les plans de gestion, de contrôle et de données, permettant à ceux-ci d’évoluer de manière indépendante, rompant ainsi avec la rigidité des réseaux traditionnels. En particulier, dans le plan de données, les avancées récentes ont porté sur la définition des langages de traitement de paquets, tel que P4, et sur la définition d’architectures de commutateurs programmables, par exemple la Protocol Independent Switch Architecture (PISA). Dans cette thèse, nous nous intéressons a l’architecture PISA et évaluons comment exploiter les FPGA comme plateforme de traitement efficace de paquets. Cette problématique est étudiée a trois niveaux d’abstraction : microarchitectural, programmation et architectural. Au niveau microarchitectural, nous avons proposé une architecture efficace d’un analyseur d’entêtes de paquets pour PISA. L’analyseur de paquets utilise une architecture pipelinée avec propagation en avant — en anglais feed-forward. La complexité de l’architecture est réduite par rapport à l’état de l’art grâce a l’utilisation d’optimisations algorithmiques. Finalement, l’architecture est générée par un compilateur P4 vers C++, combiné à un outil de synthèse de haut niveau. La solution proposée atteint un débit de 100 Gb/s avec une latence comparable à celle d’analyseurs d’entêtes de paquets écrits à la main. Au niveau de la programmation, nous avons proposé une nouvelle méthodologie de conception de synthèse de haut niveau visant à améliorer conjointement la qualité logicielle et matérielle. Nous exploitons les fonctionnalités du C++ moderne pour améliorer à la fois la modularité et la lisibilité du code, tout en conservant (ou améliorant) les résultats du matériel généré. Des exemples de conception utilisant notre méthodologie, incluant pour l’analyseur d’entête de paquets, ont été rendus publics.----------ABSTRACT: Software-Defined Networking (SDN) has emerged in recent years as a new network paradigm to de-ossify communication networks. Indeed, by offering a clear separation of network concerns between the management, control, and data planes, SDN allows each of these planes to evolve independently, breaking the rigidity of traditional networks. However, while well spread in the control and management planes, this de-ossification has only recently reached the data plane with the advent of packet processing languages, e.g. P4, and novel programmable switch architectures, e.g. Protocol Independent Switch Architecture (PISA). In this work, we focus on leveraging the PISA architecture by mainly exploiting the FPGA capabilities for efficient packet processing. In this way, we address this issue at different abstraction levels: i) microarchitectural; ii) programming; and, iii) architectural. At the microarchitectural level, we have proposed an efficient FPGA-based packet parser architecture, which is a major PISA’s component. The proposed packet parser follows a feedforward pipeline architecture in which the internal microarchitectural has been meticulously optimized for FPGA implementation. The architecture is automatically generated by a P4- to-C++ compiler after several rounds of graph optimizations. The proposed solution achieves 100 Gb/s line rate with latency comparable to hand-written packet parsers. The throughput scales from 10 Gb/s to 160 Gb/s with moderate increase in resource consumption. Both the compiler and the packet parser codebase have been open-sourced to permit reproducibility. At the programming level, we have proposed a novel High-Level Synthesis (HLS) design methodology aiming at improving software and hardware quality. We have employed this novel methodology when designing the packet parser. In our work, we have exploited features of modern C++ that improves at the same time code modularity and readability while keeping (or improving) the results of the generated hardware. Design examples using our methodology have been publicly released

    A Modular Platform for Adaptive Heterogeneous Many-Core Architectures

    Get PDF
    Multi-/many-core heterogeneous architectures are shaping current and upcoming generations of compute-centric platforms which are widely used starting from mobile and wearable devices to high-performance cloud computing servers. Heterogeneous many-core architectures sought to achieve an order of magnitude higher energy efficiency as well as computing performance scaling by replacing homogeneous and power-hungry general-purpose processors with multiple heterogeneous compute units supporting multiple core types and domain-specific accelerators. Drifting from homogeneous architectures to complex heterogeneous systems is heavily adopted by chip designers and the silicon industry for more than a decade. Recent silicon chips are based on a heterogeneous SoC which combines a scalable number of heterogeneous processing units from different types (e.g. CPU, GPU, custom accelerator). This shifting in computing paradigm is associated with several system-level design challenges related to the integration and communication between a highly scalable number of heterogeneous compute units as well as SoC peripherals and storage units. Moreover, the increasing design complexities make the production of heterogeneous SoC chips a monopoly for only big market players due to the increasing development and design costs. Accordingly, recent initiatives towards agile hardware development open-source tools and microarchitecture aim to democratize silicon chip production for academic and commercial usage. Agile hardware development aims to reduce development costs by providing an ecosystem for open-source hardware microarchitectures and hardware design processes. Therefore, heterogeneous many-core development and customization will be relatively less complex and less time-consuming than conventional design process methods. In order to provide a modular and agile many-core development approach, this dissertation proposes a development platform for heterogeneous and self-adaptive many-core architectures consisting of a scalable number of heterogeneous tiles that maintain design regularity features while supporting heterogeneity. The proposed platform hides the integration complexities by supporting modular tile architectures for general-purpose processing cores supporting multi-instruction set architectures (multi-ISAs) and custom hardware accelerators. By leveraging field-programmable-gate-arrays (FPGAs), the self-adaptive feature of the many-core platform can be achieved by using dynamic and partial reconfiguration (DPR) techniques. This dissertation realizes the proposed modular and adaptive heterogeneous many-core platform through three main contributions. The first contribution proposes and realizes a many-core architecture for heterogeneous ISAs. It provides a modular and reusable tilebased architecture for several heterogeneous ISAs based on open-source RISC-V ISA. The modular tile-based architecture features a configurable number of processing cores with different RISC-V ISAs and different memory hierarchies. To increase the level of heterogeneity to support the integration of custom hardware accelerators, a novel hybrid memory/accelerator tile architecture is developed and realized as the second contribution. The hybrid tile is a modular and reusable tile that can be configured at run-time to operate as a scratchpad shared memory between compute tiles or as an accelerator tile hosting a local hardware accelerator logic. The hybrid tile is designed and implemented to be seamlessly integrated into the proposed tile-based platform. The third contribution deals with the self-adaptation features by providing a reconfiguration management approach to internally control the DPR process through processing cores (RISC-V based). The internal reconfiguration process relies on a novel DPR controller targeting FPGA design flow for RISC-V-based SoC to change the types and functionalities of compute tiles at run-time

    Software tools for the rapid development of signal processing and communications systems on configurable platforms

    Get PDF
    Programmers and engineers in the domains of high performance computing (HPC) and electronic system design have a shared goal: to define a structure for coordination and communication between nodes in a highly parallel network of processing tasks. Practitioners in both of these fields have recently encountered additional constraints that motivate the use of multiple types of processing device in a hybrid or heterogeneous platform, but constructing a working "program" to be executed on such an architecture is very time-consuming with current domain-specific design methodologies. In the field of HPC, research has proposed solutions involving the use of alternative computational devices such as FPGAs (field-programmable gate arrays), since these devices can exhibit much greater performance per unit of power consumption. The appeal of integrating these devices into traditional microprocessor-based systems is mitigated, however, by the greater difficulty in constructing a system for the resulting hybrid platform. In the field of electronic system design, a similar problem of integration exists. Many of the highly parallel FPGA-based systems that Xilinx and its customers produce for applications such as telecommunications and video processing require the additional use of one or more microprocessors, but coordinating the interactions between existing FPGA cores and software running on the microprocessors is difficult. The aim of my project is to improve the design flow for hybrid systems by proposing, firstly, an abstract representation of these systems and their components which captures in metadata their different models of computation and communication; secondly, novel design checking, exploration and optimisation techniques based around this metadata; and finally, a novel design methodology in which component and system metadata is used to generate software simulation models. The effectiveness of this approach will be evaluated through the implementation of two physical-layer telecommunications system models that meet the requirements of the 3GPP "LTE" standard, which is commercially relevant to Xilinx and many other organisations

    MaxEVA: Maximizing the Efficiency of Matrix Multiplication on Versal AI Engine

    Full text link
    The increasing computational and memory requirements of Deep Learning (DL) workloads has led to outstanding innovations in hardware architectures. An archetype of such architectures is the novel Versal AI Engine (AIE) by AMD/Xilinx. The AIE comprises multiple programmable processors optimized for vector-based algorithms. An AIE array consisting of 400 processor cores, operating at 1.25 GHz is able to deliver a peak throughput of 8 TFLOPs for 32-bit floating-point (fp32), and 128 TOPs for 8-bit integer (int8) precision. In this work, we propose MaxEVA: a novel framework to efficiently map Matrix Multiplication (MatMul) workloads on Versal AIE devices. Our framework maximizes the performance and energy efficiency of MatMul applications by efficiently exploiting features of the AIE architecture and resolving performance bottlenecks from multiple angles. When demonstrating on the VC1902 device of the VCK190 board, MaxEVA accomplishes up to 5.44 TFLOPs and 77.01 TOPs throughput for fp32 and int8 precisions, respectively. In terms of energy efficiency, MaxEVA attains up to 124.16 GFLOPs/W for fp32, and 1.16 TOPs/W for int8. Our proposed method substantially outperforms the state-of-the-art approach by exhibiting up to 2.19x throughput gain and 20.4% higher energy efficiency. The MaxEVA framework provides notable insights to fill the knowledge gap in effectively designing MatMul-based DL workloads on the new Versal AIE devices.Comment: Accepted as full paper at FPT 202

    Improving low latency applications for reconfigurable devices

    Get PDF
    This thesis seeks to improve low latency application performance via architectural improvements in reconfigurable devices. This is achieved by improving resource utilisation and access, and by exploiting the different environments within which reconfigurable devices are deployed. Our first contribution leverages devices deployed at the network level to enable the low latency processing of financial market data feeds. Financial exchanges transmit messages via two identical data feeds to reduce the chance of message loss. We present an approach to arbitrate these redundant feeds at the network level using a Field-Programmable Gate Array (FPGA). With support for any messaging protocol, we evaluate our design using the NASDAQ TotalView-ITCH, OPRA, and ARCA data feed protocols, and provide two simultaneous outputs: one prioritising low latency, and one prioritising high reliability with three dynamically configurable windowing methods. Our second contribution is a new ring-based architecture for low latency, parallel access to FPGA memory. Traditional FPGA memory is formed by grouping block memories (BRAMs) together and accessing them as a single device. Our architecture accesses these BRAMs independently and in parallel. Targeting memory-based computing, which stores pre-computed function results in memory, we benefit low latency applications that rely on: highly-complex functions; iterative computation; or many parallel accesses to a shared resource. We assess square root, power, trigonometric, and hyperbolic functions within the FPGA, and provide a tool to convert Python functions to our new architecture. Our third contribution extends the ring-based architecture to support any FPGA processing element. We unify E heterogeneous processing elements within compute pools, with each element implementing the same function, and the pool serving D parallel function calls. Our implementation-agnostic approach supports processing elements with different latencies, implementations, and pipeline lengths, as well as non-deterministic latencies. Compute pools evenly balance access to processing elements across the entire application, and are evaluated by implementing eight different neural network activation functions within an FPGA.Open Acces
    • …
    corecore