
Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

A Modular Platform for Adaptive
Heterogeneous Many-Core
Architectures
Ahmed Kamaleldin Atef
Born on: 20th May 1990 in Cairo, Egypt

Dissertation
to achieve the academic degree
Doktor-Ingenieur (Dr.-Ing.)

Supervisor and Examiner
Prof. Dr.-Ing. Diana Göhringer (Technische Universität Dresden)
Co-Examiner
Prof. Dr. Ir. Dirk Stroobandt (Ghent University)

Submitted on: 12th April 2023Defended on: 22nd June 2023

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Statement of authorship
I hereby certify that I have authored this document entitled A Modular Platform for Adaptive

Heterogeneous Many-Core Architectures independently and without undue assistance fromthird parties. No other than the resources and references indicated in this document havebeen used. I have marked both literal and accordingly adopted quotations as such. Duringthe preparation of this document I was only supported by the following persons:
Prof. Dr.-Ing. Diana Göhringer

Additional persons were not involved in the intellectual preparation of the present document.I am aware that violations of this declaration may lead to subsequent withdrawal of theacademic degree.
Dresden, 12th April 2023

Ahmed Kamaleldin Atef

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Acknowledgements

First and foremost, I would like to express my deep gratitude to my mentor and supervisorProf. Dr.-Ing. Diana Göhringer for her guidance and enormous support during my PhDjourney. This dissertation would not be possible without her encouragement and advice.
I would also like to thank Prof. Dr. Ir. Dirk Stroobandt, my second examiner, for his feedbackand insights which are very helpful to finalizemy dissertation. Many thanks tomy FachreferentProf. Dr. Akash Kumar for his feedback and advice. Many thanks also to the committeemembers Prof. Dr.-Ing. Horst Schirmeier and Prof. Dr.-Ing. habil. Martin Wollschlaeger.
I would like to deeply thank the entire ADS team at Technische Universität Dresden for thefruitful discussions, collaborations and social activities we had together. I express my deepgratitude to Dr. Lester Kalms, Dr. Ariel Podlubne, Dr. Sergio Pertuz, Gökhan Akgün, NajdetCharaf, Muhammad Ali, Ensieh Aliagha, Veronia Iskandar, and Matthias Nickel, with whom Iwas collaborating during the period of my PhD.
I am very grateful to my parents, and my brother for always providing me with unlimitedsupport and encouragement.

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

Abstract

Multi-/many-core heterogeneous architectures are shaping current and upcoming genera-tions of compute-centric platforms which are widely used starting from mobile and wearabledevices to high-performance cloud computing servers. Heterogeneous many-core architec-tures sought to achieve an order of magnitude higher energy efficiency as well as computingperformance scaling by replacing homogeneous and power-hungry general-purpose pro-cessors with multiple heterogeneous compute units supporting multiple core types anddomain-specific accelerators. Drifting from homogeneous architectures to complex hetero-geneous systems is heavily adopted by chip designers and the silicon industry for more thana decade. Recent silicon chips are based on a heterogeneous SoC which combines a scalablenumber of heterogeneous processing units from different types (e.g. CPU, GPU, customaccelerator).
This shifting in computing paradigm is associated with several system-level design challengesrelated to the integration and communication between a highly scalable number of het-erogeneous compute units as well as SoC peripherals and storage units. Moreover, theincreasing design complexities make the production of heterogeneous SoC chips a monopolyfor only big market players due to the increasing development and design costs. Accordingly,recent initiatives towards agile hardware development open-source tools and microarchi-tecture aim to democratize silicon chip production for academic and commercial usage.Agile hardware development aims to reduce development costs by providing an ecosystemfor open-source hardware microarchitectures and hardware design processes. Therefore,heterogeneous many-core development and customization will be relatively less complexand less time-consuming than conventional design process methods.
In order to provide a modular and agile many-core development approach, this dissertationproposes a development platform for heterogeneous and self-adaptive many-core architec-tures consisting of a scalable number of heterogeneous tiles that maintain design regularityfeatures while supporting heterogeneity. The proposed platform hides the integration com-plexities by supporting modular tile architectures for general-purpose processing coressupporting multi-instruction set architectures (multi-ISAs) and custom hardware accelera-tors. By leveraging field-programmable-gate-arrays (FPGAs), the self-adaptive feature of themany-core platform can be achieved by using dynamic and partial reconfiguration (DPR)techniques.
This dissertation realizes the proposed modular and adaptive heterogeneous many-coreplatform through three main contributions. The first contribution proposes and realizes amany-core architecture for heterogeneous ISAs. It provides a modular and reusable tile-based architecture for several heterogeneous ISAs based on open-source RISC-V ISA. Themodular tile-based architecture features a configurable number of processing cores withdifferent RISC-V ISAs and different memory hierarchies.
To increase the level of heterogeneity to support the integration of custom hardware accel-erators, a novel hybrid memory/accelerator tile architecture is developed and realized as thesecond contribution. The hybrid tile is a modular and reusable tile that can be configured

Faculty of Computer Science Institute of Computer Engineering, Chair of Adaptive Dynamic Systems

at run-time to operate as a scratchpad shared memory between compute tiles or as anaccelerator tile hosting a local hardware accelerator logic. The hybrid tile is designed andimplemented to be seamlessly integrated into the proposed tile-based platform.
The third contribution deals with the self-adaptation features by providing a reconfigurationmanagement approach to internally control the DPR process through processing cores (RISC-V based). The internal reconfiguration process relies on a novel DPR controller targetingFPGA design flow for RISC-V-based SoC to change the types and functionalities of computetiles at run-time.

Contents

List of Figures III

List of Tables VII

List of Listings IX

Acronyms X

1 Introduction 11.1 Motivation . 11.2 Objective of this Dissertation . 31.3 Own Contributions . 41.4 Structure of this Dissertation . 6
2 Background and State-of-the-Art 92.1 Tile-Based Many-Core Architectures . 92.1.1 Various Tile-based Platforms . 132.1.2 Open-Source RISC-V ISA . 222.2 Hardware Accelerators Integration . 252.2.1 Accelerator Coupling Models . 282.2.2 Memory Management for Accelerators 312.3 Runtime Adaptive FPGA-based SoC . 362.3.1 Partial Reconfiguration . 372.3.2 Reconfiguration Management Frameworks 392.4 Contribution Towards Modular and Adaptive Many-Core Architectures 412.4.1 Modular and Adaptive Heterogeneous Tile-based Architecture 412.4.2 Hybrid Memory/accelerator Tile Architecture 442.5 Summary . 46
3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs 493.1 Modular Tile-based Architecture . 503.1.1 Multi-Core based Tile Architecture . 523.1.2 Heterogeneous RISC-V based Processing Elements 533.2 System Scalability and Communication Model 583.2.1 NoC Configuration and Unified Network Interface 583.2.2 Communication Model for Tile-based Architecture over the NoC . . . 603.3 Programming Method and Software Execution 63

I

Contents

3.4 Evaluation . 693.4.1 Hardware Resource Usage and Prototyping 703.4.2 Memory Bandwidth Scalability . 753.4.3 Computing Performance and Scalability 783.4.4 Comparison with State-of-the-Art . 813.4.5 Use Cases Applications . 843.5 Summary . 90
4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile

Architecture 934.1 Hybrid Tile Architecture Implementation . 944.1.1 Hybrid Tile Data Path . 974.1.2 Hybrid Tile Control Unit . 1014.2 Integration into Tile-based Many-Core System 1064.2.1 System Overview . 1074.2.2 Message-based communication over NoC 1074.3 Evaluation . 1134.3.1 FPGA Resource Utilization . 1144.3.2 Memory Mode Evaluation . 1154.3.3 Accelerator Mode Evaluation . 1184.4 Summary . 119
5 Reconfiguration Management for Self-Adaptive RISC-V based Many-Core Archi-

tectures 1215.1 Internal Dynamic Partial Reconfiguration Management for Self-Adaptive RISC-Vbased SoC . 1225.1.1 FPGA-based RISC-V SoC . 1235.1.2 DPR Controlling Unit (RV-CAP) . 1245.2 Application Programming Interfaces (APIs) and Abstraction Layer 1265.2.1 RV-CAP APIs . 1265.2.2 Supporting DPR Vendor Controller . 1285.3 Evaluation of the Reconfiguration Management Approach 1315.3.1 Hardware Resource Evaluation . 1315.3.2 Reconfiguration Time . 1325.3.3 Use Cases Accelerators . 1325.4 Reconfiguration Management Unit Integration into the Tile-based Many-CoreArchitecture . 1355.5 Summary . 140
6 Conclusion and Outlook 1436.1 Summary of Contributions . 1436.2 Future Work . 145
Bibliography 147

Student Work 162

II

List of Figures

1.1 Main contributions towards the realization of a modular platform for adaptiveheterogeneous many-core architectures. 41.2 Proposed adaptive and modular many-core architecture including main dis-sertation contributions: (1) modular tile-based for heterogeneous ISAs, (2)hybrid architecture tile for custom hardware accelerators and memory blocks,and (3) reconfiguration management unit for self-reconfigurable RISC-V-basedSoC. 5
2.1 Evolution of compute-centric systems from single-core architectures towardstile-based many-core architectures [10]. 102.2 Roofline models for baseline multi-core and tile-based architectures [37], [10]showing performance improvement for memory-bound applications runningon tile-based architectures. 122.3 Heterogeneous tile-based structure for modern many-core based SoC includ-ing general-purpose, accelerators, memory, and peripherals tiles. 132.4 Overview of the Open-Piton tile-based architecture [43]. The general-purposetile contains a single RISC-V core (Ariane, RV64ISA), private caches, and multi-plane NoC routers. 142.5 Overview of homogeneous tile-based Memphis architecture [47]. Each tilefeatures a single CPU with shared local memory and a NoC router. 152.6 Overview of heterogeneous tile-based BlackParrot architectures [50]. It sup-ports three types of heterogeneous tiles: (a) a general-purpose tile with a singleRISC-V processing core, (b) a coherent accelerator tile with cache memory, (c)a streaming accelerator tile with a direct connection to external I/O as well asa coherent connection to other tiles. 162.7 Overview of TaPaSCo architecture for parallel reconfigurable computing sys-tems [55]. It consists of multiple heterogeneous processing clusters. Eachprocessing cluster hosts multiple processing elements with a single RISC-Vcore per each. 182.8 Overview of MemPool architecture for general-purpose computing [56]. Thearchitecture consists of multiple clusters, each cluster hosts several general-purpose tiles. Each tile is based on a multi-core RISC-V architecture based onthe PULP platform. 19

III

List of Figures

2.9 Overview of heterogeneous tile-based ESP architecture [58]. ESP consists offour types of tile-based architecture: (a) a general-purpose tile hosting a singlecore CPU based on RISC-V ISAs, (b) an accelerator tile for HLS-based customaccelerator, (c) an accelerator tile for third-party accelerators (e.g. DSP, NPU),and (d) a memory tile for off-chip memory integration. 20
2.10 Overview of Manticore architecture for general purpose computing [62]. Man-ticore consists of hundreds of general purpose RISC-V based cores (Snitchcore [57]) grouped within multiple processing clusters. The architecture hasfour large processing quadrants hosting processing clusters and connectingthem to HBM. 21
2.11 Number of RISC-V-based scientific and technical publications since 2014 ac-cording to Google Scholar records. 22
2.12 Heterogeneous SoC architecture model with many accelerators and a hostprocessor. (DMA: Direct Memory Access, SPM: Scratchpad Memory) 26
2.13 Hardware accelerators categories and the related trade-off between flexibilityand energy efficiency. 27
2.14 Tightly-coupled accelerator model, where accelerators are integrated as anextension to a general-purpose processor or as an accelerator directly coupledto the processor with/without data cache sharing. 29
2.15 Loosely-coupled accelerator model, where accelerators are integrated intothe system through a communication fabric as memory-mapped peripheralsto general-purpose processors. 30
2.16 An example of a heterogeneous many-core architecture with many LCAs andgeneral-purpose cores, it shows the large size of private local memory thatdominates the area of LCAs [117]. 32
2.17 LCA tile structure as described by [119]: it contains several computation unitsrepresenting the accelerator logic, private local memory, control path, I/Obuffers, and interconnection interfaces for data transfer. 33
2.18 A Xilinx Ultrascale FPGA floorplan [131] with several clock regions, each clockregion contains a grid of resource tiles for CLB, DSP, BRAMs/URAMs and a gridof interconnects for connection between them. 37
3.1 Overview of the modular tile-based many-core architecture with a 3x3 tile-based many-core configuration including (a) 4x32-bit general-purpose com-pute tiles, (b) 2x64-bit general-purpose compute tiles, (c) the main/primaryprocessing tile, and heterogeneous tiles to host custom hardware accelerators(LCA tiles). 51
3.2 Schematic of 32-bit RISC-V based PE showing: (a) open-source RV32IMC (RI5CY)core, (b) instruction and data bridges for converting native I/D signals to AXI-4interfaces, (c) on-chip I/D TCM and their connection to the RI5CY core throughI/D bridges. 54
3.3 Schematic of 64-bit RISC-V based PE showing: (a) open-source RV64IMAC(CVA6/ARIANE) core, (b) address converter to access I/D TCM through the mainAXI-4 interconnect, (c) on-chip I/D TCM and their connection to the CVA6 corethrough the main AXI-4 interconnect. 56
3.4 A unified network interface (NI) block diagram for many-core compute tiles. . 59
3.5 Sequence diagram of the message-based communication model betweencomputing tiles over the NoC. 61

IV

List of Figures

3.6 Memory sectors of shared and local instruction and data memories for a singlecompute tile. 653.7 Schematic of the many-core programming flow including (a) building appli-cation tasks source codes targeting 32-/64-bit ISA, (b) generation of BRAMcoefficient files to be stored on shared instruction memory (boot memory) oftarget compute tiles. 683.8 Memory bandwidth scalability for a single compute tile with respect to thenumber of RV32/64 cores per tile. 763.9 Achievable memory bandwidth with respect to the number and types of many-core computing tiles using shared or local data memories at a clock frequency= 120 MHz (higher is better). 773.10 Data transfer latency over NoC between heterogeneous 32-/64-bit computetiles. 783.11 Block matrix multiplication partitioning over the tile-based many-core archi-tecture. 793.12 Execution time of matrix multiplication benchmark over different numbersand types of compute tiles using only compute tiles shared memory (lower isbetter). 803.13 Execution time of matrix multiplication benchmark over different numbersand types of compute tiles using only compute tiles local memory (lower isbetter). 813.14 Execution time of several FFT kernels with different sizes over different num-bers and types of compute tiles for multiple many-core configurations. 853.15 Execution time of several Matrix inverse kernels with different sizes over differ-ent numbers and types of compute tiles for multiple many-core configurations. 863.16 Execution time of several 2-D convolution kernels with different sizes overdifferent numbers and types of compute tiles for multiple many-core configu-rations. 873.17 Execution time of several 3-D convolution kernels with different sizes overdifferent numbers and types of compute tiles for multiple many-core configu-rations. 883.18 Execution time of several QNN kernels with different sizes over different num-bers and types of compute tiles for multiple many-core configurations. 89
4.1 An overview of a heterogeneous tile-based many-core architecture with hy-brid memory/accelerator tiles. The many-core system supports a single ISAby homogeneous RISC-V cores with heterogeneous LCAs hosted by hybridmemory/accelerator tiles. 944.2 An overview of the hybrid memory/accelerator tile internal architecture show-ing control unit, data path, and data/control NIs to NoC routers. 954.3 An example of a received sequence of message requests and their order ofexecution by the hybrid memory/accelerator tile. 964.4 Structure of hybrid memory/accelerator tile request message. 964.5 A detailed block diagram of hybrid memory/accelerator tile data path architec-ture showing internal functional and data movement components. 984.6 A detailed block diagram of hybrid memory/accelerator tile control unit archi-tecture. 1024.7 The main FSM of the hybrid tile shows the four stages of the control unit. . . 1044.8 A detailed FSM of the messages processing stage. 105

V

List of Figures

4.9 RISC-V based many-core configurations, configuration one: 16xRISC-V cores,and single hybrid memory/accelerator tile, configuration two: 32xRISC-V cores,and 2xhybrid memory/accelerator tiles . 1064.10 Structure of (1) request, (2) response control packets, and (3) data packetsused by the hybrid memory/accelerator tile. 1084.11 Sequence diagram of the data transfer process between a compute tile andhybrid memory tile in case of memory or accelerator data read. 1094.12 Sequence diagram of the data transfer process between a compute tile andhybrid memory tile in case of memory or accelerator data write. 1114.13 Memory bandwidth evaluation between a single compute tile and a singlehybrid memory/accelerator tile at a clock frequency = 100 MHz. 1164.14 Signal processing based kernels evaluation over tile-based many-core archi-tecture with hybrid memory/accelerator tiles. 1174.15 Hardware accelerator performance evaluation. 119
5.1 A schematic overview of the target self-adaptive RISC-V based SoC [21]. . . . 1235.2 Overview of the RV-CAP controller architecture [21]. 1255.3 A schematic overview of the target self-adaptive RISC-V based SoC with XilinxAXI-HWICAP controller. 1295.4 Reconfiguration time with respect to different RP sizes by using the RV-CAPcontroller. 1325.5 Reconfiguration time with respect to different RP sizes by using the XilinxAXI-HWICAP [177] controller. 1335.6 An overview of the self-adaptive RISC-V based SoC floorplan on a Xilinx VirtexUltrascale+ (XCVU9P) FPGA. 1345.7 A schematic overview of the main processing tile with the RV-CAP controller. 1365.8 A detailed block diagram of the RV-CAP controller within the main processingtile for adaptive tile-based many-core architecture. 1375.9 FPGA floorplan of the first tile-based many-core size with 2x7 NoC configuredby 8x32-bit (w/4-PEs), and 4x64-bit (w/single-PE) compute tiles (12xRPs). . . . 1385.10 FPGA floorplan of the second tile-based many-core size with 2x4 NoC con-figured by 4x32-bit (w/4-PEs), 2x64-bit (w/single-PE), and 1x64-bit (w/2-PEs)compute tiles (7xRPs). 138

VI

List of Tables

2.1 RISC-V ISA extensions [69]. 232.2 A list of selected RISC-V-based cores. 242.3 Comparison between hardware accelerator coupling models. 312.4 State-of-the-art DPR management units comparison. 402.5 Many-core architectures State-of-the-Art comparison. 432.6 Accelerator Integration State-of-the-Art Comparison. 45
3.1 Hardware resource utilization and power consumption of the 32-bit general-purpose compute tile (RV32-tile) targeting a Xilinx Virtex Ultrascale+ (XCVU9P)FPGA. 713.2 Hardware resource utilization and power consumption of the two 64-bitgeneral-purpose compute tiles (RV64(1-PE), RV64(2-PEs)) targeting a XilinxVirtex Ultrascale+ (XCVU9P) FPGA. 723.3 Hardware resource utilization and power consumption of the main processingtiles (RV64(4-PEs)) targeting a Xilinx Virtex Ultrascale+ (XCVU9P) FPGA. 733.4 Hardware resource utilization of several tile-based many-core sizes and typestargeting a Xilinx Virtex Ultrascale+ (XCVU9P) FPGA. 743.5 Computing performance for different numbers and types of compute tilesbased on matrix multiplication benchmark at a clock frequency = 120 MHz. . 823.6 Comparison between state-of-the-art RISC-V based many-core architecturesand the proposed modular and heterogeneous many-core architecture interms of resources utilization and computing performance targeting FPGAplatforms. 83
4.1 Input and output of the decoding stage in the control unit. 1024.2 Hybrid tile data path resource utilization on Xilinx XCVU9P. 1144.3 Hybrid tile control unit resource utilization on Xilinx XCVU9P. 1154.4 Total resource utilization of many-core configuration-two on Xilinx XCVU9P. . 1154.5 Hardware accelerator resource utilization on Xilinx XCVU9P. 118
5.1 Hardware resource utilization of the RV-CAP controller and Xilinx AXI-HWICAPon Xilinx XCVU9P FPGA and the maximum reconfiguration throughput at aclock frequency = 100 MHz. 1315.2 Hardware resource utilization of the self-adaptive RISC-V based SoC with asingle RP to host multiple image processing accelerator modules on XilinxXCVU9P FPGA. 1345.3 Image processing accelerators execution and reconfiguration time at a clockfrequency = 100 MHz. 135

VII

List of Tables

5.4 DPR resource utilization and reconfiguration time for two tile-based many-coreconfigurations on Xilinx XCVU9P FPGA. 1395.5 Total hardware resource utilization for the two differentmany-core sizes shownin Figure 5.9, Figure 5.10 on Xilinx XCVU9P FPGA. 140

VIII

List of Listings

3.1 NI data transmission softwaremodules executed on RISC-V cores from general-purpose compute tiles. 623.2 NI data receiving software modules executed on RISC-V cores from general-purpose compute tile. 633.3 General-purpose compute tile linker script for single-core and multi-core ar-chitectures. 663.4 Memory initialization stage (init.c) of a single general-purpose compute tile. . 673.5 A sample software implementation over a single multi-core compute tile. . . 68
4.1 Hybrid memory/accelerator tile request software module executed on RISC-Vcores inside conpute tiles. 1104.2 Wait grant software module executed on RISC-V cores inside compute tiles. . 1104.3 Memory read software module executed on RISC-V cores inside compute tiles.1114.4 Memory write software module executed on RISC-V cores inside compute tiles.1124.5 Accelerator read software module from the accelerator logic in hybrid tileexecuted on RISC-V cores inside compute tiles. 1134.6 Accelerator write software module to the accelerator logic in hybrid tile exe-cuted on RISC-V cores inside compute tiles. 113
5.1 RM initialization and reconfiguration process API software modules to controlthe RV-CAP from RISC-V core. 1265.2 An overview of the RM initialization API software module. 1275.3 An overview of the RV-CAP reconfiguration process API software module. . . 1285.4 An overview of the DMA write API software module. 1285.5 RM initialization and reconfiguration process API software modules to controlthe Xilinx AXI-HWICAP from RISC-V core. 1295.6 An overview of the AXI-HWICAP reconfiguration process API software module. 1305.7 An overview of the Xilinx AXI-HWICAP write API software module. 130

IX

Acronyms

ACK Acknowledgement
ALU Arithmetic Logic Unit
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
ASIP Application Specific Instruction Set Architecture
AXI Advanced Extensible Interface
BRAM Block Random-Access Memory
BW Bandwidth
CAD Computer-Aided Design
CLB Configurable Logic Block
CLK Clock
CMOS Complementary Metal–Oxide–Semiconductor
CNN Convolutional Neural Network
CPU Central Processing Unit
CU Compute Unit
DDR Double Data Rate
DFG Data Flow Graph
DMA Direct Memory Access
DPR Dynamic Partial Reconfiguration
DPU Data Processing Unit
DRAM Dynamic Random-Access Memory
DSA Domain Specific Accelerator
DSE Design Space Exploration
DSP Digital Signal Processor
DTCM Data Tightly Coupled Memory

X

DVFS Dynamic Voltage and Frequency Scaling
eFPGA Embedded FPGA
FF Flip-Flop
FFT Fast Fourier Transform
FIFO First-in-First-out
FPGA Field-Programmable Gate Array
FSM Finite State Machine
GALS Globally Asynchronus Locally Synchronus
GCC GNU C Compiler
GPU Graphics Processing Unit
HBM High Bandwidth Memory
HDL Hardware Description Language
HLS High-Level Synthesis
HMC Hybrid Memory Cube
HPC High-Performance Computing
I/O Input/Output
ICAP Internal Configuration Access Port
IFM Input Feature Map
ILP Instruction-Level Parallelism
IoT Internet of Things
IP Intellectual Property
ISA Instruction Set Architecture
ITCM Instruction Tightly Coupled Memory
LCA Loosely Coupled Accelerator
LLC Last Level Cache
LUT Lookup Table
MAC Multiply and Accumulate
MPI Message Passing Interface
MPSoC Multiprocessor System-on-Chip
NI Network Interface
NoC Network-on-Chip
NPU Neural Processing Unit
NUMA Non-Uniform Memory Access

XI

Acronyms

OFM Output Feature Map
OpenCL Open Computing Language
OpenMP Open Multi-Processing
OPS Operations per Second
OS Operating System
PCAP Processor Configuration Access Port
PCI-E Peripheral Component Interconnect Express
PE Processing Element
PLM Private Local Memory
PRR Partial Reconfigurable Region
PU Processing Unit
QNN Quantized neural Network
QoS Quality of Service
RISC Reduced Instruction Set Computer
RM Reconfigurable Module
RP Reconfigurable Partition
RTL Register Transfer Level
SAR Synthetic Apereture Radar
SDK Software Development Kit
SIMD Single Instruction Multiple Data
SoC System-on-Chip
SPI Serial Peripheral Interface
SRAM Static Random-Access Memory
TCA Tightly Coupled Accelerator
TCM Tightly Coupled Memory
TLB Transaction Lookaside Buffer
UART Universal Asynchronous Receiver-Transmitter
UAV Unmanned Aerial Vehicle
UMA Uniform Memory Access
URAM Ultra Random-Access Memory
VHDL Very High Speed Integrated Circuit Hardware Description Language
VLSI Very Large-Scale Integration
WCET Worst-Case Execution Time

XII

1 Introduction

1.1 Motivation

Over the last decade, CMOS technology scaling has slowed down leading to the end of thehistorical correlation between performance and energy efficiency improvements and CMOSscaling process [1]. Currently, energy dissipation is the main limiting factor for the perfor-mance of processing units (e.g. CPUs, microprocessors) which is due to the constant powerdensity resulting from CMOS technology scaling. Consequently, computing performancescalability cannot be further improved by frequency scaling due to the crisis of the powerwall. In parallel, the ever-growing size of data processing like in big data and machine learningdomains increases the challenges to achieve scalable computing performance with nominalenergy efficiency by just increasing the transistor counts on the chip [2]. Therefore, a shiftin computing paradigms has been started by replacing single-core designs with multi-coreand many-core architectures by exploiting computing parallelism techniques to achieve asubstantial computing speedup with an improvement in energy efficiency.
The paradigm shift in computing-centric architectures from single-core to multi-/many-coresystems leads to the emergence of heterogeneous system-on-chip (SoC) designs. Wheremultiple heterogeneous components are integrated on the same silicon chip. The evolutionof compute-centric architectures, trying to overcome the slowdown of Moore’s law, opens thedoor for domain-specific architectures by tailoring and customizing the computing units toefficiently execute a specific scientific algorithm or an application domain using custom hard-ware accelerator units. On the other hand, heterogeneous multi-instruction set architectures(multi-ISA) such as the recent generation of heterogeneous CPUs with little and big coresarchitectures are able to find the best tradeoff between computing performance and energyefficiency for general-purpose workloads based on runtime workload’s kernels computingrequirements [3], [4]. Moreover, techniques such as digital-voltage-frequency-scaling (DVFS)and near-threshold computing are currently adopted for recently developed heterogeneousmobile SoC to have scalable computing performance with a low power budget.
In parallel, recent initiatives towards agile hardware development open-source tools andmicroarchitecture aim to democratize silicon chip production for academic and commercialusage [5]. Agile hardware development aims to reduce development costs by providing anecosystem for open-source hardware microarchitectures and hardware design processes.One of the main contributions towards agile hardware development is RISC-V open-sourceISA, where a series of open-source RISC-V-based microprocessors are royalty-free [6] thatcan be used directly in the development of SoC designs as off-shelf IP cores or through cus-tomization by adding application-specific custom instructions for a new RISC-V ISA extension.

1

1 Introduction

In addition, open-source designs and development tools are aiming to create open-sourceSoC design frameworks, where SoC development and customization will be relatively lesscomplex and less time-consuming than conventional design process methods [7], [8]. In com-parison with baseline SoC design and development, agile hardware development providesthe ability to seamlessly integrate a new hardware module (e.g. custom hardware accelerator,microprocessor with special ISA extension) within a unified and modular SoC architecture.Hence, domain-specific accelerators with agile hardware development contributions openthe market for more new players to develop their own hardware accelerator intellectualproperties (IPs) without the necessity to have strong expertise in SoC design and integration[9].
Multi- and many-core architectures are the dominant type of architecture for the current SoCdesigns [10]. They feature a scalable and heterogeneous number of processing units, whereinterconnection and communication between architectural units are crucial to maintain thedesired computing performance. Many particular challenges are arising regarding communi-cation between different processing units, system-level scalability, programmability, and lastbut not least the need for a unified platform or an integration methodology between hetero-geneous compute units. More specialization by heterogeneity decreases the system-levelscalability and flexibility due to the inherent structure of heterogeneous processing units andcustom hardware accelerators. Therefore, several recent approaches focus on tile-based orclustered architectures that can offer more degree of scalability than traditional multi-coreprocessors. The design and development of scalable many-core heterogeneous architecturesis a cumbersome process due to several system-level challenges regarding integration andinteraction between a large number of non-unified heterogeneous processing units. As aresult, the design process is always accompanied by continuous inflation in design costs anda limited degree of post-design upgrades.
This dissertation enables the design of scalable many-core SoC designs with a regular andflexible architecture that hides the complexities of heterogeneous many-core integration forrapid prototyping and low-cost generation of multiple heterogeneous many-core taxonomiesusing modular and reusable tile-based computing units.
In order to provide a modular and agile many-core development methodology, this dis-sertation proposes a development platform for heterogeneous and adaptive many-corearchitectures consisting of a scalable number of heterogeneous tiles that maintain design reg-ularity features while supporting heterogeneity. The proposed platform hides the integrationcomplexities by supporting modular tile architectures for general-purpose processing coresand custom hardware accelerators. In addition, the communication between heterogeneouscompute tiles is conducted through a unified communication model through a generic NoCarchitecture [11]. The proposed many-core platform promotes architectural componentsreuse and guarantees hardware portability across different many-core taxonomies designs.The platform exploits the regularity of compute tiles and processing element architecturesto support the seamless integration of new compute units based on target applicationrequirements or future design upgrades.
By leveraging field-programmable-gate-arrays (FPGAs), the self-adaptive feature of the many-core platform can be achieved by supporting dynamic and partial reconfiguration techniques.In this dissertation, a novel reconfiguration management unit is proposed to internally controlthe DPR process from a permanent compute tile to configure the many-core architectureat runtime in terms of type and number of heterogeneous compute tiles. The self-adaptive

2

1.2 Objective of this Dissertation

feature allows the deployment of different many-core taxonomies based on changing appli-cation requirements at runtime. Also, It allows further design upgrades without the need torepeat the design and generation process for the upgraded many-core design. Therefore,design modularity and adaptability are keys for reducing design and integration costs andpromoting the commodity of many-core architectures for emerging application domains.

1.2 Objective of this Dissertation

The presented background of the research field in the previous section brings us to discussthe current challenges and the main focus of this dissertation. As presented at the beginning,the degree and level of heterogeneity come on top of the outstanding challenges in many-core SoC architectures, more noticeably, in the existence of the domain-specific acceleratorera which is increasing the level of heterogeneity and scaling complexities of many-core SoCarchitectures. However, the effects of the emergence of new open-source ISAs (e.g., RISC-VISAs) and how to leverage its existence with custom hardware accelerators in many-core SoCarchitectures is yet an open research point [12].
In heterogeneous many-core systems, integration and communication between a scalablenumber of heterogeneous processing cores lead to several system-level challenges thatincrease the design effort and costs as well as limited micro-architecture post-design up-grades. Hence, new approaches towards the design of agile many-core SoC architectureshave recently flourished [13]. The motivation is to provide a modular and agile many-coresystem with flexibility and reusability features to support different micro-architecture config-urations as well as post-design incrementation with new heterogeneous components (e.g.new ISAs, custom hardware accelerators). Therefore, the design and development of agilemany-core systems start from the tile micro-architecture. The many-core system is based ona tile-based architecture connected through a NoC to keep the needed scalability and highcommunication bandwidth between the tiles. The main concern is to realize reusable andflexible tile architecture types that can be configured or augmented with new heterogeneouscomponents at run-time.
Accordingly, modular micro-architectures to support multiple-memory hierarchies and seam-less integration of several heterogeneous components are still open wide for research. It isfurther worth mentioning that, the recent slowdown of CMOS scaling technology and theend of Dennard scaling will lead to more architectural specialization and an extreme level ofheterogeneity that requires the design and deployment of largely fixed-function acceleratorsbased on an algorithm or application requirements [14]. Thus highlighting the need for anagile many-core architecture design to cope with new computing challenges.
On the other hand, several architectural solutions are presented in the literature targetingreconfigurable and adaptive SoC. However, existing literature solutions are not dedicated toRISC-V-based SoC. Therefore, in dealing with the self-adaptive feature for many-core systems,an internal reconfiguration management unit for RISC-V-based SoC is developed. It canchange the internal functionality or the configuration of tiles micro-architecture as well ascustom hardware accelerator logic.
In that context, the work in this thesis deals with these untackled research points combined,micro-architecture modularity, higher level of heterogeneity, and adaptability, by focusingon how to realize a modular and adaptive many-core SoC architecture for multi ISAs and

3

1 Introduction

Internal Reconfiguration
Management

[16], [19], [20], [21] [15], [16], [17], [20]

Heterogeneous Scalable
Tile-based Architecture Hybrid Memory/ Accelerator Tile [18], [20]

Seamless
Integration of

Custom
Hardware

Accelerators

Many-Core
Self-Adaptation

Management

Modular
Many-Core

Architecture for
Heterogeneous

ISAs

A Modular Platform for Adaptive Heterogeneous Many-Core
Architectures

Figure 1.1: Main contributions towards the realization of a modular platform for adaptiveheterogeneous many-core architectures.
seamless integration of heterogeneous custom hardware accelerators at run-time. Thedissertation provides a thorough investigation of heterogeneous many-core architectures byimplementing a modular and adaptive tile-based many-core architecture for heterogeneousISAs and custom hardware accelerators.
The thesis presents a modular and configurable tile-based architecture with several typesof tile architecture where tiles can host (1) a configurable multi-core architecture based onseveral heterogeneous ISAs [15], [16] with different memory hierarchies [17], (2) customhardware accelerators and shared memory blocks through a hybrid tile architecture to lever-age the reusability of architectural components [18], [19], [20]. Several signal processing usecases accelerators have been used for evaluation. Further, internal run-time reconfigurationmanagement is developed and implemented to leverage self-adaptability for the proposedtile-based many-core architecture [21], [16]. The main contributions of this dissertation arepresented in the following section.

1.3 Own Contributions

The contributions of this doctoral thesis are as follows: (1) Modular many-core architecturefor heterogeneous ISAs, (2) Seamless integration of custom hardware accelerators througha hybrid memory/accelerator tile architecture, and (3) Many-core runtime reconfigurationmanagement through an internal reconfiguration management system. This is illustrated inFigure 1.1 which presents the three main contributions and how they contribute towards therealization of a modular platform for adaptive heterogeneous many-core architectures.
The first contribution is based on state-of-the-art analysis for processor-centric many-corearchitectures that directs to the necessity for a modular and reusable many-core platform tosupport heterogeneous ISAs with different architectural configurations for ever-increasingcomputing demands. As a result, a modular tile-based many-core architecture for several

4

1.3 Own Contributions

R

R

R

R

R

R

R

R

R

32-bit
Multi-Core

Tile

32-bit
Multi-Core

Tile

64-bit
Multi-Core

Tile

32-bit
Multi-Core

Tile

64-bit
Multi-Core

Tile

Main
Processing

Tile

DDR UART SD-Card

External Peripherals

Tile-based Many-Core Architecture

AXI-4 Interconnect

Main Processing Tile

1

2

3

Local Memory

1

2

3

Modular Tile-based
many-Core Platform
for Heterogeneous

ISAs

Hybrid
Memory/Accelerator

Tile Architecture

Reconfiguration
Management for RISC-V

based SoCI/Os

Reconfiguration
Management

Figure 1.2: Proposed adaptive and modular many-core architecture including main disser-tation contributions: (1) modular tile-based for heterogeneous ISAs, (2) hybridarchitecture tile for custom hardware accelerators and memory blocks, and (3)reconfiguration management unit for self-reconfigurable RISC-V-based SoC.
heterogeneous ISAs is proposed. In order to increase the level of heterogeneity and supportseamless integration of custom hardware accelerators and memory modules for domain-specific applications, a hybrid memory/accelerator tile architecture is proposed.
Therefore, by combining the first and second contributions, the proposedmany-core platformby this doctoral thesis supports an unprecedented level of heterogeneity with flexible archi-tectural configurations using modular and reusable tile architectures. Further, the proposedmodular many-core architecture is occupied with an internal reconfiguration managementunit as the third contribution for self-adaptive purposes. The internal reconfigurationmanage-ment unit is responsible for changing tiles functionalities and configurations during run-timethrough DPR. The proposed contributions are shown in Figure 1.2 shaping the proposedadaptive and modular many-core architecture proposed by this doctoral thesis. The mainhighlights of each contribution are presented in the following.

• Modular Tile-based Many-Core Architecture for Heterogeneous ISAs [15], [16], [17],[20].On the level of heterogeneous ISA designs, this dissertation worked on the gap of amissing modular many-core platform to support multiple heterogeneous ISAs. Theproposed modular many-core platform features a scalable tile-based architecturewhere each tile can host a single or a multi-core architecture with different RISC-V ISA-based PEs [15], [16]. Each tile supports different memory configurations for shared andlocal instruction/data scratchpad memories associated with multi-core or single-coreconfigurations [17]. Furthermore, the proposed many-core platform supports multiplecommunication models for data sharing and transmission between heterogeneoustiles through a scalable NoC architecture. A unified programming method is developedto target multiple RISC-V ISAs for 64- and 32-bit architectures. The proposed many-coreplatform supports FPGA design flow for hardware evaluation in terms of resourceutilization and power consumption. Further, computing scalability and performanceare evaluated in terms of achievable operations per second and memory bandwidthfor several many-core configurations using multiple signal processing-based use cases.

5

1 Introduction

• Hybrid Memory/Accelerator Tile Architecture for Tile-based Many-Core Systems[18], [20].Hybrid memory/accelerator tile architecture is proposed as the outcome of studyingaccelerator-centric architecture designs. It supports two modes of tile operation asa memory tile or an accelerator tile hosting a custom hardware accelerator using amodular tile architecture [18], [20]. The tile supports the seamless integration of cus-tom hardware accelerators to the proposed many-core platform through the modularhybrid tile architecture. Furthermore, leveraging the hybrid tile architecture to supportnoncoherent memory sharing between custom hardware accelerators and heteroge-neous ISAs tiles. Multiple hardware accelerators from the signal processing domainare developed and used as use cases for evaluation.
• Reconfiguration Management for Self-Adaptive Tile-based Systems [16], [19], [20],[21].A reconfiguration management unit is proposed to allow self-adaptation for the pro-posed tile-based many-core system [19]. The applied self-adaptation approach is basedon self-controlling and management of the reconfiguration process through a main pro-cessing tile [21]. The internal reconfiguration process relies on a novel DPR controllertargeting FPGA design flow for RISC-V-based SoC to change the types and functional-ities of many-core tiles at run-time [16], [20]. Furthermore, the performance of theproposed reconfiguration management unit is evaluated based on hardware resourceutilization, maximum achievable reconfiguration throughput and power consumption.The proposed reconfiguration management achieves a faster reconfiguration timecompared to state-of-the-art DPR-based reconfigurable SoC.

1.4 Structure of this Dissertation

This dissertation is structured into six chapters including this one, organized as follows.
Chapter 2 presents the preliminary background and literature review of the state-of-the-artin the field of this dissertation covering topics of heterogeneous many-core architecturesand adaptive SoC architectures. The chapter discusses the current research directions forheterogeneous many-core architectures including processor-centric and accelerator-centricapproaches. In addition, several tile-based many-core architectures are reviewed in order toexplore state-of-the-art many-core realization techniques for heterogeneous ISAs and customhardware accelerators. The chapter is concluded by discussing open research directionsthat this dissertation aims by bridging adaptive computing, computing heterogeneity withmany-core architectures. Further, the contributions of this dissertation are presented andpositioned within the presented state-of-the-art.
Chapter 3 presents the first proposed contribution of a modular tile-based many-corearchitecture for heterogeneous ISAs.The chapter starts by presenting a modular tile architec-ture that can host multiple numbers and types of PEs based on different RISC-V ISAs withshared and local scratchpad memories. Multiple RISC-V-based PEs are presented followed bydifferent supported interfaces to be integrated within the tile architecture. System scalabilityand communication models between tiles are then presented using a parametrized NoCarchitecture. The programming method and software execution are later presented support-ing 32-/64-bit programming flows. The chapter is finally concluded with a brief summary and

6

1.4 Structure of this Dissertation

discussion of the proposed tile-based many-core architecture. The content of this chapter isbased on the following published work: [15], [16], [17], [20].
Chapter 4 presents the second proposed approach to support a hybrid memory/acceleratortile within the proposed tile-based many-core architecture in the previous chapter. Thechapter starts by presenting the architectural components of the proposed approach andthe seamless integration method of RTL/HLS-based hardware accelerator to the tile. Then,tile external interfaces, and integration to the other compute tiles are presented, followed bya description of the control and data messages over the NoC for communication with othercompute tiles. Hardware and experimental results are then presented for the proposedhybrid tile using several use cases from the signal processing domain. The content of thischapter is based on the following published work: [18], [20]
Chapter 5 presents the third proposed approach to support run-time reconfigurationthrough an internal reconfiguration management unit. The proposed approach relies onthe development of an internal reconfiguration manager suitable for RISC-V-based SoC tobe inserted within the main processing tile of the proposed many-core architecture. Thereconfiguration process is based on dynamic partial reconfiguration for FPGAs. The chapterstarts by presenting the internal hardware architecture of the proposed reconfigurationmanagement unit. It then presents software management and abstraction layer to controland manage the reconfiguration from RISC-V-based PEs in the main processing tiles includingpartial bitstream transfer from external memory storage to FPGA configuration memory. Theperformance and hardware results of the proposed reconfiguration management unit arethen presented and discussed with several many-core configuration scenarios. The contentof this chapter is based on the following published work: [16], [19], [20], [21].
Chapter 6 summarizes and concludes this dissertation and presents future work insights.

7

2 Background and State-of-the-Art

This chapter provides the essential background information for the following chapters basedon the current state-of-the-art. For the design and exploration of modular and adaptivemany-core architectures, this dissertation covers two main research topics. The first partdiscusses state-of-the-art tile-based many-core architectures based on system architecture,degree of heterogeneity, and hardware accelerators integration as presented in Section2.1 and Section 2.2. The second part explores adaptive computing systems in order toachieve a self-adaptive many-core system. Therefore, a comprehensive overview of adaptivecomputing platforms and reconfiguration management frameworks are presented in Section2.3. Section 2.4 presents the contribution of this dissertation and the comparison to thestate-of-the-art towards the realization of a modular and adaptive many-core system. Finally,the chapter is summarized in Section 2.5.

2.1 Tile-Based Many-Core Architectures

The end of Dennard scaling started to appear around the year 2005 [22]. Single-core pro-cessor chips start to hit the power density limit and therefore single-threaded performancebegan to slow down. Therefore, the semiconductor industry had started to find a new com-puting paradigm that could keep the continuity of Moore’s law and the growth of technologyscaling. Therefore, workload parallelism could improve computing performance throughmulti-core processing architectures, driven by lower frequencies with less power-hungrypipelines. Each core can support single or more threads of execution so that the total numberof instructions per cycle can increase with the growing number of available cores per chip,which tends to reduce the overall performance per watt and keeps the power density undera certain limit based on technology nodes [23].
Degrees of workload parallelism are affected by several system-level factors, such as types ofsupported memory hierarchy, inter-core interconnect topologies, and parallel programmingmethods. System-level factors contribute towards setting an upper bound to the nominalperformance obtained from multi-core architectures. Such system-level factors are corre-lated with Amdahl’s law to determine upper-bound variations on multi-core architectures[24]. Nevertheless, multi-core architectures are being at the centre of the compute-centricparadigm for a decade. Compute-centric architectures constitute the majority of currentcomputing machines from embedded domains up to high-performance computing systems.Compute-centric architectures have witnessed a tremendous evolution in the field of com-puter architecture and embedded systems [25], evolving from single-core architectures tohundreds of cores SoC [26].

9

2 Background and State-of-the-Art

HeterogeneousHomogeneous

M
em

ory W
all

Pow
er W

all

Scalability W
all

Single-Core Architecture without Cache Hierarchy Single-Core Architecture with Cache Hierarchy

Multi-Core Architecture (Homogeneous/Heterogeneous)Tile-based Many-Core Architecture

Core

L1-Memory

NVM

Core

L2-Memory

NVM

L1-Mem.

Core

L2-Memory

NVM

L1-Mem.

Core

L1-Mem.

Core

L2-Memory

NVM

L1-Mem.

Core

L1-Mem.
HW
Acc.

NVM

Figure 2.1: Evolution of compute-centric systems from single-core architectures towardstile-based many-core architectures [10].
Currently, a variety of homogeneous and heterogeneous multi-core and many-core archi-tectures are leveraged in mainstream chips. Many-core architectures consist of a largenumber of cores with more sophisticated memory hierarchies and interconnect comparedto typical multi-core systems. Compute performance scaling and low power consumptionhave been ubiquitous and continual problems for computer architectures throughout itshistory. Moreover, several intertwined challenges related to efficient programming, limitedmemory bandwidth and data locality inherited from Von Neumann architecture representmain motivations for compute-centric architecture improvements [27].
Figure 2.1 shows the evolution steps of compute-centric architectures from single-core totile-based many-core architectures, including major walls of computer architecture [10]. Pro-cessor performance kept increasing rapidly, while memory latency to processor computinglatency is significantly slower. Therefore, the memory wall is the first computer architecturechallenge that had to be overcome by leveraging and optimizing cache hierarchies and bring-ing data as close as possible to processors [28]. However, cache-unfriendly data structurescannot be handled well by caching as the disparity rapidly increases [29]. On the other hand,power dissipation and energy consumption kept increasing with further improvement ofclock frequencies for single-core architectures to achieve higher compute performance alongwith increasing design complexity.
The power wall describes this obstacle of computing performance scaling as mentioned inFigure 2.1. Therefore, increasing compute performance scaling requires a shift in compute-centric architecture design to overcome the power wall. As a result, different concepts ofmulti-core processors have been introduced over the last two decades since the end of Dennardscaling, aiming to achieve scalable compute performance with higher performance per watt.Multi-core processor architectures are typically split into two major architectural groupsbased on the type of processing cores. First, homogeneous architectures consist of thesame type of processing cores connected through a communication fabric (e.g. shared bus,NoC) with memory-mapped I/O peripherals. The second type is heterogeneous architectures

10

2.1 Tile-Based Many-Core Architectures

with several types of processing cores and custom hardware accelerators. Heterogeneousmulti-core architectures are a big leap in the history of the evolution of compute-centricarchitectures [30]. Currently, multi-ISA heterogeneous multi-core are increasingly adopted[31] combining large high-performance cores and small power-efficient ones for general-purpose mixed workloads. Additionally, incorporating custom hardware accelerators isincreasingly used to improve overall efficiency by employing specialization in current multi-core architectures supporting domain-specific workloads.
Parallel programming for multi-core architectures is closely tied to the system’s memoryorganization, which can be classified into centralized shared memory, distributed sharedmemory, and fully distributed sharedmemory. In sharedmemory architectures, all processingcores share the same address space of the memory subsystem and the memory bandwidthis shared between cores. Memory bandwidth is an important factor for the performance ofmulti-core architectures but limits the degree of scalability. The sharedmemory programmingmodel relies on fine-grained data sharing and dynamic memory access behavior that canbe handled by compilers. However, to avoid race conditions programmers need to managesynchronization efficiently between cores [32].
Several parallel programming standards are provided to manage data movements betweencores and memory. For example, OpenMP [33] is an industry-standard that can be used toease parallel programming of shared memory architectures. In contrast, message-passingmodels are used for distributed memory architectures that do not provide a shared addressspace. Therefore, communication between cores needs to be established by a message-based communication model. Message passing interface is a well-known standard library fordistributed memory multi-core architectures, which includes a full range of message-passingprimitives [34]. Despite the tackled computing challenges by conventional homogeneousand heterogeneous multi-core architectures, system scalability becomes more complexand becomes a burden to increase the level of heterogeneity for data-centric workloads.Besides, more specialization by heterogeneity decreases the system-level flexibility due tothe inherent structure of heterogeneous processing cores and accelerators [35]. Therefore,several recent approaches focus on tile-based or clustered architectures that can offer moredegree of scalability than traditional multi-core processors [36].
As shown in Figure 2.1 tile-based architectures overcome the scalability wall by providinga distributed scaled number of heterogeneous compute tiles that can host shared or dis-tributed multi-core architectures inside. However, traditional multi-core architectures can beprogrammed easily, as current commodity parallel programming models can be applied with-out further improvements. In contrast, heterogeneous tile-based architectures require moresophisticated programmingmodels, especially for accelerator-centric tile-based architectures.Higher compute performance is achieved by tile-based architectures compared to multi-coresystems as shown in Figure 2.2. Moreover, shifting from traditional multi-cores to tile-basedhelped to alleviate interconnect scalability issues which improve the computing performancescalability and increase the overall memory bandwidth, where memory bandwidth is stronglyaffected by the low scalability of traditional multi-core architectures.
Tile-based architectures typically use a scalable NoC interconnect, which provides moredegree of scalability as well as higher memory bandwidth per tile compared to limited sharedbus flexibility. The roofline model shown in Figure 2.2 shows a higher memory bandwidthon the diagonal roof which results in a higher compute performance in comparison withmulti-core architectures. Therefore, applications with lower operational intensity (memory-intensive) can profit more from tile-based architectures. On the other hand, compute-

11

2 Background and State-of-the-Art

Operational Intensity (Ops/Byte)

P
e

rf
o

rm
a

n
c
e

 (
O

p
s/

S
)

Tile-based Architectures

Multi-Core Architectures

Shifting from multi-core to tile-based architectures

Figure 2.2: Roofline models for baseline multi-core and tile-based architectures [37], [10]showing performance improvement for memory-bound applications running ontile-based architectures.
intensive applications are represented on the horizontal roof linewith approximately the sameachieving compute performance on both tile-based and traditional multi-core architectures.
Typical tile-based architectures consist of a 2-D grid of heterogeneous compute elements withdifferent memory hierarchies and peripherals tiles. As shown in Figure 2.3, heterogeneouscompute tiles can be a cluster of general-purpose cores or a group of domain-specificaccelerators. General-purpose tiles are powerful, full-featured computing systems that canhost several types of processing cores and independently run an entire operating system.On the other hand, accelerator tiles are specifically assigned for domain-specific computinghosting a broad range of custom hardware accelerators either generated from HLS toolsor designed through RTL design flow. DSP, NPU, or DPU compute units can be hostedby accelerator tiles as application-specific accelerators for signal processing and machinelearning domains.
Moreover, accelerator tiles usually feature PLMs to increase data locality and accordingly theoverall tile computing performance. Several memory technologies are commercially availableat the moment (e.g. DDR, HBM, HMC, etc.). Therefore, several tile-based architectures have aset of dedicated memory tiles acting as a shared memory between general-purpose tiles aswell as accelerator tiles. Memory tiles can host on-chip or off-chip memory with requiredmemory controllers and data mover units as well as caching levels in case of data coherencyrequirements. Also, handling data transfer and communication with external peripherals orother external systems require a specific tile architecture for this purpose. Therefore, periph-erals or I/O tiles are developed to host required interfaces and communication protocols(e.g. PCIe, Ethernet, UART, etc.) to act as a bridge between compute or accelerator tiles andexternal peripherals or other computing systems.
Several tile-based architectures are proposed by literature targeting general-purpose anddomain-specific workloads with novel tiles architectures for computing, accelerators, andmemory. For example, Flex-Tile [35] , GRVI-Phalanex [38] , AsAP [39] , MITRACA [40] , Open-Piton [41] , ESP [13] , and Invasic [42]. In the following subsections, a detailed literature review

12

2.1 Tile-Based Many-Core Architectures

Peripherals / I/O TileMemory Tile

General-Purpose Tile Accelerator Tile

Little Cores

Midrange
Cores

Big Cores

Sh
ar

ed

M
em

or
y RTL-based

HLS-based

NPU/DSP

Sh
ar

ed

M
em

or
y

DMA

xDDR

HBM

In-memory
Computing

M
em

or
y

Co
nt

ro
lle

r PCIe

Display Interfaces

Ethernet/UART

Figure 2.3: Heterogeneous tile-based structure for modern many-core based SoC includinggeneral-purpose, accelerators, memory, and peripherals tiles.
of tile-based architectures and their specifications will be presented based on the followingpoints.

• Degree of heterogeneity by supporting multiple ISAs and hardware accelerators
• Supporting open-source ISAs
• Accelerators coupling techniques
• Design modularity and reusability
• Degree of extensibility and configurability

2.1.1 Various Tile-based Platforms

The successful evolution of the very-large-scale of integration (VLSI) technology enabledthe development of a large variety of heterogeneous multi- and many-core architectures.

13

2 Background and State-of-the-Art

Recently, ARM announced its 5nm Tri-Gear CPU subsystem for mobile SoC [3]. It consists ofheterogeneous ISA multi-core systems of several ARM Cortex CPUs. The system provides abalance of power and performance using several core sizes for different workloads. Hence,current trends for the development and implementation of many-core computing systemsare to provide heterogeneous computing capabilities with a balance between power andperformance targeting a broad spectrum of workloads. Therefore, tile-based platforms can fitas an architectural class suitable to implement heterogeneousmany-core systems for a broadspectrum of workloads achieving a balance between power and performance by selectingsuitable computing tiles based on workload requirements. Techniques for dynamic adaptivityand voltage frequency scaling are vital to accommodate new many-core architecture classes.In this subsection, various state-of-the-art types and implementations of tile-basedmany-corearchitectures are presented and analyzed.

Open-Piton

OpenPiton platform [43] is proposed as an open-source framework to enable the design anddevelopment of scalable homogeneous general-purpose many-core architectures. Open-Piton framework provides computing scalability from 1 core to thousand cores [41], sup-porting several core sizes (i.e. small size CPU: OpenSPARC T1 Core [44], application classCPU: Ariane core [45]). OpenPiton is based on a tiled many-core architecture as shown inFigure 2.4. It consists of two levels of scalable hierarchy. The first level is the chip level,where each chip contains a scalable number of homogeneous compute tiles. Each tile hostsa single CPU with associated levels of caches and NoC routers and interfaces. Within eachchip, a coherent multi-plan mesh-based NoC is used for communication and interconnectionbetween tiles. On the upper level of the OpenPiton hierarchy, multiple chips are clusteredforming a scalable many-core system. Within a chip, the designer can select the type of tilesto be processing, memory, or I/O tiles. A chip bridge is used to connect the intra-chip NoC tothe inter-chip NoC of the second level of the OpenPiton hierarchy.
Data coherency is maintained between different chips for the whole system architecture. Bylooking deeper inside the chip to figure out the tile architecture and degree of configurability,each tile features the flexibility to host different types of processing cores with configurable

Figure 2.4: Overview of the Open-Piton tile-based architecture [43]. The general-purpose tilecontains a single RISC-V core (Ariane, RV64ISA), private caches, and multi-planeNoC routers.

14

2.1 Tile-Based Many-Core Architectures

sizes and levels ofmemory caches subsystem. The cache hierarchy supports up to three cachelevels, with private L1 and L1.5 caches (as shown in Figure 2.4 inside the cache subsystemattached to Ariane core) and a shared L2 cache. Furthermore, the used NoC architecturesupports data coherency and large data bandwidth by implementing the concept of multi-plane NoC [46] using several physical networks for both inter- and intra-chip hierarchies.On the other hand, OpenPiton features a high degree of interconnection configurability bysupporting several coherent interconnection mediums inside the chip. The NoC can easilybe replaced by a crossbar or a higher radix design. Other coherent NoC prototypes caneasily be integrated to evaluate their effects on the total energy and performance. In termsof portability, OpenPiton was prototyped and ported for multiple FPGA devices through RTLsynthesis as well as ASIC design flow. In addition, OpenPiton is extensible by supportingseamless core replacement taking advantage of unified intra-tile interconnection betweenthe core and cache levels. Moreover, AXI interfaces are supported to provide connectivity toa wide range of I/O devices as memory-mapped I/O to the NoCs.

Memphis

Memphis framework [47] is proposed for modeling and generation of many-core SoCs. Theframework supports the integration of processor nodes, NoC, and peripherals to modelsand generates multiple taxonomies of many-core architectures. Memphis supports bothSystemC for modeling to speed up simulation time and RTL model for prototyping over FPGAdevices. Whereas, the framework integrates both modeling and prototyping into one EDAframework that can be used easily in research and teaching. The framework emphasizesseveral EDA features to cope with trends of many-core SoC generation including modularlogic design flow, automated hardware generation, and debugging methodologies. Apartfrom EDA features, our focus is on architectural characteristics of the Memphis frameworkspecifically its tile-based architecture.

Figure 2.5: Overview of homogeneous tile-based Memphis architecture [47]. Each tile fea-tures a single CPU with shared local memory and a NoC router.

15

2 Background and State-of-the-Art

Memphis is based on a single level of tile-based hierarchy compared to OpenPiton framework[41], where a 2-D mesh topology NoC is used for communication and interconnectionbetween tiles. As shown in Figure 2.5, Memphis architecture consists of a set of homogeneousprocessing tiles where each tile hosts a single processing element. The whole 2-D architectureis split into several quadrants where each quadrant has a single manager tile and multipleslave tiles. Both manager and slave tiles feature the same processing element architecture.The processing element hosts a single CPU that could be a MIPS-like architecture (i.e. thePlasma Processor [48]), RISC-V, or ARM. Besides, scratchpad local memories for instructionand data are tightly coupled with the single CPU inside the processing tile.
As Memphis many-core architecture is a NoC-based architecture in terms of interconnec-tion, a direct memory interface (DMNI) is integrated within each processing tile to supportsimultaneous transmission and receiving of data from local memory to the NoC. The DMNIconsists of a network interface and a DMA to connect the NoC router to local memory directlyproviding a higher memory access rate. Memphis relies on the Hermes 2-D non-coherentNoC [49]. In terms of portability and extensibility, the Memphis framework has been onlyprototyped targeting FPGA devices with limited extensibility of I/O peripherals through busseswithin processing tiles.

Black-Parrot

BlackParrot platform [50] is proposed as an open-source RISC-V based many-core platformfor heterogeneous acceleration. BlackParrot differs from other many-core platforms byexploiting the openness of RISC-V ISA to build a heterogeneous many-core accelerator.BlackParrot is not dealing with heterogeneous ISAs like other many-core platforms [16], [4].

Figure 2.6: Overview of heterogeneous tile-based BlackParrot architectures [50]. It supportsthree types of heterogeneous tiles: (a) a general-purpose tile with a single RISC-Vprocessing core, (b) a coherent accelerator tile with cache memory, (c) a streamingaccelerator tile with a direct connection to external I/O as well as a coherentconnection to other tiles.

16

2.1 Tile-Based Many-Core Architectures

However, it provides solutions for integrating different sorts of custom hardware acceleratorswith general-purpose RISC-V cores. Therefore, design modularity and tile-based approachare adopted by BlackParrot platform providing sets of general-purpose, accelerator, andmemory tiles as shown in Figure 2.6.
BlackParrot implements a similar interconnection type to the one used by OpenPiton frame-work [43] based on a coherent multi-plane NoC to support data coherency between all tileswith high data bandwidth. A single level of the tile-based hierarchy is adopted with a singlecompute element per tile either a custom accelerator or a RISC-V-based processing core.Looking deeper into the general-purpose tile, it supports a single RISC-V core based on64-bit ISA and Linux-capable. However, the general purpose tile lacks a certain degree ofconfigurability to be adapted with other ISAs. On the other hand, accelerator-based tilesfeature a high degree of configurability to host streaming or coherent-based acceleratorseither generated through HLS tools or by RTL design methodologies.
BlackParrot supports a single type of RISC-V core based on RV64G ISA supporting atomicand floating-point operation with virtual memory to run an operating system. Besides twolevels of cache subsystem inside the general-purpose tile. Seamless integration of customhardware acceleration is the main focus of the design of BlackParrot as it supports coherent,non-coherent, and stream accelerators through modular tile architectures. Also, a memorytile architecture is proposed to control and manage off-chip main memory (e.g. DRAM).In terms of extensibility, BlackParrat features a high degree of extensibility with differentworkload accelerators with general-purpose compute units. On the other hand, in terms ofportability, BlackParrot is only prototyped using ASIC design flow on a 12 nm technology.

P2012

P2012 [51] is proposed as an early ecosystem for a modular and scalable embedded comput-ing accelerator from STMicroelectronics. The primary goal is to achieve high energy efficiencyby combining general-purpose computing with domain-specific acceleration realizing an earlyprototype of a domain-specific architecture. P2012 many-core architecture is implementedbased on multiple globally asynchronous locally synchronous (GALS) clusters supportingfine-grained power management. P2012 clusters are connected through an asynchronousglobal NoC (GANoC) [52]. Each cluster represents a heterogeneous compute tile with ageneral-purpose multi-core system and loosely coupled hardware accelerators. A local inter-connect based on a logarithmic interconnection architecture [53] is used for communicationbetween heterogeneous components within the cluster.
Hardware synchronizers are supported within the cluster to provide scheduling and syn-chronization for acceleration between the hardware accelerator and general-purpose cores.Besides, a cluster control unit manages data transfer between the NoC and cluster computingsubsystem. P2012 provides a modular architectural template to create programmable accel-erators by extending it with custom hardware accelerators. On top of the P2012 architecture,a software stack was developed for parallel programming based on OpenCL. P2012 can be at-tached to a host CPU to act as a programmable accelerator for offloading compute-intensivekernels. P2012 is implemented using STMicroelectronics’ low power 28nm CMOS process[54] with the possibility to be interfaced with FPGA devices.

17

2 Background and State-of-the-Art

TaPaSCo

TaPaSCo framework [55] is proposed with a similar approach to P2012 [51] as a pro-grammable accelerator attached to a host CPU and supporting a parallel programmingmethod like OpenCL. Moreover, TaPaSCo features a high degree of portability to a broadrange of FPGA devices which makes it affordable for research and educational purposes. Themain goal of TaPaSCo is to enable an automated design space exploration for FPGA-basedacceleration with heterogeneous components. From a domain-specific architecture perspec-tive, TaPaSCo can be considered as a middleware toolflow for domain-specific accelerationproviding both hardware architecture layer and software stack targeting FPGA devices. Asshown in Figure 2.7, TaPaSCo architecture consists of multiple processing clusters connectedthrough AXI-4 based interconnects for control and data signals. Each processing clusterhosts multiple heterogeneous processing elements that could be a single general-purposecore (i.e. RISC-V, or a Microblaze core) or a custom HLS-based hardware accelerator.

Similar to inter-cluster connection, intra-cluster interconnection is based on AXI-4 inter-connects to connect multiple PEs within one cluster. A general-purpose PE features localscratchpad memories for data and instruction to increase data locality for memory-intensiveapplications. TaPaSCo provides a hardware abstraction layer for seamless integration of ascalable number of general-purpose cores and HLS-based accelerators through an auto-mated tool flow supporting an automatic hardware integration and uniform programminginterface. TaPaSCo features a high degree of extensibility by supporting seamless integrationof HLS-based accelerators from Xilinx HLS tools with the option to insert private memorybetween hardware accelerators and FPGA’s external DDR memory.

Figure 2.7: Overview of TaPaSCo architecture for parallel reconfigurable computing systems[55]. It consists of multiple heterogeneous processing clusters. Each processingcluster hosts multiple processing elements with a single RISC-V core per each.

18

2.1 Tile-Based Many-Core Architectures

MemPool

MemPool [56] is proposed as a shared memory homogeneous tile-based many-core archi-tecture with a special focus to ensure low latency and efficient access to L1 memory amongall cores. As shown in Figure 2.8, Mempool architecture consists of two levels of hierarchy.The first hierarchical level is the processing tile where multiple Snitch cores [57] with 16scratchpad memory banks, each core has a dedicated port to access the memory with onecycle latency. Each tile has a 4-way L1 instruction cache and AXI interconnect is used forcommunication between memory and cores. MemPool provides the flexibility for all tiles toaccess the L1 memory of each other. Therefore, extra control units are inserted per tile tohandle memory requests and response signals between the tiles. The second hierarchicallevel is the MemPool cluster where multiple tiles are connected to form a cluster or a groupof processing tiles. Several network topologies are used for global interconnections betweentiles and between groups of tiles based on logarithmic interconnects.
MemPool has been prototyped using 22nm technology with 256 cores and 1 MiB of sharedmemory. It achieves a low energy consumption due to memory access optimization mecha-nisms. However, MemPool is not extensible to support different processing cores or customhardware accelerators as well as its limited portability to other CMOS technologies and FPGAdevices.

ESP

ESP [58] is proposed as an open source research platform for heterogeneous SoC gener-ation. ESP platform features a modular tile-based architecture for general-purpose anddomain-specific workloads. It features four types of tile-based architecture for general pur-pose (processor), memory, accelerator, and I/O tiles. ESP offers an automated solutionto integrate custom or third-party hardware accelerators into a complete SoC for what iscalled agile hardware development [5]. ESP architecture consists of one hierarchical levelof heterogeneous tile grid connected through a multi-plane coherent NoC [59] as shown inFigure 2.9. Looking deeper into tiles architectures, the processor tile hosts a single core thatis chosen at design time to be either a 64-bit Ariane core [45] or SPARC 32-bit LEON3 core

Figure 2.8: Overview of MemPool architecture for general-purpose computing [56]. Thearchitecture consists of multiple clusters, each cluster hosts several general-purpose tiles. Each tile is based on a multi-core RISC-V architecture based on thePULP platform.

19

2 Background and State-of-the-Art

Figure 2.9: Overview of heterogeneous tile-based ESP architecture [58]. ESP consists offour types of tile-based architecture: (a) a general-purpose tile hosting a singlecore CPU based on RISC-V ISAs, (b) an accelerator tile for HLS-based customaccelerator, (c) an accelerator tile for third-party accelerators (e.g. DSP, NPU), and(d) a memory tile for off-chip memory integration.
from Cobham Gaisler [60]. Processor tiles feature modular architecture with two levels ofcaches with unified interfaces to support 32-/64-bit operations and memory transactions.
Two accelerator tiles are proposed for loosely coupled integration of HLS-based autogen-erated accelerators or third-party accelerators (e.g. NVDLA [58]). Accelerator tiles supportload/store ports between accelerator private local memory (PLM) and coherent NoC. Co-herent and non-coherent DMA models are supported for several acceleration modes. Inaddition, the ESP memory tile contains a channel to external DRAM. Several DRAM bankscould be supported by several memory tiles. Each memory tile contains a configurable-sizedlast-level cache (LLC) connected to the NoC plane through an LLC-coherent DMA. Lastly,the ESP auxiliary tile hosts all shared peripherals (e.g. Ethernet, UART, etc.), debugging, andmonitoring modules for performance monitoring. ESP provides a full software stack withthe accelerator’s API library to simplify the invocation of hardware accelerators from a userapplication making the integration of hardware accelerators as transparent as possible. ESPplatform is highly portable to several FPGA devices as well as for ASIC design flow [61].

Manticore

Manticore [62] is proposed as a general-purpose high-performance tile-based many-corearchitecture for data-parallel floating-point workloads such as data analytics, and scientificcomputing. Manticore can be classified as an ultra-energy-efficient high-performance com-puting platform due to its data-path architecture in comparison with baseline GPUs. Also, itsupports a certain degree of heterogeneity by supporting both 32- and 64-bit RISC-V ISAsthrough big and little processing cores. Manticore architecture is based on two levels of com-puting hierarchy hosting its computing cores as shown in Figure 2.10. The first hierarchicallevel is the tile or the cluster level which hosts eight Snitch cores [57] based on RV32ISA with

20

2.1 Tile-Based Many-Core Architectures

Figure 2.10: Overview of Manticore architecture for general purpose computing [62]. Manti-core consists of hundreds of general purpose RISC-V based cores (Snitch core[57]) grouped within multiple processing clusters. The architecture has fourlarge processing quadrants hosting processing clusters and connecting them toHBM.

a single-precision floating point unit. In addition, each cluster has a shared instruction cachethat acts as an L2 cache while each core has its private L1 cache.
A tightly coupled data memory is used as a shared memory between Snitch cores connectedthrough a logarithmic interconnect. The cluster is communicated to another cluster throughcluster interconnect based on AXI standard, and an internal DMA is used to directly transferthe data between the tightly coupled memory and cluster interconnect. The second levelof hierarchy consists of several quadrants where each quadrant hosts several computingclusters. Manticore chip consists of four quadrants, each quadrant hosts in total 256 cores.All computing quadrants are connected through high-performance AXI crossbars [63] in acascaded method achieving a high data rate between computing clusters.
Manticore is also equipped with a separate processing tile for management based on Arianecore (RV64G ISA). In the last stage of the Manticore hierarchy, four high bandwidth memory(HBMs) are connected for a peak memory bandwidth of 1 TB/s. Manticore has limitedextensibility with heterogeneous accelerators while its peak computing performance exceedsbaseline CPUs and GPUs by 5x. In terms of portability, Manticore is only prototyped usingASIC design flow with 22nm CMOS technology.

21

2 Background and State-of-the-Art

2.1.2 Open-Source RISC-V ISA

In this dissertation, RISC-V ISA has been selected for the implementation of general-purposeprocessing cores for the tile-based many-core architecture as will be presented and dis-cussed in the following chapters. Therefore, this subsection provides a background andoverview of RISC-V ISA and related processing cores microarchitecture. The RISC-V ISA wasfirst introduced at UC Berkeley in 2010 as an open-source ISA for academic and industrialmicroarchitecture development [6]. RISC-V opens a new wave for new developments andinnovation in processor and many-core architectures domains. In comparison with other ISA,RISC-V provides several advantages and new opportunities for microarchitecture develop-ments, especially for academic and educational uses as well as small-size companies thatseek fast time to market for their microarchitecture products [64].
The open-source characteristic allows microarchitecture developers to develop and producetheir own processing cores from the first design stages till producing chip layouts withoutprohibitive license costs for non-open-source ISAs. In addition, RISC-V ISA extensions open thedoor for the development of extensible systems specifically for domain-specific acceleratorssuch as application-specific instruction set processors (ASIPs), co-processors, and tightlycoupled accelerators. Modularity is yet another aspect of RISC-V ISA thatmakes it suitable for awide spectrumof computing platforms fromhigh-performance to low-power processing coresas well as specialized processors with dedicated execution or accelerator units. Therefore,these advantages led to the proliferation and adoption of RISC-V ISA during the past few years.Nowadays, RISC-V is supported and maintained by RISC-V international organization [65]providing a strong and sustainable RISC-V ecosystem. Over the past few years, several studieshave focused on different issues related to RISC-V microarchitecture, security, compiler, andoperating system [66], [67].
As shown in Figure 2.11 the number of technical and scientific publications is growing

2014-2015 2015-2016 2016-2017 2017-2018 2018-2019 2019-2020 2020-2021 2021-2022
Year

0
125
250

500

1000

1500

2000

2500

3000

3500

4000

4500

N
um

be
r o

f P
ub

lic
at

io
ns

Number of Scientific and Technical Publications Including RISC-V ISA

Figure 2.11: Number of RISC-V-based scientific and technical publications since 2014 accord-ing to Google Scholar records.

22

2.1 Tile-Based Many-Core Architectures

exponentially since 2014 based on google scholar yearly records which reflects the growinginterest in the development and use of RISC-V ISA in many domains. As the focus of thisPhD thesis is on modular and adaptive many-core architectures, RISC-V-based processorssupporting multiple ISAs are used inside several proposed general-purpose tiles [16]. Despiteseveral open-source RISC-V cores being available and ready to use [68], some critical factorsare important to be supported by the chosen cores to fulfill the requirements for a modulartile-based many-core architecture. Among those criteria, the processing cores should bedeveloped by a standardized hardware description language (HDL) (e.g. VHDL, Verilog, SystemVerilog) to be compatible with the rest of the many-core system components.
In addition, RISC-V cores should support external memory subsystems to be extended laterwith local scratchpad memories to create base PEs for general-purpose tiles. Moreover,selected RISC-V cores should at least support M extension for multiplication and divisioninstructions in order to execute basic arithmetic operations. Factors like area and power-optimized cores are considered during the selection to achieve better utilization and lesspower consumption on the target FPGA.
Several low-power, embedded class, application class, and high-performance class processorsbased on RISC-V ISA are developed and implemented both by academic research and industrywith several RISC-V extensions and bit widths. Table 2.1 shows current ISA extensionssupported by RISC-V and their description. Large varieties of RISC-V cores are currentlyavailable supporting and implementing various ISA extensions with different pipeline depthsfor a broad range of application domains. Table 2.2 shows a list of selected RISC-V coresfrom low-power application domains to high-performance computing. In other words, fromlittle and midrange cores to high-performance cores. The presented cores in Table 2.2 areclassified based on the core size and application domain into three groups. The first group isfor little cores or processing cores that can be used for low-power application domains suchas wearable and battery-powered devices. In this group, the pipeline structure is short indepth with two to five stages supporting basic arithmetic and load/store operations. Little

Table 2.1: RISC-V ISA extensions [69].
RISC-V ISA Extension Description

RV32I Base integer instruction, 32-bit
RV64I Base integer instruction, 64-bit
RV128I Base integer instruction, 128-bit
M Multiplication extension
C Compresed extension
A Atomic extension
F Floating point extension
D Double-precision floating point extension
G Supporting M, A, F, D extensions
V Vector extensions

23

2 Background and State-of-the-Art

cores are characterized by small hardware footprints which makes them suitable for large-size many-core architectures to achieve higher performance per watt. However, supportingcompute-intensive applications or hosting an operating system is not possible to achievewith single little cores without memory management or virtual memory support.
The second group of RISC-V cores is the midrange core or application class core [87] whichsupports a deeper pipeline architecture compared to little core microarchitecture. Also,application class cores support floating point extensions for both 32- and 64-bit based on the

Table 2.2: A list of selected RISC-V-based cores.
RISC-V Core
(Group) ISA Language Open

Source
Pipeline
Structure [ref.]

Orca
(Little-core) RV32IM VHDL ✓ 3-stages [70]
PicoRV32
(Little-core) RV32IMC Verilog ✓ 1-stage [71]

Taiga
(Little-core) RV32IMA SystemVerilog ✓ 3- or 4-stages [72]
VexRiscv

(Little-core) RV32IMCA SpinalHDL ✓ 2- to 5-stages [73]
Ibex

(Little-core) RV32IMC SystemVerilog ✓ 2-stages [74]
Shakti E class
(Little-core) RV64/32IMAC Verilog ✓ 3-stages [75]

RI5CY (CV32E40P)
(Little-core) RV32IMFC SystemVerilog ✓ 4-stages [76], [77]
Ariane (CVA6)
(Midrange-core) RV64GC SystemVerilog ✓ 6-stages [78], [45]

NOEL-V
(Midrange-core) RV64/32IMAFDBCH VHDL ✓ 7-stages [79]

Rocket
(Midrange-core) RV32/64IMAFDC Chisel ✓ 5-stages [80]
KLessydra-T

(Midrange-core) RV32IMAV SystemVerilog ✓
4-stages+

(Vector lanes) [81]
BOOM
(HP-core) RV64IMAFDC Chisel ✓ 10-stages [82]
H50XF

(HP-core) RV64IMFDC Verilog ✗ 5-stages [83]
U7

(HP-core) RV64GC Verilog ✗ 8-stages [84]
NX25F

(HP-core) RV64GC Verilog ✗ 5-stages [85]
XuanTie C910
(HP-core) RV64GCV Verilog ✗ 12-stages [86]

24

2.2 Hardware Accelerators Integration

base ISA. Application class core as mentioned in Table 2.2 supports a UNIX-based operatingsystem with memory management unit implementations and atomic (A) extension whichincrease the pipeline complexity and therefore the total hardware footprint. In addition, avirtual address space requires hardware support for fast address translation with transactionlookaside buffer (TLB) and page table to the core. Application class cores are typicallyconnected to off-chip memory. Therefore, the efficiency of memory access relies on theimplementedmemory hierarchy with caching subsystems. Moreover, the operating frequencyfor application class cores is much higher than for little cores. Accordingly, computingperformance and power consumption are much higher by orders of magnitude which makesthem suitable for general-purpose workloads.
The third group includes high-performance cores which usually have deeper pipeline struc-tures than application class cores with single and double-precision floating points extensions.They are also superscalar out-of-order cores with enhanced branch prediction implemen-tations and a complex load/store pipeline stage with several queues [82]. In addition, adistributed scheduler unit is available to support out-of-order execution as well as an en-hanced decoding stage. Therefore, high-performance cores are characterized by high com-puting performance and large hardware footprint which make them suitable for exascalemany-core architectures. Exascale many-core architectures are out of the scope of this PhDthesis. Therefore, the selection of RISC-V cores is based on little and midrange cores groups.Accordingly, in the next chapters, the RIC5Y (CV32E40P) [77] and Ariane (CVA6) [45] coresare selected to be used in the proposed multi-ISA many-core architecture as HPC is notsupported by the proposed many-core platform.

2.2 Hardware Accelerators Integration

Heterogeneous many-core architectures are increasingly supporting different types of hard-ware accelerators to achieve the strong need for high computing performance and energy-efficient execution for different application domains. Hardware acceleration provides superiorenergy efficiency through specialized processing components that can be integrated withgeneral-purpose cores for different workloads requirements. Figure 2.12 shows a SoC archi-tecture that integrates many hardware accelerators with a general-purpose host processor.In this heterogeneous computing paradigm, hardware accelerators are designed to executespecific compute kernels/functions and the host processor runs the remaining kernels. Inother words, hardware accelerators are used to offload the execution of compute-intensivekernels from the processor to increase the whole system’s efficiency. Hardware acceleratorsvary in type, flexibility, and efficiency.
Compute-intensive applications require specialized hardware components to improve theperformance per watt of selected computational kernels. Some accelerators are highlycustomized to execute a particular application efficiently such as neural networks [88], [89],[90], THz radar signal processing [91], [92], [93], or computer vision application [94], [95],[96]. Specialized processing can take several ways of hardware acceleration through differentdesign methodologies and architecture types. However, no standard definition for hardwareaccelerators is available. There exists a large variance for hardware accelerators that differbetween them based on accelerator models, degree of granularity, programmability, andway of coupling with the rest of the system.

25

2 Background and State-of-the-Art

Communication Fabric

DMA
Host

Processor

Data-path

Data-path

SPM

HW Accelerator

Data-path

Data-path

SPM

HW Accelerator

Data-path

Data-path

SPM

HW Accelerator

Shared Memory

Figure 2.12: Heterogeneous SoC architecture model with many accelerators and a hostprocessor. (DMA: Direct Memory Access, SPM: Scratchpad Memory)
Figure 2.13 shows a categorization of hardware accelerator types.

Fixed function accelerators: a fixed function accelerator is implemented to execute a specificfunction from an application workload with different configurations and I/O sizes. Prior tofixed function accelerator design, application kernels identification is conducted to determinethe compute intensity degree and regularity usage of the target application’s functions/kernelsin order to specify which functions are efficiently executed using fixed function accelerators.Fixed function implementations provide the highest performance per watt as they are highlyoptimized for specific operations. However, their efficiency starts to decrease when they aredesigned to support multiple functions or to be configurable for large design spaces.
Design constraints (e.g. performance, energy, area) are very crucial to determine the spec-ification and number of fixed function accelerators for a specific application domain. Forexample, in the autonomous driving domain, the conducted study by [97] shows that deepneural network inference and feature extraction consume 95% of the total execution cycle.Accordingly, using fixed function accelerators on an FPGA reduces the overall execution timeby 93x compared to software-based implementation. Similarly, for THz synthetic apertureradar, FFT and backprojection algorithms consume 90% of the overall execution time neededto construct one image [91]. Therefore, fixed accelerator units for FFT and projection areimplemented and integrated with a host processor using a HW/SW co-design design flow toachieve a speedup latency of 36x compared to software-based implementation. Neverthe-less, the use of fixed-function accelerators is limited to one application with a specific set offunctions. Therefore, this type of acceleration lacks high level of granularity and flexibility tobe reused by different workloads.

26

2.2 Hardware Accelerators Integration

Flexibility/Programmability

En
e

rg
y

Ef
fi

ci
e

n
cy Fixed-Function

Accelerators

Domain-Specific
Accelerators

Specialized
Processors

Figure 2.13: Hardware accelerators categories and the related trade-off between flexibilityand energy efficiency.

Domain-specific accelerators: domain-specific accelerators are proposed as a solution toincrease the granularity and flexibility of hardware acceleration to support and be reused bymultiple functions from different workload applications. In general, domain-specific designsprovide the flexibility to adapt the same architecture to a set of applications from the samedomain [98] compared to general-purpose architectures. This category of acceleration offersa balance between specialization and generality. It is not based on special instructions likewill be shown next but it is based on special engines for a domain of algorithms (e.g. matrixmultiplication, FFT kernels, etc.).
An early version of a domain-specific accelerator is the function level processor [99] whichaims to reduce the gap between flexibility and efficiency. It supports function-level processinginstead of traditional instruction-level processing in normal processors. The datapath is apipeline of functional blocks that are used in a similar way to baseline pipeline stages. Eachfunctional block represents a hardware-accelerated function. For sparse matrix multiplicationdomain, a streaming domain-specific accelerator is proposed by [100] for a wide range ofsparse multiplication techniques. It consists of a two-dimensional array of parametrized MACunits with tightly coupled on-chip memory. The accelerator is configurable at runtime to sup-port different sizes of matrices and multiple sparsity algorithms. Accordingly, domain-specificaccelerator increases the degree of granularity and modularity for hardware accelerationthat facilitate the integration of a large number of accelerated function in a heterogeneousmany-core architecture.

27

2 Background and State-of-the-Art

Specialized processors: Specialized processors differ from domain-specific accelerators thatthey offer a certain level of programmability for more flexibility to support multiple applicationdomains. However, increasing the flexibility will degrade the efficiency by a certain factor. Onthe other hand, specialized processors reduce the design effort by increasing the designmodularity which allows the design reuse into several many-core architectures. In otherwords, they are seamlessly integrated into different system architectures. Specialized pro-cessors can be application-specific instruction set processors, tightly coupled co-processorsor custom accelerators with a host CPU. Data-level parallelism and custom instructions areemployed in all of these computing paradigms. For example, machine learning domains arehighly benefited from specialized processors to achieve higher orders of magnitude higherperformance than baseline general purpose computing, such as [101], [102]. In general, thedevelopment and design of specialized processors consider a range of kernels or a set offunctions to be supported by custom instructions to be invoked from the software layer.
Hardware accelerator efficiency does not only rely on the accelerator architecture type,internal compute units optimization, and degree of parallelism. The coupling and the wayhardware accelerators are integrated into the whole system is a crucial design decision thataffects the actual performance of hardware accelerators while interacting with other computeand storage units within the system [103]. In this subsection, state-of-the-art techniques foraccelerator coupling to processor and memory units are presented.

2.2.1 Accelerator Coupling Models

Accelerator coupling is one of the distinguishing features of a hardware accelerator, as itimpacts fundamental design choices for SoC or many-core architectures. Coupling modelsdetermine the interaction between hardware accelerators and processors, whether the targetaccelerator is a memory-mapped peripheral within the address space of a processor or isconsidered an extension to the processor execution unit stage. Also, memory access patternsbetween accelerators and local or external memory units are highly related to couplingmodels. In addition, how accelerators are operated and controlled, through software, orsoftware and hardware; and whether custom instructions are required for the interactionbetween processors and accelerators. Accelerator coupling models can be categorized intotwo classes: 1) tightly coupled accelerator (TCA), and 2) loosely coupled accelerator (LCA).
TCA model: In the TCA model, the hardware accelerator is coupled to a general-purposeprocessing core as an extension to the core itself through ISA extension or as a separateaccelerator directly coupled to the processor with/without sharing the data cache memory asshown in Figure 2.14. TCAs are typically specialized data paths that fit with domain-specificand specialized processor acceleration categories. They are tightly integrated compute unitswith the processor functional unit to offload frequently occurring kernels or operations of anapplication code. In other words, the execution stage of a processor pipeline is composed ofseveral functional units including TCAs. A tightly coupledmodel imposes several challenges onthe accelerator’s design and implementation. The accelerator area should be approximatelythe same size as other processor pipelines’ functional units. The use of local memory in thedesign of TCAs is unlikely supported to reduce the size of storage elements (i.e. SRAM) inpipeline layouts. Therefore, a limited amount of storage units are implemented as registersand buffers within TCAs.

28

2.2 Hardware Accelerators Integration

Communication Fabric

Processor

Shared Memory

Accelerator

SP
M

Accelerator

SP
MRTL/HLS

Inst.
Cache Shared Data Cache

Figure 2.14: Tightly-coupled accelerator model, where accelerators are integrated as anextension to a general-purpose processor or as an accelerator directly coupledto the processor with/without data cache sharing.
Designing TCAs requires ISA extension with special instructions to be diffused through thesoftware via low-level libraries or the compiler. TCAs allow the extension of microproces-sors via vector instruction to support single-instruction multiple-data (SIMD). The Tensilicaextensible processor [104] is an example of a commercial IP for ISA extension that supportsthe integration of TCAs to a baseline processor pipeline. On the other hand, open-sourceRISC-V ISA extension offers the flexibility to integrate custom TCAs into RISC-V pipeline [105].In this context, RV-CNN [106] is proposed to extend the RV32ISA with custom instruction toaccelerate several CNN operations through embedded TCAs to the RISC-V pipeline. Similarly,a vector extension unit is proposed by [107] to support multiple matrix operations accelera-tion through multiple execution lanes. However, ISA is typically fixed and proprietary whichlimited the design choices for internal compute units and control path of extended executionunits. Co-processors are the second type of TCAs that can perform more complex tasksthan a single custom instruction and can handle large data sets. Co-processors can supportlarge sizes of private local memory that could be coherent or non-coherent with the systemresources. In this case, accelerators are implemented as separate entities, not authentic partsof the processor, that are integrated with the processor core through dedicated interfacesand interconnections as shown in Figure 2.14 by the accelerator on the left.
Data access through co-processors can support coherency by sharing a private cache withthe processor as the example of the right accelerator in Figure 2.14. For cache coherentdata transactions, co-processors must implement the same coherence protocol supportedby processor cores [108]. Several co-processors implementations support both coherentand non-coherent data transactions depending on target applications’ requirements. TheCNNX [109] is implemented as a co-processor to accelerate neural network kernels forembedded computer vision applications. It supports multiple neural network topologies anddepth as well as different sets of parameters. Similarly, RedMU1E [110] is implemented as a

29

2 Background and State-of-the-Art

Communication Fabric

Processor

Shared Memory

Accelerator

SP
MRTL/HLS

Inst.
Cache

Data
Cache

Figure 2.15: Loosely-coupled accelerator model, where accelerators are integrated into thesystem through a communication fabric as memory-mapped peripherals togeneral-purpose processors.
tightly-coupled co-processor for matrix multiplication acceleration. It supports floating andfixed point multiplications for deep learning inference. The co-processor communicates tomulti-RISC-V-based cores through a shared bus with a shared data memory.
LCA model: In the LCA model, the hardware accelerator is located outside the proces-sor core and interacts with it through an on-chip interconnect as shown in Figure 2.15.As a consequence, LCAs can support larger accelerator sizes with more private memorycompared to TCAs. This allows coarse-grain accelerators with complex data paths and largestorage units that are capable to accelerate a complete application instead of small kernelsor specific functions. Therefore, LCAs feature a high level of parallelism with parallel andmultiple data paths. LCAs do not require ISA extensions, they are running independently fromgeneral-purpose cores. Instead, they are configured with low-level drivers or libraries similarto memory-mapped peripherals in the system. Moreover, LCAs provide more flexibility byfreeing general-purpose cores to run other tasks in parallel with application acceleration.
Typical LCAs are integrated with DMA for direct interaction with storage units without in-terfering with processor-memory access. Unlike TCAs which are sharing the memory withgeneral-purpose core which degrades their memory access bandwidth. Research worksrelated to LCAs show a long list of different structures of LCAs from different applicationdomains. Hence, LCAs are not limited by the ISA or processor interface protocols like in thecase of TCAs. LCAs can be designed independently and decoupled from the system, theonly requirement is to support standard input and output interfaces that are compatiblewith the communication fabric protocol of the target system. CHARM [111] is an early ex-ample of accelerator-rich architectures [112] which is based on a massive number of LCAsimplementing different computational kernels at different degrees of heterogeneity andgranularity. CHARM provides the hardware and software infrastructure to realize a massiveheterogeneous accelerator-centric platform for a broad range of application domains.

30

2.2 Hardware Accelerators Integration

In the same context, AXR-CMP [113] offers a management scheme for accelerator-richarchitectures to support resource sharing between multiple general-purpose cores and LCAs.It allows the creation of virtual accelerators out of multiple smaller ones using a chain ofmultiple accelerators together. For RISC-V-based SoC, a framework to simplify the deploymentof LCAs in a heterogeneous multi-core SoC is proposed by [114]. It supports the seamlessintegration of HLS-based accelerators by automating the generation of coupling interfacesbetween the generated accelerator overlay and the system interconnect. Some examplesof accelerator-rich architectures with LCAs are the brain-inspired computer MasterMind[115] and the KACHEL platform for 5G signal processing [116]. Both platforms feature amassive amount of domain-specific and fixed function accelerators that can accelerate awhole compute-intensive application either from the machine learning or 5G domains. Inaddition, they are equipped with sophisticated resource management units to highly optimizeresource utilization and increase computing performance at runtime.
Table 2.3 summarizes the main differents between TCA and LCA models regarding thearea, memory sizes, supported data sizes, and controlling mechanisms. In addition, LCAshave another main advantage over TCAs as they ease the development and integration inheterogeneous many-core systems. The designer needs to adhere to the same interfacesand communication protocols imposed by the main communication fabric of the targetmany-core system. During this thesis, the focus of the work is on the LCA model and how toseamlessly integrate this model into the proposed tile-based many-core architecture.

2.2.2 Memory Management for Accelerators

According to the accelerator store framework published in 2010 [118], an average of 69%of hardware accelerator area is consumed by private local memory. In this survey, targethardware accelerators are LCAs integrated into multi- and many-core systems with general-purpose cores. An example of a heterogeneous many-core architecture with multi LCAs withlarge private local memory integrated with general-purpose compute units [117] is depictedin Figure 2.16. Therefore, addressing memory aspects of LCAs is a necessary step to designan efficient heterogeneous many-core system. Also, supporting data coherency betweenLCAs’ private local memory and shared main memory in the system is another challenge tobe addressed. Accordingly, the effect of multiple accelerators processing a large amountof data through off-chip memory needs to be analyzed and considered specifically in casesof memory-intensive applications. A typical LCA consists of several computation units or

Table 2.3: Comparison between hardware accelerator coupling models.
Accelerator

Coupling Model
Area &

Resources Utilization
Private Local
Memory Size

Supported
Data Size Controlling Examples

[Ref.]
Tightly Coupled
Accelerators Small Small Small SW [106], [107]

[104], [109]
Loosely Coupled
Accelerators Large Large Large HW/SW [111], [113]

[115], [116]

31

2 Background and State-of-the-Art

R

R

R

R

Hardware
Accelerator

Hardware
Accelerator

Hardware
Accelerator

General-
Purpose

Cores
Network
Interface

Private Local
Memory

Accelerator Logic

Figure 2.16: An example of a heterogeneous many-core architecture with many LCAs andgeneral-purpose cores, it shows the large size of private local memory thatdominates the area of LCAs [117].

accelerator logic that implements the arithmetic operations of accelerated functions andstorage units or private local memory (PLM) that stores data as shown in Figure 2.17. PLMconstitutes the accelerator memory subsystem and it can be a scratchpad memory in a singleor multi-banks or cachememory unit. PLM units are used to store an amount of data from theDRAM in order to handle large data sets workloads. In fact, PLMs can reach up to 90% of theLCA area. However, the amount of data that can be stored on-chip is limited to a few MBs. Inthis subsection, several accelerator memory interaction techniques and supported featuresare presented and analyzed based on: 1) supporting direct-memory access and coherency, 2)supporting large data sets, and 3) supporting accelerator memory reuse. Several acceleratormemory interaction techniques and supported features are presented and analyzed basedon: 1) supporting direct-memory access and coherency, 2) supporting large data sets, and 3)supporting accelerator memory reuse.
Memory Access and Coherency: Several techniques are proposed by literature trying toreduce the communication overhead in private accelerators by optimizing data transfer be-tween memory and accelerator logic. In this subsection, traditional memory technologies (e.g.SRAM, DRAM) are considered for accelerators’ local memory and the complete system sharedmemory implementation. In shared memory accelerator-centric architectures, acceleratorsharing takes place at different levels of the memory hierarchy, from PLM to shared mainmemory. LCAs can be shared at different memory levels (e.g. L1, L2, or last level main mem-ory), it depends on the degree of scalability and hierarchical design of the target many-coresystem. In this context, a hardware accelerator wrapper is proposed by [120] supportingdata streaming between the accelerator hardware logic and the shared tightly coupled datamemory of the system. The wrapper hosts either an RTL or HLS-based accelerator witha control path and wrapper interconnect modules. The wrapper implements the controlplane for the hosted hardware accelerator. The hardware accelerator wrapper includes aregister file that is accessible by processors directly to read and write control signals and

32

2.2 Hardware Accelerators Integration

Co
m

m
un

ic
at

io
n

Fa
br

icDMA

DRAM

Input
BuffersInterfaces

Interfaces

Interfaces
Interfaces

Output
Buffers

Computing
Unit 0

Co
nt

ro
l P

at
h

Computing
Unit 1

Computing
Unit n

Private Local
Memory

LCA TilePLM Ports

Figure 2.17: LCA tile structure as described by [119]: it contains several computation unitsrepresenting the accelerator logic, private local memory, control path, I/O buffers,and interconnection interfaces for data transfer.
the status of the hosted accelerator. A synchronization module is implemented to handledata transfer between the accelerator PLMs and tightly coupled data memory of the systemthrough several DMA units. In addition, it supports data moving between multiple hardwarewrappers in the system. The process of controlling the hardware wrapper is handled througha set of low-level drivers from processor cores that can be called directly from the software.Overall, the proposed hardware wrapper by [120] allows a smooth integration of acceleratorsinto shared memory many-core systems with SW APIs to facilitate the interaction betweenaccelerators and shared memory. Similarly, Bellochi et al. [121] proposed a RISC-V-basedoverlay withmultiple LCAs. The overlay architecture consists of a multicore RISC-V with sharedtightly-coupled data memory connected through a bus interconnect. LCAs are attached tothe bus interconnect within a hardware accelerator wrapper that controls data movementbetween the bus interconnect and the accelerator logic. However, the proposed overlay lacksmodularity and has limited scalability. It provides a single method to integrate the acceleratorlogic through a shared interconnect to a multicore RISC-V without direct access to externalmemory.
The template-based memory access engine (MAE) [122] is a similar approach proposedto address decreasing memory latency by simultaneous memory access from multiple ac-celerators in many-core systems. MAE provides a common memory access template foraccelerators that can handle different memory access patterns such as streaming, strided,complex, indirect array access, and gather access patterns. It consists of a template-basedprefetcher located next to the memory controller to prefetch data from memory to accelera-tor PLM. MAE aims to reduce memory access latency and jitter in many-accelerator-basedSoC. MAE internal architecture consists of a template-based prefetcher and a prefetch buffer.The prefetcher contains a prefetcher table to store memory access request data to predictmemory congestion. The scheduler and prefetch request handler are the main prefetcherunits to generate memory commands for the memory controller unit. The prefetch buffer

33

2 Background and State-of-the-Art

consists of SRAM storage to store received read and write requests to be served by theprefetcher. The MAE is similar to DMA, it provides support for more memory access patterns,not only streaming, for different kinds of accelerators’ memory access patterns. Differentcache coherence models for accelerators are proposed by literature such as fully-coherent,last-level-cache (LLC) coherent, and non-coherent [123]. The non-coherent model allows theaccelerator to access off-chipmemory directly. While in the fully-coherent model, acceleratorsare coherent with private caches of other compute units in the system (i.e. processors, andaccelerators). In this context, an extension of a directory-based cache-coherence protocolis proposed by [124] to support coherent LCA in many-core NoC-based architectures. Anextension of the MESI directory-based protocol is implemented and integrated into coherentLCAs.
Coherent LCAs are communicated through a coherent multi-plane NoC that supports datacoherency between heterogeneous components. The evaluation results show a significantreduction in the number of memory access compared to non-coherent-based acceleratorsover NoC. In order to manage several cache coherency models at runtime, a runtime recon-figurable memory hierarchy for scalable SoCs is proposed by [125]. It aims to support theprevious three listed cache-coherence models by proposing a runtime adaptive algorithm tomanage the coherence of LCAs. The proposed algorithm is running on coherent NoC-basedarchitecture with heterogeneous LCA tiles and processor tiles. Cache controllers are imple-mented inside the LCA tile as a socket between the network interface and the accelerator’sPLM. Based on the accelerator memory patterns, the proposed runtime algorithm selects theoptimum cache-coherent model. As a result, a 30% reduction in memory access is achievedcompared to fixed cache-coherent model implementations.
Similarly, Cohmeleon [108] is proposed to manage multiple cache coherent models for co-herent LCAs in heterogeneous SoCs. Cohmeleon applies reinforcement learning algorithmsto select the optimum coherence model dynamically at runtime by observing the systemand monitoring its performance. It supports different SoC architectures either with NoC orbus-based interconnections. Cohmeleon trains a reinforcement learning model to selectthe optimum cache coherence model for each LCA in the system. The training model takesinto account LCA execution time and off-chip memory access number and patterns of eachLCA. As a result, Cohmeleon reduces the off-chip memory access by 66% compared tostate-of-the-art fixed coherent model solutions.
Managing Large Data Size: Big data applications with large data sets are increasingly used fordata analytics and scientific computing. Typically, large data centers are used to execute suchkind of applications with large data sets. In order to reduce energy efficiency and increasecomputing performance, hardware acceleration could be a suitable solution within a scalableheterogeneous computing system [126]. However, the size on-chip PLM is smaller thanthe size of data sets. Therefore, handling large data sets by hardware accelerators requirenew solutions to handle data movement between external memory and accelerators’ PLMs.Therefore, an accelerator structure solution is proposed by [119] to handle large data setsfor high-performance embedded applications. The proposed accelerator structure supportsa direct sharing of physical memory across processors and accelerators with an acceleratorvirtual address space that is separated from the processor virtual address space.
Moreover, the main feature of the accelerator structure is a dedicated DMA controller witha specialized translation look-aside buffer (TLB) that supports multiple specific memoryaccess patterns. The accelerator contains circular and ping-pong data buffers to support

34

2.2 Hardware Accelerators Integration

the pipelining of computation and DMA transfers with off-chip memory. The main focus isto parallelize the computation process with the memory and data movement process andhide the DMA latency in order to not degrade the acceleration performance. The proposedacceleration solution is integrated into an automated toolflow for accelerator memory designcalled MNEMOSYNE [127]. The toolflow supports an automatic generation and optimizationof memory hierarchy for HLS-based accelerators. It optimizes the placement of acceleratorswith respect to the location of DDR controllers and load-balancing policies. Moreover, itsupports a scalable number of concurrent accelerators with different data set sizes.
Accelerator Memory Reuse: The number of hardware accelerators is growing rapidly inrecent heterogeneous many-core architecture. Therefore, the required on-chip memorysize increases to implement the required accelerators’ PLMs and internal buffers. However,hardware accelerators are not utilized 100% during operating time. As a consequence,accelerators’ PLMs are remaining unused during the accelerator’s inactive time. Therefore,enabling the re-utilization or sharing of accelerators PLMs with other system componentscan improve resource utilization and increase efficiency [117]. As a result, a drastic decreasein accelerators’ cost of integration into heterogeneous systems can be achieved.
In this context, several works have been proposed to reuse accelerators PLMs as a cachememory in a non-uniform cache architecture with the rest of the system. All consideredaccelerators are LCAs with complex and large data paths with a few megabytes of on-chipmemory. BiN [128] is proposed to share accelerator internal buffers in non-uniform accessmemorymany-accelerator systems or accelerator-rich architectures. A highly efficient on-chiputilization has been achieved through several methods to dynamically allocate acceleratorbuffers in a non-uniform memory access architecture. First, a dynamic interval-based globalallocation method is proposed to assign extra free buffer spaces from some accelerators toother accelerators that can best utilize them. In this case, buffers are allocated on demandas an extended cache memory of the accelerator which requests more memory space.
The second proposed method is a flexible and low overhead paged buffer allocation toreduce the effect of buffer fragmentation. In this method, the accelerator will use a small localpage table to translate buffer addresses into absolute addresses in order to set the pagegranularity for each buffer according to the buffer size. Therefore, larger buffers have a largerpage size. For BiN, the buffer sizes are set to a limit of a few kilobytes for only accelerator-based architecture which limits its adoption in heterogeneous many-core architectures withgeneral-purpose cores and hardware accelerators. Therefore, ROCA is proposed by [129] toovercome this limitation by sharing accelerators PLMs with any compute element type inheterogeneous many-core architectures. ROCA is using the complete PLM, not just a fractionof it, to extend the cache memory size of another heterogeneous element in the many-corearchitecture.
In order for accelerator’s PLM to operate as a cache block, a cache manager is implementedfor each accelerator. Since ROCA extends the many-core system last-level-cache with accel-erator PLM. A large tag array in the last-level cache is implemented to track blocks stored inaccelerator PLMs. Accordingly, previous works are trying to exploit the abundant PLMs inaccelerators to reuse them as extended memory blocks for the whole system while they arenot used by accelerated workloads. In this way, a reduction in accelerator integration cost,as well as more energy efficiency can be achieved. In this PhD thesis, an accelerator memoryreuse implementation is proposed for FPGA-based heterogeneous many-core architecture.The proposed implementation is based on a hybrid memory/accelerator tile that is described

35

2 Background and State-of-the-Art

in Chapter 4, it supports a dual mode of operations to operate as a hardware accelerator withBRAM/URAM-based PLM or using the on-chip PLM blocks as a scratchpad shared memoryfor general-purpose computing tiles.

2.3 Runtime Adaptive FPGA-based SoC

By the fading of Moore’s law and the rising age of heterogeneous computing paradigmsand domain-specific architectures [2], agile design practices arise as new topics of researchto mitigate the new shift towards highly customized heterogeneous systems. Adaptive orreconfigurable computing is considered one of the agile design practices that can reducethe development cost from the economic point of view [130]. Hence, the developmentof heterogeneous architectures and associated hardware accelerators is not an easy task,especially in highly scalable systems with a high level of heterogeneity among computingunits. Sometimes, the underlying hardware architecture requires to be re-designed andoptimized every time a new class or domain of applications needs to be supported which notonly increases the development cost but also reduces the ability of upgrading and maintainthe system architecture and its associated design toolflows and programming methods. Onthe other hand, the deployment cost as an ASIC design will increase accordingly due to: 1)complex design tools and required skills, 2) a longer and unsustainable development cycle,and 3) wastage during upgrades or re-design. The main challenge is how to efficiently managethe changes and upgrades without the need to repeat the whole design process. Therefore,adaptive computing is the optimum way to manage the regular changes and upgrades inmodern highly scalable heterogeneous architectures [14].
In this section, the focus will be on runtime adaptive FPGA-based systems and their relatedreconfigurationmanagement frameworks and how adaptability can be used in heterogeneousmany-core systems to increase their flexibility and reduces the upgrading cost. An FPGA isa type of integrated circuit design that can be reprogrammed to implement several digitalblocks to execute different functions or applications (e.g. digital signal processing, neuralnetwork algorithms). FPGAs can be classified into two main types: 1) flash-based and staticrandom access memory (SRAM) based FPGAs, and 2) fuse-based and anti-fuse-based FPGAs.There are several FPGA manufacturers, and two of them are dominating the FPGA marketwhich are AMD (Xilinx) and Intel (Altera) FPGA devices. In this PhD thesis, Xilinx SRAM-basedFPGA devices are considered. A Xilinx SRAM-based FPGA has a configuration memory thatstores the configuration of the target digital functionality in a form of a bitstream.
A typical Xilinx FPGA device floorplan consists of a grid of resource and interconnects tilesas shown in Figure 2.18. Configurable logic blocks (CLBs) tiles contain a column of CLBwhere each CLB consists of slices of look-up tables (LUTs), flip-flops (FFs), and multiplexers.LUTs are used to implement logic functions, where they can be combined together viainterconnect to form larger logic functions. In addition, Xilinx FPGAs contain on-chip blockmemory (BRAMs/URAMs) which are also arranged in columns on the same FPGA floorplan.Each memory block can operate independently to perform memory read/write operations inparallel with other on-chipmemory blocks. Also, several BRAM/URAMblocks can be combinedtogether to act like a single memory with a continuous address space. BRAMs/URAMs can beused to implement RAM, ROM, and several buffer implementations. A Xilinx FPGA supportssimple on-chip digital signal processing units (DSPs) which are also arranged in the formof columns like other resource types as shown in Figure 2.18. The DSP unit consists of

36

2.3 Runtime Adaptive FPGA-based SoC

X0Y0 X1Y0

X0Y1

X0Y2

X1Y1

X1Y2

I/O Banks

DSPs
Tile

CLBs
Tile

BRAM/URAM
Tile

BUFH (CLK)

BUFG (CLK)

Interconnect
Tile

Figure 2.18: A Xilinx Ultrascale FPGA floorplan [131] with several clock regions, each clockregion contains a grid of resource tiles for CLB, DSP, BRAMs/URAMs and a gridof interconnects for connection between them.
pre-adder/subtractor, multiplier, and post-adder/subtractor to perform basic arithmeticoperations such as addition, and multiplication in a few clock cycles. The FPGA is dividedinto multiple clock regions, clock buffers are used between them to equally distribute a clocksource in the whole FPGA floorplan. Clock buffers are divided into global buffers (BUFG),and horizontal buffers (BUFH). BUFGs are used to forward vertically the clock line to BUFHswhich drive clocks to clock regions. Clock regions contain a clock management tile that hostsa phase-locked loop and a mixed-mode clock manager to control the frequency of inputclock signals. Moreover, the clock region contains I/O banks to interact with FPGA externalperipherals. FPGAs can be programmed by describing the logic of LUTs and configuring theFPGA floorplan interconnect. A logic function can be modeled using hardware descriptionlanguages (HDLs) that can be synthesized into an RTL netlist. Afterward, a place and routeprocess is required to physically place the netlist to the FPGA resource. Finally, a bitstreamgeneration is conducted to be loaded to the FPGA configurationmemory in order to physicallyconfigure the FPGA with certain logic functions.

2.3.1 Partial Reconfiguration

Recent families of Xilinx SRAM-based FPGA devices offer the possibility of adapting the devicelogic at runtime using dynamic partial reconfiguration (DPR) techniques [132]. Partial recon-figuration depicts the configuration of a certain partition of the FPGA floorplan. Each partitionhosts a specific configuration of a certain logic function. Therefore, partial reconfigurationallows changing of partition configuration/functionality at runtime without the need to updatethe whole FPGA configuration [133]. Recently, Xilinx has renamed DPR as dynamic functionexchange (DFX) to elaborate the main feature of changing a certain partition functionality

37

2 Background and State-of-the-Art

at runtime. The concept of DPR is the exchanging of hardware modules on a certain FPGApartition at runtime. From a system-level point of view, it is similar to the time multiplexing ofhardware modules, where each hardware module is active during a specific period based onan application dataflow graph. In order to apply DPR, the FPGA floorplan is split into a staticpartition and several reconfigurable partitions (RPs) to host multiple reconfigurable modules(RM). RPs can span from a single FPGA frame of resources to multiple clock regions based onthe resource requirement of the largest hardware module to be hosted by this partition. Apartial bitstream is generated for each RM for the associated RP. Every single RP has a setof partial bitstreams for every hardware module to be hosted by it. Partial bitstreams areloaded to the FPGA configuration memory through dedicated configuration interfaces.
Xilinx FPGAs have several modes of internal and external configurations, based on theselection of the user and system-level requirements. Xilinx internal configuration access port(ICAP) is typically used to control the process of partial bitstream loading internally wherethe ICAP is located physically on the FPGA fabric. Similarly, for Zynq devices, the processorconfiguration access port (PCAP) is managing the reconfiguration process internally from theprocessing system (PS) side. In addition, JTAG is acting as the main external configurationinterface to load a full or a partial bitstream to the FPGA configuration memory. Practically,internal configuration interfaces provide a high speed of configuration compared to externalones due to the achievable high data rate.
Many applications already take benefit from partial reconfiguration techniques to apply somesort of runtime adaptability to their functionalities. Software-defined-radio is a well-knownuse case that takes benefit from DPR to switch between multiple wireless communicationstandards at runtime reusing the same hardware resources on the FPGA floorplan [134].[135]. Moreover, signal processing and computer vision-based applications such as radar-based object detection, smart cars, robotics, and wearable devices can also benefit fromDPR [136], [137], [138]. Also, for security and cryptography domains, DPR can be used todynamically swap between several encryption algorithms [139], [140]. Recently, FPGA-basedaccelerators for machine learning algorithms adopt DPR techniques to support runtimeadaptability based on real-time application requirements [141], [142]. In such applications,FPGAs with DPR features can support the execution of multiple application tasks on demand.Instead of physically implementing all required tasks by an application on a single large FPGA,smaller-size FPGAs can be used with less resource and power consumption to implementtasks temporarily at runtime. HeterogeneousMPSoC can also benefit fromDPR by exchangingand upgrading the processing elements or custom hardware accelerators at runtime basedon workload requirements. In this context, several research works have proposed multipleframeworks and platforms for runtime reconfigurable MPSoC.
A reconfigurable MPSoC platform based on Xilinx Zynq devices is proposed by [143] forspace applications. This reconfigurable platform is based on static on-board processors withreconfigurable loosely coupled multi-accelerator architecture. The platform provides runtimeadaptability to contribute to the full system fault tolerance to support the main requirementsfor space applications. Themulti-accelerator architecture is based on the ARTICO3 framework[144]. The platform supports a scalable number of hardware accelerators, where eachaccelerator is hosted by an accelerator tile with local memory and register file for controlling.Each accelerator tile hosts a reconfigurable partition for the accelerator logic to be modifiedat runtime using DPR. Moreover, the platform supports a real-time operating system runningon the processing side of the Zynq device to manage and control the system including thereconfiguration process of the multi-accelerator architecture.

38

2.3 Runtime Adaptive FPGA-based SoC

On the other hand, DPR can be used in high levels of granularity such as FPGA overlaysas proposed by [145]. This work exploited the DPR technique to build a dynamically multi-grain reconfigurable and scalable overlay architecture. The proposed overlay consists ofmultiple small-size RPs that can be reconfigured at runtime to map several applicationswith different requirements. The overlay size is changeable and it can be integrated with ahost processor or with other hardware accelerators. An automated toolflow is developed toautomatically offload kernels to the reconfigurable overlay. Despite, the great importanceof DPR to develop and implement adaptive FPGA-based SoC or reconfigurable multi-corearchitectures on FPGAs. The main challenge remains the reconfiguration management, andhow to reduce the reconfiguration time to meet real-time application requirements. Also,the abstraction of the reconfiguration process from the software layer requires an efficientand reliable reconfiguration management method [146].

2.3.2 Reconfiguration Management Frameworks

The DPR management from the software side imposes several challenges related to theabstraction of the reconfiguration process from the CPU side, in addition to the reconfigura-tion efficiency in terms of reconfiguration time especially in cases of real-time applications[147]. Consequently, DPR management requires a custom hardware implementation fora DPR controller between the CPU and the dedicated programmable region. Besides, themanagement of the hardware-accelerated modules on the PL from the software runningon the CPU. Therefore, a change in adaptive systems requirements (e.g. hard real-timescenarios), or adoption of a new instruction set (e.g. RISC-V) requires the development ofnew software drivers or overlays along with updates to the hardware implementation of theDPR controller for compatibility purposes.
In the last years, several works are proposed by literature for DPR controllers includingcustom DPR controllers or software abstraction layers for DPR management. In [148], theauthors proposed a high-speed DPR controller for Xilinx FPGA devices. The controller’s systemarchitecture is designed for loading partial bitstreams from an off-chip memory to the FPGAconfiguration memory at a data rate close to the physical data rate of Xilinx’s ICAP primitive.The proposed controller uses DMA components for data transfer, freeing the adaptive SoC’sCPU to execute other tasks. Similarly, the ZyCAP manager [149] features a high throughputDPR for Xilinx Zynq FPGAs, customized for ARM processors hosted on the PS side of the Zynqdevice. ZyCAP provides a set of high-level driver interfaces to manage the reconfigurationprocess from the PS side. However, ZyCAP is exclusively compatible with Xilinx Zynq FPGAsand its portability to other devices requires hardware and software modifications. Meanwhile,the proposed DPR manager by Carlo et al. [150] provides portability to several Xilinx FPGAdevices with an ICAP interface.
Furthermore, it supports a safe DPR for real-time and mission-critical adaptive applications.As a consequence, a new set of features are required for the implementation of the DPRcontroller with customization on the operation modes. Therefore, the controller featuresdifferentmodes of operations depending on the application requirements and invokes a cyclicredundancy check and error correction on the loaded partial bitstream before transferring itto the configuration memory. Besides, the DPR process is software managed by a LEON3soft-core processor.

39

2 Background and State-of-the-Art

Table 2.4: State-of-the-art DPR management units comparison.
Ref. SoC Processor Support Abstraction

Layer
Throughput

(MB/s)
Freq.
(MHz)

Vipin et al.[148] Microblaze ✗ 399.8 100
ZyCAP [149] ARM ✓ 382 100
Anderson et al. [150] LEON3 ✓ 395.4 100
RT-ICAP [151] Patmos ✓ 382.2 100
AC ICAP [152] Microblaze ✗ 380.47 100
Xilinx PCAP [153] ARM ✗ 128 100
RV-CAP [21] RV64GC (Ariane) ✓ 398.1 100

In the same contest, for hard real-time adaptive applications, the RT-ICAP controller [151] isintroduced as a time-predictable DPR controller. It aims to reduce the worst-case executiontime (WCET) to perform the configuration in a determined amount of time. The controllerfeatures the capability of partial bitstream compression before transferring it to the FPGAconfiguration memory to reduce its size and therefore reduce the reconfiguration time.However, extra on-chip memory is reserved on the FPGA fabric to store the compressedpartial bitstream. The DPR process is software managed through a custom real-time soft-coreprocessor. It is used for encryption and security applications. Therefore, AC ICAP [152] isintroduced as a light DPR controller that can operate autonomously or with a light soft-core processor (e.g. Microblaze). The controller is customized for partial reconfiguration ofLUT resources only featuring low resource overhead and high reconfiguration throughput.However, it lacks the portability for the new generation of FPGA architectures.
Accordingly, from the abovementioned work, designing DPR controllers depends on one sideon the timing characteristics and reconfiguration sensitivity of the target applications as well asthe architecture of the hardware/software co-design of the target adaptive platform. SeveralDPR controllers are proposed to support the management of the reconfiguration processfrom operating systems running on application class processors (i.e., ARM processors) toenhance software productivity. Hence, suitable software drivers and interfaces between theCPU and the FPGA are required. Al Kadi et al. [154] proposed a set of software drivers runningon Linux for Xilinx Zynq devices to access the processor configuration access port (PCAP).Another novel approach is called Pynqpartial [155]. This is introduced as a software-onlyimplementation for managing DPR from the Pynq platform. Thus, a set of Python packagesare implemented on the ARM processor on the PS side using the existing PCAP interface toaccess the configuration memory. However, the pynqpartial shows a poor reconfigurationthroughput. Meanwhile, the authors of [156] improved the reconfiguration throughput whilemaintaining a high level of abstraction for DPR management from a Petalinux operatingsystem targeting a Xilinx Zynq Ultrascale+ FPGA.
Table 2.4 shows a comparison between pre-described state-of-the-art DPR managementunits including the proposed reconfiguration management in this PhD thesis (RV-CAP) [21].The RV-CAP unit is mainly developed to support DPR management for FPGA-based RISC-V SoC. It consists of a DPR controller directly connected to a RISC-V processor through a

40

2.4 Contribution Towards Modular and Adaptive Many-Core Architectures

shared bus interconnect, and a set of software drivers to abstract the reconfiguration processthrough software functions running on a RISC-V processor. The proposed reconfigurablemanagement is integrated into the main processing tile of the proposed heterogeneousmany-core architecture to support the runtime adaptation feature to change types andconfigurations of many-core tiles at runtime. RV-CAP is completely implemented usingcustom hardware modules controlling the ICAP primitive with the ability to be portable forany Xilinx FPGA devices that support DPR. It features a small area footprint with a smallnumber of resource utilization on the FPGA which makes it suitable for small sizes FPGAs aswell.

2.4 Contribution Towards Modular and Adaptive Many-Core
Architectures

In this section, the state-of-the-art tile-based many-core architectures and hardware ac-celerator integration presented previously are compared to the main contributions of thisdissertation. As mentioned before in the introduction section, this PhD thesis has three maincontributions:
• Modular many-core architecture to support heterogeneous ISAs for general purposesworkloads.
• Seamless integration of custom hardware accelerators through a hybrid tile architecturefor accelerators and memory modules.
• An internal reconfiguration management unit to support self-adaptation at run-timefor several heterogeneous many-core configurations.

The first and third contributions together represent the proposed modular and adaptiveheterogeneous tile-based many-core architecture [16]. The proposed architecture is basedon a NoC-based architecture by utilizing the ARTNoC NoC framework proposed by [11]. Theproposed tile-based architecture is based on a modular and parametrized implementationthat supports single and multi-core general-purpose architecture. The tile also features amodular memory hierarchy that can be tailored to support a non-coherent shared memorymulti-core architecture or a hybrid memory hierarchy with additional scratchpad memoryper core [17]. The second contribution focuses on the seamless integration of customhardware accelerators into the proposed tile-based many-core architecture as a LCA tileattached to the NoC [18]. Moreover, the LCA tile supports the feature of accelerator memoryreuse. Therefore, general-purpose tiles are able to access and reuse the on-chip PLM of theaccelerator tile as a scratchpad shared memory unit between them through the NoC.

2.4.1 Modular and Adaptive Heterogeneous Tile-based Architecture

Several research approaches have been proposed for adaptive and self-aware many-coresystems to allow the re-usability and reconfigurability of many-core architectures to be ad-justed according to multiple requirements for different application domains. As a result,an expected reduction in development time and cost can be achieved by the adoption ofadaptive many-core approaches. However, adaptive many-core approaches require a sort of

41

2 Background and State-of-the-Art

modularity of hardware components to ensure proper integration and communication be-tween them after the adaptation process. In tile-based many-core architectures, modularitycan be achieved first by using a unified communication method between heterogeneouscompute tiles through a NoC, or advanced bus-based architectures. In addition, a hetero-geneous set of compute tiles that share the same inter-tile interfaces and apply the samecommunication protocol over the many-core communication medium as well as a unified par-allel programming model are supported. Therefore, this dissertation proposes an adaptiveand heterogeneous tile-based architecture to accommodate modularity and adaptability toreduce design and integration time and promote the commodity of many-core architecturesfor emerging application domains.
Table 2.5 shows a comparison between the aforementioned tile-based many-core architec-tures presented in (Section 2.1) and the proposed adaptive and heterogeneous tile-basedarchitecture (AGILER). Accordingly, state-of-the-art comparison in Table 2.5 is based on thefollowing points:

• Level of heterogeneity by supporting multiple ISAs and custom hardware accelerators.
• Modularity and architecture characteristics by supporting different microarchitectureconfigurations and memory hierarchy.
• Architecture configurability and prototyping

Heterogeneity level: Several works propose multi ISA for general-purpose computing tiles.ESP [13], and Manticore [62] support two RISC-V ISAs in a similar manner to the proposedmany-core architecture in this dissertation (AGILER). The two RISC-V ISAs are based on RV32and RV64 ISAs, where compute tiles can be configured to support one of them based ontarget workloads requirements. The rest of the work and platforms presented in Table 2.5support only one ISA for their general-purpose tiles as shown in the second column.
Moreover, custom hardware accelerators are mostly supported by all heterogeneous many-core architectures, the main difference lies in the accelerator coupling model and the level ofgranularity. In other words, where hardware accelerators are coupled and reside inside themany-core architecture, either as a separate LCA tile or as a shared accelerator peripheralwithin a general-purpose tile. TaPaSCoc [55], Savas et al. [159], BlackParrot [50] , ESP [13],and Memphis [47] support multiple LCA tiles where a custom hardware accelerator canbe hosted by a separate tile and communicate to the rest of the system via a scalable andhigh bandwidth communication fabric (e.g. NoC, cascaded bus interconnect). On the otherhand, Hero [157], GRVIPhalanx [38], P2012 [51], and RVNoC [162] support intra-tile sharedhardware accelerators that are integrated within general purpose tiles as shared memory-mapped peripherals. In this type, shared hardware accelerators can be accessed by any ofprocessing cores inside the tile through a shared interconnect (e.g. bus-based interconnect,point-to-point communication). Accordingly, the proposed tile-based many-core architectureby this dissertation supports both ways of custom hardware integration either inside gen-eral purpose tile as sharedmemory-mapped peripherals or hosted by a separate tile as a LCA.
Modularity and microarchitecture: Design modularity and microarchitecture define theinternal structure of any tile-basedmany-core system and the degree of flexibility and reusabil-ity to be tailored to implement several many-core taxonomies based on target applicationrequirements. In order to evaluate that, an analysis of tile microarchitecture has been con-ducted as shown in Table 2.5 (columns 4, 5, and 6) regarding supported memory hierarchies,scalability, number of cores, and interconnection type. Therefore, several works feature a

42

2.4 Contribution Towards Modular and Adaptive Many-Core Architectures

Tab
le2

.5:M
any

-co
re a

rch
itec

ture
sSt

ate
-of-

the
-Art

com
par

ison
.

Ma
ny-

Cor
e

Arc
hite

ctu
re[

Ref
.],(Y

ear
)

Het
ero

gen
eity

Lev
el

Arc
hite

ctu
reC

har
ect

eris
tics

Me
mo

ryH
iera

rch
y

per
Tile

Con
figu

rab
ility

Pro
to- typ
e

Sup
por

tCu
sto

m
HW

Inte
gra

tion
Sup

por
t

Mu
ltip

le IS
As

Tile
-ba

sed
Arc

hite
ctu

re
Com

mu
nica

tion
/

Inte
rco

nne
ctio

n
Her

o[1
57]

(20
17)

✓
✗

Mu
lti-C

ore
Bus

-ba
sed

Sha
red

Me
mo

ry
Des

ign-
Tim

e
FPG

A
Op

enP
iton

+Ar
iane

[43
](2

019
)

✗
✗

Sin
gle-

Cor
e

NoC
Loc

alM
em

ory
Des

ign-
Tim

e
FPG

A
And

rom
eda

[15
8](

202
1)

✗
✗

Mu
lti-C

ore
Bus

-ba
sed

+No
C

Sha
red

Me
mo

ry
Des

ign-
Tim

e
FPG

A
Me

mP
ool

[56
](2

021
)

✗
✗

Mu
lti-C

ore
Cas

cad
ed

Cro
ssb

ar
Sha

red
Me

mo
ry

Des
ign-

Tim
e

ASI
C

TaP
aSC

o[5
5](

201
9)

✓
✗

Mu
lti-C

ore
Cas

cad
ed

Cro
ssb

ar
Loc

alM
em

ory
Des

ign-
Tim

e
FPG

A
Sav

ase
tal

. [1
59]

(20
20)

✓
✗

Sin
gle-

Cor
e

NoC
Loc

alM
em

ory
Des

ign-
Tim

e
FPG

A
GRV

IPh
alan

x[3
8](

201
6)

✓
✗

Mu
lti-C

ore
Cro

ssb
ar+

NoC
Loc

al/S
har

ed
Me

mo
ry

Des
ign-

Tim
e

FPG
A

Bla
ckP

arro
t[5

0](
202

0)
✓

✗
Sin

gle-
Cor

e
NoC

Loc
alM

em
ory

Des
ign-

Tim
e

ASI
C

Ma
ntic

ore
[62

](2
021

)
✗

✓
Mu

lti-C
ore

Cas
cad

ed
Cro

ssb
ar

Sha
red

Me
mo

ry
Des

ign-
Tim

e
ASI

C
ESP

[13
](2

020
)

✓
✓

Sin
gle-

Cor
e

NoC
Loc

alM
em

ory
Des

ign-
Tim

e
FPG

A
P20

12
[51

](2
012

)
✓

✗
Mu

lti-C
ore

NoC
Loc

al/S
har

ed
Me

mo
ry

Des
ign-

Tim
e

ASI
C

Cor
eVA

-MP
SoC

[16
0](

201
8)

✗
✗

Mu
lti-C

ore
NoC

Loc
al/S

har
ed

Me
mo

ry
Des

ign-
Tim

e
ASI

C
Ves

tias
eta

l. [1
61]

(20
15)

✗
✗

Sin
gle-

Cor
e

Bus
-ba

sed
Sha

red
Me

mo
ry

Des
ign-

Tim
e

FPG
A

Me
mp

his
[47

](2
09)

✓
✗

Sin
gle-

Cor
e

NoC
Loc

alM
em

ory
Des

ign-
Tim

e
FPG

A
RVN

oC
[16

2](
201

8)
✓

✗
Sin

gle-
Cor

e
NoC

Loc
alM

em
ory

Des
ign-

Tim
e

FPG
A

Epi
pha

ny[
163

](2
014

)
✗

✗
Sin

gle-
ore

NoC
Loc

alM
em

ory
Des

ign-
Tim

e
ASI

C
Kalr

ayM
PPA

256
[16

4](
201

3)
✗

✗
Mu

lti-C
ore

NoC
Loc

alM
em

ory
Des

ign-
Tim

e
ASI

C
Th
is
di
ss
er
ta
tio

n
(A
G
IL
ER
)[
16
]

(2
02
2)

✓
✓

Mu
lti-C

ore
NoC

Loc
al/S

har
ed

Me
mo

ry
Run

tim
e

FPG
A

43

2 Background and State-of-the-Art

high degree of scalability to support scalable numbers of multiple types of heterogeneouscompute units such as Hero [157], OpenPiton [43], MemPool [56], TaPaSCo [55], BlackParrot[50], GRVIPhalanx [38], Manticore [62], and Kalray [164]. They are able to support hundredsof processing cores clustered in tens of tile-based architectures. Also, several works supportdifferent memory hierarchies within a single-tile architecture. They feature a shared memoryhierarchy between tile’s PEs, where each PE has its own local memory either a scratchpadmemory or a cache memory such as GRVIPhalanx [38], P2012 [51], and CoreVA-MPSoC [160].The proposed adaptive and heterogeneous tile-based architecture satisfies the compute per-formance scalability using a scalable mesh-based NoC topology for inter-tile communicationwith a variant set of heterogeneous compute tiles. Each compute tile features a configurablemulti-/single-core architecture that can be configured with variant numbers and types of RISC-V-based PEs. Moreover, shared and local memory hierarchies with parameterized sizes aresupported per each compute tile. Therefore, the proposed architecture provides the flexibil-ity for tailoring several many-core configurations for compute or memory-bound applications.
Configurability and prototyping: The proposed many-core architecture supports run-timeadaptation through an internal reconfiguration manager (RV-CAP) using dynamic and partialreconfiguration technology on Xilinx FPGAs. The modularity and adaptability features of theproposed architecture allow the flexibility to be ported to other Xilinx FPGA series. Accord-ingly and to the best of our knowledge, the proposed architecture is the first heterogeneoustile-based many-core architecture for multiple ISAs and custom hardware accelerators thatsupports self-adaptation using an internal run-time DPR manager for several heterogeneousmany-core configurations on FPGAs. According to state-of-the-art comparison presentedin Table 2.5 (column seven), all tile-based many-core architectures are design time config-urable with a limited degree of portability to different hardware platforms in case of ASICimplementation. Few of them have the capability to be portable to different FPGA devicessuch as HERO [157], ESP [13], TaPaSCo [55], and OpenPiton [43].

2.4.2 Hybrid Memory/accelerator Tile Architecture

The LCA model is increasingly used in heterogeneous architecture to achieve an order ofmagnitude high computing performance. However, LCAs require a large portion of privatelocal scratchpad memory with the accelerator logic inside the custom accelerator tile archi-tecture. Accordingly, the increasing number of accelerator tiles leads to a significant increasein accelerators’ PLM resources. For FPGA-based manycore systems, block memories BRAMsare used to implement PLMs which have limited availability on FPGAs. Therefore, memorysharing between accelerator tiles and general-purpose tiles is necessary to reduce many-coresystems’ memory footprint. Recent heterogeneous SoCs are characterized by a large numberof hardware accelerators coupled with many general-purpose compute units in a so-calledaccelerator-rich architecture. These types of heterogeneous SoCs provide the capability toadapt their architectures to specific application workloads aiming to increase performanceand energy efficiency.
Accordingly, several research approaches have been proposed to seamlessly integrate accel-erator and memory tiles into manycore systems to reduce design costs and increase archi-tecture reusability. Table 2.6 shows a comparison between aforementioned state-of-the-art

44

2.4 Contribution Towards Modular and Adaptive Many-Core Architectures

Table 2.6: Accelerator Integration State-of-the-Art Comparison.
Ref. (Year)

HW Acc.
Coupling
Model

Support Acc.
Memory
Reuse

Support
Coherency

Support
Large PLM Prototype

Ng et al. [105] (2016) Tightly
Coupled ✗ ✓ ✗ Simulation

Bellochi et al. [121] (2021) Loosely
Coupled ✗ ✓ ✗ FPGA

Savas et al. [159] (2020) Loosely
Coupled ✗ ✗ ✓ FPGA

Mantovani et al. [119] (2016) Loosely
Coupled ✗ ✓ ✓ FPGA

Dehyadegari et al. [120] (2015) LooselyCoupled ✗ ✓ ✓ Simulation
Li et al. [122] (2011) Loosely

Coupled ✗ ✗ ✓ Simulation
Pilato et al. [127] (2017) Loosely

Coupled ✗ ✓ ✓ Simulation
Cota et al. [129] (2016) Loosely

Coupled ✓ ✓ ✓ Simulation
Cong et al. [128] (2012) Loosely

Coupled ✓ ✓ ✓ Simulation
Kamaleldin et al. [18] (2022)

Loosely
Coupled ✓ ✗ ✓ FPGA

accelerators integration models in (Section 2.2) and the proposed hybrid memory/accelera-tor tile architecture. Accordingly, state-of-the-art comparison in Table 2.6 is based on thefollowing points:
• Hardware accelerator coupling model
• Supporting accelerator memory reuse and sharing accelerator PLM with other comput-ing tiles in the target system
• Supporting coherency and large accelerator PLMs

Accelerator coupling model: Several works propose different ways of accelerator couplingwith general-purpose compute units. As discussed in (Section 2.2.1), there are two ways foraccelerator coupling either as a TCA or LCA to general-purpose processors. Therefore, Table2.6 (column two) shows hardware accelerator coupling models of several related works. Mostof the related work supports LCA model except Ng et al. [105] which supports ISA extensionfor tightly coupled accelerators to processor pipelines. State-of-the-art LCA models feature a

45

2 Background and State-of-the-Art

separate tile to host hardware accelerators either as HLS-based accelerators such as Pilatoet al. [127], Mantovani et al. [119], and Cota et al. [129]. On the other hand, Savas et al. [159]supports Chisel-based accelerators within the Rocketchip generator framework. In addition,LCAs within a general-purpose tile are supported by Dehyadegari et al. [120], and Bellochi etal. [121].
In this case, LCAs are shared memory-mapped peripherals to general-purpose cores withincompute tiles. Accordingly, the proposed hybrid memory/accelerator tile architecture [18]supports a LCA integration model where hardware accelerators can be integrated inside aLCA tile. The proposed LCA tile is connected to the NoC through a dedicated NI that allowsdata transfer between the tile’s PLM and other compute tiles within the proposed many-corearchitecture. The proposed LCA tile supports the integration of both RTL-/HLS-based accel-erators with various on-chip memory sizes for PLM realization.
Accelerator PLM sharing: The second feature of the proposed hybrid memory/acceler-ator tile is accelerator memory reuse. As described in (Section 2.2.2), accelerator memoryreuse is an important feature proposed by several related works. The main idea is to extendthe many-core shared memory portion by partially or fully reusing accelerators PLMs duringtheir inactive time. In this context, Table 2.6 (column three) shows related work LCAs thatsupport the feature of accelerator memory reuse. Cota et al. [129], and Cong et al. [128]firstly introduced the concept of accelerator memory reuse as an L2 shared cache memoryto general-purpose tiles. They only use part of the PLM with extra control logic for cachemanagement implemented on each LCA tile. Despite the efficient utilization of LCAs PLMs,an extra implementation and design effort is required to modify the LCA tile to operateas an extended cache memory or a pure hardware accelerator. Therefore, the proposedhybrid memory/accelerator tile provides more design flexibility with less development effortto support memory and acceleration mode of operation through a parametrized architecturethat can be configured through a set of configuration messages from any general-purposetiles within the proposed architecture.

2.5 Summary

In this chapter, background and state-of-the-art tile-basedmany-core architectures, hardwareaccelerator integration, and adaptive FPGA-based SoC are presented, analyzed, and evaluatedwith respect to the main contributions of this dissertation.
Section 2.1 describes in detail homogeneous and heterogeneous tile-based many-corearchitectures and their characteristics. Recently, tile-based many-core architectures arebeing at the centre of the compute-centric paradigm. They represent the evolution fromsingle-core architectures to hundreds of cores on the same chip or within a single SoC.Tile-based many-core architectures consist of a large number of cores with several levelsof memory hierarchies and interconnect. Moreover, Section 2.1.1 shows various state-of-the-art tile-based platform implementations. Those platforms are characterized by manyarchitectural features such as supporting multi ISAs, supporting heterogeneous hardwareaccelerators, different memory hierarchies, and high degrees of design modularity andextensibility. Afterward, Section 2.1.2 shows a classification of open-source RISC-V ISA.

46

2.5 Summary

Three classes of RISC-V-based processors are presented spanning from little cores to high-performance cores. In this dissertation, RISC-V-based processors are used to implementgeneral-purpose cores.
Section 2.2 explains hardware accelerator integration in terms of accelerator couplingmodels and accelerator memory interactions within many-core and SoC architectures. LCAand TCA integration models are presented in Section 2.2.1 and their related state-of-the-artis described and analyzed in detail. In addition, accelerator memory interaction is presentedin Section 2.2.2. Several accelerator memory interaction techniques and supported featuresare presented and analyzed based on direct memory access and coherency, supportinglarge data sets, and accelerator memory reuse.
Runtime adaptive FPGA-based SoC is described in Section 2.3 including an overview of mod-ern FPGAs structure. Section 2.3.1 presents and analyses partial reconfiguration techniquesfor Xilinx FPGAs. Also, the utilization of dynamic partial reconfiguration techniques in recentadaptive MPSoC architectures and configurable FPGA overlays. Afterward, reconfigurationmanagement units are presented in Section 2.3.2. A comparison between the state-of-the-artDPR management units and the proposed RV-CAP unit is presented.
Finally, Section 2.4 presents themain dissertation contributions towardmodular and adaptivemany-core architectures and state-of-the-art comparison with the dissertation’s proposedsolutions and approaches.

47

3 A Modular Tile-based Many-Core
Architecture for Heterogeneous
ISAs

Machine learning and data-centric applications constitute the main driving forces for com-puting’s rapid evolution. Over the past decade, several computing paradigms have beenintroduced seeking to increase computing performance scaling and energy efficiency inorder to cope with the emergence of new application classes with massive and irregular datasets. Among those computing paradigms are compute-centric architectures which are stillleveraged in the mainstream multi-/many-cores SoC developed by industry and academia forseveral application domains. Compute-centric systems went through a tremendous evolutionfrom multi-core homogeneous architectures to highly heterogeneous architectures with big,and little cores as well as application-specific accelerators.
Despite the high-performance gain of heterogeneous architectures, the increasing numbersof heterogeneous elements are limited by the system interconnects scalability and thereforethe degree of compute performance scalability. This obstacle of compute-performancescaling is referred to as the scalability wall. Therefore, tile-based architectures are developedfor highly scalable many-core systems with a growing capacity of heterogeneous computeelements. The degree of scalability for tile-based architectures relies on the inter-tile com-munication fabric which on recent many-core approaches depends on scalable NoC varianttopologies. However, the design and development of tile-based many-core architectures is acumbersome process in terms of development time and costs. Especially if target applicationdomains require a high capacity of heterogeneous compute tiles as is the case in recentcomputing devices that support a wide range of application domains.
As a result, integrating more components and different architectural units on a completesystem-on-chip increases design efforts (e.g. verification, validation, integration) and thereforethe development time and costs. Moreover, the design specifications could vary due todifferent application requirements which lead to the necessity of a new design process foreach new application requirement. Resultantly increasing the design effort and thereforetime to market with continuous inflation in non-recurring engineering costs.
This chapter presents amodular tile-basedmany-core architecture to support heterogeneousISAs through the adoption of multiple general-purpose RISC-V based cores with differentISAs. In this context, this chapter introduces a novel modular implementation for many-corearchitectures based on RISC-V open-source-hardware processors with tile-granularity cus-tomization for FPGA platforms. The proposed tile-based many-core design has re-usable

49

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

and flexible architectural units that can be tailored to implement different heterogeneousand homogeneous many-core taxonomies using regular building blocks for computation(i.e. PEs, compute tiles), with several memory hierarchies and generic communication in-terconnections. The tile-based architecture maintains a high degree of scalability using ascalable NoC topology and the design regularity manner offers the flexibility to scale up thenumber of compute tiles with less design effort and cost. Furthermore, a message-basedcommunication model is adopted to support data transfer over the NoC between computetiles. In addition, a bare metal programming method is introduced on the level of computetiles for parallel programming over the RISC-V-based PEs using shared and local scratchpaddata memories on the compute tile level. Moreover, the proposed tile-based many-corearchitecture is evaluated based on different architecture configurations covering differenttypes of memory hierarchies/sizes, communication interconnections, and numbers/types oftiles/cores per many-core system to explore several design choices and their effects on thesystem performance. The tile-based architecture is implemented and evaluated on a XilinxVirtex Ultrascale+ FPGA.
The Chapter is structured as follows. Section 3.1 presents the hardware architecture of thetile-based many-core architecture including several types of general-purpose single-/multi-core compute tiles, different RISC-V-based PEs supporting different RISC-V ISAs with tightly-coupled local scratchpad memory. Also, tile modularity and configurability during design timeto support different memory hierarchies and several types of PEs are described. Section 3.2presents how to achieve a highly scalable tile-based architecture using a parametrized NoCarchitecture with a customized communication model protocol for data transfer betweenheterogeneous compute tiles. Section 3.3 presents the supported bare-metal programmingmethod for parallel task execution over the tile-based architecture. In addition, memorypartitioning of a single compute tile is described in order to specify the used type of memory(i.e. shared or local) and the target PE for parallel execution of multiple kernels. Section3.4 presents the evaluation and prototyping of the tile-based many-core architecture usingseveral tile-based configurations in terms of hardware resource utilization, computing per-formance scalability, achievable memory bandwidth, and communication data rate betweencompute tiles with several signal processing and neural network benchmarks. Finally, Section3.5 summarizes this chapter.

3.1 Modular Tile-based Architecture

The tile-based many-core architecture features a modular and hierarchical interconnectdesign that targets domain-specific and general-purpose applications for FPGA accelera-tors. Moreover, the tile-based many-core architecture can be considered as a model forrapid prototyping of different many-core taxonomies with homogeneous or heterogeneouscomputing elements (multi ISAs and application-specific hardware accelerator cores) andsupports different styles of interconnect topologies. The tile-based architecture consists of ascalable number of compute tiles connected by a Network-on-Chip interconnect as shown inFigure 3.1. The compute tile architecture can be configured to support two RISC-V ISAs (RV32,RV64). Moreover, compute tiles can be configured to support single-core and multi-corearchitectures with the flexibility to support several memory hierarchies. Each compute tilefeatures a private address space which allows communication between all PEs and shared

50

3.1 Modular Tile-based Architecture

R R R

R R R

R R R

32
-b

it
Ti

le
-2

32
-b

it
Ti

le
-0

32
-b

it
Ti

le
-1

64
-b

it
Ti

le
-0

LC
A

Ti
le

-0

32
-b

it
Ti

le
-3

64
-b

it
Ti

le
-1

LC
A

Ti
le

-1

M
ai

n
Pr

oc
es

si
ng

Ti

le

DD
R

UA
RT

SD
-C

ar
d

Ex
te

rn
al

 P
er

ip
he

ra
ls

Ti
le

-b
as

ed
 M

an
y-

Co
re

 A
rc

hi
te

ct
ur

e

Sh
ar

ed

In
st

ru
ct

io
n

M
em

or
y

NI

Sh
ar

ed
 D

at
a

M
em

or
y

HW
Acc.

AX
I-4

 In
te

rc
on

ne
ct

AX
I-4

 In
te

rc
on

ne
ct

AX
IS

(3
2-

bi
t)

(3
2-

bi
t)

(3
2-

bi
t)

(3
2-

bi
t)

Sh
ar

ed

In
st

ru
ct

io
n

M
em

or
y

Sh
ar

ed
 D

at
a

M
em

or
y

NI HW
Acc.

32
-b

it
Ti

le

64
-b

it
Ti

le

AX
I-4

 In
te

rc
on

ne
ct

Sh
ar

ed

In
st

ru
ct

io
n

M
em

or
y

D
D

R
Ct

rl.

(D
DR

: S
ha

re
d

Da
ta

 M
em

or
y)

NI

DD
R

UA
RT

SD
-C

ar
d

N
oC

-R
ou

te
r

M
ai

n
Pr

oc
es

si
ng

 T
ile

I D S

R N
I

In
st

ru
ct

io
n

Po
rt

Da
ta

 P
or

t
St

re
am

 P
or

t

N
oC

 R
ou

te
r

N
et

w
or

k
In

te
rf

ac
e

(a
)

(b
)

(c
)UA

RT
Ct

rl.
SP

I
Ct

rl.

Figure 3.1: Overview of the modular tile-based many-core architecture with a 3x3 tile-basedmany-core configuration including (a) 4x32-bit general-purpose compute tiles, (b)2x64-bit general-purpose compute tiles, (c) the main/primary processing tile, andheterogeneous tiles to host custom hardware accelerators (LCA tiles).
51

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

tile peripherals through shared data memory via an AXI interconnect. In this section, thetile-based many-core architecture and its architectural components are described.

3.1.1 Multi-Core based Tile Architecture

General-purpose compute tiles are the core of tile-based architecture, they represent thecomputing nodes for the proposed many-core system. As shown in Figure 3.1, the tile-based many-core architecture consists of three types of heterogeneous tiles that supportmultiple RISC-V ISAs in addition to custom hardware accelerators (LCA tiles). All general-purpose compute tiles have a regular design pattern based on a bus-based architecture.The compute tile tightly couples single or multiple RISC-V based PEs with shared instructionand data scratchpad memories using a shared AXI interconnect. Therefore, all PEs in asingle tile share a common private address space. The shared bus architecture allows thecommunication between RISC-V-based PEs and tile’s shared memories as well as memory-mapped peripherals via AXI interconnect.
To enhance the memory bandwidth, shared instruction and data memories are implementedusing dual-ported BRAM/URAM blocks. Therefore, two memory read/write (R/W) channelscan be established across AXI interconnect to handle two memory requests simultaneously.Shared instruction memory is implemented as read-only BRAM memory which is used asa boot memory during the memory initialization stage to load the compiled binary file forexecution. Each compute tile implements a uniform memory access (UMA) architecture,where each RISC-V-based PE can access shared data and instruction scratchpad memoriesconnected to the AXI interconnect as a slave memory-mapped peripheral. In the UMAarchitecture, each PE experiences the same bandwidth and access latency to the memory.However, the overall memory bandwidth is divided between the number of PEs per tile.Therefore, the growing number of PEs connected to the AXI interconnect leads to an increasein memory access latency per each PE and increases the probability of memory congestiondue to limited AXI interconnect bandwidth.
In order to reduce memory congestion per tile, we use an open-source high-performancecoherent AXI interconnect implementation [63], [165]. The AXI interconnect is based on afully-connected crossbar where each slave port has a dedicated connection to each masterport. The crossbar supports up to five independent data transaction channels for R/W andapplies a round-robin arbitration scheme. However, the memory bandwidth scalability islimited and starts to saturate after a certain number of PEs. Therefore, each tile supports amaximum number of four PEs to ensure a congestion-free tile implementation.
The three types of general-purpose compute tiles are described as follows:

• 32-bit compute tile: As shown in Figure 3.1 (a), the first compute tile is a 32-bit general-purpose multi-core tile with four RV32 PEs. Each PE consists of a single RV32IMCcore with tightly-coupled scratchpad local memory for data and instruction. The RV32PE is compatible with a 32-bit AXI interface to seamlessly connect it to the tile AXIinterconnect. The 32-bit tile hosts shared scratchpad instruction and data memoryfor application booting and data sharing between PEs. In addition, optional memory-mapped peripherals such as custom hardware accelerators are supported by thetile. The tile is connected to the NoC router through a memory-mapped NI for datatransmission and receiving with other many-core tiles.

52

3.1 Modular Tile-based Architecture

• 64-bit compute tile: The second general-purpose compute tile is a single- or dual-core64-bit tile that can be configured to support single or dual RV64 based PEs as shown inFigure 3.1 (b). Similar to the RV32 PE, the RV64 PE consists of a single RV64IMAC corewith tightly-coupled local scratchpad memory for data and instruction. The RV64 PE canbe seamlessly connected to the tile interconnect via 64-bit AXI interfaces. The 64-bittile hosts shared scratchpad instruction and data memory for application booting anddata sharing between PEs. In addition, optional memory-mapped peripherals such ascustom hardware accelerators are supported by the tile. The tile is connected to theNoC router through a memory-mapped NI for data transmission and receiving withother many-core tiles.
• Main processing tile: The third type of general purpose compute tile is shown inFigure 3.1 (c). It is the main and permanent processing tile of the tile-based many-corearchitecture. The main processing tile is based on a 64-bit quad-core architecture withshared instruction and data memory. The off-chip DDR memory is used as shareddata memory for a large capacity of data sharing between the four RV64 PEs, whilethe shared instruction memory uses on-chip BRAM blocks similar to other computetiles. Moreover, the main processing tile controls and manages external many-coreperipherals (i.e. SD-card, UART) and it can be extended to support other types ofoff-chip peripherals. Furthermore, the reconfiguration manager unit and its associatedcomponents (i.e. direct memory access (DMA), internal configuration access port (ICAP)controller) are hosted and managed inside the main processing tile as described inChapter 5. Therefore, the main process tile is the permanent general-purpose tilefor the proposed tile-based many-core architecture which is primarily responsible formany-core management and configuration as well as taking part of computationalworkload with other tiles. The main processing tile is equipped with a generic NI to theNoC router for inter-tile communication.

3.1.2 Heterogeneous RISC-V based Processing Elements

The Processing Element is the main computing unit inside the proposed tile-based many-corearchitecture. The inherent design modularity of the PE allows the execution of general-purpose applications across different domains e.g. (signal or image processing, and machinelearning) with different computing requirements and memory footprints. The PE consists ofa single open-source RISC-V soft-core processor and a local tightly coupled memory (TCM)subsystem for data and instructions to increase data locality for compute- and memory-intensive applications. In addition, like typical Harvard architecture, the PE features separatedlocal instruction and data memories tightly coupled with the RISC-V soft-core processor. Thelocal TCMs feature a low memory latency of one clock cycle for R/W operations for privatecomputation within a single PE. Moreover, using a local memory per each PE reduces theprobability of memory interference between multiple PEs compared to the UMA in sharedmemory hierarchies. In this section, two PEs based on RV32/RV64 ISAs for 32-/64-bit computetiles are described as follows.
32-bit PE

The 32-bit PE consists of a single open-source RI5CY soft-core processor [77] with an imple-mented local tightly coupled memory subsystem for data and instructions as shown in Figure3.2. RI5CY core is a 32-bit 4-stage pipeline in-order processor. The core implements a simple

53

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

A
X

I-
4

 I
n

te
rc

o
n

n
e

ct
 (

3
2

-b
it

)

A
X

I-
4

 In
te

rc
o

n
n

e
ct

(3
2

-b
it

)

(3
2

-b
it

)

3
2

-b
it

 T
ile

Sh
ar

e
d

In

st
ru

ct
io

n

M
e

m
o

ry

Sh
ar

e
d

 D
at

a
M

e
m

o
ry

R
I5

C
Y

 C
o

re

I-
P

o
rt

D
-P

o
rt

I-
B

ri
d

ge
D

-B
ri

d
ge

A
d

d
re

ss
 R

an
ge

Se

le
ct

o
r-

D

IT
C

M
 (

O
n

-C
h

ip

B
lo

ck
 R

A
M

)
D

TC
M

 (
O

n
-C

h
ip

B

lo
ck

 R
A

M
)

A
d

d
re

ss
 R

an
ge

Se

le
ct

o
r-

I

D
-P

o
rt

 S
ig

n
al

s
I-

P
o

rt
 S

ig
n

al
s

A
d

d
re

ss
 R

an
ge

 D
-P

o
rt

Se
l.

In
te

rf
.

0
X

2
0

0
0

0
0

0
0

-0
X

2
0

xx
xx

xx
0

 (
0

0
)

IT
C

M

0
X

4
0

0
0

0
0

0
0

-0
X

4
0

xx
xx

xx
1

 (
0

1
)

D
TC

M

0
X

5
0

0
0

0
0

0
0

-0
X

8
xx

xx
xx

x
2

 (
1

0
)

A
X

I-
4

0
X

6
0

0
0

0
0

0
0

-0
X

A
xx

xx
xx

x
3

 (
1

1
)

A
X

IS
*

A
d

d
re

ss
 R

an
ge

 I-
P

o
rt

Se
l.

In
te

rf
.

0
X

2
0

0
0

0
0

0
0

-0
X

2
0

xx
xx

xx
0

IT

C
M

0
X

0
0

0
0

0
0

0
0

-0
X

0
xx

xx
xx

x
1

A

X
I-

4

*
A

X
IS

in
te

rf
ac

e
h

as
a

d
u

m
m

y
ad

d
re

ss
-

ra
n

ge
ge

n
er

at
e

d
fr

o
m

th
e

co
re

w
h

ic
h

is
u

se
d

fo
r

in
te

rf
ac

e
se

le
ct

io
n

an
d

n
o

t
p

h
ys

ic
al

ly
co

n
n

e
ct

ed
to

an
ad

d
re

ss
in

te
rf

ac
e

req_DTCM_read

req_DTCM_write

req_ITCM_write

req_AXI_read

req_AXI_write

req_AXIS_read

req_AXIS_write

req_D

req_ITCM_read

req_AXIS_read

req_I

We
(rd/wr)

ad
d

re
ss

_D

grant_D

valid_D

Data_wr/rd_D

3
2

-b
it

3
2

-b
it

Data_rd_I

valid_I

grant_I

3
2

-b
it

3
2

-b
it

ad
d

re
ss

_I

AXI-4 Interface (Data)

AXI-4 Interface (Instr.)

A
X

I-
S

In
te

rf
ac

e

D
TC

M
 I

n
te

rf
ac

e
(r

d
/w

r
m

o
d

e
)

IT
C

M
 I

n
te

rf
ac

e
(w

r
m

o
d

e
 o

n
ly

)
IT

C
M

 I
n

te
rf

ac
e

(r
d

 m
o

d
e

 o
n

ly
)

R
IS

C
-V

P
E

(3
2

-b
it

)

(a
)

(b
)

(c
)

Figure 3.2: Schematic of 32-bit RISC-V based PE showing: (a) open-source RV32IMC (RI5CY)core, (b) instruction and data bridges for converting native I/D signals to AXI-4interfaces, (c) on-chip I/D TCM and their connection to the RI5CY core through I/Dbridges.

54

3.1 Modular Tile-based Architecture

RV32IMC ISA with a main arithmetic-logic unit (ALU) and dedicated units for multiplication,division and multiply-accumulate (MAC). The average base instructions loading latency frominstruction memory is one clock cycle except for load/store (LD/ST) instructions and othercustom instructions which have a minimum latency of 2 clock cycles [166].
The PE features 2 separate tightly coupled memory blocks implemented using on-chipBRAM/URAM for instruction and data (I/D) as shown in Figure 3.2 (c). I/D-TCM offer lowmemory latency of one clock cycle for R/W operations, it also increases data locality formemory-bound applications. All memory blocks have a fixed word size of 32-bit compatiblewith RV32 ISA. Besides the RI5CY core, the PE local memory subsystem and external interfacesare described as follows.

• 32-bit ITCM: As shown in Figure 3.2 (c), the ITCM is implemented as a dual-portedon-chip BRAM/URAM with a read-only interface to the RI5CY core instruction port(I-Port) for fetching a new instruction every single clock cycle. In addition, a write-onlyinterface to the data port (D-Port) allows the transfer of specific instructions fromthe shared instruction memory to the ITCM during the memory initialization stage.In this case, the RI5CY core is responsible to transfer a specific memory partitionfrom the shared instruction memory to its local instruction memory. This is calledthe memory initialization stage, where each PE within the compute tile starts to movespecific memory partitions from shared memory to local memory before applicationexecution.
• 32-bit DTCM: In contrast to the ITCM, the DTCM is implemented as a single port on-chipBRAM/URAMwith R/W interface to the RI5CY core D-Port. The DTCM is only accessed viaits own coupled RI5CY core. Therefore, accessing local memory directly by other PEs isprevented and the local data memory has to be transferred to the shared data memoryto be accessible by other PEs in the 32-bit tile. The DTCM is larger than the ITCM interms of BRAM/URAM blocks as it hosts local PE data. During the memory initializationstage, the RI5CY core is responsible to load the local data from a specific partition fromthe shared memory to the DTCM prior to application execution. DTCM and ITCM aresize configurable during design time based on target application requirements.
• I/D-Bridges: To allow seamless integration of PEs in 32-bit compute tile, the I/D-Portsof the RI5CY core are extended to be compatible with AXI-4 and AXI-Stream standardsby implementing (D-, I-Bridges) as shown in Figure 3.2 (b). D-, I-Bridges allow thecommunication between the RI5CY core and the tile’s memory-mapped peripheralsthrough the shared AXI interconnect. Since the RI5CY core or the PE is the masterunit on the proposed system. The PE AXI interfaces are master interfaces that permita connection to any AXI slave peripherals inside the tile. As shown in Figure 3.2, theD-Bridge handles the RI5CY read/write memory requests (req_D) and the write-enable(we) signals from the D-Port interface by rerouting them based on the memory-mappedaddress range to the corresponding memory-mapped component (as shown in thebottom table in Figure 3.2). Hence, a finite state machine is implemented with sevenstates covering the read/write states to the (AXI interconnect, AXIS, ITCM_write andDTCM) interfaces based on address range selector. The address range selector speci-fied which memory-mapped peripheral is requested by the RI5CY core based on therequested address range. According to the state and the address-range input, theD-Port interfaces (data_write/read_D, valid_D, grant_D) are re-connected to the corre-sponding interfaces. Similar to the D-Bridge, the I-Bridge is implemented as shown

55

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

C
o

re
-I

D
I/

D
TC

M
-O

ff
se

t
I/

D
TC

M
 A

d
d

re
ss

 R
an

ge
 o

n

Sh
ar

e
d

A
X

I-
In

te
rc

o
n

n
e

ct

P
E-

0
 =

 1
0

X
0

0
0

1
0

0
0

0
0

X
3

5
0

1
0

0
0

0
/0

X
4

5
0

1
0

0
0

0

P
E-

2
 =

 2
0

X
0

0
0

2
0

0
0

0
0

X
3

5
0

2
0

0
0

0
/0

X
4

5
0

2
0

0
0

0

P
E-

3
 =

 3
0

X
0

0
0

3
0

0
0

0
0

X
3

5
0

3
0

0
0

0
/0

X
4

5
0

3
0

0
0

0

P
E-

n
-1

 =
 n

0
X

0
0

0
x0

0
0

0
0

X
3

5
0

X
0

0
0

0
/0

X
4

5
0

x0
0

0
0

A
R

IA
N

E
C

o
re

(C
V

A
6

)

AXI-Master Connect

AXI-Modify-Address

+ + + +

IT
C

M
 (

O
n

-C
h

ip
 B

lo
ck

 R
A

M
)

D
TC

M
 (

O
n

-C
h

ip
 B

lo
ck

 R
A

M
)

A
X

I-
4

 In
te

rc
o

n
n

e
ct6

4
-b

it
 T

ile

Sh
ar

e
d

In

st
ru

ct
io

n

M
e

m
o

ry

Sh
ar

e
d

 D
at

a
M

e
m

o
ry

Se
le

ct
io

n
A

d
d

re
ss

 R
an

ge
 f

ro
m

 t
h

e
 C

o
re

P
E-

A
X

IA
d

d
re

ss

0
0

X
3

5
0

0
0

0
0

0
 :

 IT
C

M
ar

ia
n

a.
ax

i_
ar

./
w

r.
ad

d
r

+

IT
C

M
-O

ff
se

t

1
0

X
4

5
0

0
0

0
0

0
 :

 D
TC

M
ar

ia
n

a.
ax

i_
ar

./
w

r.
ad

d
r

+

D
TC

M
-O

ff
se

t

2
0

X
2

0
0

0
0

0
0

0
/0

X
0

0
1

0
0

0
0

0
 :

Sh

ar
e

d
 In

st
r.

/D
at

a
M

e
m

.
ar

ia
n

a.
ax

i_
ar

./
w

r.
ad

d
r

Se
le

ct
io

n
IT

C
M

-O
ff

se
t

IT
C

M
-O

ff
se

t

D
TC

M
-O

ff
se

t

D
TC

M
-O

ff
se

t

0 01 12 2

A
X

I-
re

q
-o

A
X

I-
re

sp
-i

AXI-4 Interconnect (64-bit)

ar
ia

n
e

.a
xi

 (
6

4
-b

it
)

ariane.axi_araddr ariane.axi_awaddr

mst_araddr

mst_awaddr

PE-AXI (64-bit)

A
X

I (
6

4
-b

it
)

Address Range

R
IS

C
-V

P
E

(6
4

-b
it

)

6
4

-b
it

6
4

-b
it

6
4

-b
it

6
4

-b
it

(64-bit)

(a
)

(b
)

(c
)

Figure 3.3: Schematic of 64-bit RISC-V based PE showing: (a) open-source RV64IMAC(CVA6/ARIANE) core, (b) address converter to access I/D TCM through the mainAXI-4 interconnect, (c) on-chip I/D TCM and their connection to the CVA6 corethrough the main AXI-4 interconnect.

56

3.1 Modular Tile-based Architecture

in Figure 3.2 (b) with a two states FSM for only reading from the ITCM or the sharedinstruction memory for instruction fetching. The address range selector specified whichmemory-mapped peripheral is requested (ITCM or the shared instruction memory) bythe RI5CY core based on the requested address range. According to the state and theaddress-range input, the I-Port interfaces (data_read_I, valid_I, grant_I) are re-connectedto the corresponding interfaces.
64-bit PE

The 64-bit PE consists of a single open-source Ariana (CVA6) soft-core processor [45] with animplemented local tightly coupled memory subsystem for data and instructions as shown inFigure 3.3. Ariane core is a 64-bit 6-stage pipeline in-order processor. The used core versionin this work is configured to fully implement RV64IMAC [78]. Similar to the 32-bit PE, thetightly coupled memory subsystem is implemented using on-chip BRAM/URAM blocks asshown in Figure 3.3 (c). All memory blocks have a fixed word size of 64-bit compatible withRV64 ISA. Besides the Ariane core, the PE local memory subsystem and external interfacesare described as follows.
• 64-bit ITCM: The ITCM is implemented as a single port memory with R/W interfacedirectly connected to the tile main AXI-interconnect. Based on the requested instructionmemory address from the Ariane core, instructions can be fetched from the ITCMthrough the AXI interconnect directly to the core. During the memory initializationstage, the Ariane core is responsible to transfer a specific memory partition from theshared instruction memory to its local instruction memory via AXI interconnect. All PEswithin the compute tile starts to move specific memory partitions from shared memoryto local memory before application execution.
• 64-bit DTCM: The DTCM is implemented with R/W interface using a single port memory.Similar to the ITCM, the DTCM is directly connected to the tile main AXI interconnect.Based on the requestedmemory address from the Ariane core, local data can be loadedfrom the DTCM through the AXI interconnect directly to the core. During the memoryinitialization stage, the Ariane core is responsible to transfer its specified local databased on the target application memory partitions from the shared data memory to itslocal data memory via AXI interconnect. All PEs within the compute tile starts to loadtheir local data from shared memory to local memory before application execution.
• PE address converter: In contrast to the 32-bit PE, the used open-source Ariane core isequipped already with interfaces that are compatible with AXI 64-bit standard interfaces(AXI_resp, AXI_req) to access instruction and data memories as shown in Figure 3.3 (a).Therefore, the design of a 64-bit PE is quite simple and does not require implementingextra I-/D-bridges or converters to make native core I/D-Ports compatible with AXIstandards. However, an AXI-Master connect is implemented to re-route AXI requestand response signals to different memory-mapped slaves peripherals (i.e. I/D-TCM,shared memory, and tile peripherals) as shown in Figure 3.3. Accordingly, D-/I-TCMare directly connected and accessed through the main tile AXI-interconnect in order toreduce the number of crossbars interconnects inside the PE and also memory accesslatency. Similarly to 32-bit PE, the local memory subsystem per PE is only accessed byits core. Therefore for each PE, I-/D-TCM_offsets are inserted to core’s AXI-resp/-req R/Waddresses signals (as shown in Figure 3.3 (b)) to modify the AXI addresses sent to theshared AXI-interconnect so that each core can access its local memory. As mentioned in

57

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

the right tables in Figure 3.3, I-/D-TCMs for all PEs have the same address range for allcores, but they have unique address ranges on the shared AXI-interconnect. Therefore,address modifications are required for each PE/core to access its corresponding I-/D-TCM. Accordingly, based on that implementation, we reduced the number of crossbarinterconnects to be only the shared AXI interconnects which leads to a decrease inmemory access latency (4 clock cycles) to local and shared memory.

3.2 System Scalability and Communication Model

Typical many-core and MPSoC architectures are considered as a suitable platform to runmulti-tasks applications. Each task ismapped to one ormore PEs or processing clusters basedon the computation requirements. The tasks are connected via a directed data flow graphthat defines the data flow and the execution period of each task for a specific application.In this section, the NoC configuration is presented based on a 2-D mesh topology as thecommunication fabric between compute tiles for the tile-based architecture. In addition, aunified network interface is developed to provide a generic interface for sending and receivingdata between compute tiles (64-/32-bit tiles) and NoC routers. Moreover, a communicationmodel between compute tiles with unidirectional RX/TX channels is developed based on theNoC and NI architecture characteristics. The communication model applies a message-basedcommunication approach initiated by the transmitting tile and ending by the receiving tile.

3.2.1 NoC Configuration and Unified Network Interface

A Network-on-Chip is used on large-scale Multi-Processor System-on-Chip or many-corearchitectures to connect dozens to hundreds of PEs or compute tiles together, providing anon-chip end-to-end communication paradigm and increasing the system scalability. In thisdissertation, ARTNoC [11] a real-time NoC architecture is used for inter-tile communicationin the proposed tile-based many-core architecture. The NoC provides guaranteed qualityof service (QoS) in terms of data transfer bandwidth and end-to-end latency. In addition,the router architecture is highly modular and parametrizable. It supports different I/O portconfigurations, switching controls, buffering sizes and routing schemes.
The ARTNoC circuit-switched-based version is used in the implementation as it features alow area overhead compared to packet-switched-based NoC architectures. It allows betterutilization of FPGA resources to provide a resource-efficient communication fabric for largesize of compute tiles. In other words, the FPGA resources are not heavily used by the NoCarchitecture in order to free those resources to host tens of large compute tiles as proposedin Section 1. The NoC is based on a 2-D mesh topology with an XY-routing algorithm withconfigurable dimension size (e.g. 2x2, 3x3, etc.) and parametrized I/O data widths at designtime. Furthermore, the NoC internal architecture consists of the following units:

• A five ports circuit-switched router including a control path circuitry and arbiters forpath reservation,
• A crossbar to switch between the I/O ports and using a round-robin arbitration scheme,
• Multiple synchronous network links for communication between the routers as shownin Figure 3.1 (a).

58

3.2 System Scalability and Communication Model

AXI-4 to AXI-S
Converter

AXIS to AXI-4
Converter

NI
Compute Tile

NI-RX

NI-TX
AXIS-FIFO

AXIS-FIFO

3
2

-b
it

3
2

-b
it

AXI-4 Bit
Width

Converter

AXI-4 Bit
Width

Converter

A
X

I-
4

 In
te

rc
o

n
n

e
ct

 (
6

4
/3

2
-b

it
)

3
2

-b
it

3
2

-b
it

FIFO_ctrl. signals

FIFO_ctrl. signals

A
X

IS
-S

la
ve

A
X

IS
-M

as
te

r

Size: 64 Locations

Size: 8K Locations

32-bit ↔ 64-bit
For 64-bit Tiles

32-bit ↔ 64-bit
For 64-bit Tiles

Figure 3.4: A unified network interface (NI) block diagram for many-core compute tiles.

The circuit-switched NoC reserves a static transmission path between the source and desti-nation. This is performed by sending a single-flit setup packet from the source containingthe X-Y coordinate of the destination node. Moreover, the NoC can transmit a single packetflit every single clock cycle with a 32-bit payload data.
In addition, a unified network interface (NI) is implemented to allow communication betweencompute tiles and the NoC. The unified NI is a memory mapped-peripherals that can beattached to the compute tile AXI interconnect. The NI is a generic hardware componentthat can be used by any compute tile in the tile-based architecture for both 64-bit tiles and32-bit tiles. The NoC router I/O interfaces are compatible with the AXI-stream interface.Therefore, the proposed NI architecture is based on a flit-based streaming approach. Hence,the NI connects between the address-based shared bus used by the compute tile and theAXI-stream interface of the NoC router. An overview of the NI internal architecture is shownin Figure 3.4. The NI has two separate channels for sending and receiving data (NI-TX, NI-RX).It is connected to the AXI interconnect as AXI-slave memory-mapped peripheral that can beaccessed by all compute tile PEs. The NI internal architecture consists of:

• An AXI-stream-based FIFO of 64 locations size in case of NI-TX and 8K locations in caseof NI-RX to store/receive the transmitted and received packet flits from the NoC router.
• As the NoC is based on a 32-bit architecture, an AXI-stream to AXI-4 converter to connectthe AXIS-FIFO and its control signals to the tile AXI-interconnect.

59

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

• An AXI-4 bit width converter is required for 64-bit compute tiles to convert betweenreceived 32-bit width and 64-bit to be compatible with tile data width.
A single PE can access the NI by setting a synchronization flag (for either sending or receiving)in the shared data memory indicating that the NI is blocked by this PE to prevent datainterference by several NI requests from different PEs. The data flow between a PE to a NI isperformed by setting a pointer to the data source address in the shared data memory totransmit a specified size of data. The data is transmitted in a form of a group of 32 packet-flitsto the NI-TX FIFO. Similarly, in the receiving direction, the received packet flits are stored in theNI-RX AXIS-FIFO until a reading request comes from a certain PE to start data storing in theshared data memory. Transmitting and receiving data through NI can be done concurrentlyas the NI has two separate read/write channels to the AXI-interconnect.

3.2.2 Communication Model for Tile-based Architecture over the NoC

For communication and interaction between compute tiles, a message-based communicationmodel is developed over the NoC to control data transfer between compute tiles based onrunning application requests. In other words, the communication model is considered as thenetwork transport layer over the NoC hardware architecture to control data flow betweencompute tiles and maintain proper data transmission.
The interaction between compute tiles over the NoC is conducted through the message-based communication model. Where the compute tiles request to transmit and receive datato/from other compute tiles through a set of software modules. The communication modelconsists of software modules which are executed by any RISC-V core inside compute tilesto control and manage the NI peripheral to send or receive data over the NoC. Data aretransferred through the NoC in a form of packets. All packets consist of 33 flits, where eachflit is 32-bit. The first flit is the header flit which contains the destination address X_Y for thedestination compute tile. The other 32 flits are the packet payload that contains transmittedor received data.
Figure 3.5 shows a sequence diagram of the developed communication model betweencompute tiles. The transmission is initiated by any PE in the source compute tile. The firsttransmitted packet flit is the header flit contains the X-Y coordinate of the tile destinationfollowed by a stream of data packets equal to the size of the requested data transmission,where each packet contains 32 flits of payload data. The transmitted data is directly storedin the NI-RX AXIS-FIFO of the destination compute tile. Received packet flits are automaticallystored in the AXIS-FIFO till the compute tile starts to store them on the shared data memory.Therefore, the receiving tile is not be blocked while the data is transmitted from the sourcecompute tile and it can load the received data to shared data memory after a certain amountof time based on running tasks on the tile’s PEs. However, the maximum amount of datathat can be transmitted without blocking is equal to the size of NI-RX AXIS-FIFO which is setto 8K locations (32 KiB) for (8K×32-bit) data flits. In case the data is larger than 32 KiB, thesource compute tile has to wait for an acknowledgement (ack) signal from the destinationcompute tile that the previous 8K data flits have been stored on the shared data memoryand it is permitted to start sending another block of (8K×32-bit) data flits.
Accordingly, the proposed communication model guarantees no data loss during the trans-mission process. The communication model is realized through a set of software modules

60

3.2 System Scalability and Communication Model

Compute
Tile-0

Compute
Tile-n

NI-0 NI-n

Δt

Δt

Start
TX

St
re

a
m

in
g

th
e

d
a

ta
D0

D0

Dn-1

Dn-1

ti
m

e

N
I-

R
X

 A
X

IS
-F

IF
O

D0

Dn-1

Δt+T

Stream transmission
through the NoC

Start
RX

Reading data from
the RX AXIS-FIFO

after time (T)

Receiving data directly
to NI-RX AXIS-FIFO

ack
ack

ack Δt

Δt
Δt

Figure 3.5: Sequence diagram of the message-based communication model between com-puting tiles over the NoC.
running on RISC-V PEs from any compute tiles to control and manage the NI to send andreceive data. A detailed description of software modules is presented as follows:
Handling data transmission from compute tiles to the NoC

Listing 3.1 gives a detailed description of the communication software modules for datatransmission via the NI-TX over the NoC. There are two data transmission software mod-ules for the 32-bit and 64-bit compute tiles. For the 32-bit compute tile, 32-bit data areloaded from the shared data memory to the NI and then transmitted over the 32-bit NoCarchitecture. As shown in Listing 3.1 (line: 5), the header flit is transmitted including thedestination compute tile followed by 32 flits of payload (line:6-7). The software module fordata transmission transmits the data based on multiple data packets defined by data_size,where each transmission iteration sends a single packet to the NoC router and thereforeto the destination compute tile. For 64-bit compute tile, as shown in Listing 3.1 (line:11), a64-bit data flit has to be split into 2×32-bit data flits by the corresponding PE before trans-mission to the NI-TX (line:16-17). Therefore, a single transmitted data packet by a 64-bit tilecontains 16x64-bit of data. Transmission software modules are executed from PEs ITCMas local functions for specific PE. To avoid multiple access of the NI-TX from different PEs, asynchronization flag is stored on the shared data memory to indicate the status of the NI-TXeither active or idle. Accordingly, each PE is not allowed to access the NI-TX while it is activeand used by other PE in the compute tile.

61

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

1 uint32_t*const NI_TX = (uint32_t)*0xA0000000; // NI_TX peripheral address
2 void send_data_32(uint_32t A[data_size], uint_32t data_size, uint_32t x_y_dest){ // 32-

bit NI-TX module
3 uint32_t t = 0;
4 while(t < data_size/32){
5 NI_TX->data = x_y_dest;//Header flit transmission
6 for(int m = 0; m < 32; m++) // 32 flits data payload transmission
7 NI_TX->data = A[m+(32*t)];
8 }
9 return;
10 }
11 void send_data_64(uint_64t A[data_size], uint_32t data_size, uint_32t x_y_dest){ // 64-

bit NI-TX module
12 uint32_t t = 0;
13 while(t < data_size/16){
14 NI_TX->data = x_y_dest;//Header flit transmission
15 for(int m = 0; m < 16; m++) // 32 flits data payload transmission
16 NI_TX->data = ((A[m+(16*t)]) & 0xffffffff); // lower 32-bit of the 64-bit

sending data
17 NI_TX->data = ((A[m+(16*t)]) >> 32); // higher 32-bit of the 64-bit sending

data
18 }
19 return;
20 }

Listing 3.1: NI data transmission software modules executed on RISC-V cores from general-purpose compute tiles.

Handling receiving data from the NoC to compute tiles

Listing 3.2 gives a detailed description of communication software modules for receiv-ing data via the NI-RX over the NoC. There are two receiving data software modules for the32-bit and 64-bit compute tiles. For the 32-bit compute tile, 32-bit data are received by theAXIS-FIFO to be stored later in the shared data memory. The AXIS-FIFO has a minimum size of8K locations to store the transmitted data flits over the NoC. As shown in Listing 3.2 (line: 5),the PE checks for FIFO_data_count to ensure that there are available data flits to be received bythe destination compute tile. Afterward, the received packet payload is extracted and storedin the shared data memory (line:6-7). The software module for receiving data receives thedata based on multiple data packets defined by data_size, where each iteration reads a singlepacket from the AXIS-FIFO and stores it in the destination compute tile shared data memory.For 64-bit compute tile, as shown in Listing 3.2 (line:16), each received two data flits haveto be concatenated again into one 64-bit data width before writing in shared data memory(line:22-24). Therefore, two received 32-bit data flits constitute 64-bit data for 64-bit computetiles. Hence, data transmission between 64-bit compute tiles is based on data packets whereeach packet contains 16x64-bit data. After having received the complete transmitted data,the destination compute tile sends an acknowledgement data packet (line:10-12) to thesource compute tile to confirm a successful receiving of all transmitted data as shown inFigure 3.5. Data receiving software modules are executed from PEs ITCM as local functions

62

3.3 Programming Method and Software Execution

1 uint32_t*const NI_RX = (uint32_t)*0xA000F000; // NI_RX peripheral address
2 uint32_t*const NI_TX = (uint32_t)*0xA0001000; // NI_TX peripheral address
3 void rec_data_32(uint_32t B[data_size], uint_32t data_size, uint_32t x_y_source){ // 32-

bit NI-RX module
4 for(int t = 0; t < data_size/32; t++){
5 while(NI_RX->FIFO_data_count == 0); // waiting for data
6 for(int j = 0; j < 32; j++)
7 B[j+(32*t)] = NI_RX->data; // receiving 32 data flits
8 }
9 if(t == data_size/32){//send ack to the TX tile
10 NI_TX->data = x_y_source;
11 for(int j = 0; j < 32; j++)
12 NI_TX->data = 0x00000001;}//ack to the TX tile
13 return;}
14 void rec_data_64(uint_64t B[data_size], uint_32t data_size, uint_32t x_y_source){ // 64-

bit NI-RX module
15 uint_32t lower_32_bit;
16 uint_32t higher_32_bit;
17 for(int t = 0; t < data_size/16; t++){
18 while(NI_RX->FIFO_data_count == 0); // waiting for data
19 for(int j = 0; j < 16; j++) // receiving 32 data flits, 16 x (2x32-bit)
20 lower_32_bit = NI_RX->data; // receiving lower 32-bit of the 64-bit transmitted

data
21 higher_32_bit = NI_RX->data; // receiving higher 32-bit of the 64-bit

transmitted data
22 B[j+(16*t)] = (uint64_t) higher_32_bit << 32 | lower_32_bit; // storing the

received 64-bit data in the shared data memory
23 }
24 if(t == data_size/16){//send ack to the TX node
25 NI_TX->data = x_y_source;
26 for(int j = 0; j < 16; j++)
27 NI_TX->data = ((0x00000001 & 0xffffffff));//lower 32-bit of a 64-bit ack

payload
28 NI_TX->data = ((0x00000000 >> 32));}//higher 32-bit of a 64-bit ack payload
29 return;}

Listing 3.2: NI data receiving software modules executed on RISC-V cores from general-purpose compute tile.

for specific PE. To avoid multiple access of the NI-RX from different PEs, a synchronizationflag is stored on the shared data memory to indicate the status of the NI-RX as active or idle.Accordingly, each PE is not allowed to access the NI-RX while it is active and used by other PEin the compute tile.

3.3 Programming Method and Software Execution

In this dissertation, a bare-metal parallel programmingmethod is developed for the proposedtile-based many-core architecture to generate multiple binary files from multi-tasks applica-

63

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

tions to be executed on many-core compute tiles. Each compute tile executes a separatebinary file for its mapped task, we consider static task mapping over the selected numberand type of compute tile that is conducted by the programmer/user prior to applicationexecution. Each compute tile is programmed individually from other compute tiles andthe shared instruction memory is used as a boot memory for each compute tile. As theproposed tile-based architecture supports single-core and multi-core tile architecture, theprogramming method and tasks execution are developed to support parallel programmingover a multi-core architecture. As a general approach, shared memory is used to exchangedata between PEs. Accordingly, synchronization between PEs which is essential for multi-corearchitectures can be achieved. Memory partitioning is an essential step in the development ofthe programming method. It defines memory sectors for local and shared data/instructionsfor each PE in the compute tile.
Before application execution, each PE executes its mapped software kernels from a specificlocation in shared or local instruction memories. Also, data memory locations for each PEare defined and determined prior to application execution. The compute tile shared dataand instruction memories are used to store both shared and local data/instructions prior toexecution. Afterward, during the memory initialization stage, each PE starts to load its localdata/instruction to its local memories. Accordingly, the programming method is based onthree steps as follows:

• The first step is the generation of separate binary files for each compute tile.
• The second step is the memory partitioning to define memory executable sectors onshared and local memories.
• The third step is the memory initialization stage executed on each compute tile sepa-rately.

Figure 3.6 shows a schematic of memory partitioning to define memory sectors for eachcompute tiles. Initially, the shared data memory is loaded with local data for each PE in thecompute tile as shown in Figure 3.6 (a). Each PE has a specific sector in the shared datamemory during initialization. Memory sectors for local data are not overlapped with theshared data sector. For each PE memory sector, a start address (DTCM_start_add) and endaddress (DTCM_end_add) are defined by the linker script. During the memory initializationstage, each PE loads its local data from the specific address defined by the linker script to itslocal data memory.
Similarly, the shared instruction memory is loaded with local instruction for each PE in thecompute tile as shown in Figure 3.6 (b). Each PE has a specific sector in the shared instructionmemory during the initial loading of the executable binary file. Memory sectors for localinstructions are not overlapped with the shared instructions sector. For each PE memorysector, a start address (ITCM_start_add) and end address (ITCM_end_add) are defined by thelinker script. During the memory initialization stage, each PE loads its local instruction fromthe specific address defined by the linker script to its local instruction memory.
Listing 3.3 shows a detailed description of the developed linker script sections for a singlecompute tile memory mapping and partitioning. The linker script has several sections forITCMs, DTCMs, and shared memory sectors. It describes the memory sectors shown in Figure3.6 in terms of start, end addresses and memory partition sizes for both local and sharedmemories. The linker script is included to the toolchain and it is developed using the linkercommand language. The linker script consists of four sections described as follows:

64

3.3 Programming Method and Software Execution

Lo
ca

l D
at

a
P

E_
0

Lo
ca

l D
at

a
P

E_
1

Lo
ca

l D
at

a
P

E_
n

D
TC

M
_

0

D
TC

M
_

1

D
TC

M
_n

Shared data between PEs

Shared Data Memory

Local Data Memories

(a) Data memory sectors.
Lo

ca
l I

n
st

r.

P
E_

0

Lo
ca

l I
n

st
r.

P

E_
1

Lo
ca

l I
n

st
r.

P

E_
n

IT
C

M
_

0

IT
C

M
_

1

IT
C

M
_

n

Shared instructions between PEs

Shared Instruction Memory

Local Instruction Memories

(b) Instruction memory sectors.
Figure 3.6: Memory sectors of shared and local instruction and data memories for a singlecompute tile.
1. The ENTRY section is used to set the running application’s entry point, it defines sharedand local memories address space (memory-mapped addresses) and their sizes asshown in Listing 3.3 (line:1-12). Also, it set the starting address for the bootloader toload application instructions and data from either shared or local data/instructionsmemories.
2. The ITCM sections define the start, end addresses, and ITCM size on the shared in-struction memory during the memory initialization stage (see Listing 3.3 (line:22-35)).ITCM sections specify local instruction memory attributed (.ITCM_x) for each PE ITCM toindicate that the local memory is the boot memory for specific application functions.

65

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

1 ENTRY (_ s t a r t)2 MEMORY3 {4 instr_mem (rx) : ORIGIN = 0x00100000 , LENGTH = 64k /* shared i n s t r u c t i on memory s t a r t address and s i ze * /5 data_mem (rwx) : ORIGIN = 0x20000000 , LENGTH = 256k /* shared data memory s t a r t address and s i ze * /6 ITCM0 (rw) : ORIGIN = 0x35000000 , LENGTH = 32k /* l o a ca l i n s t r u c t i on memory s t a r t address and s i ze for PE_0 * /78 ITCM3 (rw) : ORIGIN = 0x35000000 , LENGTH = 32k /* l o c a l i n s t r u c t i on memory s t a r t address and s i ze fo r PE_0 * /9 DTCM0(rw) : ORIGIN = 0x45000000 , LENGTH = 64k /* l o c a l data memory s t a r t address and s i ze for PE_0 * /1011 DTCM3(rw) : ORIGIN = 0x45000000 , LENGTH = 64k /* l o c a l data memory s t a r t address and s i ze for PE_0 * /12 }13 SECTIONS14 {15 __instr_mem_START = ORIGIN (instr_mem) ;16 __ instr_mem_SIZE = LENGTH (instr_mem) ;17 __data_mem_START = ORIGIN (data_mem) ;18 __data_mem_SIZE = LENGTH (data_mem) ;19 __DTCM0_START = ORIGIN (DTCM0) ;20 __DTCM0_LENGTH = LENGTH (DTCM0) ;2122 /* ITCMs memory sectors * /23 . I TCM0_ i n i t _ s t a r t : ALIGN (8)24 {25 __ITCM0_INIT_START = . ;26 } >instr_mem27 . ITCM0 : ALIGN (8)28 {29 __ITCM0_START = . ;30 * (. ITCM_0) ;31 } >ITCM0 AT>instr_mem32 . ITCM0_in i t_end : ALIGN (8)33 {34 __ITCM0_INIT_END = . ;35 } > instr_mem3637 /* DTCMs memory sectors * /38 . DTCM0_ in i t _s tar t : ALIGN (8)39 {40 __DTCM0_INIT_START = . ;41 } >instr_mem42 .DTCM0 : ALIGN (8)43 {44 __DTCM0_START = . ;45 * (. DTCM_0) ;46 } >DTCM0 AT>instr_mem47 . DTCM0_init_end : ALIGN (8)48 {49 __DTCM0_INIT_END = . ;50 } > instr_mem5152 /*SHARED data_mem sectors * /53 . bss : ALIGN (8)54 {55 * (. bss) ;56 } > data_mem57 . sbss : { * (. sbss) ; } > data_mem58 . data_mem_ in i t _s tar t : ALIGN (8)59 {60 __data_mem_INIT_START = . ;61 } >instr_mem62 . rodata : ALIGN (8)63 {64 __ram_START = . ;65 * (. rodata) ;66 } > data_mem AT>instr_mem67 . data : ALIGN (8)68 {69 * (. data) ;70 } > data_mem AT>instr_mem71 . data_mem_init_end : ALIGN (8)72 {73 __data_mem_INIT_END = . ;74 } > instr_mem75 }
Listing 3.3: General-purpose compute tile linker script for single-core and multi-corearchitectures.

3. The DTCM sections define the start, end addresses, and DTCM size on the shared datamemory during the memory initialization stage (see Listing 3.3 (line:38-50)). DTCMsections specify local data memory attributed (.DTCM_x) for each PE DTCM to indicatethat the local memory is used as the data memory for specific application variables.

66

3.3 Programming Method and Software Execution

1 uint32_t * DTCM0 = (uint32_t*) &__DTCM0_START;
2 uint32_t * DTCM0_init = (uint32_t*) &__DTCM0_INIT_START;
3 uint32_t * ITCM0 = (uint32_t*) &__ITCM0_START;
4 uint32_t * ITCM0_init = (uint32_t*) &__ITCM0_INIT_START;
5
6 uint32_t * DTCMx = (uint32_t*) &__DTCMx_START;
7 uint32_t * DTCMx_init = (uint32_t*) &__DTCMx_INIT_START;
8 uint32_t * ITCMx = (uint32_t*) &__ITCMx_START;
9 uint32_t * ITCMx_init = (uint32_t*) &__ITCMx_INIT_START;
10 uint32_t PE_id = read_csr(0xF14);
11 void init_main(){
12 if(PE_id == 0){
13 for(uint32_t i = 0; i <= &__DTCM0_INIT_END - &__DTCM0_INIT_START; i++)DTCM0[i] =

DTCM0_init[i];
14 for(uint32_t i = 0; i <= &__ITCM0_INIT_END - &__ITCM0_INIT_START; i++)ITCM0[i] =

ITCM0_init[i];
15 main_PE_0();}
16 ...
17 if(PE_id == x) {
18 for(uint32_t i = 0; i <= &__DTCMx_INIT_END - &__DTCMx_INIT_START; i++)DTCMx[i] =

DTCMx_init[i];
19 for(uint32_t i = 0; i <= &__ITCMx_INIT_END - &__ITCMx_INIT_START; i++)ITCMx[i] =

ITCMx_init[i];
20 main_PE_x();}}

Listing 3.4: Memory initialization stage (init.c) of a single general-purpose compute tile.

4. The shared data memory section defines the start, end addresses, and size of theshared sector in the shared data memory (see Listing 3.3 (line:53-75)). This sectionis used by static allocated variables (global variables) of the running applications. Theread-only data input section (.rodata) Listing 3.3 (line:65) contains constant values.Global modifiable data are placed in the (.data) Listing 3.3 (line:69) section. All variablesin this section could have pre-initialized values, so they need to be initialized during theprogram boot like the local data.
Listing 3.4 shows a detailed description of the memory initialization stage (init.c) for a singlecompute tile. The memory initialization stage is conducted before application execution fromshared instruction memory where each PE loads its own local data/instructions from I/DTCMsectors on shared data/instruction memories to local memories. Based on PE number(RISC-V core ID = CSR_MHARTID), the memory initialization software module starts to movethe local data/instruction from shared to local memories as shown in Listing 3.4 (line:13-14). Afterwards, it calls the corresponding PE main function (main_PE_x) to start applicationexecution.
Listing 3.5 shows a sample software implementation over a single compute tile. Where eachfunction which has to be executed from a local ITCM has to be preceded with a memorysection attribute (__attribute__(section(".itcm_0"))) which defines its executable ITCM for aspecific PE. Similarly, local data variables have to be preceded with memory section attribute(__attribute__(section(".dtcm_0"))) which defines its executable DTCM for a specific PE. Also,application parallelization is conducted by mapping parallel tasks over the PEs to be executed

67

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

1 #include "init.h"
2 __attribute__((section(".DTCM0")))
3 uint32_t dummy_0 [N];
4 __attribute__((section(".DTCMx")))
5 uint32_t dummy_x [M];
6 void main_PE_0(void){ }
7 void main_PE_x(void){ }
8 __attribute__((section(".ITCM0")))
9 void func_0(){}
10 __attribute__((section(".ITCMx")))
11 void func_x(){ }

Listing 3.5: A sample software implementation over a single multi-core compute tile.

within the PE main software function (void main_PE_x(void)) and using global variables asshared resources to be accessed by all PEs. In addition, any software functions which arenot preceded by memory attributes are executed from the shared instruction memory andcan be accessed by all PEs.

.bin
(1)

List of Generated
Binary Files
for Each Tile

.bin
(m)

.bin
(1)

.bin
(n)

Generate BRAM
Coefficient 32-bit

Script
(.cof)

Generate BRAM
Coefficient 64-bit

Script
(.cof)

List of Generated
BRAM (Coefficient Files)

for Each Tile

.coe
(1)

.coe
(m)

.coe
(1)

.coe
(n)

(b)

Loaded to shared instr.
memory (boot memory)

PULP RISC-V GNU
Compiler Toolchain

arch=rv32imc

PULP RISC-V GNU
Compiler Toolchain

arch=rv64imc

32-bit tiles

64-bit tiles

(a)

C-Code
(1)

C-Code
(2)

C-Code
(3)

C-Code
(4)

C-Code
(n-1)

C-Code
(n)

List of Parallel
Tasks/Applications

for Each Tile

Tile-2

Tile-3

Figure 3.7: Schematic of the many-core programming flow including (a) building applicationtasks source codes targeting 32-/64-bit ISA, (b) generation of BRAM coefficientfiles to be stored on shared instruction memory (boot memory) of target computetiles.

68

3.4 Evaluation

The PULP-RISC-V GNU toolchain [167] is used to compile C source codes for the 32-bit/64-bitcompute tiles architecture. As shown in Figure 3.7, a list of generated binary files (.bin)for the 32-/64-bit compute tiles are the output of the compilation process, each computetile has a single and separate binary file that will be executed on the shared instructionmemory (boot memory) of its corresponding tile. Afterwards, the generated (.bin) files areconverted to verilog memory files that contain the set of instructions for each tile. ThenBRAM coefficient files (.coe) are generated to be loaded on shared instruction BRAM blocksfor each tile as shown in Figure 3.7 (b). The BRAM coefficient files can be loaded to sharedinstruction memory during design tile prior to synthesizing process or after the generationof bitstreams by using update memory tool from Xilinx to only update BRAM contents ofgenerated bitstreams.

3.4 Evaluation

Physical hardware implementation, system scalability, run-time reconfiguration and perfor-mance analysis results for the proposed tile-based many-core architecture are discussedand presented in this section. Xilinx Virtex Ultrascale+ XCVU9P [168] is the target FPGAfor implementation and prototyping of the proposed tile-based many-core architecture.Also, Vivado Design Suite HLx 2019.1 [169] is used for RTL synthesis, simulation, place androuting, and full and partial bitstream generation. In this section, the tile-based many-corearchitecture is evaluated based on:
• Hardware resource utilization and power consumption for different compute tiles andheterogeneous PEs are described in Section 3.1.
• Memory bandwidth scalability using different memory hierarchies (local/shared mem-ory). Also, compute tile scalability in terms of the number of PEs inside the computetile and its impact on the overall memory bandwidth of a single compute tile.
• System scalability and computing performance with respect to different numbersand types of compute tiles in terms of inter-tile data transfer latency, and computingoperations per second (Op/s).

Benchmarks and test cases used for evaluation are written as software kernels over corre-sponding compute tiles using C programming language and compiled using the PULP-RISC-VGNU toolchain [167] as described in the previous section to generate the correspondingbinary (.bin) files and coefficient files (.coe) to be loaded into the shared instruction memoryof each compute tile.
The execution cycles used in this section are measured by the performance counter register(PCCR) of RV32/RV64 cores. The number of cycles measured by the PCCR can be read using(read_csr assembly) function called in the corresponding benchmark or test case kernelsand stored back in the compute tile shared data memory. As shown in Figure 3.1 (Section3.1), sd-card and UART peripherals are only accessed by the main processing tile whichmanages external data transfer between compute tiles and external peripherals. Therefore,for purposes of testing and evaluation each compute tile transmits evaluation results to themain processing tile to be transmitted to the UART peripheral.

69

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

3.4.1 Hardware Resource Usage and Prototyping

The tile-basedmany-core architecture has been developed and implemented using amodularand hierarchical design approach. Where architectural modules (i.e. RISC-V cores, PEs,memory blocks, interconnects, compute tiles, etc.) are implemented as intellectual property(IP) components to be integrated together to build heterogeneous compute tile modulesfor several many-core configurations. Inter-tile communication is implemented using theARTNoC framework [11] to generate multiple 2-D mesh NoC dimensions based on selectedmany-core configuration sizes. The NoC module is implemented as a single parameterizedmodule including routers and network links to create the selected 2-D mesh topology sizefor each many-core configuration. The NoC is being configured only during design-timebased on 2-D mesh size, and the number of data flits per packet. The NoC supports streamtransmission of data flits of 32-bit data width each.
In addition, dual-ported BRAM/URAM blocks used for instruction and shared memory insidecompute tiles are implemented using Xilinx BRAM/URAM memory generator blocks withAXI-BRAM controllers. Also, BRAM/URAM configurations are conducted during design time ofcompute tiles prior to synthesis and place and routing. All tile-based many-core configura-tions and their required modules are synthesized and implemented targeting Xilinx VirtexUltrascale+ XCVU9P FPGA. The proposed tile-based architecture is running using a singleclock domain of 120 MHz for all implemented components and modules including the NoCand all compute tiles.

32-bit Tile Resource Utilization

Table 3.1 shows the hardware resource utilization of the 32-bit compute tile used forthe proposed tile-based many-core architecture as depicted in Figure 3.1 (a). The 32-bitcompute tile consists of:
1. 4xRV32-PEs with 4KiB ITCM and 16KiB DTCM for each PE.
2. 64 KiB shared instruction memory.
3. 256 KiB shared data memory.
4. Two NI for transmission and receiving (NI-TX, NI-RX).
5. A 32-bit AXI-4 interconnect.

Each 32-bit RV32-PE consumes (∼0.6%) of the total target FPGA LUT, where the 32-bit com-pute tile consumes (2.6%) of the total target FPGA LUT mostly consumed by the 4 RV32-PEs.On-chip memory usage is distributed between BRAM and URAM blocks with a total percent-age utilization of (∼3%) for the 32-bit complete tile. As shared and local data memoriesare implemented using URAM blocks while all instruction memories are implemented usingBRAM blocks for balanced on-chip memory utilization. In addition, the 32-bit compute tileis equipped with two NI channels for transmitting and receiving over the NoC, for NI-RX 15BRAM blocks are used to implement the (8K×32-bit) AXIS-FIFO and single BRAM block forNI-TX AXIS-FIFO. The power consumption per single 32-bit compute tile is estimated by Vivadopower estimation tool and it is equal to 0.562 W.

70

3.4 Evaluation

Table 3.1: Hardware resource utilization and power consumption of the 32-bit general-purpose compute tile (RV32-tile) targeting a Xilinx Virtex Ultrascale+ (XCVU9P)FPGA.
Compute Tiles
and Modules

Resource Utilization Estimated
PowerLUTs FFs BRAMs URAMs DSPs

RV32
Tile

(4-PEs)

Total (4-PEs) 30717
(2.6%)

13137
(0.55%)

36
(1.6%)

12
(1.25%)

24
(0.35%)

0.562 W
@120 MHz

Shared Instr.
Mem. (64 KiB) 87 15 16 0 0
Shared data

Mem. (256 KiB) 334 11 0 8 0
AXI-4 interconnect 1033 184 0 0 0

RV32
PE

RI5CY Core 6902
(0.58%)

2491
(0.1%) 0 0 6

(∼0.09%)
Local

ITCM (4 KiB) 49 34 1 0 0
Local

DTCM (16 KiB) 134 71 0 1 0
NI-RX 563 1088 15 0 0
NI-TX 525 1123 1 0 0

64-bit Tile Resource Utilization

Table 3.2 shows the hardware resource utilization of 64-bit compute tiles (w/single-PE,and w/2-PEs) used for the proposed tile-based many-core architecture as depicted in Figure3.1 (b). The 64-bit compute tile consists of:
1. Single/2xRV64-PEs with 4KiB ITCM and 16KiB DTCM for each PE.
2. 64 KiB shared instruction memory.
3. 256 KiB shared data memory.
4. Two NI for transmission and receiving (NI-TX, NI-RX).
5. A 64-bit AXI-4 interconnect.

Similarly, 64-bit compute tiles (w/single-PE, and w/2-PEs) consume the same on-chip memoryresources as the RV32 compute tile. In contrast, one 64-bit RISC-V-based PE is 6x the size ofa 32-bit RISC-V-based PE in terms of resource utilization. Therefore, the maximum numberof PEs per 64-bit compute tile is two to keep resource utilization under a certain limit for64-bit tiles. As shown in Table 3.2, the 64-bit (w/single-PE) compute tile is 1.5x and the

71

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

Table 3.2: Hardware resource utilization and power consumption of the two 64-bit general-purpose compute tiles (RV64(1-PE), RV64(2-PEs)) targeting a Xilinx Virtex Ultrascale+(XCVU9P) FPGA.
Compute Tiles
and Modules

Resource Utilization Estimated
PowerLUTs FFs BRAMs URAMs DSPs

64-bit
Tile

Shared Instr.
Mem. (64 KiB) 87 42 16 0 0
Shared data

Mem. (256 KiB) 334 365 0 8 0
AXI-4 interconnect 2893 1983 0 0 0

RV64
PE

ARIANE Core 39693
(3.35%)

22472
(0.95%)

44
(∼2%) 0 27

(0.4%)
Local

ITCM (4 KiB) 335 359 8 0 0
Local

DTCM (16 KiB) 367 362 16 0 0
NI-RX 1575 2310 15 0 0
NI-TX 1644 2345 1 0 0

64-bit Tile (1-PE) 46311
(3.9%)

32903
(1.39%)

76
(3.5%)

8
(0.83%)

27
(0.4%)

0.819 W
@120 MHz

64-bit Tile (2-PEs) 95636
(8%)

68806
(2.9%)

168
(7%)

8
(0.83%)

54
(0.79%)

1.423 W
@120 MHz

64-bit compute tile with two PEs is 3x the size of the RV32 compute tile respectively. Each64-bit RV64-PE consumes (∼3.34%) of the total target FPGA LUT, where the 64-bit computetile (w/single-PE, and w/2-PEs) consumes (3.9%, 8%) of the total target FPGA LUT mostlyconsumed by the 64-bit RISC-V-based PEs. On-chip memory usage is distributed betweenBRAM and URAM blocks with a total percentage utilization of (∼4%), (∼8%) for the 64-bitcompute tile with single and dual RV64 PE respectively. As shared and local data memoriesare implemented using URAM blocks while all instruction memories are implemented usingBRAM blocks for balanced on-chip memory utilization. In addition, 64-bit compute tiles areequipped with two NI channels for transmitting and receiving over the NoC, for NI-RX 15BRAM blocks are used to implement the (8K×32-bit) AXIS-FIFO and single BRAM block forNI-TX AXIS-FIFO. The power consumption is estimated by Vivado power estimation tool and itis equal to 0.819 W for a single 64-bit compute tile with one PE and equal to 1.423 W for asingle 64-bit compute tile with dual PEs.

72

3.4 Evaluation

Table 3.3: Hardware resource utilization and power consumption of the main processingtiles (RV64(4-PEs)) targeting a Xilinx Virtex Ultrascale+ (XCVU9P) FPGA.
Compute Tiles
and Modules

Resource Utilization Estimated
PowerLUTs FFs BRAMs URAMs DSPs

Main
Processing

Tile

Total (4-PEs) 218773
(18.5%)

131639
(5.56%)

348
(16.1%)

0
(0%)

114
(1.6%)

5.881 W
@120 MHz

Shared Instr.
Mem. (64 KiB) 95 44 16 0 0

AXI-4 interconnect 6428 7932 0 0 0

RV64
PE

ARIANE Core 39693
(3.35%)

22472
(0.95%)

44
(∼2%) 0 27

(0.4%)
Local

ITCM (4 KiB) 335 359 8 0 0
Local

DTCM (16 KiB) 367 362 16 0 0
NI-RX 1575 2310 15 0 0
NI-TX 1644 2345 1 0 0

DDR, UART,
SPI Ctrl. 12365 21493 26 0 6

Main Processing Tile Resource Utilization

Table 3.3 shows the hardware resource utilization of the main processing tile used forthe proposed tile-based many-core architecture as depicted in Figure 3.1 (c). The mainprocessing tile consists of:
1. 4xRV64-PEs with 4KiB ITCM and 16KiB DTCM for each PE.
2. 64 KiB shared instruction memory.
3. DDR, UART, serial peripheral interface (SPI) controllers.
4. Two NIs for transmission and receiving (NI-TX, NI-RX).
5. A 64-bit AXI-4 interconnect.

As shown in Table 3.3, the main processing tile consumes (18.5%) of total target FPGA LUTand (∼16%) of on-chip memory as it is configured with four 64-bit PE. However, the mainprocessing tile can be configured with less PEs in order to reduce resource utilization forsmaller FPGAs or more design space. On-chip memory usage is distributed between BRAMand URAM blocks with a total percentage utilization of (∼16%). As shared and local data

73

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

Table 3.4: Hardware resource utilization of several tile-based many-core sizes and typestargeting a Xilinx Virtex Ultrascale+ (XCVU9P) FPGA.
Tile-based Size Resource Utilization

LUTs FFs BRAMs URAMs DSPs
8x32-bit Tiles 245736

(20.8%)
105096
(4.4%)

288
(12.8%)

96
(10%)

192
(2.8%)

8x64-bit Tiles (1-PEs) 370488
(31.2%)

263224
(11.12%)

608
(28%)

64
(6.64%)

216
(3.2%)

8x64-bit Tiles (2-PEs) 765088
(64%)

550448
(23.2%)

1344
(56%)

64
(6.64%)

432
(6.32%)

Single Main Processing Tile 218773
(18.5%)

131636
(5.56%)

348
(16.1%) 0 114

(1.6%)
NoC (3x3) Configuration 64127

(5.42%)
4752
(0.2%) 0 0 0

memories are implemented using URAM blocks while all instruction memories are imple-mented using BRAM blocks for balanced on-chip memory utilization. In addition, the mainprocessing tile is equipped with two NI channels for transmitting and receiving over the NoC,for NI-RX 15 BRAM blocks are used to implement the (8K×32-bit) AXIS-FIFO and single BRAMblock for NI-TX AXIS-FIFO. The power consumption is estimated by Vivado power estimationtool and it is equal to 5.881 W for a single main processing tile.
Three many-core configurations are generated for total resource evaluation purposes. Thethree configurations are based on 3x3 2-D mesh topology size to support 9xtiles (a sin-gle main processing tile and 8xcompute tiles). The three tile-based configurations are asfollows:

• The first configuration consists of a single main processing tile and 8x32-bit computetiles. Table 3.4 first row shows the total resource utilization of 8x32-bit computetiles which consume (20.8%), (12.8%), (10%) of total target FPGA LUTs, BRAMs, URAMsrespectively. The last row shows the resource utilization of the 3x3 NoC configurationwhich consumes (5.42%) of the target FPGA LUTs. Overall, with the main processingtile, the total resource utilization percentage is (∼45%), (∼29%), (∼10%) of the targetFPGA LUTs, BRAMs, URAMs respectively
• The second configuration consists of a single main processing tile and 8x64-bit computetiles (with a single 64-bit PE). Table 3.4 second row shows the total resource utilizationof 8x64-bit compute tiles (1-PE) which consume (31.2%), (28%), (6.64%) of total targetFPGA LUTs, BRAMs, URAMs respectively. Overall, with the main processing tile, thetotal resource utilization percentage is (∼55.12%), (∼44%), (∼6.64%) of the target FPGALUTs, BRAMs, URAMs respectively

74

3.4 Evaluation

• The third configuration consists of a single main processing tile and 8x64-bit computetiles (with a dual 64-bit PEs). Table 3.4 third row shows the total resource utilization ofthe 8x64-bit compute tiles (2-PEs) which consume (64%), (56%), (6.64%) of total targetFPGA LUTs, BRAMs, URAMs respectively. Overall, with the main processing tile, the totalresource utilization percentage is (∼88%), (∼72.1%), (∼6.64%) of the target FPGA LUTs,BRAMs, URAMs respectively.

3.4.2 Memory Bandwidth Scalability

In this subsection, the tile-basedmany-core architecture is evaluated based on the achievablememory bandwidth in terms of data transfer rate between PEs and storage units (localand shared data memories) using different tile-based configurations. The evaluation isconducted over different numbers and types of compute tiles supported by the tile-basedmany-core architecture ranging from a single compute tile to eight compute tiles. Also,memory bandwidth scalability in proportion to the number of PEs per compute tile, as wellas the scalable number of compute tiles, is evaluated.
Figure 3.8 shows the memory bandwidth scalability for a single compute tile (32-/64-bit).Both 32-bit and 64-bit tiles are using an AXI-4 Interconnect to communicate between the PEsand shared data memory. The memory bandwidth is measured by a parallel execution of acopy function on all PEs to copy a data size of 4 KiB through three evaluation scenarios:
1. Shared data memory to shared data memory (SH-SH).
2. From shared data memory to the DTCM (SH-DTCM) or vice versa (DTCM-SH).
3. From DTCM to DTCM (DTCM-DTCM).

As a result, the data transfer bandwidth in case of shared to shared data memory is scaledby 1.5x using two PEs compared to one PE for both 32-bit and 64-bit compute tiles. However,if the dual-port data memory is used, the memory bandwidth is not scaled by the samefactor due to the waiting cycles consumed for address collision mitigation if two PEs writeor read from the same address at the same time. In contrast, splitting the memory writedestinations by using DTCM in (SH-DTCM) scenario exploits the dual-ported memory featureby increasing the scalability to 2x in case of using two PEs. Moreover, in case of using shareddata memory for reading or writing, increasing the number of PEs over 2 will not increasethe memory bandwidth scalability proportionally to the number of PEs due to the trafficcontention through the AXI-interconnect for both 32-bit (see Figure 3.8 (a)) and 64-bit tiles(see Figure 3.8) (b). On the other hand, as shown in Figure 3.8, memory bandwidth isproportionally scalable with the increasing number of PEs in the case of using DTCMs forwriting and reading in a non-uniform memory access (NUMA) mode.
Therefore, for a 32-bit tile the number of PEs has been set to a maximum of four PEs percompute tile. In addition, the total resource utilization of four PEs as mentioned in theprevious subsection is within a moderate range to support a scalable number of computetiles using a large FPGA such as Virtex Ultrascale+ devices. However, in case of 64-bit tile,only the main processing tile has four 64-bit PEs due to limited FPGA resources to supportfour PEs per all 64-bit compute tiles. Therefore, for 64-bit compute tile, a maximum numberof two PEs per tile is supported (64-bit tile w/single PE), (64-bit tile w/dual-PEs).

75

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

1 2 3 4
PEs per Compute Tile

1

1.5

2

2.5

3

3.5

4

Sc
al

ab
ili

ty

Memory Bandwidth Scalability

Shared mem. to Shared mem.
Shared mem. to DTCM
DTCM to Shared mem.
DTCM to DTCM

(a) Memory bandwidth scalability for a single 32-bit compute tile.

1 2 3 4
PEs per Compute Tile

1

1.5

2

2.5

3

3.5

4

Sc
al

ab
ili

ty

Memory Bandwidth Scalability

Shared mem. to Shared mem.
Shared mem. to DTCM
DTCM to Shared mem.
DTCM to DTCM

(b) Memory bandwidth scalability for a single 64-bit compute tile.
Figure 3.8: Memory bandwidth scalability for a single compute tile with respect to the numberof RV32/64 cores per tile.

Similarly to memory scalability within a single tile, the total memory bandwidth for several tile-based many-core configurations is measured by parallel execution of several copy functionson all PEs inside compute tiles to copy a data size of 16 KiB through two evaluation scenarios:
1. By using only the shared data memory for multi-core based compute tiles (32-bit tiles,64-bit tiles w/dual-PEs).
2. By using only the local data memory (DTCM) for all types of compute tiles (32-bit tiles,64-bit tiles w/single-PE, 64-bit tile w/dual-PEs).

Several tile-based many-core configurations ranging from a single compute tile up to eightcompute tiles are generated with different types of compute tiles (32-bit, 64-bit tiles). The

76

3.4 Evaluation

Total Memory Bandwidth Using Only Shared Mem.

1 2 4 8

#Tiles

0

125

375

625

875

1125

1375

1625

1875

2125

2375

2625

3000
M

e
m

o
ry

 B
a
n

d
w

id
th

 M
iB

/s

32-bit Tile

64-bit Tile w/ 2-cores

Total Memory Bandwidth Using Only Local Mem.

1 2 4 8

#Tiles

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

M
e
m

o
ry

 B
a
n

d
w

id
th

 M
iB

/s

32-bit Tile

64-bit Tile w/ single core

64-bit Tile w/ 2-cores

(a) Total memory bandwidth using onlyshared memory.

Total Memory Bandwidth Using Only Shared Mem.

1 2 4 8

#Tiles

0

125

375

625

875

1125

1375

1625

1875

2125

2375

2625

3000
M

e
m

o
ry

 B
a
n

d
w

id
th

 M
iB

/s
32-bit Tile

64-bit Tile w/ 2-cores

Total Memory Bandwidth Using Only Local Mem.

1 2 4 8

#Tiles

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

M
e
m

o
ry

 B
a
n

d
w

id
th

 M
iB

/s

32-bit Tile

64-bit Tile w/ single core

64-bit Tile w/ 2-cores

(b) Total memory bandwidth using only local mem-ory.
Figure 3.9: Achievable memory bandwidth with respect to the number and types of many-core computing tiles using shared or local data memories at a clock frequency =120 MHz (higher is better).
total memory bandwidth for the complete many-core architecture is calculated as follows:

Memory BW = freq. × 2 × data_size
ncycles

× ntile (3.1)
Where, data_size is the data transfer size from memory source to destination per byteswithin one compute tile, the data_size is multiplied by 2 for simultaneous load and storeoperation using dual-ported memory, ncycles is the measured number of clock cycles formemory data transfer latency per compute tile, and ntile is the total number of compute tilesin the selected tile-based configuration. Figure 3.9 shows the memory bandwidth scalabilityup to eight compute tiles using different types of compute tiles with shared and local datamemory scenarios. Memory bandwidth is approximately proportionally scalable with theincreasing number of compute tiles for all types of supported compute tiles. For the sharedmemory scenario as shown in Figure 3.9 (a), using 64-bit tiles (2-PEs per tile) achieves a highermemory bandwidth of (∼3.5x) compared to 32-bit tiles (4-PEs per tile). Therefore, supporting64-bit memory transfer over 64-bit AXI interconnect for 64-bit tiles provides more memorybandwidth per tile and thus the total many-core configuration. Moreover, for 32-bit tiles,the memory bandwidth scalability is not increased proportionally by increasing the numberof PEs due to the traffic contention through the AXI interconnect. As a result, for sharedmemory scenario, using 8x64-bit (w/2-PEs) tiles achieves a maximum memory bandwidth of(∼2.5 GB/s) while 8x32-bit (w/4-PEs) achieves (∼0.75 GB/s).
On the other hand, for the local memory scenario as shown in Figure 3.9 (b), the overallmemory bandwidth scalability for all compute tiles is improved by (∼4x) for 32-bit tiles and

77

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

by (∼2.5x) for 64-bit (w/2-PEs) tiles compared to the shared memory scenario. Moreover,the memory bandwidth achieved by using 64-bit (w/single-PE) tiles is approximately thesame achieved by 32-bit (w/4-PEs) tiles. Therefore, memory access latency is less in 64-bittiles compared to 32-bit tiles due to fewer interconnects and data bridges usage inside64-bit PEs between RISC-V cores and DTCMs. Consequently, 64-bit (w/2-PEs) tiles achieve(∼2x) memory bandwidth compared to 64-bit (w/single-PE) tiles. As a result, the maximumachievable memory bandwidth using 8x64-bit (w/2-PEs) tiles is (7.4 GB/s) and (3.8 GB/s) for8x32-bit tiles.

3.4.3 Computing Performance and Scalability

Design scalability determines the capability and flexibility of a parallel computing architec-ture to meet the required computing resources and communication data rate for parallelalgorithms with growing complexity. Moreover, scalability is used to predict the performanceof many-core architectures from the measured performance of single compute tiles. In thissubsection, the tile-based many-core architecture is evaluated based on inter-tile data trans-fer latency, and computing performance in terms of integer operations per second (Op/s).The evaluation is conducted over different numbers and types of compute tiles supportedby the tile-based many-core architecture.
Inter-Tile Data Transfer Latency Through the NoC

In order to measure inter-tile data transfer latency through the NoC. Two data transmissionscenarios are evaluated for 32-bit and 64-bit tiles. Data transfer latency is measured fromthe transmitter compute tile (tile-TX) by measuring the time delay of transmitting a variantset of data sizes to the NI-RX of the receiving compute tile (tile-RX). The transmission timeincludes:

512 1K 2K 4K 8K 16K 32K

Data Transfer Size in Bytes

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

#
C

lo
c
k
 C

y
c
le

s
 (

K
il
o

 C
y
c
le

s
)

NoC Data Transfer Latency

32-bit Tiles

64-bit Tiles

Figure 3.10: Data transfer latency over NoC between heterogeneous 32-/64-bit computetiles.

78

3.4 Evaluation

1. The time overhead of loading the data from compute tile-TX shared data memoryto NI-TX using the communication model software function running on a PE insidecompute tile-TX.
2. The time overhead of transmitting the data from source to destination routers overthe NoC.

Figure 3.10 shows the measured data transfer latency for both 32-bit and 64-bit tiles sce-narios with up to 32KiB of data size. Since 64-bit tiles support 64-bit memory transfer fromshared data memory to NI-TX compared to 32-bit memory transfer for 32-bit tiles, the datatransfer latency from the 64-bit tile is (∼ 2x) faster than the 32-bit tile. The transmissiontime overhead over the NoC is similar for both 32-bit and 64-bit tiles as the NoC supportsstream data transmission of 32-bit. Therefore, transmission time between NoC source anddestination routers is negligible compared to the time overhead required to load the datafrom shared data memory to the NI-TX inside the transmitting compute tile.

Computing Performance

In order to measure the computing performance of the tile-based many-core architecture, aparallel block matrix multiplication benchmark is implemented targeting different computetiles for several many-core configurations. A fixed-point matrix multiplication benchmark isbased on square matrix multiplication dimension for equal matrices partitioning for parallelexecution over binary numbers of compute tiles. The parallel block matrix algorithm is usedto partition matrix A into sub-matrices equal to the number of compute tiles. While matrix Bis partitioned into sub-matrices equal to the number of PEs per compute tile. Each PE insidea compute tile computes the multiplication of a sub-matrix A with a sub-matrix B and storesthe result in a sub-matrix C in shared data memory as shown in Figure 3.11.
32-/64-bit integer matrix multiplication algorithms are used over 32-bit and 64-bit compute

=×

A (nxn) B(nxn) C(nxn)

𝑨𝑨𝟎𝟎
𝑨𝑨𝟏𝟏

𝑨𝑨𝒎𝒎−𝟐𝟐
𝑨𝑨𝒎𝒎−𝟏𝟏

𝑩𝑩
𝟎𝟎

𝑩𝑩
𝟏𝟏

𝑩𝑩
𝟑𝟑

𝑪𝑪𝟎𝟎

n

𝒏𝒏
𝒎𝒎

n

𝒏𝒏
𝒌𝒌

𝒏𝒏
𝒎𝒎

n

PE
-1

PE
-k-

1

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟎𝟎

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒎𝒎−𝟏𝟏

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟎𝟎

PE
-0

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒎𝒎−𝟏𝟏𝑪𝑪𝒎𝒎−𝟏𝟏

𝒎𝒎 = #𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻
𝒌𝒌 = #𝑷𝑷𝑷𝑷𝑻𝑻 𝒑𝒑𝑻𝑻𝒑𝒑 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻

Figure 3.11: Block matrix multiplication partitioning over the tile-based many-core architec-ture.

79

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

 Execution Time

 Mat.Size 16x16

1 2 4 8

#Tiles

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

#
C

lo
c

k
 C

y
c
le

s
 (

K
il
o

 C
y
c
le

s
)

 Execution Time

 Mat.Size 32x32

1 2 4 8

#Tiles

0

25

75

125

175

225

275

325

375

425

475

525

575

600

#
C

lo
c
k
 C

y
c
le

s
 (

K
il

o
 C

y
c
le

s
)

 Execution Time

 Mat.Size 64x64

1 2 4 8

#Tiles

0

250

750

1250

1750

2250

2750

3250

3750

4250

4750

5000

#
C

lo
c
k
 C

y
c
le

s
 (

K
il

o
 C

y
c
le

s
)

32-bit Tile

64-bit Tile w/ 2-cores

Figure 3.12: Execution time of matrix multiplication benchmark over different numbers andtypes of compute tiles using only compute tiles shared memory (lower is better).
tiles respectively. For evaluation, threemany-core configurations are used with eight computetiles. Each configuration supports only one type of compute tile (32-bit, 64-bit (w/single-PE),and 64-bit (w/2-PEs)). In addition, two evaluation scenarios are conducted based on selectedmemory hierarchy:
1. By using only the shared data memory to load and store matrices values for multi-corebased compute tiles (32-bit tiles, 64-bit tiles w/2-PEs).
2. By using only the local data memory (DTCM) to load and store matrices values for alltypes of compute tiles (32-bit tiles, 64-bit tiles w/1-PEs, 64-bit tile w/2-PEs).

Figure 3.12 shows parallel matrix multiplication execution time for the two many-core config-urations with only shared data memory using several types of compute tiles with three squarematrix sizes (16x16, 32x32, 64x64). As a result, computing performance is proportionallyscalable with an increasing number of compute tiles for 32-bit and 64-bit compute tiles usingshared data memory. As shown in Figure 3.12, the computing performance of a single 32-bitcompute tile is approximately the same as the 64-bit (w/2-PE) compute tile. Despite thehigher number of PEs per 32-bit compute tile which increases computing performance, the64-bit compute tile has a higher memory bandwidth compared to the 32-bit compute tile.Therefore, the required memory access time for loading and storing matrices values is lessin the case of 64-bit compute tile which improves the overall computing performance withless number of PEs. However, by increasing the number of compute tiles, the many-coreconfiguration with 32-bit compute tiles achieves less execution time by (∼1.5x) compared tothe many-core configuration with 64-bit compute tiles. That is due to the higher number ofprocessing cores for 32-bit compute tiles compared to 64-bit compute tiles.
On the other hand, using local data memory will improve the computing performance by(∼6x) for 32-bit compute tiles and (∼3.5x) for 64-bit compute tiles as shown in Figure 3.13.

80

3.4 Evaluation

 Execution Time

 Mat.Size 16x16

1 2 4 8

#Tiles

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

35

37.5

40

42.5

45
#
C

lo
c
k
 C

y
c
le

s
 (

K
il
o

 C
y
c
le

s
)

 Execution Time

 Mat.Size 32x32

1 2 4 8

#Tiles

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

#
C

lo
c
k
 C

y
c
le

s
 (

K
il
o

 C
y
c
le

s
)

 Execution Time

 Mat.Size 64x64

1 2 4 8

#Tiles

0

125

250

375

500

625

750

875

1000

1125

1250

1375

1500

1625

1750

1875

2000

2125

2250

2375

2500

2625

2750

2875

3000

#
C

lo
c
k
 C

y
c
le

s
 (

K
il
o

 C
y
c
le

s
)

32-bit Tile

64-bit Tile w/ single core

64-bit Tile w/ 2-cores

Figure 3.13: Execution time of matrix multiplication benchmark over different numbers andtypes of compute tiles using only compute tiles local memory (lower is better).
In local memory scenario, computing performance depends only on the number of PEs aseach PE has its own data memory. Therefore, for all numbers of compute tiles, the 32-bitcompute tile achieves less execution time by (∼5x) in comparison with 64-bit compute tile(w/single-PEs). Furthermore, the total computing performance is calculated as follows:

Computing Performance (Op/s) = 2 × n3
ncycles

× freq. (3.2)
Where n3 is the computing complexity of square matrix multiplication of size (n×n), ncycles isthe execution time per clock cycles shown in Figure 3.12 and Figure 3.13, the multiplicationby 2 is the number of multiply and accumulate (MAC) operations. Table 3.5 shows thecomputing performance in terms of the number of Op/s based on the matrix multiplicationbenchmark for the aforementioned tile-based many-core configurations and evaluationscenarios. As a result, the tile-based many-core architecture achieves a maximum 32-bitcomputing performance of (685MOPS) configured with 8x32-bit (w/4-PEs) compute tiles usingonly local data memory. For 64-bit integer operations, a maximum computing performanceof (316 MOPS) is achieved by 8x64-bit (w/2-PEs) tile-based configuration. In addition, themain processing tile achieves a maximum performance of (96 MOPS).

3.4.4 Comparison with State-of-the-Art

In this chapter, the goal is to provide a heterogeneous and adaptable tile-based many-corearchitecture to support seamless integration and communication between multiple RISC-VISAs for realizing several many-core configurations. Our main contributions rely on themodularity and configurability of compute tiles to support variant requirements for computeandmemory-bound applications. The proposed architecture specifically targets FPGA devices

81

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

Table 3.5: Computing performance for different numbers and types of compute tiles basedon matrix multiplication benchmark at a clock frequency = 120 MHz.
Number and Types

of Tiles
Performance

Only Shared Data Mem. Only Local Data Mem. (DTCM)

Single Tile
RV32 (4-PEs) 14 MOPS 114 MOPS
RV64 (1-PEs) - 25 MOPS
RV64 (2-PEs) 14 MOPS 50 MOPS

2xTiles
RV32 (4-PEs) 36 MOPS 207 MOPS
RV64 (1-PEs) - 52 MOPS
RV64 (2-PEs) 27 MOPS 97 MOPS

4xTiles
RV32 (4-PEs) 96 MOPS 377 MOPS
RV64 (1-PEs) - 98 MOPS
RV64 (2-PEs) 54 MOPS 193 MOPS

8xTiles
RV32 (4-PEs) 254 MOPS 685 MOPS
RV64 (1-PEs) - 192 MOPS
RV64 (2-PEs) 105 MOPS 316 MOPS

Main Processing
Tile RV64 (4-PEs) 25 MOPS 96 MOPS

for fast prototyping and evaluation which make it suitable for design space exploration formany application domains. Several RISC-V based many-core architectures are previouslyproposed in the literature and as open-source platforms. However, design modularity andheterogeneity by supporting multiple ISAs are not supported by several state-of-the-artapproaches. Besides, Table 3.6 shows a comparison between our proposed architectureand several state-of-the-art RISC-V-based many-core architectures targeting FPGA devices.
The comparison aims to evaluate hardware specifications and computing performance of ourproposed architecture with other state-of-the-art approaches. Proposed architectures by[43], [159], and [170] are based on a single application class RISC-V core per tile supportingone ISA which increases the cost of scalability in terms of hardware resources requiredfor interconnection for many-core realizations as well as high clock frequency to increasethe compute performance of a single tile (in case of ESP [170]). In contrast, Andromedaarchitecture [158] combines several cores per tile adding more computing power to asingle tile using lower clock frequency and reducing the cost of scalability. However, powerconsumption is the main bottleneck of using application class RISC-V processors in computetiles, especially for high scalable many-core systems. Therefore, GRVIPhalanx [38] uses asimple RISC-V ISA (RV32I) to support tens of compute tiles with appropriate overall powerconsumption. However, computing performance is very limited as it only support RV32I. Incomparison to them, our proposed architecture supports different types of compute tileswith more computing capabilities suitable for several application requirements. The RV32

82

3.4 Evaluation

Tab
le3

.6:C
om

par
ison

bet
wee

nst
ate

-of-
the

-art
RIS

C-V
bas

ed
ma

ny-
cor

ea
rch

itec
ture

san
dth

ep
rop

ose
dm

odu
lar

and
het

ero
gen

eou
s

ma
ny-

cor
ear

chit
ect

ure
int

erm
sof

res
our

ces
util

izat
ion

and
com

put
ing

per
form

anc
eta

rge
ting

FPG
Ap

latf
orm

s.
Arc

hite
ctu

re(
#R

V C
ore

s/P
Esp

erT
ile,

ISA
)(Ye

ar)
Res

our
ceU

tiliz
atio

np
erT

ile
Fre

q.
(MH

z)
Pow

er
per

Tile
Per

f.
(8-T

iles
)

FPG
AD

evic
e

LUT
BRA

MU
RAM

DSP
Op

enP
iton

+Ar
iane

[43
](S

ingl
e-C

ore
),RV

64G
C(2

019
)9

0K
88

0
19

150
-

-
Virt

ex-
Ultr

a.+
(XC

VU9
P)

And
rom

eda
∗
[15

8] (
4-C

ore
s),R

V64
GC

(20
21)

131
188

48
0

140
50

-
7.5

MO
PS∗

Syn
ops

ysH
APS

(Vir
tex

Ultr
a.)

Sav
ase

tal
.[1

59]
(Sin

gle-
Cor

e),R
V64

G(2
020

)
282

41
258

0
15

113
-

-
Virt

ex-
Ultr

a.+
(XC

VU9
P)

GRV
IPh

alan
x[3

8](
8-C

ore
s),R

V32
I(2

016
)

480
0

12
0

0
150

0.3
4W

-
Virt

ex-
Ultr

a.+
(XC

VU9
P)

ESP
[17

0](
Sin

gle-
Cor

e),R
V64

IMA
C(2

022
)

502
90

36
0

27
250

1.4
84

W4
00

MO
PS

Virt
ex-

Ultr
a.+

(XC
VU9

P)

Th
is

W
or
k
(2
02
2)

RV3
2-T

ile(
4-P

Es),
RV3

2IM
C

307
17

35
12

24
120

0.5
62

W6
85

MO
PS

RV6
4-T

ile(
Sin

gle-
PE)

,RV
64I

MA
C

463
11

76
8

27
120

0.8
19

W1
92

MO
PS

Virt
ex-

Ultr
a.+

(XC
VU9

P)
RV6

4-T
ile(

2-P
Es),

RV6
4IM

AC
956

36
168

8
54

120
1.4

23
W3

16
MO

PS
∗
Per

form
anc

efo
rAn

dro
me

da
isre

por
ted

bys
ingl

ep
rec

isio
nfl

oat
ing

poi
ntO

p/s
,

the
res

tof
arc

hite
ctu

res
are

me
asu

red
by3

2-/6
4-b

itin
teg

erO
p/s

.

83

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

tile supports highly scalable many-core systems with less resource utilization and powerconsumption per tile. Also, RV64 tiles feature low resource utilization compared to [43],[158], and [170] supporting local and shared memory hierarchies per tile.

3.4.5 Use Cases Applications

In this subsection, several signal processing and quantized neural network (QNN) kernelsare used to evaluate the tile-based many-core architecture. The evaluation is based on totalexecution time and performance scalability. For all use cases applications in this subsection,only the shared data memory is used due to the large amount of data that needs to beloaded and stored during computation. Four signal processing kernels are considered forevaluation (FFT, square matrix inverse, 2-D convolution, and 3-D convolution) kernels. Inaddition, QNN inference kernels derived from the open-source PULP QNN library [171], [172].In this subsection, three tile-based many-core configurations with 8xcompute tiles and asingle main processing tile are used. Each configuration supports one homogeneous type ofcompute tiles (32-bit, 64-bit w/1-PE, 64-bit w/2-PEs) and the computation is only conductedover the homogeneous compute tiles. The main processing tiles is used to distribute inputdata among compute tiles (loaded from the external DDR) and collect output data throughthe NoC. The execution time does not include input and output transfer latency betweencompute tiles and the main processing tiles.
FFT kernels

The Cooley-Tukey FFT algorithm is parallelly executed over several numbers of compute tiles(single compute tile up to eight compute tiles). Each compute tile receives the FFT inputfrom the main processing tile and stores it in the shared data memory. The FFT input isequally distributed among the selected number of compute tiles. Next step, each PE insidethe compute tile starts to execute a portion of the received input by the compute tiles. Theworkload is also equally distributed among the number of PEs within the compute tiles.Figure 3.14 shows the execution time of several FFT kernels with different N-point sizesfrom 1K to 32K. The FFT input and output data are 32-bit integer for the 32-bit computetiles and 64-bit integer for 64-bit compute tiles. Figure 3.14 (a) shows execution time usingonly the many-core configuration with 32-bit compute tiles. Therefore, the FFT computingparallelization is conducted over 4xRV32PEs up to 32xRV32PEs. The computing scalabilityis approximately 2x by increasing the number of compute tiles with the same factors. Onthe other hand, as shown in Figure 3.14 (b, c), the execution time over 64-bit compute tilesare higher in comparison with 32-bit compute tiles as the number of PEs per tile is less andthe FFT computation are conducted with 64-bit integer data. Similar to 32-bit tile-basedconfigurations, the computing scalability is approximately 2x by increasing the number of64-bit compute tiles with the same factors.
Matrix inverse kernels

Matrix inverse is a fundamental matrix operation in signal processing applications. Theinverse of a matrix has the property that when a matrix is multiplied by its inverse, theresulting matrix is the identity matrix. The inverse matrix kernels are implemented for onlysquare-size matrices. The Gaussian-Jordan elimination algorithm is used to implement matrixinverse kernels. Gaussian-Jordan elimination calculates the inverse of an n x n matrix by

84

3.4 Evaluation

Execution Time

1 2 4 8
#Tiles

05001000
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)
1K-Points
2K-Points
4K-Points
8K-Points
16K-Points
32K-Points

(a) FFT Kernels, 32-bit compute tiles (4-PEs).

Execution Time

1 2 4 8
#Tiles

025005000
10000

20000

30000

40000

50000

60000

70000

#C
lo

ck
 C

yc
le

s
(K

ilo
 c

yc
le

s)

1K-Points
2K-Points
4K-Points
8K-Points
16K-Points
32K-Points

(b) FFT Kernels, 64-bit compute tiles (1-PE).
Execution Time

1 2 4 8
#Tiles

012502500
5000

10000

15000

20000

25000

30000

35000

40000

#C
lo

ck
 c

yc
le

s
(K

ilo
 c

yc
le

s)

1K-Points
2k-Points
4K-Points
8K-Points
16K-Points
32K-Points

(c) FFT Kernels, 64-bit compute tiles (2-PEs).
Figure 3.14: Execution time of several FFT kernels with different sizes over different numbersand types of compute tiles for multiple many-core configurations.

extending the matrix with an identity matrix of size n x n and doing the elementary rowoperations such that the left-hand side of the extended matrix becomes the identity matrix.In this case, the right-hand side of the extended matrix is the inverse of the input matrix.Parallelization of Gauss-Jordan elimination is conducted first by generating the identity matrixbased on the input matrix size. Next step, the input matrix is equally row-wise partitionedover the selected number of compute tiles as well as over the PEs inside compute tiles. Allinput matrix partitions and identity matrix are stored on shared data memory per everycompute tile. The row elimination process is conducted in parallel by all PEs independentlyto gain a speedup.
Figure 3.15 shows the execution time of several matrix inverse kernels with different inputmatrix sizes (16x16, 32x32, 64x64). The input matrix and the output inverse matrix elementare integer 32-bit for the 32-bit compute tiles and 64-bit integer for 64-bit compute tiles.Figure 3.15 (a) shows execution time using only the many-core configuration with 32-bitcompute tiles. Therefore, the matrix inverse computing parallelization is conducted over4xRV32PEs up to 32xRV32PEs. The computing scalability is approximately 2x by increasing thenumber of compute tiles with the same factors. On the other hand, as shown in Figure 3.15 (b,c), the execution time over 64-bit compute tiles are higher in comparison with 32-bit computetiles as the number of PEs per tile is less and the matrix inverse computation are conductedwith 64-bit integer data. Similar to 32-bit tile-based configurations, the computing scalabil-ity is approximately 2x by increasing the number of 64-bit compute tiles with the same factors.

85

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

Execution Time

1 2 4 8
#Tiles

0250500
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)

16x16
32x32
64x64

(a) Matrix inverse kernels, 32-bit compute tiles(4-PEs).

Execution Time

1 2 4 8
#Tiles

012502500
5000

1000

15000

20000

25000

30000

35000

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)

16x16
32x32
64x64

(b) Matrix inverse kernels, 64-bit compute tiles (1-PEs).
Execution Time

1 2 4 8
#Tiles

05001000
2000

4000

6000

8000

10000

12000

14000

16000

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)

16x16
32x32
64x64

(c) Matrix inverse kernels, 64-bit compute tiles (2-PEs).
Figure 3.15: Execution time of several Matrix inverse kernels with different sizes over differentnumbers and types of compute tiles for multiple many-core configurations.
2-D convolution kernels

2-D parallel convolution kernels are considered for evaluation as they are commonly usedfor signal processing and neural network algorithms. 2-D parallel convolution kernels areevaluated over the aforementioned three many-core configurations based on 32-bit and64-bit compute tiles. Also, 64-bit and 32-bit integer operations are supported by 32-bitand 64-bit compute tiles respectively. Parallel execution is conducted by partitioning theinput matrix over the target number of compute tiles. In this use case, input matrices havesquare dimensions to be partitioned equally over a binary number of compute tiles. Insideeach compute tile the input matrix is partitioned again over the number of PEs per tile.2-D convolution is computed by a sliding window size of (3x3) across the assigned inputmatrix for each PE. Loading and storing operations from/to the memory during convolutionare conducted using shared data memory for each PE due to the limited size of local datamemory for larger sizes of input matrices to be executed.
Figure 3.16 shows the execution time of several 2-D convolution kernels with different inputmatrix sizes (16x16, 32x32, 64x64). Figure 3.16 (a) shows execution time using only the many-core configuration with 32-bit compute tiles. Therefore, the 2-D convolution parallelization isconducted over 4xRV32PEs up to 32xRV32PEs. The computing scalability is approximately2x by increasing the number of compute tiles with the same factors. On the other hand,as shown in Figure 3.16 (b, c), the execution time over 64-bit compute tiles are higherin comparison with 32-bit compute tiles as the number of PEs per tile is less and the 2-D

86

3.4 Evaluation

Execution Time

1 2 4 8
#Tiles

06.2512.5
25

50

100

150

200
#C

lo
ck

 C
yc

le
s

(K
ilo

 C
yc

le
s)

16x16
32x32
64x64

(a) 2-D convolution kernels, 32-bit tiles (4-PEs).

Execution Time

1 2 4 8
#Tiles

012.525
50

100

200

300

400

500

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)

16x16
32x32
64x64

(b) 2-D convolution kernels, 64-bit tiles (1-PEs).
Execution Time

1 2 4 8
#Tiles

06.2512.5
25

50

100

150

200

250

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)

16x16
32x32
64x64

(c) 2-D convolution kernels, 64-bit tiles (2-PEs).
Figure 3.16: Execution time of several 2-D convolution kernels with different sizes over differ-ent numbers and types of compute tiles for multiple many-core configurations.
convolution are conducted with 64-bit integer data. Similar to 32-bit tile-based configurations,the computing scalability is approximately 2x by increasing the number of 64-bit computetiles with the same factors.
3-D convolution kernels

3-D parallel convolution kernels are considered for evaluation as they are commonly usedfor signal processing and neural network algorithms. 3-D parallel convolution kernels areevaluated over the aforementioned three many-core configurations based on 32-bit and64-bit compute tiles. Also, 64-bit and 32-bit integer operations are supported by 32-bitand 64-bit compute tiles respectively. Parallel execution is conducted by partitioning theinput matrix over the target number of compute tiles. In this use case, input matrices havesquare dimensions to be partitioned equally over a binary number of compute tiles. Insideeach compute tile the input matrix is partitioned again over the number of PEs per tile.3-D convolution is computed by a sliding window size of (3x3x3) across the assigned inputmatrix for each PE. Loading and storing operations from/to the memory during convolutionare conducted using shared data memory for each PE due to the limited size of local datamemory for larger sizes of input matrices to be executed.
Figure 3.17 shows the execution time of several 3-D convolution kernels with different inputmatrix sizes (8x8x8, 16x16x16). Figure 3.17 (a) shows execution time using only the many-core configuration with 32-bit compute tiles. Therefore, the 3-D convolution parallelization isconducted over 4xRV32PEs up to 32xRV32PEs. The computing scalability is approximately2x by increasing the number of compute tiles with the same factors. On the other hand, as

87

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

Execution Time

1 2 4 8
#Tiles

012.525
50

100

150

200

250

300

350

400

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)

8x8x8
16x16x16

(a) 3-D convolution kernels, 32-bit tiles (4-PEs).

Execution Time

1 2 4 8
#Tiles

02550
100
200

400

600

800

1000

1200

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)

8x8x8
16x16x16

(b) 3-D convolution kernels, 64-bit tiles (1-PEs).
Execution Time

1 2 4 8
#Tiles

012.525
50

100

200

300

400

500

600

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)

8x8x8
16x16x16

(c) 3-D convolution kernels, 64-bit tiles (2-PEs).
Figure 3.17: Execution time of several 3-D convolution kernels with different sizes over differ-ent numbers and types of compute tiles for multiple many-core configurations.
shown in Figure Figure 3.17 (b, c), the execution time over 64-bit compute tiles are higherin comparison with 32-bit compute tiles as the number of PEs per tile is less and the 3-Dconvolution are conducted with 64-bit integer data. Similar to 32-bit tile-based configurations,the computing scalability is approximately 2x by increasing the number of 64-bit computetiles with the same factors.
Quantized neural network kernels

Four QNN kernels are derived from the open-source PULP-NN QNN library [172] for theproposed tile-based many-core evaluation. All QNN kernels are 8-bit quantized. The fourused kernels are listed as follows:
1. Fully connected kernel: It is a simple matrix by vector multiplication, it generates a setof neurons as output (output feature map (OFM)). The input vector size (input featuremap (IFM)) of the implemented fully connected layer is multiplied by a weight matrix tocreate the OFM. For the implemented fully connected layer: the IFM size = 1024, andthe OFM size = 16. Unsigned 8-bit integer number for the IFM is fed as inputs alongwith the weights which are unsigned 8-bit integer of a size equal to (1024x16).
2. Max-pooling kernel: A pooling layer is a new layer preceding the convolutional layerwhich is applied to feature maps. Max-pooling calculates the maximum value foreach patch on the received IFM. For the implemented max-pooling kernel: the IFM =16x16x32, the OFM = 16x16x32, the sliding window/pool size = 3x3, and stride = 1 withzero padding.

88

3.4 Evaluation

Execution Time

1 2 4 8
#Tiles

02550
100

200

300

400

500

600

700

800

900

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)
Fully Connected Layer (IFM = 1024), (OFM = 16), (8-bit)
Max-Pool (IFM, OFM = 16x16x32), (Sliding window/pool = 3x3), (8-bit)
Avg.-Pool (IFM, OFM = 16x16x32), (Sliding window/pool = 3x3), (8-bit)
Point-Wise Conv. (IFM = 16x16x32), (OFM = 16x16x32), (Weight = 1x1x32)
 (8-bit)

(a) QNN kernels, 32-bit tiles (4-PEs).

 Execution Time

1 2 4 8
#Tiles

0
125
250
500

1000

1500

2000

2500

3000

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)

Fully Connected Layer (IFM = 1024), (OFM = 16), (Kernel = 1x1) (8-bit)
Max-Pool (IFM, OFM = 16x16x32), (Sliding window/pool = 3x3)(8-bit)
Avg.-Pool (IFM, OFM = 16x16x32), (Sliding window/pool = 3x3)(8-bit)
Point-Wise Conv. (IFM = 16x16x32), (OFM = 16x16x32), (Weight = 1x1x32),
(8-bit)

(b) QNN kernels, 64-bit tiles (1-PEs).
 Execution Time

1 2 4 8
#Tiles

62.5
125
250

500

1000

1500

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)

Fully Connected Layer (IFM = 1024), (OFM = 16), (8-bit)
Max-Pool (IFM, OFM = 16x16x32), (Sliding window/pool = 3x3), (8-bit)
Avg.-Pool (IFM, OFM = 16x16x32), (Sliding window = 3x3), (8-bit)
Point-Wise conv. (IFM = 16x16x32), (OFM = 16x16x32), (Weight = 1x1x32),
 (8-bit)

(c) QNN kernels, 64-bit tiles (2-PEs).
Figure 3.18: Execution time of several QNN kernels with different sizes over different numbersand types of compute tiles for multiple many-core configurations.
3. Average-pooling kernel: The average-pooling kernel calculates the average value foreach patch on the received IFM. For the implemented average-pooling kernel: the IFM= 16x16x32, the OFM = 16x16x32, the sliding window/pool size = 3x3, and stride = 1with zero padding.
4. Point-wise convolution kernel: Point-wise convolution is 1-D convolution, which is paral-lelized according to height and width-wise over compute tile/PEs. For the implementedpoint-wise convolution, unsigned 8-bit integer of 16x16x32 are fed, where the spatialdimension is equal to 16x16 and there are 32 input channels. The IFM size = 16x16x32,the OFM size = 16x16x32, and the weight size = 1x1x32. The channel output is equalto 32, and the output spatial dimension is equal to 16x16.

For point-wise convolution and fully connected layer parallelization over the many-corecompute tiles, the workload is partitioned based on the height dimension of the outputfeature map. The output height is divided by the number of available compute tiles as wellas over the number of PEs per compute tile. The parallelization of the average pooling andthe maximum pooling kernel is straightforward. The partitioning is based on multiple chunksto be assigned to each compute tile based on the size of the IFM. Both pooling functions donot have any weight parameter. They are just composed by a sliding window of 3x3 over theIFM which is an unsigned 8-bit integer for 16x16x32.
Figure 3.18 shows the execution time of QNN kernels with different parameters and IFM/OFMsizes. Figure 3.18 (a) shows execution time using only the many-core configuration with32-bit compute tiles. Therefore, the QNN parallelization is conducted over 4xRV32PEs up

89

3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

to 32xRV32PEs. The computing scalability is approximately 2x by increasing the number ofcompute tiles with the same factors. On the other hand, as shown in Figure Figure 3.18 (b,c), the execution time over 64-bit compute tiles is higher in comparison with 32-bit computetiles as the number of PEs per tile is less. Similar to 32-bit tile-based configurations, thecomputing scalability is approximately 2x by increasing the number of 64-bit compute tileswith the same factors.

3.5 Summary

Chapter 3 presents a novel modular tile-based many-core architecture for heterogeneousISAs by supporting multiple general-purpose RISC-V-based cores with different ISAs for FPGAdevices. The proposed tile-based many-core architecture features a high degree of designscalability and regularity using heterogeneous RISC-V PEs for multi-/single-core computetiles. The tile-based many-core architecture is based on a modular and configurable setof heterogeneous compute tiles connected through a scalable NoC architecture. Eachcompute tile supports scratchpad shared and local memory subsystems. Moreover, theproposed tile-based many-core architecture supports design-time configurations to changenumbers and types of compute tiles for several many-core configurations. The proposedtile-based many-core architecture aims to ease the development and realization of multi-ISAsgeneral-purpose many-core architectures by reducing the design time and the non-recurrentengineering costs. The tile-based architecture is evaluated based on hardware resourceutilization, achievable memory bandwidth, and computing performance scalability throughseveral many-core configurations and benchmarks. The results show a high degree ofcomputing scalability using a scalable number of heterogeneous compute tiles.
Section 3.1 presents the architecture of the tile-based many-core platform. The many-corearchitecture consists of two hierarchical levels. The first level is the top-level or the NoC-basedlevel, where multiple compute tiles are connected through a 2-D mesh NoC architecture.The second level of the hierarchy is the intra-tile architecture. Where PEs and scratchpadmemories are hosted. There are three types of heterogeneous compute tiles supported bythe proposed tile-based architecture. The first type is a 32-bit compute tile. Where the 32-bitcompute tile internal architecture is a 32-bit multi-core architecture with scratchpad shareddata/instruction memories connected through an AXI-4 interconnect. The 32-bit computetile supports quad RV32 PEs. Each PE includes a single RV32IMC core with tightly coupledinstruction and data memories to increase data locality and computing performance.
The second type is a 64-bit compute tile. Where the 64-bit compute tile internal architecturecan be configured during design time to support a 64-bit single-core or a 64-bit dual-corearchitectures with scratchpad shared data/instruction memories connected through an AXI-4interconnect. The 64-bit compute tile supports single or dual RV64 PEs. Each PE includes asingle RV64IMAC core with tightly coupled instruction and data memories to increase datalocality and computing performance. The third type is the main processing tile that supportsa quad-core RV64 architecture with shared instruction memory and shared data memoryconnected through an AXI-4 interconnect. The shared data memory is an external DDRperipheral connected to the tile through a DDR controller. The main processing tile is thepermanent compute tile in the tile-based architecture with a fixed number of RV64 PEs. Themain processing tiles support the interfacing with several external peripherals such as UARTand SD-card.

90

3.5 Summary

Section 3.2 presents the system scalability and the developed communication model overthe NoC for data transfer and communication between different compute tiles. A lightweightcircuit-switching NoC is used with low area overhead and high data rate. The NoC is basedon a 2-D mesh architecture where the number of routers, NoC mesh size, and data packetsize are configurable during design time. A unified NI is developed and implemented toprovide TX/RX connection channels between compute tiles and NoC routers. The NI supportssimultaneous data transmission and receiving between the NoC and compute tiles with twoNI channels for TX and RX. A communication model is developed based on a message-basedapproach where data are transferred through data messages included within NoC datapackets. The communication model is considered as the network transport layer over theNoC hardware architecture to control the data flow between compute tiles and maintainproper data transmission.
Section 3.3 presents the developed bare-metal parallel programming method for the pro-posed tile-based many-core architecture to generate multiple binary files from multi-tasksapplications to be executed on many-core compute tiles. Each compute tile executes aseparate binary file for its mapped task. We consider static task mapping over the selectednumber and type of compute tile that is conducted by the programmer/user prior to applica-tions execution. Each compute tile is programmed individually from other compute tiles andthe shared instruction memory is used as a boot memory for each compute tile.
Finally, Section 3.4 presents the evaluation and obtained experimental results of the pro-posed tile-based many-core architecture. The tile-based many-core architecture is evaluatedbased on hardware resource utilization, memory bandwidth and computing performancescalability using different signal processing kernels running over multiple numbers and typesof compute tiles. The tile-based many-core architecture has been developed and imple-mented using a modular and hierarchical design approach. Architectural modules (i.e. RISC-Vcores, PEs, memory blocks, interconnects, compute tiles, etc.) are implemented as IP compo-nents to be integrated together to build heterogeneous compute tile modules for severalmany-core configurations. Evaluation results demonstrate that the proposed tile-basedmany-core architecture features a scalable computing performance up to 685 MOPS for8x32-bit compute tiles and 316 MOPS for 8x64-bit compute tiles with a scalable memorybandwidth up to 7.4 GB/s.

91

4 Towards Accelerator Memory
Reuse Through a Hybrid
Memory/Accelerator Tile
Architecture

Today multi-/many-core SoC architectures can achieve high computing performance andenergy efficiency due to their intrinsic heterogeneity. Specialized hardware acceleratorscoupled with big, and little general-purpose (GP) cores constitute the main compute tiles formodern many-core systems. Alongside, memory and input/output peripherals tiles providedata sharing and interaction between compute tiles and external peripherals. Loosely-coupled accelerator (LCA) model is increasingly used in heterogeneous architecture toachieve an order of magnitude high computing performance. However, LCAs require a largeportion of private local scratchpad memory with the accelerator logic inside the customaccelerator tile architecture.
Accordingly, the increasing number of accelerator tiles leads to a significant increase inaccelerators’ private local memory (PLM) resources. For FPGA-based many-core systems,block memories (BRAMs, URAMs) are used to implement PLMs which have limited availabilityon FPGAs. Therefore, memory sharing between accelerator tiles and general-purpose tilesis necessary to reduce many-core systems’ memory footprint. As a result, an increase indesign complexity is associated with the growing number of heterogeneous tiles and theirdata patterns. Therefore, system-level design optimization and design modularity are keycomponents for modern heterogeneous SoC architectures.
This Chapter presents a hybrid memory/accelerator tile architecture for FPGA-based many-core systems. The proposed hybrid tile is a modular and reusable tile that can be configuredat run-time to operate as a scratchpad shared memory between many-core’s computetiles or as a LCA tile with one local custom hardware accelerator logic. In this chapter, ahomogeneous FPGA-based RISC-V many-core platform with RV32 ISA [15] is used to integrateand evaluate the hybrid memory/accelerator tile architecture. The hybrid tile is implementedspecifically for Xilinx FPGAs using Xilinx on-chip BRAM and URAM on-chip block memory.
The hybrid tile aims to support non-coherent memory sharing between compute tiles bypartially reusing the LCA’s PLM during its inactive time. Consequently, the hybrid tile supportsnon-coherent memory sharing between LCA inside the tile and many-core compute tiles.The proposed hybrid tile is implemented and evaluated on a Xilinx Ultrascale+ FPGA. A setof signal processing based kernels and custom hardware accelerators are used to evaluate

93

4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture

the hybrid tile in terms of data transfer latency over the NoC to/from RISC-V-based computetiles. The hybrid tile architecture features a low resource utilization overhead which reducesthe cost of scalability for many-core systems realization.
The Chapter is structured as follows. Section 4.1 describes the hybrid memory/acceleratortile architecture including internal components of the tile data path and control unit. Also,seamless integration of stream-based hardware accelerator inside the tile data path architec-ture. Section 4.2 presents how the hybrid tile is integrated into tile-based many-core systemsand describes controlling and data transfer techniques between compute tiles and the hybridtile through the NoC. Section 4.3 presents the hybrid tile evaluation in terms of resourceutilization, memory bandwidth and data transfer rate with several signal processing basedkernels and custom stream-based hardware accelerators. Finally, Section 4.4 summarizesthis chapter.

R

R

R

R

R

R

R

R

R

Compute
Tile-2

R

R

R

Compute
Tile-0

Compute
Tile-3

Compute
Tile-4

Compute
Tile-5

Compute
Tile-6

Compute
Tile-7

Compute
Tile-1

Hybrid
Mem./Acc.

Tile-0

Hybrid
Mem./Acc.

Tile-1

Figure 4.1: An overview of a heterogeneous tile-based many-core architecture with hybridmemory/accelerator tiles. The many-core system supports a single ISA by homo-geneous RISC-V cores with heterogeneous LCAs hosted by hybrid memory/accel-erator tiles.

4.1 Hybrid Tile Architecture Implementation

To support seamless integration of LCAs through NoC for tile-basedmany-core architecture, amodular and parametrized tile architecture must be developed and implemented to supportthe integration of LCAs with different resource andmemory sizes. In addition, to efficiently useon-chip memory on the FPGA floorplan, accelerator memory reuse is a suitable technique toreuse the accelerator’s PLM during inactive time as a shared memory between compute tiles

94

4.1 Hybrid Tile Architecture Implementation

or a scratchpad storage extension for any compute tiles. Therefore, in this section, a hybridmemory/accelerator tile architecture is presented supporting two modes of operations. Thefirst mode is the memory mode where the tile can be used as a shared scratchpad memorybetween compute tiles through the NoC. The second mode is the accelerator mode wherethe tile is acting as a LCA tile hosting a single stream-based custom hardware accelerator.
The hybrid memory/accelerator tile is designed and implemented to be seamlessly integratedinto NoC-based many-core architectures where the NoC is the interconnection mediumbetween all many-core tiles (including RISC-V based compute tiles and hybrid memory/accel-erator tiles). In this chapter, the target tile-based many-core system consists of a scalablenumber of homogeneous RISC-V based compute tiles as shown in Figure 4.1. Each computetile supports four RISC-V cores based on RV32IMC ISA.
The RISC-V based compute tiles are responsible to send application/user-defined controlmessages through the NoC to the hybrid tiles for configuration at run-time. Control messagescontain tile and memory configuration parameters to configure the hybrid tile based oncompute tile message request to access hybrid tile on-chip memory for read/write (R/W) orto activate the local accelerator logic. Similarly, read and write data from/to the hybrid tile aretransferred in the form of data packets through the NoC. The hybrid memory/acceleratortile architecture is connected to the NoC via two separate network interfaces (NIs). The firstNI is dedicated to sending and receiving control packets (NI-Ctrl) and the second NI is fordata transfer (NI-Data) from/to many-core compute tiles.
The reason behind using two NIs is to avoid data and control messages overlapping duringtransmission, which increases data transfer bandwidth over the NoC and allows parallel andsimultaneous transfer of control and data packets from/to multiple compute tiles at thesame time. Each NI includes two separate channels for data/control packets transmissionand receiving (NI-TX, NI-RX). NIs are implemented using parametrized size AXI-S FIFO IPssupporting 32-bit AXI-stream interface for control and data packets. The 32-bit AXI-stream

R

Mem./Acc
.-Tile

Ctrl. Unit

Mem./Acc.
-Tile

Data-Path

Dual-
Port

On-Chip
Memory

Ctrl./Config
Signals

NI-RX NI-TX

NI-RXNI-TX

NI-Ctrl. NI-Data

R

Hybrid Memory/Accelerator Tile

Figure 4.2: An overview of the hybrid memory/accelerator tile internal architecture showingcontrol unit, data path, and data/control NIs to NoC routers.

95

4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture

R R W R R A A W R

123456789

R

W

A A R R W

R

R

Time

Ex
e

cu
te

d
 P

ac
ke

ts
Received Packets:

Figure 4.3: An example of a received sequence of message requests and their order ofexecution by the hybrid memory/accelerator tile.
interface is compatible with the NoC router interface. The hybrid memory tile consists ofseveral internal architectural components as shown in Figure 4.2. The internal architecturecomponents are listed as follows:

• Two separate NIs: a NI for read and write data packets, and a NI for control packetsthat sends and receives control messages through a lightweight NoC architecture.
• A control unit that decodes received control messages and sends configuration signalsto the hybrid tile data path based on the requested mode of operations. Also, itsends control messages carrying grant signals to compute tiles indicating if the requestmessage can be processed or not.
• A data path that includes the hybrid tile functional units: memory read and writemanagers, hardware accelerator wrapper, on-chip memory access blocks, and multi-plixers/demultiplexers.
• Parametrized size of dual-ported on-chip block memory (BRAMs/URAMs) that are usedeither as a PLM for accelerator or shared scratchpad memory between compute tiles.

The hybrid memory/accelerator tile is capable to process two simultaneous read and writememory requests at the same time due to the utilization of dual-ported on-chip memory. Inthe case of an accelerator mode request, a single accelerator message request can be servedsolely to allow the hosted accelerator logic to fully utilize the on-chip memory as a PLM formemory read and write operations without any overlapping with other memory requests.An example of a received sequence of request messages by the hybrid tile NI-Ctrl buffer isshown in Figure 4.3. In this example, a received sequence of various request message typesis stored first in the NI-Ctrl buffer before the decoding stage to identify and categorize thereceived messages based on the mode of operation and define their process order. The

Ti
le

-S
o

u
rc

e

M
o

d
e

W
/R

A
d

d
re

ss
R

ea
d

A
d

d
re

ss
W

ri
te

Si
ze

R
ea

d

Si
ze

W

ri
te

H
W

 A
cc

I/
O

 C
o

n
fi

g

1 2 3 4 5 6 7 8 9 32

Un-used

Figure 4.4: Structure of hybrid memory/accelerator tile request message.

96

4.1 Hybrid Tile Architecture Implementation

request message structure is shown in Figure 4.4. It consists of a data array of 32 locationswhere each location stores 32-bit data. The reason for using a message length of 32 is to becompatible with the used NoC packet size where a single NoC packet contains 32 flits of data.The first eight locations are used to store the hybrid tile configuration parameters and thetile source address, the rest of locations are unused and have to be filled with zeros to createthe required NoC packet length for packet transferring over the NoC. There are three typesof message requests based on the mode of operation: 1) Memory read request, 2) memorywrite request, and 3) accelerator mode request. Accordingly, and as shown in Figure 4.3, twoconsecutive memory read and write requests can be processed simultaneously. But in caseof two consecutive message requests from the same type, the two message requests areprocessed sequentially based on the time of arrival such as two consecutive memory read orwrite requests. On the other hand, accelerator message requests are processed individuallyto provide full access to on-chip memory by the accelerator logic. Also, consecutive memoryand accelerator message requests are processed sequentially based on the time of arrival.

4.1.1 Hybrid Tile Data Path

The tile data path is responsible to establish data paths between NI-Data (RX/TX) and on-chipmemory based on received message requests. The control unit decodes message requestsand generates the corresponding control signals to setup and configure the data path basedon the mode of operation. Moreover, the tile data path includes on-chip memory accessblocks that receive memory configuration parameters (i.e. addresses, data sizes) for readingand writing data from the on-chip BRAM/URAM blocks. The tile data path consists of severalfunctional and data movement components to establish the necessary data path betweenthe NI-Data and on-chip memory. Figure 4.5 shows a detailed block diagram of the tile datapath and its internal components. The tile data path supports three types of data pathsbased on the decoded message process as shown in Figure 4.5. The three data paths typesare listed as follows:
• Memory write (mem_W_mode) mode data path: A memory write data path is establishedbased on a mem_W_mode request to connect the NI-RX to the dual ported on-chipmemory. It provides access to hybrid tile on-chip memory from any compute tile inthe many-core system through the NoC to write a specific size of data from a specificmemory address based on the transmitted memory configuration parameters. Memorywrite data path supports 32-bit stream data transfer to on-chip memory through amemory write manager and on-chip memory access units as shown in Figure 4.5.
• Memory read (mem_R_mode) mode data path: A memory read data path is establishedbased on a mem_R_mode request to connect the dual ported on-chip memory to theNI-TX. It allows access to hybrid tile on-chip memory from any compute tile in the many-core system through the NoC to read a specific size of data from a specific memoryaddress based on the transmitted memory configuration parameters. Memory writedata path supports 32-bit stream data transfer to on-chip memory through a memorywrite manager and on-chip memory access units as shown in Figure 4.5.
• Accelerator (A_mode) mode data path: A LCA can be activated through the acceleratordata path based on an A_mode request to connect the accelerator wrapper I/O tothe NI-RX and NI-TX as well as the accelerator wrapper memory ports to the on-chipmemory. In this mode of operation, any compute tile in the many-core system can

97

4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture

M
em

.
W

ri
te

M

an
ag

er

H
W

 A
cc

el
er

at
o

r
W

ra
p

p
er

M
em

.
R

ea
d

M

an
ag

er

N
o

C
P

ac
ke

ts
G

en
er

at
o

r

O
n

-C
h

ip

M
em

.
A

cc
es

s
(w

ri
te

)

O
n

-C
h

ip

M
em

.
A

cc
es

s
(r

ea
d

)

Dual-Port On-Chip Memory (BRAM/URAM)

A
cc

el
e

ra
to

r
W

ra
p

p
er

M
an

ag
er

H
W

 A
cc

. L
o

gi
c

(R
TL

/H
LS

-
b

as
e

d
)

N
r.

C
tr

l.
/

M
em

. C
o

n
fi

g.
 S

ig
.

D
at

a-
P

at
h

P
o

rt
s

D
ir

e
ct

io
n

1
Se

le
ct

 M
o

d
e

In
p

u
t

2
St

ar
t

M
em

. W
ri

te
In

p
u

t

3
St

ar
t

H
W

 A
cc

.
In

p
u

t

4
St

ar
t

M
em

. R
e

ad
In

p
u

t

5
D

o
n

e
M

e
m

. W
ri

te
O

u
tp

u
t

6
D

o
n

e
H

W
 A

cc
.

O
u

tp
u

t

7
D

o
n

e
M

e
m

.
R

e
ad

O
u

tp
u

t

8
M

e
m

. C
o

n
fi

g.
 W

ri
te

In
p

u
t

9
M

e
m

. C
o

n
fi

g.
 H

W
 A

cc
.

In
p

u
t

1
0

M
e

m
. C

o
n

fi
g.

 R
e

ad
In

p
u

t

1
1

H
W

A
cc

. I
/O

 C
o

n
fi

g.
In

p
u

t

1
2

C
o

m
p

u
te

 T
ile

 D
e

st
.

In
p

u
t

1 1

1 1

1

1

2
5

8

3
6

9

4
7

1
0

1
2

3
6

9

H
W

 A
cc

e
le

ra
to

r
W

ra
p

p
e

r

NI-TXNI-RX

M
e

m
. C

o
n

fi
g.

 H
W

 A
cc

.

M
e

m
. C

o
n

fi
g.

 R
e

ad

M
e

m
. C

o
n

fi
g.

 W
ri

te

M
e

m
. C

o
n

fi
g.

H

W
 A

cc
.

Fo
r

R
/W

On-Chip Mem.
Path

NoC Path

1
1

1
1

11

1

1
2

5
8

1

3
2

-b
it

 A
X

I-
S

D
at

a
(D

at
a

P
ac

ke
ts

)
3

2
-b

it
 A

X
I-

S
M

e
m

. C
o

n
fi

g.
 S

ig
n

al
s

(S
ta

rt
 A

d
d

re
ss

, S
iz

e
)

3
2

/1
6

/8
-b

it
 A

X
I-

S
(I

N
/O

U
T

H
W

 A
cc

.)

NoC Path

On-Chip Mem.
Path

A
cc

P
ro

ce
ss

W
ai

t

M
o

d
e

 !
=

 A
 |

|
St

ar
t_

A
 =

=
 0 M

o
d

e
 =

=
A

 |
|

St
ar

t_
A

 =
=

 1

O
u

t_
T

la
st

 =
=

 1

Out_Tlast == 0

W
ri

te
P

ro
ce

ss
W

ai
t

M
o

d
e

 !
=

 W
 |

|
St

ar
t_

W
 =

=
 0 M

o
d

e
=

=
W

 |
|

St
ar

t_
W

 =
=

1

D
at

a_
co

u
n

t
==

 S
iz

e

Data_count < Size

4
7

1
0

1

R
e

ad
P

ro
ce

ss
W

ai
t

M
o

d
e

!=
 R

 |
|

St
ar

t_
R

 =
=

0 M
o

d
e

=
=

R
 |

|
St

ar
t_

R
 =

=
1

D
at

a_
co

u
n

t
==

 S
iz

e

Data_count < Size

3
6

9
1

1

3
6

9
1

1

M
e

m
o

ry
 w

ri
te

 d
at

a
p

at
h

M
e

m
o

ry
 r

e
ad

 d
at

a
p

at
h

A
cc

e
le

ra
to

r
m

o
d

e
d

at
a

p
at

h
(a

)

(b
)

(c
)

(d
)

Figure 4.5: A detailed block diagram of hybrid memory/accelerator tile data path architectureshowing internal functional and data movement components.
98

4.1 Hybrid Tile Architecture Implementation

directly send an receive stream to/from the accelerator logic. Also, the accelerator logiccan fully access the on-chip memory as a PLM for memory read and write operations.The accelerator mode data path supports 32-bit stream data transfer between computetiles and accelerator logic. Also, on-chip memory data width and memory address sizeare 32-bit as shown in Figure 4.5.
Memory read and write paths can be established in parallel to handle read and write memoryrequests simultaneously to/from dual-ported on-chip memory (32-bit data, 32-bit address).On the other hand, only the accelerator path can be solely established as the hardwareaccelerator logic requires to use the on-chip memory as a PLM for load/store operations. Thetile data path consists of several functional and data movement blocks in order to implementthe different data path modes. A detailed description of tile data path internal componentsare described as follows:
Memory write manager

The memory write manager is responsible to manage the data writing process to the on-chipmemory. As shown in Figure 4.5, the memory write manager block has three stream inter-faces and four control I/O ports. The stream interfaces are for 1) 32-bit input data streamfrom the NI-RX, 2) 32-bit output data stream to the on-chip memory access, and 3) outputstream interface carrying memory configuration parameters to the on-chip memory access.The four control signal ports are connected to the control unit block as shown in the righttable in Figure 4.5.
The four ports are: 1) hybrid tile mode selection to select the memory write data path, 2) startsignal (start_w) to start the data transfer process from the NI-RX to the on-chipmemory access,3) a done signal (done_mem_w) as an output to the control unit to indicate the successfultransmission of the complete data size to the on-chip memory, and 4) memory configurationparameters extracted from the request message. The memory write manager implements aFSM that manages the data transfer process as shown in Figure 4.5 (a).
The FSM has two states, a wait state and a write process state. The wait state checks for theselect mode and start signal from the control unit. In case the select_mode == mem_w_mode
&& start_w == 1, the next state is the write process state where the memory write managerstarts to write the data to the on-chip memory. The done_mem_w signal is equal to one whenthe data transfer count (data_count) is equal to the requested data size to be written in theon-chip memory. Afterwards, the memory write manager moves to the wait state in order towait for a new memory write request.
Memory read manager

The memory read manager is responsible to manage the data reading process from theon-chip memory. As shown in Figure 4.5, the memory read manager block has three streaminterfaces and four control I/O ports. The stream interfaces are for 1) a 32-bit output datastream to the NI-TX, 2) a 32-bit input data stream from the on-chip memory access, and 3) anoutput stream interface carrying memory configuration parameters to the on-chip memoryaccess.
The four control signal ports are connected to the control unit block as shown in the righttable in Figure 4.5. The four ports are: 1) hybrid tile mode selection to select the memoryread data path, 2) start signal (start_r)to start the data transfer process from the on-chip

99

4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture

memory access to the NI-RX, 3) a done signal (done_mem_r) as an output to the control unitto indicates the successful transmission of the complete data size from the on-chip memory,and 4) memory configuration parameters extracted from the request message.
The memory read manager implements a FSM that manages the data transfer process asshown in Figure 4.5 (b). The FSM has two states, a wait state and a read process state. Thewait state checks for the select mode and start signal from the control unit. In case the
select_mode == mem_r_mode && start_r == 1, the next state is the write process state where thememory read manager starts to read the data from the on-chip memory. The done_mem_rsignal is equal to one when the data transfer count (data_count) is equal to the requesteddata size to be read from the on-chip memory. Afterwards, the memory read manager movesto the wait state in order to wait for a new memory read request.
Hardware accelerator wrapper

The accelerator wrapper is responsible to host and manage the hardware accelerator logic.It supports seamless integration of RTL-/HLS-based accelerator with I/O stream interfacesas shown in Figure 4.5 (d). The accelerator wrapper block has five stream interfaces andfive control I/O ports. Control signals are responsible to control stream data flow to/fromthe accelerator logic and accelerator wrapper interfaces to on-chip memory and NI-Data.Four input/output (I/O) configurations are supported based on the request packet controlfor accelerator mode: 1) NoC-mem, 2) NoC-NoC, 3) mem-NoC, and 4) mem-mem. Therefore,data can be streamed directly between local accelerator logic and a single compute tile bysetting I/O interfaces to NI-Data.
The stream interfaces are for 1) 32-bit input data stream reading from the NI-RX, 2) 32-bitinput data stream writing to the NI-RX, 3) 32-bit output data stream to the on-chip memoryaccess (PLM storing operations), 4) 32-bit input data stream from the on-chip memory access(PLM loading operations), and 5) output stream interface carrying memory configurationparameters to the on-chip memory access for PLM load/store operations.
The five control signal ports are connected to the control unit block as shown in the righttable in Figure 4.5. The five ports are: 1) hybrid tile mode selection to select the acceleratormode data path, 2) start signal (start_a) to activate the hosted accelerator logic, 3) a donesignal (done_a) as an output to the control unit to indicate the successful completion ofthe accelerator function, 4) memory configuration parameters extracted from the requestmessage, and 5) hardware accelerator I/O configuration to select I/O direction to the NI-Datato allow the compute tiles to send and receive data directly to the hardware acceleratorlogic.
The accelerator wrapper consists of an accelerator wrapper manager, and the hardwareaccelerator logic. The accelerator wrapper manager is responsible to control stream dataflow to/from the accelerator logic and accelerator wrapper interfaces to on-chip memoryand NI-Data.
The accelerator wrapper manager implements a FSM that manages the data transfer processand the activation of accelerator logic as shown in Figure 4.5 (c). The FSM has two states, await state and an accelerator process state. The wait state checks for the select mode andstart signal from the control unit. In case the select_mode == a_mode && start_a == 1, the nextstate is the acceleration process state where the accelerator starts to access the on-chipmemory based on load/store operations from the hosted logic functions. The done_a signal

100

4.1 Hybrid Tile Architecture Implementation

is equal to one when the acceleration function has been done by checking the acceleratoroutput stream interface (out_tlast == 1). Afterwards, the accelerator wrapper manager movesto the wait state in order to wait for a new accelerator mode request.
NoC packet generator

The tile data path has a NoC packet generator to create data packets in order to trans-mit the read data over the NoC to compute tiles destinations. The packet generator receivesa data stream either from the accelerator wrapper or the memory read manager and splitthem into data flits. Each data packet consists of 32 data flits with a header flit that containsthe compute tile destination. The packet generator streams the data to the NI-TX where eachdata packet requires four clock cycles to be created.
On-chip memory access units

There are two on-chip memory access units inside the tile data path to convert the streaminterfaces to be compatible with on-chip BRAM/URAM interfaces. The first on-chip memoryaccess unit is for writing data to on-chip memory. It receives a stream of data with memoryconfiguration parameters in order to write the data on the corresponding memory address.The second on-chip memory access unit is for reading data from on-chip memory. It sends astream of data from the on-chip memory either to the accelerator wrapper or to the memoryread manager. The memory access block converts the block memory interfaces to a streaminterface using memory configuration parameters to read a specific size data from a specificmemory address.

4.1.2 Hybrid Tile Control Unit

The control unit handles all memory and accelerator message requests from all computetiles in the tile-based many-core system as shown in Figure 4.2. It sends and receivescontrol, response, and configuration signals to the tile data path unit to ensure proper datatransfer between the hybrid tile and compute tiles destination. Also, it is considered the tiledata path manager. The control unit is responsible for setup, configuring, and monitoringthe tile data path during operations. The three types of data paths that are mentionedbefore are established based on the control and configuration signals generated from thecontrol units based on received message requests. The control unit is capable to decode tworeceived message requests simultaneously and generate their corresponding control andconfiguration signals to the tile data path based on request modes of operation. The controlpacket payload contains the request message which includes all necessary informationto configure the tile data path based on the requested mode of operation, and memoryconfigurations for read and write data from/to memory blocks. The control unit internalarchitecture is shown in Figure 4.6. It consists of three main architectural blocks: 1) thecontrol packets decoder, 2) the control unit FSM, and 3) the NoC packet generator. A list ofall control and configuration signals is shown in the right table of Figure 4.6.
The control packets decoder

The decoder unit is the first stage that receives control packets from the NI-Ctrl-RX sent fromcompute tiles carrying request messages. The received control packets are fetched based

101

4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture

Nr. Ctrl. / Mem. Config. Sig. Ctrl. Unit FSM Port

1 Select Mode Output

2 Start Mem. Write Output

3 Start HW Acc. Output

4 Start Mem. Read Output

5 Done Mem. Write Input

6 Done HW Acc. Input

7 Done Mem. Read Input

8 Mem. Config. Write Output

9 Mem. Config. HW Acc. Output

10 Mem. Config. Read Output

11 HW Acc. I/O Config. Output

12 Compute Tile Dest. Output

Ctrl.
Packets
Decoder

NoC
Packets

Generator

Ctrl. Unit
FSM

Mem./ACC.-Tile Ctrl. Unit

1

2

3

4

5

6

7

8

9

10

11

32-bit AXI-S Mem. Config. Signals (Start Address, Size)

Ctrl. Signals

Payload

Dest.

Ctrl. Packet Payload
(Mode, Mem. Address, Size)

N
I-

TX
N

I-
R

X

32-bit AXI-S Data (Ctrl. Packets)

12

Figure 4.6: A detailed block diagram of hybrid memory/accelerator tile control unit architec-ture.

Table 4.1: Input and output of the decoding stage in the control unit.
Decoding Unit Input Decoding Unit Output

Mode
Msg_1

Mode
Msg_2

R/W
Msg_1

R/W
Msg_2

Messages
Category

Msg_1
Type

Msg_2
Type

Message
Count

Mem. Mem. R/W W/R RW/WR Read/Write Write/Read 2
Mem./Acc. Acc./Mem. R/- -/R RA/AR Read/Acc. Acc./Read 2
Mem./Acc. Acc./Mem. W/- -/W WA/AW Write/Acc. Acc./Write 2

Acc. Acc. - - AA Acc. Acc. 2
Mem. Mem. R R RR Read Read 2
Mem. Mem. W W WW Write Write 2
Acc. - - - A Acc. - 1
Mem. - R - R Read - 1
Mem. - W - W Write - 1

on a fixed priority upon arrival to the packets decoder unit to extract the payload of thereceived control packet. The decoder unit can fetch two control packets at a time to handleread and write requests simultaneously by the tile data path. The decoding stage starts byextracting modes of operation from the two received request messages to categorize thembased on request modes of operations. Nine message categories (msg_cat) are supportedby the decoding stage, (msg_cat: (RW/WR, RA/AR, WA/AW, AA, RR, WW, A, R, W)). Table 4.1 shows

102

4.1 Hybrid Tile Architecture Implementation

the decoding stage input and output data. The input data are extracted from the receivedrequest messages and the output data is forwarded to the control unit FSM to generatethe control signals accordingly. Also, the decoding stage provides the type of each requestmessage as mentioned in Table 4.1 (column 6, 7) as well as the message count. The messagetype (msg_type) defines the mode of operation of each message as memory read, write, oraccelerator requests. The message count by default is equal to two as the tile can processtwo request messages simultaneously. But in case only one request message is received bythe NI-RX, the message count is equal to one.
The control unit FSM

The control unit operates based on a FSM that handles reading packets, decoding packets,and processing packet requests to generate the required control and configuration signalsto the tile data path. Figure 4.7 shows the control unit main FSM. The main FSM consists offour states described as follows:
• Read packets state: The read packets state is the starting state that read either twopackets or one packet based on packet availability in the (NI_buffer). The read stateextracts the request messages from the received packet and stored them in an internalbuffer. The reading state checks for packet_count to be equal to two or the NI_bufferis empty to move to the next state which is the decode state for received requestmessages decoding.
• Decode messages state: The decode messages state is responsible to manage thedecoding stage to generate messages categories as shown in Table 4.1. The decodingstate also checks for the tile data path done signals (done_r, done_w, done_a) to be onein order to move to the process message requests. In case the tile data path is busyprocessing previous message requests, the next state is a waiting state until the tiledata path is free to process the current message requests.
• Wait state: The wait state checks the done signals from the tile data path (done_r, done_w,
done_a) to be one in order to move to the process messages request state.

• Process message requests state: The process state is responsible to control andconfigure the tile data path based on message categories received from the decodingstate. Also, this state monitors the data path operating states (i.e. busy or free) inorder to move to the read packets state in case all current message requests are fullyprocessed. Figure 4.8 shows the internal FSM of the process state. A description ofthe messages process FSM is presented as follows:
– Read message category state: In this state messages category are received fromthe decoding state. Afterward, the control unit sends a response message to thecompute tile source (request message source) with a grant message informingthe compute tile that a memory/accelerator data path is established for memoryreading/writing or accelerator mode. The grant message is a 32 location message,a similar size to the response message carrying grant signals to the compute tilewhich sent the request message. Based on the received messages category asshown in Figure 4.8 the next state is selected.
– Read and write state: In case (msg_cat == (RW)||(WR)), the read and write statesendsmemory selectmode (sel_mode ==mem), and start signals (start_r and start_w)to the tile data path memory read and write managers to establish memory read

103

4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture

Read
Packets

Decode
Messages

Process
Message
Requests

P
ac

ke
t_

co
un

t <
 2

 &
&

N
I_

bu
ffe

r
!=

 e
m

pt
y

Packet_count == 2 || NI_buffer == empty

Done_R == 1 &&
Done_W == 1 &&

Done_A == 1

Pck_remain == 0

Pck_remain != 0

Wait

Done_R == 0 ||
Done_W == 0 ||
Done_A == 0

Done_R == 1 && Done_W == 1 &&
Done_A == 1

Done_R == 0 ||
Done_W == 0 ||
Done_A == 0

Figure 4.7: The main FSM of the hybrid tile shows the four stages of the control unit.
and write paths simultaneously. Also, memory configuration parameters are sentto the on-chip memory access units. After the read and write processes areconducted and no remaining messages need to be processed, the next state isthe exit state.

– Read state: In case (msg_cat == (RA)||(RR)||(R)), the read state sendsmemory selectmode (sel_mode == mem), and start signal (start_r) to the tile data path memoryread manager to establish memory read data path. Also, memory configurationparameters are sent to the on-chip memory access read unit. According to thesecond message type (msg_2_type), the next state is determined. For example, if(msg_2_type == R) the next state is a read state. If (msg_2_type == A) the next stateis an accelerator state. After the read process is conducted and no remainingmessages need to be processed, the next state is the exit state.
– Write state: In case (msg_cat == (WA)||(WW)||(W)), the write state sends memoryselect mode (sel_mode == mem), and start signal (start_w) to the tile data pathmemory write manager to establish memory write data path. Also, memory config-uration parameters are sent to the on-chip memory access write unit. According tothe second message type (msg_2_type), the next state is determined. For example,if (msg_2_type == W) the next state is a write state. If (msg_2_type == A) the next stateis an accelerator state. After the write process is conducted and no remainingmessages need to be processed, the next state is the exit state.
– Accelerator state: In case (msg_cat == (AW)||(AR)||(AA)||(A)), the accelerator statesends accelerator select mode (sel_mode == acc), and start signal (start_a) to the tiledata path accelerator wrapper manager to establish accelerator data path and acti-vate the accelerator logic. Also, memory configuration parameters and acceleratorI/O configuration are sent to the accelerator manager and on-chip memory access

104

4.1 Hybrid Tile Architecture Implementation

Read
Message
Category

Accelerator
State

Read State

Write State

Read and
Write State

ExitMsg_cat. =
= (R

W) ||
(W

R)

Msg_cat. == (AW) ||
(AR) || (AA) || (A)

Msg_cat. =
= (RA) ||

(RR) ||
(R)

Msg_cat. == (WA) ||
(WW) || (W)

Done_R == 1 &&
Done_W == 1 &&
Msg_remain == 0

Done_R == 1 &&
Msg_remain == 0

Done_A == 1 &&

Msg_remain == 0

D
on

e_
W

 =
=

1
&

&
M

sg
_r

em
ai

n
==

 0

Msg_2_type == R &&
Done_R == 1 &&
Msg_remain == 1

Msg_2_type == A &&

Done_A == 1 &&

Msg_remain == 1

Msg_2_type == W
 &

&

Done_W == 1 &&

Msg_remain == 1

Msg_2_type == A &&

Done_A== 1 &&

Msg_rem
ain == 1

Msg_2_type == R &&

Done_R== 1 &&

Msg_rem
ain == 1

Msg_2_type == W &&

Done_W== 1 &&
Msg_remain == 1

Msg_2_type == A &&Done_A== 1 &&Msg_remain == 1

Figure 4.8: A detailed FSM of the messages processing stage.

read/write units. According to the second message type (msg_2_type), the nextstate is determined. For example, if (msg_2_type == W) the next state is a write state.If (msg_2_type == A) the next state is an accelerator state. After the acceleratorprocess is conducted and no remaining messages need to be processed, the nextstate is the exit state.
– Exit state: the exit state checks that all done signals are equal to one and noremaining messages need to be processed to move to the read packets state inorder to process new message requests.

The NoC packet generator

the NoC packets generator is implemented, similar to the same unit in the tile data path,to create response packets to be transmitted over the NoC to the destination tiles. Thepacket generator receives response messages from the FSM unit and split them into dataflits. Each data packet consists of 32 data flits with a header flit that contains the compute

105

4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture

tile destination. The packet generator streams the data to the NI-TX where each data packetrequires four clock cycles to be created.

4.2 Integration into Tile-based Many-Core System

The hybrid tile is integrated into a homogeneous RISC-V-based many-core system [15]. Thesystem is based on a NoC-based many-core architecture for FPGA devices as describedin Chapter 3. In this section, the integration between the homogeneous RISC-V basedmany-core system and the hybrid memory/accelerator tile is described. Also, the message-based communication protocol for data and control messages transmission over the NoCbetween compute (RISC-V-based tiles) and hybrid tiles is presented as well as related softwaremodules.

R

R

R

R

R

R

R

R

R

Compute
Tile-2

R

R

R

Compute
Tile-0

Compute
Tile-3

Compute
Tile-4

Compute
Tile-5

Compute
Tile-6

Compute
Tile-7

Compute
Tile-1

Hybrid
Mem./Acc.

Tile-0

Hybrid
Mem./Acc.

Tile-1
First Config.:

16-Cores,
1 Mem./Acc. -Tile

Second Config.:
32-Cores,

2 Mem./Acc.-Tiles

Figure 4.9: RISC-V based many-core configurations, configuration one: 16xRISC-V cores, andsingle hybrid memory/accelerator tile, configuration two: 32xRISC-V cores, and2xhybrid memory/accelerator tiles

106

4.2 Integration into Tile-based Many-Core System

4.2.1 System Overview

The homogeneous RISC-V-basedmany-core system consists of a scalable number of computetiles, each compute tile is based on a soft quad-core RISC-V based on RV32IMC ISA (RI5CYcore) [77]. In addition, compute tiles contain non-coherent shared data and instructionmemories between RISC-V cores connected through an AXI-4 interconnect. Compute tilesare connected to the NoC through a single NI. The NI is connected to the AXI-4 interconnectas a memory-mapped peripheral to RISC-V cores. An overview of the target manycore systemwith hybrid memory tiles is shown in Figure 4.9. The hybrid memory/accelerator tile isconnected to the NoC through two routers for data and control packets. Each router isconnected to a NI with 32-bit AXI-S interface, the NI has two channels for TX and RX. TheNI-RX contains a large FIFO of 8K locations to store the incoming packets prior to read packetprocess for both data and control packets. The whole system including RISC-V based computetiles, the NoC, and hybrid tiles are running on the same clock frequency.
Two tile-based many-core configurations are realized based on the number of computetiles/RISC-V cores and the number of hybrid memory/accelerator tiles. The first configurationconsists of four compute tiles with 16 RISC-V cores and one hybrid memory/accelerator tile.The second configuration contains eight compute tiles with 32 RISC-V cores and two hybridmemory/accelerator tiles. All control messages are created and sent by software kernelsrunning on RISC-V cores based on application requirements. During data transfer betweena compute tile and the hybrid tile, the received or transmitted data is handled by computetile NI which read or write the corresponding size of data from/to compute tile shared datamemory. All compute tiles NIs are managed and controlled by software kernels for memoryaccess operations inside the tile. A bare-metal programming method is supported by the tile-based many-core system for software kernels execution. For parallel kernels execution, staticapplication mapping and partitioning are conducted prior to execution over RISC-V-basedcompute tiles.

4.2.2 Message-based communication over NoC

The interaction between the compute tiles and the hybrid memory/accelerator tile is con-ducted through a message-based communication protocol. Where the compute tiles requestto access the on-chip memory or the accelerator through a set of control messages. Also,data transmission during memory read and write operations are conducted through datamessages between tiles. Messages are created by a RISC-V core inside compute tiles andtransmitted through the NoC to the destination tiles. For the tile-based many-core architec-ture, a circuit-switched-based NoC is used due to low-latency data transfer compared to apacket-switching NoC [11]. Data and control messages are transferred through the NoC ina form of packets. All packets consist of 33 flits, where each flit is 32-bit. The first flit is theheader flit which contains the destination address X_Y for either NI-Ctrl or NI-Data, as thehybrid tile is connected to different NoC routers for control and data packets. The other 32flits are the packet payload that contains data or control messages.
Three types of packets are supported as shown in Figure 4.10. First, the control requestpacket contains 8 flits carrying information for compute tile source address, requested modeof operation, memory read/read address, data write/read size, and hardware accelerator I/O

107

4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture

Ti
le

-S
o

u
rc

e

M
o

d
e

W
/R

A
d

d
re

ss
R

ea
d

A
d

d
re

ss
W

ri
te

Si
ze

R
e

ad

Si
ze

W

ri
te

H
W

 A
cc

I/
O

 C
o

n
fi

g

1 2 3 4 5 6 7 8 9 32

Un-used

H
ea

d
e

r

0

R
e

ad
 G

ra
n

t

W
ri

te
 G

ra
n

t

H
W

 A
cc

.
G

ra
n

t

1 2 3 4 32

Un-used

H
ea

d
e

r

0

1 32

Read/Write Data

H
e

ad
e

r

0

Header Flit Payload Flits

Ctrl. Packet (request) NI-RX (Ctrl. Packet)

Ctrl. Packet (response) NI-TX (Ctrl. Packet)

Data Packet NI-TX/-RX (dataPacket)

Figure 4.10: Structure of (1) request, (2) response control packets, and (3) data packets usedby the hybrid memory/accelerator tile.

configurations. Second, the control response packet is sent by the hybrid memory/acceler-ator tile to compute tile source carrying grant signals for read, write, or accelerator ready.Lastly, data packets have a fixed structure of 32 flits of data payload for both read and writedirections from/to hybrid memory/accelerator tiles. Based on mode of operations differentsoftware modules are used to control data transmission between compute tiles and hybridtiles. Also, two different sequence diagrams for message-based communication protocol aresupported for read and write data between compute tiles and hybrid tiles.
Memory read/write mode

For memory read/write mode a memory request message is created by a RISC-V core fromthe compute tile that request to access the on-chip memory on the hybrid tile. In orderto transmit memory request messages, a communication protocol is developed to ensureproper messages transmission between a compute tile and hybrid tile. As shown in Figure4.11, a sequence diagram of a memory read operation is presented. Where the computetile sends a request packet through the NoC carrying the request message to the hybrid tile(NI-Ctrl). After a period of time, based on the hybrid tile data path status, a response packet

108

4.2 Integration into Tile-based Many-Core System

Compute
Tile

Hybrid
Mem./Acc.

Tile
NI NI-Ctrl

Δt

St
re

a
m

in
g

th
e

d
a

ta
 b

et
w

ee
n

h

yb
ri

d
 t

ile
 t

o
 t

h
e

co
m

p
u

te
 t

ile

ti
m

e

N
I-

R
X

 F
IF

O

D0

Dn-1

Δt+T

Stream transmission
through the NoC

NI-Data

D0

Dn-1

Δt

Δt

Δt

Δt

Δt

D0

Dn-1

W
ai

ti
n

g
fo

r
gr

an
t

m
e

ss
ag

e
Se

n
d

 r
e

q
u

e
st

m

e
ss

ag
e

Figure 4.11: Sequence diagram of the data transfer process between a compute tile andhybrid memory tile in case of memory or accelerator data read.

is submitted to the source compute tile carrying the grant message. The grant messageinforms the compute tile about the readiness of the hybrid tile to respond to the sent requestmessage. In case the grant message informs the compute tile that the hybrid tile can notrespond to the submitted request, the compute tile resends again the request message till itreceives a grant message to start receiving read data memory from the hybrid tile.
Listing 4.1 shows a detailed description of the request message software module executedby a RISC-V core from compute tiles. Each compute tile has an allocated memory partitionon the hybrid tile on-chip memory for data writing. The request message array is created byassigning parameter values as mentioned in Figure 4.10. Afterward, the control packet iscreated by inserting the hybrid tile destination as mentioned in Listing 4.1 (Line:8) followedby the packet payload (Line: 9-10) and transmitting the packet through the NI-TX to the NoCrouter. Listing 4.2 shows a detailed description of the wait grant message software moduleexecuted by a RISC-V core from compute tiles. The compute tile receives a grant packetthrough the NI-RX as mentioned in (Line: 5-8) Listing 4.2. The compute tile starts to extractthe grant packet payload for read, write, or accelerator mode grant as mentioned in Figure4.10. The grant values are stored in compute tile shared memory in order for every RISC-V

109

4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture

1 #define mem_start_address 0x000_1000 // each compute tile has an allocated memory
partition in hybrid tile for write operations

2 #define mem_end_address 0x000_FFFF
3 uint32_t*const NI_TX = (uint32_t)*0xA000_0000; // NI peripheral address
4 req_msg[32] = {tile_source, mode, w_r, add_read, add_write, size_read, size_write,

acc_conf, 0, ..., 0}; // add_write+size_write should be within the tile allocated
partition

5 void hybrid_tile_request(uint_32t req_msg[32], uint_32t msg_size, uint_32t
hybrid_tile_dest) {

6 uint32_t = 0;
7 while(t < msg_size/32){
8 NI_TX->data = hybrid_tile_dest;
9 for(int m = 0; m < 32; m++){
10 NI_TX->data = req_msg[m+(32*t)];
11 }
12 }
13 return;
14 }

Listing 4.1: Hybrid memory/accelerator tile request software module executed on RISC-Vcores inside conpute tiles.

1 uint32_t*const NI_RX = (uint32_t)*0xA000_F000;// NI peripheral address
2 void wait_grant(uint_32t msg_size, uint_32t read_grant, uint_32t write_grant, uint_32t

acc_grant) {
3 uint_32t grant_msg[32];
4 for(int t = 0; t < msg_size/32; t++){
5 while(NI_RX->FIFO_data_count < 32);
6 for(int j = 0; j < 32; j++){
7 grant_msg[j+(32+t)] = NI_RX->data;
8 }
9 }
10 read_grant = grant_msg[1];
11 write_grant = grant_msg[2];
12 acc_grant = grant_msg[3];
13 return;}

Listing 4.2: Wait grant software module executed on RISC-V cores inside compute tiles.

core to be able to start sending or receiving data to/from the hybrid tile based on the modeof operation. All NIs are considered memory-mapped peripherals from the RISC-V coresinside the compute tile. Accordingly, hybrid memory/accelerator tiles are memory-mappedperipherals to compute tiles in the many-core system. A request message and wait grantsoftware modules can be executed in parallel by compute tile using two RISC-V cores withoutoverlapping due to the dual NI channels for TX and RX. For memory read operations, Listing4.3 shows a detailed description of the memory read software module executed on RISC-Vcores inside compute tiles. The compute tile receives read data packets from the hybridtile through the NI-RX as mentioned in (Line: 5-6) Listing 4.3. The compute tile starts toextract the data packet payload from the received multiple 32 flits of data (data message)

110

4.2 Integration into Tile-based Many-Core System

Compute
Tile

Hybrid
Mem./Acc.

Tile
NI NI-Ctrl

Δt

St
re

a
m

in
g

th
e

d
a

ta
 b

et
w

ee
n

co

m
p

u
te

 t
ile

 a
n

d
 h

yb
ri

d
 t

ile

ti
m

e

N
I-

R
X

 F
IF

O

D0

Dn-1

Δt+T

Stream transmission
through the NoC

NI-Data

D0

Dn-1

Δt

Δt

Δt

Δt

Δt

D0

Dn-1

W
ai

ti
n

g
fo

r
gr

an
t

m
e

ss
ag

e
Se

n
d

 r
e

q
u

e
st

m

e
ss

ag
e

Figure 4.12: Sequence diagram of the data transfer process between a compute tile andhybrid memory tile in case of memory or accelerator data write.
based on the requested memory read data size as mentioned in Figure 4.10. The receiveddata are stored in compute tile shared memory in order for every RISC-V core to be able toaccess it based on running application requirements. In figure 4.12, a sequence diagramof a memory write operation is presented. Where the compute tile sends a request packet
1 uint32_t*const NI_RX = (uint32_t)*0xA000_F000;// NI peripheral address
2 void mem_read(uint_32t data_array[data_size], uint_32t data_size) {
3 for(int t = 0; t < data_size/32; t++){
4 while(NI_RX->FIFO_data_count < 32);
5 for(int j = 0; j < 32; j++){
6 data_array[j+(32+t)] = NI_RX->data;
7 }
8 }
9 return;
10 }

Listing 4.3: Memory read software module executed on RISC-V cores inside compute tiles.

111

4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture

1 uint32_t*const NI_TX = (uint32_t)*0xA000_0000; // NI peripheral address
2 void mem_write(uint_32t data_array[data_size], uint_32t data_size, uint_32t

hybrid_tile_dest) {
3 uint32_t = 0;
4 while(t < data_size/32){
5 NI_TX->data = hybrid_tile_dest;
6 for(int m = 0; m < 32; m++){
7 NI_TX->data = data_array[m+(32*t)];
8 }
9 }
10 return;
11 }

Listing 4.4: Memory write software module executed on RISC-V cores inside compute tiles.

through the NoC carrying the request message to the hybrid tile (NI-Ctrl). After a period oftime, based on the hybrid tile data path status, a response packet is submitted to the sourcecompute tile carrying the grant message. The grant message informs the compute tile aboutthe readiness of the hybrid tile to respond to the sent request message. In case the grantmessage informs the compute tile that the hybrid tile can not respond to the submittedrequest, the compute tile resends again the request message till it receives a grant messageto start sending memory write data to the hybrid tile.
For memory write operations, Listing 4.4 shows a detailed description of the memory writesoftware module executed by RISC-V cores inside compute tiles. The compute tile transmitswrite data packets to the hybrid tile through the NI-RX as mentioned in (Line: 6-7) Listing 4.4.The compute tile inserts the hybrid tile address destination to create the data packet followedby the payload write data message. The number of transmitted data packets is based on therequested memory write data size as mentioned in Figure 4.10. The transmitted data areloaded from the compute tile shared memory to the NI-TX.
Accessing Accelerators from compute tiles

Hardware accelerators can be accessed from compute tiles for both reading and writing datathrough the NoC in a similar way to memory read/write operations. Hardware acceleratorlogic can be accessed by configuring the I/O interfaces to be connected to the NI-Data asshown in the tile data path Figure 4.5. Compute tiles use the same reading communicationprotocol as shown in 4.11 to read data from the hardware accelerator logic through theNoC. Listing 4.5 shows a detailed description of the accelerator read function executed byRISC-V cores inside compute tiles. The compute tile receives read data packets from theaccelerator logic through the NI-RX as mentioned in (Line: 5-6) Listing 4.5.
The compute tile starts to extract the data packet payload from the received multiple 32 flitsof data (data message) based on the requested accelerator read data size as mentionedin Figure 4.10. The received data are stored in compute tile shared memory in order forevery RISC-V core to be able to access it based on running application requirements. Onthe other hand, regarding writing data to accelerator logic, compute tiles use the samewriting communication protocol as shown in 4.12 to write data to the hardware acceleratorlogic through the NoC. Listing 4.6 shows a detailed description of the accelerator writefunction executed by RISC-V cores inside compute tiles. The compute tile transmits write

112

4.3 Evaluation

1 uint32_t*const NI_RX = (uint32_t)*0xA000_F000;// NI peripheral address
2 void acc_read(uint_32t data_array[data_size], uint_32t data_size) {
3 for(int t = 0; t < data_size/32; t++){
4 while(NI_RX->FIFO_data_count < 32);
5 for(int j = 0; j < 32; j++){
6 data_array[j+(32+t)] = NI_RX->data;
7 }
8 }
9 return;
10 }
11

Listing 4.5: Accelerator read software module from the accelerator logic in hybrid tileexecuted on RISC-V cores inside compute tiles.
1uint32_t*const NI_TX = (uint32_t)*0xA000_0000; // NI peripheral address
2void acc_write(uint_32t data_array[data_size], uint_32t data_size, uint_32t

hybrid_tile_dest) {
3 uint32_t = 0;
4 while(t < data_size/32){
5 NI_TX->data = hybrid_tile_dest;
6 for(int m = 0; m < 32; m++){
7 NI_TX->data = data_array[m+(32*t)];
8 }
9 }
10 return;
11}

Listing 4.6: Accelerator write software module to the accelerator logic in hybrid tile executedon RISC-V cores inside compute tiles.

data packets to the accelerator logic through the NI-RX as mentioned in (Line: 6-7) Listing4.6. The compute tile inserts the hybrid tile address destination to create the data packetfollowed by the payload write data message to accelerator logic. The number of transmitteddata packets is based on the requested accelerator write data size as mentioned in Figure4.10. The transmitted data are loaded from the compute tile shared memory to the NI-TX.

4.3 Evaluation

The hybrid tile architecture is evaluated based on hardware resource utilization and datatransfer latency to/from the hybrid memory tile with a set of use cases based on signalprocessing based kernels and custom hardware accelerators. Two homogeneous tile-basedmany-core configurations are used for evaluation as mentioned in Section 4.2. Xilinx VirtexUltrascale+ XCVU9P FPGA device [168] is the target FPGA for implementation and prototypingof the proposed hybrid tile and the target RISC-V-based many-core system. Also, VivadoDesign Suite HLx 2019.1 [169] is used for RTL synthesis, simulation, place and routing, and

113

4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture

full and partial bitstream generation. For evaluation, the homogeneous tile-based many-coresystem and the hybrid memory tile run at a clock frequency of 100 MHz.

4.3.1 FPGA Resource Utilization

The hybrid tile as mentioned in Section 4.1 consists of two main hardware units: the controlunit, and the data path unit. Each unit is implemented using a modular and hierarchicaldesign approach. Where internal components are implemented as intellectual property (IP)components to be integrated to build control and data path units. The used on-chip memoryis parameterized and its size can be changed during design time based on applicationrequirements and BRAM/URAM availability on the target FPGA. For the current evaluation,128 BRAM blocks are used with a total size of 512 KiB.
Table 4.2 shows hardware resource utilization of the tile data path components includingNI-Data. The tile data path features a low resource utilization overhead in terms of LUTsand FFs. Also, Table 4.3 shows the hardware resource utilization of the tile control unitcomponents. Similar to the tile data path, the control unit features a low resource utilizationoverhead which makes the hybrid memory/accelerator tile suitable for a wide range of FPGAdevices with different sizes and resource counts.
Table 4.4 shows the hardware resource utilization for the tile-based many-core architectureincluding RISC-V based compute tile, the NoC, and hybrid tiles used for the two many-coreconfigurations as mentioned in Section 4.2. The hybrid tile (without hardware accelerator)consumes∼ 5.5 KLUTs on FPGAs which is considered a low resource utilization in comparisonwith RISC-V compute tile and NoC resources. Therefore, a scalable number of hybrid tiles tosupport multiple accelerators or multiple memory banks can be realized with appropriateresource utilization on FPGAs. However, a larger NoC size is required which consumes higherresources. Therefore, a circuit-switched NoC is supported by the target many-core systemswhich consume fewer resources than a packet-switching NoC. Moreover, for the secondconfiguration considered for evaluation, 30.9%, and 21.9% of the total target FPGA LUTs andBRAMs are consumed respectively.

Table 4.2: Hybrid tile data path resource utilization on Xilinx XCVU9P.
Units LUTs FFs DSPs BRAMs
Memory Write Manager 203 409 0 0
Memory Read Manager 284 460 0 0
HW Accelerator Wrapper 601 811 0 3
NoC Packet Generator 475 611 0 0
Muxes + Demuxes 372 852 0 0
2xOn-Chip Memory Access 202 389 0 0
NI-Data 162 398 0 9
Total 2382 4075 0 12

114

4.3 Evaluation

Table 4.3: Hybrid tile control unit resource utilization on Xilinx XCVU9P.
Units LUTs FFs DSPs BRAMs
FSM + Packet Decoding 2892 3319 0 4
NoC Packet Generator 475 611 0 0
NI-Ctrl. 162 398 0 9
Total 2890 3319 0 13

4.3.2 Memory Mode Evaluation

To evaluate the memory mode of the proposed hybrid tile, memory copy functions areexecuted on RISC-V compute tiles to copy a block of data from the shared compute tile datamemory to the hybrid tile (write mode) or vice versa (read mode). Therefore, our evaluation isbased on measuring read and write throughput including NoC transfer latency and softwarekernels overhead of memory copy functions running on compute tiles.
Figure 4.13 shows read and write throughput between a single RISC-V based compute tileand a single hybrid tile for memory mode operation. For memory read mode, a maximumthroughput of 100 MB/s is achieved by transferring 64KiB of data from hybrid tile on-chipmemory to the shared compute tile data memory as shown in Figure 4.13 (a). The readingthroughput increases for large numbers of reading data sizes from the hybrid tile (e.g. 32 KiB,64 KiB). This is due to the decrease in the ratio between the software time overhead to readthe data by any compute tiles and data transmission time over the NoC for large data sizes.In case of a memory write mode, a maximum throughput of 400 MB/s is achieved by copyinga block of 64 KiB from the shared data memory of a compute tile to the hybrid tile as shownin Figure 4.13 (b). In the case of a read operation from the hybrid tile, the read data has topass by the NoC packet generator as in Figure 4.5 to create the data packet to be transferredto the destination compute tile through the NoC. Accordingly, four clock cycles are requiredto create one packet and send it to the NI-Data. Therefore, the achieved memory writethroughput is 4x the memory read throughput. A total maximum data transfer throughput of500 MB/s is achieved as the hybrid memory/accelerator tile supports simultaneously memoryread and write operations using a dual-ported on-chip memory.
Furthermore, several compute and memory-bound kernels are selected for the proposed

Table 4.4: Total resource utilization of many-core configuration-two on Xilinx XCVU9P.
Units LUTs FFs DSPs BRAMs
Single Compute Tile (32-bit Tile) 36579 15532 24 21
NoC (4x3) 61368 54005 0 0
Single Hybrid Memory/Accelerator Tile 5828 8258 0 153
Total (8xCompute Tile, 2xHybrid Tiles) 365196 194647 192 474
Percentage Utilization on XCVU9P 30.9% 8.23% 2.8% 21.9%

115

4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture

512 1K 2K 4K 8K 16K 32K 64K
Number of Bytes

80

85

90

95

100

105

110

Th
ro

ug
hp

ut
 (M

B
/s

)

Read Throughput

512 1K 2K 4K 8K 16K 32K 64K
Number of Bytes

240

260

280

300

320

340

360

380

400

420

Th
ro

ug
hp

ut
 (M

B
/s

)

Write Throughput(a) Memory read throughput.
512 1K 2K 4K 8K 16K 32K 64K

Number of Bytes

80

85

90

95

100

105

110
Th

ro
ug

hp
ut

 (M
B

/s
)

Read Throughput

512 1K 2K 4K 8K 16K 32K 64K
Number of Bytes

240

260

280

300

320

340

360

380

400

420

Th
ro

ug
hp

ut
 (M

B
/s

)

Write Throughput

(b) Memory write throughput.
Figure 4.13: Memory bandwidth evaluation between a single compute tile and a single hybridmemory/accelerator tile at a clock frequency = 100 MHz.

system evaluation. The goal of the evaluation is to measure the required compute latency andmemory transfer latency to the total execution time on the target RISC-V-based many-coresystem using the two many-core configurations depicted in Figure 4.9. The selected kernelsinclude matrix multiplication and signal processing software kernels (2D, 3D convolution, FFT)which are executed on the target many-core RISC-V system. The signal processing kernelsworkloads are parallelized (partitioned) over the specific number of compute and hybridmemory tiles based on the selected many-core configurations. The hybrid memory tile isused as a global shared memory over the NoC between all compute tiles for data sharing. Thehybrid tile on-chip memory includes all required data input to be transmitted to all computetiles upon request.
Initially, all compute tiles read the corresponding input data from the hybrid tile and storethem in their shared data memory. During computation, the shared data memory of each tileis used for internal computation by RISC-V cores. Shared data between tiles and final output

116

4.3 Evaluation

Matrix Matrix Multiplication

16x16 32x32 64x64
Matrix Size

0
12.5

25
37.5

50

100

150

200

250

C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)
2-D Convolution

16x16 32x32 64x64
Matrix Size

0
5

10
15
20

30

40

60

80

100

120

140

C

lo
ck

 C
yc

le
s

(K
ilo

 C
yc

le
s)

3-D Convolution

8x8x8 16x16x16
Matrix Size

0

10

20

40

60

80

100

120

140

160

C

lo
ck

 C
yc

le
s

(K
ilo

 C
yc

le
s)

FFT

1024 2048 4096
FFT N Points

0

20

40

60

80

100

120

140

160

180

200

C

lo
ck

 C
yc

le
s

(K
ilo

 C
yc

le
s)

Compute Latency
Memory transfer Latency

4734

Memory
Transfer
Latency

Computing
Latency

18942

75774

5502

22014

86137 82702

22014

9982

44030

88062

1706

9802

45022

3385

70632

21506

44889

93532

2800

21300

166876

(a) Total execution time for application kernels running on the first RISC-V many-core configuration(16xRISC-V cores, 1xhybrid tile).

Matrix Matrix Multiplication

16x16 32x32 64x64
Matrix Size

0
6.25
12.5

25

50

100

150

C

lo
ck

 C
yc

le
s

(K
ilo

 C
yc

le
s)

2-D Convolution

16x16 32x32 64x64
Matrix Size

0
2.5

5

10

15

20

30

40

50

60

70

C

lo
ck

 C
yc

le
s

(K
ilo

 C
yc

le
s)

3-D Convolution

8x8x8 16x16x16
Matrix Size

0

5

10

20

30

40

50

60

70

C

lo
ck

 C
yc

le
s

(K
ilo

 C
yc

le
s)

FFT

1024 2048 4096
FFT N Points

0

10

20

30

40

50

60

70

80

90

100

C

lo
ck

 C
yc

le
s

(K
ilo

 C
yc

le
s)

Compute Latency
Memory Transfer Latency

Memory
Transfer
Latency

Computing
Latency

3499

55819

2799

11055

44079

4990

41359

11006

22014

44030

1762

13925

11952

91836

603

4037

21016

1284

23544

11393

23164

47084

(b) Total execution time for application kernels running on the second RISC-V many-core configuration(32xRISC-V cores, 2xhybrid tiles).
Figure 4.14: Signal processing based kernels evaluation over tile-based many-core architec-ture with hybrid memory/accelerator tiles.

data are transferred to the hybrid memory tile. As shown in Figure 4.14, the evaluation isbased on total computation time by compute tiles multicore RISC-V and total memory transferlatency to/from the hybrid tile. The total compute time is the required execution time bycompute tiles using only their shared data memory to conduct internal computation without

117

4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture

accessing the hybrid tile. The total memory transfer latency includes the total read and writelatency by all compute tiles from/to the hybrid tile to/from their shared data memory duringsignal processing kernels execution. For matrix multiplication kernels ∼70% of executiontime is consumed by computation. On the other hand, for 2D and 3D convolution ∼66%of execution time is consumed by memory transfer. The percentage for computing andmemory transfer latency is approximately the same for FFT kernels ∼50%. As shown in Figure4.14 (a), the computation time of all kernels is reduced by ∼50% compared to Figure 4.14(b). On the other hand, memory transfer latency does not scale by the same factor using twohybrid memory tiles for all signal processing kernels due to NoC congestion in case of largesize of the transfer data.

4.3.3 Accelerator Mode Evaluation

In order to evaluate the hybrid memory/accelerator tile in the acceleration mode, severalcustom hardware accelerators are developed and generated using Vivado HLS and integratedinside the accelerator wrapper unit as shown previously in Figure 4.5. All generated hardwareaccelerators have a single input/output 32-bit AXI-S interface. As shown in Table 4.5, fourhardware accelerators from the signal processing domain are developed, generated andsynthesized. Those accelerators are: 1) 3D convolution (16x16x16) kernel [89], Xilinx FFT IP(N = 4K points) [173], 3) synthetic aperture radar (SAR) backprojection algorithm [91], and4) material characterization cost function algorithm [92]. Resource utilization for hardwareaccelerators is shown in Table 4.5. The first two accelerators (3D convolution, Xilinx FFT IP)are considered small size accelerators with low memory footprint required for PLMs.
On the other hand, the third and fourth accelerators (SAR backprojection, and materialcharacterization cost function) are considered large accelerators size with high memoryfootprint requirements for PLMs in terms of BRAM blocks. For evaluation, a compute tilesends a request packet to configure the hybrid tile to the accelerator mode and set theaccelerator wrapper interface to be connected to the on-chip memory for read and write data.The request packet contains the start address for input and output data in the memory aswell as the specific size of data to be stored or loaded from the PLM. Similar to our evaluationfor memory mode, compute and memory transfer latency are measured for all four hardwareaccelerators as shown in Figure 4.15.
Accordingly, memory latency is the data transfer time between accelerator logic and on-chipmemory in the hybrid tile. It indicates accelerators memory bound degree. For example,the 3D convolution consumes more compute time than memory latency therefore it is acompute-bound application compared to Xilinx FFT IP which is a memory-bound application

Table 4.5: Hardware accelerator resource utilization on Xilinx XCVU9P.
Hardware Accelerator Kernel LUTs FFs DSPs BRAMs
3D Convolution (16x16x16) 1099 1026 9 3
Xilinx FFT IP (N = 4K points) 3135 4984 15 6
SAR Backprojection Function 11527 9930 24 150
Material Characterization Cost Function 37872 31589 219 45

118

4.4 Summary

3D Convolution Accelerator Kernel (HLS-based)

Computing Latency Memory Latency
0

25
50

100

150

200

250

300
#C

lo
ck

 C
yc

le
s

(K
ilo

 C
yc

le
s)

Xilinx FFT IP Core

Computing Latency Memory Latency
0

20

40

60

80

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)

SAR BackProjection Accelerator Kernel (HLS-based)

Computing Latency Memory Latency
0

20

40

60

80

100

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)

Material Characterization Cost Function Accelerator Kernel
 (HLS-based)

Computing Latency Memory Latency
0

5

10

15

20

25

#C
lo

ck
 C

yc
le

s
(K

ilo
 C

yc
le

s)
Figure 4.15: Hardware accelerator performance evaluation.

as shown in Figure 4.15. On the other hand, the SAR backprojection algorithm is a computeand memory-bound application that requires a large memory size and long memory latencyfor processing large data sizes (360KB of data). Therefore, the hybrid tile supports bothcompute and memory-bound accelerators with large data sets.

4.4 Summary

Chapter 4 presents a novel hybrid memory/accelerator tile architecture for tile-based many-core systems. The hybrid tile supports two modes of operations which are selected duringrun-time as a memory or an accelerator tile. The hybrid tile is based on a modular andreusable architecture implementation that can be seamlessly integrated into a tile-basedmany-core system. Tile controlling and configuration are conducted through a message-based communication protocol. Where control signals and data are carried through theNoC using control and data messages. The proposed tile is evaluated using two tile-basedmany-core configurations with different numbers of RISC-V cores and multiple instants ofhybrid memory/accelerator tiles. The evaluation shows low hardware resource requirementper single hybrid tile and a maximum data transfer of 500 MB/s between a single computetile and a single hybrid tile.
Section 4.1 presents the hybrid tile architecture implementation for FPGA-based many-coresystems. The hybrid tile provides the flexibility to seamlessly integrate LCAs into tile-basedmany-core architecture. In addition, during accelerator inactive time, the hybrid tile allowsthe re-use of accelerator PLM as a shared scratchpad memory between many-core computetiles. Therefore, the hybrid tile allows efficient reuse of FPGA on-chip memory based onapplication requirements at runtime. The hybrid tile consists of two main architectural parts.The first part is the tile data path which is responsible to establish several data paths betweenthe hybrid tile NI-Data and on-chip memory based on the requested mode of operation.

119

4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture

Three data paths for memory read, write, and acceleration modes can be established basedon the received request messages from compute tiles. The tile data path is controlled by thehybrid tile control unit which is the second architectural component. The tile control unit isresponsible to receive and transmit request and response messages from/to compute tiles.It decodes the received control packets through the NoC to extract the request messages inorder to identify the mode of operation. In addition, the control unit has a FSM that managesand controls the tile data path by sending and receiving control and configuration signals toensure proper functionality of the tile data path and monitors its status.
Section 4.2 presents the integration between the hybrid memory/accelerator tile and thetile-based many-core systems. A message-based communication protocol is developed tomanage and control the data transfer between the hybrid tile and compute tiles throughthe NoC. The hybrid tile is integrated to the many-core NoC through two NIs using tworouters one for data and the second for control signals to avoid control and data packetsoverlapping during operations. LCAs with AXI-S interfaces are seamlessly integrated into thehardware accelerator wrapper inside the tile data path. The hybrid tile only supports a singleLCA. Several software modules for sending/receiving control packets, and read and writeoperations to/from the hybrid tile are developed based on a message-based communicationprotocol. Software modules are executed from RISC-V cores inside compute tiles using theshared memory to load/store control and data packets to NIs. Two tile-based many-coreconfigurations are realized for evaluation. The first configuration consists of 4xcompute tiles(16xRISC-V cores) with a single hybrid tile. The second configuration consists of 8xcomputetiles (32xRISC-V cores) and two hybrid tiles.
Finally, Section 4.3 presents the evaluation and obtained experimental results of the hybridmemory accelerator tile using several use cases based on signal processing kernels andhardware accelerators for performance evaluation in terms of memory transfer latency andcomputing time for two tile-based many-core configurations. The hybrid tile features lowresource utilization in terms of LUTs and FFs which make it suitable for a wide range of FPGAsizes. The hybrid tile provides a memory bandwidth of 100 MB/s to a single compute tilefor read operation. For the memory write operation, a memory bandwidth of 400 MB/s isachieved between a single compute tile and a single hybrid tile. Overall, a maximum memorybandwidth of 500 MB/s is achieved by a single hybrid tile for simultaneous read and writeoperations. Several hardware accelerator kernels from the signal-processing domain areused to evaluate the hybrid tile acceleration mode. The evaluation is based on acceleratorlogic computing time and memory transfer latency between on-chip memory (PLM) andaccelerator logic.

120

5 Reconfiguration Management for
Self-Adaptive RISC-V based
Many-Core Architectures

Nowadays edge and near-sensor applications are creating new challenges and motivationtoward new computing paradigms based on openness and flexibility as well as energyefficiency and high performance. Hence, the focus is shifted toward the development of agilehardware platforms to offer the required computing performance in parallel with modularity,adaptability and openness. Therefore, FPGAs by their adaptability and reconfigurabilityfeatures along with the modularity and open-source characteristics of RISC-V ISA lay themotivation towards the realization of agile hardware platforms.
Several state-of-the-art platforms combine a RISC-V processor (either as a soft or hardcore) with an FPGA fabric on the same chip. For IoT and industrial applications, MicrochipPolarfire SoC [174] tightly couples a quad-core RISC-V-based processor supporting a Linuxoperating system with a low-power FPGA fabric on a single chip. The Microchip Polarfireplatform can provide offloading of application tasks from the programmable RISC-V-basedprocessor to the FPGA fabric during run time where the FPGA fabric hosts several hardwareaccelerators based on the target application domain. Moreover, Flexbex [175] and Arnold[176] provide the extension of a RISC-V-based microcontroller unit with an embedded FPGA(eFPGA) for ultra-low power devices suitable for near-sensor and embedded computing.However, the above-mentioned RISC-V-based FPGA platforms lack the capability of DPR toexchange selected kernels of the running application on the FPGA fabric without halting thewhole application.
Furthermore, those RISC-V-based FPGA platforms are designed for low-power applicationsand are not suitable for dynamic and high-workload applications due to the limited size ofthe eFPGA and the high development cost. Therefore, high-end FPGAs such as Xilinx orIntel devices are considered the most suitable platforms for dynamic and high workloadsapplications. Those high-end FPGAs support the DPR feature to enable the fragmentation ofthe FPGA fabric into multiple isolated partitions with different sizes to host multiple hardwaremodules that can be swapped during runtime without halting other hardware modules onthe static region. Also, they feature fast prototyping for a wide range of SoC implementationshosting several types of soft-core processors with multiple hardware-accelerated modules.
In this chapter, a novel reconfiguration management approach dedicated to FPGA-basedRISC-V SoC is developed and implemented. The proposed approach extends the FPGA-basedRISC-V SoCs to support DPR for their tightly coupled reconfigurable accelerators for more

121

5 Reconfiguration Management for Self-Adaptive RISC-V based Many-Core Architectures

flexibility and dynamic workload. The proposed reconfiguration management approachconsists of a hardware-implemented part called (RV-CAP) for DPR controlling on the FPGAfabric and a set of software drivers and application programming interfaces (APIs) to managethe DPR process from a programmable software environment from a RISC-V core [21].
Existing research platforms do not fully meet modularity and self-adaptability requirementsfor heterogeneous RISC-V-based multi-/many-core systems. In Chapter 3, a modular tile-based architecture for multi RISC-V ISAs is presented with several heterogeneous typesof compute tiles that can be configured during design time. In this Chapter, a novel self-adaptive tile-based many-core architecture for heterogeneous RISC-V-based many-coreconfigurations targeting FPGA devices is presented targeting FPGA devices. The proposedarchitecture satisfies the requirements of self-adaptability and modularity for highly scalableheterogeneous RISC-V-based many-core systems on FPGAs.
The reconfiguration management unit is integrated within the main processing tile of the tile-based many-core architecture in order to support the adaptability feature for the proposedarchitecture by self-managing the DPR process from the main processing tile to change thetype of compute tile of the tile-based architecture at run-time.
The Chapter is structured as follows. Section 5.1 presents the internal DPR managementunit for self-adaptive RISC-V-based SoC. The DPR management unit is developed based on ahardware reconfiguration management unit called RV-CAP suitable for RISC-V-based SoC. Inaddition, the RV-CAP is integrated first on a single core RISC-V-based SoC for development andevaluation. Section 5.2 presents the set of APIs and the software abstraction layer to controland manage the RV-CAP unit from the RISC-V core. Moreover, the proposed reconfigurationapproach supports the integration of DPR vendor controllers such as Xilinx AXI-HWICAP [177]through a custom set of APIs to control it from the RISC-V core. Section 5.3 presents theevaluation of the reconfiguration management unit in terms of required resource utilizationby the hardware-based unit (RV-CAP), and the achievable reconfiguration time by using boththe RV-CAP and Xilinx AXI-HWICAP controllers. In addition, a set of image processing-basedaccelerators is used as reconfigurablemodules (RM) targeting a single reconfigurable partition(RP) within the RISC-V-based SoC for evaluation. Section 5.4 presents the integration ofthe proposed reconfiguration management unit into the tile-based many-core architecture.Finally, Section 5.5 summarizes this chapter.

5.1 Internal Dynamic Partial Reconfiguration Management for
Self-Adaptive RISC-V based SoC

This section presents an internal DPR manager suitable for FPGA-based RISC-V SoC thatoffers a hardware/software management of the reconfiguration process at run-time. The DPRmanager is targeting high-end FPGA devices, in our case we are targeting Xilinx FPGA devicesthat feature the DPR capability. The DPR manager consists of an internal DPR controllercalled RV-CAP responsible for low-level control of the DPR process over the FPGA fabric andloosely coupled with the RISC-V soft-core within the SoC. In addition, a set of software driversand APIs to manage the reconfiguration process from the RISC-V core within a programmablesoftware environment. Moreover, the selected FPGA-based RISC-V SoC is equipped witha 64-bit RISC-V application class processor compatible with the RV64GC ISA (Ariane core)similar to the RISC-V core used by the main processing tile for the tile-based architecture

122

5.1 Internal Dynamic Partial Reconfiguration Management for Self-Adaptive RISC-V based SoC

presented in Chapter 3. Hence, the chosen SoC is capable of executing medium-workloadapplications with multiple coupled hardware accelerators for different hardware-acceleratedtasks. In this section, the target FPGA-based RISC-V SoC is described first followed by adetailed description of the RV-CAP controller architecture.

5.1.1 FPGA-based RISC-V SoC

An open-source RISC-V SoC architecture (CVA6) [78] based on a 64-bit, single-issue, in-order RISC-V core (RV64IMAC Ariane) is used for the development of the proposed internalDPR manager. The RV64IMAC ISA supports multiply/divide, and atomic memory operationsbesides integer operations. Therefore, the used Ariane core configuration complies withthe RISC-V 64-bit ISA and supports variable compressed instructions length (C). Besides,hardware implementation of multiplication and division units within the execution stage.Thus, Ariane has been chosen for its characteristic as an application class processor suitablefor medium-workload SoC implementations.
Figure 5.1 shows a schematic overview of the target FPGA-based RISC-V SoC. The SoC isusing a bus-based architecture based on a 64-bit AXI-4 interconnect where the Ariane core,SoC peripherals and hardware accelerators are communicating through a shared bus. TheAriane core is the master unit on the AXI-4 interconnect, while the rest of the peripherals areslave memory-mapped components within the core’s address space ranges. In addition, anon-chip boot memory is used to store the application instructions for execution. Moreover,

AXI-4 Interconnect

RV 64-bit
IMACBoot

ROM
UART
Ctrl.

RP

RM n
RV-CAP

AXI CLK Conv.

DDR
Ctrl.

SPI

AXI DW Conv.

RM 0

I D

64-bit RISC-V based SoCInternal dynamic partial reconfiguration management

32-bit

64-bit

100 MHz

200 MHz
AXIS

SD-Card UART

DDR

ICAPFPGA floorplan

Config. Mem.

AXI-4
AXI CLK Conv.

100 MHz

AXI CLK Conv.

A
X

I
C

LK
 C

o
n

v.

1
0

0
 M

H
z

Figure 5.1: A schematic overview of the target self-adaptive RISC-V based SoC [21].

123

5 Reconfiguration Management for Self-Adaptive RISC-V based Many-Core Architectures

the AXI-4 interconnect allows tightly coupled integration of several hardware accelerators tothe Ariane core. Therefore, one or multiple RPs can be created for hosting different RMs ofhardware accelerators.
The SoC uses a set of open-source non-coherent on-chip communication components forAXI data-width converter, and AXI clock converters [165] that are useful for the integrationof different peripherals operating with different clock frequencies and supporting differentdata widths (e.g. DDR, UART, SPI controllers). In addition, the integration of the proposedinternal DPR manager requires the insertion of an additional AXI clock converter betweenthe main AXI-4 bus and the DDR memory controller as the DPR manager is operating at aclock frequency of 100 MHz suitable for the hard-core ICAP interface on the FPGA floorplan.Also, optional AXI clock converters and AXI data width converters can be inserted betweenthe hosted hardware accelerators by RPs and the main AXI-4 bus.
Furthermore, a set of software drivers to access the SoC I/O peripherals have been developedin order to load the partial bitstreams from an external SD-card to the SoC DDR memory.In addition, a set of utility modules to communicate with memory-mapped peripherals forreading and writing data through the core address space range. For reading and writinglogical blocks from the SD-card, the serial peripheral interface (SPI) is used to communicatebetween the AXI-4 bus and the external SD-card. Therefore, a set of file I/O software functionsis developed based on the minimalist file allocation table (FAT32) implementation to supportreading, writing, and overwriting of partial bitstream files. Afterwards, a set of softwaretimer modules are created to count the clock cycles to measure the reconfiguration timeof different partial bitstream sizes. For RISC-V core programming, the RISC-V GNU compilertoolchain [167] is used to compile the application source codes (i.e., C codes) for the RV6IMACarchitecture.

5.1.2 DPR Controlling Unit (RV-CAP)

The RV-CAP controller for the proposed DPR manager is shown in Figure 5.2. The RV-CAParchitecture features a high throughput data transfer rate to the FPGA configuration memorythrough the hard-core ICAP primitive during DPR reconfiguration process to achieve a smallreconfiguration time for large FPGA partition sizes. In addition, auxiliary functions relatedto direct data streaming between the DDR and hosted hardware accelerator modules aresupported. This is only in the case of loosely coupled accelerators directly attached to theinternal SoC AXI interconnect. Therefore, the RV-CAP controller supports two modes ofoperation described as follows:
• DPR mode of operation: In this mode, the RV-CAP is used to manage partial bit streamdata transfer between the external DDR and the internal configuration memory of theFPGA through the ICAP primitive. The RV-CAP acts as a custom internal ICAP controllerfor managing the DPR process.
• Hardware accelerator mode of operation: In this mode, the RV-CAP is used to managestream data transfer from/to hardware accelerator modules hosted by a single RP andthe external DDR memory as shown in Figure 5.1.

The RV-CAP controller has four interfaces to communicate and for data transfer with theRISC-V-based SoC. Two 64-bit AXI interfaces to the main AXI-4 crossbar for controlling theDMA controller, and R/W control signals to the configuration mode of operation interface

124

5.1 Internal Dynamic Partial Reconfiguration Management for Self-Adaptive RISC-V based SoC

Xilinx
DMA

Controller

Configuration Mode
Interface

AXIS
Switch

AXIS2ICAP

RV-CAP Controller

64-bit AXI-4

32-bit AXI-Lite

64-bit AXIS_S

64-bit AXIS_M
64-bit AXIS_M Write data to RM

Read data from RM

64-bit
AXIS_M

Partial
Bitstream

ICAP_WE

R
P

IC
A

P
 P

rim
itive

Select_mode
R

/W
 f

ro
m

 D
D

R

Streaming Data Control Signals

AXI Data
Width &
Protocol

Conv.

64-bit AXI-4
DMA_base_address RV-CAP_base_address

32-bit

6
4

-b
it

Figure 5.2: Overview of the RV-CAP controller architecture [21].
as shown in Figure 5.2. In addition, two interfaces for the partial bitstream and RM streamdata transfer from the external DDR to the ICAP primitive or the RM based on the RV-CAPmode of operation. The RV-CAP is fully controlled by the RISC-V core as a memory-mappedslave peripheral. On the other hand, the RV-CAP is a master unit when it interacts with theDDR controller through the DMA for read and write stream data. The RV-CAP is working at asingle clock source (100 MHz) in a fully synchronized design. Therefore, the RISC-V-basedSoC has three clock domains as shown in Figure 5.1 for the DDR controller, the internalDPR manager, and the rest of the system. The RV-CAP internal architecture consists of thefollowing architectural components described as follows:
1. A Xilinx DMA controller IP [178] connected to the SoC DDR controller through anadditional crossbar as shown in Figure 5.1. Thus, the DMA controller is a mastercomponent to the DDR controller as well as the RISC-V processor. TheDMA is configuredto transfer a 64-bit data word from the RISC-V-based SoC DDR memory to either theICAP interface or the RM based on the selected mode of operation. The DMA blockingmode is selected during partial bitstream loading to the FPGA configuration memory.
2. AXI data width and protocol converters are used to convert between the 64-bit AXI-4standard of the main 64-bit AXI interconnect to the 32-bit AXI-lite control interface ofthe Xilinx DMA.
3. A configuration mode interface is implemented to R/W controlling signals to select theRV-CAP mode of operation either the DPR mode or the hardware accelerator mode.
4. An AXI-stream switch is inserted between the Xilinx DMA and the ICAP and RM datainput interfaces to select whether the RV-CAP controller is operating on the DPR mode

125

5 Reconfiguration Management for Self-Adaptive RISC-V based Many-Core Architectures

or the accelerator mode by connecting the DMA data stream interfaces to the RM orthe ICAP primitive.
5. An AXI-stream to ICAP converter is implemented to connect the AXI-stream data to theICAP data port and convert between the 64-bit data stream to a 32-bit data streamcompatible with the ICAP primitive input data width. The AXIS2ICAP block shown inFigure 5.2 is responsible to convert a data word of 64-bit fetched from the DDRmemoryinto two 32-bit data words, which are written in order to the ICAP data port. Also, thevalid stream signal is inverted and connected to the icap_we port. as the ICAP is operatingin the writing mode into the configuration memory. The read/write select input port ispermanently set to zero.

5.2 Application Programming Interfaces (APIs) and Abstraction
Layer

The reconfiguration process is done through three steps in order to successfully load a newpartial bitstream with a new RM into the RP. It starts by first loading the RMs partial bitstreamfiles from the SD-Card to specific DDR memory addresses. Where each RM is stored ona specific partition on the DDR memory. Second, the RV-CAP is configured to operate inthe DPR mode of operation. Afterwards, the reconfiguration process starts by reading thepartial bitstream of a specific RM from the DDR and load it to the FPGA configuration memorythrough the RV-CAP controller. The three steps are fully managed and controlled by the RISC-V core through a set of APIs creating a software abstraction layer to manage and control thereconfiguration process from a software programmable environment. This section presentsand describes the RV-CAP APIs to manage and abstract the reconfiguration process from theRISC-V core. In addition, the potential to support other DPR vendor controllers such as AXIHWICAP [177] is elaborated.

5.2.1 RV-CAP APIs

The interaction between the RV-CAP unit and RISC-V core is conducted through a set of APIsoftware modules. Where the RISC-V core manages the reconfiguration process by selectingthe desired RMs to be loaded based on application requirements. The aforementioned threesteps of the reconfiguration process are fully managed through software modules runningon the RISC-V core.
As shown in Listing 5.1, the first step (line:2) is initializing all RMs by reading all partial bitstreamfiles from the SD-Card and storing them on the external DDR memory. The second and third
1 // initializing all RMs and load partial stream from SD-Card to the SoC DDR
2 init_RM (RM, RM_number, pbit_fat_partition);
3 // initialize RV-CAP reconfiguration process
4 init_reconfig_process (RM, config_mode);

Listing 5.1: RM initialization and reconfiguration process API software modules to control theRV-CAP from RISC-V core.

126

5.2 Application Programming Interfaces (APIs) and Abstraction Layer

steps (line:4) are the selection of mode configuration to be the DPR mode of operation andafterwards start the reconfiguration process. In more detail, Listing 5.2 shows a detaileddescription of the RMs initialization modules. Each RM has a specific size and start addressto store on the external DDR memory as mentioned in Listing 5.2 (line:1-5) pr_module. theprocess starts by reading a specific RM partial bit file using the FAT file systems (line:16) fromthe SD-Card and storing it to the RM location on the DDR (RM[i].start_adr, RM[i].byte_size). TheRM initialization software module is responsible to load a specific number of RMs for differentRPs. Therefore, the RM initialization software module is suitable for multi-partition design.
Listing 5.3 shows a detailed description of the RV-CAP reconfiguration process softwaremodule. After loading all RMs for all existing RPs in the design, the RISC-V core has toselect which RM partial bit file is needed to be active. The reconfiguration process can onlyreconfigure a single RP with a single RM at a time. Therefore, if multiple RPs have to bereconfigured, the reconfiguration process has to be repeated sequentially over the numberof selected RMs. As shown in Listing 5.3 (line:2-3), the reconfiguration process starts byreading the start address and the size of the partial bit file of the selected RM. Afterwards,the RV-CAP mode of operation is set to the DPR mode of operation (line:4).
The next step as shown in Listing 5.3 (line:5) is the Xilinx DMA initialization (DMA_start) to startthe Xilinx DMA reading channel for data streaming between the DDR and the ICAP primitiveto load the RM partial bit file to the configuration memory. The DMA starts to write the datafrom the external DDR to the AXIS2ICAP block in Figure 5.2 through the DMA write stream
1 typedef struct{
2 char fname[13]; // filename on SD card
3 uint8_t *start_adr; // DDR start address on the DDR
4 uint32_t byte_size; // partial bitstream size
5 } pr_module;
6
7 typedef struct{ // fat partition parameters for loading partial bitstream files from

the SD-Card
8 uint32_t fat_begin ;
9
10 uint32_t cluster_loaded ;
11 } fat_partition;
12 // RM initialization software function
13 void init_RM (pr_module *RM, uint32_t RM_number, fat_partition *pbit_fat_partition){
14 uint32_t pr_module_data[pr_mod_data_size];
15 for(uint32_t i=0; i<RM_number; i++){
16 uint32_t bit_file = open_file(RM[i].fname, pbit_fat_partition);
17 uint8_t *start_adrress = pr_module_data + i * pr_mod_data_size;
18 uint32_t bytes_read = read_file(start_adrress, bit_file.size); // read a

partial bit file from the SD-Card and store it on a specific location on the DDR
19 RM[i].start_adr = start_adr;
20 RM[i].byte_size = bytes_read;
21 }
22 return 0;
23 }

Listing 5.2: An overview of the RM initialization API software module.

127

5 Reconfiguration Management for Self-Adaptive RISC-V based Many-Core Architectures

1 void init_reconfig_process (pr_module *RM, uint32_t config_mode){
2 uint32_t start_address = RM->start_adr;
3 uint32_t byte_size = RM->byte_size;
4 write_reg(RV_CAP_BASE, config_mode); // select RV-CAP mode of operation to be DPR
5 dma_start(); // start DMA
6 dma_write_stream_start(start_address, byte_size); // start data transfer from the DDR

to the RV-CAP
7 return 0;
8 }

Listing 5.3: An overview of the RV-CAP reconfiguration process API software module.

module as shown in Listing 5.3 (line:6). Listing 5.4 shows a detailed description of the DMAwrite module. The module is responsible to configure the Xilinx DMA IP through the DMAcontrol interface (DMA_base_address) in Figure 5.2. The DMA configuration is conducted bysetting the DMA control register to work in the normal mode of operation as shown in Listing5.4 (line:5), and setting the start address and data transfer size (line:6-7).

5.2.2 Supporting DPR Vendor Controller

Xilinx provides several hardware solutions that enable an embedded soft-core processorto manage and control the DPR process through a set of software modules. Among thosesolutions, Xilinx offers an IP core called AXI HWICAP. In a conventional way, a master soft-coreprocessor or a control unit (e.g., MicroBlaze) is used to manage the transmission of partialbitstreams from a storage unit (e.g., DDR) to the ICAP primitive on the FPGA floorplan to loadthe configuration memory.
In this subsection, an alternative DPR controller unit (AXI HWICAP) is used to allow the RISC-Vcore to take over the task of the master unit to manage the writing process to the FPGAconfiguration memory through the ICAP primitive. Some modifications have been done tointegrate the AXI HWICAP IP core into the RISC-V based SoC. On the hardware side, we adda data width converter (from 64-bit to 32-bit) as well as a protocol converter (from AXI4 toAXI4-Lite) to match the IP core AXI4-Lite slave specifications.
1 #define DMA_MM2S_CR (DMA_BASE + 0x00) // DMA control register base address
2 #define DMA_MM2S_SA (DMA_BASE + 0x18) // DMA source address register base address
3 #define DMA_MM2S_LENGTH (DMA_BASE + 0x28) // DMA transfer length register base address
4 void dma_write_stream_start (uint32_t* start_address, uint32_t byte_size){
5 write_reg(DMA_MM2S_CR, 0); // set the DMA control register to run on the normal

mode
6 write_reg(DMA_MM2S_SA, start_address); // set the DMA start address from the DDR
7 write_reg(DMA_MM2S_LENGTH, byte_size); // set the DMA data stream size to read from

the DDR
8 return 0;
9 }

Listing 5.4: An overview of the DMA write API software module.

128

5.2 Application Programming Interfaces (APIs) and Abstraction Layer

AXI-4 Interconnect

RISC-V 64
IMACBoot

ROM
UART
Ctrl.

RP

RM n
Xilinx

AXI-HWICAP

AXI CLK Conv.

DDR
Ctrl.

SPI

AXI DW Conv.

RM 0

I D
32-bit

64-bit

100 MHz

200 MHz

SD-Card UART

DDR

ICAPFPGA floorplan

Config. Mem.

AXI CLK Conv.

AXI CLK Conv.

100 MHz

AXI DW &
Protocol Conv.

32-bit

64-bit AXI-4 full

AXI-4 Lite

Figure 5.3: A schematic overview of the target self-adaptive RISC-V based SoC with XilinxAXI-HWICAP controller.

Figure 5.3 shows a schematic overview of the RISC-V-based SoC with the Xilinx AXI HWICAPcontroller with the extra AXI data width and clock converters needed for the integration. TheAXI HWICAP is also running on the same clock frequency of 100 MHz similar to the operatingfrequency of the RV-CAP controller. Furthermore, we re-sized the internal write FIFO of theAXI HWICAP module to 1024 locations to improve the time transfer during data transferbetween the DDR and the ICAP interface through the AXI HWICAP internal FIFO. Similar toRV-CAP controller, to allow the AXI HWICAP to be controlled by the RISC-V core, a set of APImodules has been developed to enable partial reconfiguration through the ICAP.
Similar to the RV-CAP controller, As shown in Listing 5.5, the reconfiguration process isconducted through multiple steps. In the case of AXI HWICAP only two steps are required.The first step as shown in Listing 5.5 (line:2) is initializing all RMs by reading all partialbitstream files from the SD-Card and storing them on the external DDR memory. The secondstep (line:4) is the reconfiguration process by configuring the AXI HWICAP to start receiving
1 // initializing all RMs and load partial stream from SD-Card to the SoC DDR
2 init_RM (RM, RM_number, pbit_fat_partition);
3 // initialize reconfiguration process through AXI-HWICAP
4 init_reconfig_process_hw_icap (RM);

Listing 5.5: RM initialization and reconfiguration process API software modules to control theXilinx AXI-HWICAP from RISC-V core.

129

5 Reconfiguration Management for Self-Adaptive RISC-V based Many-Core Architectures

1 void init_reconfig_process_hw_icap (pr_module *RM){
2 init_hw_icap(); // initialize the AXI HWICAP
3 uint32_t start_address = RM->start_adr;
4 uint32_t byte_size = RM->byte_size;
5 hw_icap_write(start_address,byte_size); // start writing partial bit stream from

the DDR to the AXI HWICAP
6 hw_icap_done(); // check for AXI HWICAP done process for successful transfer of

partial bit file
7 return 0;
8 }

Listing 5.6: An overview of the AXI-HWICAP reconfiguration process API software module.

the partial bitstream data from the DDR through the AXI interconnect and write it to theconfiguration memory through the ICAP interface.
Listing 5.6 shows a detailed description of the AXI HWICAP reconfiguration process softwaremodule. After loading all RMs for all existing RPs in the DDR, the RISC-V core has to select whichRM partial bit file is needed to be active. The reconfiguration process can only reconfigure asingle RP with a single RM at a time. Therefore, if multiple RPs have to be reconfigured, thereconfiguration process has to be repeated sequentially over the number of selected RMs.As shown in Listing 5.6 (line:2-4), the reconfiguration process starts by initializing the AXIHWICAP controller followed by reading the start address and the size of the partial bit file ofthe selected RM. Afterwards, the AXI HWICAP starts receiving the partial bit files from theDDR through the AXI interconnect and writes them to the configuration memory as shownin Listing 5.6 (line:5). Finally, the module checks for the successful transfer of all partialbitstream payloads by checking the AXI HWICAP done signal (line:6).
Listing 5.7 shows a detailed description of AXI HWICAP write software module. The module isresponsible to configure the AXI HWICAP IP through the 32-bit AXI Lite control interface. TheAXI HWICAP configuration is conducted by setting the AXI HWICAP control register to work inthe write mode of operation as shown in Listing 5.7 (line:6). The RISC-V core loads the partialbitstream data from the DDR and sends them in 4-Byte words to the AXI HWICAP (line:5). TheRISC-V core writes the partial bitstream data to the AXI HWICAP internal FIFO. The filling andflushing of the internal write FIFO is repeated until the complete partial bitstream has beentransferred.

1 #define ICAP_WF (ICAP_BASE + 0x100) // write FIFO keyhole register base address
2 #define ICAP_CR (ICAP_BASE + 0x10C) // write FIFO control register base address
3 void hw_icap_write (uint32_t *start_address, uint32_t byte_size){
4 for(uint32_t i=0; i<byte_size; i++){
5 write_reg(ICAP_WF, *start_address++); // write partial bitstream data to the AXI

HWICAP internal FIFO
6 write_reg(ICAP_CR, 0x01); // set the AXI HWICAP on the write mode
7 }
8 return 0;
9 }

Listing 5.7: An overview of the Xilinx AXI-HWICAP write API software module.

130

5.3 Evaluation of the Reconfiguration Management Approach

5.3 Evaluation of the Reconfiguration Management Approach

The reconfiguration management approach including the RV-CAP controller is evaluatedbased on hardware resource utilization and achievable reconfiguration time targeting theself-adaptive FPGA-based RISC-V SoC presented in Section 5.1 as shown in Figure 5.1. Duringdevelopment and implementation, the Xilinx Virtex Ultrascale+ XCVU9P FPGA device [168]is the target FPGA for implementation and prototyping of the proposed reconfigurationmanagement approach and the target RISC-V-based SoC. Also, Vivado Design Suite HLx2019.1 [169] is used for RTL synthesis, simulation, place and routing, and full and partialbitstream generation. For evaluation, the RISC-V-based SoC is running at a clock frequencyof 120 MHz and the RV-CAP controller at a clock frequency of 100 MHz. The APIs softwaremodules are developed using C language and the RISC-V GNU compiler toolchain [167] isused to generate executable code for the RV64IMAC core.

5.3.1 Hardware Resource Evaluation

The hardware part of the reconfiguration management is the RV-CAP controller or the XilinxAXI HWICAP controller. As mentioned in Section 5.1, the RV-CAP controller (see Section 5.2)consists of several hardware components including AXI-based modules for interfacing withthe RISC-V-based SoC and a single Xilinx DMA IP. Table 5.1 presents the hardware resourceutilization of the RV-CAP controller and the Xilinx AXI HWICAP controller. The maximumAXI burst size of the Xilinx DMA controller is set to 16. As mentioned in Section 5.1, allcomponents of the RISC-V-based SoC communicate over a bus width of 64 bits with theexception of the AXI HWICAP and the control signals, which have a data width of 32 bits. As wecan see from Table 5.1, the AXI HWICAP utilizes fewer resources than the RV-CAP controller,but in return, the AXI HWICAP controller achieves only a reconfiguration throughput of about2% of the theoretical ICAP maximum throughput at 100 MHz (400 MB/s) [132]. During theevaluation, the RP size is defined to be 4320 LUTs, 8640 FFs, 24 DSP blocks, and 12 BRAMsand is hosting the accelerator RMs. The corresponding partial bitstream size is ∼ 0.85 MiB.

Table 5.1: Hardware resource utilization of the RV-CAP controller and Xilinx AXI-HWICAPon Xilinx XCVU9P FPGA and the maximum reconfiguration throughput at a clockfrequency = 100 MHz.
DPR
Controller Modules Resource Utilization Throughput

(MB/s)LUTs FFs BRAMs DSPs
RV-CAP AXI modules + Interfaces 552 1483 0 0 398.1Xilinx DMA Controller 2604 4010 7 0
AXI_HWICAP AXI modules + Interfaces 985 1023 0 0 8.23AXI_HWICAP 597 1364 2 0

131

5 Reconfiguration Management for Self-Adaptive RISC-V based Many-Core Architectures

5.3.2 Reconfiguration Time

The reconfiguration time is measured by the performance counter register (PCCR) of the RISC-V. The reconfiguration time is measured from the API software modules including softwareand hardware overheads required for successfully loading a single partial bitstream file fromthe DDR to the FPGA configuration memory including control overheads. The measurementstarts with the beginning of the data transmission of a single partial bitstream file to the DPRcontroller (either the RV-CAP or the AXI HWICAP) from the external DDR, and ends until theselected partial bitstream is completely transferred to the FPGA configuration memory. Thetotal reconfiguration time is measured based on the following equation:
Ttot = Tdec + Trecon (5.1)

where Tdec is the decision time required by the RISC-V core to select the RM module andconfigure the DPR controller, Trecon is the required time for the RM partial bitstream to beloaded from the external DDR and completely transferred to the FPGA configuration memory.Accordingly, for the RV-CAP and AXI HWICAP the Tdec = 18 µs which is a negligible timecompared to the Trecon. Therefore, Ttot ≈ Trecon. Figure 5.4 shows the total reconfigurationtime for four RP sizes using the RV-CAP controller. The timing results using the RV-CAPcontroller are Tdec = 18 µs, Trecon = 2120 µs for an RP size of 0.85 MiB. As a result, theachieved reconfiguration throughput is 398.1 MB/s. Similiarly, Figure 5.5 shows the totalreconfiguration time for four RP sizes using the AXI HWICAP controller. The timing resultsusing the AXI HWICAP controller are Tdec = 18 µs, Trecon = 103175 µs for an RP size of 0.85MiB. As a result, the achieved reconfiguration throughput is 8.23 MB/s.

5.3.3 Use Cases Accelerators

In this subsection, three basic image processing filters from the open-source HiFlipVX library[179] are used as reconfigurable hardware modules to evaluate the proposed runtimereconfiguration management with the RV-CAP controller. The three hardware accelerators
Reconfiguration Time (RV-CAP)

RP1 (0.85 MiB) RP2 (1.7 MiB) RP3 (3.7 MiB) RP4 (6.2 MiB)
RP Size

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

R
ec

on
fig

ur
at

io
n

Ti
m

e
(m

s)

Figure 5.4: Reconfiguration time with respect to different RP sizes by using the RV-CAP con-troller.

132

5.3 Evaluation of the Reconfiguration Management Approach

Reconfiguration Time (AXI-HWICAP)

RP1 (0.85 MiB) RP2 (1.7 MiB) RP3 (3.7 MiB) RP4 (6.2 MiB)
RP Size

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

R
ec

on
fig

ur
at

io
n

Ti
m

e
(m

s)

Figure 5.5: Reconfiguration time with respect to different RP sizes by using the Xilinx AXI-HWICAP [177] controller.
are hosted by a single RP, where each hardware accelerator is a RM as shown in Figure5.1. The three filters are Sobel, Median, and Gaussian filters processing an image size of(512x512) 8-bit pixels with 256 gray values. The filters are developed using Xilinx Vivadohigh-level synthesis (HLS) tool with a 32-bit AXI-stream interface to be compatible with theAXIS data width of the RV-CAP controller.
The three filters are generated and synthesized separately as three RMs that are hosted by asingle RP. The AXI-stream interface connects the image filter RMs and the AXI-stream R/WRM interface of the DMA inside the RV-CAP controller (as shown previously in Figure 5.2).The RMs are operating at a clock frequency of 100 MHz. The hardware accelerators do nothave any connection to the SoC AXI interconnect. They are tightly coupled to the RV-CAPcontroller through the 32-bit AXIS interface. The image input is stored in the DDR memory tobe loaded by the RV-CAP controller (in accelerator mode) after the reconfiguration process isconducted.
Figure 5.6 shows the complete floorplan of the full RISC-V-based SoC with one RP hosting thethree hardware accelerator RMs. Moreover, the full RISC-V-based SoC hardware resourceutilization is listed in Table 5.2 including the RP size and the utilization of each RM from theRP total available hardware resources. Table 5.2 shows that the RV-CAP controller consumes
∼ 3.9%, ∼ 7.3% of the total RISC-V-based SoC hardware resources in terms of LUTs and FFsrespectively. Therefore, the RV-CAP controller has a very small resource utilization overheadwhich makes it suitable to be integrated for small and low-power FPGA devices as well.
Furthermore, Table 5.3 shows the total execution time for the three image filter RMs includingreconfiguration and computing time. As the total execution time is computed as follows:

Ttot = Tdec + Trecon + Tcomp (5.2)
Where Tdec is the decision time required by the RISC-V core to select the RM module andconfigure the DPR controller, Trecon is the required time for the RM partial bitstream to beloaded from the external DDR and completely transferred to the FPGA configuration memory,and Tcomp is the accelerator computation time including input and output data transfer to theDDRmemory to filter a single image and write back the output to the DDRmemory. As a result

133

5 Reconfiguration Management for Self-Adaptive RISC-V based Many-Core Architectures

Ariane Core SoC Peripherals RV-CAP Controller RP/Accelerator

Figure 5.6: An overview of the self-adaptive RISC-V based SoC floorplan on a Xilinx VirtexUltrascale+ (XCVU9P) FPGA.
(from Table 5.3), the reconfiguration time Trecon is ∼2.5X the computation time as the usedaccelerated functions execute few operations and not a compute-intensive kernel. Therefore,in case of medium-workload applications, the reconfiguration time would be negligible to thecomputation time. As a result, the proposed runtime reconfiguration management with theRV-CAP controller is suitable for high-speed self-adaptive RISC-V SoC.

Table 5.2: Hardware resource utilization of the self-adaptive RISC-V based SoC with a singleRP to host multiple image processing accelerator modules on Xilinx XCVU9P FPGA.
SoC Components Resource Utilization

LUTs FFs BRAMs DSPs
RV64IMAC Core 39781 22489 36 27
Peripherals + Boot Memory 32727 38023 32 0
RV-CAP 3156 5493 7 0
Reconfigurable Partition (RP) 4320 8640 12 24
Full SoC 79984 74645 87 51
Reconfigurable
Modules (RMs)

Gaussian Filter 901 773 4 0
Median Filter 2325 998 2 0
Sobel Filter 1830 3224 2 16

134

5.4 Reconfiguration Management Unit Integration into the Tile-based Many-Core Architecture

Table 5.3: Image processing accelerators execution and reconfiguration time at a clock fre-quency = 100 MHz.
HW Accelerator Decision Time

(Tdec) (μs)
Reconfiguration Time

(Trecon) (μs)
Compute Time
(Tcomp) (μs)

Total Time
(Ttot) (μs)

Gaussian Filter 18 2120 606 2744
Median Filter 18 2120 598 2736
Sobel Filter 18 2120 588 2726

5.4 Reconfiguration Management Unit Integration into the
Tile-based Many-Core Architecture

The proposed multi-ISA tile-based many-core architecture differentiates from other state-of-the- art many-core architectures by the ability to support different many-core configurationsthroughout the runtime adaptation feature presented in previous sections. This sectionpresents and evaluates the integration of the runtime reconfigurationmanagement discussedbefore with the multi-ISA tile-based many-core architecture presented in Chapter 3.
The proposed many-core architecture consists of a static partition region and several RPs tobe reconfigured according to the selected many-core configuration. The static region hoststhe main processing tile and the NoC architecture. While RPs host different configurationsfor 64-/32-bit compute tiles (e.g. number of PEs, memory type and size) through a set ofcompute tiles RMs. All compute tiles RMs share unified interfaces to the NoC routers throughthe NI with single domain clock and reset signals. The DPR process is conducted internallythrough the ICAP primitive to allow the tile-based many-core architecture to self-manage theconfiguration process without any external controlling peripherals (e.g. a PC through a JTAG).The aforementioned reconfiguration management approach with the RV-CAP controller isintegrated inside the main processing tile in a similar way to integration with a RISC-V-basedSoC.
Figure 5.7 shows a schematic overview of the main processing tile with the RV-CAP controllerattached to the AXI interconnect. The main processing tile is using a 64-bit AXI-4 interconnectwhere four RV64IMAC cores are connected with shared instructionmemory, a NI, and externalperipherals. All four RISC-V core are master units on the AXI-4 interconnect, while the restof the peripherals are slave memory-mapped components within the core’s address spaceranges including the RV-CAP controller. The reconfiguration management APIs softwaremodule can be executed on any RISC-V core based on a predefined task mapping by theuser. The main processing tile is running on a clock frequency of 120 MHz while the RV-CAPis running at 100 MHz. Therefore, an extra AXI clock converter is inserted for the two clockdomains.
Moreover, a slight modification to the RV-CAP controller is conducted by removing the AXISswitch and the configuration mode interface to support only the DPR mode of operation.In the case of integration to the main processing tile, no extra reconfigurable hardware

135

5 Reconfiguration Management for Self-Adaptive RISC-V based Many-Core Architectures

AXI-4 Interconnect

Shared
Instr.
Mem

UART
Ctrl.

RV-CAP
Controller

AXI CLK Conv.

DDR
Ctrl.

SPI

AXI DW Conv.

32-bit

64-bit

100 MHz

200 MHz

SD-Card UART

DDR

ICAPFPGA logic

Config. Mem.

NI

NoC Router

IMAC

IMAC

IMAC

IMAC

AXI CLK Conv.

A
X

I C
LK

 C
o

n
v.

1
0

0
 M

H
z

AXI-4

AXI-4

AXI-4

AXI-4

Figure 5.7: A schematic overview of the main processing tile with the RV-CAP controller.
accelerators are attached to the AXI interconnect. Therefore the RV-CAP does not requirethe extra AXI modules for operation mode selection. A block diagram of the modified RV-CAP controller is shown in Figure 5.8. The proposed implementation provides a high datathroughput rate to the FPGA configuration memory via the ICAP primitive. The RV-CAPcontroller has only three interfaces as shown in Figure 5.8 one control interface connectedto the main tile AXI interconnect to control the Xilinx DMA controller, a data interface fortransferring partial bitstreams from the external DDR to the ICAP primitive, and the ICAPprimitive interface to the FPGA configuration memory.
The DMA controller is connected to the main processing tile DDR controller through anadditional crossbar as a master component to the DDR controller. Therefore, the DDR canbe accessed either by RISC-V PEs as a shared data memory or by the RV-CAP controllerto load a partial bitstream to the FPGA configuration memory. Hence, partial bitstreamsare stored in different address ranges than shared data memory address section of RISC-VPEs. As the RV-CAP controller is implemented inside the 64-bit main processing tile, theDMA is configured to transfer a 64-bit data word from the DDR. Therefore, as mentionedin Figure 5.8, an AXIS2ICAP block is implemented to split a 64-bit data word into 2x32-bitdata words to be compatible with the 32-bit data interface of the ICAP primitive. Besides, thevalid stream signal is inverted and connected to the ICAP data port as the write enable signal(ICAP_WE). Also, an AXI data width and protocol converters are used to convert between the64-bit AXI- interconnect and the 32-bit AXI-Lite control interface of Xilinx DMA component.All reconfiguration steps mentioned in Section 5.2 are managed by one 64-bit PE throughthe same set of RV-CAP software modules as shown in Listing 5.1, 5.2, 5.3.
For evaluation, two NoC 2-D mesh size configurations are used to support several many-coresizes regarding the number and types of compute tiles. As mentioned previously, the mainprocessing tile and NoC are hosted by the static partition region of the architecture, while

136

5.4 Reconfiguration Management Unit Integration into the Tile-based Many-Core Architecture

Xilinx
DMA

Controller
AXIS2ICAP

RV-CAP Controller

32-bit AXI-Lite

64-bit AXIS_M

Partial Bitstream

ICAP_WE

IC
A

P

P
rim

itive

Streaming Data Control Signals

AXI Data
Width &
Protocol

Conv.

64-bit AXI-4

DMA_base_address

32-bit6
4

-b
it

M

as
te

r
p

o
rt

AXI-4 Interconnect (64-bit)

Main Processing Tile

DDR
Ctrl.

DDR

Lo
ad

in
g

P
ar

ti
al

B
it

st
re

am

Figure 5.8: A detailed block diagram of the RV-CAP controller within the main processing tilefor adaptive tile-based many-core architecture.
the other three types of compute tiles are swapped over multiple RPs at run-time based onthe tile-based many-core size. Figure 5.9 and Figure 5.10 show two FPGA floorplans basedon two different NoC configurations as follows:
1. The first tile-based many-core configuration has a 2x7 NoC size with 12xRPs (same size)to host multiple 32-/64-bit compute tile modules with a static main processing tile.
2. The second tile-based many-core configuration has a 2x4 NoC size with 7xRPs (samesize) to host multiple 32-/64-bit compute tile modules with a static main processing tile.

The first tile-based many-core size is shown in Figure 5.9, it consists of 12 RPs that canhost two types of compute tiles (32-bit, and 64-bit (w/single-PE) tiles) as RMs. All 12 RPshave the same size on the FPGA floorplan with the same number and types of hardwareresources. A single RP size is specified to host the largest compute tile used in the firsttile-based many-core size.
Table 5.4 shows hardware resource utilization for a single RP and percentage resourceutilization for each RM from the total RP size. The maximum utilization percentage is achievedby the 64-bit (w/single-PE) compute tile with (87.5%) LUTs and (91.6%) on-chip memoryutilization (BRAM+URAM). On the other hand, the second tile-based many-core size with 2x4NoC supports larger RP size to support the largest configurable compute tile module (64-bit(w/2-PE) tile) for the tile-based many-core architecture. Figure 5.10 shows the FPGA floorplanof the second tile-based many-core size with 7 RPs and three types of RMs for all computetiles. However, the number of compute tiles is limited to 7 compute tiles to fit with the targetFPGA total size. Similar to the first many-core, all RPs have the same size that can fit with thelargest compute tile which is in this case the 64-bit compute tile with dual PEs.

137

5 Reconfiguration Management for Self-Adaptive RISC-V based Many-Core Architectures

2x7 NoC

64-bit
Tile_0
(1-PE)

64-bit
Tile_1
(1-PE)

64-bit
Tile_2
(1-PE)

64-bit
Tile_3
(1-PE)

32-bit
Tile_0

32-bit
Tile_1

32-bit
Tile_2

32-bit
Tile_3

32-bit
Tile_4

32-bit
Tile_5

32-bit
Tile_6

32-bit
Tile_7

Figure 5.9: FPGA floorplan of the first tile-based many-core size with 2x7 NoC configured by8x32-bit (w/4-PEs), and 4x64-bit (w/single-PE) compute tiles (12xRPs).

Table 5.4 shows resource utilization for the second tile-based many-core configurationand its RMs. The RP size is double the size used for the first many-core configuration withmaximum utilization of (92.2%) for LUTs and (87.5%) for on-chip memory hosting 64-bit(w/2-PEs) compute tile modules. In contrast, 32-bit compute tile modules consume less than(30%) of the total RP resources. Therefore, the second tile-based many-core configurationcan be used efficiently to support more 64-bit compute tiles in comparison with the firstmany-core configuration. Moreover, Table 5.5 shows the total resource utilization for thetwo many-core configurations shown in Figure 5.9 and Figure 5.10. The resource utilizationreports the total hardware resources required by all used RPs with the main processing tilefor the two many-core configurations.

2x
4

N
oC

64-bit
Tile_0
(1-PE)

RV64_1
(1-PE)

32-bit
Tile_0

32-bit
Tile_1

32-bit
Tile_2

32-bit
Tile_3

64-bit
Tile_0
(2-PEs)

Figure 5.10: FPGA floorplan of the second tile-based many-core size with 2x4 NoC configuredby 4x32-bit (w/4-PEs), 2x64-bit (w/single-PE), and 1x64-bit (w/2-PEs) computetiles (7xRPs).

138

5.4 Reconfiguration Management Unit Integration into the Tile-based Many-Core Architecture

Tab
le5

.4:D
PR

res
our

ceu
tiliz

atio
na

nd
rec

onfi
gur

atio
nti

me
for

two
tile-

bas
ed

ma
ny-

cor
eco

nfig
ura

tion
son

Xilin
xXC

VU9
PFP

GA.
Ma

ny-
Cor

eC
onfi

gur
atio

n
(#R

Ps)
Res

our
ceU

tiliz
atio

n
Rec

onfi
gur

atio
n

Tim
e

LUT
s

FFs
BRA

Ms
URA

Ms
DSP

s

Firs
tM

any
-Co

reC
onfi

gur
atio

n
(12

RPs
)

Sin
gle

RP
Size

(Sin
gle

Tile
)

528
80

105
760

96
32

384
18.

8m
s

RM
s

32-
bit-

Tile
(4-P

Es)
307

17
(58

%)
153

59
(14

.5%
)

35 (36
.5%

)
12 (37
.5%

)
24 (6.2
5%

)
64-

bit-
Tile

(Sin
gle-

PE)
463

11
(87

.5%
)

231
56

(21
.9%

)
88 (91
.6%

)
8

(0.2
5%

)
27 (7%

)

Sec
ond

Ma
ny-

Cor
eC

onfi
gur

atio
n

(7 R
Ps)

Sin
gle

RP
Size

(Sin
gle

Tile
)

103
680

207
360

192
64

768
38.

1m
s

RM
s

32-
bit-

Tile
(4-P

Es)
307

17
(29

.6%
)

153
59

(7.4
%)

35 (18
.2%

)
12 (18
.7%

)
24 (3.1
%)

64-
bit-

Tile
(Sin

gle
PE)

463
11

(44
.6%

)
231

56
(11

.2%
)

88 (45
.8%

)
8

(12
.5%

)
27 (3.5
%)

64-
bit-

Tile
(2-P

Es)
956

36
(92

.2%
)

478
18

(23
.1%

)
168 (87
.5%

)
8

(12
.5%

)
54 (7%

)

139

5 Reconfiguration Management for Self-Adaptive RISC-V based Many-Core Architectures

Table 5.5: Total hardware resource utilization for the two different many-core sizes shown inFigure 5.9, Figure 5.10 on Xilinx XCVU9P FPGA.
Many-Core configuration Resource Utilization

LUTs FFs BRAMs URAMs DSPs
First Many-Core Configuration

(2x7 NoC, 12 RPs)
853333
(72.1%)

426997
(18.1%)

1500
(69.5%)

384
(40%)

4722
(69%)

Second Many-Core Configuration
(2x4 NoC, 7 RPs)

944533
(80%)

521258
(22.2%)

1692
(78.3%)

448
(46.7%)

5490
(80.3%)

Accordingly, the first many-core configuration is more suitable for heterogeneous configu-rations that support more 32-bit compute tiles than 64-bit compute tiles to increase theefficiency of resources usability. On the other hand, the second many-core configurationis more suitable for 64-bit based many-core configurations. In addition to that, severalmany-core configurations can be realized by using different NoC sizes to support a differentnumber of homogeneous or heterogeneous compute tiles based on the target applicationrequirements.
Furthermore, reconfiguration time is an important aspect to evaluate the performance ofthe internal reconfiguration manager/RV-CAP within the tile-based many-core architecture.Therefore, the reconfiguration time is measured through the RISC-V core PCCR to measurethe required number of clock cycles from loading a partial bitstream from the DDR memoryuntil fully transferring the partial bitstream to the ICAP primitive. The reconfiguration timeincludes all software and hardware overhead required by the reconfiguration manager/RV-CAP to successfully loaded one partial bitstream to the FPGA configuration memory throughthe ICAP.
As shown in Table 5.4 (last column), the total reconfiguration time of a single RP for thefirst many-core configuration is 18.8 ms. For the second many-core configuration, as theRP size increased, the required reconfiguration time is 38.1 ms. Accordingly, the proposedreconfiguration manager supports a high-speed reconfiguration process as it uses a separatedata stream channel to transfer partial bitstream to the ICAP primitive through a Xilinx DMA.

5.5 Summary

Chapter 5 presents a novel runtime reconfiguration management approach for self-adaptiveFPGA-based RISC-V SoC. The reconfiguration management approach is suitable for single-,muli, and many-core RISC-V-based architectures. The reconfiguration management approachhas a novel DPR controller called RV-CAP to enable DPR on FPGA-based RISC-V SoCs. TheRV-CAP supports the management of DPR within a programmable software environmentthrough a set of developed software drivers running on a RISC-V core. Moreover, the RV-CAPis considered a high-speed DPR controller that allows a high reconfiguration throughputthat reaches 398.1 MB/s. In addition, the RV-CAP controller supports the managing of asingle RP and its hosted RMs by providing controlled stream interfaces between the SoCexternal DDR memory and the corresponding RM hardware accelerators hosted by a single

140

5.5 Summary

RP. The runtime reconfiguration management is integrated into the main processing tileof the developed tile-based many-core architecture proposed by this dissertation to allowthe run-time configuration to change numbers and types of compute tiles for several tile-based many-core configurations. Hence, the integration of the runtime reconfigurationmanagement with the tile-based many-core architecture provides the self-adaptation featureto realize several heterogeneous tile-based many-core configurations and taxonomies atrun-time.
Section 5.1 presents the internal DPR management for self-adaptive RISC-V SoC. It describesand presents the used open-source 64-bit RISC-V-based SoC and its internal components.Moreover, the required modifications to the open-source SoC to deploy the proposedreconfiguration management approach from the hardware and software sides. A set ofsoftware drivers to access the SoC I/O peripherals have been developed in order to load thepartial bitstreams from an external SD-card to the SoC DDR memory. In addition, a set ofutility modules to communicate with memory-mapped peripherals for reading and writingdata through the core address space range.
From the hardware side, the RV-CAP controller is developed and implemented as a memory-mapped peripheral to the RISC-V core. The RV-CAP controller supports two modes ofoperation: the DPR mode, and the accelerator mode. In the DPR mode of operation, theRV-CAP is used to manage partial bit stream data transfer between the external DDR and theinternal configuration memory. On the other hand, for the accelerator mode of operation,the RV-CAP is used to manage stream data transfer from/to hardware accelerator moduleshosted by a single RP and the external DDR memory. The RV-CAP is a master unit whenit interacts with the DDR controller through the DMA for read and write stream data. TheRV-CAP is working at a single clock source of 100 MHz in a fully synchronized design.
Section 5.2 presents the software side of the reconfiguration management approach in-cluding the developed set of APIs and software modules to control and manage the re-configuration process from a software programmable environment on a RISC-V core. Thissection presents and describes the RV-CAP APIs to manage and abstract the reconfigurationprocess from the RISC-V core as well as the potential to use a DPR vendor controller andcontrol it from the RISC-V core. The interaction between the RV-CAP unit and RISC-V coreis conducted through a set of API software modules. Where the RISC-V core manages thereconfiguration process by selecting the desired RMs to be loaded based on applicationrequirements using the three following controlling steps. The first step is initializing all RMsby reading all partial bitstream files from the SD-Card and storing them on the external DDRmemory. The second and third steps are the selection of mode configuration to be theDPR mode of operation and afterwards start the reconfiguration process. Furthermore, analternative DPR controller unit (AXI HWICAP) is used to allow the RISC-V core to take over thetask of the master unit to manage the writing process to the FPGA configuration memorythrough the ICAP primitive. Also, some modifications have been done to integrate the AXIHWICAP IP core into the RISC-V-based SoC.
Section 5.3 presents the evaluation and obtained experimental results of the proposed run-time reconfiguration management. The runtime reconfiguration management is evaluatedbased on the hardware resource utilization of the RV-CAP controller, and the reconfigurationthroughput using different RPs sizes and image processing based hardware acceleratorsas RMs. The RV-CAP features a low resource utilization overhead which makes it suitablefor small and low-power FPGAs as well as large FPGA devices. The reconfiguration timeis measured from the API software modules including software and hardware overheads

141

5 Reconfiguration Management for Self-Adaptive RISC-V based Many-Core Architectures

required for successfully loading a single partial bitstream file from the DDR to the FPGAconfiguration memory including control overheads. The RV-CAP controller achieves a recon-figuration throughput of 398.1 MB/s. On the other hand, by using the AXI HWICAP controllera reconfiguration throughput of 8.23 MB/s can be achieved. Furthermore, three basic imageprocessing hardware accelerated filters are used as reconfigurable hardware modules toevaluate the proposed runtime reconfiguration management with the RV-CAP controller. Itshows the feasibility of the reconfiguration management approach to be used for high-speedself-adaptive RISC-V-based SoC.
Finally, Section 5.4 presents and evaluates the integration of the reconfigurationmanagementunit (RV-CAP) into the main processing tile of the target tile-based many-core architectureproposed by this dissertation. The tile-based many-core architecture consists of a staticpartition region and several RPs to be reconfigured according to the selected many-coreconfiguration. The static region hosts the main processing tile and the NoC architecture.While RPs host different configurations for 64-/32-bit compute tiles. The DPR process isconducted internally through the ICAP primitive to allow the tile-basedmany-core architectureto self-manage the configuration process without any external controlling peripherals. Forevaluation, two tile-based many-core configurations with different numbers and sizes of RPsare used to support several heterogeneous many-core taxonomies regarding the numberand types of compute tiles.

142

6 Conclusion and Outlook

This dissertation entails three major contributions that together provide an agile platformfor the design and realization of heterogeneous tile-based many-core architectures. In thisconcluding chapter, the main challenges of this research work are re-iterated with a summaryof the major contributions. In the last section of this chapter, future work and extensionsbased on the proposed contributions are discussed and highlighted.

6.1 Summary of Contributions

Current and future multi- and many-core SoC architectures are characterized by their grow-ing number of heterogeneous computing elements due to the unprecedented computingrequirements posed by new trends in artificial intelligence and signal processing applications.The main key challenge arises from system-level integration issues and the huge amountof design complexities related to the integration and interaction between heterogeneouscompute units. Moreover, design specifications could vary due to different application re-quirements which leads to the necessity of a new design process for each new applicationrequirement. This leads to a limited degree of design extensibility and increases the costof post-design upgrades. Therefore, a modular and reusable (agile) platform for many-corearchitectures realization is proposed by this dissertation in order to provide a unified system-level architecture for heterogenous and homogeneous many-core systems. The proposedagile platform enables the development of scalable many-core architectures using modularand reusable heterogeneous compute tiles. The many-core platform is realized on top of a2-Dmesh NoC-based architecture where a unified communication and programmingmethodis used over heterogeneous compute tiles. In addition, the many-core platform features ahigh-speed internal reconfiguration management approach for self-adaptation to multiplemany-core configurations at runtime. In this dissertation, the many-core platform is targetingFPGA devices where many-core architectures are realized as FPGA-based overlays.
The new proposed many-core platform is developed and realized based on three maincontributions: (1) supporting heterogeneous ISAs through modular tile-based many-corearchitecture, (2) seamless integration of custom hardware accelerators, and (3) many-coreself-adaptation management. The proposed contributions are summarized as follows:

143

6 Conclusion and Outlook

Modular Tile-based Many-Core Architecture for Heterogeneous ISAs

Heterogeneous compute tiles are the core of the proposed platform, they represent thecomputing nodes for realized many-core systems. The tile-based platform supports threetypes of heterogeneous tiles that support multiple RISC-V ISAs in addition to custom hard-ware accelerators. Two RISC-V based compute tiles based on different 32-/64-bit RISC-V ISAsare realized. Each tile consists of single or multi-RISC-V-based PEs. RISC-V-based PE hostsa single core RISC-V with tightly coupled scratchpad memories for instruction and data toserve as local PE memory to increase data locality. All RISC-V-based PEs are equipped withAXI-based interfaces to support seamless integration into RISC-V based compute tiles. The32-bit tile supports RV32IMC ISA based on an open-source RV32 core, and the 64-bit tilessupport RV64IMAC based on an open-source RV64 core. All compute tiles have a regulardesign pattern based on a bus-based architecture with shared data/instruction memory anda memory-mapped network interface with the option to be augmented with optional looselycoupled hardware accelerators. The third general-purpose tile is a permanent processing tilein the proposed platform called the main processing tile. The main processing tile controlsand manages external many-core peripherals (i.e. SD-card, UART) and it can be extended tosupport other types of off-chip peripherals. Furthermore, the reconfiguration managementunit and its associated components are hosted andmanaged by themain processing tile. Also,a message-passing communication model is developed for tile-to-tile communication overtheNoC aswell as a unified parallel programmingmethod over different general-purpose tiles.
Hybrid Memory/Accelerator Tile Architecture for Tile-based Many-Core Systems

In order to increase the level of heterogeneity to support the integration of custom hardwareaccelerators, a novel hybrid memory/accelerator tile architecture is developed. The hybrid tileis a modular and reusable tile that can be configured at run-time to operate as a scratchpadshared memory between compute tiles or as an accelerator tile hosting a local hardwareaccelerator logic. The hybrid tile is designed and implemented to be seamlessly integratedinto the proposed tile-based platform through the NoC. It consists of two main architecturalunits: a control unit that receives control packets and configures the tile based on themode ofoperation, and a data path that includes memory read, write managers, hardware acceleratorwrapper connected to on-chip memory modules. The interaction between general-purposetiles and the hybrid tile is conducted through a message-based protocol. Where general-purpose tiles request to access the on-chip memory or the accelerator through a set ofcontrol messages. The control unit handles all memory and accelerator requests from allgeneral-purpose tiles to configure the data-path based on the requested mode of operationand associated parameters. The tile data path is responsible to establish data paths betweentile’s NI and on-chip memory based on control signals from the control unit. Three categoriesof data paths can be established: memory read path, memory write path, and acceleratorpath. Memory read and write paths can be established in parallel to handle read and writememory requests simultaneously. On the other hand, only the accelerator path can besolely established as the hardware accelerator logic requires to use on-chip memory as localmemory for load/store operations.
Reconfiguration Management for Self-Adaptive Tile-based Systems

A reconfiguration management approach is proposed to allow self-adaptation for the pro-posed tile-based platform. The applied self-adaptation method is based on self-controlling

144

6.2 Future Work

and management of the reconfiguration process through the main processing tile. Theinternal reconfiguration process relies on a novel DPR controller targeting FPGA design flowfor RISC-V-based SoC (RV-CAP) to change the types and functionalities of compute tiles atrun-time. The DPR process is conducted internally through the internal access configurationport (ICAP) primitive. The tile-based platform consists of a static partition region and severalreconfigurable partition (RP) regions to be reconfigured according to the selected many-coreconfiguration. The static region hosts the main processing tile and the NoC architecture.While the reconfigurable regions host different configurations for 64-/32-bit compute tilesand hybrid tiles through a set of tiles reconfigurable modules (RMs). All tiles RMs share unifiedinterfaces to the NoC routers through NI with single domain clock and reset signals.
This dissertation proposes an agile tile-based platform for heterogeneous many-core sys-tems. The platform is based on a scalable and modular tile-based architecture that featuresa high degree of heterogeneity supporting heterogeneous ISAs as well as custom hardwareaccelerators for general and domain-specific workloads. Also, the proposed platform sup-ports self-adaptation to realize several many-core configurations and taxonomies at run-time.Moreover, it aims to ease the development and realization of heterogeneous many-corearchitectures by reducing the design time and the non-recurrent engineering costs.

6.2 Future Work

Future research directions and extensions of this work are various. This dissertation focusedon the design and development of an agile tile-based many-core platform targeting onlyFPGA devices. This dissertation lays the foundation for several research work on heteroge-neous computing systems for both high-performance and near-threshold computation. Thefollowing are some potential future developments.
Chiplet-based heterogeneous system

Chiplet designs are currently used for exascale computing systems which require morecomputing resources and performance. The current version of the proposed tile-basedmany-core platform targets only FPGA devices, specifically a single FPGA device as discussedin Chapter 3 and Chapter 5. For future improvements, different many-core configurationsand taxonomies can be realized on multiple FPGA devices equipped with high-performancecommunication fabric between them. Due to the limited maximum clock frequency achievedby FPGAs, bringing the tile-based many-core platform to silicon in the form of a customASIC design would improve the computing performance and energy efficiency. Therefore,increasing the scalability and heterogeneity of the tile-based platform can be achieved byexploring a chiplet-based design to combine multiple heterogeneous many-core instantstogether. Moreover, chiplet-based design could allow the integration of various kinds of newmemory technology (e.g. HBM, HMC) to the many-core platform in order to increase thememory bandwidth for memory-intensive applications.
Near-threshold computing

High energy efficiency can be achieved by exploring near-threshold techniques with highoperating frequencies. Near-threshold computing can be applied to digital SoC for more

145

6 Conclusion and Outlook

energy efficiency by reducing transistors supplying voltage to threshold voltage on the circuitlevel, where leakage and dynamic energy achieve the minimum point. The current version ofthe tile-based many-core platform does not support power management units and voltagescaling controllers in order to manage and control the supply voltage to the processing coresor the hardware accelerators. In order to explore power management and near-thresholdcomputing, the proposed tile-based platform has to be realized as an ASIC design first. TheFPGA-based version has a limitation to control the supply voltage on a specific partition onthe FPGA floorplan. For example, controlling the supply voltage of a specific compute tileis not possible using the current FPGA technology. Therefore, a custom ASIC design willprovide more freedom to control the supply voltage of a specific PE, compute tile, or a customhardware accelerator.

146

Bibliography

[1] Inyup Kang. “The Art of Scaling: Distributed and Connected to Sustain the GoldenAge of Computation”. In: 2022 IEEE International Solid- State Circuits Conference
(ISSCC). Vol. 65. 2022, pp. 25–31. DOI: 10.1109/ISSCC42614.2022.9731536.

[2] John L Hennessy and David A Patterson. “A new golden age for computer architec-ture”. In: Communications of the ACM 62.2 (2019), pp. 48–60.
[3] Ashish Nayak, HsinChen Chen, Hugh Mair, Rolf Lagerquist, Tao Chen, Anand Ra-jagopalan, Gordon Gammie, Ramu Madhavaram, Madhur Jagota, CJ Chung, JennyWiedemeier, Bala Meera, Chao-Yang Yeh, Maverick Lin, Curtis Lin, Vincent Lin,Jiun Lin, YS Chen, Barry Chen, Cheng-Yuh Wu, Ryan ChangChien, Ray Tzeng, KelvinYang, Achuta Thippana, Ericbill Wang, and SA Hwang. “A 5nm 3.4GHz Tri-GearARMv9 CPU Subsystem in a Fully Integrated 5G Flagship Mobile SoC”. In: 2022 IEEE

International Solid- State Circuits Conference (ISSCC). Vol. 65. 2022, pp. 50–52. DOI:
10.1109/ISSCC42614.2022.9731604.

[4] Jonathan Balkind, Katie Lim, Michael Schaffner, Fei Gao, Grigory Chirkov, Ang Li,Alexey Lavrov, Tri M. Nguyen, Yaosheng Fu, Florian Zaruba, Kunal Gulati, LucaBenini, and David Wentzlaff. “BYOC: A "Bring Your Own Core" Framework forHeterogeneous-ISA Research”. In: Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Languages and Operating Systems.ASPLOS ’20. Lausanne, Switzerland: Association for Computing Machinery, 2020,pp. 699–714. DOI: 10.1145/3373376.3378479.

[5] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, PaulRigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste Asanović,and Borivoje Nikolić. “Chipyard: Integrated Design, Simulation, and ImplementationFramework for Custom SoCs”. In: IEEE Micro 40.4 (2020), pp. 10–21. DOI: 10.1109/
MM.2020.2996616.

[6] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic. “The risc-vinstruction set manual, volume i: Base user-level isa”. In: EECS Department, UC
Berkeley, Tech. Rep. UCB/EECS-2011-62 116 (2011).

[7] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, DayeolLee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra, QijingHuang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and KrsteAsanovic. “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulationin the Public Cloud”. In: 2018 ACM/IEEE 45th Annual International Symposium on

Computer Architecture (ISCA). 2018, pp. 29–42. DOI: 10.1109/ISCA.2018.00014.

147

https://doi.org/10.1109/ISSCC42614.2022.9731536
https://doi.org/10.1109/ISSCC42614.2022.9731604
https://doi.org/10.1145/3373376.3378479
https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1109/ISCA.2018.00014

Bibliography

[8] Davide Giri, Kuan-Lin Chiu, Giuseppe Di Guglielmo, Paolo Mantovani, and Luca P.Carloni. “ESP4ML: Platform-Based Design of Systems-on-Chip for Embedded Ma-chine Learning”. In: 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 2020, pp. 1049–1054. DOI: 10.23919/DATE48585.2020.9116317.

[9] Luca P. Carloni. “Scalable Open-Source System-on-Chip Design: (Invited Talk -Extended Abstract)”. In: 2020 IFIP/IEEE 28th International Conference on Very Large
Scale Integration (VLSI-SOC). 2020, pp. 7–9. DOI: 10.1109/VLSI-SOC46417.2020.
9344077.

[10] Sven Rheindt, Temur Sabirov, Oliver Lenke, ThomasWild, and Andreas Herkersdorf.“X-Centric: A Survey on Compute-, Memory- and Application-Centric ComputerArchitectures”. In: The International Symposium on Memory Systems. Association forComputing Machinery, 2020, pp. 178–193. DOI: 10.1145/3422575.3422792.
[11] Salma Hesham, Diana Göhringer, and Mohamed Abd El Ghany. “ARTNoCs: AnEvaluation Framework for Hardware Architectures of Real-Time NoCs”. In: 2016

IEEE International Parallel and Distributed Processing SymposiumWorkshops (IPDPSW).2016, pp. 259–264. DOI: 10.1109/IPDPSW.2016.87.
[12] MV Arunkumar and GH Hayatnagarkar. “RISKA: Towards an open-source RISC-Vbased domain-specific system-on-chip for SKA data processing”. In: Proc. Workshop

Comput. Archit. Res. With RISC-V (CARRV) Workshop (ISCA). 2021, pp. 1–7.
[13] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni, JosephZuckerman, Emilio G. Cota, Michele Petracca, Christian Pilato, and Luca P. Carloni.“Agile SoC Development with Open ESP”. In: Proceedings of the 39th International

Conference on Computer-Aided Design (ICCAD ’20). New York, NY, USA: Associationfor Computing Machinery, 2020. DOI: 10.1145/3400302.3415753.
[14] John Shalf. “The future of computing beyond Moore’s Law”. In: Philosophical Trans-

actions of the Royal Society A 378.2166 (2020), p. 20190061.
[15] Ahmed Kamaleldin, Salma Hesham, and Diana Göhringer. “Towards a ModularRISC-V Based Many-Core Architecture for FPGA Accelerators”. In: IEEE Access 8(2020), pp. 148812–148826. DOI: 10.1109/ACCESS.2020.3015706.
[16] Ahmed Kamaleldin and Diana Göhringer. “AGILER: An Adaptive HeterogeneousTile-Based Many-Core Architecture for RISC-V Processors”. In: IEEE Access 10 (2022),pp. 43895–43913. DOI: 10.1109/ACCESS.2022.3168686.
[17] Ahmed Kamaleldin, Muhammad Ali, Pedram Amini Rad, Marcus Gottschalk, andDiana Göhringer. “Modular Memory System for RISC-V Based MPSoCs on XilinxFPGAs”. In: International Symposium on Embedded Multicore/Many-core Systems-on-

Chip (MCSoC). IEEE, Oct. 2019, pp. 68–73. DOI: 10.1109/MCSoC.2019.00017.
[18] Ahmed Kamaleldin and Diana Göhringer. “A Hybrid Memory/Accelerator Tile Ar-chitecture for FPGA-based RISC-V Manycore Systems”. In: International Conference

on Field-Programmable Logic and Applications (FPL). IEEE, Aug. 2022, pp. 1–7. DOI:
10.1109/FPL57034.2022.00053.

[19] Ahmed Kamaleldin and Diana Göhringer. “Design For Agility: A Modular Recon-figurable Platform for Heterogeneous Many-Core Architectures”. In: 2021 31st
International Conference on Field-Programmable Logic and Applications (FPL). IEEE,Aug. 2021, pp. 265–266. DOI: 10.1109/FPL53798.2021.00050.

148

https://doi.org/10.23919/DATE48585.2020.9116317
https://doi.org/10.1109/VLSI-SOC46417.2020.9344077
https://doi.org/10.1109/VLSI-SOC46417.2020.9344077
https://doi.org/10.1145/3422575.3422792
https://doi.org/10.1109/IPDPSW.2016.87
https://doi.org/10.1145/3400302.3415753
https://doi.org/10.1109/ACCESS.2020.3015706
https://doi.org/10.1109/ACCESS.2022.3168686
https://doi.org/10.1109/MCSoC.2019.00017
https://doi.org/10.1109/FPL57034.2022.00053
https://doi.org/10.1109/FPL53798.2021.00050

Bibliography

[20] Ahmed Kamaleldin and Diana Göhringer. “An Agile Tile-based Platform for Adap-tive Heterogeneous Many-Core Systems”. In: 2022 International Conference on
Field-Programmable Technology (ICFPT). IEEE, Dec. 2022, pp. 1–4. DOI: 10.1109/
ICFPT56656.2022.9974358.

[21] Najdet Charaf, Ahmed Kamaleldin, Martin Thümmler, and Diana Göhringer. “RV-CAP: Enabling Dynamic Partial Reconfiguration for FPGA-Based RISC-V System-on-Chip”. In: 2021 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). 2021, pp. 172–179. DOI: 10.1109/IPDPSW52791.2021.
00033.

[22] Mark Bohr. “A 30 year retrospective on Dennard’s MOSFET scaling paper”. In: IEEE
Solid-State Circuits Society Newsletter 12.1 (2007), pp. 11–13.

[23] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, andDoug Burger. “Dark Silicon and the End of Multicore Scaling”. In: Proceedings of the
38th Annual International Symposium on Computer Architecture. ISCA ’11. San Jose,California, USA, 2011, pp. 365–376. DOI: 10.1145/2000064.2000108.

[24] Mark D. Hill and Michael R. Marty. “Amdahl’s Law in the Multicore Era”. In: Computer41.7 (2008), pp. 33–38. DOI: 10.1109/MC.2008.209.
[25] Wayne Wolf, Ahmed Amine Jerraya, and Grant Martin. “Multiprocessor System-on-Chip (MPSoC) Technology”. In: IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 27.10 (2008), pp. 1701–1713. DOI: 10.1109/TCAD.
2008.923415.

[26] Shekhar Borkar. “Thousand Core Chips: A Technology Perspective”. In: Proceed-
ings of the 44th Annual Design Automation Conference. Association for ComputingMachinery, 2007, pp. 746–749. DOI: 10.1145/1278480.1278667.

[27] Lionel Torres, Pascal Benoit, Gilles Sassatelli, Michel Robert, Fabien Clermidy,and Diego Puschini. “An introduction to multi-core system on chip–trends andchallenges”. In: Multiprocessor System-on-Chip (2011), pp. 1–21.
[28] Peter M. Kogge and Brian A. Page. “Locality: The 3rd Wall and the Need for Inno-vation in Parallel Architectures”. In: Architecture of Computing Systems: 34th Inter-

national Conference, ARCS 2021, Virtual Event, June 7–8, 2021, Proceedings. Berlin,Heidelberg: Springer-Verlag, 2021, pp. 3–18. DOI: 10.1007/978-3-030-81682-
7_1.

[29] Wm. A. Wulf and Sally A. McKee. “Hitting the Memory Wall: Implications of theObvious”. In: SIGARCH Comput. Archit. News 23.1 (Mar. 1995), pp. 20–24. DOI:
10.1145/216585.216588.

[30] Qiang Wu, Yajun Ha, Akash Kumar, Shaobo Luo, Ang Li, and Shihab Mohamed. “Aheterogeneous platform with GPU and FPGA for power efficient high performancecomputing”. In: 2014 International Symposium on Integrated Circuits (ISIC). 2014,pp. 220–223. DOI: 10.1109/ISICIR.2014.7029447.
[31] Ashish Venkat, Harsha Basavaraj, and Dean M. Tullsen. “Composite-ISA Cores:Enabling Multi-ISA Heterogeneity Using a Single ISA”. In: 2019 IEEE International

Symposium on High Performance Computer Architecture (HPCA). 2019, pp. 42–55.DOI: 10.1109/HPCA.2019.00026.
[32] Evgenij Belikov, Pantazis Deligiannis, Prabhat Totoo, Malak Aljabri, and Hans-Wolfgang Loidl. “A survey of high-level parallel programmingmodels”. In: Heriot-Watt

University, Edinburgh, UK 1.2 (2013), pp. 2–48.

149

https://doi.org/10.1109/ICFPT56656.2022.9974358
https://doi.org/10.1109/ICFPT56656.2022.9974358
https://doi.org/10.1109/IPDPSW52791.2021.00033
https://doi.org/10.1109/IPDPSW52791.2021.00033
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1109/TCAD.2008.923415
https://doi.org/10.1109/TCAD.2008.923415
https://doi.org/10.1145/1278480.1278667
https://doi.org/10.1007/978-3-030-81682-7_1
https://doi.org/10.1007/978-3-030-81682-7_1
https://doi.org/10.1145/216585.216588
https://doi.org/10.1109/ISICIR.2014.7029447
https://doi.org/10.1109/HPCA.2019.00026

Bibliography

[33] Leonardo Dagum and Ramesh Menon. “OpenMP: An Industry-Standard API forShared-Memory Programming”. In: IEEE Comput. Sci. Eng. 5.1 (Jan. 1998), pp. 46–55.DOI: 10.1109/99.660313.
[34] Peter Pacheco. Parallel programming with MPI. Morgan Kaufmann, 1997.
[35] Benedikt Janßen, Fynn Schwiegelshohn,Martijn Koedam, François Duhem, LeonardMasing, Stephan Werner, Christophe Huriaux, Antoine Courtay, Emilie Wheatley,Kees Goossens, Fabrice Lemonnier, Philippe Millet, Jürgen Becker, Olivier Sen-tieys, and Michael Hübner. “Designing applications for heterogeneous many-corearchitectures with the FlexTiles Platform”. In: 2015 International Conference on

Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS). 2015,pp. 254–261. DOI: 10.1109/SAMOS.2015.7363683.
[36] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards, CarlRamey, Matthew Mattina, Chyi-Chang Miao, John F Brown III, and Anant Agarwal.“On-chip interconnection architecture of the tile processor”. In: IEEE micro 27.5(2007), pp. 15–31.
[37] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: An InsightfulVisual Performance Model for Multicore Architectures”. In: Commun. ACM 52.4(Apr. 2009), pp. 65–76. DOI: 10.1145/1498765.1498785.
[38] Jan Gray. “GRVI Phalanx: A Massively Parallel RISC-V FPGA Accelerator Accelerator”.In: 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM). 2016, pp. 17–20. DOI: 10.1109/FCCM.2016.12.
[39] Bevan Baas, Zhiyi Yu, Michael Meeuwsen, Omar Sattari, Ryan Apperson, Eric Work,Jeremy Webb, Michael Lai, Tinoosh Mohsenin, Dean Truong, and Jason Cheung.“AsAP: A Fine-Grained Many-Core Platform for DSP Applications”. In: IEEE Micro27.2 (2007), pp. 34–45. DOI: 10.1109/MM.2007.29.
[40] Riadh Ben Abdelhamid, Yoshiki Yamaguchi, and Taisuke Boku. “A Highly-Efficientand Tightly-Connected Many-Core Overlay Architecture”. In: IEEE Access 9 (2021),pp. 65277–65292. DOI: 10.1109/ACCESS.2021.3074171.
[41] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, AlexeyLavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang, MatthewMatl, and David Wentzlaff. “OpenPiton: An Open Source Manycore ResearchFramework”. In: SIGPLAN Not. 51.4 (Mar. 2016), pp. 217–232. DOI: 10 . 1145 /

2954679.2872414.
[42] Jörg Henkel, Andreas Herkersdorf, Lars Bauer, Thomas Wild, Michael Hübner,Ravi Kumar Pujari, Artjom Grudnitsky, Jan Heisswolf, Aurang Zaib, Benjamin Vogel,Vahid Lari, and Sebastian Kobbe. “Invasive manycore architectures”. In: 17th Asia

and South Pacific Design Automation Conference. 2012, pp. 193–200. DOI: 10.1109/
ASPDAC.2012.6164944.

[43] JonathanBalkind, Katie Lim, Fei Gao, Jinzheng Tu, DavidWentzlaff,Michael Schaffner,Florian Zaruba, and Luca Benini. “OpenPiton+ Ariane: The first open-source, SMPLinux-booting RISC-V system scaling from one to many cores”. In: Workshop on
Computer Architecture Research with RISC-V (CARRV). 2019, pp. 1–6.

[44] Oracle. OpenSPARC T1. URL: http://www.oracle.com/technetwork/systems/
opensparc/opensparc-t1-page-1444609.html.

150

https://doi.org/10.1109/99.660313
https://doi.org/10.1109/SAMOS.2015.7363683
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1109/FCCM.2016.12
https://doi.org/10.1109/MM.2007.29
https://doi.org/10.1109/ACCESS.2021.3074171
https://doi.org/10.1145/2954679.2872414
https://doi.org/10.1145/2954679.2872414
https://doi.org/10.1109/ASPDAC.2012.6164944
https://doi.org/10.1109/ASPDAC.2012.6164944
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html

Bibliography

[45] Florian Zaruba and Luca Benini. “The Cost of Application-Class Processing: Energyand Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 27.11 (2019), pp. 2629–2640. DOI: 10.1109/TVLSI.2019.2926114.

[46] Young Jin Yoon, Nicola Concer, Michele Petracca, and Luca Carloni. “Virtual chan-nels vs. multiple physical networks: A comparative analysis”. In: Design Automation
Conference. 2010, pp. 162–165.

[47] Marcelo Ruaro, Luciano L Caimi, Vinicius Fochi, and Fernando GMoraes. “Memphis:a framework for heterogeneous many-core SoCs generation and validation”. In:
Design Automation for Embedded Systems 23.3 (2019), pp. 103–122.

[48] S. Rhoads. Plasma CPU Core. URL: https://opencores.org/projects/plasma.
[49] Fernando Moraes, Ney Calazans, Aline Mello, Leandro Möller, and Luciano Ost.“HERMES: An Infrastructure for Low Area Overhead Packet-Switching Networks onChip”. In: Integr. VLSI J. 38.1 (Oct. 2004), pp. 69–93. DOI: 10.1016/j.vlsi.2004.

03.003.
[50] Daniel Petrisko, Farzam Gilani, Mark Wyse, Dai Cheol Jung, Scott Davidson, PaulGao, Chun Zhao, Zahra Azad, Sadullah Canakci, Bandhav Veluri, Tavio Guarino, AjayJoshi, Mark Oskin, and Michael Bedford Taylor. “BlackParrot: An Agile Open-SourceRISC-V Multicore for Accelerator SoCs”. In: IEEE Micro 40.4 (2020), pp. 93–102. DOI:

10.1109/MM.2020.2996145.
[51] Luca Benini, Eric Flamand, Didier Fuin, and Diego Melpignano. “P2012: Buildingan ecosystem for a scalable, modular and high-efficiency embedded computingaccelerator”. In: 2012 Design, Automation & Test in Europe Conference & Exhibition

(DATE). 2012, pp. 983–987. DOI: 10.1109/DATE.2012.6176639.
[52] Yvain Thonnart, Pascal Vivet, and Fabien Clermidy. “A fully-asynchronous low-powerframework for GALS NoC integration”. In: 2010 Design, Automation & Test in Europe

Conference & Exhibition (DATE 2010). 2010, pp. 33–38. DOI: 10.1109/DATE.2010.
5457239.

[53] Abbas Rahimi, Igor Loi, Mohammad Reza Kakoee, and Luca Benini. “A fully synthe-sizable single-cycle interconnection network for Shared-L1 processor clusters”.In: 2011 Design, Automation & Test in Europe. 2011, pp. 1–6. DOI: 10.1109/DATE.
2011.5763085.

[54] F. Arnaud, S. Colquhoun, A.L. Mareau, S. Kohler, S. Jeannot, F. Hasbani, R. Paulin, S.Cremer, C. Charbuillet, G. Druais, and P. Scheer. “Technology-circuit convergencefor full-SOC platform in 28 nm and beyond”. In: 2011 International Electron Devices
Meeting. 2011, pp. 15.7.1–15.7.4. DOI: 10.1109/IEDM.2011.6131562.

[55] Jens Korinth, Jaco Hofmann, Carsten Heinz, and Andreas Koch. “The TaPaSCoOpen-Source Toolflow for the Automated Composition of Task-Based ParallelReconfigurable Computing Systems”. In: Applied Reconfigurable Computing. Cham:Springer International Publishing, 2019, pp. 214–229.
[56] Matheus Cavalcante, Samuel Riedel, Antonio Pullini, and Luca Benini. “MemPool: AShared-L1 Memory Many-Core Cluster with a Low-Latency Interconnect”. In: 2021

Design, Automation & Test in Europe Conference & Exhibition (DATE). 2021, pp. 701–706. DOI: 10.23919/DATE51398.2021.9474087.

151

https://doi.org/10.1109/TVLSI.2019.2926114
https://opencores.org/projects/plasma
https://doi.org/10.1016/j.vlsi.2004.03.003
https://doi.org/10.1016/j.vlsi.2004.03.003
https://doi.org/10.1109/MM.2020.2996145
https://doi.org/10.1109/DATE.2012.6176639
https://doi.org/10.1109/DATE.2010.5457239
https://doi.org/10.1109/DATE.2010.5457239
https://doi.org/10.1109/DATE.2011.5763085
https://doi.org/10.1109/DATE.2011.5763085
https://doi.org/10.1109/IEDM.2011.6131562
https://doi.org/10.23919/DATE51398.2021.9474087

Bibliography

[57] Florian Zaruba, Fabian Schuiki, Torsten Hoefler, and Luca Benini. “Snitch: A TinyPseudo Dual-Issue Processor for Area and Energy Efficient Execution of Floating-Point IntensiveWorkloads”. In: IEEE Transactions on Computers 70.11 (2021), pp. 1845–1860. DOI: 10.1109/TC.2020.3027900.
[58] Davide Giri, Kuan-Lin Chiu, Guy Eichler, Paolo Mantovani, N Chandramoorth, andLuca P Carloni. “Ariane+ NVDLA: seamless third-party IP integration with ESP”. In:

Workshop on Computer Architecture Research with RISC-V (CARRV). 2020.
[59] Young Jin Yoon, Nicola Concer, Michele Petracca, and Luca P. Carloni. “VirtualChannels and Multiple Physical Networks: Two Alternatives to Improve NoC Per-formance”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 32.12 (2013), pp. 1906–1919. DOI: 10.1109/TCAD.2013.2276399.
[60] CobhamGaisler. LEON3. URL: www.gaisler.com/index.php/products/processors/

leon3.
[61] Joseph Zuckerman, Paolo Mantovani, Davide Giri, and Luca P Carloni. “EnablingHeterogeneous, Multicore SoC Research with RISC-V and ESP”. In: arXiv preprint

arXiv:2206.01901 (2022).
[62] Florian Zaruba, Fabian Schuiki, and Luca Benini. “Manticore: A 4096-Core RISC-VChiplet Architecture for Ultraefficient Floating-Point Computing”. In: IEEE Micro41.2 (2021), pp. 36–42. DOI: 10.1109/MM.2020.3045564.
[63] Andreas Kurth, Wolfgang Rönninger, Thomas Benz, Matheus Cavalcante, FabianSchuiki, Florian Zaruba, and Luca Benini. “An Open-Source Platform for High-Performance Non-Coherent On-Chip Communication”. In: IEEE Transactions on

Computers 71.8 (2022), pp. 1794–1809. DOI: 10.1109/TC.2021.3107726.
[64] Samuel Greengard. “Will RISC-V revolutionize computing?” In: Communications of

the ACM 63.5 (2020), pp. 30–32.
[65] RISC-V Intl. URL: https://riscv.org/.
[66] BenjaminW.Mezger, Douglas A. Santos, Luigi Dilillo, Cesar A. Zeferino, and DouglasR. Melo. “A Survey of the RISC-V Architecture Software Support”. In: IEEE Access 10(2022), pp. 51394–51411. DOI: 10.1109/ACCESS.2022.3174125.
[67] Tao Lu. “A survey on risc-v security: Hardware and architecture”. In: arXiv preprint

arXiv:2107.04175 (2021).
[68] Carsten Heinz, Yannick Lavan, Jaco Hofmann, and Andreas Koch. “A Catalog andIn-Hardware Evaluation of Open-Source Drop-In Compatible RISC-V Softcore Pro-cessors”. In: 2019 International Conference on ReConFigurable Computing and FPGAs

(ReConFig). 2019, pp. 1–8. DOI: 10.1109/ReConFig48160.2019.8994796.
[69] RISC-V. The RISC-V Instruction Set Manual. URL: https://riscv.org/technical/

specifications/.
[70] Vectorblox. ORCA. URL: https://github.com/riscveval/orca-1.
[71] PicoRV32. URL: https://github.com/YosysHQ/picorv32.
[72] Eric Matthews and Lesley Shannon. “TAIGA: A new RISC-V soft-processor frame-work enabling high performance CPU architectural features”. In: 2017 27th Interna-

tional Conference on Field Programmable Logic and Applications (FPL). 2017, pp. 1–4.DOI: 10.23919/FPL.2017.8056766.
[73] VexRiscv. URL: https://github.com/SpinalHDL/VexRiscv.

152

https://doi.org/10.1109/TC.2020.3027900
https://doi.org/10.1109/TCAD.2013.2276399
www.gaisler.com/index.php/products/processors/leon3
www.gaisler.com/index.php/products/processors/leon3
https://doi.org/10.1109/MM.2020.3045564
https://doi.org/10.1109/TC.2021.3107726
https://riscv.org/
https://doi.org/10.1109/ACCESS.2022.3174125
https://doi.org/10.1109/ReConFig48160.2019.8994796
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://github.com/riscveval/orca-1
https://github.com/YosysHQ/picorv32
https://doi.org/10.23919/FPL.2017.8056766
https://github.com/SpinalHDL/VexRiscv

Bibliography

[74] Ibex. URL: https://github.com/lowRISC/ibex/.
[75] Shakti. Shakti E Class Processor. URL: https://shakti.org.in/processors.html.
[76] OpenHWGroup CORE-V CV32E40P RISC-V IP. URL: https://github.com/openhwgroup/

cv32e40p.
[77] Pasquale Davide Schiavone, Francesco Conti, Davide Rossi, Michael Gautschi,Antonio Pullini, Eric Flamand, and Luca Benini. “Slow and steady wins the race? Acomparison of ultra-low-power RISC-V cores for Internet-of-Things applications”.In: 2017 27th International Symposium on Power and Timing Modeling, Optimization

and Simulation (PATMOS). 2017, pp. 1–8. DOI: 10.1109/PATMOS.2017.8106976.
[78] CVA6. URL: https://github.com/openhwgroup/cva6.
[79] Gaisler. NOEL-V. URL: https:// www.gaisler.com/index .php/products/

processors/noel-v.
[80] Rocket Chip Generator. URL: https://github.com/chipsalliance/rocket-

chip/.
[81] Abdallah Cheikh, Stefano Sordillo, Antonio Mastrandrea, Francesco Menichelli,Giuseppe Scotti, and Mauro Olivieri. “Klessydra-T: Designing Vector Coprocessorsfor Multithreaded Edge-Computing Cores”. In: IEEE Micro 41.2 (2021), pp. 64–71.DOI: 10.1109/MM.2021.3050962.
[82] The Berkeley Out-of-Order RISC-V Processor. URL: https://github.com/riscv-

boom/riscv-boom/.
[83] codasip. codasip H50XF core. URL: https://codasip.com/products/codasip-

risc-v-processors/.
[84] SiFive. U7 Series. URL: https://www.sifive.com/cores/u74.
[85] Andes. AndesCore NX25F. URL: http://www.andestech.com/en/products-

solutions/andescore-processors/riscv-nx25f/.
[86] T-HEAD. C910. URL: https://www.t-head.cn/product/c910.
[87] Alexander Dörflinger, Mark Albers, Benedikt Kleinbeck, Yejun Guan, Harald Micha-lik, Raphael Klink, Christopher Blochwitz, Anouar Nechi, and Mladen Berekovic. “AComparative Survey of Open-Source Application-Class RISC-V Processor Imple-mentations”. In: Proceedings of the 18th ACM International Conference on Computing

Frontiers. New York, NY, USA: Association for Computing Machinery, 2021, pp. 12–20. DOI: 10.1145/3457388.3458657.
[88] Sparsh Mittal et al. “A survey of accelerator architectures for 3D convolution neuralnetworks”. In: Journal of Systems Architecture 115 (2021), p. 102041.
[89] Lester Kalms, Pedram Amini Rad, Muhammad Ali, Arsany Iskander, and DianaGöhringer. “A parametrizable high-level synthesis library for accelerating neuralnetworks on fpgas”. In: Journal of Signal Processing Systems 93.5 (2021), pp. 513–529.
[90] Deepak Ghimire, Dayoung Kil, and Seong-heum Kim. “A Survey on Efficient Convo-lutional Neural Networks and Hardware Acceleration”. In: Electronics 11.6 (2022),p. 945.

153

https://github.com/lowRISC/ibex/
https://shakti.org.in/processors.html
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40p
https://doi.org/10.1109/PATMOS.2017.8106976
https://github.com/openhwgroup/cva6
https://www.gaisler.com/index.php/products/processors/noel-v
https://www.gaisler.com/index.php/products/processors/noel-v
https://github.com/chipsalliance/rocket-chip/
https://github.com/chipsalliance/rocket-chip/
https://doi.org/10.1109/MM.2021.3050962
https://github.com/riscv-boom/riscv-boom/
https://github.com/riscv-boom/riscv-boom/
https://codasip.com/products/codasip-risc-v-processors/
https://codasip.com/products/codasip-risc-v-processors/
https://www.sifive.com/cores/u74
http://www.andestech.com/en/products-solutions/andescore-processors/riscv-nx25f/
http://www.andestech.com/en/products-solutions/andescore-processors/riscv-nx25f/
https://www.t-head.cn/product/c910
https://doi.org/10.1145/3457388.3458657

Bibliography

[91] Ahmed Kamaleldin, Ensieh Aliagha, Aman Batra, Michael Wiemeler, Thomas Kaiser,and Diana Göhringer. “Hardware/Software Co-design of 2D THz SAR Imaging forFPGA-based Systems-on-Chip”. In: 2022 Fifth International Workshop on Mobile Ter-
ahertz Systems (IWMTS). 2022, pp. 1–5. DOI: 10.1109/IWMTS54901.2022.9832447.

[92] AhmedKamaleldin, JonasWagner, Ilona Rolfes, Jan Barowski, andDianaGoehringer.“Hardware/Software Co-design for the Signal Processing of Dielectric MaterialsCharacterization”. In: 2020 Third International Workshop on Mobile Terahertz Systems
(IWMTS). 2020, pp. 1–6. DOI: 10.1109/IWMTS49292.2020.9166402.

[93] Aman Batra, Ahmed Kamaleldin, Lee Ye Zhen, Michael Wiemeler, Diana Göhringer,and Thomas Kaiser. “FPGA-Based Acceleration of THz SAR Imaging”. In: 2021 Fourth
International Workshop on Mobile Terahertz Systems (IWMTS). 2021, pp. 1–5. DOI:
10.1109/IWMTS51331.2021.9486819.

[94] Lester Kalms, Maximilian Hajduk, and Diana Göhringer. “Efficient Pattern Recogni-tion Algorithm Including a Fast Retina Keypoint FPGA Implementation”. In: 2019
29th International Conference on Field Programmable Logic and Applications (FPL).2019, pp. 121–128. DOI: 10.1109/FPL.2019.00028.

[95] Lester Kalms, Ariel Podlubne, and Diana Göhringer. “HiFlipVX: An Open SourceHigh-Level Synthesis FPGA Library for Image Processing”. In: Applied Reconfig-

urable Computing. Ed. by Christian Hochberger, Brent Nelson, Andreas Koch, RogerWoods, and Pedro Diniz. Cham: Springer International Publishing, 2019, pp. 149–164.
[96] Lester Kalms, Hassan Ibrahim, and Diana Göhringer. “Full-HD Accelerated andEmbedded Feature Detection Video System with 63fps using ORB for FREAK”. In:

2018 International Conference on ReConFigurable Computing and FPGAs (ReConFig).2018, pp. 1–6. DOI: 10.1109/RECONFIG.2018.8641706.
[97] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque, LingjiaTang, and Jason Mars. “The architectural implications of autonomous driving:Constraints and acceleration”. In: Proceedings of the Twenty-Third International

Conference on Architectural Support for Programming Languages and Operating

Systems. 2018, pp. 751–766.
[98] William J. Dally, Yatish Turakhia, and Song Han. “Domain-Specific Hardware Accel-erators”. In: Commun. ACM 63.7 (June 2020), pp. 48–57. DOI: 10.1145/3361682.
[99] Hamed Tabkhi, Robert Bushey, and Gunar Schirner. “Function-Level Processor(FLP): A High Performance, Minimal Bandwidth, Low Power Architecture for Market-Oriented MPSoCs”. In: IEEE Embedded Systems Letters 6.4 (2014), pp. 65–68. DOI:

10.1109/LES.2014.2327114.
[100] Linghao Song, Yuze Chi, Atefeh Sohrabizadeh, Young-kyu Choi, Jason Lau, andJason Cong. “Sextans: A Streaming Accelerator for General-Purpose Sparse-MatrixDense-Matrix Multiplication”. In: Proceedings of the 2022 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays. FPGA ’22. New York, NY, USA:Association for Computing Machinery, 2022, pp. 65–77. DOI: 10.1145/3490422.
3502357.

[101] Andreas Bytyn, Rainer Leupers, and Gerd Ascheid. “ConvAix: An Application-Specific Instruction-Set Processor for the Efficient Acceleration of CNNs”. In: IEEE
Open Journal of Circuits and Systems 2 (2021), pp. 3–15. DOI: 10.1109/OJCAS.2020.
3037758.

154

https://doi.org/10.1109/IWMTS54901.2022.9832447
https://doi.org/10.1109/IWMTS49292.2020.9166402
https://doi.org/10.1109/IWMTS51331.2021.9486819
https://doi.org/10.1109/FPL.2019.00028
https://doi.org/10.1109/RECONFIG.2018.8641706
https://doi.org/10.1145/3361682
https://doi.org/10.1109/LES.2014.2327114
https://doi.org/10.1145/3490422.3502357
https://doi.org/10.1145/3490422.3502357
https://doi.org/10.1109/OJCAS.2020.3037758
https://doi.org/10.1109/OJCAS.2020.3037758

Bibliography

[102] Wei Mao, Kai Li, Quan Cheng, Liuyao Dai, Boyu Li, Xinang Xie, He Li, Longyang Lin,and Hao Yu. “A Configurable Floating-Point Multiple-Precision Processing Elementfor HPC and AI Converged Computing”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 30.2 (2022), pp. 213–226. DOI: 10.1109/TVLSI.2021.
3128435.

[103] Emilio G. Cota, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni. “Ananalysis of accelerator coupling in heterogeneous architectures”. In: 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC). 2015, pp. 1–6. DOI: 10.1145/
2744769.2744794.

[104] G. Ezer. “Xtensa with user defined DSP coprocessor microarchitectures”. In: Pro-
ceedings 2000 International Conference on Computer Design. 2000, pp. 335–342.DOI: 10.1109/ICCD.2000.878305.

[105] Ho-Cheung Ng, Cheng Liu, and Hayden Kwok-Hay So. “A soft processor overlaywith tightly-coupled FPGA accelerator”. In: arXiv preprint arXiv:1606.06483 (2016).
[106] Wenqi Lou, Chao Wang, Lei Gong, and Xuehai Zhou. “RV-CNN: flexible and efficientinstruction set for CNNs based on RISC-V processors”. In: International Symposium

on Advanced Parallel Processing Technologies. Springer. 2019, pp. 3–14.
[107] Muhammad Ali, Matthias von Ameln, and Diana Goehringer. “Vector ProcessingUnit: A RISC-V based SIMD Co-processor for Embedded Processing”. In: 2021

24th Euromicro Conference on Digital System Design (DSD). 2021, pp. 30–34. DOI:
10.1109/DSD53832.2021.00014.

[108] Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, and Luca P. Carloni.“Cohmeleon: Learning-Based Orchestration of Accelerator Coherence in Hetero-geneous SoCs”. In: MICRO-54: 54th Annual IEEE/ACM International Symposium on

Microarchitecture. MICRO ’21. New York, NY, USA: Association for Computing Ma-chinery, 2021, pp. 350–365. DOI: 10.1145/3466752.3480065.
[109] Ali Farahani, Hakem Beithollahi, Mahmood Fathi, and Reza Barangi. “CNNX: A LowCost, CNN Accelerator for Embedded System in Vision at Edge”. In: Arabian Journal

for Science and Engineering (2022), pp. 1–9.
[110] Yvan Tortorella, Luca Bertaccini, Davide Rossi, Luca Benini, and Francesco Conti.“RedMulE: A Compact FP16 Matrix-Multiplication Accelerator for Adaptive DeepLearning on RISC-V-Based Ultra-Low-Power SoCs”. In: 2022 Design, Automation &

Test in Europe Conference & Exhibition (DATE). 2022, pp. 1099–1102. DOI: 10.23919/
DATE54114.2022.9774759.

[111] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and GlennReinman. “Charm: A composable heterogeneous accelerator-rich microproces-sor”. In: Proceedings of the 2012 ACM/IEEE international symposium on Low power

electronics and design. 2012, pp. 379–384.
[112] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Karthik Gu-ruraj, and Glenn Reinman. “Accelerator-rich architectures: Opportunities andprogresses”. In: 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE.2014, pp. 1–6.
[113] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Chunyue Liu, Glenn Reinman,and Yi Zou. “AXR-CMP: Architecture support in accelerator-rich CMPs”. In: 2nd

Workshop on SoC Architecture, Accelerators and Workloads. 2011.

155

https://doi.org/10.1109/TVLSI.2021.3128435
https://doi.org/10.1109/TVLSI.2021.3128435
https://doi.org/10.1145/2744769.2744794
https://doi.org/10.1145/2744769.2744794
https://doi.org/10.1109/ICCD.2000.878305
https://doi.org/10.1109/DSD53832.2021.00014
https://doi.org/10.1145/3466752.3480065
https://doi.org/10.23919/DATE54114.2022.9774759
https://doi.org/10.23919/DATE54114.2022.9774759

Bibliography

[114] Gianluca Bellocchi, Alessandro Capotondi, Francesco Conti, and Andrea Marongiu.“A RISC-V-based FPGA Overlay to Simplify Embedded Accelerator Deployment”.In: 2021 24th Euromicro Conference on Digital System Design (DSD). 2021, pp. 9–17.DOI: 10.1109/DSD53832.2021.00011.
[115] Guy Eichler, Luca Piccolboni, Davide Giri, and Luca P. Carloni. “MasterMind: Many-Accelerator SoC Architecture for Real-Time Brain-Computer Interfaces”. In: 2021

IEEE 39th International Conference on Computer Design (ICCD). 2021, pp. 101–108.DOI: 10.1109/ICCD53106.2021.00027.
[116] Gerhard Fettweis, Mattis Hassler, Robert Wittig, Emil Matus, Stefan Damjancevic,Sebastian Haas, Friedrich Pauls, Seungseok Nam, and Nairuhi Grigoryan. “A Low-Power Scalable Signal Processing Chip Platform for 5G and Beyond - Kachel”. In:

2019 53rd Asilomar Conference on Signals, Systems, and Computers. 2019, pp. 896–900. DOI: 10.1109/IEEECONF44664.2019.9048785.
[117] Emilio G. Cota, Paolo Mantovani, Michele Petracca, Mario R. Casu, and Luca P.Carloni. “Accelerator Memory Reuse in the Dark Silicon Era”. In: IEEE Computer

Architecture Letters 13.1 (2014), pp. 9–12. DOI: 10.1109/L-CA.2012.29.
[118] Michael Lyons, Mark Hempstead, Gu-YeonWei, and David Brooks. “The AcceleratorStore framework for high-performance, low-power accelerator-based systems”.In: IEEE Computer Architecture Letters 9.2 (2010), pp. 53–56. DOI: 10.1109/L-

CA.2010.16.
[119] Paolo Mantovani, Emilio G. Cota, Christian Pilato, Giuseppe Di Guglielmo, andLuca P. Carloni. “Handling Large Data Sets for High-Performance Embedded Appli-cations in Heterogeneous Systems-on-Chip”. In: Proceedings of the International

Conference on Compilers, Architectures and Synthesis for Embedded Systems. CASES’16. Pittsburgh, Pennsylvania: Association for Computing Machinery, 2016. DOI:
10.1145/2968455.2968509.

[120] Masoud Dehyadegari, Andrea Marongiu, Mohammad Reza Kakoee, Siamak Mo-hammadi, Naser Yazdani, and Luca Benini. “Architecture Support for Tightly-Coupled Multi-Core Clusters with Shared-Memory HW Accelerators”. In: IEEE
Transactions on Computers 64.8 (2015), pp. 2132–2144. DOI: 10.1109/TC.2014.
2360522.

[121] Gianluca Bellocchi, Alessandro Capotondi, Francesco Conti, and Andrea Marongiu.“A RISC-V-based FPGA Overlay to Simplify Embedded Accelerator Deployment”.In: 2021 24th Euromicro Conference on Digital System Design (DSD). 2021, pp. 9–17.DOI: 10.1109/DSD53832.2021.00011.
[122] Bin Li, Zhen Fang, and Ravi Iyer. “Template-based memory access engine foraccelerators in SoCs”. In: 16th Asia and South Pacific Design Automation Conference

(ASP-DAC 2011). 2011, pp. 147–153. DOI: 10.1109/ASPDAC.2011.5722175.
[123] Davide Giri, Paolo Mantovani, and Luca P. Carloni. “Accelerators and Coherence:An SoC Perspective”. In: IEEE Micro 38.6 (2018), pp. 36–45. DOI: 10.1109/MM.2018.

2877288.
[124] Davide Giri, Paolo Mantovani, and Luca P. Carloni. “NoC-Based Support of Hetero-geneous Cache-Coherence Models for Accelerators”. In: 2018 Twelfth IEEE/ACM

International Symposium on Networks-on-Chip (NOCS). 2018, pp. 1–8. DOI: 10.1109/
NOCS.2018.8512153.

156

https://doi.org/10.1109/DSD53832.2021.00011
https://doi.org/10.1109/ICCD53106.2021.00027
https://doi.org/10.1109/IEEECONF44664.2019.9048785
https://doi.org/10.1109/L-CA.2012.29
https://doi.org/10.1109/L-CA.2010.16
https://doi.org/10.1109/L-CA.2010.16
https://doi.org/10.1145/2968455.2968509
https://doi.org/10.1109/TC.2014.2360522
https://doi.org/10.1109/TC.2014.2360522
https://doi.org/10.1109/DSD53832.2021.00011
https://doi.org/10.1109/ASPDAC.2011.5722175
https://doi.org/10.1109/MM.2018.2877288
https://doi.org/10.1109/MM.2018.2877288
https://doi.org/10.1109/NOCS.2018.8512153
https://doi.org/10.1109/NOCS.2018.8512153

Bibliography

[125] Davide Giri, Paolo Mantovani, and Luca P. Carloni. “Runtime Reconfigurable Mem-ory Hierarchy in Embedded Scalable Platforms”. In: Proceedings of the 24th Asia and
South Pacific Design Automation Conference. ASPDAC ’19. Tokyo, Japan: Associationfor Computing Machinery, 2019, pp. 719–726. DOI: 10.1145/3287624.3288755.

[126] Christian Pilato, Qirui Xu, Paolo Mantovani, Giuseppe Di Guglielmo, and LucaP. Carloni. “On the Design of Scalable and Reusable Accelerators for Big DataApplications”. In: Proceedings of the ACM International Conference on Computing

Frontiers. CF ’16. Como, Italy: Association for Computing Machinery, 2016, pp. 406–411. DOI: 10.1145/2903150.2906141.
[127] Christian Pilato, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni.“System-Level Optimization of Accelerator Local Memory for HeterogeneousSystems-on-Chip”. In: IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 36.3 (2017), pp. 435–448. DOI: 10.1109/TCAD.2016.2611506.
[128] Jason Cong,MohammadAli Ghodrat, Michael Gill, Chunyue Liu, andGlenn Reinman.“BiN: A Buffer-in-NUCA Scheme for Accelerator-Rich CMPs”. In: Proceedings of the

2012 ACM/IEEE International Symposium on Low Power Electronics and Design. ISLPED’12. Redondo Beach, California, USA: Association for Computing Machinery, 2012,pp. 225–230. DOI: 10.1145/2333660.2333715.
[129] Emilio G. Cota, Paolo Mantovani, and Luca P. Carloni. “Exploiting Private Local Mem-ories to Reduce the Opportunity Cost of Accelerator Integration”. In: Proceedings

of the 2016 International Conference on Supercomputing. ICS ’16. Istanbul, Turkey:Association for Computing Machinery, 2016. DOI: 10.1145/2925426.2926258.
[130] Harshal G Hayatnagarkar, MV Arunkumar, and Bhimsen Padalkar. “ReconfigurableDomain-specific Architectures in the post-Moore’s Law World: Implications forSoftware Engineering”. In: Preprint (2020).
[131] Xilinx. UltraScale Architecture Configuration. URL: https://docs.xilinx.com/v/

u/en-US/ug570-ultrascale-configuration.
[132] Xilinx. Partial Reconfiguration UG909 v2019.1. URL: https://docs.xilinx.com/

v/u/2019.1-English/ug909-vivado-partial-reconfiguration.
[133] Kizheppatt Vipin and Suhaib A Fahmy. “FPGA dynamic and partial reconfiguration:A survey of architectures, methods, and applications”. In: ACM Computing Surveys

(CSUR) 51.4 (2018), pp. 1–39.
[134] Ahmed Kamaleldin, Sherif Hosny, Khaled Mohamed, Mostafa Gamal, AbdelrhmanHussien, Eslam Elnader, Ahmed Shalash, Abdelfattah M. Obeid, Yehea Ismail, andHassanMostafa. “A reconfigurable hardware platform implementation for softwaredefined radio using dynamic partial reconfiguration on Xilinx Zynq FPGA”. In: 2017

IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). 2017,pp. 1540–1543. DOI: 10.1109/MWSCAS.2017.8053229.
[135] Sherif Hosny, Eslam Elnader, Mostafa Gamal, Abdelrhman Hussien, Ahmed H.Khalil, and Hassan Mostafa. “A Software Defined Radio Transceiver Based onDynamic Partial Reconfiguration”. In: 2018 New Generation of CAS (NGCAS). 2018,pp. 158–161. DOI: 10.1109/NGCAS.2018.8572253.
[136] Julien Mazuet, Michel Narozny, Catherine Dezan, and Jean-Philippe Diguet. “ASeamless DFT/FFT Self-Adaptive Architecture for Embedded Radar Applications”.In: 2020 30th International Conference on Field-Programmable Logic and Applications

(FPL). 2020, pp. 115–120. DOI: 10.1109/FPL50879.2020.00029.

157

https://doi.org/10.1145/3287624.3288755
https://doi.org/10.1145/2903150.2906141
https://doi.org/10.1109/TCAD.2016.2611506
https://doi.org/10.1145/2333660.2333715
https://doi.org/10.1145/2925426.2926258
https://docs.xilinx.com/v/u/en-US/ug570-ultrascale-configuration
https://docs.xilinx.com/v/u/en-US/ug570-ultrascale-configuration
https://docs.xilinx.com/v/u/2019.1-English/ug909-vivado-partial-reconfiguration
https://docs.xilinx.com/v/u/2019.1-English/ug909-vivado-partial-reconfiguration
https://doi.org/10.1109/MWSCAS.2017.8053229
https://doi.org/10.1109/NGCAS.2018.8572253
https://doi.org/10.1109/FPL50879.2020.00029

Bibliography

[137] Marie Nguyen, Robert Tamburo, Srinivasa Narasimhan, and James C. Hoe. “Quan-tifying the Benefits of Dynamic Partial Reconfiguration for Embedded Vision Appli-cations”. In: 2019 29th International Conference on Field Programmable Logic and
Applications (FPL). 2019, pp. 129–135. DOI: 10.1109/FPL.2019.00029.

[138] Khaled Khatib, Mostafa Ahmed, Ahmed Kamaleldin, Mohamed Abdelghany, andHassan Mostafa. “Dynamically reconfigurable power efficient security for Internetof Things devices”. In: 2018 7th International Conference on Modern Circuits and Sys-
tems Technologies (MOCAST). 2018, pp. 1–4. DOI: 10.1109/MOCAST.2018.8376645.

[139] BCManjith and R Dhanalakshmi. “Enabling self-adaptability of small scale and largescale security systems using dynamic partial reconfiguration”. In: vol. 12. Springer,2021, pp. 9387–9403.
[140] Fernando Georgel Bîrleanu and Nicu Bizon. “Lightweight cryptography for Internetof Things using FPGA-based Design with Partial Reconfiguration”. In: 2020 12th

International Conference on Electronics, Computers and Artificial Intelligence (ECAI).2020, pp. 1–7. DOI: 10.1109/ECAI50035.2020.9223213.
[141] Hanaa M Hussain, Khaled Benkrid, Ali Ebrahim, Ahmet T Erdogan, and HuseyinSeker. “Novel dynamic partial reconfiguration implementation of k-means cluster-ing on FPGAs: Comparative results with GPPs and GPUs”. In: vol. 2012. HindawiLimited London, UK, United Kingdom, 2012, pp. 1–1.
[142] Salma Hassan, Sameh Attia, Khaled Nabil Salama, and Hassan Mostafa. “EANN:Energy adaptive neural networks”. In: vol. 9. 5. MDPI, 2020, p. 746.
[143] Arturo Pérez, Alfonso Rodríguez, Andrés Otero, David González Arjona, ÁlvaroJiménez-Peralo, Miguel Ángel Verdugo, and Eduardo De La Torre. “Run-Time Recon-figurable MPSoC-Based On-Board Processor for Vision-Based Space Navigation”.In: IEEE Access 8 (2020), pp. 59891–59905. DOI: 10.1109/ACCESS.2020.2983308.
[144] Alfonso Rodríguez, Andrés Otero, Marco Platzner, and Eduardo de la Torre. “Ex-ploiting Hardware-Based Data-Parallel and Multithreading Models for Smart EdgeComputing in Reconfigurable FPGAs”. In: IEEE Transactions on Computers 71.11(2022), pp. 2903–2914. DOI: 10.1109/TC.2021.3107196.
[145] Rafael Zamacola, Andrés Otero, and Eduardo de la Torre. “Multi-grain reconfig-urable and scalable overlays for hardware accelerator composition”. In: Journal of

Systems Architecture 121 (2021), p. 102302.
[146] Suhaib A. Fahmy. “Design Abstraction for Autonomous Adaptive Hardware Systemson FPGAs”. In: 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS).2018, pp. 142–147. DOI: 10.1109/AHS.2018.8541489.
[147] Luca Pezzarossa, Andreas Toftegaard Kristensen, Martin Schoeberl, and JensSparso. “Can real-time systems benefit from dynamic partial reconfiguration?” In:

2017 IEEE Nordic Circuits and Systems Conference, and International Symposium of

System-on-Chip. 2017, pp. 1–6. DOI: 10.1109/NORCHIP.2017.8124984.
[148] Kizheppatt Vipin and Suhaib A. Fahmy. “A high speed open source controllerfor FPGA Partial Reconfiguration”. In: 2012 International Conference on Field Pro-

grammable Technology. 2012, pp. 61–66. DOI: 10.1109/FPT.2012.6412113.
[149] Kizheppatt Vipin and Suhaib A. Fahmy. “ZyCAP: Efficient Partial ReconfigurationManagement on the Xilinx Zynq”. In: IEEE Embedded Systems Letters 6.3 (2014),pp. 41–44. DOI: 10.1109/LES.2014.2314390.

158

https://doi.org/10.1109/FPL.2019.00029
https://doi.org/10.1109/MOCAST.2018.8376645
https://doi.org/10.1109/ECAI50035.2020.9223213
https://doi.org/10.1109/ACCESS.2020.2983308
https://doi.org/10.1109/TC.2021.3107196
https://doi.org/10.1109/AHS.2018.8541489
https://doi.org/10.1109/NORCHIP.2017.8124984
https://doi.org/10.1109/FPT.2012.6412113
https://doi.org/10.1109/LES.2014.2314390

Bibliography

[150] Stefano Di Carlo, Paolo Prinetto, Pascal Trotta, and Jan Andersson. “A portableopen-source controller for safe Dynamic Partial Reconfiguration on Xilinx FPGAs”.In: 2015 25th International Conference on Field Programmable Logic and Applications
(FPL). 2015, pp. 1–4. DOI: 10.1109/FPL.2015.7294002.

[151] Luca Pezzarossa, Martin Schoeberl, and Jens Sparsø. “A Controller for DynamicPartial Reconfiguration in FPGA-Based Real-Time Systems”. In: 2017 IEEE 20th
International Symposium on Real-Time Distributed Computing (ISORC). 2017, pp. 92–100. DOI: 10.1109/ISORC.2017.3.

[152] Luis Andres Cardona and Carles Ferrer. “AC_ICAP: A flexible high speed ICAPcontroller”. In: International Journal of Reconfigurable Computing 2015 (2015).
[153] Christian Kohn. “Partial reconfiguration of a hardware accelerator on zynq-7000all programmable soc devices”. In: Xilinx, XAPP1159 (v1. 0) (2013).
[154] Muhammed Al Kadi, Patrick Rudolph, Diana Goehringer, and Michael Huebner.“Dynamic and partial reconfiguration of Zynq 7000 under Linux”. In: 2013 Interna-

tional Conference on Reconfigurable Computing and FPGAs (ReConFig). 2013, pp. 1–5.DOI: 10.1109/ReConFig.2013.6732279.
[155] Benedikt Janßen, Pascal Zimprich, and Michael Hübner. “A dynamic partial recon-figurable overlay concept for PYNQ”. In: 2017 27th International Conference on Field

Programmable Logic and Applications (FPL). 2017, pp. 1–4. DOI: 10.23919/FPL.
2017.8056786.

[156] Alex R. Bucknall, Shanker Shreejith, and Suhaib A. Fahmy. “Build Automation andRuntime Abstraction for Partial Reconfiguration on Xilinx Zynq UltraScale+”. In:
2020 International Conference on Field-Programmable Technology (ICFPT). 2020,pp. 215–220. DOI: 10.1109/ICFPT51103.2020.00037.

[157] Andreas Kurth, Pirmin Vogel, Alessandro Capotondi, Andrea Marongiu, and LucaBenini. “HERO: Heterogeneous embedded research platform for exploring RISC-Vmanycore accelerators on FPGA”. In: arXiv preprint arXiv:1712.06497 (2017).
[158] Farhad Merchant, Dominik Sisejkovic, Lennart M. Reimann, Kirthihan Yasotharan,Thomas Grass, and Rainer Leupers. “ANDROMEDA: An FPGA Based RISC-V MPSoCExploration Framework”. In: 2021 34th International Conference on VLSI Design and

2021 20th International Conference on Embedded Systems (VLSID). 2021, pp. 270–275.DOI: 10.1109/VLSID51830.2021.00051.
[159] Süleyman Savas, Zain Ul-Abdin, and Tomas Nordström. “A framework to generatedomain-specific manycore architectures from dataflow programs”. In: Micropro-

cessors and microsystems 72 (2020), p. 102908.
[160] Johannes Ax, Gregor Sievers, JulianDaberkow,Martin Flasskamp,Marten Vohrmann,Thorsten Jungeblut, Wayne Kelly, Mario Porrmann, and Ulrich Rückert. “CoreVA-MPSoC: A Many-Core Architecture with Tightly Coupled Shared and Local DataMemories”. In: IEEE Transactions on Parallel and Distributed Systems 29.5 (2018),pp. 1030–1043. DOI: 10.1109/TPDS.2017.2785799.
[161] Wilson José, Horácio Neto, and Mário Véstias. “A Many-Core Co-Processor forEmbedded Parallel Computing on FPGA”. In: 2015 Euromicro Conference on Digital

System Design. 2015, pp. 539–542. DOI: 10.1109/DSD.2015.23.

159

https://doi.org/10.1109/FPL.2015.7294002
https://doi.org/10.1109/ISORC.2017.3
https://doi.org/10.1109/ReConFig.2013.6732279
https://doi.org/10.23919/FPL.2017.8056786
https://doi.org/10.23919/FPL.2017.8056786
https://doi.org/10.1109/ICFPT51103.2020.00037
https://doi.org/10.1109/VLSID51830.2021.00051
https://doi.org/10.1109/TPDS.2017.2785799
https://doi.org/10.1109/DSD.2015.23

Bibliography

[162] Mahmoud A. Elmohr, Ahmed S. Eissa, Moamen Ibrahim, Mostafa Khamis, Sameh El-Ashry, Ahmed Shalaby, Mohamed AbdElsalam, andM.Watheq El-Kharashi. “RVNoC:A Framework for Generating RISC-V NoC-Based MPSoC”. In: 2018 26th Euromicro
International Conference on Parallel, Distributed and Network-based Processing (PDP).2018, pp. 617–621. DOI: 10.1109/PDP2018.2018.00103.

[163] Andreas Olofsson, Tomas Nordström, and Zain Ul-Abdin. “Kickstarting high per-formance energy-efficient manycore architectures with Epiphany”. In: 2014 48th
Asilomar Conference on Signals, Systems and Computers. 2014, pp. 1719–1726. DOI:
10.1109/ACSSC.2014.7094761.

[164] Benôıt Dupont de Dinechin, Renaud Ayrignac, Pierre-Edouard Beaucamps, PatriceCouvert, Benôıt Ganne, Pierre Guironnet de Massas, François Jacquet, SamuelJones, Nicolas Morey Chaisemartin, Frédéric Riss, and Thierry Strudel. “A clusteredmanycore processor architecture for embedded and accelerated applications”. In:
2013 IEEE High Performance Extreme Computing Conference (HPEC). 2013, pp. 1–6.DOI: 10.1109/HPEC.2013.6670342.

[165] PULP-Platform. AXI SystemVerilog Modules for High-Performance On-Chip Communi-
cation. URL: https://github.com/pulp-platform/axi.

[166] Andreas Traber, Michael Gautschi, and Pasquale David Schiavone. RI5CY: User
Manual. URL: https://pulp-platform.org/docs/ri5cy_user_manual.pdf.

[167] PULP-Platform. PULP RISC-V GNU Compiler Toolchain. URL: https://github.com/
pulp-platform/pulp-riscv-gnutoolchain.

[168] Xilinx. Xilinx Virtex UltraScale+ FPGA VCU118 Evaluation Kit. URL: https://www.
xilinx.com/products/boards-and-kits/vcu118.html.

[169] Xilinx. Vivado Design Suit. URL: https://www.xilinx.com/products/design-
tools/vivado.html.

[170] ESP. ESP: The Open-Source SoC Platform. URL: https : / / github . com / sld -
columbia/esp.

[171] Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca Benini.“PULP-NN: A Computing Library for Quantized Neural Network inference at theedge on RISC-V Based Parallel Ultra Low Power Clusters”. In: 2019 26th IEEE In-
ternational Conference on Electronics, Circuits and Systems (ICECS). 2019, pp. 33–36.DOI: 10.1109/ICECS46596.2019.8965067.

[172] PULP-Platform. PULP-NN: Enabling QNN inference on PULP. URL: https://github.
com/pulp-platform/pulp-nn.

[173] Xilinx. Fast Fourier Transform v9.0 (PG109). URL: https://www.xilinx.com/
support/documentation/ipdocumentation/xfft/v90/pg109-xfft.pdf.

[174] Microchip. PolarFire SoC FPGAs (Architecture, Applications, Scurity Features, Design
Environment, Design Hardware). URL: /https://www.microsemi.com/document-
portal/doc_view/1244582-polarfire-soc-brochure.

[175] Nguyen Dao, Andrew Attwood, Bea Healy, and Dirk Koch. “FlexBex: A RISC-V with aReconfigurable Instruction Extension”. In: 2020 International Conference on Field-
Programmable Technology (ICFPT). 2020, pp. 190–195. DOI: 10.1109/ICFPT51103.
2020.00034.

160

https://doi.org/10.1109/PDP2018.2018.00103
https://doi.org/10.1109/ACSSC.2014.7094761
https://doi.org/10.1109/HPEC.2013.6670342
https://github.com/pulp-platform/axi
https://pulp-platform.org/docs/ri5cy_user_manual.pdf
https://github.com/pulp-platform/pulp-riscv-gnutoolchain
https://github.com/pulp-platform/pulp-riscv-gnutoolchain
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://github.com/sld-columbia/esp
https://github.com/sld-columbia/esp
https://doi.org/10.1109/ICECS46596.2019.8965067
https://github.com/pulp-platform/pulp-nn
https://github.com/pulp-platform/pulp-nn
https://www.xilinx.com/support/documentation/ipdocumentation/xfft/v90/pg109-xfft.pdf
https://www.xilinx.com/support/documentation/ipdocumentation/xfft/v90/pg109-xfft.pdf
/https://www.microsemi.com/document-portal/doc_view/1244582-polarfire-soc-brochure
/https://www.microsemi.com/document-portal/doc_view/1244582-polarfire-soc-brochure
https://doi.org/10.1109/ICFPT51103.2020.00034
https://doi.org/10.1109/ICFPT51103.2020.00034

Bibliography

[176] Pasquale Davide Schiavone, Davide Rossi, Alfio Di Mauro, Frank K. Gürkaynak,Timothy Saxe, Mao Wang, Ket Chong Yap, and Luca Benini. “Arnold: An eFPGA-Augmented RISC-V SoC for Flexible and Low-Power IoT End Nodes”. In: IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 29.4 (2021), pp. 677–690. DOI:
10.1109/TVLSI.2021.3058162.

[177] Xilinx. AXI HWICAP. URL: https://www.xilinx.com/products/intellectual-
property/axi_hwicap.html.

[178] Xilinx. AXI DMA LogiCORE IP Product Guide. URL: https://docs.xilinx.com/r/en-
US/pg021_axi_dma.

[179] TUD-ADS. HiFlipVX: Open Source High-Level Synthesis FPGA Library for Image Process-
ing. URL: https://github.com/TUD-ADS/HiFlipVX.

161

https://doi.org/10.1109/TVLSI.2021.3058162
https://www.xilinx.com/products/intellectual-property/axi_hwicap.html
https://www.xilinx.com/products/intellectual-property/axi_hwicap.html
https://docs.xilinx.com/r/en-US/pg021_axi_dma
https://docs.xilinx.com/r/en-US/pg021_axi_dma
https://github.com/TUD-ADS/HiFlipVX

Student Work

[STD1] Marcus Gottschalk. “Investigating Multicore RISC-V Architectures”. Studienarbeit.May 2019, pp. 1–86.
[STD2] Florian Schuster. “Development of a 64-bit RISC-V based Multi-core Shared Mem-ory System”. Studienarbeit. Mar. 2021, pp. 1–53.
[STD3] Martin Thümmler. “Realization of a Self-Adaptive RISC-V System for Image Process-ing Algorithms”. Project Work. Apr. 2021, pp. 1–46.
[STD4] Oguzhan Türk. “Accelerating Signal Processing Kernels on RISC-V based MPSoC”.Project Work. Mar. 2022, pp. 1–50.
[STD5] Ambuja Vinayak Rashinkar. “Accelerating Machine Learning Kernels on RISC-Vbased MPSoC”. Project Work. Mar. 2022, pp. 1–48.

162

	Title page
	Selbstständigkeitserklärung
	Kurzfassung/Abstract
	Kurzfassung/Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objective of this Dissertation
	1.3 Own Contributions
	1.4 Structure of this Dissertation

	2 Background and State-of-the-Art
	2.1 Tile-Based Many-Core Architectures
	2.1.1 Various Tile-based Platforms
	2.1.2 Open-Source RISC-V ISA

	2.2 Hardware Accelerators Integration
	2.2.1 Accelerator Coupling Models
	2.2.2 Memory Management for Accelerators

	2.3 Runtime Adaptive FPGA-based SoC
	2.3.1 Partial Reconfiguration
	2.3.2 Reconfiguration Management Frameworks

	2.4 Contribution Towards Modular and Adaptive Many-Core Architectures
	2.4.1 Modular and Adaptive Heterogeneous Tile-based Architecture
	2.4.2 Hybrid Memory/accelerator Tile Architecture

	2.5 Summary

	3 A Modular Tile-based Many-Core Architecture for Heterogeneous ISAs
	3.1 Modular Tile-based Architecture
	3.1.1 Multi-Core based Tile Architecture
	3.1.2 Heterogeneous RISC-V based Processing Elements

	3.2 System Scalability and Communication Model
	3.2.1 NoC Configuration and Unified Network Interface
	3.2.2 Communication Model for Tile-based Architecture over the NoC

	3.3 Programming Method and Software Execution
	3.4 Evaluation
	3.4.1 Hardware Resource Usage and Prototyping
	3.4.2 Memory Bandwidth Scalability
	3.4.3 Computing Performance and Scalability
	3.4.4 Comparison with State-of-the-Art
	3.4.5 Use Cases Applications

	3.5 Summary

	4 Towards Accelerator Memory Reuse Through a Hybrid Memory/Accelerator Tile Architecture
	4.1 Hybrid Tile Architecture Implementation
	4.1.1 Hybrid Tile Data Path
	4.1.2 Hybrid Tile Control Unit

	4.2 Integration into Tile-based Many-Core System
	4.2.1 System Overview
	4.2.2 Message-based communication over NoC

	4.3 Evaluation
	4.3.1 FPGA Resource Utilization
	4.3.2 Memory Mode Evaluation
	4.3.3 Accelerator Mode Evaluation

	4.4 Summary

	5 Reconfiguration Management for Self-Adaptive RISC-V based Many-Core Architectures
	5.1 Internal Dynamic Partial Reconfiguration Management for Self-Adaptive RISC-V based SoC
	5.1.1 FPGA-based RISC-V SoC
	5.1.2 DPR Controlling Unit (RV-CAP)

	5.2 Application Programming Interfaces (APIs) and Abstraction Layer
	5.2.1 RV-CAP APIs
	5.2.2 Supporting DPR Vendor Controller

	5.3 Evaluation of the Reconfiguration Management Approach
	5.3.1 Hardware Resource Evaluation
	5.3.2 Reconfiguration Time
	5.3.3 Use Cases Accelerators

	5.4 Reconfiguration Management Unit Integration into the Tile-based Many-Core Architecture
	5.5 Summary

	6 Conclusion and Outlook
	6.1 Summary of Contributions
	6.2 Future Work

	Bibliography
	Student Work

