UNIVERSITAT A
DRESDEN Al

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

A Modular Platform for Adaptive
Heterogeneous Many-Core
Architectures

Ahmed Kamaleldin Atef
Born on: 20th May 1990 in Cairo, Egypt

Dissertation

to achieve the academic degree

Doktor-Ingenieur (Dr.-Ing.)

Supervisor and Examiner
Prof. Dr.-Ing. Diana Géhringer (Technische Universitat Dresden)

Co-Examiner
Prof. Dr. Ir. Dirk Stroobandt (Ghent University)

Submitted on: 12th April 2023
Defended on: 22nd June 2023

UNIVERSITAT A
DRESDEN A\A\

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Statement of authorship

| hereby certify that | have authored this document entitled A Modular Platform for Adaptive
Heterogeneous Many-Core Architectures independently and without undue assistance from
third parties. No other than the resources and references indicated in this document have
been used. | have marked both literal and accordingly adopted quotations as such. During
the preparation of this document | was only supported by the following persons:

Prof. Dr.-Ing. Diana Gohringer

Additional persons were not involved in the intellectual preparation of the present document.
| am aware that violations of this declaration may lead to subsequent withdrawal of the
academic degree.

Dresden, 12th April 2023

Ahmed Kamaleldin Atef

UNIVERSITAT A
DRESDEN A\A\

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Acknowledgements

First and foremost, | would like to express my deep gratitude to my mentor and supervisor
Prof. Dr.-Ing. Diana Gohringer for her guidance and enormous support during my PhD
journey. This dissertation would not be possible without her encouragement and advice.

I would also like to thank Prof. Dr. Ir. Dirk Stroobandt, my second examiner, for his feedback
and insights which are very helpful to finalize my dissertation. Many thanks to my Fachreferent
Prof. Dr. Akash Kumar for his feedback and advice. Many thanks also to the committee
members Prof. Dr.-Ing. Horst Schirmeier and Prof. Dr.-Ing. habil. Martin Wollschlaeger.

| would like to deeply thank the entire ADS team at Technische Universitat Dresden for the
fruitful discussions, collaborations and social activities we had together. | express my deep
gratitude to Dr. Lester Kalms, Dr. Ariel Podlubne, Dr. Sergio Pertuz, Gokhan Akgun, Najdet
Charaf, Muhammad Ali, Ensieh Aliagha, Veronia Iskandar, and Matthias Nickel, with whom |
was collaborating during the period of my PhD.

I am very grateful to my parents, and my brother for always providing me with unlimited
support and encouragement.

UNIVERSITAT A
DRESDEN A\A\

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Abstract

Multi-’/many-core heterogeneous architectures are shaping current and upcoming genera-
tions of compute-centric platforms which are widely used starting from mobile and wearable
devices to high-performance cloud computing servers. Heterogeneous many-core architec-
tures sought to achieve an order of magnitude higher energy efficiency as well as computing
performance scaling by replacing homogeneous and power-hungry general-purpose pro-
cessors with multiple heterogeneous compute units supporting multiple core types and
domain-specific accelerators. Drifting from homogeneous architectures to complex hetero-
geneous systems is heavily adopted by chip designers and the silicon industry for more than
a decade. Recent silicon chips are based on a heterogeneous SoC which combines a scalable
number of heterogeneous processing units from different types (e.g. CPU, GPU, custom
accelerator).

This shifting in computing paradigm is associated with several system-level design challenges
related to the integration and communication between a highly scalable number of het-
erogeneous compute units as well as SoC peripherals and storage units. Moreover, the
increasing design complexities make the production of heterogeneous SoC chips a monopoly
for only big market players due to the increasing development and design costs. Accordingly,
recent initiatives towards agile hardware development open-source tools and microarchi-
tecture aim to democratize silicon chip production for academic and commercial usage.
Agile hardware development aims to reduce development costs by providing an ecosystem
for open-source hardware microarchitectures and hardware design processes. Therefore,
heterogeneous many-core development and customization will be relatively less complex
and less time-consuming than conventional design process methods.

In order to provide a modular and agile many-core development approach, this dissertation
proposes a development platform for heterogeneous and self-adaptive many-core architec-
tures consisting of a scalable number of heterogeneous tiles that maintain design regularity
features while supporting heterogeneity. The proposed platform hides the integration com-
plexities by supporting modular tile architectures for general-purpose processing cores
supporting multi-instruction set architectures (multi-ISAs) and custom hardware accelera-
tors. By leveraging field-programmable-gate-arrays (FPGAs), the self-adaptive feature of the
many-core platform can be achieved by using dynamic and partial reconfiguration (DPR)
techniques.

This dissertation realizes the proposed modular and adaptive heterogeneous many-core
platform through three main contributions. The first contribution proposes and realizes a
many-core architecture for heterogeneous ISAs. It provides a modular and reusable tile-
based architecture for several heterogeneous ISAs based on open-source RISC-V ISA. The
modular tile-based architecture features a configurable number of processing cores with
different RISC-V ISAs and different memory hierarchies.

To increase the level of heterogeneity to support the integration of custom hardware accel-
erators, a novel hybrid memory/accelerator tile architecture is developed and realized as the
second contribution. The hybrid tile is a modular and reusable tile that can be configured

UNIVERSITAT A
DRESDEN A\A\

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

at run-time to operate as a scratchpad shared memory between compute tiles or as an
accelerator tile hosting a local hardware accelerator logic. The hybrid tile is designed and
implemented to be seamlessly integrated into the proposed tile-based platform.

The third contribution deals with the self-adaptation features by providing a reconfiguration
management approach to internally control the DPR process through processing cores (RISC-
V based). The internal reconfiguration process relies on a novel DPR controller targeting
FPGA design flow for RISC-V-based SoC to change the types and functionalities of compute
tiles at run-time.

Contents

List of Figures M

List of Tables VI
List of Listings IX
Acronyms X

1 Introduction 1
1.1 Motivation 1
1.2 Objective of this Dissertation 3
1.3 Own Contributions 4
1.4 Structure of this Dissertation 6

2 Background and State-of-the-Art 9
2.1 Tile-Based Many-Core Architectures 9
2.1.1 Various Tile-based Platforms o 13
2.1.2 Open-Source RISC-VISA 22

2.2 Hardware Accelerators Integration 25
2.2.1 Accelerator CouplingModels 28
2.2.2 Memory Management for Accelerators 31

2.3 Runtime Adaptive FPGA-based SoC 36
2.3.1 Partial Reconfiguration 37
2.3.2 Reconfiguration Management Frameworks 39

2.4 Contribution Towards Modular and Adaptive Many-Core Architectures 41
2.4.17 Modular and Adaptive Heterogeneous Tile-based Architecture 41
2.4.2 Hybrid Memory/accelerator Tile Architecture 44

2.5 SUMMATY . . o 46
3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs 49
3.1 Modular Tile-based Architecture 50
3.1.1 Multi-Core based Tile Architecture 52
3.1.2 Heterogeneous RISC-V based Processing Elements 53

3.2 System Scalability and Communication Model 58
3.2.1 NoC Configuration and Unified Network Interface 58
3.2.2 Communication Model for Tile-based Architecture over the NoC . .. 60

3.3 Programming Method and Software Execution 63

Contents

34 BEvaluation 69
3.4.1 Hardware Resource Usage and Prototyping 70
3.4.2 Memory Bandwidth Scalability 75
3.4.3 Computing Performance and Scalability 78
3.4.4 Comparison with State-of-the-Art 81
345 Use Cases Applications 84
3.5 SuUmMmMary . .o 90
4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile
Architecture 93
4.1 Hybrid Tile Architecture Implementation 94
411 HybridTile DataPath 97
4.1.2 HybridTile ControlUnit 107
4.2 Integration into Tile-based Many-Core System 106
427 System OVerview 107
4.2.2 Message-based communicationover NoC 107
4.3 Bvaluation 113
431 FPGAResource Utilization 114
43.2 Memory Mode Evaluation 115
4.3.3 Accelerator Mode Evaluationo 118
A4 SUMMATY . o o 119
5 Reconfiguration Management for Self-Adaptive RISC-V based Many-Core Archi-
tectures 121
5.1 Internal Dynamic Partial Reconfiguration Management for Self-Adaptive RISC-V
based SOC 122
5117 FPGA-based RISC-VSoC 123
5.1.2 DPR Controlling Unit (RV-CAP) 124
5.2 Application Programming Interfaces (APIs) and Abstraction Layer 126
521 RV-CAPAPIS 126
5.2.2 Supporting DPR Vendor Controller 128
5.3 Evaluation of the Reconfiguration Management Approach 131
5.3.17 Hardware Resource Evaluation 131
53.2 ReconfigurationTime 132
53.3 UseCasesAccelerators 132
5.4 Reconfiguration Management Unit Integration into the Tile-based Many-Core
Architecture 135
55 Summary . ..o 140
6 Conclusion and Outlook 143
6.1 Summary of Contributions 143
6.2 Future Work 145
Bibliography 147

Student Work 162

List of Figures

1.1

1.2

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

Main contributions towards the realization of a modular platform for adaptive
heterogeneous many-core architectures.
Proposed adaptive and modular many-core architecture including main dis-
sertation contributions: (1) modular tile-based for heterogeneous ISAs, (2)
hybrid architecture tile for custom hardware accelerators and memory blocks,
and (3) reconfiguration management unit for self-reconfigurable RISC-V-based
SOC.

Evolution of compute-centric systems from single-core architectures towards
tile-based many-core architectures [10].
Roofline models for baseline multi-core and tile-based architectures [37], [10]
showing performance improvement for memory-bound applications running
ontile-based architectures.
Heterogeneous tile-based structure for modern many-core based SoC includ-
ing general-purpose, accelerators, memory, and peripherals tiles.
Overview of the Open-Piton tile-based architecture [43]. The general-purpose
tile contains a single RISC-V core (Ariane, RV64ISA), private caches, and multi-
plane NoCrouters.
Overview of homogeneous tile-based Memphis architecture [47]. Each tile
features a single CPU with shared local memory and a NoC router.
Overview of heterogeneous tile-based BlackParrot architectures [50]. It sup-
ports three types of heterogeneous tiles: (a) a general-purpose tile with a single
RISC-V processing core, (b) a coherent accelerator tile with cache memory, (¢)
a streaming accelerator tile with a direct connection to external I/0 as well as
a coherent connectionto othertiles. L oL
Overview of TaPaSCo architecture for parallel reconfigurable computing sys-
tems [55]. It consists of multiple heterogeneous processing clusters. Each
processing cluster hosts multiple processing elements with a single RISC-V
corepereach.
Overview of MemPool architecture for general-purpose computing [56]. The
architecture consists of multiple clusters, each cluster hosts several general-
purpose tiles. Each tile is based on a multi-core RISC-V architecture based on
the PULP platform.

13

List of Figures

2.9 Overview of heterogeneous tile-based ESP architecture [58]. ESP consists of
four types of tile-based architecture: (a) a general-purpose tile hosting a single
core CPU based on RISC-V ISAs, (b) an accelerator tile for HLS-based custom
accelerator, (¢) an accelerator tile for third-party accelerators (e.g. DSP, NPU),
and (d) a memory tile for off-chip memory integration.

2.10 Overview of Manticore architecture for general purpose computing [62]. Man-
ticore consists of hundreds of general purpose RISC-V based cores (Snitch
core [57]) grouped within multiple processing clusters. The architecture has
four large processing quadrants hosting processing clusters and connecting
themto HBM.

2.11 Number of RISC-V-based scientific and technical publications since 2014 ac-
cording to Google Scholarrecords.

2.12 Heterogeneous SoC architecture model with many accelerators and a host
processor. (DMA: Direct Memory Access, SPM: Scratchpad Memory)

2.13 Hardware accelerators categories and the related trade-off between flexibility
and energy efficiency.

2.14 Tightly-coupled accelerator model, where accelerators are integrated as an
extension to a general-purpose processor or as an accelerator directly coupled
to the processor with/without data cache sharing.

2.15 Loosely-coupled accelerator model, where accelerators are integrated into
the system through a communication fabric as memory-mapped peripherals
O general-purpose ProCessOorsS. . . . v v v v vt it

2.16 An example of a heterogeneous many-core architecture with many LCAs and
general-purpose cores, it shows the large size of private local memory that
dominatesthearea of LCAS[117]. o o i

2.17 LCA tile structure as described by [119]: it contains several computation units
representing the accelerator logic, private local memory, control path, I/0
buffers, and interconnection interfaces for data transfer.

2.18 AXilinx Ultrascale FPGA floorplan [131] with several clock regions, each clock
region contains a grid of resource tiles for CLB, DSP, BRAMs/URAMSs and a grid
of interconnects for connection betweenthem.

3.1 Overview of the modular tile-based many-core architecture with a 3x3 tile-
based many-core configuration including (a) 4x32-bit general-purpose com-
pute tiles, (b) 2x64-bit general-purpose compute tiles, (c) the main/primary
processing tile, and heterogeneous tiles to host custom hardware accelerators
(LCAtIleS). . o o

3.2 Schematic of 32-bit RISC-V based PE showing: (a) open-source RV32IMC (RISCY)
core, (b) instruction and data bridges for converting native I/D signals to AXI-4
interfaces, (c) on-chip I/D TCM and their connection to the RISCY core through
I/D bridges.

3.3 Schematic of 64-bit RISC-V based PE showing: (a) open-source RV64IMAC
(CVAG/ARIANE) core, (b) address converter to access I/D TCM through the main
AXI-4 interconnect, (c) on-chip I/D TCM and their connection to the CVA6 core
through the main AXI-4 interconnect.,

3.4 Aunified network interface (NI) block diagram for many-core compute tiles. .

3.5 Sequence diagram of the message-based communication model between
computing tilesoverthe NoC.

30

32

51

54

List of Figures

3.6 Memory sectors of shared and local instruction and data memories for a single
computetile. .. 65

3.7 Schematic of the many-core programming flow including (a) building appli-
cation tasks source codes targeting 32-/64-bit ISA, (b) generation of BRAM
coefficient files to be stored on shared instruction memory (boot memory) of

target computetiles. 68
3.8 Memory bandwidth scalability for a single compute tile with respect to the
number of RV32/64 cores pertile. 76

3.9 Achievable memory bandwidth with respect to the number and types of many-
core computing tiles using shared or local data memories at a clock frequency

=120 MHz (higheris better). 77
3.10 Data transfer latency over NoC between heterogeneous 32-/64-bit compute

tles. . o o 78
3.11 Block matrix multiplication partitioning over the tile-based many-core archi-

teCture. e 79

3.12 Execution time of matrix multiplication benchmark over different numbers
and types of compute tiles using only compute tiles shared memory (lower is
Detter). 80
3.13 Execution time of matrix multiplication benchmark over different numbers
and types of compute tiles using only compute tiles local memory (lower is

Detter). . . . 81
3.14 Execution time of several FFT kernels with different sizes over different num-
bers and types of compute tiles for multiple many-core configurations. 85

3.15 Execution time of several Matrix inverse kernels with different sizes over differ-
ent numbers and types of compute tiles for multiple many-core configurations. 86
3.16 Execution time of several 2-D convolution kernels with different sizes over
different numbers and types of compute tiles for multiple many-core configu-
FatioNS. . . . o 87
3.17 Execution time of several 3-D convolution kernels with different sizes over
different numbers and types of compute tiles for multiple many-core configu-

FatioONS. . . . o 88
3.18 Execution time of several QNN kernels with different sizes over different num-
bers and types of compute tiles for multiple many-core configurations. 89

4.1 An overview of a heterogeneous tile-based many-core architecture with hy-
brid memory/accelerator tiles. The many-core system supports a single I1SA
by homogeneous RISC-V cores with heterogeneous LCAs hosted by hybrid

memory/acceleratortiles. 94
4.2 An overview of the hybrid memory/accelerator tile internal architecture show-

ing control unit, data path, and data/control Nis to NoC routers. 95
4.3 An example of a received sequence of message requests and their order of

execution by the hybrid memory/accelerator tile. 96
4.4 Structure of hybrid memory/accelerator tile request message. 96
4.5 A detailed block diagram of hybrid memory/accelerator tile data path architec-

ture showing internal functional and data movement components. 98
4.6 A detailed block diagram of hybrid memory/accelerator tile control unit archi-

tecture. o 102
4.7 The main FSM of the hybrid tile shows the four stages of the control unit. . . 104
4.8 A detailed FSM of the messages processing stage. 105

List of Figures

VI

4.9 RISC-V based many-core configurations, configuration one: 16xRISC-V cores,
and single hybrid memory/accelerator tile, configuration two: 32xRISC-V cores,
and 2xhybrid memory/accelerator tiles L
4.10 Structure of (1) request, (2) response control packets, and (3) data packets
used by the hybrid memory/accelerator tile.
4.11 Sequence diagram of the data transfer process between a compute tile and
hybrid memory tile in case of memory or accelerator dataread.
4.12 Sequence diagram of the data transfer process between a compute tile and
hybrid memory tile in case of memory or accelerator data write.
4.13 Memory bandwidth evaluation between a single compute tile and a single
hybrid memory/accelerator tile at a clock frequency = 100 MHz.
4.14 Signal processing based kernels evaluation over tile-based many-core archi-
tecture with hybrid memory/accelerator tiles.
4.15 Hardware accelerator performance evaluation.

5.1 Aschematic overview of the target self-adaptive RISC-V based SoC [21].
5.2 Overview of the RV-CAP controller architecture [21].
5.3 Aschematic overview of the target self-adaptive RISC-V based SoC with Xilinx
AXI-HWICAP controller. o o oo
5.4 Reconfiguration time with respect to different RP sizes by using the RV-CAP
controller. . . . o
5.5 Reconfiguration time with respect to different RP sizes by using the Xilinx
AXI-HWICAP [177] controller.o o
5.6 An overview of the self-adaptive RISC-V based SoC floorplan on a Xilinx Virtex
Ultrascale+ (XCVUOP) FPGA. o
5.7 Aschematic overview of the main processing tile with the RV-CAP controller.
5.8 A detailed block diagram of the RV-CAP controller within the main processing
tile for adaptive tile-based many-core architecture.
5.9 FPGA floorplan of the first tile-based many-core size with 2x7 NoC configured
by 8x32-bit (w/4-PEs), and 4x64-bit (w/single-PE) compute tiles (12xRPs). . . .
5.10 FPGA floorplan of the second tile-based many-core size with 2x4 NoC con-
figured by 4x32-bit (w/4-PEs), 2x64-bit (w/single-PE), and 1x64-bit (w/2-PEs)
compute tiles (7xRPs).

109

133

138

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6

3.1

3.2

3.3

3.4

3.5

3.6

4.1
4.2
4.3
4.4
4.5

5.1

52

53

RISC-V ISA extensions [69].
Alist of selected RISC-V-based cores.
Comparison between hardware accelerator coupling models.
State-of-the-art DPR management units comparison.
Many-core architectures State-of-the-Art comparison.
Accelerator Integration State-of-the-Art Comparison.

Hardware resource utilization and power consumption of the 32-bit general-
purpose compute tile (RV32-tile) targeting a Xilinx Virtex Ultrascale+ (XCVU9P)
Hardware resource utilization and power consumption of the two 64-bit
general-purpose compute tiles (RV64(1-PE), RV64(2-PEs)) targeting a Xilinx
Virtex Ultrascale+ (XCVUSP) FPGA. o
Hardware resource utilization and power consumption of the main processing
tiles (RV64(4-PEs)) targeting a Xilinx Virtex Ultrascale+ (XCVU9P) FPGA.

Hardware resource utilization of several tile-based many-core sizes and types
targeting a Xilinx Virtex Ultrascale+ (XCVU9SP) FPGA.
Computing performance for different numbers and types of compute tiles
based on matrix multiplication benchmark at a clock frequency = 120 MHz. .
Comparison between state-of-the-art RISC-V based many-core architectures
and the proposed modular and heterogeneous many-core architecture in
terms of resources utilization and computing performance targeting FPGA
platforms.

Input and output of the decoding stage in the controlunit.
Hybrid tile data path resource utilization on Xilinx XCVU9P.
Hybrid tile control unit resource utilization on Xilinx XCVU9SP.
Total resource utilization of many-core configuration-two on Xilinx XCVU9P. .
Hardware accelerator resource utilization on Xilinx XCVU9SP.

Hardware resource utilization of the RV-CAP controller and Xilinx AXI-HWICAP
on Xilinx XCVU9P FPGA and the maximum reconfiguration throughput at a
clock frequency =100 MHz.
Hardware resource utilization of the self-adaptive RISC-V based SoC with a
single RP to host multiple image processing accelerator modules on Xilinx
XCVUOP FPGA. . . . o
Image processing accelerators execution and reconfiguration time at a clock
frequency =100 MHz.

83

102
114
115
115
118

134

135

Vil

List of Tables

DPR resource utilization and reconfiguration time for two tile-based many-core

configurations on Xilinx XCVU9P FPGA.
Total hardware resource utilization for the two different many-core sizes shown

in Figure 5.9, Figure 5.10 on Xilinx XCVU9P FPGA.

54

55

VI

139

List of Listings

3.1

3.2

3.3

3.4
3.5

4.1

4.2
4.3
4.4
4.5

4.6

5.1

52
53
54
55

5.6
5.7

NI data transmission software modules executed on RISC-V cores from general-

purpose compute tiles. 62
NI data receiving software modules executed on RISC-V cores from general-

purpose computetile. 63
General-purpose compute tile linker script for single-core and multi-core ar-

ChiteCtures. 66
Memory initialization stage (init.c) of a single general-purpose compute tile. . 67
A sample software implementation over a single multi-core compute tile. . . 68

Hybrid memory/accelerator tile request software module executed on RISC-V
coresinside conputetiles. L 110
Wait grant software module executed on RISC-V cores inside compute tiles. . 110
Memory read software module executed on RISC-V cores inside compute tiles. 111
Memory write software module executed on RISC-V cores inside compute tiles.112
Accelerator read software module from the accelerator logic in hybrid tile

executed on RISC-V cores inside compute tiles. 113
Accelerator write software module to the accelerator logic in hybrid tile exe-
cuted on RISC-V cores inside compute tiles. 113

RM initialization and reconfiguration process APl software modules to control

the RV-CAP from RISC-V core. 126
An overview of the RM initialization API software module. 127
An overview of the RV-CAP reconfiguration process APl software module. . . 128
An overview of the DMA write AP| software module. 128
RM initialization and reconfiguration process AP| software modules to control

the Xilinx AXIFHWICAP from RISC-V core. 129
An overview of the AXI-HWICAP reconfiguration process API software module. 130
An overview of the Xilinx AXI-HWICAP write APl software module. 130

Acronyms

ACK Acknowledgement

ALU Arithmetic Logic Unit

APl Application Programming Interface
ASIC Application-Specific Integrated Circuit
ASIP Application Specific Instruction Set Architecture
AXI Advanced Extensible Interface

BRAM Block Random-Access Memory

BW Bandwidth

CAD Computer-Aided Design

CLB Configurable Logic Block

CLK Clock

CMOS Complementary Metal-Oxide-Semiconductor
CNN Convolutional Neural Network

CPU Central Processing Unit

CU Compute Unit

DDR Double Data Rate

DFG Data Flow Graph

DMA Direct Memory Access

DPR Dynamic Partial Reconfiguration

DPU Data Processing Unit

DRAM Dynamic Random-Access Memory
DSA Domain Specific Accelerator

DSE Design Space Exploration

DSP Digital Signal Processor

DTCM Data Tightly Coupled Memory

DVFS Dynamic Voltage and Frequency Scaling
eFPGA Embedded FPGA

FF Flip-Flop

FFT Fast Fourier Transform

FIFO First-in-First-out

FPGA Field-Programmable Gate Array
FSM Finite State Machine

GALS Globally Asynchronus Locally Synchronus
GCC GNU C Compiler

GPU Graphics Processing Unit

HBM High Bandwidth Memory

HDL Hardware Description Language
HLS High-Level Synthesis

HMC Hybrid Memory Cube

HPC High-Performance Computing

I/0 Input/Output

ICAP Internal Configuration Access Port
IFM Input Feature Map

ILP Instruction-Level Parallelism

loT Internet of Things

IP Intellectual Property

ISA Instruction Set Architecture

ITCM Instruction Tightly Coupled Memory
LCA Loosely Coupled Accelerator

LLC Last Level Cache

LUT Lookup Table

MAC Multiply and Accumulate

MPI Message Passing Interface

MPSoC Multiprocessor System-on-Chip
NI Network Interface

NoC Network-on-Chip

NPU Neural Processing Unit

NUMA Non-Uniform Memory Access

Xl

Acronyms

OFM Output Feature Map

OpenCL Open Computing Language
OpenMP Open Multi-Processing

OPS Operations per Second

OS Operating System

PCAP Processor Configuration Access Port
PCI-E Peripheral Component Interconnect Express
PE Processing Element

PLM Private Local Memory

PRR Partial Reconfigurable Region

PU Processing Unit

QNN Quantized neural Network

QoS Quality of Service

RISC Reduced Instruction Set Computer
RM Reconfigurable Module

RP Reconfigurable Partition

RTL Register Transfer Level

SAR Synthetic Apereture Radar

SDK Software Development Kit

SIMD Single Instruction Multiple Data

SoC System-on-Chip

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory
TCA Tightly Coupled Accelerator

TCM Tightly Coupled Memory

TLB Transaction Lookaside Buffer

UART Universal Asynchronous Receiver-Transmitter
UAV Unmanned Aerial Vehicle

UMA Uniform Memory Access

URAM Ultra Random-Access Memory
VHDL Very High Speed Integrated Circuit Hardware Description Language
VLSI Very Large-Scale Integration

WCET Worst-Case Execution Time

Xl

1 Introduction

1.1 Motivation

Over the last decade, CMOS technology scaling has slowed down leading to the end of the
historical correlation between performance and energy efficiency improvements and CMOS
scaling process [1]. Currently, energy dissipation is the main limiting factor for the perfor-
mance of processing units (e.g. CPUs, microprocessors) which is due to the constant power
density resulting from CMOS technology scaling. Consequently, computing performance
scalability cannot be further improved by frequency scaling due to the crisis of the power
wall. In parallel, the ever-growing size of data processing like in big data and machine learning
domains increases the challenges to achieve scalable computing performance with nominal
energy efficiency by just increasing the transistor counts on the chip [2]. Therefore, a shift
in computing paradigms has been started by replacing single-core designs with multi-core
and many-core architectures by exploiting computing parallelism techniques to achieve a
substantial computing speedup with an improvement in energy efficiency.

The paradigm shift in computing-centric architectures from single-core to multi-’/many-core
systems leads to the emergence of heterogeneous system-on-chip (SoC) designs. Where
multiple heterogeneous components are integrated on the same silicon chip. The evolution
of compute-centric architectures, trying to overcome the slowdown of Moore’s law, opens the
door for domain-specific architectures by tailoring and customizing the computing units to
efficiently execute a specific scientific algorithm or an application domain using custom hard-
ware accelerator units. On the other hand, heterogeneous multi-instruction set architectures
(multi-ISA) such as the recent generation of heterogeneous CPUs with little and big cores
architectures are able to find the best tradeoff between computing performance and energy
efficiency for general-purpose workloads based on runtime workload's kernels computing
requirements [3], [4]. Moreover, techniques such as digital-voltage-frequency-scaling (DVFS)
and near-threshold computing are currently adopted for recently developed heterogeneous
mobile SoC to have scalable computing performance with a low power budget.

In parallel, recent initiatives towards agile hardware development open-source tools and
microarchitecture aim to democratize silicon chip production for academic and commercial
usage [5]. Agile hardware development aims to reduce development costs by providing an
ecosystem for open-source hardware microarchitectures and hardware design processes.
One of the main contributions towards agile hardware development is RISC-V open-source
ISA, where a series of open-source RISC-V-based microprocessors are royalty-free [6] that
can be used directly in the development of SoC designs as off-shelf IP cores or through cus-
tomization by adding application-specific custom instructions for a new RISC-V ISA extension.

1 Introduction

In addition, open-source designs and development tools are aiming to create open-source
SoC design frameworks, where SoC development and customization will be relatively less
complex and less time-consuming than conventional design process methods [7], [8]. In com-
parison with baseline SoC design and development, agile hardware development provides
the ability to seamlessly integrate a new hardware module (e.g. custom hardware accelerator,
microprocessor with special ISA extension) within a unified and modular SoC architecture.
Hence, domain-specific accelerators with agile hardware development contributions open
the market for more new players to develop their own hardware accelerator intellectual
properties (IPs) without the necessity to have strong expertise in SoC design and integration
[9].

Multi- and many-core architectures are the dominant type of architecture for the current SoC
designs [10]. They feature a scalable and heterogeneous number of processing units, where
interconnection and communication between architectural units are crucial to maintain the
desired computing performance. Many particular challenges are arising regarding communi-
cation between different processing units, system-level scalability, programmability, and last
but not least the need for a unified platform or an integration methodology between hetero-
geneous compute units. More specialization by heterogeneity decreases the system-level
scalability and flexibility due to the inherent structure of heterogeneous processing units and
custom hardware accelerators. Therefore, several recent approaches focus on tile-based or
clustered architectures that can offer more degree of scalability than traditional multi-core
processors. The design and development of scalable many-core heterogeneous architectures
is a cumbersome process due to several system-level challenges regarding integration and
interaction between a large number of non-unified heterogeneous processing units. As a
result, the design process is always accompanied by continuous inflation in design costs and
a limited degree of post-design upgrades.

This dissertation enables the design of scalable many-core SoC designs with a regular and
flexible architecture that hides the complexities of heterogeneous many-core integration for
rapid prototyping and low-cost generation of multiple heterogeneous many-core taxonomies
using modular and reusable tile-based computing units.

In order to provide a modular and agile many-core development methodology, this dis-
sertation proposes a development platform for heterogeneous and adaptive many-core
architectures consisting of a scalable number of heterogeneous tiles that maintain design reg-
ularity features while supporting heterogeneity. The proposed platform hides the integration
complexities by supporting modular tile architectures for general-purpose processing cores
and custom hardware accelerators. In addition, the communication between heterogeneous
compulte tiles is conducted through a unified communication model through a generic NoC
architecture [11]. The proposed many-core platform promotes architectural components
reuse and guarantees hardware portability across different many-core taxonomies designs.
The platform exploits the regularity of compute tiles and processing element architectures
to support the seamless integration of new compute units based on target application
requirements or future design upgrades.

By leveraging field-programmable-gate-arrays (FPGAS), the self-adaptive feature of the many-
core platform can be achieved by supporting dynamic and partial reconfiguration techniques.
In this dissertation, a novel reconfiguration management unit is proposed to internally control
the DPR process from a permanent compute tile to configure the many-core architecture
at runtime in terms of type and number of heterogeneous compute tiles. The self-adaptive

1.2 Objective of this Dissertation

feature allows the deployment of different many-core taxonomies based on changing appli-
cation requirements at runtime. Also, It allows further design upgrades without the need to
repeat the design and generation process for the upgraded many-core design. Therefore,
design modularity and adaptability are keys for reducing design and integration costs and
promoting the commodity of many-core architectures for emerging application domains.

1.2 Objective of this Dissertation

The presented background of the research field in the previous section brings us to discuss
the current challenges and the main focus of this dissertation. As presented at the beginning,
the degree and level of heterogeneity come on top of the outstanding challenges in many-
core SoC architectures, more noticeably, in the existence of the domain-specific accelerator
era which is increasing the level of heterogeneity and scaling complexities of many-core SoC
architectures. However, the effects of the emergence of new open-source ISAs (e.g., RISC-V
ISAs) and how to leverage its existence with custom hardware accelerators in many-core SoC
architectures is yet an open research point [12].

In heterogeneous many-core systems, integration and communication between a scalable
number of heterogeneous processing cores lead to several system-level challenges that
increase the design effort and costs as well as limited micro-architecture post-design up-
grades. Hence, new approaches towards the design of agile many-core SoC architectures
have recently flourished [13]. The motivation is to provide a modular and agile many-core
system with flexibility and reusability features to support different micro-architecture config-
urations as well as post-design incrementation with new heterogeneous components (e.g.
new ISAs, custom hardware accelerators). Therefore, the design and development of agile
many-core systems start from the tile micro-architecture. The many-core system is based on
a tile-based architecture connected through a NoC to keep the needed scalability and high
communication bandwidth between the tiles. The main concern is to realize reusable and
flexible tile architecture types that can be configured or augmented with new heterogeneous
components at run-time.

Accordingly, modular micro-architectures to support multiple-memory hierarchies and seam-
less integration of several heterogeneous components are still open wide for research. It is
further worth mentioning that, the recent slowdown of CMOS scaling technology and the
end of Dennard scaling will lead to more architectural specialization and an extreme level of
heterogeneity that requires the design and deployment of largely fixed-function accelerators
based on an algorithm or application requirements [14]. Thus highlighting the need for an
agile many-core architecture design to cope with new computing challenges.

On the other hand, several architectural solutions are presented in the literature targeting
reconfigurable and adaptive SoC. However, existing literature solutions are not dedicated to
RISC-V-based SoC. Therefore, in dealing with the self-adaptive feature for many-core systems,
an internal reconfiguration management unit for RISC-V-based SoC is developed. It can
change the internal functionality or the configuration of tiles micro-architecture as well as
custom hardware accelerator logic.

In that context, the work in this thesis deals with these untackled research points combined,
micro-architecture modularity, higher level of heterogeneity, and adaptability, by focusing
on how to realize a modular and adaptive many-core SoC architecture for multi ISAs and

1 Introduction

A Modular Platform for Adaptive Heterogeneous Many-Core
Architectures

Modular Seamless

Many-Core Integration of Many-Core

Architecture for Custom
Heterogeneous Hardware
ISAs Accelerators

Self-Adaptation
Management

Heterogeneous Scalable Internal Reconfiguration
Tile-based Architecture Hybrid Memory/ Accelerator Tile [18], [20] Management
[15], [16], [17], [20] [16], [19], [20], [21]

Figure 1.1: Main contributions towards the realization of a modular platform for adaptive
heterogeneous many-core architectures.

seamless integration of heterogeneous custom hardware accelerators at run-time. The
dissertation provides a thorough investigation of heterogeneous many-core architectures by
implementing a modular and adaptive tile-based many-core architecture for heterogeneous
ISAs and custom hardware accelerators.

The thesis presents a modular and configurable tile-based architecture with several types
of tile architecture where tiles can host (1) a configurable multi-core architecture based on
several heterogeneous ISAs [15], [16] with different memory hierarchies [17], (2) custom
hardware accelerators and shared memory blocks through a hybrid tile architecture to lever-
age the reusability of architectural components [18], [19], [20]. Several signal processing use
cases accelerators have been used for evaluation. Further, internal run-time reconfiguration
management is developed and implemented to leverage self-adaptability for the proposed
tile-based many-core architecture [21], [16]. The main contributions of this dissertation are
presented in the following section.

1.3 Own Contributions

The contributions of this doctoral thesis are as follows: (1) Modular many-core architecture
for heterogeneous ISAs, (2) Seamless integration of custom hardware accelerators through
a hybrid memory/accelerator tile architecture, and (3) Many-core runtime reconfiguration
management through an internal reconfiguration management system. This is illustrated in
Figure 1.1 which presents the three main contributions and how they contribute towards the
realization of a modular platform for adaptive heterogeneous many-core architectures.

The first contribution is based on state-of-the-art analysis for processor-centric many-core
architectures that directs to the necessity for a modular and reusable many-core platform to
support heterogeneous ISAs with different architectural configurations for ever-increasing
computing demands. As a result, a modular tile-based many-core architecture for several

1.3 Own Contributions

External Peripherals

DDR UART SD-Card

Tile-based Many-Core Architecture

(" Modular TiIe-based\

| .

! Raau) many-Core Platform
 Processing

i Til for Heterogeneous

! ile 32-bit 64-bit ISAs

H Multi-Core Multi-Core - J
.:— Tile Tile

@ Reconfiguration "GV &= h
Management . i !

AXI-4 Interconnect

Hybrid
Memory/Accelerator
Tile Architecture

7

Samd
-
|

Reconfiguration
Management for RISC-V

32-bit 64-bit 32-bit i
Multi-Core Multi-Core Multi-Core
e e /I
1 o
3 Yy, opl based SoC /

Figure 1.2: Proposed adaptive and modular many-core architecture including main disser-
tation contributions: (1) modular tile-based for heterogeneous ISAs, (2) hybrid
architecture tile for custom hardware accelerators and memory blocks, and (3)
reconfiguration management unit for self-reconfigurable RISC-V-based SoC.

1/0s Local Memory

SECRICO)

Main Processing Tile

heterogeneous ISAs is proposed. In order to increase the level of heterogeneity and support
seamless integration of custom hardware accelerators and memory modules for domain-
specific applications, a hybrid memory/accelerator tile architecture is proposed.

Therefore, by combining the first and second contributions, the proposed many-core platform
by this doctoral thesis supports an unprecedented level of heterogeneity with flexible archi-
tectural configurations using modular and reusable tile architectures. Further, the proposed
modular many-core architecture is occupied with an internal reconfiguration management
unit as the third contribution for self-adaptive purposes. The internal reconfiguration manage-
ment unit is responsible for changing tiles functionalities and configurations during run-time
through DPR. The proposed contributions are shown in Figure 1.2 shaping the proposed
adaptive and modular many-core architecture proposed by this doctoral thesis. The main
highlights of each contribution are presented in the following.

e Modular Tile-based Many-Core Architecture for Heterogeneous ISAs [15], [16], [17],
[20].
On the level of heterogeneous ISA designs, this dissertation worked on the gap of a
missing modular many-core platform to support multiple heterogeneous ISAs. The
proposed modular many-core platform features a scalable tile-based architecture
where each tile can host a single or a multi-core architecture with different RISC-V ISA-
based PEs [15], [16]. Each tile supports different memory configurations for shared and
local instruction/data scratchpad memories associated with multi-core or single-core
configurations [17]. Furthermore, the proposed many-core platform supports multiple
communication models for data sharing and transmission between heterogeneous
tiles through a scalable NoC architecture. A unified programming method is developed
to target multiple RISC-V ISAs for 64- and 32-bit architectures. The proposed many-core
platform supports FPGA design flow for hardware evaluation in terms of resource
utilization and power consumption. Further, computing scalability and performance
are evaluated in terms of achievable operations per second and memory bandwidth
for several many-core configurations using multiple signal processing-based use cases.

1 Introduction

e Hybrid Memory/Accelerator Tile Architecture for Tile-based Many-Core Systems
[18], [20].
Hybrid memory/accelerator tile architecture is proposed as the outcome of studying
accelerator-centric architecture designs. It supports two modes of tile operation as
a memory tile or an accelerator tile hosting a custom hardware accelerator using a
modular tile architecture [18], [20]. The tile supports the seamless integration of cus-
tom hardware accelerators to the proposed many-core platform through the modular
hybrid tile architecture. Furthermore, leveraging the hybrid tile architecture to support
noncoherent memory sharing between custom hardware accelerators and heteroge-
neous ISAs tiles. Multiple hardware accelerators from the signal processing domain
are developed and used as use cases for evaluation.

e Reconfiguration Management for Self-Adaptive Tile-based Systems [16], [19], [20],
[21].
A reconfiguration management unit is proposed to allow self-adaptation for the pro-
posed tile-based many-core system [19]. The applied self-adaptation approach is based
on self-controlling and management of the reconfiguration process through a main pro-
cessing tile [21]. The internal reconfiguration process relies on a novel DPR controller
targeting FPGA design flow for RISC-V-based SoC to change the types and functional-
ities of many-core tiles at run-time [16], [20]. Furthermore, the performance of the
proposed reconfiguration management unit is evaluated based on hardware resource
utilization, maximum achievable reconfiguration throughput and power consumption.
The proposed reconfiguration management achieves a faster reconfiguration time
compared to state-of-the-art DPR-based reconfigurable SoC.

1.4 Structure of this Dissertation

This dissertation is structured into six chapters including this one, organized as follows.

Chapter 2 presents the preliminary background and literature review of the state-of-the-art
in the field of this dissertation covering topics of heterogeneous many-core architectures
and adaptive SoC architectures. The chapter discusses the current research directions for
heterogeneous many-core architectures including processor-centric and accelerator-centric
approaches. In addition, several tile-based many-core architectures are reviewed in order to
explore state-of-the-art many-core realization techniques for heterogeneous ISAs and custom
hardware accelerators. The chapter is concluded by discussing open research directions
that this dissertation aims by bridging adaptive computing, computing heterogeneity with
many-core architectures. Further, the contributions of this dissertation are presented and
positioned within the presented state-of-the-art.

Chapter 3 presents the first proposed contribution of a modular tile-based many-core
architecture for heterogeneous ISAs.The chapter starts by presenting a modular tile architec-
ture that can host multiple numbers and types of PEs based on different RISC-V ISAs with
shared and local scratchpad memories. Multiple RISC-V-based PEs are presented followed by
different supported interfaces to be integrated within the tile architecture. System scalability
and communication models between tiles are then presented using a parametrized NoC
architecture. The programming method and software execution are later presented support-
ing 32-/64-bit programming flows. The chapter is finally concluded with a brief summary and

1.4 Structure of this Dissertation

discussion of the proposed tile-based many-core architecture. The content of this chapter is
based on the following published work: [15], [16], [17], [20].

Chapter 4 presents the second proposed approach to support a hybrid memory/accelerator
tile within the proposed tile-based many-core architecture in the previous chapter. The
chapter starts by presenting the architectural components of the proposed approach and
the seamless integration method of RTL/HLS-based hardware accelerator to the tile. Then,
tile external interfaces, and integration to the other compute tiles are presented, followed by
a description of the control and data messages over the NoC for communication with other
compute tiles. Hardware and experimental results are then presented for the proposed
hybrid tile using several use cases from the signal processing domain. The content of this
chapter is based on the following published work: [18], [20]

Chapter 5 presents the third proposed approach to support run-time reconfiguration
through an internal reconfiguration management unit. The proposed approach relies on
the development of an internal reconfiguration manager suitable for RISC-V-based SoC to
be inserted within the main processing tile of the proposed many-core architecture. The
reconfiguration process is based on dynamic partial reconfiguration for FPGAs. The chapter
starts by presenting the internal hardware architecture of the proposed reconfiguration
management unit. It then presents software management and abstraction layer to control
and manage the reconfiguration from RISC-V-based PEs in the main processing tiles including
partial bitstream transfer from external memory storage to FPGA configuration memory. The
performance and hardware results of the proposed reconfiguration management unit are
then presented and discussed with several many-core configuration scenarios. The content
of this chapter is based on the following published work: [16], [19], [20], [21].

Chapter 6 summarizes and concludes this dissertation and presents future work insights.

2 Background and State-of-the-Art

This chapter provides the essential background information for the following chapters based
on the current state-of-the-art. For the design and exploration of modular and adaptive
many-core architectures, this dissertation covers two main research topics. The first part
discusses state-of-the-art tile-based many-core architectures based on system architecture,
degree of heterogeneity, and hardware accelerators integration as presented in Section
2.1 and Section 2.2. The second part explores adaptive computing systems in order to
achieve a self-adaptive many-core system. Therefore, a comprehensive overview of adaptive
computing platforms and reconfiguration management frameworks are presented in Section
2.3. Section 2.4 presents the contribution of this dissertation and the comparison to the
state-of-the-art towards the realization of a modular and adaptive many-core system. Finally,
the chapter is summarized in Section 2.5.

2.1 Tile-Based Many-Core Architectures

The end of Dennard scaling started to appear around the year 2005 [22]. Single-core pro-
cessor chips start to hit the power density limit and therefore single-threaded performance
began to slow down. Therefore, the semiconductor industry had started to find a new com-
puting paradigm that could keep the continuity of Moore's law and the growth of technology
scaling. Therefore, workload parallelism could improve computing performance through
multi-core processing architectures, driven by lower frequencies with less power-hungry
pipelines. Each core can support single or more threads of execution so that the total number
of instructions per cycle can increase with the growing number of available cores per chip,
which tends to reduce the overall performance per watt and keeps the power density under
a certain limit based on technology nodes [23].

Degrees of workload parallelism are affected by several system-level factors, such as types of
supported memory hierarchy, inter-core interconnect topologies, and parallel programming
methods. System-level factors contribute towards setting an upper bound to the nominal
performance obtained from multi-core architectures. Such system-level factors are corre-
lated with Amdahl's law to determine upper-bound variations on multi-core architectures
[24]. Nevertheless, multi-core architectures are being at the centre of the compute-centric
paradigm for a decade. Compute-centric architectures constitute the majority of current
computing machines from embedded domains up to high-performance computing systems.
Compute-centric architectures have witnessed a tremendous evolution in the field of com-
puter architecture and embedded systems [25], evolving from single-core architectures to
hundreds of cores SoC [26].

2 Background and State-of-the-Art

T lem Aowsy

v

Single-Core Architecture without Cache Hierarchy o Single-Core Architecture with Cache Hierarchy

Heterogeneous

emasmod

llem Agejess

-

Tile-based Many-Core Architecture Multi-Core Architecture (Homogeneous/Heterogeneous)

;.

Figure 2.1: Evolution of compute-centric systems from single-core architectures towards
tile-based many-core architectures [10].

Currently, a variety of homogeneous and heterogeneous multi-core and many-core archi-
tectures are leveraged in mainstream chips. Many-core architectures consist of a large
number of cores with more sophisticated memory hierarchies and interconnect compared
to typical multi-core systems. Compute performance scaling and low power consumption
have been ubiqguitous and continual problems for computer architectures throughout its
history. Moreover, several intertwined challenges related to efficient programming, limited
memory bandwidth and data locality inherited from Von Neumann architecture represent
main motivations for compute-centric architecture improvements [27].

Figure 2.1 shows the evolution steps of compute-centric architectures from single-core to
tile-based many-core architectures, including major walls of computer architecture [10]. Pro-
cessor performance kept increasing rapidly, while memory latency to processor computing
latency is significantly slower. Therefore, the memory wall is the first computer architecture
challenge that had to be overcome by leveraging and optimizing cache hierarchies and bring-
ing data as close as possible to processors [28]. However, cache-unfriendly data structures
cannot be handled well by caching as the disparity rapidly increases [29]. On the other hand,
power dissipation and energy consumption kept increasing with further improvement of
clock frequencies for single-core architectures to achieve higher compute performance along
with increasing design complexity.

The power wall describes this obstacle of computing performance scaling as mentioned in
Figure 2.1. Therefore, increasing compute performance scaling requires a shift in compute-
centric architecture design to overcome the power wall. As a result, different concepts of multi-
core processors have been introduced over the last two decades since the end of Dennard
scaling, aiming to achieve scalable compute performance with higher performance per watt.
Multi-core processor architectures are typically split into two major architectural groups
based on the type of processing cores. First, homogeneous architectures consist of the
same type of processing cores connected through a communication fabric (e.g. shared bus,
NoC) with memory-mapped I/0 peripherals. The second type is heterogeneous architectures

10

2.1 Tile-Based Many-Core Architectures

with several types of processing cores and custom hardware accelerators. Heterogeneous
multi-core architectures are a big leap in the history of the evolution of compute-centric
architectures [30]. Currently, multi-ISA heterogeneous multi-core are increasingly adopted
[31] combining large high-performance cores and small power-efficient ones for general-
purpose mixed workloads. Additionally, incorporating custom hardware accelerators is
increasingly used to improve overall efficiency by employing specialization in current multi-
core architectures supporting domain-specific workloads.

Parallel programming for multi-core architectures is closely tied to the system’s memory
organization, which can be classified into centralized shared memory, distributed shared
memory, and fully distributed shared memory. In shared memory architectures, all processing
cores share the same address space of the memory subsystem and the memory bandwidth
is shared between cores. Memory bandwidth is an important factor for the performance of
multi-core architectures but limits the degree of scalability. The shared memory programming
model relies on fine-grained data sharing and dynamic memory access behavior that can
be handled by compilers. However, to avoid race conditions programmers need to manage
synchronization efficiently between cores [32].

Several parallel programming standards are provided to manage data movements between
cores and memory. For example, OpenMP [33] is an industry-standard that can be used to
ease parallel programming of shared memory architectures. In contrast, message-passing
models are used for distributed memory architectures that do not provide a shared address
space. Therefore, communication between cores needs to be established by a message-
based communication model. Message passing interface is a well-known standard library for
distributed memory multi-core architectures, which includes a full range of message-passing
primitives [34]. Despite the tackled computing challenges by conventional homogeneous
and heterogeneous multi-core architectures, system scalability becomes more complex
and becomes a burden to increase the level of heterogeneity for data-centric workloads.
Besides, more specialization by heterogeneity decreases the system-level flexibility due to
the inherent structure of heterogeneous processing cores and accelerators [35]. Therefore,
several recent approaches focus on tile-based or clustered architectures that can offer more
degree of scalability than traditional multi-core processors [36].

As shown in Figure 2.1 tile-based architectures overcome the scalability wall by providing
a distributed scaled number of heterogeneous compute tiles that can host shared or dis-
tributed multi-core architectures inside. However, traditional multi-core architectures can be
programmed easily, as current commodity parallel programming models can be applied with-
out further improvements. In contrast, heterogeneous tile-based architectures require more
sophisticated programming models, especially for accelerator-centric tile-based architectures.
Higher compute performance is achieved by tile-based architectures compared to multi-core
systems as shown in Figure 2.2. Moreover, shifting from traditional multi-cores to tile-based
helped to alleviate interconnect scalability issues which improve the computing performance
scalability and increase the overall memory bandwidth, where memory bandwidth is strongly
affected by the low scalability of traditional multi-core architectures.

Tile-based architectures typically use a scalable NoC interconnect, which provides more
degree of scalability as well as higher memory bandwidth per tile compared to limited shared
bus flexibility. The roofline model shown in Figure 2.2 shows a higher memory bandwidth
on the diagonal roof which results in a higher compute performance in comparison with
multi-core architectures. Therefore, applications with lower operational intensity (memory-
intensive) can profit more from tile-based architectures. On the other hand, compute-

11

2 Background and State-of-the-Art

T

wv

~N

7]

Q.

o

A

()]

v} . P il e L L T L S L S LT R L S L S LT R s L
c . 4 ,/’

g |«

S 7 \ /’/

(=] 1 2 » Shifting from multi-core to tile-based architectures
= ’ 4

— L

[)] e

[~ d

— - — . - Tile-based Architectures

------- Multi-Core Architectures

»

Operational Intensity (Ops/Byte)

Figure 2.2: Roofline models for baseline multi-core and tile-based architectures [37], [10]
showing performance improvement for memory-bound applications running on
tile-based architectures.

intensive applications are represented on the horizontal roof line with approximately the same
achieving compute performance on both tile-based and traditional multi-core architectures.

Typical tile-based architectures consist of a 2-D grid of heterogeneous compute elements with
different memory hierarchies and peripherals tiles. As shown in Figure 2.3, heterogeneous
compute tiles can be a cluster of general-purpose cores or a group of domain-specific
accelerators. General-purpose tiles are powerful, full-featured computing systems that can
host several types of processing cores and independently run an entire operating system.
On the other hand, accelerator tiles are specifically assigned for domain-specific computing
hosting a broad range of custom hardware accelerators either generated from HLS tools
or designed through RTL design flow. DSP, NPU, or DPU compute units can be hosted
by accelerator tiles as application-specific accelerators for signal processing and machine
learning domains.

Moreover, accelerator tiles usually feature PLMs to increase data locality and accordingly the
overall tile computing performance. Several memory technologies are commercially available
at the moment (e.g. DDR, HBM, HMC, etc.). Therefore, several tile-based architectures have a
set of dedicated memory tiles acting as a shared memory between general-purpose tiles as
well as accelerator tiles. Memory tiles can host on-chip or off-chip memory with required
memory controllers and data mover units as well as caching levels in case of data coherency
requirements. Also, handling data transfer and communication with external peripherals or
other external systems require a specific tile architecture for this purpose. Therefore, periph-
erals or I/O tiles are developed to host required interfaces and communication protocols
(e.g. PCle, Ethernet, UART, etc.) to act as a bridge between compute or accelerator tiles and
external peripherals or other computing systems.

Several tile-based architectures are proposed by literature targeting general-purpose and
domain-specific workloads with novel tiles architectures for computing, accelerators, and
memory. For example, Flex-Tile [35], GRVI-Phalanex [38], AsAP [39], MITRACA [40], Open-
Piton [41], ESP [13], and Invasic [42]. In the following subsections, a detailed literature review

12

2.1 Tile-Based Many-Core Architectures

Accelerator Tile
<)

emory

Peripherals / 1/0 Tile

L

PCle

J

Ve

General-Purpose Tile
fﬁ M
Big Cores
—
Midrange)
Cores s £
VOIS J|lC O
) v E
Little Cores
_ J U J
T
I
I
I
I
Memory Tile
()
S
S
©o
b
52
=38
-/

Display Interfaces

~

Ve

8

Ethernet/UART

J

Figure 2.3: Heterogeneous tile-based structure for modern many-core based SoC including
general-purpose, accelerators, memory, and peripherals tiles.

of tile-based architectures and their specifications will be presented based on the following

points.

e Degree of heterogeneity by supporting multiple ISAs and hardware accelerators

e Supporting open-source ISAs
e Accelerators coupling techniques

e Design modularity and reusability

e Degree of extensibility and configurability

2.1.1 Various Tile-based Platforms

The successful evolution of the very-large-scale of integration (VLSI) technology enabled
the development of a large variety of heterogeneous multi- and many-core architectures.

13

2 Background and State-of-the-Art

Recently, ARM announced its 5nm Tri-Gear CPU subsystem for mobile SoC [3]. It consists of
heterogeneous ISA multi-core systems of several ARM Cortex CPUs. The system provides a
balance of power and performance using several core sizes for different workloads. Hence,
current trends for the development and implementation of many-core computing systems
are to provide heterogeneous computing capabilities with a balance between power and
performance targeting a broad spectrum of workloads. Therefore, tile-based platforms can fit
as an architectural class suitable to implement heterogeneous many-core systems for a broad
spectrum of workloads achieving a balance between power and performance by selecting
suitable computing tiles based on workload requirements. Techniques for dynamic adaptivity
and voltage frequency scaling are vital to accommodate new many-core architecture classes.
In this subsection, various state-of-the-art types and implementations of tile-based many-core
architectures are presented and analyzed.

Open-Piton

OpenPiton platform [43] is proposed as an open-source framework to enable the design and
development of scalable homogeneous general-purpose many-core architectures. Open-
Piton framework provides computing scalability from 1 core to thousand cores [41], sup-
porting several core sizes (i.e. small size CPU: OpenSPARC T1 Core [44], application class
CPU: Ariane core [45]). OpenPiton is based on a tiled many-core architecture as shown in
Figure 2.4. It consists of two levels of scalable hierarchy. The first level is the chip level,
where each chip contains a scalable number of homogeneous compute tiles. Each tile hosts
a single CPU with associated levels of caches and NoC routers and interfaces. Within each
chip, a coherent multi-plan mesh-based NoC is used for communication and interconnection
between tiles. On the upper level of the OpenPiton hierarchy, multiple chips are clustered
forming a scalable many-core system. Within a chip, the designer can select the type of tiles
to be processing, memory, or I/0 tiles. A chip bridge is used to connect the intra-chip NoC to
the inter-chip NoC of the second level of the OpenPiton hierarchy.

Data coherency is maintained between different chips for the whole system architecture. By
looking deeper inside the chip to figure out the tile architecture and degree of configurability,
each tile features the flexibility to host different types of processing cores with configurable

Tile Tile Chipset
Ari s P-Mesh
W % €® = OpenCian
L1is Ari Debu
FE 256bitlines [« L2 riane Modu?e
4 way, 16kB jizbngg:é -
way,
L5 CLINT
| lamol LiDs Aégﬁer 128bit lines
) P | g BT R
LSU PTW (wr-through) [
loC 2 ¥
ST, | [WRBuffer & ploc P-Mesh UART
NoC 3
Core Cache Subsystem =
FY
I SD
- : : N
Ariane | | P-Mesh }1—— s DRAM Ctrl

Figure 2.4: Overview of the Open-Piton tile-based architecture [43]. The general-purpose tile
contains a single RISC-V core (Ariane, RV64ISA), private caches, and multi-plane
NoC routers.

14

2.1 Tile-Based Many-Core Architectures

sizes and levels of memory caches subsystem. The cache hierarchy supports up to three cache
levels, with private L1 and L1.5 caches (as shown in Figure 2.4 inside the cache subsystem
attached to Ariane core) and a shared L2 cache. Furthermore, the used NoC architecture
supports data coherency and large data bandwidth by implementing the concept of multi-
plane NoC [46] using several physical networks for both inter- and intra-chip hierarchies.
On the other hand, OpenPiton features a high degree of interconnection configurability by
supporting several coherent interconnection mediums inside the chip. The NoC can easily
be replaced by a crossbar or a higher radix design. Other coherent NoC prototypes can
easily be integrated to evaluate their effects on the total energy and performance. In terms
of portability, OpenPiton was prototyped and ported for multiple FPGA devices through RTL
synthesis as well as ASIC design flow. In addition, OpenPiton is extensible by supporting
seamless core replacement taking advantage of unified intra-tile interconnection between
the core and cache levels. Moreover, AXl interfaces are supported to provide connectivity to
a wide range of I/0 devices as memory-mapped I/O to the NoCs.

Memphis

Memphis framework [47] is proposed for modeling and generation of many-core SoCs. The
framework supports the integration of processor nodes, NoC, and peripherals to models
and generates multiple taxonomies of many-core architectures. Memphis supports both
SystemC for modeling to speed up simulation time and RTL model for prototyping over FPGA
devices. Whereas, the framework integrates both modeling and prototyping into one EDA
framework that can be used easily in research and teaching. The framework emphasizes
several EDA features to cope with trends of many-core SoC generation including modular
logic design flow, automated hardware generation, and debugging methodologies. Apart
from EDA features, our focus is on architectural characteristics of the Memphis framework
specifically its tile-based architecture.

Memphis Top.

E Manager PE - Mp:
S | Slave PE - Spe

General Purpose Processing Cores
(GPPC). A homogeneous PE region
that employs cluster-based
management.

-
CPU J

Kcratchpad Local Memory
N
w

o e e e]
S e e

¥
; I — .
Application Peripheral 2 I Peripheral 3 ‘ Peripheral 4 ‘
Injector ! H : HE H

A

Figure 2.5: Overview of homogeneous tile-based Memphis architecture [47]. Each tile fea-
tures a single CPU with shared local memory and a NoC router.

15

2 Background and State-of-the-Art

Memphis is based on a single level of tile-based hierarchy compared to OpenPiton framework
[41], where a 2-D mesh topology NoC is used for communication and interconnection
betweentiles. As shown in Figure 2.5, Memphis architecture consists of a set of homogeneous
processing tiles where each tile hosts a single processing element. The whole 2-D architecture
is split into several quadrants where each quadrant has a single manager tile and multiple
slave tiles. Both manager and slave tiles feature the same processing element architecture.
The processing element hosts a single CPU that could be a MIPS-like architecture (i.e. the
Plasma Processor [48]), RISC-V, or ARM. Besides, scratchpad local memories for instruction
and data are tightly coupled with the single CPU inside the processing tile.

As Memphis many-core architecture is a NoC-based architecture in terms of interconnec-
tion, a direct memory interface (DMNI) is integrated within each processing tile to support
simultaneous transmission and receiving of data from local memory to the NoC. The DMNI
consists of a network interface and a DMA to connect the NoC router to local memory directly
providing a higher memory access rate. Memphis relies on the Hermes 2-D non-coherent
NoC [49]. In terms of portability and extensibility, the Memphis framework has been only
prototyped targeting FPGA devices with limited extensibility of I/0 peripherals through busses
within processing tiles.

Black-Parrot

BlackParrot platform [50] is proposed as an open-source RISC-V based many-core platform
for heterogeneous acceleration. BlackParrot differs from other many-core platforms by
exploiting the openness of RISC-V ISA to build a heterogeneous many-core accelerator.
BlackParrot is not dealing with heterogeneous ISAs like other many-core platforms [16], [4].

|

off-chip off-chip

/0 /0

[e)
LCE

/
~, /
. /
~ /
~. /
- /
“ /
~. /
. /
N /
/
{
Streaming Co Coherent
re Core
Accelerator Accelerator
Co

¥
Coherent

,/" Streaming re
- Accelerator
r”' ,-""—/--J.‘
L2 L2
Extension Extension
N J N .
KS

d
/| == Coherence

/
—_ DRAM DRAM
i

Figure 2.6: Overview of heterogeneous tile-based BlackParrot architectures [50]. It supports
three types of heterogeneous tiles: (a) a general-purpose tile with a single RISC-V
processing core, (b) a coherent accelerator tile with cache memory, (c) a streaming
accelerator tile with a direct connection to external I/0 as well as a coherent
connection to other tiles.

16

2.1 Tile-Based Many-Core Architectures

However, it provides solutions for integrating different sorts of custom hardware accelerators
with general-purpose RISC-V cores. Therefore, design modularity and tile-based approach
are adopted by BlackParrot platform providing sets of general-purpose, accelerator, and
memory tiles as shown in Figure 2.6.

BlackParrot implements a similar interconnection type to the one used by OpenPiton frame-
work [43] based on a coherent multi-plane NoC to support data coherency between all tiles
with high data bandwidth. A single level of the tile-based hierarchy is adopted with a single
compute element per tile either a custom accelerator or a RISC-V-based processing core.
Looking deeper into the general-purpose tile, it supports a single RISC-V core based on
64-bit ISA and Linux-capable. However, the general purpose tile lacks a certain degree of
configurability to be adapted with other ISAs. On the other hand, accelerator-based tiles
feature a high degree of configurability to host streaming or coherent-based accelerators
either generated through HLS tools or by RTL design methodologies.

BlackParrot supports a single type of RISC-V core based on RV64G ISA supporting atomic
and floating-point operation with virtual memory to run an operating system. Besides two
levels of cache subsystem inside the general-purpose tile. Seamless integration of custom
hardware acceleration is the main focus of the design of BlackParrot as it supports coherent,
non-coherent, and stream accelerators through modular tile architectures. Also, a memory
tile architecture is proposed to control and manage off-chip main memory (e.g. DRAM).
In terms of extensibility, BlackParrat features a high degree of extensibility with different
workload accelerators with general-purpose compute units. On the other hand, in terms of
portability, BlackParrot is only prototyped using ASIC design flow on a 12 nm technology.

P2012

P2012 [51]is proposed as an early ecosystem for a modular and scalable embedded comput-
ing accelerator from STMicroelectronics. The primary goal is to achieve high energy efficiency
by combining general-purpose computing with domain-specific acceleration realizing an early
prototype of a domain-specific architecture. P2012 many-core architecture is implemented
based on multiple globally asynchronous locally synchronous (GALS) clusters supporting
fine-grained power management. P2012 clusters are connected through an asynchronous
global NoC (GANOoC) [52]. Each cluster represents a heterogeneous compute tile with a
general-purpose multi-core system and loosely coupled hardware accelerators. A local inter-
connect based on a logarithmic interconnection architecture [53] is used for communication
between heterogeneous components within the cluster.

Hardware synchronizers are supported within the cluster to provide scheduling and syn-
chronization for acceleration between the hardware accelerator and general-purpose cores.
Besides, a cluster control unit manages data transfer between the NoC and cluster computing
subsystem. P2012 provides a modular architectural template to create programmable accel-
erators by extending it with custom hardware accelerators. On top of the P2012 architecture,
a software stack was developed for parallel programming based on OpenCL. P2012 can be at-
tached to a host CPU to act as a programmable accelerator for offloading compute-intensive
kernels. P2012 is implemented using STMicroelectronics’ low power 28nm CMOS process
[54] with the possibility to be interfaced with FPGA devices.

17

2 Background and State-of-the-Art

TaPaSCo

TaPaSCo framework [55] is proposed with a similar approach to P2012 [51] as a pro-
grammable accelerator attached to a host CPU and supporting a parallel programming
method like OpenCL. Moreover, TaPaSCo features a high degree of portability to a broad
range of FPGA devices which makes it affordable for research and educational purposes. The
main goal of TaPaSCo is to enable an automated design space exploration for FPGA-based
acceleration with heterogeneous components. From a domain-specific architecture perspec-
tive, TaPaSCo can be considered as a middleware toolflow for domain-specific acceleration
providing both hardware architecture layer and software stack targeting FPGA devices. As
shown in Figure 2.7, TaPaSCo architecture consists of multiple processing clusters connected
through AXI-4 based interconnects for control and data signals. Each processing cluster
hosts multiple heterogeneous processing elements that could be a single general-purpose
core (i.e. RISC-V, or a Microblaze core) or a custom HLS-based hardware accelerator.

Similar to inter-cluster connection, intra-cluster interconnection is based on AXI-4 inter-
connects to connect multiple PEs within one cluster. A general-purpose PE features local
scratchpad memories for data and instruction to increase data locality for memory-intensive
applications. TaPaSCo provides a hardware abstraction layer for seamless integration of a
scalable number of general-purpose cores and HLS-based accelerators through an auto-
mated tool flow supporting an automatic hardware integration and uniform programming
interface. TaPaSCo features a high degree of extensibility by supporting seamless integration
of HLS-based accelerators from Xilinx HLS tools with the option to insert private memory
between hardware accelerators and FPGA's external DDR memory.

Processing Cluster

. Architecture
E 2 :
80 © . — —
¢ fa PCle~--{{ » | DDR
$ 2 3 E Bridge || ™1 ‘% g controller
: o : e o A
S a pe - . (%)
3 Zyng GPx &b ——— 2 BRAM
&> Ports &D e #1{ & 1 4 % controller
oz xiE — | > " > <
/ Signaling Aggregater | | | —————— _1--}-e- @
| -~ Exfiernet = | & Zynq HPx
T Brid
J AR ridge S (BB s <fa Ports
/RISC-V P ing El for TaP:
/RISC-V Processing Element for TaPaSCo YV vy Yy Zyn
2 i i APC Port
5 [Signaling Aggregator]

1]
MSI-X Interrupt TaPaSCo
e | Bridge controller Status
Block
Platform

Figure 2.7: Overview of TaPaSCo architecture for parallel reconfigurable computing systems
[55]. It consists of multiple heterogeneous processing clusters. Each processing
cluster hosts multiple processing elements with a single RISC-V core per each.

18

2.1 Tile-Based Many-Core Architectures

MemPool

MemPool [56] is proposed as a shared memory homogeneous tile-based many-core archi-
tecture with a special focus to ensure low latency and efficient access to LT memory among
all cores. As shown in Figure 2.8, Mempool architecture consists of two levels of hierarchy.
The first hierarchical level is the processing tile where multiple Snitch cores [57] with 16
scratchpad memory banks, each core has a dedicated port to access the memory with one
cycle latency. Each tile has a 4-way L1 instruction cache and AXI interconnect is used for
communication between memory and cores. MemPool provides the flexibility for all tiles to
access the LT memory of each other. Therefore, extra control units are inserted per tile to
handle memory requests and response signals between the tiles. The second hierarchical
level is the MemPool cluster where multiple tiles are connected to form a cluster or a group
of processing tiles. Several network topologies are used for global interconnections between
tiles and between groups of tiles based on logarithmic interconnects.

MemPool has been prototyped using 22nm technology with 256 cores and 1 MiB of shared
memory. It achieves a low energy consumption due to memory access optimization mecha-
nisms. However, MemPool is not extensible to support different processing cores or custom
hardware accelerators as well as its limited portability to other CMOS technologies and FPGA
devices.

ESP

ESP [58] is proposed as an open source research platform for heterogeneous SoC gener-
ation. ESP platform features a modular tile-based architecture for general-purpose and
domain-specific workloads. It features four types of tile-based architecture for general pur-
pose (processor), memory, accelerator, and I/O tiles. ESP offers an automated solution
to integrate custom or third-party hardware accelerators into a complete SoC for what is
called agile hardware development [5]. ESP architecture consists of one hierarchical level
of heterogeneous tile grid connected through a multi-plane coherent NoC [59] as shown in
Figure 2.9. Looking deeper into tiles architectures, the processor tile hosts a single core that
is chosen at design time to be either a 64-bit Ariane core [45] or SPARC 32-bit LEON3 core

TIlIe 324 Tile33 -+ 4Tiled7 4Tileds -

.
E North | | Northeast ﬁ' &
Relmtote Requist :ﬂ:srt‘er Request 1 v =N H s
0rts 4
| [merconnec L Tile 14 |f Tile 15 s
Slatve Request B [1i[Tile31
8 | Request Interconnect Kpﬂm ile9 : =
H :
B Bank0 B | [rwers
E |i|Tile17
= Tile 16
[Response Interconnect WD— L
orts
N l“ lu l“ Remote Response 4SIave Response Ls] ve BN e N —
Interconnect |~ KPorts / Tile0 °j Tile1‘gm Tile4 g Tile5 Zuzy -
/

Figure 2.8: Overview of MemPool architecture for general-purpose computing [56]. The
architecture consists of multiple clusters, each cluster hosts several general-
purpose tiles. Each tile is based on a multi-core RISC-V architecture based on the
PULP platform.

19

2 Background and State-of-the-Art

DRAM
ESP ESP accelerator it {ELPOIE
memory, | 000 Lecalerator-——---—-e-= Iti-bank
memory 7 tile accelerator > HLS (C, SystemC, Tensorflow, 1
co“tro‘“’er & tile Pytc(>rc'h)ychisel,' Verilog, ... " prmzﬁo\%al
bu;
(O (@ h read/write config done
Id.ILr%cStLory 1 g [l Y t
| 2 rivate DMA | cf
é é éé s & E Rache == TLB == dri | reds | IRQ
12 3 4 5 [
Nocl cohlerence IT‘}MA ID(IRQ} I %%%é % % é 6 é
planes planes piane . . ¢) [coherence MA 10/IRQ [NoC
I planes planes plane
grocessor
(RISC-V Ariane, ...) g _ processor third-party
L1 cache o Sy tile tile ||| O third-partg accelerator
g ° (NVDLA, ...)
l AX14 busbI "Iﬂi \&) = ’) (O =)ﬁ read/write port config port dtine
APB bus| = c
L2 cache [goT] —— & AXI4 bus APB bus| IRQ
flush I/0 memory o
é é éé =) tile tile ‘l: é
12 3 6 5 4 5 6
Noc{coherence 10, [RQ] g DMA IO{IRQ NoC
planes plane planes plane

Figure 2.9: Overview of heterogeneous tile-based ESP architecture [58]. ESP consists of
four types of tile-based architecture: (a) a general-purpose tile hosting a single
core CPU based on RISC-V ISAs, (b) an accelerator tile for HLS-based custom
accelerator, (€) an accelerator tile for third-party accelerators (e.g. DSP, NPU), and
(d) a memory tile for off-chip memory integration.

from Cobham Gaisler [60]. Processor tiles feature modular architecture with two levels of
caches with unified interfaces to support 32-/64-bit operations and memory transactions.

Two accelerator tiles are proposed for loosely coupled integration of HLS-based autogen-
erated accelerators or third-party accelerators (e.g. NVDLA [58]). Accelerator tiles support
load/store ports between accelerator private local memory (PLM) and coherent NoC. Co-
herent and non-coherent DMA models are supported for several acceleration modes. In
addition, the ESP memory tile contains a channel to external DRAM. Several DRAM banks
could be supported by several memory tiles. Each memory tile contains a configurable-sized
last-level cache (LLC) connected to the NoC plane through an LLC-coherent DMA. Lastly,
the ESP auxiliary tile hosts all shared peripherals (e.g. Ethernet, UART, etc.), debugging, and
monitoring modules for performance monitoring. ESP provides a full software stack with
the accelerator’s API library to simplify the invocation of hardware accelerators from a user
application making the integration of hardware accelerators as transparent as possible. ESP
platform is highly portable to several FPGA devices as well as for ASIC design flow [61].

Manticore

Manticore [62] is proposed as a general-purpose high-performance tile-based many-core
architecture for data-parallel floating-point workloads such as data analytics, and scientific
computing. Manticore can be classified as an ultra-energy-efficient high-performance com-
puting platform due to its data-path architecture in comparison with baseline GPUs. Also, it
supports a certain degree of heterogeneity by supporting both 32- and 64-bit RISC-V ISAs
through big and little processing cores. Manticore architecture is based on two levels of com-
puting hierarchy hosting its computing cores as shown in Figure 2.10. The first hierarchical
level is the tile or the cluster level which hosts eight Snitch cores [57] based on RV32ISA with

20

2.1 Tile-Based Many-Core Architectures

) HBM M E 4x Chiplets

O A s 1

Single
........ 16x §3 Quad Clusler
27TBIS
L1
128 KB
2x §2 Quad
4TBIS
Quad-Core
4x §1 Quad e
............ v, (RV64GC)
1 1
[} [+ [+ [
4x Clust
Cluster Cluster Cluster Cluster e

Snitch Gore Complex | Tightly Coupled Data Memory (TCDM) |
FPU Subsystem }J
TCDM Interconnect
cco cc1 cc7 DMA
| Shared Instruction Cache |
L0 Instr. Cache ¥
| Cluster Interconnect |

Figure 2.10: Overview of Manticore architecture for general purpose computing [62]. Manti-
core consists of hundreds of general purpose RISC-V based cores (Snitch core
[57]) grouped within multiple processing clusters. The architecture has four
large processing quadrants hosting processing clusters and connecting them to
HBM.

a single-precision floating point unit. In addition, each cluster has a shared instruction cache
that acts as an L2 cache while each core has its private L1 cache.

A tightly coupled data memory is used as a shared memory between Snitch cores connected
through a logarithmic interconnect. The cluster is communicated to another cluster through
cluster interconnect based on AXI standard, and an internal DMA is used to directly transfer
the data between the tightly coupled memory and cluster interconnect. The second level
of hierarchy consists of several quadrants where each quadrant hosts several computing
clusters. Manticore chip consists of four quadrants, each quadrant hosts in total 256 cores.
All computing quadrants are connected through high-performance AXI crossbars [63]in a
cascaded method achieving a high data rate between computing clusters.

Manticore is also equipped with a separate processing tile for management based on Ariane
core (RV64G ISA). In the last stage of the Manticore hierarchy, four high bandwidth memory
(HBMs) are connected for a peak memory bandwidth of 1 TB/s. Manticore has limited
extensibility with heterogeneous accelerators while its peak computing performance exceeds
baseline CPUs and GPUs by 5x. In terms of portability, Manticore is only prototyped using
ASIC design flow with 22nm CMOS technology.

27

2 Background and State-of-the-Art

2.1.2 Open-Source RISC-V ISA

In this dissertation, RISC-V ISA has been selected for the implementation of general-purpose
processing cores for the tile-based many-core architecture as will be presented and dis-
cussed in the following chapters. Therefore, this subsection provides a background and
overview of RISC-V ISA and related processing cores microarchitecture. The RISC-V ISA was
first introduced at UC Berkeley in 2010 as an open-source ISA for academic and industrial
microarchitecture development [6]. RISC-V opens a new wave for new developments and
innovation in processor and many-core architectures domains. In comparison with other ISA,
RISC-V provides several advantages and new opportunities for microarchitecture develop-
ments, especially for academic and educational uses as well as small-size companies that
seek fast time to market for their microarchitecture products [64].

The open-source characteristic allows microarchitecture developers to develop and produce
their own processing cores from the first design stages till producing chip layouts without
prohibitive license costs for non-open-source ISAs. In addition, RISC-V ISA extensions open the
door for the development of extensible systems specifically for domain-specific accelerators
such as application-specific instruction set processors (ASIPs), co-processors, and tightly
coupled accelerators. Modularity is yet another aspect of RISC-V ISA that makes it suitable for a
wide spectrum of computing platforms from high-performance to low-power processing cores
as well as specialized processors with dedicated execution or accelerator units. Therefore,
these advantages led to the proliferation and adoption of RISC-V ISA during the past few years.
Nowadays, RISC-V is supported and maintained by RISC-V international organization [65]
providing a strong and sustainable RISC-V ecosystem. Over the past few years, several studies
have focused on different issues related to RISC-V microarchitecture, security, compiler, and
operating system [66], [67].

As shown in Figure 2.11 the number of technical and scientific publications is growing

4500 Number of Scientific and Technical Publications Including RISC-V ISA
T T T T

4000

3500 —

w

=]

=]

=]
I

N

a

=]

=]
I

2000 —

Number of Publications

-
(2]
(=]
o

0 | | | | | |
2014-2015 2015-2016 2016-2017 2017-2018 2018-2019 2019-2020 2020-2021 2021-2022
Year

Figure 2.11: Number of RISC-V-based scientific and technical publications since 2014 accord-
ing to Google Scholar records.

22

2.1 Tile-Based Many-Core Architectures

exponentially since 2014 based on google scholar yearly records which reflects the growing
interest in the development and use of RISC-V ISA in many domains. As the focus of this
PhD thesis is on modular and adaptive many-core architectures, RISC-V-based processors
supporting multiple ISAs are used inside several proposed general-purpose tiles [16]. Despite
several open-source RISC-V cores being available and ready to use [68], some critical factors
are important to be supported by the chosen cores to fulfill the requirements for a modular
tile-based many-core architecture. Among those criteria, the processing cores should be
developed by a standardized hardware description language (HDL) (e.g. VHDL, Verilog, System
Verilog) to be compatible with the rest of the many-core system components.

In addition, RISC-V cores should support external memory subsystems to be extended later
with local scratchpad memories to create base PEs for general-purpose tiles. Moreover,
selected RISC-V cores should at least support M extension for multiplication and division
instructions in order to execute basic arithmetic operations. Factors like area and power-
optimized cores are considered during the selection to achieve better utilization and less
power consumption on the target FPGA.

Several low-power, embedded class, application class, and high-performance class processors
based on RISC-V ISA are developed and implemented both by academic research and industry
with several RISC-V extensions and bit widths. Table 2.1 shows current ISA extensions
supported by RISC-V and their description. Large varieties of RISC-V cores are currently
available supporting and implementing various ISA extensions with different pipeline depths
for a broad range of application domains. Table 2.2 shows a list of selected RISC-V cores
from low-power application domains to high-performance computing. In other words, from
little and midrange cores to high-performance cores. The presented cores in Table 2.2 are
classified based on the core size and application domain into three groups. The first group is
for little cores or processing cores that can be used for low-power application domains such
as wearable and battery-powered devices. In this group, the pipeline structure is short in
depth with two to five stages supporting basic arithmetic and load/store operations. Little

Table 2.1: RISC-V ISA extensions [69].

RISC-V ISA Extension Description
RV32I Base integer instruction, 32-bit
RV64| Base integer instruction, 64-bit
RV128I Base integer instruction, 128-bit
M Multiplication extension

Compresed extension

Atomic extension

Floating point extension

Double-precision floating point extension

Supporting M, A, F, D extensions

< | O |39 7| >

Vector extensions

23

2 Background and State-of-the-Art

cores are characterized by small hardware footprints which makes them suitable for large-
Size many-core architectures to achieve higher performance per watt. However, supporting
compute-intensive applications or hosting an operating system is not possible to achieve
with single little cores without memory management or virtual memory support.

The second group of RISC-V cores is the midrange core or application class core [87] which
supports a deeper pipeline architecture compared to little core microarchitecture. Also,
application class cores support floating point extensions for both 32- and 64-bit based on the

Table 2.2: A list of selected RISC-V-based cores.

RE(;\;ucpo)re IS5A Language S?)Efcne Silriecgg ree [ref.
(I_ittCI)er—Ccaore) RV32IM VHDL v 3-stages [70]
(I_P|It(t:IOe Ré/jrze | RV32IMC Verilog v 1-stage [71]
(ut;j-gcire) RV32IMA SystemVerilog| v |3-or 4-stages| [72]
(L\i/élxjfgrve) RV32IMCA SpinalHDL | v |2-toS-stages| [73]
(Uttllzecxore) RV32IMC SystemVerilog| v 2-stages [74]
> (T_?ttrlei;’is)s RV64/32IMAC Verilog v 3-stages [75]
RIS(CL\i(tia_/fereﬁ)rOP) RV32IMFC SystemVerilog v 4-stages [76],[77]
(Q;(;ar‘giégiii)e) RV64GC SystemVerilog v 6-stages [78], [45]
i dt'aaEg:_\éore) RV64/32IMAFDBCH| VHDL v 7-stages [79]
i dgﬁi(}@ RV32/64IMAFDC Chisel v 5-stages 80]
(l\/lde fas r?g/zf;e) RV32IMAV. | SystemVerilog| v/ (vjéfr%zi;s) [51]
(ﬁgi“r/'e) RV6AIMAFDC Chisel v | 0stages | [82]
(HHP?S?rEe) RV64IMFDC Verilog X 5-stages [83]
(HPEJZore) RV64GC Verilog X 8-stages [84]
(HNP%icflrEe) RV64GC Verilog X 5-stages [85]
XU(Z“PT_ iceofj; 0 RV64GCV Verilog X 12-stages | [86]

24

2.2 Hardware Accelerators Integration

base ISA. Application class core as mentioned in Table 2.2 supports a UNIX-based operating
system with memory management unit implementations and atomic (A) extension which
increase the pipeline complexity and therefore the total hardware footprint. In addition, a
virtual address space requires hardware support for fast address translation with transaction
lookaside buffer (TLB) and page table to the core. Application class cores are typically
connected to off-chip memory. Therefore, the efficiency of memory access relies on the
implemented memory hierarchy with caching subsystems. Moreover, the operating frequency
for application class cores is much higher than for little cores. Accordingly, computing
performance and power consumption are much higher by orders of magnitude which makes
them suitable for general-purpose workloads.

The third group includes high-performance cores which usually have deeper pipeline struc-
tures than application class cores with single and double-precision floating points extensions.
They are also superscalar out-of-order cores with enhanced branch prediction implemen-
tations and a complex load/store pipeline stage with several queues [82]. In addition, a
distributed scheduler unit is available to support out-of-order execution as well as an en-
hanced decoding stage. Therefore, high-performance cores are characterized by high com-
puting performance and large hardware footprint which make them suitable for exascale
many-core architectures. Exascale many-core architectures are out of the scope of this PhD
thesis. Therefore, the selection of RISC-V cores is based on little and midrange cores groups.
Accordingly, in the next chapters, the RIC5Y (CV32E40P) [77] and Ariane (CVAB) [45] cores
are selected to be used in the proposed multi-ISA many-core architecture as HPC is not
supported by the proposed many-core platform.

2.2 Hardware Accelerators Integration

Heterogeneous many-core architectures are increasingly supporting different types of hard-
ware accelerators to achieve the strong need for high computing performance and energy-
efficient execution for different application domains. Hardware acceleration provides superior
energy efficiency through specialized processing components that can be integrated with
general-purpose cores for different workloads requirements. Figure 2.12 shows a SoC archi-
tecture that integrates many hardware accelerators with a general-purpose host processor.
In this heterogeneous computing paradigm, hardware accelerators are designed to execute
specific compute kernels/functions and the host processor runs the remaining kernels. In
other words, hardware accelerators are used to offload the execution of compute-intensive
kernels from the processor to increase the whole system's efficiency. Hardware accelerators
vary in type, flexibility, and efficiency.

Compute-intensive applications require specialized hardware components to improve the
performance per watt of selected computational kernels. Some accelerators are highly
customized to execute a particular application efficiently such as neural networks [88], [89],
[90], THz radar signal processing [91], [92], [93], or computer vision application [94], [95],
[96]. Specialized processing can take several ways of hardware acceleration through different
design methodologies and architecture types. However, no standard definition for hardware
accelerators is available. There exists a large variance for hardware accelerators that differ
between them based on accelerator models, degree of granularity, programmability, and
way of coupling with the rest of the system.

25

2 Background and State-of-the-Art

(
‘>

(
‘
1

Communication Fabric

Host
Processor

Shared Memory

Figure 2.12: Heterogeneous SoC architecture model with many accelerators and a host
processor. (DMA: Direct Memory Access, SPM: Scratchpad Memory)

Figure 2.13 shows a categorization of hardware accelerator types.

Fixed function accelerators: a fixed function accelerator is implemented to execute a specific
function from an application workload with different configurations and I/0 sizes. Prior to
fixed function accelerator design, application kernels identification is conducted to determine
the compute intensity degree and regularity usage of the target application’s functions/kernels
in order to specify which functions are efficiently executed using fixed function accelerators.
Fixed function implementations provide the highest performance per watt as they are highly
optimized for specific operations. However, their efficiency starts to decrease when they are
designed to support multiple functions or to be configurable for large design spaces.

Design constraints (e.g. performance, energy, area) are very crucial to determine the spec-
ification and number of fixed function accelerators for a specific application domain. For
example, in the autonomous driving domain, the conducted study by [97] shows that deep
neural network inference and feature extraction consume 95% of the total execution cycle.
Accordingly, using fixed function accelerators on an FPGA reduces the overall execution time
by 93x compared to software-based implementation. Similarly, for THz synthetic aperture
radar, FFT and backprojection algorithms consume 90% of the overall execution time needed
to construct one image [91]. Therefore, fixed accelerator units for FFT and projection are
implemented and integrated with a host processor using a HW/SW co-design design flow to
achieve a speedup latency of 36x compared to software-based implementation. Neverthe-
less, the use of fixed-function accelerators is limited to one application with a specific set of
functions. Therefore, this type of acceleration lacks high level of granularity and flexibility to
be reused by different workloads.

26

2.2 Hardware Accelerators Integration

Fixed-Function
Accelerators

Domain-Specific
Accelerators

Energy Efficiency

Specialized
Processors

>
Flexibility/Programmability

Figure 2.13: Hardware accelerators categories and the related trade-off between flexibility
and energy efficiency.

Domain-specific accelerators: domain-specific accelerators are proposed as a solution to
increase the granularity and flexibility of hardware acceleration to support and be reused by
multiple functions from different workload applications. In general, domain-specific designs
provide the flexibility to adapt the same architecture to a set of applications from the same
domain [98] compared to general-purpose architectures. This category of acceleration offers
a balance between specialization and generality. It is not based on special instructions like
will be shown next but it is based on special engines for a domain of algorithms (e.g. matrix
multiplication, FFT kernels, etc.).

An early version of a domain-specific accelerator is the function level processor [99] which
aims to reduce the gap between flexibility and efficiency. It supports function-level processing
instead of traditional instruction-level processing in normal processors. The datapath is a
pipeline of functional blocks that are used in a similar way to baseline pipeline stages. Each
functional block represents a hardware-accelerated function. For sparse matrix multiplication
domain, a streaming domain-specific accelerator is proposed by [100] for a wide range of
sparse multiplication techniques. It consists of a two-dimensional array of parametrized MAC
units with tightly coupled on-chip memory. The accelerator is configurable at runtime to sup-
port different sizes of matrices and multiple sparsity algorithms. Accordingly, domain-specific
accelerator increases the degree of granularity and modularity for hardware acceleration
that facilitate the integration of a large number of accelerated function in a heterogeneous
many-core architecture.

27

2 Background and State-of-the-Art

Specialized processors: Specialized processors differ from domain-specific accelerators that
they offer a certain level of programmability for more flexibility to support multiple application
domains. However, increasing the flexibility will degrade the efficiency by a certain factor. On
the other hand, specialized processors reduce the design effort by increasing the design
modularity which allows the design reuse into several many-core architectures. In other
words, they are seamlessly integrated into different system architectures. Specialized pro-
cessors can be application-specific instruction set processors, tightly coupled co-processors
or custom accelerators with a host CPU. Data-level parallelism and custom instructions are
employed in all of these computing paradigms. For example, machine learning domains are
highly benefited from specialized processors to achieve higher orders of magnitude higher
performance than baseline general purpose computing, such as [101], [102]. In general, the
development and design of specialized processors consider a range of kernels or a set of
functions to be supported by custom instructions to be invoked from the software layer.

Hardware accelerator efficiency does not only rely on the accelerator architecture type,
internal compute units optimization, and degree of parallelism. The coupling and the way
hardware accelerators are integrated into the whole system is a crucial design decision that
affects the actual performance of hardware accelerators while interacting with other compute
and storage units within the system [103]. In this subsection, state-of-the-art techniques for
accelerator coupling to processor and memory units are presented.

2.2.1 Accelerator Coupling Models

Accelerator coupling is one of the distinguishing features of a hardware accelerator, as it
impacts fundamental design choices for SoC or many-core architectures. Coupling models
determine the interaction between hardware accelerators and processors, whether the target
accelerator is a memory-mapped peripheral within the address space of a processor or is
considered an extension to the processor execution unit stage. Also, memory access patterns
between accelerators and local or external memory units are highly related to coupling
models. In addition, how accelerators are operated and controlled, through software, or
software and hardware; and whether custom instructions are required for the interaction
between processors and accelerators. Accelerator coupling models can be categorized into
two classes: 1) tightly coupled accelerator (TCA), and 2) loosely coupled accelerator (LCA).

TCA model: In the TCA model, the hardware accelerator is coupled to a general-purpose
processing core as an extension to the core itself through ISA extension or as a separate
accelerator directly coupled to the processor with/without sharing the data cache memory as
shown in Figure 2.14. TCAs are typically specialized data paths that fit with domain-specific
and specialized processor acceleration categories. They are tightly integrated compute units
with the processor functional unit to offload frequently occurring kernels or operations of an
application code. In other words, the execution stage of a processor pipeline is composed of
several functional units including TCAs. Atightly coupled model imposes several challenges on
the accelerator’s design and implementation. The accelerator area should be approximately
the same size as other processor pipelines’ functional units. The use of local memory in the
design of TCAs is unlikely supported to reduce the size of storage elements (i.e. SRAM) in
pipeline layouts. Therefore, a limited amount of storage units are implemented as registers
and buffers within TCAs.

28

2.2 Hardware Accelerators Integration

ISA Extension

Accelerator Accelerator

RTL/HLS

b Processor Datapath =
o
Y)

Data-path

!

Inst.

Cache Shared Data Cache

Communication Fabric

!

Shared Memory

Figure 2.14: Tightly-coupled accelerator model, where accelerators are integrated as an
extension to a general-purpose processor or as an accelerator directly coupled
to the processor with/without data cache sharing.

Designing TCAs requires ISA extension with special instructions to be diffused through the
software via low-level libraries or the compiler. TCAs allow the extension of microproces-
sors via vector instruction to support single-instruction multiple-data (SIMD). The Tensilica
extensible processor [104] is an example of a commercial IP for ISA extension that supports
the integration of TCAs to a baseline processor pipeline. On the other hand, open-source
RISC-V ISA extension offers the flexibility to integrate custom TCAs into RISC-V pipeline [105].
In this context, RV-CNN [106] is proposed to extend the RV32ISA with custom instruction to
accelerate several CNN operations through embedded TCAs to the RISC-V pipeline. Similarly,
a vector extension unit is proposed by [107] to support multiple matrix operations accelera-
tion through multiple execution lanes. However, ISA is typically fixed and proprietary which
limited the design choices for internal compute units and control path of extended execution
units. Co-processors are the second type of TCAs that can perform more complex tasks
than a single custom instruction and can handle large data sets. Co-processors can support
large sizes of private local memory that could be coherent or non-coherent with the system
resources. In this case, accelerators are implemented as separate entities, not authentic parts
of the processor, that are integrated with the processor core through dedicated interfaces
and interconnections as shown in Figure 2.14 by the accelerator on the left.

Data access through co-processors can support coherency by sharing a private cache with
the processor as the example of the right accelerator in Figure 2.14. For cache coherent
data transactions, co-processors must implement the same coherence protocol supported
by processor cores [108]. Several co-processors implementations support both coherent
and non-coherent data transactions depending on target applications' requirements. The
CNNX [109] is implemented as a co-processor to accelerate neural network kernels for
embedded computer vision applications. It supports multiple neural network topologies and
depth as well as different sets of parameters. Similarly, RedMU1E [110] is implemented as a

29

2 Background and State-of-the-Art

Accelerator
Processor

RTL/HLS

Inst. Data
Cache Cache

Communication Fabric

!

Shared Memory

Figure 2.15: Loosely-coupled accelerator model, where accelerators are integrated into the
system through a communication fabric as memory-mapped peripherals to
general-purpose processors.

tightly-coupled co-processor for matrix multiplication acceleration. It supports floating and
fixed point multiplications for deep learning inference. The co-processor communicates to
multi-RISC-V-based cores through a shared bus with a shared data memory.

LCA model: In the LCA model, the hardware accelerator is located outside the proces-
sor core and interacts with it through an on-chip interconnect as shown in Figure 2.15.
As a consequence, LCAs can support larger accelerator sizes with more private memory
compared to TCAs. This allows coarse-grain accelerators with complex data paths and large
storage units that are capable to accelerate a complete application instead of small kernels
or specific functions. Therefore, LCAs feature a high level of parallelism with parallel and
multiple data paths. LCAs do not require ISA extensions, they are running independently from
general-purpose cores. Instead, they are configured with low-level drivers or libraries similar
to memory-mapped peripherals in the system. Moreover, LCAs provide more flexibility by
freeing general-purpose cores to run other tasks in parallel with application acceleration.

Typical LCAs are integrated with DMA for direct interaction with storage units without in-
terfering with processor-memory access. Unlike TCAs which are sharing the memory with
general-purpose core which degrades their memory access bandwidth. Research works
related to LCAs show a long list of different structures of LCAs from different application
domains. Hence, LCAs are not limited by the ISA or processor interface protocols like in the
case of TCAs. LCAs can be designed independently and decoupled from the system, the
only requirement is to support standard input and output interfaces that are compatible
with the communication fabric protocol of the target system. CHARM [111] is an early ex-
ample of accelerator-rich architectures [112] which is based on a massive number of LCAs
implementing different computational kernels at different degrees of heterogeneity and
granularity. CHARM provides the hardware and software infrastructure to realize a massive
heterogeneous accelerator-centric platform for a broad range of application domains.

30

2.2 Hardware Accelerators Integration

In the same context, AXR-CMP [113] offers a management scheme for accelerator-rich
architectures to support resource sharing between multiple general-purpose cores and LCAs.
It allows the creation of virtual accelerators out of multiple smaller ones using a chain of
multiple accelerators together. For RISC-V-based SoC, a framework to simplify the deployment
of LCAs in a heterogeneous multi-core SoC is proposed by [114]. It supports the seamless
integration of HLS-based accelerators by automating the generation of coupling interfaces
between the generated accelerator overlay and the system interconnect. Some examples
of accelerator-rich architectures with LCAs are the brain-inspired computer MasterMind
[115] and the KACHEL platform for 5G signal processing [116]. Both platforms feature a
massive amount of domain-specific and fixed function accelerators that can accelerate a
whole compute-intensive application either from the machine learning or 5G domains. In
addition, they are equipped with sophisticated resource management units to highly optimize
resource utilization and increase computing performance at runtime.

Table 2.3 summarizes the main differents between TCA and LCA models regarding the
area, memory sizes, supported data sizes, and controlling mechanisms. In addition, LCAs
have another main advantage over TCAs as they ease the development and integration in
heterogeneous many-core systems. The designer needs to adhere to the same interfaces
and communication protocols imposed by the main communication fabric of the target
many-core system. During this thesis, the focus of the work is on the LCA model and how to
seamlessly integrate this model into the proposed tile-based many-core architecture.

2.2.2 Memory Management for Accelerators

According to the accelerator store framework published in 2010 [118], an average of 69%
of hardware accelerator area is consumed by private local memory. In this survey, target
hardware accelerators are LCAs integrated into multi- and many-core systems with general-
purpose cores. An example of a heterogeneous many-core architecture with multi LCAs with
large private local memory integrated with general-purpose compute units [117] is depicted
in Figure 2.16. Therefore, addressing memory aspects of LCAs is a necessary step to design
an efficient heterogeneous many-core system. Also, supporting data coherency between
LCAS' private local memory and shared main memory in the system is another challenge to
be addressed. Accordingly, the effect of multiple accelerators processing a large amount
of data through off-chip memory needs to be analyzed and considered specifically in cases
of memory-intensive applications. A typical LCA consists of several computation units or

Table 2.3: Comparison between hardware accelerator coupling models.

Accelerator Area & Private Local | Supported _ Examples
Controlling
Coupling Model | Resources Utilization [Memory Size | Data Size [Ref]
Tightly Coupled 106], [107
Enty P Small Small Small SW HOeL 107
Accelerators [104],[109]
Loosely Coupled (111, [113]
Large Large Large HW/SW
Accelerators [115],[116]

31

2 Background and State-of-the-Art

Hardware Hardware
Accelerator Accelerator
’ -t Private Local
ma Memory "
GPeneraI- Hardware
urpose Accelerator \
Cores \

Network

| interface Accelerator Logic

-

% 4 S
'_.

Figure 2.16: An example of a heterogeneous many-core architecture with many LCAs and
general-purpose cores, it shows the large size of private local memory that
dominates the area of LCAs [117].

accelerator logic that implements the arithmetic operations of accelerated functions and
storage units or private local memory (PLM) that stores data as shown in Figure 2.17. PLM
constitutes the accelerator memory subsystem and it can be a scratchpad memory in a single
or multi-banks or cache memory unit. PLM units are used to store an amount of data from the
DRAM in order to handle large data sets workloads. In fact, PLMs can reach up to 90% of the
LCA area. However, the amount of data that can be stored on-chip is limited to a few MBs. In
this subsection, several accelerator memory interaction techniques and supported features
are presented and analyzed based on: 1) supporting direct-memory access and coherency, 2)
supporting large data sets, and 3) supporting accelerator memory reuse. Several accelerator
memory interaction techniques and supported features are presented and analyzed based
on: 1) supporting direct-memory access and coherency, 2) supporting large data sets, and 3)
supporting accelerator memory reuse.

Memory Access and Coherency: Several techniques are proposed by literature trying to
reduce the communication overhead in private accelerators by optimizing data transfer be-
tween memory and accelerator logic. In this subsection, traditional memory technologies (e.g.
SRAM, DRAM) are considered for accelerators' local memory and the complete system shared
memory implementation. In shared memory accelerator-centric architectures, accelerator
sharing takes place at different levels of the memory hierarchy, from PLM to shared main
memory. LCAs can be shared at different memory levels (e.g. L1, L2, or last level main mem-
ory), it depends on the degree of scalability and hierarchical design of the target many-core
system. In this context, a hardware accelerator wrapper is proposed by [120] supporting
data streaming between the accelerator hardware logic and the shared tightly coupled data
memory of the system. The wrapper hosts either an RTL or HLS-based accelerator with
a control path and wrapper interconnect modules. The wrapper implements the control
plane for the hosted hardware accelerator. The hardware accelerator wrapper includes a
register file that is accessible by processors directly to read and write control signals and

32

2.2 Hardware Accelerators Integration

Y
>
’

N PLM Ports -
] LCA Tile
1 1
1 1
[T S Input | I
o x interfaces . -|

DMA o) : ST

5
s Computing
e Unit 0 = I
1 O A = [T 41
=1 I | R {HHF Private Local |
L) Unit1 = (- Memory
i S : t [T 1
=1 : (<]
g " o
i E: Computing I
: o' Unit n
< I 3
1

Wl

i A '% Output

b Buffers |
1 1
1)

Ve
N
N

Figure 2.17: LCA tile structure as described by [119]: it contains several computation units
representing the accelerator logic, private local memory, control path, I/0 buffers,
and interconnection interfaces for data transfer.

the status of the hosted accelerator. A synchronization module is implemented to handle
data transfer between the accelerator PLMs and tightly coupled data memory of the system
through several DMA units. In addition, it supports data moving between multiple hardware
wrappers in the system. The process of controlling the hardware wrapper is handled through
a set of low-level drivers from processor cores that can be called directly from the software.
Overall, the proposed hardware wrapper by [120] allows a smooth integration of accelerators
into shared memory many-core systems with SW APIs to facilitate the interaction between
accelerators and shared memory. Similarly, Bellochi et al. [121] proposed a RISC-V-based
overlay with multiple LCAs. The overlay architecture consists of a multicore RISC-V with shared
tightly-coupled data memory connected through a bus interconnect. LCAs are attached to
the bus interconnect within a hardware accelerator wrapper that controls data movement
between the bus interconnect and the accelerator logic. However, the proposed overlay lacks
modularity and has limited scalability. It provides a single method to integrate the accelerator
logic through a shared interconnect to a multicore RISC-V without direct access to external
memory.

The template-based memory access engine (MAE) [122] is a similar approach proposed
to address decreasing memory latency by simultaneous memory access from multiple ac-
celerators in many-core systems. MAE provides a common memory access template for
accelerators that can handle different memory access patterns such as streaming, strided,
complex, indirect array access, and gather access patterns. It consists of a template-based
prefetcher located next to the memory controller to prefetch data from memory to accelera-
tor PLM. MAE aims to reduce memory access latency and jitter in many-accelerator-based
SoC. MAE internal architecture consists of a template-based prefetcher and a prefetch buffer.
The prefetcher contains a prefetcher table to store memory access request data to predict
memory congestion. The scheduler and prefetch request handler are the main prefetcher
units to generate memory commands for the memory controller unit. The prefetch buffer

33

2 Background and State-of-the-Art

consists of SRAM storage to store received read and write requests to be served by the
prefetcher. The MAE is similar to DMA, it provides support for more memory access patterns,
not only streaming, for different kinds of accelerators’ memory access patterns. Different
cache coherence models for accelerators are proposed by literature such as fully-coherent,
last-level-cache (LLC) coherent, and non-coherent [123]. The non-coherent model allows the
accelerator to access off-chip memory directly. While in the fully-coherent model, accelerators
are coherent with private caches of other compute units in the system (i.e. processors, and
accelerators). In this context, an extension of a directory-based cache-coherence protocol
is proposed by [124] to support coherent LCA in many-core NoC-based architectures. An
extension of the MESI directory-based protocol is implemented and integrated into coherent
LCAs.

Coherent LCAs are communicated through a coherent multi-plane NoC that supports data
coherency between heterogeneous components. The evaluation results show a significant
reduction in the number of memory access compared to non-coherent-based accelerators
over NoC. In order to manage several cache coherency models at runtime, a runtime recon-
figurable memory hierarchy for scalable SoCs is proposed by [125]. It aims to support the
previous three listed cache-coherence models by proposing a runtime adaptive algorithm to
manage the coherence of LCAs. The proposed algorithm is running on coherent NoC-based
architecture with heterogeneous LCA tiles and processor tiles. Cache controllers are imple-
mented inside the LCA tile as a socket between the network interface and the accelerator’s
PLM. Based on the accelerator memory patterns, the proposed runtime algorithm selects the
optimum cache-coherent model. As a result, a 30% reduction in memory access is achieved
compared to fixed cache-coherent model implementations.

Similarly, Cohmeleon [108] is proposed to manage multiple cache coherent models for co-
herent LCAs in heterogeneous SoCs. Cohmeleon applies reinforcement learning algorithms
to select the optimum coherence model dynamically at runtime by observing the system
and monitoring its performance. It supports different SoC architectures either with NoC or
bus-based interconnections. Cohmeleon trains a reinforcement learning model to select
the optimum cache coherence model for each LCA in the system. The training model takes
into account LCA execution time and off-chip memory access number and patterns of each
LCA. As a result, Cohmeleon reduces the off-chip memory access by 66% compared to
state-of-the-art fixed coherent model solutions.

Managing Large Data Size: Big data applications with large data sets are increasingly used for
data analytics and scientific computing. Typically, large data centers are used to execute such
kind of applications with large data sets. In order to reduce energy efficiency and increase
computing performance, hardware acceleration could be a suitable solution within a scalable
heterogeneous computing system [126]. However, the size on-chip PLM is smaller than
the size of data sets. Therefore, handling large data sets by hardware accelerators require
new solutions to handle data movement between external memory and accelerators' PLMs.
Therefore, an accelerator structure solution is proposed by [119] to handle large data sets
for high-performance embedded applications. The proposed accelerator structure supports
a direct sharing of physical memory across processors and accelerators with an accelerator
virtual address space that is separated from the processor virtual address space.

Moreover, the main feature of the accelerator structure is a dedicated DMA controller with
a specialized translation look-aside buffer (TLB) that supports multiple specific memory
access patterns. The accelerator contains circular and ping-pong data buffers to support

34

2.2 Hardware Accelerators Integration

the pipelining of computation and DMA transfers with off-chip memory. The main focus is
to parallelize the computation process with the memory and data movement process and
hide the DMA latency in order to not degrade the acceleration performance. The proposed
acceleration solution is integrated into an automated toolflow for accelerator memory design
called MNEMOSYNE [127]. The toolflow supports an automatic generation and optimization
of memory hierarchy for HLS-based accelerators. It optimizes the placement of accelerators
with respect to the location of DDR controllers and load-balancing policies. Moreover, it
supports a scalable number of concurrent accelerators with different data set sizes.

Accelerator Memory Reuse: The number of hardware accelerators is growing rapidly in
recent heterogeneous many-core architecture. Therefore, the required on-chip memory
size increases to implement the required accelerators’ PLMs and internal buffers. However,
hardware accelerators are not utilized 100% during operating time. As a conseguence,
accelerators' PLMs are remaining unused during the accelerator’s inactive time. Therefore,
enabling the re-utilization or sharing of accelerators PLMs with other system components
can improve resource utilization and increase efficiency [117]. As a result, a drastic decrease
in accelerators’ cost of integration into heterogeneous systems can be achieved.

In this context, several works have been proposed to reuse accelerators PLMs as a cache
memory in a non-uniform cache architecture with the rest of the system. All considered
accelerators are LCAs with complex and large data paths with a few megabytes of on-chip
memory. BiN [128] is proposed to share accelerator internal buffers in non-uniform access
memory many-accelerator systems or accelerator-rich architectures. A highly efficient on-chip
utilization has been achieved through several methods to dynamically allocate accelerator
buffers in a non-uniform memory access architecture. First, a dynamic interval-based global
allocation method is proposed to assign extra free buffer spaces from some accelerators to
other accelerators that can best utilize them. In this case, buffers are allocated on demand
as an extended cache memory of the accelerator which requests more memory space.

The second proposed method is a flexible and low overhead paged buffer allocation to
reduce the effect of buffer fragmentation. In this method, the accelerator will use a small local
page table to translate buffer addresses into absolute addresses in order to set the page
granularity for each buffer according to the buffer size. Therefore, larger buffers have a larger
page size. For BiN, the buffer sizes are set to a limit of a few kilobytes for only accelerator-
based architecture which limits its adoption in heterogeneous many-core architectures with
general-purpose cores and hardware accelerators. Therefore, ROCA is proposed by [129] to
overcome this limitation by sharing accelerators PLMs with any compute element type in
heterogeneous many-core architectures. ROCA is using the complete PLM, not just a fraction
of it, to extend the cache memory size of another heterogeneous element in the many-core
architecture.

In order for accelerator's PLM to operate as a cache block, a cache manager is implemented
for each accelerator. Since ROCA extends the many-core system last-level-cache with accel-
erator PLM. A large tag array in the last-level cache is implemented to track blocks stored in
accelerator PLMs. Accordingly, previous works are trying to exploit the abundant PLMs in
accelerators to reuse them as extended memory blocks for the whole system while they are
not used by accelerated workloads. In this way, a reduction in accelerator integration cost,
as well as more energy efficiency can be achieved. In this PhD thesis, an accelerator memory
reuse implementation is proposed for FPGA-based heterogeneous many-core architecture.
The proposed implementation is based on a hybrid memory/accelerator tile that is described

35

2 Background and State-of-the-Art

in Chapter 4, it supports a dual mode of operations to operate as a hardware accelerator with
BRAM/URAM-based PLM or using the on-chip PLM blocks as a scratchpad shared memory
for general-purpose computing tiles.

2.3 Runtime Adaptive FPGA-based SoC

By the fading of Moore's law and the rising age of heterogeneous computing paradigms
and domain-specific architectures [2], agile design practices arise as new topics of research
to mitigate the new shift towards highly customized heterogeneous systems. Adaptive or
reconfigurable computing is considered one of the agile design practices that can reduce
the development cost from the economic point of view [130]. Hence, the development
of heterogeneous architectures and associated hardware accelerators is not an easy task,
especially in highly scalable systems with a high level of heterogeneity among computing
units. Sometimes, the underlying hardware architecture requires to be re-designed and
optimized every time a new class or domain of applications needs to be supported which not
only increases the development cost but also reduces the ability of upgrading and maintain
the system architecture and its associated design toolflows and programming methods. On
the other hand, the deployment cost as an ASIC design will increase accordingly due to: 1)
complex design tools and required skills, 2) a longer and unsustainable development cycle,
and 3) wastage during upgrades or re-design. The main challenge is how to efficiently manage
the changes and upgrades without the need to repeat the whole design process. Therefore,
adaptive computing is the optimum way to manage the regular changes and upgrades in
modern highly scalable heterogeneous architectures [14].

In this section, the focus will be on runtime adaptive FPGA-based systems and their related
reconfiguration management frameworks and how adaptability can be used in heterogeneous
many-core systems to increase their flexibility and reduces the upgrading cost. An FPGA is
a type of integrated circuit design that can be reprogrammed to implement several digital
blocks to execute different functions or applications (e.g. digital signal processing, neural
network algorithms). FPGAs can be classified into two main types: 1) flash-based and static
random access memory (SRAM) based FPGAs, and 2) fuse-based and anti-fuse-based FPGASs.
There are several FPGA manufacturers, and two of them are dominating the FPGA market
which are AMD (Xilinx) and Intel (Altera) FPGA devices. In this PhD thesis, Xilinx SRAM-based
FPGA devices are considered. A Xilinx SRAM-based FPGA has a configuration memory that
stores the configuration of the target digital functionality in a form of a bitstream.

A typical Xilinx FPGA device floorplan consists of a grid of resource and interconnects tiles
as shown in Figure 2.18. Configurable logic blocks (CLBs) tiles contain a column of CLB
where each CLB consists of slices of look-up tables (LUTs), flip-flops (FFs), and multiplexers.
LUTs are used to implement logic functions, where they can be combined together via
interconnect to form larger logic functions. In addition, Xilinx FPGAs contain on-chip block
memory (BRAMs/URAMSs) which are also arranged in columns on the same FPGA floorplan.
Each memory block can operate independently to perform memory read/write operations in
parallel with other on-chip memory blocks. Also, several BRAM/URAM blocks can be combined
together to act like a single memory with a continuous address space. BRAMs/URAMs can be
used to implement RAM, ROM, and several buffer implementations. A Xilinx FPGA supports
simple on-chip digital signal processing units (DSPs) which are also arranged in the form
of columns like other resource types as shown in Figure 2.18. The DSP unit consists of

36

2.3 Runtime Adaptive FPGA-based SoC

Interconnect
BRAM/URAM L~ '
- A Tile
Tile \\ 1
N 417
N
X0Y2 XLvR
1/0 Banks
BUFH (CLK) L
| \\
‘ N
R LA LLLL L TN L L] oses
| LT N Tile
_——’—— N
BUFG (CLK) —1 N
|
\ \CLBs
Tile
X0Y0 X1vp

Figure 2.18: A Xilinx Ultrascale FPGA floorplan [131] with several clock regions, each clock
region contains a grid of resource tiles for CLB, DSP, BRAMs/URAMs and a grid
of interconnects for connection between them.

pre-adder/subtractor, multiplier, and post-adder/subtractor to perform basic arithmetic
operations such as addition, and multiplication in a few clock cycles. The FPGA is divided
into multiple clock regions, clock buffers are used between them to equally distribute a clock
source in the whole FPGA floorplan. Clock buffers are divided into global buffers (BUFG),
and horizontal buffers (BUFH). BUFGs are used to forward vertically the clock line to BUFHs
which drive clocks to clock regions. Clock regions contain a clock management tile that hosts
a phase-locked loop and a mixed-mode clock manager to control the frequency of input
clock signals. Moreover, the clock region contains I/0 banks to interact with FPGA external
peripherals. FPGAs can be programmed by describing the logic of LUTs and configuring the
FPGA floorplan interconnect. A logic function can be modeled using hardware description
languages (HDLs) that can be synthesized into an RTL netlist. Afterward, a place and route
process is required to physically place the netlist to the FPGA resource. Finally, a bitstream
generation is conducted to be loaded to the FPGA configuration memory in order to physically
configure the FPGA with certain logic functions.

2.3.1 Partial Reconfiguration

Recent families of Xilinx SRAM-based FPGA devices offer the possibility of adapting the device
logic at runtime using dynamic partial reconfiguration (DPR) techniques [132]. Partial recon-
figuration depicts the configuration of a certain partition of the FPGA floorplan. Each partition
hosts a specific configuration of a certain logic function. Therefore, partial reconfiguration
allows changing of partition configuration/functionality at runtime without the need to update
the whole FPGA configuration [133]. Recently, Xilinx has renamed DPR as dynamic function
exchange (DFX) to elaborate the main feature of changing a certain partition functionality

37

2 Background and State-of-the-Art

at runtime. The concept of DPR is the exchanging of hardware modules on a certain FPGA
partition at runtime. From a system-level point of view, it is similar to the time multiplexing of
hardware modules, where each hardware module is active during a specific period based on
an application dataflow graph. In order to apply DPR, the FPGA floorplan is split into a static
partition and several reconfigurable partitions (RPs) to host multiple reconfigurable modules
(RM). RPs can span from a single FPGA frame of resources to multiple clock regions based on
the resource requirement of the largest hardware module to be hosted by this partition. A
partial bitstream is generated for each RM for the associated RP. Every single RP has a set
of partial bitstreams for every hardware module to be hosted by it. Partial bitstreams are
loaded to the FPGA configuration memory through dedicated configuration interfaces.

Xilinx FPGAs have several modes of internal and external configurations, based on the
selection of the user and system-level requirements. Xilinx internal configuration access port
(ICAP) is typically used to control the process of partial bitstream loading internally where
the ICAP is located physically on the FPGA fabric. Similarly, for Zyng devices, the processor
configuration access port (PCAP) is managing the reconfiguration process internally from the
processing system (PS) side. In addition, JTAG is acting as the main external configuration
interface to load a full or a partial bitstream to the FPGA configuration memory. Practically,
internal configuration interfaces provide a high speed of configuration compared to external
ones due to the achievable high data rate.

Many applications already take benefit from partial reconfiguration technigues to apply some
sort of runtime adaptability to their functionalities. Software-defined-radio is a well-known
use case that takes benefit from DPR to switch between multiple wireless communication
standards at runtime reusing the same hardware resources on the FPGA floorplan [134].
[135]. Moreover, signal processing and computer vision-based applications such as radar-
based object detection, smart cars, robotics, and wearable devices can also benefit from
DPR [136], [137], [138]. Also, for security and cryptography domains, DPR can be used to
dynamically swap between several encryption algorithms [139], [140]. Recently, FPGA-based
accelerators for machine learning algorithms adopt DPR technigues to support runtime
adaptability based on real-time application requirements [141], [142]. In such applications,
FPGAs with DPR features can support the execution of multiple application tasks on demand.
Instead of physically implementing all required tasks by an application on a single large FPGA,
smaller-size FPGAs can be used with less resource and power consumption to implement
tasks temporarily at runtime. Heterogeneous MPSoC can also benefit from DPR by exchanging
and upgrading the processing elements or custom hardware accelerators at runtime based
on workload requirements. In this context, several research works have proposed multiple
frameworks and platforms for runtime reconfigurable MPSoC.

A reconfigurable MPSoC platform based on Xilinx Zynqg devices is proposed by [143] for
space applications. This reconfigurable platform is based on static on-board processors with
reconfigurable loosely coupled multi-accelerator architecture. The platform provides runtime
adaptability to contribute to the full system fault tolerance to support the main requirements
for space applications. The multi-accelerator architecture is based on the ARTICO3 framework
[144]. The platform supports a scalable number of hardware accelerators, where each
accelerator is hosted by an accelerator tile with local memory and register file for controlling.
Each accelerator tile hosts a reconfigurable partition for the accelerator logic to be modified
at runtime using DPR. Moreover, the platform supports a real-time operating system running
on the processing side of the Zyng device to manage and control the system including the
reconfiguration process of the multi-accelerator architecture.

38

2.3 Runtime Adaptive FPGA-based SoC

On the other hand, DPR can be used in high levels of granularity such as FPGA overlays
as proposed by [145]. This work exploited the DPR technique to build a dynamically multi-
grain reconfigurable and scalable overlay architecture. The proposed overlay consists of
multiple small-size RPs that can be reconfigured at runtime to map several applications
with different requirements. The overlay size is changeable and it can be integrated with a
host processor or with other hardware accelerators. An automated toolflow is developed to
automatically offload kernels to the reconfigurable overlay. Despite, the great importance
of DPR to develop and implement adaptive FPGA-based SoC or reconfigurable multi-core
architectures on FPGAs. The main challenge remains the reconfiguration management, and
how to reduce the reconfiguration time to meet real-time application requirements. Also,
the abstraction of the reconfiguration process from the software layer requires an efficient
and reliable reconfiguration management method [146].

2.3.2 Reconfiguration Management Frameworks

The DPR management from the software side imposes several challenges related to the
abstraction of the reconfiguration process from the CPU side, in addition to the reconfigura-
tion efficiency in terms of reconfiguration time especially in cases of real-time applications
[147]. Consequently, DPR management requires a custom hardware implementation for
a DPR controller between the CPU and the dedicated programmable region. Besides, the
management of the hardware-accelerated modules on the PL from the software running
on the CPU. Therefore, a change in adaptive systems requirements (e.g. hard real-time
scenarios), or adoption of a new instruction set (e.g. RISC-V) requires the development of
new software drivers or overlays along with updates to the hardware implementation of the
DPR controller for compatibility purposes.

In the last years, several works are proposed by literature for DPR controllers including
custom DPR controllers or software abstraction layers for DPR management. In [148], the
authors proposed a high-speed DPR controller for Xilinx FPGA devices. The controller's system
architecture is designed for loading partial bitstreams from an off-chip memory to the FPGA
configuration memory at a data rate close to the physical data rate of Xilinx's ICAP primitive.
The proposed controller uses DMA components for data transfer, freeing the adaptive SoC's
CPU to execute other tasks. Similarly, the ZyCAP manager [149] features a high throughput
DPR for Xilinx Zyng FPGAs, customized for ARM processors hosted on the PS side of the Zynq
device. ZyCAP provides a set of high-level driver interfaces to manage the reconfiguration
process from the PS side. However, ZyCAP is exclusively compatible with Xilinx Zyng FPGAS
and its portability to other devices requires hardware and software modifications. Meanwhile,
the proposed DPR manager by Carlo et al. [150] provides portability to several Xilinx FPGA
devices with an ICAP interface.

Furthermore, it supports a safe DPR for real-time and mission-critical adaptive applications.
As a consequence, a new set of features are required for the implementation of the DPR
controller with customization on the operation modes. Therefore, the controller features
different modes of operations depending on the application requirements and invokes a cyclic
redundancy check and error correction on the loaded partial bitstream before transferring it
to the configuration memory. Besides, the DPR process is software managed by a LEON3
soft-core processor.

39

2 Background and State-of-the-Art

Table 2.4: State-of-the-art DPR management units comparison.

Ref SoC Processor Support Abstraction | Throughput | Freg.
Layer (MB/s) (MH2)
Vipin et al.[148] Microblaze X 399.8 100
ZyCAP [149] ARM v 382 100
Anderson et al. [150] LEON3 v 3954 100
RT-ICAP [151] Patmos v 382.2 100
AC ICAP [152] Microblaze X 380.47 100
Xilinx PCAP [153] ARM X 128 100
RV-CAP [21] RV64GC (Ariane) v 398.1 100

In the same contest, for hard real-time adaptive applications, the RT-ICAP controller [151] is
introduced as a time-predictable DPR controller. It aims to reduce the worst-case execution
time (WCET) to perform the configuration in a determined amount of time. The controller
features the capability of partial bitstream compression before transferring it to the FPGA
configuration memory to reduce its size and therefore reduce the reconfiguration time.
However, extra on-chip memory is reserved on the FPGA fabric to store the compressed
partial bitstream. The DPR process is software managed through a custom real-time soft-core
processor. It is used for encryption and security applications. Therefore, AC ICAP [152] is
introduced as a light DPR controller that can operate autonomously or with a light soft-
core processor (e.g. Microblaze). The controller is customized for partial reconfiguration of
LUT resources only featuring low resource overhead and high reconfiguration throughput.
However, it lacks the portability for the new generation of FPGA architectures.

Accordingly, from the abovementioned work, designing DPR controllers depends on one side
on the timing characteristics and reconfiguration sensitivity of the target applications as well as
the architecture of the hardware/software co-design of the target adaptive platform. Several
DPR controllers are proposed to support the management of the reconfiguration process
from operating systems running on application class processors (i.e., ARM processors) to
enhance software productivity. Hence, suitable software drivers and interfaces between the
CPU and the FPGA are required. Al Kadi et al. [154] proposed a set of software drivers running
on Linux for Xilinx Zyng devices to access the processor configuration access port (PCAP).
Another novel approach is called Pyngpartial [155]. This is introduced as a software-only
implementation for managing DPR from the Pynq platform. Thus, a set of Python packages
are implemented on the ARM processor on the PS side using the existing PCAP interface to
access the configuration memory. However, the pyngpartial shows a poor reconfiguration
throughput. Meanwhile, the authors of [156] improved the reconfiguration throughput while
maintaining a high level of abstraction for DPR management from a Petalinux operating
system targeting a Xilinx Zyng Ultrascale+ FPGA.

Table 2.4 shows a comparison between pre-described state-of-the-art DPR management
units including the proposed reconfiguration management in this PhD thesis (RV-CAP) [21].
The RV-CAP unit is mainly developed to support DPR management for FPGA-based RISC-
V SoC. It consists of a DPR controller directly connected to a RISC-V processor through a

40

2.4 Contribution Towards Modular and Adaptive Many-Core Architectures

shared bus interconnect, and a set of software drivers to abstract the reconfiguration process
through software functions running on a RISC-V processor. The proposed reconfigurable
management is integrated into the main processing tile of the proposed heterogeneous
many-core architecture to support the runtime adaptation feature to change types and
configurations of many-core tiles at runtime. RV-CAP is completely implemented using
custom hardware modules controlling the ICAP primitive with the ability to be portable for
any Xilinx FPGA devices that support DPR. It features a small area footprint with a small
number of resource utilization on the FPGA which makes it suitable for small sizes FPGAS as
well.

2.4 Contribution Towards Modular and Adaptive Many-Core
Architectures

In this section, the state-of-the-art tile-based many-core architectures and hardware ac-
celerator integration presented previously are compared to the main contributions of this
dissertation. As mentioned before in the introduction section, this PhD thesis has three main
contributions:

e Modular many-core architecture to support heterogeneous ISAs for general purposes
workloads.

e Seamless integration of custom hardware accelerators through a hybrid tile architecture
for accelerators and memory modules.

e An internal reconfiguration management unit to support self-adaptation at run-time
for several heterogeneous many-core configurations.

The first and third contributions together represent the proposed modular and adaptive
heterogeneous tile-based many-core architecture [16]. The proposed architecture is based
on a NoC-based architecture by utilizing the ARTNoC NoC framework proposed by [11]. The
proposed tile-based architecture is based on a modular and parametrized implementation
that supports single and multi-core general-purpose architecture. The tile also features a
modular memory hierarchy that can be tailored to support a non-coherent shared memory
multi-core architecture or a hybrid memory hierarchy with additional scratchpad memory
per core [17]. The second contribution focuses on the seamless integration of custom
hardware accelerators into the proposed tile-based many-core architecture as a LCA tile
attached to the NoC [18]. Moreover, the LCA tile supports the feature of accelerator memory
reuse. Therefore, general-purpose tiles are able to access and reuse the on-chip PLM of the
accelerator tile as a scratchpad shared memory unit between them through the NoC.

2.4.1 Modular and Adaptive Heterogeneous Tile-based Architecture

Several research approaches have been proposed for adaptive and self-aware many-core
systems to allow the re-usability and reconfigurability of many-core architectures to be ad-
justed according to multiple requirements for different application domains. As a result,
an expected reduction in development time and cost can be achieved by the adoption of
adaptive many-core approaches. However, adaptive many-core approaches require a sort of

41

2 Background and State-of-the-Art

modularity of hardware components to ensure proper integration and communication be-
tween them after the adaptation process. In tile-based many-core architectures, modularity
can be achieved first by using a unified communication method between heterogeneous
compute tiles through a NoC, or advanced bus-based architectures. In addition, a hetero-
geneous set of compute tiles that share the same inter-tile interfaces and apply the same
communication protocol over the many-core communication medium as well as a unified par-
allel programming model are supported. Therefore, this dissertation proposes an adaptive
and heterogeneous tile-based architecture to accommodate modularity and adaptability to
reduce design and integration time and promote the commodity of many-core architectures
for emerging application domains.

Table 2.5 shows a comparison between the aforementioned tile-based many-core architec-
tures presented in (Section 2.1) and the proposed adaptive and heterogeneous tile-based
architecture (AGILER). Accordingly, state-of-the-art comparison in Table 2.5 is based on the
following points:

e Level of heterogeneity by supporting multiple ISAs and custom hardware accelerators.

e Modularity and architecture characteristics by supporting different microarchitecture
configurations and memory hierarchy.

e Architecture configurability and prototyping

Heterogeneity level: Several works propose multi ISA for general-purpose computing tiles.
ESP [13], and Manticore [62] support two RISC-V ISAs in a similar manner to the proposed
many-core architecture in this dissertation (AGILER). The two RISC-V ISAs are based on RV32
and RV64 ISAs, where compute tiles can be configured to support one of them based on
target workloads requirements. The rest of the work and platforms presented in Table 2.5
support only one ISA for their general-purpose tiles as shown in the second column.

Moreover, custom hardware accelerators are mostly supported by all heterogeneous many-
core architectures, the main difference lies in the accelerator coupling model and the level of
granularity. In other words, where hardware accelerators are coupled and reside inside the
many-core architecture, either as a separate LCA tile or as a shared accelerator peripheral
within a general-purpose tile. TaPaSCoc [55], Savas et al. [159], BlackParrot [50], ESP [13],
and Memphis [47] support multiple LCA tiles where a custom hardware accelerator can
be hosted by a separate tile and communicate to the rest of the system via a scalable and
high bandwidth communication fabric (e.g. NoC, cascaded bus interconnect). On the other
hand, Hero [157], GRVIPhalanx [38], P2012 [51], and RVNoC [162] support intra-tile shared
hardware accelerators that are integrated within general purpose tiles as shared memory-
mapped peripherals. In this type, shared hardware accelerators can be accessed by any of
processing cores inside the tile through a shared interconnect (e.g. bus-based interconnect,
point-to-point communication). Accordingly, the proposed tile-based many-core architecture
by this dissertation supports both ways of custom hardware integration either inside gen-
eral purpose tile as shared memory-mapped peripherals or hosted by a separate tile as a LCA.

Modularity and microarchitecture: Design modularity and microarchitecture define the
internal structure of any tile-based many-core system and the degree of flexibility and reusabil-
ity to be tailored to implement several many-core taxonomies based on target application
requirements. In order to evaluate that, an analysis of tile microarchitecture has been con-
ducted as shown in Table 2.5 (columns 4, 5, and 6) regarding supported memory hierarchies,
scalability, number of cores, and interconnection type. Therefore, several works feature a

42

2.4 Contribution Towards Modular and Adaptive Many-Core Architectures

[91] (43719DV)

VOd4| dwnuny [AIows paJeys/|edo] JON 910D-INIA N N Ammomvcozmtmmm;vmsh
DISY | awil-udiseg Aiowa 8207 JON 210D-NINIA ' X (€1L02) [¥911 952VddIN Aedjey
DISY | awil-usiseQ Alows (107 DON 910-9|3uIS X X (7102) [£91] Aueydid]
VOd4 | awil-udisaQ Alowa (107 JON 910D-9|3UIS X N (8102) [291] DONAY
VOdd | Wi -Ud|saq AJowa\ 8207 JON 910D)-3|3UlS X » (602) [£7] slydway
VOd4| awil-udiseg | Alows paJeys paseq-sng 910D-9|3UIS X X (5L02)[191] '|e 12 sensaA
DISY | wil-udiseq [AIOWBN pa.eys/|edoT DON 910D-NININ X X (8102) [09 1] DOSIN-YARI0D
DISY | dWiL-udisaq |AoWS|A pa.leys/[ed0] JON 910D-NINN X N (croa)[Ls]l zLozd
VOd4 | awil-udissq Alows\ (8307 JON 910D-9|3UIS s A, (0202) [€114S3
DISY | swlil-udisag | AJOWS|N pateys |1eqsso.D papedsed| 840D-BNi W X (L207) [79] @100nue\
DISY | dwi]-usisa(Aiowsy €207 DON 910D-3|3UIS X N (0z02) [0G] 1041BDEIG
VOd4| dWwil-udise@ |AIOWSN paJeys/|ed0T| DON+Jegssoud | 240D-BINA X N (9107) [8€] xueleydiAdD
VOd4 | awil-udissQ AloWws\ (8207 JON 910D-9|3UIS X N (02020) [651] "|e 12 senes
VOd4 | aWil-udisaQ AJoWws|\ (D07 |Jegss0l) papedsed| 10D-NA X N (6102) [5S] 0DSedel
DISY | dwil-udisag | AIOWSA paleys |Jegsso.d papedsed| a40D-BINA ' X (1202) [95] |[00dWDN
VOdd | dwil-udisad | AIOWSIN paJeys | DON+Paseg-sng | 840D-NA X X (LZ02) [85 1] epawolpuy
VOd4 | swil-udiseq AIowa A 8207 DON 910D-9|3UIS X X (6102) [e¥] sueLy+uolduado
VOd4| awil-udiseg | Alowsy paseys paseq-sng 910D-INIA X N (£102) [£5 1] 048H
UOI123UUO0DIRIU| [24NID3)YDIY|SYS| 9|diniAl| uonedaiu) pmH
a2dAy 3|11 Jad Juonpediunwwo) | paseg-ajil | woddns (woisnd woddng| (uesA) ‘[Jo¥] 24Nyl

-010.d

Aigeangiyuod

AydJesaiH AIoWs|A

SO11S142102J8YD) 24N1DIYdJY

|9A37 AIsUa80J1919H

2J0)-Aue

"uosliedwod 1y-21-J0-91P1S S2JN1031YDJe 9102-AUB (S'Z 3|gel

43

2 Background and State-of-the-Art

high degree of scalability to support scalable numbers of multiple types of heterogeneous
compute units such as Hero [157], OpenPiton [43], MemPool [56], TaPaSCo [55], BlackParrot
[50], GRVIPhalanx [38], Manticore [62], and Kalray [164]. They are able to support hundreds
of processing cores clustered in tens of tile-based architectures. Also, several works support
different memory hierarchies within a single-tile architecture. They feature a shared memory
hierarchy between tile’s PEs, where each PE has its own local memory either a scratchpad
memory or a cache memory such as GRVIPhalanx [38], P2012 [51], and CoreVA-MPSoC [160].
The proposed adaptive and heterogeneous tile-based architecture satisfies the compute per-
formance scalability using a scalable mesh-based NoC topology for inter-tile communication
with a variant set of heterogeneous compute tiles. Each compute tile features a configurable
multi-/single-core architecture that can be configured with variant numbers and types of RISC-
V-based PEs. Moreover, shared and local memory hierarchies with parameterized sizes are
supported per each compute tile. Therefore, the proposed architecture provides the flexibil-
ity for tailoring several many-core configurations for compute or memory-bound applications.

Configurability and prototyping: The proposed many-core architecture supports run-time
adaptation through an internal reconfiguration manager (RV-CAP) using dynamic and partial
reconfiguration technology on Xilinx FPGAs. The modularity and adaptability features of the
proposed architecture allow the flexibility to be ported to other Xilinx FPGA series. Accord-
ingly and to the best of our knowledge, the proposed architecture is the first heterogeneous
tile-based many-core architecture for multiple ISAs and custom hardware accelerators that
supports self-adaptation using an internal run-time DPR manager for several heterogeneous
many-core configurations on FPGAs. According to state-of-the-art comparison presented
in Table 2.5 (column seven), all tile-based many-core architectures are design time config-
urable with a limited degree of portability to different hardware platforms in case of ASIC
implementation. Few of them have the capability to be portable to different FPGA devices
such as HERO [157], ESP [13], TaPaSCo [55], and OpenPiton [43].

2.4.2 Hybrid Memory/accelerator Tile Architecture

The LCA model is increasingly used in heterogeneous architecture to achieve an order of
magnitude high computing performance. However, LCAs require a large portion of private
local scratchpad memory with the accelerator logic inside the custom accelerator tile archi-
tecture. Accordingly, the increasing number of accelerator tiles leads to a significant increase
in accelerators’ PLM resources. For FPGA-based manycore systems, block memories BRAMs
are used to implement PLMs which have limited availability on FPGAs. Therefore, memory
sharing between accelerator tiles and general-purpose tiles is necessary to reduce many-core
systems' memory footprint. Recent heterogeneous SoCs are characterized by a large number
of hardware accelerators coupled with many general-purpose compute units in a so-called
accelerator-rich architecture. These types of heterogeneous SoCs provide the capability to
adapt their architectures to specific application workloads aiming to increase performance
and energy efficiency.

Accordingly, several research approaches have been proposed to seamlessly integrate accel-
erator and memory tiles into manycore systems to reduce design costs and increase archi-
tecture reusability. Table 2.6 shows a comparison between aforementioned state-of-the-art

44

2.4 Contribution Towards Modular and Adaptive Many-Core Architectures

Table 2.6: Accelerator Integration State-of-the-Art Comparison.

HW Acc. |Support Acc.
_ Support | Support
Ref. (Year) Coupling] Memory Prototype
Coherency|Large PLM

Model Reuse
Tightl

Ng et al. [105] (2016) nty X v X |Simulation
Coupled
L |

Bellochi et al. [121] (2021) OOSEY X v X FPGA
Coupled
Loosel

Savas et al. [159] (2020) y X X v FPGA
Coupled
L |

Mantovani et al. [119] 2016) | © >0 X v v FPGA
Coupled
Loosel

Dehyadegari et al. [120] (2015) Y X v v Simulation
Coupled
L |

Liet al [122](2011) OOSEY X X v |Simulation
Coupled
Loosel

Pilato et al. [127] (2017) y X v v |simulation
Coupled
Loosel

Cotaetal. [129] (2016) y v v v Simulation
Coupled
L |

Cong et al. [128] (2012) OOV v v |simulation
Coupled
Loosel

Kamaleldin et al. [18] (2022) y v X v FPGA
Coupled

accelerators integration models in (Section 2.2) and the proposed hybrid memory/accelera-
tor tile architecture. Accordingly, state-of-the-art comparison in Table 2.6 is based on the
following points:

e Hardware accelerator coupling model

e Supporting accelerator memory reuse and sharing accelerator PLM with other comput-
ing tiles in the target system

e Supporting coherency and large accelerator PLMs

Accelerator coupling model: Several works propose different ways of accelerator coupling
with general-purpose compute units. As discussed in (Section 2.2.1), there are two ways for
accelerator coupling either as a TCA or LCA to general-purpose processors. Therefore, Table
2.6 (column two) shows hardware accelerator coupling models of several related works. Most
of the related work supports LCA model except Ng et al. [105] which supports ISA extension
for tightly coupled accelerators to processor pipelines. State-of-the-art LCA models feature a

45

2 Background and State-of-the-Art

separate tile to host hardware accelerators either as HLS-based accelerators such as Pilato
et al. [127], Mantovani et al. [119], and Cota et al. [129]. On the other hand, Savas et al. [159]
supports Chisel-based accelerators within the Rocketchip generator framework. In addition,
LCAs within a general-purpose tile are supported by Dehyadegari et al. [120], and Bellochi et
al. [1211.

In this case, LCAs are shared memory-mapped peripherals to general-purpose cores within
compute tiles. Accordingly, the proposed hybrid memory/accelerator tile architecture [18]
supports a LCA integration model where hardware accelerators can be integrated inside a
LCA tile. The proposed LCA tile is connected to the NoC through a dedicated NI that allows
data transfer between the tile's PLM and other compute tiles within the proposed many-core
architecture. The proposed LCA tile supports the integration of both RTL-/HLS-based accel-
erators with various on-chip memory sizes for PLM realization.

Accelerator PLM sharing: The second feature of the proposed hybrid memory/acceler-
ator tile is accelerator memory reuse. As described in (Section 2.2.2), accelerator memory
reuse is an important feature proposed by several related works. The main idea is to extend
the many-core shared memory portion by partially or fully reusing accelerators PLMs during
their inactive time. In this context, Table 2.6 (column three) shows related work LCAs that
support the feature of accelerator memory reuse. Cota et al. [129], and Cong et al. [128&]
firstly introduced the concept of accelerator memory reuse as an L2 shared cache memory
to general-purpose tiles. They only use part of the PLM with extra control logic for cache
management implemented on each LCA tile. Despite the efficient utilization of LCAs PLMs,
an extra implementation and design effort is required to modify the LCA tile to operate
as an extended cache memory or a pure hardware accelerator. Therefore, the proposed
hybrid memory/accelerator tile provides more design flexibility with less development effort
to support memory and acceleration mode of operation through a parametrized architecture
that can be configured through a set of configuration messages from any general-purpose
tiles within the proposed architecture.

2.5 Summary

In this chapter, background and state-of-the-art tile-based many-core architectures, hardware
accelerator integration, and adaptive FPGA-based SoC are presented, analyzed, and evaluated
with respect to the main contributions of this dissertation.

Section 2.1 describes in detail homogeneous and heterogeneous tile-based many-core
architectures and their characteristics. Recently, tile-based many-core architectures are
being at the centre of the compute-centric paradigm. They represent the evolution from
single-core architectures to hundreds of cores on the same chip or within a single SoC.
Tile-based many-core architectures consist of a large number of cores with several levels
of memory hierarchies and interconnect. Moreover, Section 2.1.1 shows various state-of-
the-art tile-based platform implementations. Those platforms are characterized by many
architectural features such as supporting multi ISAs, supporting heterogeneous hardware
accelerators, different memory hierarchies, and high degrees of design modularity and
extensibility. Afterward, Section 2.1.2 shows a classification of open-source RISC-V ISA.

46

2.5 Summary

Three classes of RISC-V-based processors are presented spanning from little cores to high-
performance cores. In this dissertation, RISC-V-based processors are used to implement
general-purpose cores.

Section 2.2 explains hardware accelerator integration in terms of accelerator coupling
models and accelerator memory interactions within many-core and SoC architectures. LCA
and TCA integration models are presented in Section 2.2.1 and their related state-of-the-art
is described and analyzed in detail. In addition, accelerator memory interaction is presented
in Section 2.2.2. Several accelerator memory interaction techniques and supported features
are presented and analyzed based on direct memory access and coherency, supporting
large data sets, and accelerator memory reuse.

Runtime adaptive FPGA-based SoC is described in Section 2.3 including an overview of mod-
ern FPGAs structure. Section 2.3.1 presents and analyses partial reconfiguration techniques
for Xilinx FPGAs. Also, the utilization of dynamic partial reconfiguration techniques in recent
adaptive MPSoC architectures and configurable FPGA overlays. Afterward, reconfiguration
management units are presented in Section 2.3.2. A comparison between the state-of-the-art
DPR management units and the proposed RV-CAP unit is presented.

Finally, Section 2.4 presents the main dissertation contributions toward modular and adaptive
many-core architectures and state-of-the-art comparison with the dissertation’s proposed
solutions and approaches.

47

3 A Modular Tile-based Many-Core
Architecture for Heterogeneous
ISAS

Machine learning and data-centric applications constitute the main driving forces for com-
puting’s rapid evolution. Over the past decade, several computing paradigms have been
introduced seeking to increase computing performance scaling and energy efficiency in
order to cope with the emergence of new application classes with massive and irregular data
sets. Among those computing paradigms are compute-centric architectures which are still
leveraged in the mainstream multi-/many-cores SoC developed by industry and academia for
several application domains. Compute-centric systems went through a tremendous evolution
from multi-core homogeneous architectures to highly heterogeneous architectures with big,
and little cores as well as application-specific accelerators.

Despite the high-performance gain of heterogeneous architectures, the increasing numbers
of heterogeneous elements are limited by the system interconnects scalability and therefore
the degree of compute performance scalability. This obstacle of compute-performance
scaling is referred to as the scalability wall. Therefore, tile-based architectures are developed
for highly scalable many-core systems with a growing capacity of heterogeneous compute
elements. The degree of scalability for tile-based architectures relies on the inter-tile com-
munication fabric which on recent many-core approaches depends on scalable NoC variant
topologies. However, the design and development of tile-based many-core architectures is a
cumbersome process in terms of development time and costs. Especially if target application
domains require a high capacity of heterogeneous compute tiles as is the case in recent
computing devices that support a wide range of application domains.

As a result, integrating more components and different architectural units on a complete
system-on-chip increases design efforts (e.g. verification, validation, integration) and therefore
the development time and costs. Moreover, the design specifications could vary due to
different application requirements which lead to the necessity of a new design process for
each new application requirement. Resultantly increasing the design effort and therefore
time to market with continuous inflation in non-recurring engineering costs.

This chapter presents a modular tile-based many-core architecture to support heterogeneous
ISAs through the adoption of multiple general-purpose RISC-V based cores with different
ISAs. In this context, this chapter introduces a novel modular implementation for many-core
architectures based on RISC-V open-source-hardware processors with tile-granularity cus-
tomization for FPGA platforms. The proposed tile-based many-core design has re-usable

49

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

and flexible architectural units that can be tailored to implement different heterogeneous
and homogeneous many-core taxonomies using regular building blocks for computation
(i.e. PEs, compute tiles), with several memory hierarchies and generic communication in-
terconnections. The tile-based architecture maintains a high degree of scalability using a
scalable NoC topology and the design regularity manner offers the flexibility to scale up the
number of compute tiles with less design effort and cost. Furthermore, a message-based
communication model is adopted to support data transfer over the NoC between compute
tiles. In addition, a bare metal programming method is introduced on the level of compute
tiles for parallel programming over the RISC-V-based PEs using shared and local scratchpad
data memories on the compute tile level. Moreover, the proposed tile-based many-core
architecture is evaluated based on different architecture configurations covering different
types of memory hierarchies/sizes, communication interconnections, and numbers/types of
tiles/cores per many-core system to explore several design choices and their effects on the
system performance. The tile-based architecture is implemented and evaluated on a Xilinx
Virtex Ultrascale+ FPGA.

The Chapter is structured as follows. Section 3.1 presents the hardware architecture of the
tile-based many-core architecture including several types of general-purpose single-/multi-
core compute tiles, different RISC-V-based PEs supporting different RISC-V ISAs with tightly-
coupled local scratchpad memory. Also, tile modularity and configurability during design time
to support different memory hierarchies and several types of PEs are described. Section 3.2
presents how to achieve a highly scalable tile-based architecture using a parametrized NoC
architecture with a customized communication model protocol for data transfer between
heterogeneous compute tiles. Section 3.3 presents the supported bare-metal programming
method for parallel task execution over the tile-based architecture. In addition, memory
partitioning of a single compute tile is described in order to specify the used type of memory
(i.e. shared or local) and the target PE for parallel execution of multiple kernels. Section
3.4 presents the evaluation and prototyping of the tile-based many-core architecture using
several tile-based configurations in terms of hardware resource utilization, computing per-
formance scalability, achievable memory bandwidth, and communication data rate between
compute tiles with several signal processing and neural network benchmarks. Finally, Section
3.5 summarizes this chapter.

3.1 Modular Tile-based Architecture

The tile-based many-core architecture features a modular and hierarchical interconnect
design that targets domain-specific and general-purpose applications for FPGA accelera-
tors. Moreover, the tile-based many-core architecture can be considered as a model for
rapid prototyping of different many-core taxonomies with homogeneous or heterogeneous
computing elements (multi ISAs and application-specific hardware accelerator cores) and
supports different styles of interconnect topologies. The tile-based architecture consists of a
scalable number of compute tiles connected by a Network-on-Chip interconnect as shown in
Figure 3.1. The compute tile architecture can be configured to support two RISC-V ISAs (RV32,
RV64). Moreover, compute tiles can be configured to support single-core and multi-core
architectures with the flexibility to support several memory hierarchies. Each compute tile
features a private address space which allows communication between all PEs and shared

50

3.1 Modular Tile-based Architecture

(q) e
I-3d
N-DSIH

1I2UU02433U| H-IXY

0-3d
A-OSH
3!L Mq-¥9

(e)
(na-z¢)[S1
£€-3d

(u9-z¢)

AJSIH_ AOSIY
[Is|

0-91lL <9l
Hgq-v9 }q-ce

3!L Mq-c€

Mod weans [S]
o4 eleq [@
Mod uondnasul il

32e}493U] HJOMIaN .

1910y HON '

193N0Y-ION

-3l L
Hq-v9 ug-ze
o—

(4q-9) (uq-9) ()]
£-3d I-3d

N-OSIY A-OSIH

Z-3d
AOSIH

0-3d
et

3|11 buissazoid uibin

21n3311Yday d40)-Auel paseq-djiL

9L
Suissazoud
ule\l

_—

pied-as

Lvn ¥aa

sjesayduad |eutaix3

Figure 3.1: Overview of the modular tile-based many-core architecture with a 3x3 tile-based

many-core configuration including (a) 4x32-bit general-purpose compute tiles, (b)
2x64-bit general-purpose compute tiles, (c) the main/primary processing tile, and

heterogeneous tiles to host custom hardware accelerators (LCA tiles).

57

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

tile peripherals through shared data memory via an AXI interconnect. In this section, the
tile-based many-core architecture and its architectural components are described.

3.1.1 Multi-Core based Tile Architecture

General-purpose compute tiles are the core of tile-based architecture, they represent the
computing nodes for the proposed many-core system. As shown in Figure 3.1, the tile-
based many-core architecture consists of three types of heterogeneous tiles that support
multiple RISC-V ISAs in addition to custom hardware accelerators (LCA tiles). All general-
purpose compute tiles have a regular design pattern based on a bus-based architecture.
The compute tile tightly couples single or multiple RISC-V based PEs with shared instruction
and data scratchpad memories using a shared AX| interconnect. Therefore, all PEs in a
single tile share a common private address space. The shared bus architecture allows the
communication between RISC-V-based PEs and tile's shared memories as well as memory-
mapped peripherals via AXI interconnect.

To enhance the memory bandwidth, shared instruction and data memories are implemented
using dual-ported BRAM/URAM blocks. Therefore, two memory read/write (R/W) channels
can be established across AXI interconnect to handle two memory requests simultaneously.
Shared instruction memory is implemented as read-only BRAM memory which is used as
a boot memory during the memory initialization stage to load the compiled binary file for
execution. Each compute tile implements a uniform memory access (UMA) architecture,
where each RISC-V-based PE can access shared data and instruction scratchpad memories
connected to the AXI interconnect as a slave memory-mapped peripheral. In the UMA
architecture, each PE experiences the same bandwidth and access latency to the memory.
However, the overall memory bandwidth is divided between the number of PEs per tile.
Therefore, the growing number of PEs connected to the AXI interconnect leads to an increase
in memory access latency per each PE and increases the probability of memory congestion
due to limited AXI interconnect bandwidth.

In order to reduce memory congestion per tile, we use an open-source high-performance
coherent AXI interconnect implementation [63], [165]. The AXI interconnect is based on a
fully-connected crossbar where each slave port has a dedicated connection to each master
port. The crossbar supports up to five independent data transaction channels for R/W and
applies a round-robin arbitration scheme. However, the memory bandwidth scalability is
limited and starts to saturate after a certain number of PEs. Therefore, each tile supports a
maximum number of four PEs to ensure a congestion-free tile implementation.

The three types of general-purpose compute tiles are described as follows:

e 32-bit compute tile: As shown in Figure 3.1 (a), the first compute tile is a 32-bit general-
purpose multi-core tile with four RV32 PEs. Each PE consists of a single RV32IMC
core with tightly-coupled scratchpad local memory for data and instruction. The RV32
PE is compatible with a 32-bit AXI interface to seamlessly connect it to the tile AXI
interconnect. The 32-bit tile hosts shared scratchpad instruction and data memory
for application booting and data sharing between PEs. In addition, optional memory-
mapped peripherals such as custom hardware accelerators are supported by the
tile. The tile is connected to the NoC router through a memory-mapped NI for data
transmission and receiving with other many-core tiles.

52

3.1 Modular Tile-based Architecture

e 64-bit compute tile: The second general-purpose compute tile is a single- or dual-core
64-bit tile that can be configured to support single or dual RV64 based PEs as shown in
Figure 3.1 (b). Similar to the RV32 PE, the RV64 PE consists of a single RV64IMAC core
with tightly-coupled local scratchpad memory for data and instruction. The RV64 PE can
be seamlessly connected to the tile interconnect via 64-bit AXI interfaces. The 64-bit
tile hosts shared scratchpad instruction and data memory for application booting and
data sharing between PEs. In addition, optional memory-mapped peripherals such as
custom hardware accelerators are supported by the tile. The tile is connected to the
NoC router through a memory-mapped NI for data transmission and receiving with
other many-core tiles.

e Main processing tile: The third type of general purpose compute tile is shown in
Figure 3.1 (c). Itis the main and permanent processing tile of the tile-based many-core
architecture. The main processing tile is based on a 64-bit quad-core architecture with
shared instruction and data memory. The off-chip DDR memory is used as shared
data memory for a large capacity of data sharing between the four RV64 PEs, while
the shared instruction memory uses on-chip BRAM blocks similar to other compute
tiles. Moreover, the main processing tile controls and manages external many-core
peripherals (i.e. SD-card, UART) and it can be extended to support other types of
off-chip peripherals. Furthermore, the reconfiguration manager unit and its associated
components (i.e. direct memory access (DMA), internal configuration access port (ICAP)
controller) are hosted and managed inside the main processing tile as described in
Chapter 5. Therefore, the main process tile is the permanent general-purpose tile
for the proposed tile-based many-core architecture which is primarily responsible for
many-core management and configuration as well as taking part of computational
workload with other tiles. The main processing tile is equipped with a generic NI to the
NoC router for inter-tile communication.

3.1.2 Heterogeneous RISC-V based Processing Elements

The Processing Element is the main computing unit inside the proposed tile-based many-core
architecture. The inherent design modularity of the PE allows the execution of general-
purpose applications across different domains e.g. (signal or image processing, and machine
learning) with different computing requirements and memory footprints. The PE consists of
a single open-source RISC-V soft-core processor and a local tightly coupled memory (TCM)
subsystem for data and instructions to increase data locality for compute- and memory-
intensive applications. In addition, like typical Harvard architecture, the PE features separated
local instruction and data memories tightly coupled with the RISC-V soft-core processor. The
local TCMs feature a low memory latency of one clock cycle for R/W operations for private
computation within a single PE. Moreover, using a local memory per each PE reduces the
probability of memory interference between multiple PEs compared to the UMA in shared
memory hierarchies. In this section, two PEs based on RV32/RV64 ISAs for 32-/64-bit compute
tiles are described as follows.

32-bit PE
The 32-bit PE consists of a single open-source RI5CY soft-core processor [77] with an imple-

mented local tightly coupled memory subsystem for data and instructions as shown in Figure
3.2. RISCY core is a 32-bit 4-stage pipeline in-order processor. The core implements a simple

53

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

(19-z€) 192UU0dIRIU] H-IXY

ELLIIE V]
ssaippe ue 031 papauuod Ajedshyd

J0U pue UOII3[AS JeIBIUl 10§ Pasn
S| YIIYm 2403 3y} woi pajesauas asues

1|
1 —
' = o
-ssaippe Awwnp e sey adepajul SIXY s __. ..M :2<¢)o0|g9 A—)-<¢)o0|9g .m
i 2 diyy-uo) noLa diyy-uo) oLl =
*SIXV (1) € XXXXXXXYX0-00000009X0 | w -F—U OV d -F—U OV d m
1 (T
v-IXVY (o1) 2 XXXXXXX8X0-0000000SX0 __ ..ﬂa m
WoLa (T0) T | 20000xX0¥X0-0000000tXO0 |/ 8| |lecccesssesed loososcememcsoescsed booscssssesssossosessomessad leesseomossad £
c s
WoLl (00) 0 | 0000(0ZX0-0000000ZX0 | s (3pow im/pJ) - § (Ajuo apow im) (Ajuo apow pi) =
‘13s 1104-q 28uey ssaippy m. €Ul INDLI 9dej4aqu] INDLI M

<

epwy ... & & & e M
1
1
1
1

1

1

r-IXY T XXXXXXX0X0-00000000X0 | | : __ T .} ___________T1 it b foed bed bod bed] leea| lond bood Eessccccmesmmad ool ool [socod) ocsasassmmsd lososssccsscnsnd] bemed poosd
Tlele
DI 0 XXXXXX0ZX0-0000000ZX0 m_ .w._ HE m .m m .m m
S HEHEEE R >) el
2l2lSI=zl=I=2]|2]| ol ol & BN 3
D_@n_m_u_u_u_ | 2| 2 25 ML
c - -
§1E|g[8| 8|88 & 5|z = i g
g 5
© m
e a
@-10323]3§ |-10303]95
28uey ssaippy _ a8uey ssalppy
n9ZE N9TE N_
Q@ ssaippe) 319-2€ = U9-ZE } |“ssaippe
sjeusis 1od-a sjeusis 3od-|
(ng-zg)
id
R A-JSIY
3y1L Hg-zE 4o

core, (b) instruction and data bridges for converting native I/D signals to AXI-4
interfaces, (c) on-chip I/D TCM and their connection to the RI5SCY core through I/D

bridges.

Figure 3.2: Schematic of 32-bit RISC-V based PE showing: (a) open-source RV32IMC (RI5CY)

54

3.1 Modular Tile-based Architecture

RV32IMC ISA with a main arithmetic-logic unit (ALU) and dedicated units for multiplication,
division and multiply-accumulate (MAC). The average base instructions loading latency from
instruction memory is one clock cycle except for load/store (LD/ST) instructions and other
custom instructions which have a minimum latency of 2 clock cycles [166].

The PE features 2 separate tightly coupled memory blocks implemented using on-chip
BRAM/URAM for instruction and data (I/D) as shown in Figure 3.2 (c). I/D-TCM offer low
memory latency of one clock cycle for R/W operations, it also increases data locality for
memory-bound applications. All memory blocks have a fixed word size of 32-bit compatible
with RV32 ISA. Besides the RI5CY core, the PE local memory subsystem and external interfaces
are described as follows.

e 32-bit ITCM: As shown in Figure 3.2 (¢), the ITCM is implemented as a dual-ported
on-chip BRAM/URAM with a read-only interface to the RI5CY core instruction port
(I-Port) for fetching a new instruction every single clock cycle. In addition, a write-only
interface to the data port (D-Port) allows the transfer of specific instructions from
the shared instruction memory to the ITCM during the memory initialization stage.
In this case, the RISCY core is responsible to transfer a specific memory partition
from the shared instruction memory to its local instruction memory. This is called
the memory initialization stage, where each PE within the compute tile starts to move
specific memory partitions from shared memory to local memory before application
execution.

e 32-bit DTCM: In contrast to the ITCM, the DTCM is implemented as a single port on-chip
BRAM/URAM with R/W interface to the RISCY core D-Port. The DTCM is only accessed via
its own coupled RISCY core. Therefore, accessing local memory directly by other PEs is
prevented and the local data memory has to be transferred to the shared data memory
to be accessible by other PEs in the 32-bit tile. The DTCM is larger than the ITCM in
terms of BRAM/URAM blocks as it hosts local PE data. During the memory initialization
stage, the RISCY core is responsible to load the local data from a specific partition from
the shared memory to the DTCM prior to application execution. DTCM and ITCM are
size configurable during design time based on target application requirements.

e |/D-Bridges: To allow seamless integration of PEs in 32-bit compute tile, the I/D-Ports
of the RISCY core are extended to be compatible with AXI-4 and AXI-Stream standards
by implementing (D-, I-Bridges) as shown in Figure 3.2 (b). D-, I-Bridges allow the
communication between the RI5CY core and the tile's memory-mapped peripherals
through the shared AXI interconnect. Since the RI5CY core or the PE is the master
unit on the proposed system. The PE AXI interfaces are master interfaces that permit
a connection to any AXI slave peripherals inside the tile. As shown in Figure 3.2, the
D-Bridge handles the RI5SCY read/write memory requests (reg_D) and the write-enable
(we) signals from the D-Port interface by rerouting them based on the memory-mapped
address range to the corresponding memory-mapped component (as shown in the
bottom table in Figure 3.2). Hence, a finite state machine is implemented with seven
states covering the read/write states to the (AXI interconnect, AXIS, ITCM_write and
DTCM) interfaces based on address range selector. The address range selector speci-
fied which memory-mapped peripheral is requested by the RI5CY core based on the
requested address range. According to the state and the address-range input, the
D-Port interfaces (data_write/read_D, valid_D, grant_D) are re-connected to the corre-
sponding interfaces. Similar to the D-Bridge, the I-Bridge is implemented as shown

55

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

0000%0S¥X0/0000X0SEX0 0000%X000X0 u=T-u-3d
0000€£0S¥X0/0000E0SEX0 0000€000X0 €=¢€13d
000020SX0/0000Z0SEX0 00002000X0 ¢=¢3d
0000T0S¥X0/0000TOSEXO 0000T000X0 T=0-3d

193UU0IAYUI-IXY PaJeys
uo aguey ssa.ppy NDLA/I

19s40-INDLA/I

ail-210)

Ippeum/-e”Ixe‘euele WAl e3eq/3sul pateys z /
* 00000T00X0/0000000ZX0 /
19sH0-ND1a . /
+ IppeuM/eTIXe euBLE INJ1d * 000000S¥X0 T /
19SH0-INDLI .
+ Ippesim/1e|xe-eueye LI : 000000SEX0 0 /

S$S?4PPY IXV-3d

210D 9y} wouy a8uey ssaIppy

329UU02I93U| - IXY

9IL 1q-v9

AXI-4 Interconnect (64-bit)

=
2

mst_awaddr

T_

(19-19) IXV

mst_araddr

uondafas!

ariane.axi_awaddr

(e)

(9vnd)
310) INVINVY

(H9-¥9)
id
A-DSIY

(a) open-source RV64IMAC

AXI-4 interconnect, (c) on-chip I/D TCM and their connection to the CVA6 core

(CVAB/ARIANE) core, (b) address converter to access I/D TCM through the main
through the main AXI-4 interconnect.

Figure 3.3: Schematic of 64-bit RISC-V based PE showing:

56

3.1 Modular Tile-based Architecture

in Figure 3.2 (b) with a two states FSM for only reading from the ITCM or the shared
instruction memory for instruction fetching. The address range selector specified which
memory-mapped peripheral is requested (ITCM or the shared instruction memory) by
the RI5CY core based on the requested address range. According to the state and the
address-range input, the I-Port interfaces (data_read_|, valid_I, grant_|) are re-connected
to the corresponding interfaces.

64-bit PE

The 64-bit PE consists of a single open-source Ariana (CVA6) soft-core processor [45] with an
implemented local tightly coupled memory subsystem for data and instructions as shown in
Figure 3.3. Ariane core is a 64-bit 6-stage pipeline in-order processor. The used core version
in this work is configured to fully implement RV64IMAC [78]. Similar to the 32-bit PE, the
tightly coupled memory subsystem is implemented using on-chip BRAM/URAM blocks as
shown in Figure 3.3 (). All memory blocks have a fixed word size of 64-bit compatible with
RV64 ISA. Besides the Ariane core, the PE local memory subsystem and external interfaces
are described as follows.

e 64-bit ITCM: The ITCM is implemented as a single port memory with R/W interface
directly connected to the tile main AXl-interconnect. Based on the requested instruction
memory address from the Ariane core, instructions can be fetched from the ITCM
through the AXI interconnect directly to the core. During the memory initialization
stage, the Ariane core is responsible to transfer a specific memory partition from the
shared instruction memory to its local instruction memory via AXI interconnect. All PEs
within the compute tile starts to move specific memory partitions from shared memory
to local memory before application execution.

e 64-bit DTCM: The DTCM is implemented with R/W interface using a single port memory.
Similar to the ITCM, the DTCM is directly connecte