
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Perry, Thomas Paul (2013) Software tools for the rapid development of
signal processing and communications systems on configurable
platforms. EngD thesis

http://theses.gla.ac.uk/4301/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given.

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4301/

Software tools for the rapid development of signal

processing and communications systems on

configurable platforms

Thomas Paul Perry, M.A.

Submitted in fulfilment of the requirements for the EngD degree

Institute for System Level Integration

2013

Abstract

Programmers and engineers in the domains of high performance computing (HPC) and

electronic system design have a shared goal: to define a structure for coordination and

communication between nodes in a highly parallel network of processing tasks. Practi-

tioners in both of these fields have recently encountered additional constraints that mo-

tivate the use of multiple types of processing device in a hybrid or heterogeneous platform,

but constructing a working “program” to be executed on such an architecture is very

time-consuming with current domain-specific design methodologies.

In the field of HPC, research has proposed solutions involving the use of alternative com-

putational devices such as FPGAs (field-programmable gate arrays), since these devices

can exhibit much greater performance per unit of power consumption. The appeal of in-

tegrating these devices into traditional microprocessor-based systems is mitigated, how-

ever, by the greater difficulty in constructing a system for the resulting hybrid platform.

In the field of electronic system design, a similar problem of integration exists. Many of

the highly parallel FPGA-based systems that Xilinx and its customers produce for appli-

cations such as telecommunications and video processing require the additional use of

one or more microprocessors, but coordinating the interactions between existing FPGA

cores and software running on the microprocessors is difficult.

The aim of my project is to improve the design flow for hybrid systems by proposing,

firstly, an abstract representation of these systems and their components which captures

in metadata their different models of computation and communication; secondly, novel

design checking, exploration and optimisation techniques based around this metadata;

and finally, a novel design methodology in which component and system metadata is

2

used to generate software simulation models.

The effectiveness of this approach will be evaluated through the implementation of two

physical-layer telecommunications system models that meet the requirements of the 3GPP

“LTE” standard, which is commercially relevant to Xilinx and many other organisations.

3

Acknowledgements

There are a number of people who have offered me a great deal of assistance in the course

of my EngD project, without which the production of this thesis would not have been

possible.

Firstly, I would like to thank my EngD industrial supervisor, Richard Walke, who worked

tirelessly to provide support and direction to my research. I am also grateful to Khaled

Benkrid and Mark Parsons for their additional supervision and feedback, and to Rob

Payne for his advice relating to the LTE application.

I would also like to thank the various members of Xilinx Edinburgh, and specifically the

Wireless and DSP group, for their guidance and feedback on my work and their friend-

ship. In particular, I am grateful to Graham Johnston for his assistance with the LTE

Downlink Transmit model and to David Andrews for his help with the XMODEL frame-

work. I’m also grateful to Bill Wilkie, Chris Dick and other members of Xilinx manage-

ment for giving their permission for the project to take place, and to the senior techni-

cal staff in Xilinx San Jose, including Ralph Wittig, Gordon Brebner and Nabeel Shirazi

amongst others, for their feedback on my project and for their guidance in targeting my

work to the needs of Xilinx. Finally, Stefan Petko, Dave Fraser and Ben Jones deserve my

thanks for improving my pool skills.

Other acknowledgements include Matt Lewis, for introducing me to SMT solvers, my

examiners for suggesting a number of insightful improvements to my thesis, and to Siân

Williams for her exceptionally responsive administration of the EngD programme. I

would also like to thank the Engineering and Physical Sciences Research Council and

Scottish Enterprise for funding my studies, and the Royal Commission for the Exhibition

4

of 1851 for their very generous Industrial Fellowship award.

Finally, on a personal note, I would like to thank my parents for always encouraging me,

and I’d like to thank Emily for her love and support, which are more meaningful to me

than I can express in words.

5

Declaration of Originality

I declare that, except where explicit reference is made to the contribution of others, that

this thesis is the result of my own work and has not been submitted for any other degree

at the University of Glasgow or any other institution.

6

Contents

Abstract 2

Acknowledgements 4

Declaration of Originality 6

List of Figures 11

List of Tables 13

List of Code Listings 14

List of Abbreviations 15

1 Introduction 20

1.1 Configurable logic . 21

1.2 Heterogeneous platforms . 23

1.3 Programming abstractions . 24

1.4 Goals . 27

1.5 Contributions . 27

1.6 Thesis outline . 28

2 Challenges in designing signal processing systems 29

2.1 Xilinx LTE baseband systems . 29

2.1.1 Coding, modulation and MIMO . 31

2.1.2 Channel multiplexing and multiple access 33

2.2 Challenges in LTE system design . 35

7

2.2.1 Automatic integration of IP cores . 35

2.2.2 Design space exploration and optimisation 37

2.2.3 Software modelling . 39

2.2.4 Heterogeneous processing . 42

2.3 Summary . 42

3 Background 44

3.1 Platform-based design and IP reuse . 44

3.1.1 Interface specification in IP-XACT 46

3.2 Designing new components . 50

3.2.1 High-level synthesis . 52

3.2.2 Metamodelling . 53

3.3 Composition of components . 55

3.4 Models of computation . 57

3.4.1 Process networks and actor-oriented design 58

3.5 Platform mapping . 61

3.6 Summary of existing design tools . 62

3.7 Conclusion . 65

4 Architecture 66

4.1 Idealised design process . 66

4.2 Tool flow overview . 68

4.2.1 Intermediate representation . 69

4.2.2 High-level inputs . 72

4.2.3 Optimisations . 73

4.2.4 Code generation . 73

4.3 Implementation aspects . 74

4.4 Conclusion . 76

5 A metamodel for Xilinx IP cores and systems and its representation in extended

IP-XACT 79

5.1 Requirements . 80

8

5.2 Data type specification . 85

5.2.1 Basic type descriptions . 87

5.2.2 Hierarchical composition of types 89

5.2.3 Data type encoding . 90

5.2.4 Naming and reference . 91

5.2.5 Parameterisation and dependencies 93

5.2.6 Full examples . 96

5.3 Component behaviour specification . 99

5.3.1 Rate relationships . 99

5.3.2 Dynamic data dependencies . 101

5.3.3 Timing constraints . 102

5.3.4 Blocking . 105

5.3.5 Summary . 109

5.4 Discussion . 110

5.5 Conclusion . 111

6 Tool-assisted design of multidimensional streaming systems 113

6.1 Determining buffering requirements . 114

6.2 Automatic buffer instantiation . 116

6.2.1 Chaining SID cores . 117

6.2.2 Custom implementation . 118

6.3 Determining repetition lists using pairwise propagation 120

6.4 Determining repetition lists using Synchronous Dataflow 122

6.4.1 Determining repetition sets automatically 124

6.4.2 Determining buffer-minimising repetition lists 125

6.4.3 Solver output . 130

6.5 Inferring efficient data ordering to assist in component implementation . . 131

6.6 Eliminating redundant calculations . 133

6.6.1 Generalisation to arbitrary generation and reduction functions . . 136

6.7 Implementation considerations . 138

6.8 Discussion . 138

9

6.9 Conclusion . 139

7 A software model generation framework based on extended IP-XACT 140

7.1 Simple leaf-level components . 141

7.1.1 Input language . 141

7.1.2 XMODEL code generation . 143

7.2 Data type input and code generation . 146

7.2.1 Input language . 146

7.2.2 XMODEL code generation . 149

7.3 Integrating bit-accurate core simulation models 151

7.3.1 Actions . 152

7.3.2 Parameters . 154

7.3.3 Fully automatic integration of software models 155

7.4 Hierarchical components and scheduling 156

7.4.1 Input language . 157

7.4.2 XMODEL code generation . 158

7.4.3 Enforcing correct code generation order 161

7.5 Action guards . 162

7.6 Remaining components . 164

7.6.1 Subframe memory controller . 164

7.6.2 OFDM . 164

7.7 Integration into Vivado tool suite . 165

7.8 Test methodology . 166

7.9 Results . 167

7.10 Discussion . 168

7.11 Conclusions . 168

8 Conclusion 169

8.1 Limitations and future work . 170

Bibliography 173

A Publications 185

10

List of Figures

1.1 Visualisation of the available parallelism at various abstraction layers for

two different architectures. 26

2.1 The Xilinx LTE downlink transmit and uplink receive systems. 31

2.2 The LTE uplink resource grid. 34

2.3 A data type interoperability issue in the LTE uplink receive system, caused

by different orderings of array dimensions. 37

2.4 Solution to the interoperability issue through the addition of a reorder buffer. 38

2.5 Resource demapper output type is dependent on types of neighbours. . . 38

2.6 Example XMODEL component definitions. 40

3.1 High-level synthesis and metamodelling. 51

4.1 An idealised design process that addresses the issues raised in Chapter 2.

Some of the new characteristics introduced in each stage are circled. 67

4.2 Tool flow overview. 69

4.3 Tool flow architecture, showing contributions. 77

5.1 FIR Compiler interfaces and data formats. 80

5.2 DUC/DDC Compiler data format in two modes: no TDM and 2 antennas;

TDM and 4 antennas. 83

5.3 Metadata representation of complex array strides. 92

6.1 Propagation of dimensions. 116

6.2 Addition of Uplink Channel Decoder block. 121

11

6.3 Alternative propagation. 121

6.4 Efficient RDL calculated for Resource Demapper. 133

6.5 Calculation of IDLs from IDSs instead of RDL from RDS for the Resource

Demapper leads to lower buffering requirements. 134

6.6 RD/CE/MIMO/IDFT/CD system with symbol replicator. 135

6.7 The (sym) dimension removed from the Channel Estimator. 136

6.8 GUI mock-up of a mechanism for specifying arbitrary data generation and

reduction functions. 137

6.9 GUI mock-up showing interface dimension mapping. 138

7.1 Data type metadata and code generation flow (the significance of the colours

is as shown in Figure 4.3). 147

7.2 Component metadata and code generation flow (the significance of the

colours is as shown in Figure 4.3). 153

7.3 SCH encoder and modulation chain. 157

12

List of Tables

2.1 Interface characterisation of Xilinx DSP cores 36

3.1 Examples of model transformations. 55

3.2 Feature matrix for a selection of existing design automation tools. 64

5.1 Leaf-level data types in Xilinx DSP cores . 82

5.2 Data interface array dimensionality in Xilinx DSP cores 84

5.3 A selection of data interface formats used in Xilinx video processing cores 86

5.4 Supported data format codes in a selection of Xilinx video cores 86

5.5 Dynamic interface behaviour of Xilinx DSP cores 109

6.1 High-level synthesis results for simple reorder buffer. 119

6.2 High-level synthesis results for optimised reorder buffer. 119

6.3 RDL results for MIMO/IDFT system. 130

6.4 RDL results for MIMO/IDFT/Channel Decoder system. 131

6.5 RDL results for RD/CE/MIMO/IDFT/CD system. 132

6.6 RDL/IDL results for RD/CE/MIMO/IDFT/CD system. 133

6.7 RDL results for RD/CE/MIMO/IDFT/CD system with symbol replicator. 135

13

List of Code Listings

3.1 IP-XACT component description example. 47

3.2 Representation of an optional bus interface in IP-XACT using vendor ex-

tensions. 48

3.3 IP-XACT design description example. 49

5.1 Metadata representation of a simple data type. 87

5.2 Abstract metadata representation of optional port. 94

5.3 Metadata representation of parameterised array dimension size and pres-

ence. 95

5.4 Metadata description of the CONFIG control packet received by FIR cores. 97

5.5 DUC/DDC Compiler data format expressed in XML metadata. 98

6.1 Reorder buffer described as C code for input to Vivado HLS. 118

6.2 Python session demonstrating symbolic determination of an SDF rate vec-

tor and an RDS. 125

6.3 Python function used to generate Z3 cost constraints. 129

6.4 Output from solver when applied to the MIMO/IDFT system. 130

6.5 Output from solver when applied to the MIMO/IDFT/Channel Decoder

system. 131

6.6 Modified data copying statements for input to Vivado HLS. 136

6.7 C code for custom replicate-and-reorder buffer to be input to Vivado HLS. 137

7.1 NL representation of SCH modulation hierarchical block. 158

14

List of Abbreviations

AMC Adaptive Modulation and Coding

AMD Advanced Micro Devices

ANTLR ANother Tool for Language Recognition

API Application Programming Interface

ARM ARM Ltd. (originally Advanced RISC Machines)

ARQ Automatic Repeat Request

ASIC Application-Specific Integrated Circuit

ASN.1 Abstract Syntax Notation One

AXI ARM “Advanced Extensible Interface” standard

AXI4 AXI, version 4

BCH Broadcast Channel

BDF Boolean Dataflow

CAL CAL Actor Language

CCF Component Composition Framework

CCH Control Channel

CCS Calculus of Communicating Systems

CD Channel Decoder

CE Channel Encoder

CER Canonical Encoding Rules

CFR Crest-Factor Reduction

CHREC (National Science Foundation) Center for High-Performance Reconfig-
urable Computing

CI Component Interaction (Ptolemy domain)

CP (OFDM) Cyclic Prefix

CPU Central Processing Unit

15

CQI Channel Quality Indicator

CSDF Cyclo-Static Dataflow

CSP Communicating Sequential Processes

DAG Directed Acyclic Graph

DDF Dynamic Dataflow

DDR Double Data Rate (RAM)

DDS Direct Digital Synthesis

DFE Digital Front-End

DFT Discrete Fourier Transform

DL Downlink

DMA Direct Memory Access

DPD Digital Pre-Distortion

DPN Dataflow Process Network

DRC Design Rule Check

DSE Design Space Exploration

DSL Domain-Specific Language

DSML Domain-Specific Modelling Language

DSP Digital Signal Processing

DUC/DDC Digital Up-Conversion/Digital Down-Conversion

ECN ASN.1 Encoding Control Notation

EDA Electronic Design Automation

EDK Xilinx Embedded Development Kit

EIDL Effective Interface Dimension List

eNodeB Evolved Node B (3GPP LTE equivalent of a GSM base station)

EPIC Explicitly Parallel Instruction Computing

e-UTRAN Evolved Universal Terrestrial Radio Access Network (air interface for
3GPP LTE)

FFT Fast Fourier Transform

FIFO First-In First-Out, or a buffer that implements first-in first-out behaviour

FIR Finite Impulse Response (can also refer to the Xilinx FIR Compiler
LogiCORE)

FPGA Field-Programmable Gate Array

GPP General Purpose Processor

GPU Graphics Processing Unit

16

GUI Graphical User Interface

HARQ Hybrid Automatic Repeat Request

HDL Hardware Description Language

HLS High-Level Synthesis

HPC High Performance Computing

HPRC High Performance Reconfigurable Computing

IBSDF Interface-Based Hierarchical Synchronous Dataflow

ICH Indicator Channel

IDF Integer Dataflow

IDFT Inverse Discrete Fourier Transform

IDL Interface Dimension List/Interface Description Language

IDS Interface Dimension Set

IP Intellectual Property

IPv4 Internet Protocol, version 4

IR Intermediate Representation

JHDL Just-another Hardware Description Language

JVM Java Virtual Machine

KPN Kahn Process Network

LLR Log-Likelihood Ratio

LLVM Low-Level Virtual Machine

LTE 3GPP “Long-Term Evolution” mobile telephony standard

LWIP Lightweight TCP/IP

MAC Media Access Control

MDA Model-Driven Architecture

MDE Model-Driven Engineering

MDSDF Multidimensional Synchronous Dataflow

MII Minimum Initiation Interval

MIMO Multiple Input, Multiple Output

MPI Message-Passing Interface

MU-MIMO Multi-User MIMO

NL Network Language

NRE Non-Recurring Engineering

OFDM Orthogonal Frequency-Division Multiplexing

17

OFDMA Orthogonal Frequency-Division Multiple Access

OMG Object Management Group

PBCH Physical Broadcast Channel

PCFICH Physical Control Format Indication Channel

PDSCH Physical Downlink Shared Channel

PER ASN.1 Packed Encoding Rules

PHICH Physical Hybrid Indication Channel

PIM Platform-Independent Model

PMCH Physical Multicast Channel

PRACH Physical Random Access Channel

PSM Platform-Specific Model

PUCCH Physical Uplink Control Channel (can also refer to the Xilinx PUCCH
Receiver LogiCORE which implements the processing functions for
this channel)

PUSCH Physical Uplink Shared Channel

QAM Quadrature Amplitude Modulation

QoR Quality of Results

QPSK Quadrature Phase Shift Keying

RAM Random-Access Memory

RB Resource Block (in LTE resource grid)

RBG Resource Block Group (in LTE resource grid)

RDL Repetition Dimension List

RDS Repetition Dimension Set

RE Resource Element (in LTE resource grid)

RGB Red, Green, Blue

RS Reference Symbol

RTL Register Transfer Level

RVC-CAL Reconfigurable Video Coding variant of CAL

RX Receive

SCF System Coordination Framework

SC-FDMA Single-Carrier Frequency-Division Multiple Access

SCH Shared Channel

SDF Synchronous Dataflow

SID Xilinx Streaming Interleaver/Deinterleaver LogiCORE

18

SMT Satisfiability Modulo Theories

STL C++ Standard Template Library

SU-MIMO Single-User MIMO

TB Transport Block

Tcl Tool Command Language

TDM Time-Division Multiplexing

TDP Targeted Design Platform

TPD Turns Per Day

TT2 (Perl) Template Toolkit 2

TTM Time To Market

TX Transmit

UE User Equipment

UL Uplink

UML Unified Modelling Language

VHDL VHSIC Hardware Description Language

VHLS Vivado High-Level Synthesis

VIPI Vivado IP Integrator

VLIW Very Long Instruction Word

VLNV Vendor, Library, Name, Version

XFFT Xilinx FFT LogiCORE

XML Extensible Markup Language

XPS Xilinx Platform Studio

XSLT Extensible Stylesheet Language Transforms

YAML YAML Ain’t Markup Language

ZP Zero-Padding

19

Chapter 1

Introduction

For a large part of the history of computing, process scaling according to Moore’s Law has

led to regular and predictable increases in the performance of single-threaded general-

purpose processors (GPPs) through exponential increases in clock rates. However, as a

result of problems in areas such as power dissipation and transistor speed, these clock

rate increases have reached a practical limit [1]. This is problematic for a wide variety of

computing applications that continue to be compute-bound, for example in high perfor-

mance computing (HPC), and so the continuation of process scaling has been exploited

instead to produce parallel multi-core devices in which a standard microprocessor core

is replicated a number of times on a semiconductor die.

Aside from achieving raw processor performance, however, there is an increasing need

for processors to achieve high levels of performance per watt of power consumption.

As HPC systems continue to push the boundaries of the current processor technology,

power usage in data centres and supercomputers has continued to grow [2], with the

highest-ranked system on the TOP500 list of supercomputers consuming 7.89 megawatts

of power [3]. In an attempt to encourage sustainable supercomputing, the TOP500 list of su-

percomputers has recently been supplemented with the Green500 list, ordered by power

efficiency [4], and this indicates an awareness within the HPC industry of the large power

requirements and resulting running costs of modern architectures and of the desire for

power consumption to be reduced.

20

Various solutions to the problems of performance and power efficiency have been pro-

posed, many of which depart significantly from conventional microprocessor architec-

ture. One approach involves a technique known as inexact computation, in which micro-

processors are designed such that they allow some degree of imprecision in computed

values. This has been demonstrated to provide a 15-fold improvement in area-delay-

energy product [5], equivalent to six years of the growth previously expected under

Moore’s Law, but provides a new set of challenges in dealing correctly with inexact val-

ues.

To address both the raw performance problem and the performance-per-watt problem

while retaining exact computed values, other researchers have investigated the use of

accelerator devices that are specialized to a particular task. Acceleration using Graphics

Processing Units (GPUs) is becoming common in the HPC domain, since they aggregate

a large number of processing pipelines in a low-cost device and are becoming increas-

ingly programmable. Another approach, potentially offering even higher levels of per-

formance in many applications, involves devices containing configurable logic such as the

Field Programmable Gate Array (FPGA) in which the data path may be configured at a

fine level of granularity to suit a particular application. It is the production of systems

to be programmed to these devices that will be the subject of the investigations in this

thesis.

1.1 Configurable logic

In the general semiconductor domain, the fabrication of application-specific integrated

circuits (ASICs) is becoming more expensive due to exponentially increasing mask costs

[6]. FPGA devices from companies such as Xilinx and Altera provide a means to avoid

this expense by providing flexibility (in terms of reprogrammability and time-to-market)

while maintaining high performance (in terms of number of operations executed per

second), and FPGAs have therefore been adopted as ASIC replacements as part of a trend

known as the “programmable revolution” (or, indeed, the “programmable imperative”)

[7]. FPGAs are adopted in this role despite the performance cost of programmability

21

[8] because of the shorter time-to-market and lower non-recurring engineering costs of

FPGA-based systems.

Recently, research into the use of customised processing pipelines implemented on con-

figurable logic to accelerate the type of computation performed in standard micropro-

cessor devices has led to the field of configurable computing [9]. Since these pipelines are

typically implemented on devices that can be configured repeatedly, this is often known

by the more common term of reconfigurable computing. This has attracted attention in the

HPC domain since it has been demonstrated that FPGAs can offer improvements of mul-

tiple orders of magnitude over GPPs in terms of computational power per watt in certain

applications [10, 11]. Applied in the HPC domain, this technique has become known as

high-performance reconfigurable computing (HPRC).

Studies to compare the relative performance of GPPs, GPUs and FPGAs tend to report

that GPUs perform better than GPPs, and FPGAs perform better than GPUs. For ex-

ample, one study demonstrated a speedup of 50x on GPUs and 162x to 544x on FPGA,

depending on the precision and variability of precision (fixed or floating point) of the

calculations performed [12].

The reasons for the performance disparity arise from the different models of computation

used by each device. The von Neumann architecture of a typical microprocessor uses a

model of computation based on the sequential manipulation of state: it repeatedly loads

an instruction from memory, loads data from memory, performs some operation such as

an addition or multiplication, and writes the result back to memory1. Modern examples

of this architecture are designed to deal with unpredictable control flow, with instruction

streams containing frequent jumps, conditional branches and subroutine calls. This limits

the length of the processing pipelines and requires significant amounts of logic to be

dedicated to tasks such as branch prediction and out-of-order execution. Furthermore,

the frequent need to load and store data through a narrow processor-memory interface

leads to a phenomenon termed the von Neumann bottleneck [13].

GPUs, in contrast, target applications with more predictable control flow, and this allows

1Modern out-of-order GPPs do not execute code in a strictly sequential manner, but they are bound by

the requirement to appear as though they do.

22

control logic to be replaced with long dataflow pipelines that, through the interleaving

of processing and register storage, avoid the memory bandwidth problems encountered

in von Neumann architectures. Futhermore, these pipelines are replicated in parallel,

allowing high performance in applications with high levels of parallelism. While the

GPU is still a reasonably general-purpose device with the structure of each pipeline be-

ing fixed, the ability to create pipelines in an FPGA that are customised to an application

allows smaller area requirements per pipeline, and in turn this allows a larger number

of pipelines to be implemented in each device. Thus, even greater levels of peak perfor-

mance may potentially be achieved in an FPGA.

1.2 Heterogeneous platforms

Wholesale adoption of FPGAs to replace GPPs is not possible, because FPGAs (and

GPUs) are only useful for certain types of computation. While software applications that

make heavy use of highly parallel or regular signal processing techniques such as Fourier

transforms would, in many cases, perform better if this processing were performed by an

optimised FPGA core, FPGA-based applications often made effective use of an embed-

ded microprocessor to handle sporadic or irregular data processing patterns. Thus, there

is a need for different types of computation to be targeted by different processing styles

on a heterogeneous platform [14].

To address the need for tight integration of software and FPGA processing, FPGA ven-

dors provide soft core processors such as the MicroBlaze [15] and Nios II [16]. To provide

improved software performance, FPGA devices have recently been manufactured which

contain hard microprocessor cores. Devices from Xilinx have included the Virtex-5 FXT

with an embedded PowerPC core [17], and more recently, the Zynq-7000 series of extensi-

ble processing platforms with two powerful ARM Cortex-A9 MPCore application processor

cores [18]. Altera is following a similar path, with a partnership with Intel leading to the

E6x5C series of Atom processors with FPGA fabric and the development of a SoC FPGA

that incorporates ARM cores [19]. In the evolution of these architectures, a shift may

be observed from the use of microprocessors as secondary components in an otherwise

23

standard FPGA to the addition of FPGA fabric to a standard microprocessor.

1.3 Programming abstractions

A challenge faced by vendors of all programmable devices, whether GPPs, GPUs or FP-

GAs, is to develop an ecosystem of supporting tools that allow high performance appli-

cations to be created with as little effort as possible for the devices they produce.

GPPs were originally programmed using low-level assembly languages which mapped

instructions in input code directly to operations performed by the functional units of

the device. Gradually, it became possible through advances in compiler technology to

widen the semantic gap between programming constructs and processor operations, and

high-level languages such as Fortran and C became standardised to the point that any

performance gains from the use of assembly languages were outweighed by the ease of

expression afforded by the new languages. Development of language paradigms has

continued, with object orientation allowing greater code re-use, extensibility and modu-

larity, and functional programming allowing the declarative description of algorithms in

a mathematical style. These advances allow software programmers to construct working

programs with minimal knowledge of the underlying hardware and to delegate perfor-

mance optimisation to compilers.

However, these abstractions are built upon the assumption of an underlying von Neu-

mann execution model, and though modern superscalar processor microarchitectures have

become increasingly parallel, much of this parallelism is inexpressible by the sequential

instruction sets that are typically implemented on top for reasons of backwards compat-

ibility [20]. Where parallelism may be specified at the instruction level, such as in Very

Long Instruction Word (VLIW) and Explicitly Parallel Instruction Computing (EPIC) ar-

chitectures, the problem of determining valid parallel instruction sequences is shifted

from the processor to the compiler, but finding enough parallelism in the sequential in-

put code remains a challenge. Similarly, the move towards multi-core processors has

occurred ahead of the necessary advances in languages and tools needed to exploit the

parallelism that the new architectures provide [21].

24

In contrast, the hardware description languages (HDLs) that are used in the process of

FPGA system design allow the expression of fine-grained parallelism, but only at a low

level of abstraction; an engineer writing register transfer level (RTL) code in a hardware

description language (HDL) must remain aware of the physical layout of the target FPGA

in order to produce an implementation of sufficient speed. Reasons for this include the

relative immaturity of the domain, the requirement for “thinking in parallel” at all stages

of the design process, and the need for hardware engineers to extract maximal levels of

performance from their designs in order for the FPGA to remain cost-effective as a mi-

croprocessor or ASIC alternative. As a result, FPGAs are regarded as being significantly

harder to program than GPPs with the current state-of-the-art design tools.

There is not yet a consensus on the best tools and techniques with which to widen the

language bottleneck in the software domain, and to bridge the gap between algorithms

and RTL code in the hardware domain. On the software side, one of the most prevalent

models used to address the rise of multi-core processors is multithreading, but this can

introduce race conditions and nondeterminism in subtle ways that make it difficult for

programmers to ensure that their programs are bug-free [22]. On the hardware side, high-

level synthesis (HLS) tools such as Catapult C [23] and Vivado HLS [24] are available to

raise the abstraction level of the hardware design process, but their relative success stands

in contrast to the failure of a number of other tools in this domain such as AccelDSP [25],

the Mitrion Virtual Processor [26] and Handel-C [27] to provide sufficiently high quality

of results to benefit from significant market penetration.

The differences between the parallel programming difficulties in software and hardware

are summarised in Figure 1.1: in software, the ability to design parallel systems is con-

strained by sequential mechanisms for design expression (instruction sets and most pro-

gramming languages), while in hardware, a parallel interface is exposed to the user but

there is a lack of mature high-level tools that allow algorithms to be targeted easily to

that interface.

One way to deal with the complexities of parallel programming in both the software

and hardware domains is for experts to produce libraries of parallel designs to stringent

performance specifications that are intended to be instantiated easily and reused by cus-

25

CPU

expressible parallelism

ab
st

ra
ct

io
n

FPGA

?

expressible parallelism

ab
st

ra
ct

io
n

algorithms

high-level languages

instructions/primitives

microarchitectures

Figure 1.1: Visualisation of the available parallelism at various abstraction layers for two different
architectures.

tomers within their system designs. In the FPGA domain, these designs are known as IP

cores, and they allow high performance FPGA systems to be implemented more easily by

hiding the task of specifying behaviour at a low level of abstraction from the end-user,

leaving only the task of coordinating the cores.

Xilinx produces a variety of IP cores, which are branded as LogiCOREs. Some of these are

targeted to specific markets such as wireless communications or video processing, some

are used in a broader signal processing domain, including “horizontal” cores such as the

FIR filters that are generated by the FIR Compiler LogiCORE [28], and some provide a

base platform by fulfilling roles such as Ethernet media access control and DDR mem-

ory control [7]. While the task of constructing a system using these cores is ordinarily

delegated to customers, recent market dynamics have caused this task additionally to

be brought in-house; in Xilinx, this is done through the construction of Targeted Design

Platforms (TDPs) on heterogeneous processing platforms in order to further stimulate de-

mand in specific markets such as telecommunications and video processing [7].

While IP integration offers significant benefits in FPGA system design, the growth in size

of FPGA devices has occurred faster than their tools’ ability to deal with the complexity

of this task, leading to a “design productivity gap” [29]. Limited design productivity,

defined as the time to complete a new design, the time to do something new with an

existing design, and the rate at which a series of designs can be created [30], hampers

the speed of development of these systems, and in the context of FPGA systems, this acts

as a barrier both to the efficient design of systems for FPGA-based platforms, and to the

migration of processor-based systems to hybrid processor-FPGA platforms.

26

1.4 Goals

The potential benefits of reconfigurable computing in producing high-performance sys-

tems are clear, but Xilinx and other companies have a growing requirement for tools that

enable fast design and specification of parallel systems on these platforms, particularly

those involving the interactions of cores in the FPGA fabric and software components

running on a microprocessor. Thus, rather than focusing on performance improvement,

the aim of this thesis is to improve design productivity whilst maintaining the perfor-

mance characteristics that are achievable through status quo design flows.

This problem is tackled within the context of the Xilinx tool suite, and the proposed im-

provements are demonstrated through the generation of commercially relevant wireless

communications systems that are described in the next chapter.

1.5 Contributions

The contributions of this thesis are to describe the implementation of a high-level design

methodology for FPGA systems that builds upon industrial practice and which incorpo-

rates the following main features:

1. an extensive metadata schema, implemented as extensions to the industry-standard

IP-XACT schema [31], which describes the details of the interfaces and operation of

Xilinx IP cores;

2. an optimisation stage that may be applied to a high-level description of a mul-

tidimensional streaming communications system that performs automatic design

space exploration to determine more efficient memory utilisation and latency char-

acteristics; and

3. a demonstration of the automatic generation of software system models comprising

models of individual cores from the IP-XACT-based schema developed in point 1,

and the generation of extended IP-XACT descriptions from high-level inputs in

order to provide an end-to-end toolflow.

27

Additionally, the contributions of this thesis provide a number of opportunities for futher

research. For example, the production of high-level descriptions of FPGA systems al-

lows the generation of the software-hardware communications infrastructure required in

systems for heterogeneous platforms, and this has been addressed by another research

engineer, Stefan Petko.

The solutions proposed in point 2 above have led to the filing and issuing of US patent

#8,365,109 [32], which indicates the commercial relevance of the project to Xilinx, and the

developments in points 1 and 3 have been published in two papers in international IEEE

conference proceedings, indicating that rather than being specific to Xilinx, the problem

is of wider academic interest. The first of these papers motivates and describes at a high

level the use of IP-XACT as an intermediate representation in a code generation flow [33],

and the second paper describes in more detail the extensions to IP-XACT that are of most

use in enabling the generation of as much low-level software code as possible, and how

this downstream generation is achieved [34]. The papers are included in this thesis in

Appendix A, and the aim of the remainder of this thesis is to contextualise and explain

the published developments in sufficient further detail that the results may be replicated

and used as the basis for future work.

1.6 Thesis outline

Chapter 2 describes in greater depth the industrial context of the problem, focusing on

the issues encountered within Xilinx in integrating IP cores into large systems. Chapter 3

then examines the techniques proposed in the academic literature to determine whether

existing work may be adopted or adapted to solve these problems, and after determining

the missing features, Chapter 4 outlines an approach to address these problems that in-

cludes metadata, optimisations and automatic code generation. Following this are three

chapters that describe in detail the novel features of the approach: Chapter 5 describes the

metadata extensions that are used, Chapter 6 describes the optimisations, and Chapter 7

describes the automated code generation flow. Finally, Chapter 8 provides an evaluation,

conclusion and discussion of future work.

28

Chapter 2

Challenges in designing signal

processing systems

The recent development of the 3GPP Long Term Evolution (LTE) mobile telephony stan-

dard has stimulated demand for compliant component and system implementations, and

Xilinx has been working to address this demand with the production of a portfolio of

LogiCOREs and system reference designs. This chapter will describe the 3GPP LTE e-

UTRAN physical layer (with reference mainly to Rumney et al. [35]), and will then de-

scribe the system design challenges that it presents, how these are currently addressed in

Xilinx, and some of the limitations of the current approach.

2.1 Xilinx LTE baseband systems

The physical layer of an LTE system encompasses both baseband components, defined

by the LTE standard, and digital front-end (DFE) components such as digital up/down-

conversion (DUC/DDC), crest factor reduction (CFR) and digital pre-distortion (DPD)

which may be implemented for economic reasons: for example, DPD allows less expen-

sive power amplifiers to be used in base stations. There are four distinct LTE baseband

systems: downlink transmit, downlink receive, uplink transmit and uplink receieve. The

downlink receive and uplink transmit systems are found in user equipment (UE) such as

29

mobile phone handsets, while the downlink transmit and uplink receive systems belong

to the base station (eNodeB) design. The need for four separate systems is motivated

firstly by the differing data rate requirements of uplink and downlink, and secondly by

the differing power requirements of coding and decoding algorithms: more sophisticated

decoding techniques are permitted in the eNodeB than in the UE due to the availability

of mains electricity rather than battery power. Since the eNodeB handles the communi-

cation from a number of UE devices, peak data rates are higher and the use of FPGAs in

eNodeB devices becomes economical. Thus, it is the uplink recieve and downlink trans-

mit systems that are of interest to Xilinx, and it is these systems that will be examined in

this thesis.

The major tasks that are performed in LTE transmit systems are channel coding, mod-

ulation, MIMO encoding, resource mapping and channel multiplexing (OFDMA/SC-

FDMA), and the receive systems perform essentially the inverse operations. Figure 2.1

shows the structure of the Xilinx baseband LTE systems along with the DFE and MAC

(media access control) context in which they are used. LogiCOREs are used where avail-

able to fulfil the processing requirements of the systems, and where no LogiCORE is

available, for example in the case of the resource mapper and demapper, custom blocks

are implemented as required in the system design process.

Data is communicated in separate channels, with users sharing data transmission capac-

ity in the Physical Downlink Shared Channel (PDSCH) in the downlink, and the Physical

Uplink Shared Channel (PUSCH) in the uplink. Control information is communicated

in the PDCCH and PUCCH channels, and a number of additional channels are defined

for purposes including broadcast (PBCH), multicast (PMCH), hybrid indication (PHICH)

and control format indication (PCFICH) in the downlink, and random access (PRACH)

in the uplink. In the Xilinx downlink transmit system, similarities in the encoding pro-

cess allow a common processing chain to be used for the PCFICH and PHICH channels

(in an “ICH” encoding chain), and also for the PBCH and PDCCH channels (in a “CCH”

encoding chain).

30

LTE DL TX baseband PHY

OFDM

Inverse
FFT

Digital front-end

DUC DPDCFR

PDSCH

Channel
encoder

MIMO
encoder

Scrambling,
modulation

LTE UL RX baseband PHY

OFDM

FFT

Digital front-end

DDC

To
Layer 2

PDCCH/PBCH

Channel
encoder

MIMO
encoder

Scrambling,
modulation

PHICH/PCFICH

Channel
encoder

MIMO
encoder

Scrambling,
modulation

PUSCH

PUCCH

Channel
estimator

MIMO
decoder

IDFT

Channel
decoder

Resource
mapper

PRACH

To memory
(AXI4)

To memory
(AXI4)

PHY
software

Custom component

LogiCOREKey:

Data

Control

Resource
demapper

Figure 2.1: The Xilinx LTE downlink transmit and uplink receive systems.

2.1.1 Coding, modulation and MIMO

Each channel undergoes a different coding and modulation process. In the coding stage,

data in each channel is segmented into code blocks and a CRC is calculated and ap-

pended to each code block with different parameters on each channel. Forward error

correction is then applied, consisting of Turbo coding for the shared channels and tail-

biting convolutional coding for the main control channels, with other forms of coding

applied to the remaining channels. Code blocks are then rate-matched and concatenated.

All of these processes are applied by the LTE DL Channel Encoder LogiCORE, which

may be configured to perform the required processing for any of the appropriate down-

link channels, and the inverse processes in the uplink system are applied by the LTE UL

Channel Decoder LogiCORE for the PUSCH and the LTE PUCCH Receiver LogiCORE

for the PUCCH. The Channel decoder also implements hybrid automatic repeat request

(HARQ): when errors are detected in PUSCH code blocks and cannot be corrected, the re-

ceiver requests blocks of incrementally redundant data to decode the original signal. While

the reuse of previously-transmitted signals in a HARQ process reduces UE power re-

31

quirements when compared to non-hybrid ARQ (which is used in LTE Layer 2 when

HARQ processing fails), the storage of multiple full packets requires large amounts of

memory bandwidth in the uplink receive system.

The next stages in the downlink are scrambling and modulation, which are custom blocks.

The scrambler flattens the power spectrum of the coded data, while the modulator as-

signs data symbols to complex-valued points in a constellation diagram that are con-

veyed on a carrier signal. The modulator applies a different modulation scheme to each

channel, and in some cases the scheme is configurable: in the case of the PDSCH, it is

determined by a channel quality indicator (CQI) in a process known as Adaptive Modu-

lation and Coding (AMC): for higher-quality channels, it is desirable to transmit a greater

number of bits per symbol using a scheme such as 64QAM, while in poorer-quality chan-

nels, a 16QAM or QPSK scheme may be used. In the receive systems these processes are

reversed by a descrambler and a demodulator, which assigns received data to constella-

tion points by calculating log-likelihood ratios, and these functions are provided in the

PUSCH by the LTE UL Channel Decoder LogiCORE.

The purpose of MIMO coding is to exploit spatial multiplexing through the use of multiple

transmit and receive antennas to improve the capacity and range of radio channels. Each

transmit antenna is associated with a codeword, and the antennas can be used in either

a single-user MIMO (SU-MIMO) configuration, in which both codewords are used for

a single UE, or in a multi-user MIMO (MU-MIMO) configuration, in which a different

codeword is used for each UE. Initial releases of the LTE standard focused on SU-MIMO,

but in order to meet the demands for greater spectral efficiency in the “LTE Advanced”

standard, successive releases have included greater support for MU-MIMO [36].

In the Xilinx LTE systems, MIMO processing is performed by the MIMO Encoder Logi-

CORE in the downlink transmit system and the MIMO Decoder LogiCORE in the uplink

receive system. The MIMO Decoder calculates estimates of the transmitted values for

each codeword based on properties of the MIMO channel over which the values were

transmitted. The properties of the channel, represented in a channel matrix (H) and a

noise sample signal (σ), are estimated by a channel estimator component based on known

reference signals (RS) that are transmitted regularly, and in the Xilinx LTE systems, the

32

reference signals are generated by the resource mapper component and the channel esti-

mation is performed by the LTE Channel Estimator LogiCORE. In the resource mapper,

synchronisation signals are also generated in order to assist UE devices in synchronizing

with an eNodeB. In the next section, the process applied by the resource mapper to map

the various channels onto the physical channel resource will be described.

2.1.2 Channel multiplexing and multiple access

LTE makes use of Orthogonal Frequency Division Multiplexing (OFDM), which splits the

carrier frequency band into a large number of subcarriers with a low symbol rate, such

that the available physical resource is split both into time symbols and into frequency

subcarriers. The various downlink and uplink LTE channels must be multiplexed onto

these resources, and multiple users must further contend for those resources that are al-

located to the shared channel. In the downlink, rather than allocating users to individual

subcarriers, they are allocated in both a frequency-division and in a time-division multi-

plexed manner, so that a user occupies a variety of subcarriers and time symbols at any

time. This is known as Orthogonal Frequency Division Multiple Access (OFDMA). In

the uplink, a variant known as Single-Carrier Frequency Division Multiple Access (SC-

FDMA) is used, which requires an additional inverse DFT to be applied.

The mapping of symbols and subcarriers to LTE channels is determined by a resource

grid, and there are different grids for the downlink and uplink LTE standards. An outline

of the uplink variant is shown in Figure 2.2. This figure shows a single sub-frame of

data for a particular uplink configuration, which is divided in the time domain into two

slots, each containing seven symbols, of which six are data symbols and one contains

a reference signal, and in the frequency domain into a number of OFDM subcarriers,

and in the spatial domain into four separate blocks of data received from four different

receive antennas. These numbers vary depending on the configuration of the system.

Each atomic element within this resource grid is known as a resource element (RE), and

REs are grouped into resource blocks (RBs). In a given subframe, data for a particular

user may be mapped to a number of resource blocks, and in this thesis these will be

referred to as resource block groups (RBGs).

33

Rx antennas

Symbols

Subcarriers

Slot 0 Slot 1

RBs are aggregated
into Resource Block
Groups (RBGs)

Resource elements
(REs)

REs are
aggregated
into Resource
Blocks (RBs)

Reference RE
Data RE

Figure 2.2: The LTE uplink resource grid.

The process of mapping and demapping channel data is performed by a resource mapper

in transmit systems and a resource demapper in receive systems. This is done by storing

the data for each subframe in DDR memory, accessed through a memory controller, with

the resource mapper and demapper generating addresses for each channel corresponding

to the position of the data in that channel in the resource grid. In transmit systems, a full

subframe of data must be received before OFDM processing may occur, but in receive

systems, channels that only occupy earlier symbols in the subframe may be output sooner

from the demapper block.

Finally, the OFDM blocks consists mainly of FFT processing, with a forward FFT in the re-

ceive system and an inverse FFT in the transmit system. These functions are implemented

by the Xilinx XFFT LogiCORE, configured with a separate channel for each antenna in

the system configuration. In addition to the FFT, the addition of a guard interval between

the OFDM symbols is required to prevent the variance in path lengths in a multi-path

channel (caused by reflection from buildings, for example) from causing inter-symbol in-

terference. The guard interval contains a repetition of the symbol data known as a cyclic

prefix, and this allows channel estimates to be determined through circular convolution

(a simple multiplication in the frequency domain) rather than a more complicated linear

34

convolution. In the downlink OFDM block, a cyclic prefix is added after the FFT, while

in the uplink block it is removed beforehand.

2.2 Challenges in LTE system design

In the process of designing LTE systems, it is desirable for as many of the design processes

to be automated as possible. However, some characteristics of the LTE systems and the

cores that must be integrated into those systems necessitate a manual approach to system

design. These characteristics will be described in the following sections.

2.2.1 Automatic integration of IP cores

The cores that comprise Xilinx LTE systems were designed to provide specific processing

functions to top-tier customers, and due to the varying system contexts in which they

were to be instantiated, different choices were made in the design of their interfaces.

Recently, demand for integrated LTE solutions has increased and it has become desirable

for Xilinx to demonstrate the interconnection of the LTE cores in full system designs. Due

to the core interface differences, it is inevitable that some additional interface shims must

be implemented in to order to connect the cores, and whilst the manual implementation

of these shims is feasible, it requires some time and it would be preferable for this to be

automated.

In order to automate this task, the interface differences must be understood and classi-

fied, and there are a number of aspects to be considered. One of these is the protocol

paradigm that is implemented, and within the domain of Xilinx DSP and wireless cores,

there are two important paradigms: the cores and custom components in systems tend to

have streaming data interfaces1, while control interfaces are either streaming or memory-

mapped.

Associated with each protocol paradigm are a number of defined interface standards. As

part of the “Plug & Play IP” initiative, Xilinx cores are standardising on version 4 of the

1With the exception of the LTE downlink transmit subframe memory controller.

35

Table 2.1: Interface characterisation of Xilinx DSP cores

Data interface(s) Control interface(s)

Corea Protocolb Standard Protocolb Standard

DFT S Pre-AXI S Pre-AXI

DDS S AXI4-Stream S AXI4-Stream

XFFT S AXI4-Stream S AXI4-Stream

FIR S AXI4-Stream S AXI4-Stream

DUC/DDC S AXI4-Stream MM AXI4

Channel Estimator S AXI4-Stream S AXI4-Stream

MIMO Decoder S Transitional AXIc S Transitional AXIc

MIMO Encoder S Pre-AXI S Pre-AXI

Channel Decoder S AXI4-Stream Both AXI4-Stream, AXI4

Channel Encoder S Pre-AXI MM Pre-AXI

PUCCH S AXI4-Stream S AXI4-Stream
a DFT : Discrete Fourier Transform v3.1; DDS : DDS Compiler v5.0; XFFT : Fast Fourier Transform

v8.0; FIR : FIR Compiler v6.3; DUC/DDC : DUC/DDC Compiler v2.0; Channel Estimator: 3GPP
LTE Channel Estimator v1.1; MIMO Decoder : 3GPP LTE MIMO Decoder v2.1; MIMO Encoder :
3GPP LTE MIMO Encoder v2.0; Channel Decoder : LTE UL Channel Decoder v3.0; Channel
Encoder : LTE DL Channel Encoder v2.1; PUCCH : LTE PUCCH Receiver v1.0.

b S: streaming; MM: memory-mapped
c Multiple DATA ports per interface.

Advanced Extensible Interface (AXI) family of interfaces, which provide one streaming

protocol (AXI4-Stream) and two memory-mapped interface protocols (AXI4 and AXI4-

Lite) which differ in terms of their resource requirements. An overview of the interfaces

on a selection of Xilinx cores is shown in Table 2.1.

With the adoption of AXI, cores are becoming compatible at the interface level. How-

ever, the presentation of the data on these interfaces is different for each core: in other

words, the data types differ between cores. Currently, these data types are described

in data sheets in a human-readable format which can be ambiguous, and thus it can be

difficult to extract a data arrangement that the core will understand. Furthermore, AXI

does not address the tolerance of latency on the interfaces of cores. For example, while

the MIMO Decoder will accept control and data transactions on its input ports at any

36

time, the MIMO Encoder requires these transactions to be simultaneous, while the Chan-

nel Estimator cannot receive transactions on its control and data ports simultaneously,

and requires them to be sequential. Since these differences are not stored in a computer-

readable format, automatic integration flows cannot be implemented.

2.2.2 Design space exploration and optimisation

In the LTE uplink receive system, the data in the resource grid is processed by a sequence

of blocks in the system that operate sequentially over different dimensions of this re-

source grid data, and this prevents them from being connected together directly. One

example of this is shown in Figure 2.3: data is output from the MIMO Decoder grouped

in a sequence of codewords (cw), and it then undergoes an Inverse Discrete Fourier Trans-

form (IDFT) which is applied across a group of subcarriers (sc) for a single codeword2.

IDFT
MIMO

Decoder

[cw]

[ant]

[cw]

[ant]

[sc] [sc]
H

Y

W

Figure 2.3: A data type interoperability issue in the LTE uplink receive system, caused by different
orderings of array dimensions.

These interoperability issues are often solved using data reordering blocks that are im-

plemented manually, such as the one shown in Figure 2.4, but when reorder buffers are

required in multiple locations in the data path, it becomes difficult to determine the im-

plications of the placement and implementation of these blocks on the overall memory

cost and latency in the system.

Another limitation of the current approach is encountered in the design of the resource

demapper, which outputs data from two interfaces: one for reference symbols (REF) and

one for data symbols (DATA) as shown in Figure 2.5. The array data types on these inter-

2The MIMO Decoder core may be configured using a groupsc control field such that subcarriers are

grouped together (i.e. the output data type is [cw][sc]), but this discussion assumes that this mode is

disabled.

37

IDFT
MIMO

Decoder

[cw]

[ant]

[cw]

[ant]

[sc]
[sc]

H

Y

W
Reorder
buffer

[sc]

[cw]

Figure 2.4: Solution to the interoperability issue through the addition of a reorder buffer.

faces are unspecified, but guide the implementation of the resource mapper by determin-

ing the order in which it outputs data from the resource grid, and this in turn determines

the requirements for reorder buffers downstream. In the absence of extensive metadata,

the designer is free to choose from a variety of possibilities, but the validity and efficiency

of these possibilities once further development work has occurred cannot be known in

advance.

Resource
Demapper

MIMO
decoder

Channel
Estimator

[sc]
[cw]
[ant]

[ant]

[cw]
[sc]

?

?

DATA

REF

W

H

Y

Figure 2.5: Resource demapper output type is dependent on types of neighbours.

Both of these limitations are caused by the need for a bottom-up approach to system de-

sign, and improvements could be made if the designer were able to evaluate a number

of possible designs in which the configuration, placement or repetition count of compo-

nents in the processing chain could be altered in order to optimise for desirable criteria

such as latency or resource utilisation. This is known as design space exploration (DSE).

Performing DSE in the domain of HDL code is laborious due to the low level of abstrac-

tion, which causes two main difficulties: firstly, making a high-level change to the system

(such as replicating a block and distributing data between the new copies) requires a large

number of edits to the code, and secondly, this code requires long compilation times.

For systems of non-trivial complexity these issues require the production of a simulation

model in order to ensure correctness of the design and to allow high-level modifications

38

to be assessed rapidly before low-level implementation is carried out.

2.2.3 Software modelling

One of the functions of a software system simulation model is to create test vectors which

define the data that should be produced and consumed on the interfaces of each of the

subcomponents in the FPGA system, allowing those subcomponents to be implemented

in an incremental fashion.

In Xilinx, the modelling and implementation aspects of LTE system development are

performed with some degree of independence. The hardware system is implemented by

connecting LTE cores and custom components using HDL and system-level design tools,

while the software model is implemented in C++ by combining models of those cores

and custom software implementations. There are minor structural differences between

the models and the implementations, but broadly they correspond to the structure shown

in Figure 2.1.

The software models for the Xilinx LTE systems are constructed using a framework

called XMODEL, which was designed in Xilinx Scotland and provides an object-oriented

class hierarchy for components together with some pre-defined components such as data

sources and sinks. Figure 2.6 shows an example component designed according to this

framework. A data matrix class is also provided which allows dynamically-sized multi-

dimensional data packets to be defined, and an abstract control packet class is provided

which must be sub-classed to describe particular control packets. Since the layout of these

packets in software memory will not usually be a bit-accurate reflection of the transac-

tions applied on the interfaces of IP cores, particularly in the case of control packets,

encoding functions must be defined for each control packet to describe how the repre-

sentation in software is converted to an encoded test vector.

In order to allow the transfer of data tokens, push and pop functions are associated with

components. Communication of a token from one component to another with the same

immediate parent is achieved when the parent component calls a pop function on the

source component followed by a push function on the destination component. These

39

XMODEL C++ header (.h) file

#ifndef __EXAMPLE__

#define __EXAMPLE__

#endif

#include "in_type.h"

#include "out_type.h"

namespace xmodel

{

class example : public xbase

{

public:

...

void in_push(const in_type&

in_token);

void out_pop(out_type&

out_token);

const out_type& out_peek();

const bool out_empty();

private:

xfifo<in_type>& m_fifo_in;

xfifo<out_type>& m_fifo_out;

xtestnode& m_tn_in;

xtestnode& m_tn_out;

};

};

XMODEL C++ implementation (.cc) file

example::example(const

xbase_parameters& xparams)

: xbase(xparams)

{

...

}

void example::in_push(

const in_type& in_token)

{

m_tn_in(in_token);

m_fifo_in.in_push(in_token);

v_process();

}

void example::out_pop(

out_type& out_token)

{

m_fifo_out.out_pop(out_token);

m_tn_out(out_token);

}

const out_type& example::out_peek()

{ return m_fifo_out.dout_peek(); }

const bool example::out_empty()

{ return m_fifo_out.dout_empty(); }

Figure 2.6: Example XMODEL component definitions.

40

pops and pushes are scheduled manually by the system designer, and typically (but not

exclusively) consist of a sequence of calls of an empty function on an output port, and if

the port is not empty, a token is popped from that component and pushed to the destina-

tion.

Some components require data from a number of input ports, and in this case, the push

function writes data to a FIFO queue associated with the respective port, and processing

is then initiated when data is requested by the pop function. Other components produce

data on a number of output ports, and in this case, the processing is initiated instead by

the push function and the results are written to output FIFOs. When multiple inputs and

outputs are required, FIFOs are placed on all interfaces and a function is implemented

which checks whether a sufficient number of tokens has been received on all input ports,

and if so, performs processing and writes output tokens to output FIFOs.

To allow test vectors to be produced on each input and output port of every component,

a “test node” is also associated with each port, and both the push and pop functions write

to this test node.

There are some limitations in the current system modelling approach. One limitation

is that adding a new component requires the same information (such as the component

name) to be entered in a number of locations. This means that necessary modifications

can be forgotten, such as modification of the component name in C++ include guards.

Another limitation is that implementation decisions involving the instantiation of FIFOs,

activities performed by the push and pop functions, and component scheduling, must

be made on a component-by-component basis due to lack of a formal model of compo-

nent interaction that underlies all of the components. The number of modifications to

be made for each high-level change limits the amount of design-space exploration that

may be carried out. The scope for automatic design-space exploration and optimisation

at compile-time is also limited, since optimisations must be applied either by the C++

compiler, or at run-time, at a low level of abstraction. Further limitations are that the

test vector encoding and decoding functions are laborious to write, and in the down-

link transmit model, some type classes also have data processing methods which are not

present in the hardware realisation of the system.

41

It is desirable for system design, modelling and implementation to be as rapid as possi-

ble, and the production of a system simulation model requires additional implementa-

tion time. In an iterative development process, the model will also have to be changed

after low-level implementation has started. This requires differences between the model

and the implementation to be reconciled, which takes time. Ideally, a working hard-

ware system could be created from the same description as the simulation model, with

an abstract view permitting the incremental mapping of components to FPGA fabric as

required. Once a software model has been constructed, the ability to create a hardware

system without full reimplementation is highly desirable.

2.2.4 Heterogeneous processing

So far, only the hardware portion of the LTE system implementation has been discussed;

as shown in Figure 2.1, there is also a software driver layer. Two issues are apparent in

this scenario: firstly, as with the case of test vector production, data type encoding and de-

coding functions are required to reformat data for software-to-hardware and hardware-

to-software communications. Secondly, efficient DMA communications infrastructure

must be integrated to allow the software and hardware parts of the system to communi-

cate. Various types of DMA block may be used, and the data rate characteristics of the

system must be used to determine, for each hardware-software interface, the block that

meets the data requirements with the lowest resource cost. Other challenges include the

identification of channels with similar data rates that may be aggregated such that they

can share communications blocks, and the inference of these blocks rather than manual

instantiation. These issues are addressed by Stefan Petko.

2.3 Summary

The aim of this chapter was to identify a number of limitations of the current system

design methodology used in Xilinx, some of which will be addressed in the remainder of

this thesis, and some of which are not directly addressed but must be taken into account

in the design of a solution. Those which are addressed are as follows:

42

IP integration Bottom-up design means that IP cores are designed with slight differences

in their interfaces. If the differences were represented in a computer-readable for-

mat, cores could be integrated automatically.

System-level DSE Beyond simply producing a system that is functionally correct, it is

desirable for it to perform well. High performance systems are produced through

a process of design-space exploration (DSE), which must currently be performed

manually. If the properties of the components in the system are specified explicitly,

automated system-level optimisation processes become possible.

Multiple platforms The same system must be implemented in a variety of different con-

texts, including a bit-accurate software model, cycle-accurate HDL simulation and

HDL implementation; each target platform requires a re-implementation of the sys-

tem which involves replication of boilerplate code. If it were possible to automate

the generation of this code, manual implementation time could be saved.

Additionally, the following limitation is addressed by Stefan Petko and provision is made

for this in the remainder of the thesis:

Heterogeneous communications The process of designing systems for heterogeneous

platforms is complicated by the need to design appropriate processor-FPGA com-

munications infrastructure for each system.

In Chapter 3, a review of existing tools will be presented with the aim of determining

whether these problems are adequately addressed in existing work. Having determined

the capabilities of these tools, a tool flow architecture which builds upon these capabilities

to address the problems in this chapter will be presented in Chapter 4.

43

Chapter 3

Background

The problems described in Chapter 2 are instances of broader issues that have been ex-

amined to some extent in existing academic literature and industrial practice. This chap-

ter provides a review of the existing techniques and tools with the aim of determining,

firstly, the features and approaches that have been demonstrated to be useful in existing

design frameworks, and secondly, whether any existing framework fully addresses the

problems stated in Chapter 2 such that it may be adopted to solve those problems.

3.1 Platform-based design and IP reuse

The principles of platform-based design are to create modular components with common

interfaces, so that new components are compatible with existing ones [37, 38]. In one in-

terpretation, a platform may be viewed as a set of designs that are determined by a set

of platform constraints – for example, the set of all C programs determined by the syntax

of the C programming language, or the set of all x86 executables determined by the x86

instruction set [39]. The low-level implementation of components such as x86 micropro-

cessors is thus targeted “upwards” in abstraction towards a more abstract platform (the

x86 instruction set), and a system of software code is created by refining an abstract de-

sign “downwards” so that it consists of components in that platform that are described in

x86 machine code. In this way, the platform acts as the intersection point of the top-down

44

and bottom-up processes of system design.

Viewing platforms as sets of designs, it follows that the purpose of individual design

tools and compilers is to implement binary relations representing realisable transforma-

tions between these sets. A number of different platforms may be involved in the system

design process, with each platform representing a different layer of abstraction, and thus

a design framework may be viewed as a collection of tools and compilers which implement

the transitive closure of these relations, providing a chain of realisable transformations

from high-level specification to low-level implementation [39].

A good platform has the same characteristics as a good industry standard: it must both

be sufficiently descriptive to describe the existing examples of a desirable member of

a platform, and sufficiently prescriptive to exclude undesirable examples. These char-

acteristics correspond, respectively, to the concepts of completeness and soundness in

mathematical logic, and tools typically exploit the benefits of platform-based design by

focusing on one or the other of these. For example, in the context of IP integration and

reuse, attempts have been made to improve the usability of IP cores by prescribing more

closely the interfaces on cores [40] and the metrics with which to judge the quality of

IP designs, through the ‘Quality IP’ metric of the Virtual Socket Interface Alliance [41].

On the other hand, the creation of a language for describing the differences between IP

interfaces allows automatic verification of their compatibility or synthesis of bridges to

resolve incompatibilities: the Coral tool verifies connections using binary decision dia-

grams and synthesises glue logic to link components together [42], and in Xilinx, Paul

McKechnie recently designed a type system which can be used to describe the interfaces

on IP cores and implemented a type checker which verifies the correctness of the connec-

tions between those cores [43]. Synthesis of bridges between incompatible interfaces has

also been tackled [44, 45].

In practice, a combination of prescription and description is typically used to derive plat-

forms, with simultaneous evolution of the platforms to support the cores and the cores to

target the platforms. Within Xilinx, the need to simplify the process for connecting cores

at the interface level has been addressed by prescribing a single bus interface standard

across all IP cores, namely AXI. Due to the guaranteed interface-level compatibility of

45

cores with AXI interfaces, interfaces conforming to the same AXI bus type may be con-

nected without error. As the number of different interface standards used by IP providers

is reduced, the number of required interface bridge combinations drops exponentially. At

the same time, descriptions of LogiCORE IP and system designs are being created and

integrated into Xilinx tools, using a standard called IP-XACT [31].

3.1.1 Interface specification in IP-XACT

By associating metadata with components and systems at the time that they are designed,

the time-consuming and error-prone task of determining a component’s characteristics

from a textual or pictorial description in their datasheets can be avoided. IP-XACT is an

industry-standard XML schema that is being adopted by many organisations in the Elec-

tronic Design Automation (EDA) industry to represent this metadata [46], and it defines

a number of top-level object descriptions, such as component descriptions and design

descriptions. Component descriptions can be used to store information pertaining to

individual components and design descriptions can be used to represent hierarchical de-

signs consisting of those components. Important features of a component description are

shown in Listing 3.1.

46

Listing 3.1: IP-XACT component description example.

<spirit:component>

<spirit:vendor>xilinx.com</spirit:vendor>

<spirit:library>ip</spirit:library>

<spirit:name>xfft</spirit:name>

<spirit:version>8.0</spirit:version>

<spirit:busInterfaces>

...

<spirit:busInterface>

<spirit:name>M_AXIS_STATUS</spirit:name>

<spirit:busType spirit:vendor="xilinx.com" spirit:library="axi4"

spirit:name="AXI4Stream" spirit:version="1.0"/>

<spirit:slave/>

...

</spirit:busInterface>

...

</spirit:busInterfaces>

...

<spirit:parameters>

<spirit:parameter>

<spirit:name>ovflo</spirit:name>

<spirit:value spirit:resolve="user"

spirit:id=PARAM_VALUE.OVFLO"

spirit:format="bool">false</spirit:value>

</spirit:parameter>

...

</spirit:parameters>

...

</spirit:component>

The description begins with a “VLNV” describing the vendor, library, name and version

of the component. A list of busInterface elements then detail the available bus interfaces

together with their interface type and directionality, and a list of parameter elements

detail the parameters that may be set together with information on whether they are

resolved automatically or manually, and the default value: in the ovflo example above,

the default value is false.

In some cases, interfaces may be enabled or disabled based on core parameters, and this

cannot be described in the base IP-XACT standard. At various points in the IP-XACT

schema, vendor-specific extensions may be included to extend the description and so this

feature been added within Xilinx in the form of a xilinx:enablement vendor extension

element. The M AXIS STATUS interface is an example of such an interface, and its presence

47

condition is recorded as shown in Listing 3.2.

Listing 3.2: Representation of an optional bus interface in IP-XACT using vendor extensions.

<spirit:busInterface>

<spirit:name>M_AXIS_STATUS</spirit:name>

...

<spirit:vendorExtensions>

<xilinx:busInterfaceInfo>

<xilinx:enablement>

<xilinx:presence>optional</xilinx:presence>

<xilinx:isEnabled

xilinx:resolve="dependent"

xilinx:dependency="spirit:decode(id(...))"

>true</xilinx:isEnabled>

</xilinx:enablement>

</xilinx:busInterfaceInfo>

</spirit:vendorExtensions>

</spirit:busInterface>

where the dependency is specified using a function of a number of parameter values

specified in the XPath language, using the id function to reference parameter value ele-

ments and the spirit:decode function to convert these into integer values. For example,

the M AXIS STATUS interface will be present when overflow is enabled, and the depen-

dency is stated as follows1:

spirit:decode(id(’PARAM_VALUE.OVFLO’)) = 1

IP-XACT also provides design descriptions. These are used to describe the list of com-

ponent instances in a system, their configuration, and their interconnections, which may

be between ports or between aggregated bus interfaces that consist of a number of ports.

An example of a design description is shown in Listing 3.3.

1In reality, the presence of this interface additionally depends on other user-specified parameters, through

a chain of dependent parameters.

48

Listing 3.3: IP-XACT design description example.

<spirit:design>

<spirit:vendor>xilinx.com</spirit:vendor>

<spirit:library>ip</spirit:library>

<spirit:name>A</spirit:name>

<spirit:version>1.0</spirit:version>

<spirit:componentInstances>

<spirit:componentInstance>

<spirit:instanceName>B-inst</spirit:instanceName>

<spirit:componentRef spirit:vendor="xilinx.com"

spirit:library="ip"

spirit:name="B"

spirit:version="1.0"/>

</spirit:componentInstance>

<spirit:componentInstance>

<spirit:instanceName>C-inst</spirit:instanceName>

<spirit:componentRef spirit:vendor="xilinx.com"

spirit:library="ip"

spirit:name="C"

spirit:version="1.0"/>

</spirit:componentInstance>

</spirit:componentInstances>

</spirit:design>

IP-XACT component descriptions are able to describe the mechanisms used by a com-

ponent for low-level communication of data streams across interfaces, but the discussion

in Chapter 2 indicates that there are advantages in considering the interfaces of AXI-

compatible cores at a higher level of abstraction. These benefits may be realised by aug-

menting the metadata to describe how these data streams are encoded with a particular

data type, and to describe the interaction of interfaces and their timing constraints in

order to consume and produce data in the correct sequence, but there is no industry-

standard format for these metadata extensions. Previous work on a schema known as

CHREC XML has proposed that these aspects of interface compatibility may be consid-

ered in a layered structure, with the following layers [47, 48]:

• an RTL layer describing the component’s ports, their direction and width, and their

grouping into interfaces2,

• a data type layer describing the data types communicated over that interface, and

2Information on low-level interface protocols such as the valid/ready handshake in AXI4 might also be

considered as part of this layer, but this information is rarely encoded in metadata.

49

• a behavioral layer describing the component’s latency and necessary delay between

the introduction of data tokens (initiation interval).

IP-XACT describes components at the RTL layer, and further extensions would be of ben-

efit in expressing compatibility at the data type layer and interface operation layer. This

problem has been partially addressed in CHREC XML, which introduces basic descrip-

tions of the data types communicated on component interfaces [49], together with tempo-

ral information such as latency specifications and a design environment called Ogre that

uses the CHREC XML extensions to generate wrappers for IP cores [50]. However, the

metadata in these proposals is not sufficiently extensive to describe Xilinx IP: for exam-

ple, data types are described simply in terms of their total and fractional bit widths, and

there is no provision for the description of the hierarchical packets that IP cores receive

on their control interfaces.

Aside from the matter of describing existing IP cores, there is still the issue of design pro-

ductivity in the initial creation of new cores, and most existing design flows still involve

a large amount of manual effort in this process. Additionally, since systems often need

components that are not found in an IP library, it must also be possible to design those

components efficiently.

3.2 Designing new components

Typically, FPGA cores and systems are designed on paper and implemented at a low

level of abstraction in hardware description languages. To allow more substantial design

space exploration, it is often prudent to produce a more abstract model first, explore

various designs, and produce a low-level implementation only once an optimised design

has been found. The model can be described using existing software languages, or with

domain-specific modelling languages (DSML) and metamodelling.

The modelling of electronic systems in software languages is often simplified through

the use of object-oriented frameworks such as XMODEL (which is used in Xilinx) and Sys-

temC (which is used more widely in the industry) [51]. One problem with approaches

50

Software model

Abstract model

HDL

Software model

HDL

High-level synthesis Metamodelling

1.
2.

(2a.)

Figure 3.1: High-level synthesis and metamodelling.

based on software languages is the overhead of software engineering, encountered when

dealing with error messages caused by misapplication of C++ template syntax, for ex-

ample. While many C++ experts would find this acceptable, others would argue that

detailed knowledge of a software language should not be necessary in the design of hard-

ware systems.

Modelling systems in software also requires the production of a full additional descrip-

tion of the system in a software language rather than a hardware language, and this often

entails a significant amount of work that can be avoided if the same system description

is used for both modelling and implementation. Two alternatives have been proposed,

which are shown in Figure 3.1. The first approach is often called high-level synthesis (HLS),

and involves the generation of a low-level implementation from a higher-level software

representation that may also be used as a simulation model. The second apprach, known

as metamodelling, requires system characteristics to be captured in a single representation

that is independent of the properties of the simulation or implementation context, and

that representation is used to generate a simulation model or an implementation (or a

large part thereof) as required. Optionally, HLS can be used to generate hardware from

the software output of a metamodelling flow (arrow 2a in Figure 3.1).

Since the input to an HLS flow is a software representation of a system, it may be read-

ily compiled and executed using existing software compilers and other infrastructure,

whereas a metamodelling flow starts with a more abstract representation and requires

additional computational specifications to allow execution on target platforms.

51

3.2.1 High-level synthesis

There are two common approaches to the synthesis of software code into a hardware de-

scription. The first involves the modification of a software compiler such that instead of

outputting microprocessor machine code, it outputs HDL. This approach is used in tools

such as AutoESL, which was recently acquired by Xilinx and is now known as “Vivado

HLS” [24] or “VHLS”. The second involves the creation of an object-oriented software

framework, effectively creating an embedded domain-specific language for the description of

hardware systems, and this approach is used in JHDL [52], the Microsoft Accelerator tool

[53] and Maxeler MaxCompiler [54]. These system descriptions may then be compiled

with a standard software compiler, and the HDL is generated through the execution of

the compiled code. Compiler modifications may still be necessary to allow greater syn-

tactic convenience in the host language (as has been done in MaxCompiler through the

modification of a Java compiler), but these modifications are less extensive than in the

previous case.

Of these approaches, the first presents a shallower learning curve to users with prior

knowledge of the targeted software language, since workable (if inefficient) systems can

often be created with minimal deviation from standard software coding style; improve-

ments to those systems may then be realised incrementally through the addition of com-

piler directives or through modification of coding style. However, the semantic gap be-

tween software language and hardware implementation means that behaviour must al-

ways be inferred in this approach, and such inference does not always correspond with

the designer’s intent. The second approach, in contrast, has both the advantages and dis-

advantages of other approaches based around domain-specific languages, which provide

the potential for high quality of results at the expense of a steeper learning curve and (as

the name suggests) a more limited domain of applicability.

A typical high-level language trades the expressiveness of a low-level language in de-

scribing a wide variety of designs for greater succinctness in describing the most com-

mon or useful designs. Thus, it is inevitable that with the use of a high-level input repre-

sentation, certain design features cannot be implemented as efficiently as in the original

52

low-level representation. For example, it may not be possible to customise the logic re-

quired to perform an addition to a sufficient degree. This has not been a widespread

barrier to the adoption of high-level software languages in place of assembly languages,

but poorer quality of results (QoR) relative to the status quo remains a common criticism

of HLS tools, perhaps unfairly.

One possible explanation for this is that there is a closer correlation between code ef-

ficiency and total system cost in hardware designs: in interactive software, inefficiency

will often result only in delays that are imperceptible to a human operator, whereas hard-

ware systems often have tight latency constraints and inefficiency is paid for in additional

resource requirements which necessitate the use of more costly FPGA devices. However,

in many applications, excessive development time and non-recurring engineering (NRE)

costs are greater risks to the success of a project than the use of expensive FPGA devices,

and in these applications the use of HLS tools is desirable [55].

For other applications, there remain a number of outstanding practical problems with

HLS. Firstly, while good QoR has been demonstrated in some scenarios such as sphere

decoding [56], IP designers require a substantial body of evidence before they can adopt

HLS wholesale. Secondly, many cores and systems are constructed from sub-cores, and

in the case of Vivado HLS at least, the lack of data type and interface timing metadata for

existing IP cores prevents their integration in HLS designs.

3.2.2 Metamodelling

Rather than using existing software languages, an alternative system design approach

uses the characteristics of a problem domain to derive simplified representations of those

systems called models. Within Xilinx, the term “model” typically refers to a software sim-

ulation model, but in the language of metamodelling, the term is used more broadly:

indeed, the principle that “everything is a model” has been proposed in the context

of metamodelling in the same way that “everything is an object” applies in an object-

oriented view of a system [57]. Thus, for a system implemented on an FPGA, the HDL

description of the system is also a model of the system since it describes the operation of

53

the system at a more abstract level than the physical movement of electrons.

Compared to object orientation, metamodelling has a similar notion of a hierarchy of en-

tities in a directed acyclic graph (DAG) structure, but instead of objects being instances of

classes, and classes inheriting from superclasses, systems are represented by models, and

models conform to metamodels. Viewed in one light, a metamodel is essentially a descrip-

tion of a platform, and it is the formalisation of these metamodels that characterises the

metamodelling approach.

A particularly useful model is one that represents independently and orthogonally the

principal concerns of a domain: in other words, the characteristics of the domain that

are independent of specific software or hardware implementation technologies [37, 58].

Within the domain of IP cores, IP-XACT provides an appropriate language in which

to represent some of these concerns, such as component interfaces and hierarchy, and

vendor extensions may be used to represent additional concerns such as the RTL layer,

data type layer and behaviour layer information described by CHREC XML. Approaches

based on XML can also be used to represent metadata in a reasonably orthogonal manner:

for example, the interfaces on components may be modified orthogonally to the topol-

ogy of their interconnection in an IP-XACT design description, which does not specify

the interface types of its component instances. In contrast, these concerns are not orthog-

onalised in a VHDL description.

There are a number of useful techniques which arise from this view. Model-driven en-

gineering (MDE) is the process of producing a model conforming to a target metamodel

from a model conforming to a source metamodel, and is often used in the context of in-

cremental refinement of a model into simulation or implementation code: in other words,

the refinement of a platform-independent model (PIM) to a variety of platform-specific

models (PSMs). This is achieved through a sequence of model transformations, of which

there are two dimensions: endogenous vs. exogenous, and horizontal vs. vertical [59].

The first concerns the language (though within a language such as XML, it might concern

the schema as a sub-language), and the second concerns the abstraction level. Examples

of each transformations in each of the four possible categories are shown in Table 3.1.

54

Table 3.1: Examples of model transformations.

Horizontal Vertical

Endogenous Refactoring Formal refinement

Exogenous Language migration Code generation

There are two significant advantages of model-driven engineering approaches: firstly,

that the total amount of code required to be written is reduced, since the minimal infor-

mation required to capture the principal concerns can be used to generate the code re-

quired in different implementation scenarios, and secondly, that it becomes possible for

high-level optimisations to be applied that are difficult to extract from representations of

a system that are targeted to a particular execution platform.

One example of an MDE approach is found in the OMG Model-Driven Architecture

(MDA) [57, 60], which merits some discussion as one of the most mature examples of

MDE. MDA is based around the Unified Modeling Language (UML) [61, 62], and due

to the broad scope and terminological complexities of this language, the appeal of MDA

within an organisation is likely to depend on the degree to which its use is already in-

grained. Since I did not encounter widespread use of UML in Xilinx, I did not consider

it in depth in the context of Xilinx methodologies and tool flows. Instead of using UML,

some MDE flows have been based on IP-XACT [63, 64], but not in a manner that ad-

dresses the problems in Chapter 2, and thus an alternative approach is required.

3.3 Composition of components

High-level synthesis and model-driven engineering deal effectively with the challenge of

generating an implementation instance from a high-level description through “vertical”

refinement of models through one or more levels of abstraction. However, there is also

the challenge of “horizontal” enlargement of systems through the interconnection of a

number of component instances, and these systems are often hierarchical and may target

a heterogeneous platform. Depending on the information associated with these compo-

nents, verification of the correctness of the interconnections may also be beneficial.

55

One option is to describe and coordinate the components’ connections using implementa-

tion languages such as C and VHDL, both of which permit hierarchical composition: for

example, a heterogeneous mix of C functions and HDL cores might be coordinated using

a C system description that instantiates the HDL cores using function calls. In this ap-

proach, the required data flow in the system is determined implicitly from the language.

An alternative is to use an explicit coordination language with minimal semantics [65],

which enforces a separation of concerns between computation and coordination. Such a

language, which may be either textual or visual, may then be combined with procedures

for the analysis and optimisation of the system in a component composition framework

(CCF) [66], also known as a system stitching tool.

Various CCFs have been produced, both in academic and industry, and these tools often

focus on different aspects of the component composition problem. On the academic side,

Balboa is a CCF which provides a C++ framework for constructing components together

with two languages to allow their integration at a high level of abstraction [67, 68]. These

additional languages fulfil a similar role to, but predate, IP-XACT component and design

descriptions. The MCF tool builds on Balboa with metamodelling techniques and allows

component metadata to be extracted from SystemC blocks and stored in an XML format

[69]. An IP selector is provided which is able to instantiate IP cores based on a num-

ber of schemes: for example, based on name and version, or interface type, or whether

it is a black box or hierarchical. The GASPARD framework (Graphical Array Specifica-

tion for Parallel and Distributed Computing) [70] is a UML-based MDE framework in

which components are described at a high level with a repetitive, tile-based model of

computation in the ArrayOL language [71], and refined to SystemC, OpenMP or VHDL

implementation code as required.

Other CCFs are targeted towards the creation of systems on heterogeneous platforms.

For example, the System Coordination Framework (SCF) [72] is a CCF for heterogeneous

systems that allows rapid exploration of different component mapping possibilities: com-

ponents are designed in software or HDL to a generic communication interface, then con-

nected using a flexible task graph language with control structures that are particularly

appropriate for HPC applications with a regular arragement of compute nodes. Using

56

the heterogeneous system topology information, communications infrastructure is then

inserted automatically between components on different architectures. However, SCF is

not a metamodelling tool, and message-passing primitives such as SCF init and SCF -

send must be added directly to low-level source code, limiting possibilities for design

space exploration.

One of the most advanced industrial CCFs is The MathWorks’ Simulink, which is a

model-based design environment that allows refinement of models through to simula-

tion or implementation on FPGA. LabVIEW is an example of a similar tool produced by

National Instruments. Within Xilinx, the System Generator tool has been built on top

of Simulink to target the creation of systems on Xilinx platforms [73], but its restrictive

model of computation limits its applicability in the context of AXI systems: IP cores with

buffered AXI4-Stream interfaces must be coordinated by a tool that assumes predictable

latency behaviour. Other Xilinx tools include the Xilinx Platform Studio (XPS), which is

part of the Embedded Development Kit (EDK) [74], and a number of unreleased research

tools such as Grouse, Brace and System Stitcher [43].

One problem with many of these tools is that they are not based on industry standard

metamodels, which prevents the separation of concerns between computation and coor-

dination. Recently, Xilinx has released the Vivado suite of tools, which make extensive

use of the IP-XACT standard: cores are stored in an IP catalog with IP-XACT compo-

nent descriptions, and the new Vivado IP Integrator tool (VIPI) allows systems to be con-

structed from these cores and connected either at the level of AXI interfaces, or at the level

of individual ports, allowing backwards compatibility with pre-AXI cores [75]. The tool

uses the component descriptions to determine the available interfaces and parameters on

cores, and saves the system topology in the form of an IP-XACT design description.

3.4 Models of computation

Aside from the matter of connecting blocks together there is the issue of what model of

computation they use, which defines the patterns of component interaction in the sys-

tem. Various models have been proposed, including process algebras such as the Calculus

57

of Communicating Systems (CCS) and Communicating Sequential Processes (CSP), but

in the context of signal processing systems, the dataflow paradigm has been of particular

interest. This term has been applied to computer architectures such as the Manchester

dataflow machine and to languages used to program these architectures such as LUCID

and SISAL, but due to problems in achieving high levels of performance from these ar-

chitectures, they have been regarded as “mostly. . . a failure” [76] and have not gained

widespread acceptance. The recent interest in FPGAs as a computing architecture has

reignited interest in this area, but a number of refinements of the programming model

have been proposed.

3.4.1 Process networks and actor-oriented design

Rather than specifying applications using fine-grained dataflow languages at the level

of arithmetic and logical operations, they may be considered as a network of relatively

coarse-grained processes. In a Kahn Process Network (KPN), processes are connected

through their ports by point-to-point unidirectional FIFO channels with unbounded ca-

pacity, and each process consists of an imperative sequence of computations and reads

and writes of data tokens to and from ports [77]. An advantage of Kahn Process Net-

works over multi-threading is that their execution is deterministic: since the processes

are monotonic, which is to say that they produce output as soon as the necessary inputs

are available, the sequence of outputs from each process is dependent only on the se-

quence of inputs, and thus the order of the data communicated on each channel does not

depend on the order of execution of the processes [78].

Another line of research tackles the problem of extracting maximal performance in the

execution of a dataflow graph, through the determination of static schedules which re-

move the need for extensive buffering and frequent process suspension and resumption.

In the Synchronous Dataflow (SDF) theory, static token rates are associated with each

node in the dataflow graph, and these are used to determine the relative rate at which

each node should be executed, which may in turn be used to determine a static schedule

[79]. Synchronous Dataflow requires strict conditions to hold on the actors in the system,

one of which is that every actor may have only a single set of token rates, and successive

58

developments of the theory have introduced additional models of computation which

offer relaxations of these conditions in exchange for greater difficulty in determining

a schedule. These developments include Cyclo-Static Dataflow (CSDF), which allows

nodes to cycle between different sets of token rates [80] and which is reducible to SDF

[81], Boolean Dataflow (BDF), which allows token rates to be determined by boolean val-

ues received on data channels [82] but at the expense of the ability to determine memory

allocation statically on those channels [78], and Integer Dataflow (IDF), which is a gener-

alisation of BDF to integer selector tokens [83]. Further developments include Interface-

based Hierarchical SDF (IBSDF), which allows the hierarchical composition of actors [84]

and Multidimensional SDF (MDSDF) [85] which generalises SDF to target applications

with multidimensional data streams. The most widely applicable dataflow domain is

Dynamic Dataflow (DDF), in which all scheduling is performed at run-time [78].

The main difference between Kahn Process Networks and Dynamic Dataflow is the need

(in general) for a multi-process implementation context in the former, involving either

concurrent processing or a pre-emptive task-scheduling operating system, and this is

avoided in the latter through the quantisation of processing into a scheduled sequence

of actor firings [78]. This actor-based view has been used to unify the various dataflow

domains under the theory of Dataflow Process Networks (DPN). A DPN is a set of actors,

each of which is associated with a set of actions that fire when their firing rules are satisfied,

thereby mapping input tokens to output tokens. A sequence of action firings forms a

dataflow process [78].

In a dataflow process network, the specifications of the communications performed by

the actors are separated from those of the computations that are performed, and in so do-

ing, the model of computation becomes a property of individual actors rather than of the

system as a whole. While the use of the term ‘dataflow’ is reminiscent of dataflow lan-

guages such as LUCID and SISAL, the actors in a dataflow process network use dataflow

concepts at a coarser level of granularity, and the layering of these concepts on top of

platform-specific, performance-oriented languages like C and HDL allows high-level

analysis and optimisation without sacrificing performance at finer levels of granular-

ity. Thus, systems may be created with heterogeneous low-level models of computa-

59

tion, which in turn orthogonalises the notions of component definition and component

composition [39]. The high-level dataflow domains used in a system may also be het-

erogeneous, with static scheduling being applied to sub-networks in the system where

the components’ firing rules indicate that this is possible. This has been demonstrated in

practice in the Ptolemy tool [86], which also allows the construction of domain-polymorphic

actors that can operate according to a variety of models of computation depending on the

domain in which they are instantiated.

A further advantage of explicit actor properties is that optimisations may be applied with

greater ease to the dataflow graph to reduce its memory, communication and through-

put requirements. For example, blocks that are known to be stateless may be folded and

unfolded with the use of split and join blocks, and streaming analogues of software opti-

misations like dead code elimination and constant propagation may also be applied [87].

A variety of frameworks for the construction of process networks have been created,

of which one of the most widely-used commercial implementations is SPW [88]. The

OpenDF project [89] has been built around the CAL actor language, and provides tools

for the simulation of systems described in that language and the generation of hardware

implementations [90] via an intermediate representation called XDF. An example of a

CAL actor description is as follows:

actor add()

a, b ==> out:

action [a], [b] ==> [a + b] end

end

This defines an actor with two inputs and one output, with an action that consumes a

token from each input and produces a new token on the output. The value of the output

token is equivalent to the sum of the values in the input tokens. CAL also supports

the notions of token type (although this is optional, and CAL does not provide a means

to define types), actor state and intialisation actions and action guards and priorities,

amongst other features [91]. These features will be discussed further in Chapter 7.

CAL is currently being extended through the ACTORS project, and it has also been em-

braced and extended into the RVC-CAL language in the domain of reconfigurable video

60

coding [92]. The Open RVC-CAL Compiler (Orcc) has been implemented to generate

executable software code from RVC-CAL descriptions.

In some other frameworks, rather than specifying the process network characteristics ex-

plicitly, they are extracted from suitably-constrained sequential code. The Compaan tool

infers process networks from MATLAB code [93] and uses these to generate networks of

hardware cores, and the KPNgen tool in the Daedalus framework can extract this infor-

mation from a static affine nested loop program (SANLP) described in the C language

[94].

3.5 Platform mapping

Once a design has been proposed as a collection of abstract blocks, those blocks must

be mapped to an implementation platform. Typically this is carried out implicitly in the

production of software or HDL implementation code, but in the case of heterogeneous

platforms, there are a number of possible mappings of the components in the applica-

tion to the different components in the platform, each with different performance and

cost characteristics. On heterogeneous platforms, this mapping process is typically done

manually, and the Y-chart approach models how this might be done in practice [95].

The ESPAM tool, also part of the Daedalus framework, addresses this issue with three

specifications: a platform specification describing the topology of a processing platform, an

application specifiction describing the application to be executed, and a mapping specification

describing how components in the application are mapped to processors [96]. It has also

been demonstrated how this mapping process could be done automatically [97].

As a framework for the KPNgen, ESPAM and Sesame tools (the latter of which allows

high-level design space exploration), it might be assumed that the Daedalus framework

provides a complete end-to-end design flow. However, tool interoperability in this fram-

work was found to be a significant problem that required a great deal of software engi-

neering effort, and the need for industrially relevant case studies was noted [98].

61

3.6 Summary of existing design tools

An aim of this chapter was to determine whether any existing tool can solve the problems

listed at the end of Chapter 2. These problems were IP integration, system-level DSE,

multiple platforms and heterogeneous communications. In this chapter, various tools

were presented that address these problems, but the discussion of these tools has raised

additional problems that must be addressed. These include:

High-level component design the ability for new components to be designed as an in-

tegral part of the flow from a high-level specification;

QoR control the ability for designers to extract high quality of results by specifying pre-

cisely the implementation of a component;

Interoperability the use of standards-based languages, and the ability for users to mod-

ify the flow by, for example, writing custom DRCs and optimisations.

Many of the tools discussed in this chapter provide some of these features, and a selection

of these tools will now be summarised and compared to determine whether any of them

satisfy all of the requirements.

CAL is a high-level language for the description of dataflow actors, providing back-ends

which allow the generation of implementation code for both software and hard-

ware platforms.

MCF is a metamodelling framework which demonstrates the use of XML metadata for

libraries of components to assist in the task of system-level design space explo-

ration.

SPW is a signal processing system design tool that allows graphical composition of pro-

cessing blocks and the creation of new blocks using a proprietary C interface. How-

ever, these blocks cannot be converted automatically to FPGA cores.

Ptolemy is a dataflow system modelling tool which focuses on the interactions between

components with differing models of computation.

SCF is a component composition framework that deals specifically with the problem

62

of mapping components to processing platforms in a heterogeneous system and

inferring the necessary communications infrastructure.

Daedalus is a suite of tools which allow the generation of hardware components from

MATLAB or SANLP specifictions, the importing of existing library components,

the exploration of different mappings to execution platforms, and the inference of

communications infrastructure.

VIPI (Vivado IP Integrator) is a tool that allows pre-existing IP cores to be connected

together, with automatic DSE performed through propagation of core parameters

and interoperability resulting from the use of standard IP-XACT component and

design descriptions.

VHLS (Vivado HLS) is a high-level synthesis tool allowing C code to be converted into

FPGA components.

MaxCompiler is a tool that converts input descriptions in a Java-based language to hard-

ware components. Control over quality of results is possible through the use of Java

API calls to customise the generated code and integration with existing software is

supported.

System Generator is a tool that allows the composition of DSP IP blocks, and is a prede-

cessor of VIPI.

From these descriptions, it can be inferred that each tool has certain strengths, and these

are summarised in Table 3.2 with a tick to indicate a well-supported feature of a tool, and

a cross otherwise.

Broadly, it can be deduced from this table that the tools that are most appropriate for

the design of high-performance components (CAL, VHLS, MaxCompiler) typically offer

limited support for the modelling and analysis of systems comprising a large number

of components, and conversely, those that focus on system design (MCF, SCF, VIPI, Sys-

tem Generator) often do not offer a component description input. Where attempts have

been made to provide both of these features (SPW, Daedalus), interoperability is typically

lacking and users are locked into the design methodology and constraints of the tool. For

63

Table 3.2: Feature matrix for a selection of existing design automation tools.
C

A
L

[8
9]

M
C

F
[6

9]

SP
W

[8
8]

Pt
ol

em
y

[8
6]

SC
F

[7
2]

D
ae

da
lu

s
[9

4]

V
IP

I[
75

]

V
H

LS
[2

4]

M
ax

C
om

pi
le

r
[5

4]

Sy
st

em
G

en
er

at
or

[7
3]

IP integration × X X × X X X × × X

System-level DSE × X X X × X X × × X

Multiple platforms X × × × X X × X X ×
Heterogeneous comms × × × × X X × × X ×
High-level components X × X × × X × X X ×

QoR control × × × × X × × × X ×
Interoperability × × × × × × X ×a ×a ×

a The C and Java input languages could be regarded as standard, but the compiler
directives and compiler modifications are non-standard and neither tool outputs a
metadata description for generated components which would allow simpler
integration in tools such as IP Integrator.

64

these reasons, it can be concluded that none of these tools solve all of the problems listed

in Chapter 2 without significant modifications.

3.7 Conclusion

This chapter describes a number of additional limitations of existing design tools beyond

those presented in Section 2.3, and these include high-level component design, control

over quality of results and interoperability. In searching for a single tool which ad-

dresses these limitations, it is determined that none of the existing tools fully address

all of the limitations described. Thus, a novel tool flow is required which combines ex-

isting tools, where possible, with newly-developed infrastructure that adds the missing

features. There are a number of ways to develop an improved toolflow, and one that has

been developed in the course of my EngD research will be outlined in the next chapter.

65

Chapter 4

Architecture

Chapter 2 described the problems encountered in the design of FPGA systems and Chap-

ter 3 described the approaches taken to solve similar problems in the academic literature,

concluding that no existing tool is sufficient to solve all of the problems described. This

chapter begins with the description of an idealised design process demonstrating the evo-

lution of a system design from specification to implementation, and then continues with

the description of a tool flow that enables this process through a coordinated sequence of

tool invocations. The chapter concludes with a summary of how the features of the flow

address the problems listed at the end of Chapter 2.

4.1 Idealised design process

An idealised design process is shown in Figure 4.1 and the steps are explained in the

following text.

1. Component instantiation IP blocks are instantiated where available to fulfil functional

requirements of the system, and abstract components without an associated func-

tional description are created and instantiated where IP blocks are not available.

The IP blocks are provided with metadata describing their interface data types and

token rates, but this information is left unspecified in custom blocks at this stage.

2. Coordination System topology is defined through connection of components, with

66

2.
A: a() D: d()C: ?

Existing block

Custom block

Inferred block

3 2

Int Int
B: b()

6

FltFlt

6

3.
A: a() D: d()C: ?

3 2

Int Int
B: b()

6

FltFlt

6
x2 x1 x3

1.
A: a() D: d()C: ?

3 2

Int Int
B: b()

6

FltFlt

6

x6

IntFlt

1 1

I2F

I2F

4.
A: a() D: d()C: c()

3 2

Int Int
B: b()

6

FltFlt

6
x2 x1 x3x6

IntFlt

1 1
I2F

5.

A: a() D: d()

C: c()

3
2

Int

Int

B: b()

6 Flt

Flt

6
x2

x1 x3

x6

IntFlt

1 1

I2F

μPFPGA

Name: function()

Repetition rate

Token type

Token rate Token rate

Token type
Key:

Figure 4.1: An idealised design process that addresses the issues raised in Chapter 2. Some of the
new characteristics introduced in each stage are circled.

67

DRCs being run based on available metadata. Where DRCs fail in a way that al-

lows an automatic resolution, blocks are inserted to handle the incompatibilities

that were identified; where this is impossible, blocks must be inserted manually.

3. High-level DSE Using the IP metadata, the data rates throughout the system are de-

termined automatically and candidate data types on the interfaces of the custom

blocks are proposed. Where a number of solutions are possible, the designer selects

the appropriate option. For example, in Figure 4.1, block C could process one token

at a time and repeat this six times in a rate-matched system, or could process two

tokens, repeating three times.

4. Functional correctness Components are refined by adding software implementation

detail that defines the functional operation of the components: software models of

cores, or custom software code for custom components. The design is executed and

profiled to identify performance bottlenecks.

5. Hardware mapping Software models of cores are replaced with the cores themselves,

with hardware-software communications infrastructure instantiated automatically

between the cores and the remaining software components. Where software com-

ponents form a bottleneck, they are re-implemented in HDL (this could be done au-

tomatically using high-level synthesis). The system is then profiled again, and fur-

ther software-to-hardware migrations of components are tested until performance

targets are met.

4.2 Tool flow overview

A tool flow architecture supporting this design process is outlined in Figure 4.2. The

important features of this flow are as follows:

• an intermediate representation (IR), which stores dataflow, data type and system

coordination information;

• high-level inputs allowing this IR to be generated;

68

System description containing
(extended) IP-XACT

components and subsystems

System
coordination
descriptions

Pre-existing
IP-XACT

components

Heterogeneous
FPGA system

implementation

Data type
descriptions

Dataflow
descriptions

Platform-specific
functional code

C++ system
model

Optimisation processes

Optimised system description

Figure 4.2: Tool flow overview.

• system-level optimisation processes which make use of the information exposed in

the IR to improve system performance and/or resource usage;

• back-end code generation processes for a variety of platforms which incorporate

platform-specific functional code that is provided by the user into a system frame-

work that is generated automatically.

Each of these features is described in further detail in the following sections.

4.2.1 Intermediate representation

An important concept in system design is orthogonalisation of concerns [37], as discussed

in Chapter 3. Currently, these concerns are represented in C++ and HDL, with significant

overlap, and in a way that prevents the extraction of individual concerns: for example, it

is difficult to determine whether a core has an AXI interface from automatic analysis of

the HDL code, even though the reverse process of generating an AXI interface in HDL is

relatively simple. The overlap of concerns in C++ and HDL arises from the representation

69

of platform-independent concerns in platform-specific languages, and one of the goals of

this thesis is to show how this can be avoided by representing the platform-independent

concerns orthogonally to each other in models conforming to a standardised metamodel.

In order to maintain control over quality of results, however, the platform-specific con-

cerns are specified in their original platform-specific languages.

From these models, it is possible to produce platform-specific implementations on mul-

tiple platforms using model-driven engineering: code is generated from the platform-

independent concerns and merged with the existing platform-specific code. To avoid the

tool interoperability issues encountered in the Daedalus toolflow [98], it is desirable to

adopt or develop a standard intermediate representation to link the stages in the MDE

flow. This approach allows a variety of high-level input languages to be used and allows

code for a variety of output platforms to be generated, and has has been demonstrated

successfully in tools such as LLVM [99].

Since the IP-XACT standard was designed to represent some of the concerns listed in

Chapter 2 and may be extended to represent the others, it is suitable for use in this con-

text. The decision to base the tool flow around IP-XACT was made early in the project,

before it had been widely adopted in Xilinx, and later adoption of this standard in the

organisation vindicated this approach: IP-XACT component descriptions are now de-

fined for cores by core developers and stored in the Vivado IP Catalog, and IP-XACT

design descriptions are created for systems in Vivado IP Integrator. Thus, existing com-

ponents which already have IP-XACT specifications can be integrated and extended with

new metadata where necessary, and component composition frameworks that output IP-

XACT design descriptions, such as Vivado IP Integrator, may be ‘plugged in’ as a front-

end design environment to the tool flow.

In order to improve IP integration to the level required for the design process in Fig-

ure 4.1, however, the standard IP-XACT metadata descriptions must be extended. The

requirements for an improved metamodel are derived from the analysis of a number of

existing cores, and two types of metadata extensions are required: data type extensions

and dataflow extensions. In contrast to the RTL layer metadata described in Chapter 2,

the data type layer and behaviour layer metadata on each core can be difficult to deter-

70

mine. In most cases, the required information can be extracted by reading data sheets.

However, some aspects of these layers are not stated explicitly in data sheets and must

be determined through experimentation or through assistance from other users or from

the original core developer. In passing, an immediate benefit of metamodelling becomes

clear: even aside from the code generation or interoperability benefits, the provision of

unambiguous core specifications conforming to a unified metamodel enhances basic us-

ability and thus encourages IP reuse. The data type and behavioural layer metadata is

outlined below and described in more detail in Chapter 5.

Data type metadata has two functions: firstly, to determine component interoperability,

and secondly, to allow communication between diverse architectures such as micropro-

cessors and FPGA fabric for the purposes of hardware testing and heterogeneous system

implementation. An important aspect of this is data reformatting using data type encod-

ing and decoding functions. These functions are normally written manually, but may be

generated automatically from the metadata descriptions of data types if these are already

defined for the purposes of interoperability.

Dataflow metadata allows components’ production and consumption of tokens to be

considered as a platform-independent concern, and therefore allows code performing

this function to be automatically generated. The justification for a dataflow abstraction

arises from the recent adoption of AXI in Xilinx cores: many IP developers have cho-

sen the streaming variant of this standard (AXI4-Stream) to appear on the interfaces. In

the Xilinx LTE systems, streaming is ubiquitous, since any remaining memory-mapped

interfaces are wrapped with streaming wrappers and FIFO buffers are added to allow

latency insensitivity. Thus the LTE systems appear much like dataflow process networks

consisting of self-scheduling actors. While the LTE software models conform to a looser

formalism, in which code is written manually to coordinate the components (known in

Ptolemy as the Component Interaction domain), it is demonstrated in Chapter 7 that the

coordination code can be generated automatically, and thus the dataflow model is no less

applicable in the software models. We propose that if the system is represented at a high

level as a dataflow graph, software and hardware components can be interoperable with

no need for manual scheduling code.

71

4.2.2 High-level inputs

As indicated in this chapter, this thesis focuses more on the elaboration of a metamodel

for FPGA cores and systems than the design of particular high-level languages with

which they may be described. The design of a high-level language is governed firstly

by the metamodel and secondly by market-dependent issues which are the subject of on-

going work elsewhere in Xilinx. For example, development of a new user-facing tool for

the description of IP metadata was underway during the course of my research, but since

this work was not complete, it was not practicable to build on it, and since the work had

already begun, there was little benefit in developing an alternative from scratch. Thus,

the scope of the challenge in defining high-level inputs to the design flow was limited to

solving the immediate challenges of automating the production of verbose and repetitive

XML metadata descriptions.

The new Xilinx tool for the description of IP metadata is known as the IP Packager. This

is a GUI application that may be controlled using Tcl, and it constructs an IP-XACT def-

inition based on the parameters that are set in the tool. This tool is used to create the

metadata files for many of the cores in the Xilinx IP Catalog. While the IP Packager al-

lows simple parameters to be added to IP-XACT components and bus interfaces, it does

not permit arbitrary hierarchical XML structures to be added, which is a key requirement

of the extensions presented in Chapter 5. For this reason, I have implemented two flows

for adding the metadata extensions: the first extends the XML output from the Packager

tool with additional information, while the second avoids the IP Packager by creating

XML definitions from scratch in the form expected by downstream tools. Both options

require a way to describe cores according to the metamodel described in Chapter 5, until

this is possible using the IP Packager, and rather than designing new languages that may

ultimately be replaced as the IP Packager evolves, a number of existing languages are

used and extended where necessary.

To enter dataflow information for cores, the CAL language from the OpenDF project is

used, and to describe data types, input mechanisms are implemented from the industry-

standard ASN.1 language [100] and a language used internally within Xilinx called RMAP.

72

To enter system coordination information, which is already supported by IP-XACT, the

NL language is used primarily and integration with the Vivado IP Integrator tool is also

demonstrated. Input flows from these languages, together with a discussion of how they

may be used to generate software simulation models, will be described in further detail

in Chapter 7.

4.2.3 Optimisations

A wide variety of low-level optimisations are performed by software compilers and HDL

synthesis tools. However, these tools are limited in their ability to perform high-level

optimisations that modify the algorithm of the design. Viewing optimisations as endoge-

nous model transformations at a higher level of abstraction has a number of advantages:

firstly, it allows optimisation for quantitative design quality metrics such as latency or

memory requirements that cannot be extracted from low-level code; secondly, the design

space exploration loop is tighter; thirdly, it provides guidance in the implementation of

the parts of the system that cannot be automatically generated.

4.2.4 Code generation

Depending on the performance requirements of the system, a variety of different execu-

tion platforms must be targeted, possibly consisting of a heterogeneous mix of processors

and FPGA fabric. Each of these platforms has a set of platform constraints, as described

in Chapter 3 which determine the nature of the code that is executed on that platform.

The main execution platforms for Xilinx LTE systems are the XMODEL environment and

(currently) the ML605 FPGA development board with a MicroBlaze processor. A num-

ber of additional platforms are sometimes used, such as HDL simulation in the ModelSim

tool.

Of these platforms, I have targeted the XMODEL framework. The modelling in software

of a system described in an IP-XACT representation may be achieved in a number of

ways, which can generally be categorised under one of the following two approaches:

Interpretation of the model A software framework may be constructed which reads in

73

IP-XACT components and designs, instantiates the appropriate components at run-

time and executes the composed network of software components;

Generation of implementation code from the model The IP-XACT descriptions may be

used to generate software code.

Applying the first approach in the context of the XMODEL framework requires signifi-

cant changes to the framework. To avoid creating another version, I opted for the latter

approach, and the process of generating C++ code for this platform is described in Chap-

ter 7.

Stefan Petko has also worked on generating code for the Xilinx ML605 platform [101], and

we have collaborated on a hardware-in-the-loop environment which links C++ modelling

and FPGA implementation using IP cores. To address the requirement for heterogeneous

communications, Stefan is using the IP-XACT representation of the system to generate

communications infrastructure1.

4.3 Implementation aspects

The tool flow is constructed as a series of model transformations between XML docu-

ments. Input specifications are transformed into XML as soon as possible, such that the

majority of the transformations are performed in the XML domain. Rather than having a

single, large transformation from input to output, the flow is comprised of a pipeline of

transformations of limited scope. There are a number of advantages to this XML pipeline

arrangement:

• Since the input and output to each stage is an XML document, the flow may be

extended without great difficulty by inserting additional processing stages. Trans-

formations may also be reordered where necessary.

• There is a large ecosystem of technologies and tools surrounding XML, such as

XPath, XSLT and XML Schema. These allow the efficient querying, transformation

1This will be presented in his EngD thesis, which at the time of writing is work in progress.

74

and validation of XML documents representing the incremental refinements of the

design.

• The scope of the captured data in each stage of the flow can easily be extended,

without modification of low-level parsers and data structures. Component charac-

teristics that are specific to a particular model of computation may be layered on

top of metadata describing concepts that are germane to a number of models, and

the choice of DRC and optimisation procedures that are applied may be governed

by the presence or otherwise of the metadata required as their inputs. For exam-

ple, if token production and consumption rates are present in the metadata, then

dynamic dataflow scheduling code may be generated. If these rates are also static,

then synchronous dataflow may be applied to generate static schedules.

• Debugging is simple since the output of each transformation stage is an XML doc-

ument that is (relatively) human-readable.

Many of the transformations in the flow are described as Extensible Stylesheet Language

(XSL) Transformations (XSLT). An XSL stylesheet is an XML document consisting of a

number of templates, with each template specifying how XML elements matching a par-

ticular pattern should be replaced or augmented with another XML sub-tree. These

stylesheets are applied by an XSLT processor which examines an input document and

transforms any nodes which match a template: thus, no manual traversal of XML docu-

ments must be specified in the stylesheet. Since XSL stylesheets are specified using XML,

the syntax is quite verbose, but the underlying language concepts are simple.

To be usable in a design flow, the model transformations must be coordinated somehow,

and this may be done using technologies such as XProc [102] or Make [103]. XProc is a

recent W3C Recommendation comprising an XML schema for describing the composi-

tion of XSL transforms, and could be used to coordinate the transformations in model-

driven engineering. However, it can only accept XML input, and another mechanism is

required to parse high-level languages into XML which cannot be coordinated by XProc.

Instead, I use Make to coordinate the model transformations. An advantage of Make is

that it is demand-driven, and will not regenerate intermediate files unnecessarily in a

75

tool flow. However, a problem with Make in the context of MDE is that it coordinates

coarse-grained invocations of OS-level processes, and this imposes an efficiency cost. For

a multi-stage XSLT-based MDE flow, this requires an XSLT processor to be invoked and

terminated repeatedly for each of the required transformations, and this cost is increased

when using a Java-based XSLT processor due to the need to bring up the Java Virtual Ma-

chine on each invocation. To avoid this overhead, the XSLT processor is run as a Linux

“daemon process” using a tool called NailGun [104], and messages containing trans-

formation requests are passed to this process. With this approach, Make only needs to

coordinate the execution of small front-end processes and thus the total processing time

is significantly reduced.

4.4 Conclusion

Figure 4.3 summarises the architecture of the tool flow, showing the input languages

used, whether the contribution at each stage is a novel model, metamodel or both, and the

integration with Stefan Petko’s work. From the diagram, it can be seen that C++ and HDL

components are generated from a combination of the IP-XACT component descriptions

and from manually-specified functional code, and that these are combined into systems

using IP-XACT design descriptions. Selective mapping of components to platforms is

not addressed but would be a good target for future work.

Referring back to the problems described in Sections 2.3 and 3.6, the tool flow outlined in

this chapter addresses these problems in the following ways:

IP integration The metadata that is associated with cores is extended with data type and

dataflow information as described in Chapter 5 in order to allowing more effective

design rule checking. In principle, automatic coercion is also possible once expres-

sive metadata is in place. One aspect of this, in the context of high-level array data

types, is demonstrated in Chapter 6.

System-level DSE By using a model-driven engineering approach, design tradeoffs may

be evaluated before the full system is generated, increasing the number of turns per

76

IP-XACT
component
descriptions

IP-XACT
component
descriptions

Data type
extensions
Data type
extensions

Behaviour extensionsBehaviour extensions

IP integratorIP integrator

NLNL

Xilinx
IP-XACT
IP catalog

Xilinx
IP-XACT
IP catalog

Component
mapping

specification

Component
mapping

specification

HDL systemHDL systemHeterogeneous systemHeterogeneous system

RMAPRMAP RMAPv2RMAPv2

ASN.1ASN.1

CALCAL

Future work

Defined by Stefan Petko

Defined by me

Pre-existing

Transformation

HDLHDL

C++C++

IP-XACT
design

descriptions

IP-XACT
design

descriptions

MetamodelModel

HDL componentsHDL componentsC++ componentsC++ components

C++ systemC++ system

Figure 4.3: Tool flow architecture, showing contributions.

77

day (TPD). Once the characteristics of existing IP are specified explicitly in extended

metadata, this information may be propagated throughout the system to constrain

the implementation choices in the remaining custom components in the system.

Multiple platforms Code for multiple platforms can be generated from a common rep-

resentation of the platform-independent concerns of the system. Generation of soft-

ware modelling code is presented in Chapter 7.

High-level component design The CAL, ASN.1 and RMAP languages are used to de-

fine high-level component characteristics in a concise manner, and to produce a

platform-independent model describing those characteristics as described in Chap-

ter 7. These languages are selected on the basis of their applicability to the problem

domain and their extensibility and adaptability, and they are somewhat cumber-

some when used in combination. In future work, it would be desirable for these

languages to converge, or for their characteristics to be combined in a more elegant

manner.

QoR control To allow high performance in generated systems, the platform-specific (i.e.

low-level functional) concerns are specified in platform-specific languages sepa-

rately from the platform-independent models.

Interoperability The toolflow is based around the IP-XACT standard, allowing the im-

porting of existing IP components that are provided with IP-XACT descriptions. It

also uses IP-XACT design descriptions to describe the hierarchical structure of the

components in the system, allowing compatibility with existing CCFs. At the back-

end, rather than creating a new software modelling framework, it was decided that

C++ components should be generated such that they work within the XMODEL en-

vironment that is used to build LTE simulation models.

78

Chapter 5

A metamodel for Xilinx IP cores and

systems and its representation in

extended IP-XACT

Chapter 2 presented a number of issues that could be solved if additional metadata were

provided for IP cores. RTL layer metadata is already provided in IP-XACT component

descriptions, but data type layer and behaviour layer metadata is not defined and pro-

posed solutions in schemas such as XDF and CHREC XML are not sufficiently expressive

to capture complete descriptions of Xilinx IP core behaviour. The purpose of this chap-

ter is to specify a metamodel in which this additional metadata can be represented, and

to allow it to be more widely shared, understood and integrated, it is represented in an

XML schema that is layered on top of IP-XACT. The extended metadata is demonstrated

in the context of a selection of cores in the Xilinx IP Catalog.

Although the metamodel was implemented in practice as an XML schema, it will be

described in this chapter using an equivalent format that is more concise. Rather than

creating a custom pseudo-code language for this purpose, the YAML language [105] will

be used. Like XML, YAML can be used to associate data values with hierarchically struc-

tured tags, but YAML is targeted towards serialisation of data (or metadata) rather than

document markup. This means that, for example, closing tags are not required, which

79

significantly reduces the vertical space requirements of a YAML description (on the left,

below) when compared to an XML description (on the right):

root:

sub:

subsub: value

<root>

<sub>

<subsub>value</subsub>

</sub>

</root>

While YAML syntax is fairly self-explanatory, notes will be added where explanation is

required. Newly-introduced features that extend IP-XACT, XDF and CHREC XML are

shown in YAML listings in red text1.

5.1 Requirements

Requirements can be derived through analysis of existing cores, and a commonly-used

core which serves as a good example is the FIR Compiler. A filter generated using the

FIR Compiler v6.3 has up to four AXI4-Stream interfaces, depending on the chosen con-

figuration parameters, and these are named S AXIS DATA, M AXIS DATA, S AXIS CONFIG

and S AXIS RELOAD, but for the purposes of this discussion these names will be abbrevi-

ated as DIN, DOUT, CONFIG and RELOAD. Each of the four interfaces of the FIR receives

streams of data elements that are padded to the nearest byte boundary, and the streams

are structured in different ways as shown in Figure 5.1.

FIR
Compiler

DIN DOUT

CONFIG RELOAD

Channels

Parallel Paths

Channels

Parallel Paths

Filter bank ID
for each channel

Channel
sequence ID

Filter bank ID
Filter

coefficients
Unused

 time

interface
width

Figure 5.1: FIR Compiler interfaces and data formats.

On the DIN and DOUT interfaces, data samples are communicated as a stream of fixed-

1In greyscale reproductions, the red text will appear grey.

80

point values with total width and fractional width specified by core-level parameters,

and depending on the configuration of the core, it may operate on multiple independent

streams of data. These streams may be interleaved (time-division multiplexed) and/or

communicated in parallel with the width of the data interfaces scaled according to the

number of parallel streams. In the first case, the streams are known as channels (not to be

confused with AXI channels), and in the second case, they are known as parallel paths.

When the core is configured with more than one channel and more than one set of fil-

ter coefficients, the coefficient set (filter bank) used by each channel may be selected at

run-time using the CONFIG interface. A channel sequence can also be specified, which de-

termines the relative input and output rates of each channel. When the core is configured

to support reloadable filter coefficients, the RELOAD interface allows filter coefficients to

be assigned to filter banks within the core, and consumes a filter bank identifier followed

by a number of filter coefficients.

Various problems are presented in this description of the FIR. The first problem to be

discussed lies in the description of arbitrary-width types. Software languages typically

include fixed-width integer and floating-point data types that correspond to the capa-

bilities of typical microprocessors, which operate on values of a fixed word length (for

example, 32 or 64 bits). While smaller types (for example, the short int type in the C

language) are permitted in order to allow memory savings, and may allow greater per-

formance due to increased cache locality, their progression through a processor pipeline

is not generally faster and additional instructions may be required to extract the correct

sequence of bits from a larger load operation. In FPGA designs, the data type impacts

significantly on processing efficiency, since narrower types allow resource savings which

can be used to implement additional pipelines or to reduce the size of the required device.

So in hardware, there is a richer variety of data types, including integers, fixed-point or

floating-point real values, and complex values, each with customisable width and pre-

cision. Table 5.1 shows the leaf-level data types for a selection of Xilinx horizontal and

wireless DSP cores.

Another problem arises from the variety of methods for encoding data for transmission

over streaming or memory-mapped interfaces. This encompasses the position of fields

81

Table 5.1: Leaf-level data types in Xilinx DSP cores

Corea Number set(s) Number format(s)b

DFT Complex (D, D− 1)

DDS Complex or realc (D, ∗)
XFFT Complex (D, ∗) or FP32

FIR Real (Din, Fin), (Dout, Fout)d

DUC/DDC Complex or realc (Din, ∗), (Dout, ∗)
Channel Estimator Real (Din, Din − 1), (Dout, Dout − 1)

MIMO Decoder Real (16, 15), (32, 15)

MIMO Encoder Complex (Din, ∗), (Dout, ∗)
Channel Decoder Complex (16, 14), (16, 10), (8, 3)

Channel Encoder Bit N/A

PUCCH Complex (16, ∗)
a Names are as in Table 2.1.
b The notation (a, b) represents total width a and fractional width b. D represents a core parameter

specifying total width, and F represents a parameter specifying fractional width. A fractional width of
∗means that the core operates independently of any particular fractional width value.

c These cores can operate on complex or real values, depending on a core parameter.
d In full-precision mode, the output total width and fractional width are set automatically to

accommodate bit growth.

82

in structs and the position of elements in arrays: fields may be packed together or sep-

arated by padding, and array elements may be laid out sequentially across data beats

or communicated in parallel across an interface, depending on timing and resource con-

straints. In cores such as the DUC/DDC, data encoding is dependent on configuration

parameters, as shown in Figure 5.2.

4864 32 16 0 4864 32 16 0

Q0A2 I0A2 Q0A1 I0A1

Q1A2 I1A2 Q1A1 I1A1 Q0A4

I0A4

Q0A3

I0A3

Q1A4

I1A4

Q1A3

I1A3Q2A2 I2A2 Q2A1 I2A1

Q3A2 I3A2 Q3A1 I3A1

Q0A2

I0A2

Q0A1

I0A1

Q1A2

I1A2

Q1A1

I1A1

TDM: false, NANT: 2 TDM: true, NANT: 4

0

1

2

3

0

1

2

3

tim
e

tim
e

Figure 5.2: DUC/DDC Compiler data format in two modes: no TDM and 2 antennas; TDM and
4 antennas.

Other complexities that must be captured are that fields within structures may be present

or not present depending on core parameters, field widths may be parameterisable, and

mappings from represented values to encoded values are required to save space in the

encoded data format: for example, the PUCCH nant control field which specifies an

antenna count of 1, 2 or 4 antennas maps to values of 0, 1 or 2 respectively in order

to fit within 2 bits. Furthermore, array dimensions may be present or not present de-

pending on a parameter (such as the ‘channels’ dimension in the FIR data interface ar-

rays, which is only present when multi-channel behaviour is enabled); they may also be

fixed-size or variable size, and in contrast to the multidimensional array specifications

in languages such as C, it is not just the outer dimension that may be variable. The size

of variable-sized dimensions may be specified in a number of different ways, including

configuration-time or run-time parameters; in some cases, such as in the LTE DL Chan-

nel Encoder v2.1, the total size of the array is not specified at all, with the end of an array

being signalled using the AXI LAST signal. Table 5.2 shows the array dimensions for the

tokens communicated on the data interfaces of a selection of Xilinx cores2.
2In multidimensional streams, the meaning of a token is somewhat ambiguous: at one extreme, the base

element could be regarded as the token, and at the other extreme, the sequence of arrays arriving at the
interface could be regarded as a top-level, infinite-sized array dimension. In this context, the definition that

83

Table 5.2: Data interface array dimensionality in Xilinx DSP cores

Data input interface Data output interface

Corea Array dims. S/Pb Oc Sized Array dims. S/Pb Oc Sized

DFT Elements S × P Elements S × P

DDS Channels S X C Channels S X C

XFFT Elements S × C/Pe Elements S × C/Pe

Channels P X C Channels P X C

FIR Packets S X L Packets S X L

Elementsf S X P Elementsf S X P

Channels S X C Channels S X C

Paths P X C Paths P X C

DUC/DDC Carriers S X C Carriers S X C

Antennas P X C Antennas P X C

Channel Est. Subcarriers S × F Codewords S × P

Subcarriers S × F

MIMO Dec. Antennas S × U Codewords S × U

Subcarriers S X F Subcarriers S X F

MIMO Enc. Codewords P × F Antennas P × P

Channel Dec. Symbols S × P TB Data S/P × P

Codewords S × P

Subcarriers S × P

Channel Enc. TB Data S × L Encoded data S × L

PUCCH Symbols S × P (N/A)

Subcarriers S × F

Antennas S × P
a Names are as in Table 2.1.
b Elements in this dimension communicated in sequential data beats (S) or in parallel across the interface

(P).
c Whether this dimension is optional based on core configuration, or not.
d Size specification: fixed (F), core configuration (C), control packet field (P), TUSER channel (U) or TLAST

signal (or pre-AXI equivalent) (L).
e FFT transform size may be specified either as a core parameter, or in a control packet.
f An ‘Elements’ dimension is present when advanced channel sequences are enabled. The size of each

element array is different, and determined by the channel pattern which is specified in a CONFIG
packet.

84

5.2 Data type specification

In the Xilinx Video IP group, efforts have already been made towards ensuring consis-

tency. Since video IP uses a more standardised set of data formats than DSP and wireless

IP, each format has been associated with an identifier and each of the video cores has a

list of supported formats associated with each interface in metadata. The first seven of

the available formats are shown in Table 5.3 and the set of these formats that are available

on each core interface is shown in Table 5.4.

While this domain-specific approach works when producing systems consisting of cores

from single domains, it presents challenges when cross-domain IP connections are re-

quired. One common example is the need to connect the RGB output of a video core to a

FIR core, with each video channel mapping to a separate channel in the FIR: if an explicit

metadata description of the RGB format is not provided, automatic comparisons of the

data types on the two interfaces are not possible.

IP-XACT allows simple types like integers and strings to be associated with parameters,

and allows register maps to be defined which consist of fields with specified bit widths

and bit offsets. However, data types cannot be associated with these fields and streaming

packets cannot be defined.

Explicit and platform-independent descriptions of data types may be created using one

of a number of interface description languages which address the need to standardise data

communication between distributed software processes written in different software lan-

guages. Examples of these languages include Corba IDL [106], Protocol Buffers [107] and

Thrift [108]. However, due to their software orientation, these languages cannot be used

to describe hardware-specific features such as variable-width types and type encodings.

These problems are tackled to some extent in ASN.1 [100], which is a mature and wide-

ranging standard that was designed to describe the data types sent in communications

protocols. ASN.1 deals with data type encodings through sets of encoding rules, of which

a number are defined including Basic, Canonical, Distinguished and Packed Encoding

will be used is that the token is the array comprising all of the non-infinite dimensions (such as channels)

and excluding the infinite dimensions (such as time).

85

Table 5.3: A selection of data interface formats used in Xilinx video processing cores

Contents of data word n, n = . . .

Code Video format 3 2 1 0

0 YUV 4:2:2 — — V, U Y

1 YUV 4:4:4 — V U Y

2 RGB — R B G

3 YUV 4:2:0 — — V, U Y

4 YUVA 4:2:2 — α V, U Y

5 YUVA 4:4:4 α V U Y

6 RGBA α R B G

RGB: red, green, blue; A/α: transparency; Y: luminance; U/V: chrominance.

Table 5.4: Supported data format codes in a selection of Xilinx video cores

Corea Input format Output format

Color Correction {1, 2} {1, 2}
Chroma Resampler {0, 1, 3} {0, 1, 3}
Edge Enhancement {1} {1}
Gamma Correction {0, 1, 2, 3} {0, 1, 2, 3}
Noise Reduction {1} {1}
RGB to YCrCb {1, 2} {1, 2}
YCrCb to RGB {1, 2} {1, 2}
AXI4S to Video Out Any N/A

Video In to AXI4S N/A Any
a Color Correction : Color Correction Matrix v4.00.a; Chroma Resampler : Chroma

Resampler v2.00.a; Edge Enhancement : Image Edge Enhancement v4.00.a; Gamma
Correction : Gamma Correction v5.00.a; Noise Reduction : Image Noise Reduction v4.00.a;
RGB to YCrCb : RGB to YCrCb Color-Space Converter v5.00.a; YCrCb to RGB : YCrCb to
RGB Color-Space Converter v5.00.a; AXI4S to Video Out: AXI4-Stream to Video Out v1.0;
Video In to AXI4S : Video In to AXI4-Stream v1.0.

86

Rules (BER, CER, DER and PER) [109, 110], and new rulesets can be devised using En-

coding Control Notation (ECN) [111]. However, in the case of Xilinx IP, encodings are

determined on a case-by-case basis rather than from a ruleset, and using ECN to describe

the encoding for each core requires specifications that are overly verbose.

The limitations of existing tools and languages suggest that a novel approach is required.

With the representation of core metadata in the extensible IP-XACT format, an oppor-

tunity arises to extend this format to include data type information. If data types and

their encodings are defined in metadata, functions that encode/decode bus transactions

to/from VHDL records or C structs may then be automatically generated, and this will

be presented in Chapter 7.

An IP-XACT extension schema will now be described that has been designed to allow

data types to be described and then associated either with fields in register-based in-

terfaces or with streaming interfaces, allowing accurate descriptions of streaming data

packets to be created. Data types may be basic ‘leaf’ types or hierarchical types such as

structures and arrays. The basic types will be discussed first.

5.2.1 Basic type descriptions

Basic types include booleans, integers, reals and complex values. Bit widths are added

to data type descriptions as in the example in Listing 5.1, which represents an unsigned

data type of (5, 4)3. A similar specification can be produced in CHREC XML.

Listing 5.1: Metadata representation of a simple data type.

dataType:

real:

bitWidth: 5

signed: false

fixedPoint:

fractionalWidth: 4

Integers and floating point types are captured in a similar manner, using the integer el-

3In the XML schema, the signed and unsigned XML tags are used with no data contents, but YAML tags

must have data values and so signed: true and signed: false are used.

87

ement in place of real and the floatingPoint element in place of fixedPoint. Floating-

point values are a generalisation of the IEEE 754-2008 standard to arbitrary total widths

and significand widths, as has been implemented in the Xilinx Floating-Point Operator

core, with the total width specified using the bitWidth element and an additional sig-

nificandWidth element specifying the width of the significand. Floating-point types in

this schema are always signed.

Complex values are also permitted which can hold two integer or real values, and the

width of the aggregate type is determined by the width of the integer or real subtype.

Thus, only a single additional parameter is required for the complex element, which

specifies whether the real or the imaginary part of the type occurs first (i.e. earlier in

the stream, or closer to the least-significant bit in a transaction): realFirst or imagi-

naryFirst4.

dataType:

complex:

real:

bitWidth: 5

signed: true

fixedPoint:

fractionalWidth: 4

realFirst: true

It is desirable to be able to restrict the range of values that may be represented in a field,

and IP-XACT allows this to be done for untyped register fields using the writeValue-

Constraints and enumeratedValues elements. However, these only constrain the value

as represented in hardware, rather than the value in a type, and so with the addition of

typed fields, these elements are moved underneath type descriptions. Doing this also

helps to address the problems posed by the PUCCH nant field, which can be addressed

with the addition of an encodedValue element under each enumerated value:

4These appear as realFirst: true and realFirst: false in YAML.

88

dataType:

integer:

bitWidth: 2

enumeratedValues:

- name: ant_1

value: 1

encodedValue: 0x0

- name: ant_2

value: 2

encodedValue: 0x1

- name: ant_4

value: 4

encodedValue: 0x2

In the absence of value constraints, the permitted values in a data type are determined

by its bit width.

5.2.2 Hierarchical composition of types

Leaf types may be composed into a hierarchy of types consisting of structures and multi-

dimensional arrays. Structures contain field elements which have a base type associated

with them, and these base types contain bitOffset elements that specify the encoding of

the fields in the structure:

dataType:

structure:

field:

name: first

bitOffset: ...

dataType:

...

bitWidth: ...

field:

name: second

...

A similar approach is taken in the base IP-XACT schema in the specification of register

maps. The main difference is that a structure is a more abstract entity than a register

map, which with the addition of bit widths and bit offsets, can represent either a register

map or a streaming packet. Other differences are that the field here is an abstract field

which is only assigned an encoding upon the addition of bit width and offset information

89

to lower-level subtypes, and that the bitOffset element stores the offset from the start

of the structure rather than from the start of a word. Under this approach, a separation

of concerns is enforced between the width of the physical channel or register (at the RTL

layer) and the width of the data type (at the data type layer) transmitted across it.

Arrays are also representable in the schema, and these may be multidimensional, with

each array dimension having a name such as “channels”, “antennas” or “subcarriers”.

Each dimension can be marked as being optional, and can have a size. The presence of

optional dimensions and the specification of configurable array sizes are discussed later

in this chapter.

dataType:

array:

name: antennas

size: 4

dataType:

array:

name: subcarriers

size: 12

dataType:

...

5.2.3 Data type encoding

It is necessary in the schema to describe both abstract types and their encodings. While

ASN.1 enforces a separation between the abstract type and its encoding, these aspects are

rarely considered in isolation from each other in the context of the data formats on FPGA

cores. The approach proposed here is less rigid in separating these concerns: while types

can be specified independently of a register map or streaming packet implementation

context, the internal layout of the encoded type in a stream or register map is intermin-

gled with the abstract type description.

In IP-XACT, the locations of registers and register fields are described using bit offsets in

a one-dimensional address space, and mapped storage locations are specified using the

bitOffset element. In streaming packets, there are two address dimensions to consider:

space (across the width of a bus interface) and time (across multiple transactions on that

90

interface), as demonstrated in the DUC/DDC data encoding example in Figure 5.2.

When considering streaming data arrays such as those used by the DUC/DDC, the map-

ping of the elements in an n-dimensional array to a 2-dimensional space becomes com-

plicated. A similar problem has previously been tackled in the Array-OL language [71]:

in this language, the mapped location vector5 ei of each element xi of an input array is

specified by a 2× n fitting matrix, F, and an origin vector o such that ei = o + F.xi. This

equation models array encoding essentially as an affine transform from array indices to

two-dimensional storage locations, and this requires two values to be specified for each

input array dimension.

This approach could be used to map multidimensional array elements to locations in

time and space in transactions on a bus interface, but a simpler specification can be used

if a policy is adopted such that bit offsets increase across interface widths from least-

significant bit to most-significant bit and then across transactions in time order, meaning

that the encoded address space is linear. Mapping to a one-dimensional stream means

that a 1× n fitting matrix may be used, with a single value for each dimension. These

values are then essentially strides, as used in Fortran 90 and MPI [112], and specifying

a single stride value for each array dimension (or complex value) allows the position of

each element in time and space to be specified precisely. Figure 5.3 demonstrates how

this may be done in practice.

5.2.4 Naming and reference

So far, types have been described independently of the lower-level channel over which

they are to be communicated. It is assumed here that streaming types are associated

with individual IP-XACT ports rather than bus interfaces since a number of ports may

comprise an interface and each of these may have a unique data type (for example, the

DATA and USER channels comprising an AXI4-Stream interface).

One implication of associating types with ports is that there are two bit widths to be

considered: the width of the port, and the width of the type that is communicated over

5Notation has been altered for clarity.

91

MSB LSB

tim
e

dataType:

array:

bitOffset: 5

size: 3

stride: 16

dataType:

array:

size: 4

stride: 3

dataType:

...

Figure 5.3: Metadata representation of complex array strides. On the left is a diagram showing
a sequence of transactions on an interface in a regular pattern. The pattern can be
represented as an array with two dimensions that starts at the 5th byte in the stream,
with each of the three repetitions of the outer dimension occurring 16 bytes apart and
each of the four repetitions of the inner dimension occurring 3 bytes apart.

92

that port. This is useful when sending, for example, a 5-bit signed value over an 8-bit

AXI4-Stream interface, since the width of the type can be used to determine that the sign

should only be extended to the 5th bit rather than to the 8th bit.

A data type may be associated inline with an IP-XACT port as follows:

port:

vendorExtensions:

dataType:

...

CHREC XML also allows types to be defined in a component’s vendorExtensions and

referenced throughout that component, but since data types are often shared between

components, as in the case of the video IP described earlier, it is also desirable to permit

libraries of types to be created, stored externally, and referenced in multiple IP-XACT

component descriptions. In IP-XACT, components and designs are referenced using four

attributes: vendor, name, library and version (VLNV). These attributes are added to data

type descriptions using a dataTypeDef field and this is stored in a separate XML file

which will be called a “data type description”. Named types can then be referenced

using a dataTypeRef element, as shown below.

dataTypeDef:

vendor: xilinx.com

library: ip

name: xfft_ctrl

version: 8.0

dataType:

structure:

...

component:

ports:

- vendorExtensions:

dataTypeRef:

vendor: xilinx.com

library: ip

name: xfft_ctrl

version: 8.0

5.2.5 Parameterisation and dependencies

Values in IP-XACT metadata files are often variable, and may depend on another value

stored within the same file. For example, IP-XACT components have a list of parameters,

and each parameter has a default value. An example of an IP-XACT dependency that was

defined using the XPath id() function was shown in Listing 3.2, and in YAML syntax,

a suitable way to represent this is to use the * and & symbols as shown in Listing 5.2:

93

&ovflo is an anchor for the node immediately following it, and *ovflo is an alias node

which references the anchored node.

Listing 5.2: Abstract metadata representation of optional port.

component:

parameters:

- name: ovflo

value: &ovflo false

busInterfaces:

- name: M_AXIS_STATUS

vendorExtensions:

busInterfaceInfo:

enablement:

presence: optional

isEnabled: *ovflo

A similar approach is used in the data type schema to specify dependent aspects of data

types: for example, this is required when the size of an array is dependent on the value

of a configuration parameter or when an array dimension is optional, as shown in List-

ing 5.3. Note that in this example, default parameter values (4 and false) are specified,

and that the presence and isEnabled elements are adopted from the Xilinx vendor ex-

tension schema to describe the optionality of array dimensions.

94

Listing 5.3: Metadata representation of parameterised array dimension size and presence.

component:

parameters:

- name: nant

value: &nant 4

- name: groupsc

value: &groupsc false

ports:

- name: din

vendorExtensions:

dataType:

array:

name: antennas

size: *nant

dataType:

array:

name: subcarriers

size: 12

presence: optional

isEnabled: *groupsc

dataType:

...

When types are defined externally in a dataTypeDef, this form of dependency specifi-

cation cannot be used, since the scope of an XPath expression is limited to the current

document. To avoid this problem, types may be given a number of parameter elements,

and the default value of each parameter may be defined at the location of the type refer-

ence.

dataTypeDef:

vendor: xilinx.com

library: ip

name: xfft_ctrl

version: 8.0

parameters:

- name: has_nfft

dataType:

structure:

field:

name: nfft

presence: optional

isEnabled: *has_nfft

component:

parameters:

- name: C_HAS_NFFT

value: &C_HAS_NFFT true

ports:

- vendorExtensions:

dataTypeRef:

vendor: xilinx.com

library: ip

name: xfft_ctrl

version: 8.0

withParams:

- name: has_nfft

value: *C_HAS_NFFT

This mechanism may be extended to support parametric type polymorphism, allowing

95

components such as data sources and sinks to be configured to read or write data of a

particular type. The listing below makes use of the XPath split function to enable this.

component:

name: data_source

parameters:

- name: data_type

value: &data_type ::xfft_ctrl_packet:1.0

ports:

- vendorExtensions:

dataTypeRef:

vendor: xilinx.com

library: ip

name: split(*data_type, ’:’)[3]

version: split(*data_type, ’:’)[4]

Finally, it should be noted that metadata parameters such as array sizes may change

dynamically. Capturing the dynamic dependency of one value, such as an array size, on

another metadata element is useful when generating executable code from an IP-XACT

description, and thus will be described in Chapter 7.

5.2.6 Full examples

To tie together the concepts presented so far, data type descriptions conforming to the

metamodel representing packet descriptions for two Xilinx LogiCOREs will be presented.

Firstly, the packet communicated on the CONFIG interface of the FIR, in the presence of

multiple filters, patterns and channels, may be described as shown in Listing 5.4 (a more

verbose specification would be required to deal with the optional presence of elements

when there is only a single filter, pattern or channel). The pad(), ceil() and log2()

functions are shorthand for XPath expressions that implement each function.

96

Listing 5.4: Metadata description of the CONFIG control packet received by FIR cores.

dataTypeDef:

vendor: xilinx.com

library: ip

name: fir_compiler_config_packet

version: 6.3

dataType:

parameters:

- name: num_filters

value: &num_filters 2

- name: num_patterns

value: &num_patterns 2

- name: num_channels

value: &num_channels 2

structure:

- field:

name: filter_select

bitOffset: 0

dataType:

array:

size: *num_channels

stride: >

pad(ceil(log2(*num_filters)))

+ pad(ceil(log2(*num_patterns)))

dataType:

integer:

bitWidth: pad(ceil(log2(*num_filters)))

valueConstraint:

min: 0

max: *num_filters - 1

- field:

name: channel_pattern

bitOffset: pad(ceil(log2(*num_filters)))

dataType:

integer:

bitWidth: pad(ceil(log2(*num_patterns)))

valueConstraint:

min: 0

max: *num_patterns - 1

Secondly, Listing 5.5 shows how the DUC/DDC problem can be represented in metadata

using parameterised strides: in parallel mode, the complex value has a stride of one

element-width, but in TDM mode the stride is the number of antennas multiplied by the

element width; in parallel mode, the antenna array has a stride of two element-widths,

but in TDM mode the stride is one element width.

97

Listing 5.5: DUC/DDC Compiler data format expressed in XML metadata.

dataTypeDef:

vendor: xilinx.com

library: ip

name: duc_ddc_compiler_data_packet

version: 2.0

dataType:

parameters:

- name: tdm

value: &tdm false

- name: num_antennas

value: &num_antennas 1

- name: data_width

value: &data_width 32

array:

name: antennas

size: *num_antennas

stride: if(*tdm) then *data_width

else *data_width * 2

dataType:

complex:

real:

bitWidth: *data_width

realFirst: true

stride: if(*tdm) then *data_width * *num_antennas

else *data_width

Finally, some of the limitations of the schema should be mentioned. In the FIR core, data

channels may be interleaved either in “basic” or “advanced” sequences. With basic se-

quences, each data channel is processed sequentially in a repeating cycle. With advanced

sequences, channels are processed in a pattern such as “0 0 0 1”, “0 1 0 2” or “0 0 0 0

1 2”, where 0, 1 and 2 identify three separate channels. There are 174 possible channel

sequences, each specified explicitly with a unique identifier, and they are selected using

a field provided over the CONFIG interface.

Advanced channel sequences are difficult to represent in the schema for two reasons:

firstly, the data arrays communicated on each channel may be of different sizes, meaning

they cannot be represented as multidimensional arrays, and secondly, the stride values

are non-uniform. For example, in the pattern “0 0 0 1 0 0 0 1”, the stride in channel 0

varies between 1 (for the first three elements) and 2 (for the fourth element). Therefore,

further work is required to determine whether it is possible to represent advanced chan-

98

nel sequences in an elegant manner.

Additional problems are encountered in attempting to represent variable-sized fields in

structures, such as IPv4 options, since the offset of each field cannot be specified in ad-

vance. Further work is required to determine how these issues should be handled.

5.3 Component behaviour specification

In this section, metadata extensions are defined which describe the interactions between

component interfaces, allowing the data production rate on the component’s outputs to

be determined when the token consumption on the input ports matches particular, well-

defined patterns. By specifying the dynamic behaviour of cores in metadata, the model

of computation can be determined from that metadata. So, rather than stating that a core

belongs to a particular dataflow domain such as SDF or DDF, the domain emerges from

its behavioural properties.

It could be argued that behavioural information is part of the computational concerns

of a component, which according to the architecture set out in Chapter 4 is represented

in this toolflow in platform-specific languages such as C++ and HDL rather than meta-

data. However, to the extent that the behaviour is common to multiple platform-specific

instances of the component and has an impact on the system-level interconnection of a

block, it can be considered as a cross-cutting concern that can legitimately be specified in

metadata.

5.3.1 Rate relationships

The first core to be examined is the DFT v3.1. Its ports are already defined in a Xilinx IP-

XACT component description, and since it is a pre-AXI core, the ports are not aggregated

into higher-level bus interfaces. To define the rate relationships between these ports, the

XDF actions element, containing inputs and outputs each with a tokenCount, may be

adopted with the proviso that it must distinguish references to IP-XACT ports from ref-

erences to IP-XACT bus interfaces, each of which may conceptually represent an abstract

99

dataflow port.

The DFT core has a single action which consumes tokens on all of the input ports and

produces tokens on all of the output ports, as represented in the metadata below6.

component:

name: dft

...

ports:

- &xn_re

name: xn_re

vendorExtensions:

dataType:

...

...

actions:

- inputs:

- portRef: *xn_re

tokenCount: 1

- portRef: *xn_im

tokenCount: 1

- portRef: *fd_in

tokenCount: 1

- portRef: *size

tokenCount: 1

- portRef: *forward

tokenCount: 1

outputs:

- portRef: *xk_re

tokenCount: 1

- portRef: *xk_im

tokenCount: 1

- portRef: *rffd

tokenCount: 1

- portRef: *blk_exp

tokenCount: 1

- portRef: *fd_out

tokenCount: 1

- portRef: *data_valid

tokenCount: 1

In components with a single action linking each of the ports, and with each port associ-

ated with a data type, it may be possible to calculate the data rates on each port. In the

case of the DFT, the sizes of the input and output data arrays are variable and determined

6It is assumed that the clock, clock enable and clear ports belong to a layer below the dataflow represen-

tation of the core.

100

by a transform size that cannot be determined statically, but it can at least be determined

from the metadata that control data must be provided for every data array.

Even though the sizes of the data arrays are variable, their variability is constrained by the

value transmitted on the SIZE port. Capturing this relationship in metadata is not useful

in static analysis, but is of use when generating executable code from the metamodel and

an approach for capturing this information will now be described.

5.3.2 Dynamic data dependencies

There are a number of characteristics of components that vary dynamically. One is the

sizing of variable-sized input and output arrays, and another is action guards, which will

be described in more detail in Chapter 7.

Dynamic characteristics of components are a fundamental feature of the CAL dataflow

language and XDF IR, and may be represented within the scope of a single action by

declaring a variable to be associated with an input token and referencing that variable,

or some function thereof, elsewhere in the body of the action definition. It is desirable to

adapt this mechanism for use in IP-XACT vendor extensions, making use of existing IP-

XACT concepts where possible. To do this, a declaration element is added to an action

input, as in XDF, and it is referenced in the array size:

ports:

- &xn_re

name: xn_re

vendorExtensions:

dataType:

array:

name: antennas

size: *size_value

dataType:

...

inputs:

- portRef: *size

tokenCount: 1

declaration: &size_value size_value

...

This adapted mechanism is only suitable when referencing data on ports that transmit

101

basic data types such as integers, however, since no mechanism is defined that allows

fields in structures or elements in arrays to be referenced.

A comment must be made on the implementation of this mechanism in XML. Elements

containing variable data are assigned a spirit:resolve attribute, and the value of this

attribute determines the resolution mechanism: user to indicate configuration by the

user and dependent to indicate a dependency on another metadata element. To address

dynamic dependencies, an additional runtime-dependent value is introduced and an

XPath function which extracts the value of a token received on an input port is declared.

<spirit:value

spirit:resolve="runtime-dependent"

spirit:dependency="id(’size_value’)">0</spirit:value>

5.3.3 Timing constraints

An accurate specification of the DFT core must also take account of the constraints on the

relative timings of the port transactions. These timing constraints cannot be represented

in CAL or CHREC XML, but are necessary in complete descriptions of Xilinx cores such

as the DFT. This core requires control tokens on ports such as SIZE to be provided on

the first beat of each data transaction, which can be specified by adding a timingCon-

straint to the appropriate action inputs. This states that the start of the transaction on

the SIZE port must occur exactly zero cycles after the start of the transaction on the XN RE

interface:

...

- portRef: *size

timingConstraint:

referencePort: *xn_re

referenceBeat: first

minLatency: 0

maxLatency: 0

...

In contrast to the DFT core, the LTE Channel Estimator v1.1 aggregates ports as bus inter-

faces and does not permit concurrent streaming of control on the CTRL interface and data

on the Y interface. Since there is no buffering on either interface, control and data must

102

be communicated sequentially with the data on the Y port following the data on the CTRL

port. However, some latency is allowable between these transactions. This scenario may

be modelled with a timing dependency of the Y port on the CTRL port and a bufferDepth

element set to zero on both interfaces7:

actions:

- inputs:

- busRef: *AXI4Stream_MASTER_s_axis_y

tokenCount: 1

timingConstraint:

referenceBus: *AXI4Stream_MASTER_s_axis_ctrl

referenceBeat: last

minLatency: 0

bufferDepth: 0

- busRef: *AXI4Stream_MASTER_s_axis_ctrl

tokenCount: 1

bufferDepth: 0

outputs:

- busRef: *AXI4Stream_MASTER_m_axis_h

tokenCount: 1

In contrast, the LTE PUCCH Receiver retains the constraint that control (on the CTRL

interface) must be read before data (on the DIN interface), but since it provides buffering

for up to two tokens on each interface, control for the next action may be consumed

concurrently with the data for the current action. To model this scenario, the bufferDepth

element would be set to 2.

In the system design process, it is desirable to know the maximum data throughput of a

core, and this can be determined from the rate at which the cores consumes data, known

as the initiation interval or introduction interval (II). Comparing the Channel Estimator

and PUCCH, the throughput of the PUCCH is greater as a result of the buffering that it

provides. To describe the II, CHREC XML provides a dataIntroductionInterval ele-

ment [48], but in latency-tolerant cores supporting standards such as AXI4-Stream, each

core can more accurately be said to have a minimum initiation interval (MII) associated

with each action. MII values are sometimes provided in core data sheets, but rather than

specifying the MII value explicitly in metadata, it may be derived from other informa-

7The MASTER component of the interface names is assumed to have been entered in error in the core

packaging process.

103

tion. A bus interface can only receive a single token at a time, so the MII for an action is

dependent on the number of transactions required for a token to pass over an interface,

which will be referred to here as the “length” of the token. For example, an action with

a single input interface that receives a data token over three clock cycles could be said to

have an MII of three plus whatever additional delay is required to calculate the output,

which will be referred to as the repetition delay. Token lengths are determined by their

size and the width of the interface over which they are sent, both of which may already

be included in the metadata for each bus interface.

For an action with more than one input interface, each of which is unbuffered, the MII

for that action is equal to the length of the longest chain of tokens on dependent input

interfaces, plus the repetition delay. For example, in the Channel Encoder, the MII is

the length of the CTRL token plus the length of the Y token, plus the repetition delay.

On the other hand, an action consisting entirely of buffered input interfaces has an MII

equal to the length of the largest input token, plus the repetition delay. For example,

in the PUCCH, the size of the data token on the DIN interface dominates that of the

CTRL interface, so the MII is the length of the DIN token, plus the repetition delay. In

general, with mixed buffered and unbuffered input interfaces, the MII for an action is the

maximum of the length of the largest input token and the length of the largest chain of

unbuffered dependent input interfaces, plus the repetition delay.

In summary, the MII can be calculated rather than being specified explicitly, and thus, in

contrast with CHREC XML, a repetition delay element (repeatDelay) is defined in this

schema for each action, allowing the MII to be derived for each action separately. If the

repeatDelay element is not present, it can be assumed to be zero.

One final aspect of core timing is output latency. The latency of configured Xilinx cores

is currently determined through one of a number of methods:

• provision of latency examples for certain core configurations in the data sheet; or

• on-the-fly calculation during core configuration in the Vivado design environment;

or

• provision of a formula in the data sheet.

104

In the absence of any of these specifications, manual experimentation is required to deter-

mine the latency of a core. In order to ensure that latency is specified wherever possible

in a way that may be understood by a design environment, it is desirable that a flexible

mechanism for latency specification is provided. CHREC XML specifies latency informa-

tion using an integer in a pipelineDepth element, but a more flexible and precise and

specification can be achieved by associating worst-case and/or best-case token produc-

tion latencies on particular outputs with the arrival of data on particular inputs. In the

DDS core, the latency of the core is configurable and can be specified in metadata as

follows:

actions:

- inputs:

- busRef: *S_AXIS_PHASE

...

outputs:

- busRef: *M_AXIS_DATA

...

timingConstraint:

referenceBus: *S_AXIS_PHASE

referenceBeat: last

maxLatency: PARAM_VALUE.LATENCY

5.3.4 Blocking

In the FIR Compiler LogiCORE, there is an additional notion of blocking relationships

between input interfaces. In the DFT, which is a pre-AXI core, the FD IN port signals

the readiness or otherwise of all of the input ports. AXI4-Stream interfaces, in contrast,

provide a VALID signal allowing such tests to be made on a per-interface basis.

In the FIR, if a CONFIG token arrives but no DIN tokens arrive, the CONFIG token is not

processed. Similarly, if a RELOAD token arrives but no CONFIG token arrives, the RELOAD

token is not processed. The CONFIG channel is said to block on the DIN channel, and the

RELOAD channel is said to block on the CONFIG channel. To allow correct, automatic,

integration of the FIR, these characteristics must be captured in the metamodel.

This behaviour cannot be represented in CHREC XML, but it can be described using

dataflow actions. The FIR may be modelled using three actions: one for ordinary pro-

105

cessing of DIN tokens, one to select a new filter bank (through the CONFIG channel), and

one to update filter banks (through the RELOAD channel). The impact of each action upon

the core’s state is also represented with the introduction of state elements, adapted from

XDF, together with new action inputs and outputs that indicate explicit manipulation of

the component’s state. The only part of the total state that is represented in metadata is

that which has an effect on the system-level behaviour of the core, and state ports do not

require a token count, since repeated reads or writes are idempotent.

The first action processes a DIN token into a DOUT token, using the configuration infor-

mation that is held in the core’s state.

state:

- &filter_bank_data filter_bank_data

- &active_filter_bank active_filter_bank

action: &action_1

name: action_1

inputs:

- busRef: *din

tokenCount: 1

- state: *filter_bank_data

- state: *active_filter_bank

outputs:

- busRef: *dout

tokenCount: 1

The second action describes the selection of a filter bank in the core using the CONFIG

channel. Since the DIN channel blocks on the CONFIG channel, a DIN token is also in-

cluded in the list of inputs. The CONFIG token can arrive up to two cycles after the DIN

token in order for the updated configuration to take effect, and this can be represented in

metadata using a timing constraint.

106

action: &action_2

name: action_2

inputs:

- busRef: *din

tokenCount: 1

timingConstraint:

referenceBus: *config

referenceBeat: last

minLatency: 2

- busRef: *config

tokenCount: 1

- state: *filter_bank_data

outputs:

- busRef: *dout

tokenCount: 1

- state: *active_filter_bank

The third action describes the reloading of filter coefficients. It takes a variable number

of tokens from the RELOAD interface, a single token from the CONFIG interface, and a

single token from the DIN interface, and writes the result to internal state, as represented

in the listing below. Timing constraints for this action are unspecified in the data sheet,

and note that since a variable number of RELOAD packets may be processed in a single

CONFIG update, no tokenCount is provided for the RELOAD input.

action: &action_3

name: action_3

inputs:

- busRef: *din

tokenCount: 1

- busRef: *config

tokenCount: 1

- busRef: *reload

outputs:

- busRef: *dout

tokenCount: 1

- state: *filter_bank_data

These actions must be prioritised such that action 3 will fire preferentially to action 2,

which will fire preferentially to action 1. The concept of action priorities is defined in

CAL, and is required to model accurately the following characteristics of the FIR: firstly,

that if a DIN token arrives, it will terminate a configuration update if a CONFIG token is

available, and secondly, that if a CONFIG token arrives, it will update the filter banks if

107

RELOAD tokens are available.

component:

actionPriority:

- *action_3

- *action_2

- *action_1

Listing action priorities is not sufficient to ensure correct operation when the latency of

the input channels is variable, however: with the adoption of the AXI4-Stream standard

with variable-latency interconnect blocks and the desire for IP cores to participate in het-

erogeneous GPP-FPGA systems, the correct relative timing of the token arrivals cannot

be preserved. For example, to pass data from software memory to an instantiated FIR

core in FPGA fabric, the following code sequence may be desirable:

fir_instance.reload_write(reload_token);

fir_instance.config_write(config_token);

fir_instance.din_write(din_token);

Since the interconnect latency is variable, these tokens may arrive out-of-order. While this

is not a problem in fully-blocking cores, it may lead to nondeterministic execution in cores

such as the FIR. Cores that exhibit this problem can be identified with a simple analysis

of their metadata: since there are multiple actions, and since the same state variable is

listed as the input to at least one action and as the output of at least one other, there is a

data dependency between them. Thus, there is a race condition between the actions, but

the metadata allows this fact to be determined easily in software.

To ensure deterministic behaviour, a number of approaches may be taken. One option is

to send all FIR data through a single channel in which data order can be preserved, but

this limits the data throughput and requires additional channel deaggregation logic to

be instantiated in the FPGA fabric. A similar approach would be to associate a sequence

number with each channel transaction. Perhaps the most preferable option would be for

all cores to be implemented with a “dataflow” mode, in which race conditions between

input interfaces are not possible. The selection of the most appropriate approach is be-

yond the scope of this document, but in the process of defining the metadata, it has at

least been pointed out that the problem exists and that a decision must be made.

108

Table 5.5: Dynamic interface behaviour of Xilinx DSP cores

Corea Rate Input timing Blocking Buffered interfaces

DFT Static Coincident None None

DDS Variable Control before data None All

XFFT Variable Dependent on signalc None S AXIS DATA, 16 elements

FIR Variable Control before data Partialb All

DUC/DDC Variable Control before data None Unspecified

Channel Est. Static Sequential Full None

MIMO Dec. Static No dependency Full None

MIMO Enc. Static Coincident None None

Channel Dec. Static Control before data Full Externald

Channel Enc. Variable Control before data None Unspecified

PUCCH Variable Control before data Full All, 2 elements
a Names are as in Table 2.1.
b RELOAD blocks on CONFIG, CONFIG blocks on DIN, otherwise non-blocking.
c It is only safe to send new control data to the core when its event_frame_started output signal is asserted.
c Input codewords are buffered in an external memory accessed through the core’s M AXI interface.

5.3.5 Summary

In this section, the dynamic behaviour of a number of Xilinx DSP cores was examined. A

characterisation of their behaviour is summarised in Table 5.5, and the key observations

from this exercise are that the following characteristics must be represented in metadata:

• relative rate of token consumption and production, which may be static or variable;

• timing constraints between the arrival of data tokens on input interfaces: in some

cases, tokens must be coincident, while in others they must arrive sequentially or

in a specified order, and in others, there is no timing dependency;

• blocking dependencies between interfaces: some interfaces may block whilst an-

other interface is waiting for data;

• depth of buffers on interfaces, if present.

109

Thus, it was proposed that specifications of the cores’ dynamic behaviour can be built

by deriving actor-oriented abstractions with timing annotations, and it was shown how

these specifications can be layered on top of IP-XACT descriptions.

5.4 Discussion

While general trends in IP design can be observed in the examples provided in this chap-

ter, it can also be noted that many cores in the library differ from the standard form in

some way. The reasons for these differences vary from differing system design assump-

tions, resource constraints, stage of interface standardisation process, customisability re-

quirements, and even the particular design philosophies adopted by different groups of

engineers in an organisation. For example, full blocking of data and control tends not

to be implemented on horizontal cores because of the additional resource cost that this

imposes – this functionality is regarded as unnecessary by customers implementing sys-

tems with predictable inter-block latency, and thus the resource cost takes precedence in

the decisions taken during the implementation of these cores. On the other hand, block-

ing is regarded as essential in baseband LTE systems because of the unpredictability of

control data arrival times from an embedded microprocessor, and so the LTE baseband

cores tend to implement full blocking behaviour.

Different cores have different use cases, and must therefore be designed in different ways.

However, there is some value in attempting to eliminate unnecessary heterogeneity in

a library of IP, and thus some proposals are presented here which would address this

concern.

• Horizontal cores could have two modes that may be selected at configuration-time:

synchronous reactive, and dataflow. The latter would imply full blocking amongst

all interfaces and allow integration into variable-latency scenarios such as LTE or

“accelerator” systems.

• A policy of either providing sufficient buffering within cores to allow some latency-

insensitivity, or a policy of not providing this buffering and making latency con-

110

straints explicit in data sheets, or a mixed approach in which both buffering capac-

ity and latency constraints are made explicit.

• Core latency could be stored as XPath expressions in metadata, allowing both the

generation of latency estimates at core configuration time and the use of this infor-

mation in a design environment to capture (and potentially optimise) total system

latency.

5.5 Conclusion

This chapter has described a metamodel for Xilinx IP cores, and has demonstrated how

various cores conform to that metamodel. The metamodel is implemented in XML, and

extends the IP-XACT, XDF and CHREC XML schemas with contributions including:

• structure and array data types that can be used to describe streaming control and

data packets;

• complex types;

• strided array types allowing the description of sparse arrays, or of arrays that in-

terleave data from multiple dimensions;

• flexible encodings of enumerated types;

• external data type definitions that may be referenced by multiple components;

• adaptation of dynamic dependencies as found in XDF for use in IP-XACT vendor

extensions;

• the use of XDF actions to describe data rates on component interfaces;

• timing constraints and latency characterisation between component ports and in-

terfaces; and

• representation of core blocking characteristics using dataflow actions that interact

via state.

111

In evaluating the utility of this metamodel, the primary consideration I will use is whether

it saves time by allowing code to be generated. Other considerations such as the suc-

cinctness of the metadata specifications in comparison to other possible metamodels are

believed to be subjective to some degree, and are difficult to evaluate outside of peer

review8.

The benefits of the metamodel in code generation are demonstrated in Chapters 6 and 7

for a number of the metamodel features including descriptions of structured data types

and the adaptation of XDF dataflow specifications for use in an IP-XACT-based schema.

However, a number of limitations of the schema were pointed out, including the diffi-

culty of representing complex data structures such as IPv4 options and advanced chan-

nel sequences in the FIR Compiler. Additionally, it remains to be proven that the use

of timing, latency and blocking metadata in the proposed format can be used to gener-

ate wrappers for cores which allow them to be integrated automatically into dataflow

systems. Such a demonstration would be a useful target for future work.

In the next chapter, it will be shown how the array metadata proposed in this chapter can

be used to optimise buffering in multidimensional signal processing systems.

8While positive feedback was received from the reviewers of my conference papers, an attempt at stan-

dardisation would be a more thorough test. When I proposed the metadata extensions to the IP-XACT

technical committee, their response was that they had not seen widespread demand for these types of exten-

sions, and thus proceeding with a standardisation effort would not be prioritised at that time.

112

Chapter 6

Tool-assisted design of

multidimensional streaming systems

In Chapter 2, it was stated that the LTE systems consist of a sequence of blocks that

operate sequentially over different data dimensions, that reorder buffers were introduced

between the blocks, and that the positions of these blocks had an impact on system-level

latency and memory requirements.

The purpose of this chapter is to demonstrate firstly that metadata describing the struc-

ture of array data types, as presented in Chapter 5, can be used to automatically infer ap-

propriate data reordering blocks, and secondly, that automated techniques may be used

to infer these blocks in the most efficient positions in the data stream. While this process

is applicable to any system that operates on multidimensional data, it will be applied in

this chapter to the LTE Uplink Receive system that was shown in Figure 2.1.

The structure of the chapter is as follows. First, it will be shown how the need for buffers

can be determined automatically from metadata, and then, some options for the imple-

mentation of these buffers will be presented. Then it will be shown that while a variety of

buffering “scenarios” are possible in a system, each can have different latency and mem-

ory requirements, and an example of this issue will be presented. The remainder of the

chapter then shows how efficient buffering scenarios can be determined automatically,

and it will be demonstrated how this process can be used to construct an efficient LTE

113

system from a combination of pre-existing and custom components.

A patent describing this work has been issued by the US Patent and Trademark Office

with the title “Method for determining efficient buffering for multi-dimensional datas-

tream applications”, and a copy of this document is included in Appendix A.

6.1 Determining buffering requirements

The need for buffers between components is influenced by the array data types on their

interfaces, which may be encoded in metadata in the format proposed in Chapter 5 with

dimension names abbreviated as specified in Table 5.2. A list of the array dimensions that

are present in the data transmitted or received over a component interface may then be

extracted using concise specifications in the XPath language. For example, the channel

matrix input to the MIMO Decoder is a two-dimensional array of antennas and code-

words, and when it is expressed as follows:

<x:dataType>

<x:array>

<x:name>ant</x:name>

<x:dataType>

<x:array>

<x:name>cw</x:name>

...

</x:array>

</x:dataType>

</x:array>

</x:dataType>

the list of dimensions can be extracted with a single line of XPath code:

string-join(descendant::x:array/x:name, ’, ’)

which generates the string ant, cw.

In the following discussion, the list of dimensions present in an array type on a compo-

nent interface will be referred to as the interface dimension list (IDL), i = (i1, i2, . . . , in),

where i1 is the outer dimension and in is the inner dimension. Using this notation, the

114

MIMO Decoder output has an IDL of (cw), and since the IDFT to which it is connected

in the LTE Uplink Receive system operates over arrays of subcarriers, its input interface

may be given an IDL of (sc).

The importance of these IDLs is that they play a part in determining the need for re-

order buffers between components, such as that shown in Figure 2.4, but the need for

these buffers is not determined through direct comparison of the dimension lists on the

interfaces of the cores. For example, between a core that outputs (A, B) and another

core that inputs (B), no reorder buffer is required because repeated firings of the down-

stream block mean that it consumes the A dimension implicitly; we shall say that A is

added to the repetition dimension list (RDL), r of the downstream component. Instead,

it is the effective IDL (which will be called the EIDL) on each interface that determines

the need for a buffer, where e = r‖i, i.e. the IDL prepended with the contents of the

RDL: (r1, r2, . . . , rm, r1, i2, . . . , in). A fuller discussion of how the components’ RDLs are

determined in general will be provided later in this section.

A buffer is required between two interfaces with unequal EIDLs, and this buffer must

store all of the dimensions that occur below any corresponding pair of dimensions that

are unequal. In the previous example with an output list of (A, B) and an input list of

(B), the effective dimension list of both components is (A, B), so no buffer is required. Be-

tween the lists (A, B, C, D) and (A, C, B, D), however, the dimensions that must be stored

and reordered are B, C and D, but not A. The total memory requirement of a typical re-

order buffer is the product of the sizes of all the dimensions that are stored: in the latter

example, |B| × |C| × |D|.

Returning to the LTE example, the MIMO Decoder must fire |sc| times, where |sc| is the

size of the ‘sc’ dimension. This effectively transforms the dimension list on the output

interface from (cw) to (sc, cw). Similarly, the IDFT must fire |cw| times, such that its input

interface effectively has a dimension list of (cw, sc). In the process detailed above, the

need for a subcarrier dimension in the IDFT has been propagated to the MIMO Decoder

and the need for a codeword dimension in the MIMO Decoder has been propagated to

the IDFT, as shown in Figure 6.1.

115

IDFT
MIMO

Decoder
[cw] [sc]

H

Y

W
Reorder
buffer

[cw]
[ant]

[ant]

[sc]

RDL = [sc] RDL = [cw]

Figure 6.1: Propagation of dimensions.

6.2 Automatic buffer instantiation

With knowledge of the dimension lists on the interfaces of the MIMO Decoder and IDFT

and the repetition lists for each component, the generation and instantiation of this re-

order buffer and the calculation of its memory requirements can be performed automati-

cally. In the example in Figure 6.1, the reorder buffer must store all of the codewords and

all of the subcarriers. The buffer that performs this task is essentially an N-dimensional

interleaver or deinterleaver, where N is the number of dimensions to be buffered. In one

possible implementation, input data is stored in memory in the order it is received, and

then read out in a strided fashion: the address of the jth element, Aj, in the output stream

is calculated from the output array type as follows:

Aj =
N

∑
p=1

[(
j mod |ip|

)
.

N

∏
q=p+1

|iq|
]

where |ip| and |iq| are the sizes of the pth and qth dimension of the output array type,

counting from the most-significant to the least-significant, and N is the number of di-

mensions as before. In an alternative implementation, data is stored in a strided fashion

and read out in order, while for high throughput scenarios, a non-blocking ping-pong

buffer may be used.

In the case of 2D transforms, the existing Xilinx Symbol Interleaver/Deinterleaver (SID)

LogiCORE, appropriately configured, may be used to reorder array dimensions. This

approach is also suitable for higher-dimensional transforms that are reducible to a 2D

transform: an example is (A, B, C) to (C, A, B), since A and B may be amalgamated into

a single dimension. However, (A, B, C) to (C, B, A) cannot be reduced in this manner.

116

For higher-dimensional transforms that cannot be reduced to a 2D transform, there are at

least two alternative solutions. One is to instantiate a chain of SID cores, and the other is

to generate a custom reorder buffer component.

6.2.1 Chaining SID cores

Using a chain of two instances of the SID core, (A, B, C) could be transformed to (C, B, A)

via an intermediate stage of (A, C, B). For any pair of multidimensional arrays, it is possi-

ble to determine a minimal chain by considering whether there are any common sub-lists

in both of the dimension lists, and aggregating the dimensions in those sub-lists. For ex-

ample, transforming (A, B, C, D, E) to (D, E, B, C, A) may be done by viewing B and C as

a new dimension P, and D and E as Q, and then transforming (A, P, Q) to (Q, P, A).

The disadvantage of the SID-chaining approach is that it will lead to greater memory

requirements and greater latency than if a reorder buffer is implemented from scratch.

Between (A, B, C) and (C, B, A), a custom block would buffer |A| × |B| × |C|, while the

chain of SID instances proposed earlier would buffer |B| × |C| for the first SID and |A| ×
|B| × |C| for the second SID. The increase in memory is bounded in general, however:

the top dimension need only be moved once, the second dimension need only be moved

once, and so on. In the worst case, each dimension has a cardinality of 2 and the cost of a

single custom buffer is 2N , where N is the number of dimensions. The cost of a sequence

of 2D SIDs is 2N + 2N−1 + . . . + 23 + 22. The limit of this sequence is approximately 2N+1,

so the cost of a SID chain is, at most, twice that of a custom buffer. In many real-world

cases, however, the memory penalty of this approach will be lower and the advantages

offered by IP reuse could outweigh the small memory advantage of a custom implemen-

tation. For example, if —A— is 12, —B— is 7 and —C— is 4, the cost of two SIDs between

(A, B, C) and (C, B, A) would be either 420 or 364 depending on whether the smaller SID

swaps the A and B dimensions or the B and C dimensions, versus 336 for a custom re-

order buffer implementation. Thus, in this case, the overhead of the SID implementation

is between 8.3% and 25%.

117

6.2.2 Custom implementation

If custom implementation is necessary, the implementation task may be simplified with

the aid of high-level synthesis, which has been shown to give high-quality results for

simple loop nests such as those that are required in a reorder buffer. Since these buffers

have a regular structure, C code to perform the required transformation can be generated

automatically from XML data types using XSLT, and then passed through an HLS tool

to generate a custom reorder buffer. Example code for the case of reordering the dimen-

sions in a single LTE resource block with symbol (sym), subcarrier (sc) and antenna (ant)

dimensions from (sym, sc, ant) to (ant, sc, sym) is shown in Listing 6.1.

Listing 6.1: Reorder buffer described as C code for input to Vivado HLS.

#define MAX_ANT 4

#define MAX_SC 12

#define MAX_SYM 7

void reorder_buffer(const ap_uint<32> in[MAX_SYM][MAX_SC][MAX_ANT],

ap_uint<32> out[MAX_ANT][MAX_SC][MAX_SYM])

{

#pragma AP array_stream variable=in

#pragma AP array_stream variable=out

#pragma AP interface ap_fifo port=in

#pragma AP interface ap_fifo port=out

int ant, sc, sym;

ap_uint<32> buf[MAX_SYM][MAX_SC][MAX_ANT];

for (sym = 0; sym < MAX_SYM; sym++)

for (sc = 0; sc < MAX_SC; sc++)

for (ant = 0; ant < MAX_ANT; ant++)

buf[sym][sc][ant] = in[sym][sc][ant];

for (ant = 0; ant < MAX_ANT; ant++)

for (sc = 0; sc < MAX_SC; sc++)

for (sym = 0; sym < MAX_SYM; sym++)

out[ant][sc][sym] = buf[sym][sc][ant];

}

This processes 32-bit values, and VHLS compiler directives (#pragma AP) request that the

data arrays are passed in as streams (array_stream) through interfaces with ready-valid

118

handshakes (interface ap_fifo). Synthesizing this code into HDL using the Vivado

HLS tool produces the results in Table 6.1.

Table 6.1: High-level synthesis results for simple reorder buffer.

Latency LUT usage Flip-flop usage Block RAM usage

1296 157 55 1

It is notable in these results that the latency is greater than the expected value of 672,

which is the product of the sizes of the dimensions multiplied by two: once for input,

once for output. This is firstly because each buffer read takes two cycles, and secondly

because each inner loop requires two additional cycles, giving a total of ((4 + 2) ∗ 12 +

2) ∗ 7 (518) for the input loop nest and ((7 ∗ 2+ 2) ∗ 12+ 2) ∗ 4 (776) for the output. These

problems can be addressed by adding the pipeline directive to each loop nest, which

allows an initiation interval of 1 cycle on memory accesses and also flattens the nests,

with a one-off penalty of 2 cycles. With these modifications, the resource utilisation of

the block is increased significantly, as shown in Table 6.2, but the total latency is reduced

to 676 cycles, which is close to what could be achieved through hand-coding. Whether

or not the additional resources in the modified block justify the reduction in latency is

dependent on the requirements of the particular system in which it is to be used, but the

advantage of implementing the block in Vivado HLS is that it provides an easy way to

switch between the implementation options should this be necessary.

Table 6.2: High-level synthesis results for optimised reorder buffer.

Latency LUT usage Flip-flop usage Block RAM usage

678 336 95 1

A number of further modifications could be attempted in future work. One is for the

sizes of the array dimensions to be variable at run-time: for example, the number of

symbols depends on whether or not the OFDM cyclic prefix is extended or not, and this is

determined by a field in a control packet in the Xilinx LTE systems. Another development

would be to implement ping-pong buffering, allowing buffer reads and writes to occur

simultaneously. However, since these developments are tangential to the main thrust of

119

this chapter, they are not discussed here in further detail.

6.3 Determining repetition lists using pairwise propagation

Instantiating buffers automatically requires EIDLs to be determined, which in turn re-

quire RDLs to be determined, so a method to determine RDLs must be found. Initially,

it should be considered whether this problem can be considered as a special case of data

type propagation as implemented in tools such as Simulink and Vivado integrator, i.e.

pairwise propagation between interfaces.

In Figure 6.1, two connected interfaces are considered, and any dimensions present in one

but not the other are propagated across the connection. The system is now extended by

connecting the LTE Uplink Channel Decoder, which has a data type on its input interface

of (sym, sc), to the output of the IDFT1.

Continuing the propagation process described above, the Channel Decoder is integrated

by propagating the (sym) dimension to the IDFT. The behaviour of the IDFT (iterating

over codewords) has already been specified by the MIMO Decoder, and this is now re-

fined such that it additionally iterates over data symbols. The type propagation from

the Channel Decoder to the IDFT may occur either before or after the propagation from

the MIMO Decoder to the IDFT. If the propagation from the MIMO Decoder is applied

first, as in Figure 6.2, an additional reorder buffer is required when propagating from the

Channel Decoder.

Alternatively, when the data type from the Channel Decoder is propagated first as shown

in Figure 6.3, no reorder buffer is required between the IDFT and the Channel Decoder,

meaning that fewer reorder buffers are required and the total memory requirement is

reduced.

The relationship between RDS permutations and system efficiency is reminiscent of a

1The LTE Uplink Channel Decoder v3.0 User Guide specifies (sym, cw, sc), but since the operations per-

formed on each codeword are independent, the (cw) dimension may be considered as part of the RDL rather

than the IDL. Depending on the IDLs of the neighbouring components, removal of dimensions from an IDL

can allow more efficient buffering scenarios to be determined.

120

IDFT
MIMO

Decoder

H

Y

W
Reorder
buffer

[sc]

[cw]

Uplink
Channel
Decoder

[sym]
[sc]Reorder

buffer

[sc]

[cw]
[sym]

[sc][sc][cw]

[cw]
[ant]

[ant]

RDL = [sym][sc] RDL = [sym][cw] RDL = [cw]

Figure 6.2: Addition of Uplink Channel Decoder block.

IDFT
MIMO

Decoder

H

Y

W
Reorder
buffer

Uplink
Channel
Decoder

[sym]
[sc]

[sc]

[cw]
[sym]

[sc][sc][cw]

[cw]
[ant]

[ant]

RDL = [sym][sc] RDL = [cw][sym] RDL = [cw]

Figure 6.3: Alternative propagation.

common technique in software compilers known as loop interchange, in which the order

of iteration variables in loop nests is altered. The aims of this technique are different,

however: loop interchange is applied in order to maximise locality of reference by align-

ing array accesses with cache lines.

In this example, two propagation scenarios have been considered and the latter option

is superior due to its lower buffering requirements. In this example, the difference is

minor and an exhaustive analysis of the available scenarios may be done manually, but

the number of scenarios grows very quickly when the numbers of components, c, in-

terconnections, e, and dimensions, d, are increased. The approach described previously

requires each interconnection in the system to be examined, and for each interconnec-

tion, any dimensions in one interface that are not present in the other are propagated.

Some interconnections must be considered more than once, such as in Figure 6.2 where

the (sym) dimension is propagated to the MIMO decoder. In the worst case, only a sin-

gle dimension is propagated on each inspection of an interconnection, meaning that an

121

interconnection may need to be examined d times, and thus the number of inspections re-

quired is O(de). These inspections may be performed in any order, and thus the number

of possible propagation scenarios is O((de)!). As a result, this process cannot be applied

in systems with large numbers of components and dimensions, and furthermore, it is not

known whether it will always find an optimal solution. For these reasons, an approach

based on pairwise propagation is not suitable.

6.4 Determining repetition lists using Synchronous Dataflow

As an alternative, it is possible to construct an approach based on Lee’s theory of Syn-

chronous Dataflow (SDF) [113]. One of the primary applications of this theory is to de-

termine a firing rate for each component in a system which leads to matched data rates,

but here it will be used in an alternative context in which it is used to determine efficient

repetition lists. The following discussion will briefly introduce the typical usage of SDF,

and will then demonstrate the enhanced application.

First, a topology matrix, Γ, is constructed with a row for each interconnection and a col-

umn for each component, in which the elements of the matrix represent the rate that a

component produces tokens on an interconnection. In the system in Figure 6.2, the first

component (the MIMO Decoder) produces |cw| tokens on the first interconnection while

the second component (the IDFT) consumes |sc| tokens on the same interconnection. Sim-

ilar reasoning may be applied to the second interconnection, and the following topology

matrix may be constructed:

[
cw −sc 0
0 sc −sym× sc

]

A condition for the system to have a set of firing rates that leads to matched data rates is

that the topology matrix must have a rank of N − 1. As a result of the rank-nullity theo-

rem, the nullspace of such a matrix has a single basis vector of integers, and according to

the SDF theory, this nullspace vector represents the repetition vector q , i.e. q such that

122

Γq = 0. This vector can be found using methods such as Gaussian elimination, and using

this approach in the case of the system in Figure 6.2 requires the following equation to be

solved:

[
cw −sc 0
0 sc −sym× sc

]
.

q1
q2
q3

 =

[
0
0

]

This may be reduced to the following using elementary row operations:

[
1 −sc/cw 0
0 1 −sym

]
.

q1
q2
q3

 =

[
0
0

]
.

Since the rank of the matrix is 2, we can introduce one free variable, c, and consider that

equivalent to one of the elements of q. For convenience, we use q2. Rearranging the

simplified matrix produces the nullspace as follows:

q1
q2
q3

 = c

 sc/cw
1

1/sym

An integer nullspace vector is required, but this vector contains fractional elements. Since

c is a free variable, it follows that the elements in the vector may be multiplied out to give

an integer vector2. A minimal such vector (with no replication of dimensions) may be de-

termined by multiplying each element by the least common multiple of the denominators

of each of the elements (in this case, cw× sym) to give an integer vector as follows:

 sym× sc
sym× cw

cw

2This is allowable because the nullspace is determined from the linear combination a1v1 + a2v2 + . . . +

anvn of nullspace vectors vi and scalars ai with the scalar values being free.

123

Thus for matched data rates in the system in Figure 6.2, the MIMO Decoder must fire

sym× sc times, the IDFT must fire sym× cw times, and the Channel Decoder must fire

cw times.

Note that each element of the repetition vector, q, is an integer formed from the product

of the cardinalities of each of the members of a set of data dimensions. Murthy and Lee

describe an extension of SDF in which the elements of the repetition vector are themselves

replaced with vectors, with each element corresponding to a different dimension [85], but

in their approach, the significance of the various possible orderings of the dimensions in

these vectors is not discussed. Viewing these vectors instead as sets, with a variety of

possible dimension orderings that imply different latencies and memory requirements,

allows automatic buffer minimisation techniques to be applied. In the following discus-

sion these sets will be referred to as repetition dimension sets (RDS).

6.4.1 Determining repetition sets automatically

Determining the repetition vector using standard SDF scheduling techniques provides a

vector of integers, and in order to preserve the dimension names in repetition sets, the

SDF calculations must be performed symbolically. A number of software packages may

be used for this purpose, and I used a library for the Python programming language

called “SymPy” [114] since it can interoperate with other Python tools described later in

this chapter (although this interoperability is not demonstrated here). The repetition sets

may be determined using the code in Listing 6.23:

3A more robust implementation would ensure that the rank of the input matrix is N − 1, and thus that

there will be a single vector in the nullspace of the matrix.

124

Listing 6.2: Python session demonstrating symbolic determination of an SDF rate vector and an
RDS.

>>> from sympy import *

>>> cw = Symbol(’cw’)

>>> sc = Symbol(’sc’)

>>> sym = Symbol(’sym’)

>>> T = Matrix(([cw, -sc, 0], [0, sc, -sym*sc]))

>>> q = T.nullspace()[0]

>>> print q

[sc*sym/cw]

[sym]

[1]

>>> q *= lcm(map(lambda x: denom(x), q))

>>> print q

[sc*sym]

[cw*sym]

[cw]

>>> RDS = map(lambda x: x.as_ordered_factors(), q)

>>> print RDS

[[sc, sym], [cw, sym], [cw]]

6.4.2 Determining buffer-minimising repetition lists

Having determined an RDS for each component, an ordering of the elements in each RDS

that minimises buffering must be found. This is essentially a constraint optimisation

problem. Various tools and frameworks are available that may be used to model and

solve constraint satisfaction problems, and optimisation problems may be layered on

top of these through the incremental addition of successively tighter cost constraints.

One form of constraint satisfaction is satisfiability modulo theories (SMT). In contrast

to Boolean satisfiability, which is the problem of determining whether the predicates in

a boolean formula can be assigned an interpretation such that the formula evaluates to

TRUE, SMT is a generalisation of this to a variety of other background theories such as

integers and lists [115].

A variety of SMT solvers have been implemented, and the “Z3” SMT solver from Mi-

crosoft Research [116] is one of the most mature. To solve the RDS ordering problem, a

set of variables and constraints are presented to the Z3 solver, and each time a satisfying

interpretation of the input variables is found, a total cost constraint is added that is lower

125

than the current cost, and this is repeated until an improved solution cannot be found.

This approach may be less efficient than using a purpose-built constraint optimiser, since

it is not guaranteed that each iteration with a tightened cost constraint makes use of the

work done in previous iterations. However, it appears to be an approach that is accepted

in the academic literature [117], and correspondence with the creator of the Z3 solver

suggests that successive iterations will reuse previous lemmas unless constraints are re-

moved.

If an exhaustive search were used to determine an efficient buffering scenario, the num-

ber of scenarios to test would be O(d!c) (d factorial to the power of c), where d is the

number of dimensions and c is the number of nodes in the system. However, since Z3

uses a backtracking search, it is able to prune subtrees in the search space when the cost

constraint is exceeded, with the effect that execution time is reduced.

The system of constraints that is used as input to Z3 is constructed using its Python

interface, named Z3Py. Using Python to generate constraints programmatically allows

problems to be solved that are inexpressible using the background theories of SMT. This

issue will be described later in the chapter.

The solver is provided with an IDL for each interface on each component, an RDS for

each component and a list of point-to-point connections in the system. The IDL may

be determined using the method shown in Section 6.1, the list of components may be

generated from IP-XACT design descriptions, and the RDS may be determined using

the symbolic variant of SDF described previously4. The scenario in Figure 2.3 may be

described as follows:

comps = {’mimo’: { ’idl’: {’w’: [cw]}, ’rds’: [sc]},

’idft’: { ’idl’: {’din’: [sc]}, ’rds’: [cw]}}

connections = [[[’mimo’,’w’],[’idft’,’din’]]]

In the tool, an RDL is created for each component, consisting of a list of Z3 variables

constructed using the Const() function5 whose size is equal to the number of dimensions

4Direct generation of the tool inputs from XML metadata has not been demonstrated, but no additional

metadata elements are thought to be required.
5In Z3, constants without an interpretation specified by a constraint are effectively variables, while those

126

present in the RDS. Each of these variables may be assigned an interpretation by the

solver that is a member of the ArrayDim enumerated type of subcarriers, antennas and so

on.

for block in iter(comps):

comps[block][’rdl’] = [Const("x_%s_%s" % (block, dim), ArrayDim)

for dim in range(len(comps[block][’rds’]))]

Although the names of specific array dimensions are declared explicitly in this approach,

it would also be possible to create the ArrayDim enumeration after a list of required di-

mension names has been determined from the input data. Note also that while the RDL

variables are stored in a Python data structure, they are presented to the SMT solver as

a flat list of variables declared using the Const() function, rather than as a hierarchical

structure. While Z3 does support the theory of lists, it is somewhat cumbersome to use

and is unnecessary in this context.

A number of constraints are then defined for each of the variables created in the array.

The first set of constraints states that each variable in an RDL must be assigned a dimen-

sion that is present in the corresponding RDS, and these constraints are created using the

Or() function.

for block in iter(comps):

for listdim in range(len(comps[block][’rdl’])):

constraints.append(Or([

comps[block][’rdl’][listdim] == comps[block][’rds’][setdim]

for setdim in range(len(comps[block][’rdl’]))

]))

The second constraint is that each RDL must contain distinct dimensions. Since the input

to the Distinct function must be a non-empty list, empty RDLs are filtered out from the

input.

with a defined interpretation are constants in a truer sense of the word.

127

constraints.extend([

Distinct([

comps[block][’rdl’][dim] for dim in range(len(comps[block][’rdl’]))

])

for block in range(len(filter(lambda x: len(x) > 0, comps[block][’rdl’]

])

With these constraints in place, a solver object is created and assigned the list of con-

straints and is asked to determine whether the constraints are satisfiable. If a satisfying

interpretation of the Z3 predicates is found, it must be determined whether this interpre-

tation can be improved. This is done by defining a cost function, adding the constraint

that the cost must be lower than the current cost, and attempting to find another solution.

The cost function is the sum of the buffering costs on each interconnection, and the cost

of each buffer is determined using a recursive function which considers the EIDLs for

both components, and if the outer dimensions on each list are the same, considers the

next dimensions in the lists, and so on, until a pair of different dimensions is seen. Then,

the cost of the buffer is the product of the sizes of the remaining dimensions in one of the

two lists.

Solving satisfiability problems of this form requires “satisfiability modulo recursive func-

tions” [118], but this is not supported in the Z3 solver. Instead, the recursive Python

function shown in Listing 6.3 may be used to generate hierarchical trees of conditional

Z3 constraints which specify the total cost of a reorder buffer for various assignments of

dimensions to RDL variables.

128

Listing 6.3: Python function used to generate Z3 cost constraints.

def cost(src_eidl, dst_eidl, dim, counting):

if not counting:

if dim == 0:

return 0

else:

return If(src_eidl[dim - 1] == dst_eidl[dim - 1],

cost(src_eidl, dst_eidl, dim - 1, False),

cost(src_eidl, dst_eidl, dim, True))

else:

if dim == 0:

return 1

else:

return Size(src_eidl[dim - 1])

* cost(src_eidl, dst_eidl, dim - 1, True)

An example output of this function is as below, for the case of the MIMO-IDFT scenario

in Figure 2.3:

If(r_mimo_0 == r_idft_0, 0, Size(r_mimo_0)*Size(cw))

This is a Z3 If object which is evaluated in the Z3 solver: if the first element of the

MIMO Decoder RDL is equal to the first element of the IDFT RDL, then the cost of the

reorder buffer is zero; otherwise, it is the size of the MIMO RDL element 0 multiplied by

the size of the (cw) dimension, which is element 0 of the MIMO IDL. In more complex

scenarios, the size of the output grows. For the MIMO-IDFT-CD scenario, one constraint

is generated for each of the two connections, and the output is as follows:

If(r_mimo_0 == r_idft_0,

If(r_mimo_1 == r_idft_1,

0,

Size(r_mimo_1)*Size(cw)),

Size(r_mimo_0)*Size(r_mimo_1)*Size(cw)),

If(r_idft_0 == r_cd_0,

If(r_idft_1 == sym,

0,

Size(r_idft_1)*Size(sc)),

Size(r_idft_0)*Size(r_idft_1)*Size(sc))

129

6.4.3 Solver output

The use of the solver to determine RDLs for simple scenarios will now be demonstrated.

For the example in Figure 2.3, the solver produces the output in Listing 6.4, and the size

of the required buffers (which may be used to guide system implementation decisions)

and the execution time of the solver are summarised in Table 6.3.

Listing 6.4: Output from solver when applied to the MIMO/IDFT system.

Found a satisfying interpretation with total cost: 48

Optimal buffer cost is 48 with total data rate 48

Repetition dimension lists:

mimo: [sc]

idft: [cw]

Cost of buffer between mimo:w and idft:din is 48

Table 6.3: RDL results for MIMO/IDFT system.

Total buffer cost Solver iterations Execution time (s)

48 1 0.231

As expected, the solver has determined that the first block has an RDL of (sc) and the

second block has an RDL of (cw). This was determined in an execution time of 0.231

seconds, indicating that the execution time of the solver is short enough that it could be

performed automatically in an interactive tool.

For the example in Figure 6.2, the solver finds a poor solution first, then finds a better so-

lution which it cannot improve upon, as shown in Listing 6.5 and Table 6.4. The execution

time remains low, at 0.238 seconds.

130

Listing 6.5: Output from solver when applied to the MIMO/IDFT/Channel Decoder system.

Found a satisfying interpretation with total cost: 1344

Found a satisfying interpretation with total cost: 672

Optimal buffer cost is 672 with total data rate 1344

Repetition dimension lists:

mimo: [sc, sym]

idft: [cw, sym]

cd : [cw]

Cost of buffer between mimo:w and idft:din is 672, data rate is 672

Cost of buffer between idft:dout and cd:din is 0, data rate is 672

Note that the RDL on the MIMO decoder is different to that in Figure 6.3: both orderings

produce the same buffer requirements.

Table 6.4: RDL results for MIMO/IDFT/Channel Decoder sys-
tem.

Total buffer cost Solver iterations Execution time (s)

672 2 0.238

6.5 Inferring efficient data ordering to assist in component im-

plementation

The discussion in this chapter so far has focused on the optimisation of memory require-

ments and latency in multidimensional data processing systems. In this section, another

issue encountered in LTE system design is addressed, which is that the implementation

of custom components is governed by the dimension ordering on upstream and down-

stream components. This problem was introduced in the context of the Uplink Resource

Demapper in Chapter 2, and a diagram was provided in Figure 2.5.

To derive the most appropriate ordering of dimensions for the output interfaces of the

Resource Demapper, a variant of the techniques described previously can be applied.

Initially, the dimension list of the REF output on the Resource Demapper is set to be

empty: in other words, it is regarded as outputting a single dimensionless token on each

firing. Then SDF is used to determine the set of dimensions in the repetition list, and

131

then the Z3 solver is run to determine the most efficient ordering of those dimensions.

The input to the solver is as follows:

comps = {

’rd’ : {’idl’: {’ref’: [], ’data’: []},

’rds’: [sc,ant,sym]},

’ce’ : {’idl’: {’din’: [sc], ’dout’: [cw,sc]},

’rds’: [sym,ant]},

’mimo’: {’idl’: {’h’: [cw,ant], ’y’: [ant], ’w’: [cw]},

’rds’: [sym,sc]},

’idft’: {’idl’: {’din’: [sc], ’dout’: [sc]},

’rds’: [sym,cw]},

’cd’ : {’idl’: {’din’: [sym,sc]},

’rds’: [cw]}}

connections = [

[[’rd’,’ref’],[’ce’,’din’]],

[[’ce’,’dout’],[’mimo’,’h’]],

[[’rd’,’data’],[’mimo’,’y’]],

[[’mimo’,’w’],[’idft’,’din’]],

[[’idft’,’dout’],[’cd’,’din’]]]

This produces the results in Table 6.5, and the proposed RDLs on some of the blocks are

shown in Figure 6.4.

Table 6.5: RDL results for RD/CE/MIMO/IDFT/CD system.

Total buffer cost Solver iterations Execution time (s)

912 4 0.268

With no dimensions on the output interfaces of the Resource Demapper, the tool has

proposed an RDL of (sym, sc, ant). However, this solution requires a buffer on the REF

output of the Resource Demapper, which is not necessary if the IDLs on the Resource

Demapper can be modified instead of the RDL. To allow this, an interface dimension set

(IDS) can be described for each interface on each component, into which the user may

optionally migrate some of the RDS dimensions that are generated by symbolic SDF,

and this allows the solver to determine efficient IDLs instead of RDLs where an IDS is

provided instead of an RDS. The input to the tool has the same inputs as before, except

that the contents of the RDS for the Resource Demapper have been migrated into an IDS

for each of its interfaces, as follows:

132

Resource
Demapper

MIMO
Decoder

Channel
Estimator

[sc]

[cw]

[cw]
[ant]

[ant]

[cw]
[sc]

[]

[]

DATA

REF

W

H

Y

RDL = [sym][sc][ant]
RDL = [sym][ant]

RDL = [sym][sc]

IDFT
Uplink

Channel
Decoder

[sym]
[sc][sc][sc]

RDL = [cw][sym] RDL = [cw]

Reorder buffer

Figure 6.4: Efficient RDL calculated for Resource Demapper.

’rd’: {’ids’: {’ref’: [sym,ant,sc], ’data’: [sym,ant,sc]}, ’rds’: []}

The proposed RDLs and IDLs in the modified system are shown in Figure 6.5 and sum-

marised in Table 6.6. While the tool requires a greater number of iterations to arrive at its

final result, this does not affect the execution time significantly.

Table 6.6: RDL/IDL results for RD/CE/MIMO/IDFT/CD sys-
tem.

Total buffer cost Solver iterations Execution time (s)

864 8 0.290

This version has proposed an improved solution with a buffer cost of 864 rather than 912,

by allowing the IDL to be modified instead of the RDL.

6.6 Eliminating redundant calculations

In the previous example, it was determined that the (sym) dimension is required on the

REF output of the Resource Demapper. An intuitive explanation is that the MIMO De-

coder requires one estimate per data symbol resource element, and thus the Channel

Estimator must produce a channel estimate for each data symbol resource element, and

thus the Resource Demapper must produce a reference symbol resource element for each

133

Resource
Demapper

MIMO
Decoder

Channel
Estimator

[sc]

[cw]

[cw]
[ant]

[ant]

[cw]
[sc]

[sym]
[sc]
[ant]

[sym]
[ant]
[sc]

DATA

REF

W

H

Y

RDL = [sym][ant]
RDL = [sym][sc]RDL = []

IDFT
Uplink

Channel
Decoder

[sym]
[sc][sc][sc]

RDL = [cw][sym] RDL = [cw]

Figure 6.5: Calculation of IDLs from IDSs instead of RDL from RDS for the Resource Demapper
leads to lower buffering requirements.

data symbol resource element.

However, as shown in Figure 2.2, there is only one reference symbol in each slot. One

way to address this issue is to replicate the reference symbol data for each slot in the

Resource Demapper. However, this means that a channel estimate must be calculated re-

peatedly for the same reference symbol, which imposes unnecessarily high performance

requirements on the Channel Estimator.

To avoid this recalculation, a data replicator block may be introduced between the Chan-

nel Estimator and the MIMO Decoder. This block consumes a single reference symbol

data element and produces a copy of that element for each data symbol in the current

slot. Adding this block to the SMT solver’s input system, introducing a (slot) dimension

and running the solver again results in the solution shown in Figure 6.6 and summarised

in Table 6.7. Notably, the execution time of the solver has increased significantly in this

scenario, and further research is required in order to assess the reasons for this and its

implications. It should also be noted, however, that since the number of solver iterations

has not increased significantly, the increase in execution time cannot be blamed solely on

poor reuse of previous SMT lemmas in the optimisation process.

In this solution, buffers are required on each side of the replicator, but this is not how the

system would be designed in a manual implementation. Instead, it would be better to

have a single buffer between the Channel Estimator and the MIMO Decoder and for the

134

Table 6.7: RDL results for RD/CE/MIMO/IDFT/CD system
with symbol replicator.

Total buffer cost Solver iterations Execution time (s)

976 13 0.957

Resource
Demapper

MIMO
Decoder

Channel
Estimator

[sc]

[cw]

[cw]
[ant]

[ant]

[cw]
[sc]

[slot]
[sc]
[sym]
[ant]

[slot]
[ant]
[sc]

DATA

REF

W

H

Y

Replicator

[] [sym]RDL = []
RDL = [slot][ant] RDL = [slot][sc][cw][ant]

RDL = [slot][sc][sym]

IDFT
Uplink

Channel
Decoder

[slot]
[sym]

[sc][sc][sc]

RDL = [cw][slot][sym] RDL = [cw]

Figure 6.6: RD/CE/MIMO/IDFT/CD system with symbol replicator.

(sym) dimension to be replicated within that buffer.

If this combined reorder-and-replicate block were implemented manually, the required

IDLs could be determined in a similar manner to the IDLs for the Resource Demapper

as described in Section 6.5: the dimensions in the RDL for the replicator could be moved

to the IDLs. However, in this scenario, the reorder-and-replicate block is moved outside

of the domain of applicability of the SMT solver and future changes to the system may

require that the block is reimplemented, since the dimension orderings in the system

could change.

Since the reorder-and-replicate block is fairly simple, it would be desirable for it to be

generated and instantiated automatically, allowing its memory cost to be reflected in the

results of the optimisation process. This has not been implemented, but it could be done

by removing the (sym) dimension from the RDS of the Channel Estimator, as shown in

Figure 6.7. The SMT solver will run and produce a correct calculation of the buffering

cost, as long as the buffer cost function is updated such that it only considers dimensions

present in both lists. Once the most efficient dimension orderings have been determined,

135

the block could be generated automatically using a similar method to that described in

Section 6.2.2, with similar code produced except that the data copying statements would

be generated as shown in Listing 6.6, without buffering the (sym) dimension.

MIMO
Decoder

Channel
Estimator

[cw]
[ant]

[ant]

[cw]
[sc]

W

H

Y

RDL = [slot][sym][ant]
RDL =[slot][sym][sc]

Figure 6.7: The (sym) dimension removed from the Channel Estimator.

Listing 6.6: Modified data copying statements for input to Vivado HLS.

buf[slot][ant][cw][sc] = in[slot][ant][cw][sc];

...

out[slot][sc][sym][cw][ant] = buf[slot][ant][cw][sc];

6.6.1 Generalisation to arbitrary generation and reduction functions

The flow as described so far assumes that a dimension present in an output list but not

an input list should be generated through replication of elements, but this is not always

the best approach: a variety of generative (anamorphic) functions may be used. A dual

problem occurs when a dimension appears on an input but not an output, since in this

case a variety of reductive (catamorphic) functions can be applied. This problem is highly

relevant to the uplink receive system, since improved performance can be achieved by

replacing the replicator function with a block that generates an interpolated channel es-

timate for each symbol from the reference symbols in each slot; in other words, the repli-

cator with a type signature of ()→ (sym) becomes an interpolator of type (slot)→ (slot,

sym). As before, two integration options are initially apparent:

1. instantiate an interpolator block manually, but with the problem that some dimen-

sions are reordered unnecessarily on the input and output connections of this block.

2. determine the required dimensions on the interfaces of a combined reorder-and-

interpolate block and implement this manually, with no unnecessary dimension

136

reordering.

If we no longer assume that elements in new dimensions must be generated through

replication, another option becomes possible if the generation process is specified:

3. indicate to the tool that the ‘sym’ dimension is generated from the ’slot’ dimension,

provide an interpolation function which does this, and have the tool generate the

combined block automatically.

An example of a mechanism for specifying this function is shown in Figure 6.8, and the

code that would be generated as input to an HLS tool is shown in Listing 6.7.

MIMO
Decoder

Channel
Estimator

[cw]
[ant]

[ant]

[cw]
[sc]

W

H

Y

RDL = [slot][sym][ant]
RDL =[slot][sc][sym]

out[slot][sc][sym][cw][ant] =

(in[0][ant][cw][sc] * (1 – sym) + in[1][ant][cw][sc] * sym) / (num_sym - 1)

Custom data generation/reduction function

Figure 6.8: GUI mock-up of a mechanism for specifying arbitrary data generation and reduction
functions.

Listing 6.7: C code for custom replicate-and-reorder buffer to be input to Vivado HLS.

for (slot = 0; slot < num_slot; slot++)

for (sc = 0; sc < num_sc; sc++)

for (sym = 0; sym < num_sym; sym++)

for (cw = 0; cw < num_cw; cw++)

for (ant = 0; ant < num_ant; ant++)

{

out[slot][sc][sym][cw][ant] = (in[0][ant][cw][sc] * (1 sym) +

in[1][ant][cw][sc] * sym) / (num_sym - 1)

}

137

6.7 Implementation considerations

There are some potential limitations with the approach described in this chapter that

must be addressed. Earlier, it was mentioned that the IDFT operates on subcarriers, while

the metadata for the core would instead refer to these as “elements” or similar. Since we

need the “elements” dimension to be interpreted as “subcarriers” in the LTE context,

a mechanism is required for mapping between dimension names. This could be done

when components are connected: if both components have a dimension that isn’t present

on the other component, a dialog box could offer a “patch panel” consisting of a list of

dimensions on both components, as demonstrated in Figure 6.9, with the user instructed

to define the appropriate mappings.

elements
symbols
subcarriers

DFT Channel Decoder

Figure 6.9: GUI mock-up showing the association of the “subcarriers” dimension in the Channel
Decoder with the “elements” dimension in the IDFT in a patch panel, with the direc-
tion of the arrow indicating that the associated dimensions should be named “subcar-
riers”.

Another issue is that the approach described here assume static system-wide dimension

sizes, while in reality, these are often fully dynamic, or are sized differently in different

parts of the system. However, since signal processing systems are often designed ac-

cording to their worst-case behaviour, the process may be applied instead to maximum

dimension sizes where these are recorded in metadata. To deal with changing dimension

sizes, they could be renamed in different parts of the system.

6.8 Discussion

The optimisation process discussed here is implemented separately to the design flow

that is required to implement the design that the solver proposes. One advantage of this

arrangement is that the solver will not interfere with status quo design flows in tools like

System Generator, and can simply be consulted when necessary to provide additional

138

input into the manual design process. However, one drawback is that additional manual

effort is required to keep the solver’s view of the system synchronised with that of the

baseline design tool. Thus, the flow could be improved if the solver were integrated into

a design environment such as Vivado IP Integrator, which would allow greater ease-of-

use and would potentially improve system implementation time. Some care would be

required, however, to ensure that the tool can be overridden if necessary.

6.9 Conclusion

This chapter has set out to address the issues encountered in constructing multidimen-

sional signal processing systems. An approach has been presented which determines

the need for reorder buffers using the metadata descriptions of the interface data types

in the system, and a number of ways to generate these buffers automatically have been

discussed, including chaining of SID cores and generation using a high-level synthesis

tool.

Furthermore, an approach has been presented for determining efficient buffering sce-

narios from a variety of possible options using an SMT solver. These techniques were

applied to the Xilinx LTE Uplink system, and were also used to determine efficient inter-

face data orderings on the Resource Demapper. While this automated approach will not

always allow a more efficient system to be built than could be created by hand, it allows

efficient buffering scenarios to be proposed within seconds of laying out a design, rather

than the minutes or hours that could be required in a manual approach.

Finally, some limitations of this approach were presented, and solutions were proposed.

Firstly, dimensions can sometimes be propagated unnecessarily, but this can be addressed

by manually overriding the calculated dimension lists. Secondly, manual instantiation of

blocks such as interpolators can introduce unnecessary data reorderings, and thus it is

desirable to merge the interpolation and reordering functions; a proposed solution is to

provide a custom data processing function to be performed in reorder buffers. Finally, an

approach for mapping dimension names was proposed.

139

Chapter 7

A software model generation

framework based on extended

IP-XACT

Earlier chapters in this thesis discussed the benefits of generating the system-level con-

cerns of software models and heterogeneous hardware systems from the same system de-

scription, and it was proposed that IP-XACT, together with extensions defined in Chapter

5, can be used to represent the required system information in metadata. In this chapter,

it will be shown how this metadata may be used as an intermediate representation in an

end-to-end toolflow that converts high-level dataflow descriptions of LTE systems to this

IR, and it will be shown how this IR can be used to generate code for one of the intended

target platforms, which is the software simulation model of the system that was originally

written manually. Both the downlink transmit and uplink receive LTE system simulation

models have been implemented in this framework, but since the implementation process

in each case was similar, this chapter focuses only on the first of these.

The model generation process will be demonstrated by presenting each toolflow feature

as it is required in the process of implementing successively larger portions of the origi-

nal model. The structure of the original XMODEL system is broadly similar to the struc-

ture shown in Figure 2.1, and any significant deviations from this structure made in the

140

dataflow abstraction process will be discussed.

The dataflow properties of the components are represented in the CAL language, but

while code generation back-ends for CAL already exist, the toolflow must remain inde-

pendent of any particular high-level input language such as CAL. The aims of the work

in this chapter are to demonstrate solutions to the engineering challenges of, firstly, build-

ing a dataflow code generation flow around an intermediate representation based on the

industry standard IP-XACT XML schema; secondly, representing an industrially relevant

application using a dataflow abstraction; and thirdly, integrating the flow with existing

Xilinx tools and modelling environments.

7.1 Simple leaf-level components

The first components to be discussed are modulate and scramble, since they are some of

the simplest components in the LTE downlink system.

7.1.1 Input language

In the original LTE downlink transmit model, the modulate component has three ports

named din, dout and ctrl, and executes a function called process. It can be represented

in a CAL definition using an action which consumes tokens on the din and ctrl ports

and produces tokens on the dout port, via an output expression that calls the process

function, as follows:

package xlte.dl_tx;

import all modulate_types;

actor modulate ()

modulate_din din, modulate_ctrl ctrl ==> modulate_dout dout:

action din: [a], ctrl: [c] ==> dout: [process(a, c)] end

end

The CAL description for the scramble component is correspondingly simple. These CAL

descriptions are converted to the extended IP-XACT IR using a parser provided in the

141

OpenDF project which outputs an abstract syntax tree in the XDF schema, which is then

transformed into the IR using XSLT. The following paragraphs describe specific aspects

of this transformation process.

IP-XACT component descriptions must be identified by a vendor, library, name and ver-

sion (known as a VLNV), and none of these identifiers may be omitted or left blank. Of

these identifiers, CAL can be used to specify only a component (actor) name and package,

so the CAL component name is written to the IP-XACT name field, and the CAL package

is written to the IP-XACT library field. For the IP-XACT vendor, I use “xilinx.com” and

for the IP-XACT version, I use the value “1.00.a” since this is a default version number

used elsewhere in Xilinx.

component:

vendor: xilinx.com

library: xlte.dl_tx

name: modulate

version: 1.00.a

For each of the ports in the CAL description, an IP-XACT bus interface is generated:

in this implementation there is a direct mapping from dataflow ports onto RTL-layer

bus interfaces1. The modulate component consumes tokens of type modulate_din and

modulate_ctrl and produces tokens of type modulate_dout, and these types are asso-

ciated with interfaces using the dataTypeRef element as described in Chapter 5. Since

each dataTypeRef requires a VLNV, a library must be found for each type. One option

is to define the library explicitly in the CAL description, for example: import modu-

late types.modulate din, which indicates that the modulate_din type is found in the

modulate_types library, or, to avoid repetition, the import all modulate_types syntax

may be used. In the latter case, a search is performed in all XML type libraries that are

included using the import all syntax in order to determine the associated library. Since

CAL generates an IR in XML form (XDF) and the type libraries are described in XML,

this process can be expressed in XSLT as follows:

1The multiplexing of dataflow channels over physical channels could be investigated in future work.

142

<xsl:variable name="type-candidates">

<xsl:for-each select="Import[@kind = ’package’]">

<xsl:copy-of select="document(concat(QID/ID/@name, ’/types.xml’))

//xilinx-dsp:dataTypeDef

[spirit:name = $tname]"/>

</xsl:for-each>

</xsl:variable>

<xsl:if test="$type-candidates/xilinx-dsp:dataTypeDef">

<xsl:value-of select="$type-candidates/xilinx-dsp:dataTypeDef[1]

/spirit:library"/>

</xsl:if>

The first part stores all of the data type definitions (xilinx-dsp:dataTypeDef) that have

the requested name ([spirit:name = $tname]) from the libraries imported using the

import all syntax (Import[@kind = ’package’]), and the second part assigns the re-

sult to be the library of the first of these if the resulting list is non-empty. If the type

cannot be found in any included libraries, then the XSLT processor exits with an error

(although this is not shown in the example above).

7.1.2 XMODEL code generation

Once an IR has been produced for the modulate component, the XMODEL component

code that wraps the process function may be generated automatically. Code can be

generated from an XML IR using a variety of tools, including XSLT and the Perl Template

Toolkit 2 (TT2). XSLT is standardised as a Recommendation of the World Wide Web

Consortium (W3C), while TT2 is a template language that is more flexible than XSLT

since it allows the execution of arbitrary Perl code where necessary. While I use XSLT

for most XML-to-XML transformations, the additional flexibility of the TT2 approach is

often useful in the generation of executable code, for example when XPath expressions

must be manipulated directly (as will be discussed later) and thus I use TT2 templates to

generate XMODEL code.

XMODEL components are defined in the form of C++ classes. For each component in

the system, whether it forms a leaf-level component or a hierarchical component, a C++

header (.h) and implementation (.cc) file must be generated. A TT2 template consists of

a sequence of directives such as the following, which generates a test node declaration

143

(introduced in Chapter 2) for each bus interface in the IP-XACT file:

[% FOREACH bi IN component.findnodes("spirit:busInterfaces

/spirit:busInterface") %]

xtestnode& m_tn_[% bi.findvalue("spirit:name") %];

[% END %]

As described in Chapter 2, XMODEL input interfaces provide a push function and output

interfaces provide a pop function and sometimes a peek and/or empty function, though

the contents of these functions are not standardised and are implemented manually: the

main processing function (such as the process function in the modulate component) may

be called by either the push or the pop function. The model of computation used by

XMODEL components, involving a combination of data-driven and demand-driven com-

munication involving token pushes and pulls, corresponds approximately to the Com-

ponent Interaction (CI) domain in Ptolemy [119].

Component Interaction employs a less rigid model of computation than the dataflow

domains such as SDF and DDF, and as a consequence, the code generation opportunities

are more limited. By standardising the implementations of the push, pop, peek and empty

functions, XMODEL components may be generated automatically. An XMODEL FIFO and

test node are generated for each interface2, and component processing is governed by

generated action functions which test whether an action has become fireable, and execute

a processing function if so.

Each action function returns a boolean value: TRUE to indicate that the action was fireable

and has thus fired, or FALSE to indicate that the action was not fireable. The processes

involved in each action function are as follows:

1. Determine the number of tokens required on each input port, which in the case of

the modulate and scramble blocks is a static value specified in the IP-XACT code;

2. Declare variables for all of the action’s input and output tokens;

2While a policy could be adopted in which FIFOs are provided only on the input or output interfaces,

providing FIFOs on both inputs and outputs avoids the need for a component to maintain references to

the source or destination components to which it is connected via its interfaces. Instead, the references that

define the topology of a subsystem are held solely by its parent hierarchical component.

144

3. Check FIFOs to determine whether the required number of tokens are present: if

not, return FALSE;

4. For ports requiring more than one token, resize the vector in order to hold the right

number of tokens;

5. Pop tokens from input FIFOs into pre-declared variables;

6. Execute procedural action statements;

7. Determine values of output expressions and write these to output tokens;

8. Push generated output tokens to output port FIFOs;

9. Return TRUE.

A number of actions may be associated with each actor, and thus a function is required

which calls each of the action functions in turn until no action is fireable. This function is

called fire_all. Calls to the fire_all function are added to the push function, so that

every time a new data token arrives, the various firing rules are checked to determine

whether an action may fire. Another call to fire_all is also added to the empty function,

which provides a means to invoke actions that require no input tokens, as are found in

data source components, for example.

Actions in CAL are optionally named, and if no name is provided for an action then a

unique name is generated for its associated action function: action_0, action_1, and

so on; the modulate actor has a single action which is given the name action_0. The

output expression in this action is an invocation of the process function. Since we wish to

reuse an existing C++ definition of this function, it is not defined in the CAL description,

and instead of converting a CAL function into C++ code, a C++ function declaration is

generated in the actor’s class definition by determining which tokens are processed by

the function:

const modulate_dout process(const modulate_din a, const modulate_ctrl c);

A function definition corresponding to this declaration must then be provided in a sepa-

rate C++ file, which will be called the user-defined function file, and this sits alongside the

145

CAL definition of the actor, using the same filename but with a .cc extension. Whenever

such a file is present, its contents are copied automatically into the generated C++ code.

While the modulate actor has a single action which takes one token from each input port

and writes one token to the output port, other components have actions which consume

and produce multiple tokens, and this is indicated using the repeat keyword in CAL. For

example, if the modulate action consumed three tokens from din and wrote two tokens

to dout, the action definition would be as follows:

action din: [a] repeat 3, ctrl: [c]

==> dout: [modulate(a, c)] repeat 2

end

In the generated software code, declarations of functions that read or write multiple to-

kens on an interface are provided with a vector parameter or return value, as follows:

const std::vector<modulate_dout>

process(const std::vector<modulate_din> a, const modulate_ctrl c);

While the token counts on each interface are static in many cases, they are currently

determined dynamically in the software code by requesting the size of the std::vector

objects.

7.2 Data type input and code generation

This section describes how data types as represented in the IR described in Chapter 5

are used to generate C++ code in the XMODEL framework. These flows are shown in

Figure 7.1 and explained below.

7.2.1 Input language

In order to parse high-level descriptions of data types, I have implemented parsers from

two existing high-level languages using the ANTLR parser generator [120]. The first uses

a freely-available grammar for the ASN.1 language3 to generate a parser for ASN.1 data

3Available at http://www.antlr3.org/grammar/list.html

146

http://www.antlr3.org/grammar/list.html

RMAPv2RMAPv2

Data type metadataData type metadata

ASN.1ASN.1

ASN.1 parse treeASN.1 parse tree

XSLT

ANTLR parser

XSLT

XSLT

ANTLR parser

RMAP parse treeRMAP parse tree

RMAPRMAP

TT2

XMODEL data type
classes

XMODEL data type
classes

Data type metadata
with encodings

Data type metadata
with encodings

Figure 7.1: Data type metadata and code generation flow (the significance of the colours is as
shown in Figure 4.3).

147

type descriptions, and I have extended the generated parser such that it outputs parse

trees in XML form. Further XSLT processing then converts this to XML code without

data type encodings, with a further XSLT processing stage generating encodings cor-

responding approximately to the ASN.1 Packed Encoding Rules standard [110]. Since

ASN.1 cannot be used to describe data type encodings, this flow may be used to describe

data types in situations where a common encoding of the types must be shared between

two or more components, but in which the specific encoding is not important.

When integrating IP cores, the specific encoding of the data types is important, so a high-

level language must be used which is able to describe encodings concisely. An appropri-

ate language may be derived through suitable extensions to an existing language used

within Xilinx called RMAP, which is used to describe register maps. An example of an

RMAP description from the pre-existing downlink transmit system is as follows:

REGMAP dl_tx_sch_qam_ctrl # Downlink Transmit SCRAMBLE/QAM/MIMO Control

REGGROUP qam # Modulation

REG mod1 # Modulation 1

FIELD qam 1:0 # QAM Modulation Type(only valid in SCH QAM)

FIELD n_cbs 15:8 # Number of Code Blocks in Transport Block

REGGROUP scrambler # SCRAMBLER

REG scrambler0 # PDSCH uses flexible cinit

FIELD c_init0 31:0 # C init0 value.

REG scrambler1

FIELD c_init1 31:0 # C init1 value.

REGGROUP mimo # MIMO

REG mimo_conf # MIMO configuration(check against core)

FIELD sm_or_td 0:0 # spatial vs transmit diversity

FIELD number_codewords 9:8 # required for matrix selection

FIELD codebook_index 19:16 # required for matrix selection

In the existing LTE systems, a parser written in Perl is used to convert these descriptions

into C and HDL for use as a hardware abstraction layer between layers 1 and 2 of each

system. In order to conform to the metadata-based flow described in this thesis, these

RMAP descriptions must be converted into XML to be added to IP-XACT descriptions,

and these in turn must be converted to C++ for use with the XMODEL LTE systems. For

this purpose, I created an ANTLR grammar for the RMAP language which is used to gen-

erate an RMAP parser, and as in the ASN.1 case, this parser outputs an XML parse tree

which is converted to the standard XML metadata format described in Chapter 5. How-

148

ever, since RMAP data type encodings are user-specified, they need not be automatically

generated in this process.

In the RMAP language, registers do not have types associated with them and the type hi-

erarchy is not supported, so an extended version of this language was created and will be

referred to as RMAPv2. The RMAPv2 language is intended to be backwards-compatible

with the existing RMAP language, and therefore the newly-created RMAP grammar was

modified in order to admit descriptions both in RMAP and RMAPv2 syntax. Modifica-

tions made in RMAPv2 include the following:

• description of an abstract TYPE rather than the REGMAP which is oriented towards

memory-mapped interfaces;

• description of packet structure using STRUCTURE, UNION and ARRAY keywords;

• identification of the type of leaf-level elements, such as COMPLEX or INT with a spec-

ified range.

• optional field names;

• description of the encoding of particular values in a field such as NANT in the PUCCH;

and

• type references, allowing aggregation of control packets.

An example of an RMAPv2 description which describes the data packet used in the

wrapped, single-channel XFFT core (an array consisting of complex values with 14-bit

fractional widths) is shown below:

TYPE xfft_v8_0_wrapper_data_packet

ARRAY elements

FIELD 31:0 COMPLEX(14)

7.2.2 XMODEL code generation

XMODEL supports basic types such as xuint32 and xbit, multidimensional arrays such

as xmatrix_uint32 and xmatrix_bit and control packets which are subclasses of an

xcontrol_packet class. xmatrix is a class that was created in the original XMODEL

149

framework to represent multi-dimensional arrays, and is used in preference to nested

C++ STL vectors because it can guarantee that the memory used is contiguous and that

all sub-vectors are the same size.

For simple types in the IR (integers and reals, for example), a C++ typedef to a pre-

defined XMODEL type is generated, and for arrays of simple types, a typedef to the

appropriate XMODEL xmatrix type is generated. Integer types with a restricted set of

enumerated values generate a C++ enumerated type. For structures in the IR, a class

definition is generated. The following example is an LLR control packet which has been

automatically generated for the uplink model, containing four fields that are accessed

through get and set methods. The use of these methods to interact with fields repre-

sented as private class members allows validation of the values written to those fields

in the corresponding .cc file.

namespace xmodel

{

class llr_ctrl_packet: public xcontrol_packet

{

public:

llr_ctrl_packet() {}

/* Mutator methods. */

void set_modulation(const xuint32 data);

void set_inv_sigma_sq(const xuint32 data);

void set_init_x_1(const xuint32 data);

void set_init_x_2(const xuint32 data);

/* Accessor methods. */

const xuint32 get_modulation() const;

...

private:

/* Struct fields. */

xuint32 modulation;

xuint32 inv_sigma_sq;

xuint32 init_x_1;

xuint32 init_x_2;

};

};

The v_append_packet function from the .cc file, which serializes the type to an array of

150

integers, is shown below. A v_parse_packet function is also present in the file, and this

performs the inverse operation.

void llr_ctrl_packet::v_append_packet(xuint32_packet& p) const

{

size_t s;

s = p.size();

p.resize(s + 1);

p[s] |= (get_modulation () & (1 << 2) - 1);

p[s] |= (get_inv_sigma_sq() & (1 << 16) - 1) << 16;

s = p.size();

p.resize(s + 1);

p[s] |= (get_init_x_1 ());

s = p.size();

p.resize(s + 1);

p[s] |= (get_init_x_2 ());

}

Additional information in the metadata can be used to further refine the generated code:

for example, fields that are marked as being optional could generate a presence flag with

an accessor method and a method to clear the field, although this flow does not currently

use dependencies to determine the presence of optional fields since this is not required

in the LTE systems.

7.3 Integrating bit-accurate core simulation models

In contrast to the modulate and scramble blocks, the Channel Encoder and MIMO en-

coder already have a function defined in a bit-accurate simulation model, and instead

of writing a custom function in C++, the existing function provided by the bit-accurate

model must be integrated.

Xilinx software simulation models are provided in the form of a static object (Linux) or

dynamic linked library (Windows), with a C header file defining an API with which to

use the model. Integration is acheived by adding wrappers to the models so that they

expose homogeneous XMODEL interfaces, which was done in the original LTE system

151

simulation models, but as with the other XMODEL LTE components, much of the code in

these wrappers may be generated by extending the IP-XACT metadata associated with

the LogiCORE with references to the entry points of those wrappers.

The IP-XACT files for LogiCOREs are stored in subdirectories of the IP Catalog path,

with a directory name that is derived from the core’s name and version. For example,

the MIMO Encoder v2.0 is stored in lte_3gpp_mimo_encoder_v2_0/component.xml. To

describe the dataflow properties of this core, a CAL description is created with the name

lte_3gpp_mimo_encoder_v2_0.cal and this is used to generate another IP-XACT file

which is then merged with the original IP-XACT file from the IP Catalog. This flow is

shown in Figure 7.2.

There are two aspects of component specification that require a different procedure when

core simulation models are being wrapped: the dataflow actions, and the parameters.

7.3.1 Actions

Most LogiCORE simulation models have a single bitacc_simulate function which usu-

ally processes a single input data packet and control packet into an output data packet.

These functions are wrapped with a dataflow action that is defined in CAL in the same

way as for custom components. For example, the MIMO Encoder has the following ac-

tion:

action din: [a], ctrl: [c] ==> dout: [process(a, c)] end

The process function is defined in C++ in the user-defined function file as before, but it is

implemented such that it wraps the simulation model by converting the input data stored

as instances of XMODEL classes into the C structures that are used by the LogiCORE

model, calling the bitacc_simulate function, and converting the output data back into

the XMODEL format.

The Channel Encoder simulation model has three bitacc_simulate functions: one for

the PDSCH, one for the PDCCH and PBCH, and one for the PCFICH and PHICH. This

component can be modelled as a dataflow actor with three actions, each of which con-

152

For existing LogiCOREs only:

IP Packager UIIP Packager UI

LogiCORE IP-XACTLogiCORE IP-XACT

Custom component IP-XACTCustom component IP-XACT

CALCAL

XDFXDF

XSLT

OpenDF parser

XSLT
metadata

merge

IP Packager

Data type
references
Data type
references

Behaviour
metadata

Behaviour
metadata

Extended LogiCORE IP-XACTExtended LogiCORE IP-XACT

Data type
references
Data type
references

Behaviour
metadata

Behaviour
metadata

XMODEL componentXMODEL component XMODEL componentXMODEL component

TT2

TT2

Figure 7.2: Component metadata and code generation flow (the significance of the colours is as
shown in Figure 4.3).

153

sumes a control packet and a data packet, except for the PCFICH/PHICH action which

only consumes a control packet.

7.3.2 Parameters

When a LogiCORE simulation model is wrapped using the approach described in this

section, parameters in the pre-existing IP-XACT for the hardware core are merged into

the IP-XACT file. However, the software models typically use different sets of parameter

names. In many cases, these parameters duplicate functionality in the hardware core: for

example, the MIMO Encoder core has a Number_of_Output_Antennas parameter while

the MIMO Encoder software model has a C_NUM_ANT parameter with the same meaning.

In other cases, these parameters add new functionality: for example, the MIMO Encoder

software model has a parameter named C_PC_SCALING which is not applicable in the

hardware core.

To ensure that a complete but minimal set of parameters is included in the IP-XACT IR,

the software parameters that are not duplicated by a hardware parameter are added to

the CAL description: C_PC_SCALING would be included, but not C_NUM_ANT. The Logi-

CORE parameters and the software model parameters defined in CAL are merged into a

single IR.

For each of the parameters in the IR, a config_set_ function declaration is generated,

and definitions of these functions are provided in the C++ user-defined function file. In

the case of the MIMO Encoder parameters, a simple assignment is required:

void lte_3gpp_mimo_encoder_v2_0::config_set_C_PC_SCALING

(const xuint32 C_PC_SCALING)

{ generics.C_PC_SCALING = C_PC_SCALING; }

void lte_3gpp_mimo_encoder_v2_0::config_set_Number_of_Output_Antennas

(const xuint32 Number_of_Output_Antennas)

{ generics.C_NUM_ANT = Number_of_Output_Antennas; }

In other cases, more complicated relationships between hardware parameters and soft-

ware model parameters must be accounted for, such as conversions between string and

integer types:

154

void lte_3gpp_mimo_encoder_v2_0::config_set_Diversity_Multiplexing_Options

(const std::string Diversity_Multiplexing_Options)

{

if (Diversity_Multiplexing_Options == "Transmit_Diversity_Only")

{ m_generics.C_HAS_SPATIAL_MUX = 0; }

else if (Diversity_Multiplexing_Options

== "Transmit_Diversity_Spatial_Multiplexing")

{ m_generics.C_HAS_SPATIAL_MUX = 1; }

}

The data types of the parameters are specified in IP-XACT, allowing the correct method

declaration to be generated for each parameter.

7.3.3 Fully automatic integration of software models

It would be desirable for the simulation model wrapping process to be performed auto-

matically, but this is currently impossible: while the APIs of each of the core models look

quite similar, minor differences prevent their automatic integration into systems. One dif-

ference is found in the conventions for representing hierarchy in data arrays and control

packets. For example, the MIMO encoder simulation model output structure has eight

fields for the real and imaginary components of each of four antennas in the Y interface,

named as y0i, y0q, y1i and so on. The MIMO decoder, however, has fields named Y_I

and Y_Q, with data from multiple antennas stored sequentially in these arrays. Another

format is found in the XFFT, which has fields named xk_re and xk_im for an interface

named DATA, and unlike the HDL core, no multi-channel behaviour is accounted for.

The xk name in this case cannot be derived from metadata.

Another problem is the inconsistency between hardware and software parameters, which

requires parameter-setting methods to be defined manually as described in Section 7.3.2.

To solve these problems, a unified C API must be created that covers both the data types

and dynamic behaviour of the software models, and a proposal for such an API is de-

tailed below. Firstly, all data arrays are represented as flat memory regions with initiali-

sation functions and functions (or macros) that calculate address offsets given the indices

in each dimension. This approach is suitable both for static and dynamic dimension sizes,

although the arrays will need to be recreated where necessary when dimension sizes are

155

dynamic. Arrays of complex values are declared as arrays of structures containing a real

value and an imaginary value, rather than as two separate arrays.

Furthermore, there should be a correspondence between the action output expressions in

metadata and the simulation functions, which is currently impossible because a wrapper

function is required.

Applying these proposals to the XFFT core results in an API such as the following:

typedef struct {

int i;

int q;

} complex_t;

typedef complex_t *xfft_v8_0_xk;

typedef complex_t *xfft_v8_0_xn;

xfft_v8_0_xk xfft_v8_0_xk_create(int n_channels, int n_elements);

xfft_v8_0_xn xfft_v8_0_xn_create(int n_channels, int n_elements);

void xfft_v8_0_xk_destroy(xfft_v8_0_xk);

void xfft_v8_0_xn_destroy(xfft_v8_0_xn);

void xfft_v8_0_xk_write(xfft_v8_0_xk xk,

int channels_el,

int elements_el,

complex_t value);

complex_t xfft_v8_0_xk_read(xfft_v8_0_xk xn,

int channels_el,

int elements_el);

void xfft_v8_0_bitacc_simulate(const xfft_v8_0_xk xk,

xfft_v8_0_xn xn)

If these proposals (or similar ones) were implemented across all cores, simulation models

could be wrapped automatically, or the need for wrappers could be avoided altogether.

7.4 Hierarchical components and scheduling

In the existing LTE downlink transmit system, the modulate, scramble and MIMO encoder

blocks are wrapped in the SCH and BCH/CCH channels by hierarchical blocks called

sch_modulation and cch_modulation, while a slightly different combination of blocks

156

sch_modulation

modulate

Custom component

LogiCOREKey:

Data

Control

mod_ctrl_split

scramble

sch_encoder

Channel
encoder MIMO

encoder

Figure 7.3: SCH encoder and modulation chain.

in the CFICH/HICH is wrapped by the ich_modulation component. One of the reasons

that blocks are combined in this manner is that they consume control packets at the same

rate, and aggregating these packets can reduce the overheads associated with separate

transmission through DMA infrastructure. One of the functions of the hierarchical SCH,

CCH and ICH blocks is therefore to deaggregate a shared modulation control packet into

the control fields required for each of its subcomponents.

7.4.1 Input language

While the actor model allows hierarchical composition of actors, it assumes that compu-

tation is performed only at the leaf levels of the hierarchy. This assumption is also made

in the OpenDF framework: CAL is used only to describe leaf-level actors, and a separate

language called NL is used to describe their coordination [121]. To represent the hier-

archical modulation blocks in the NL language, it is therefore necessary to create a new

actor to perform the deaggregation of control packets that was previously handled in the

hierarchical blocks. This component (called mod_ctrl_split) is then included in each of

the hierarchical modulation blocks; Figure 7.3 shows how this is done in the SCH chain

(together with the encoder block), and Listing 7.1 shows how it is represented in NL.

157

Listing 7.1: NL representation of SCH modulation hierarchical block.

package xlte.dl_tx;

import entity ip.mimo_encoder_v2_0;

network sch_modulation () din, ctrl ==> dout :

entities

m_scramble = scramble();

m_modulate = modulate();

m_mimo = mimo_encoder_v2_0(...);

m_mod_ctrl_split = mod_ctrl_split();

structure

din --> m_scramble.din;

m_scramble.dout --> m_modulate.din;

m_modulate.dout --> m_mimo.din;

m_mimo.dout --> dout;

ctrl --> m_mod_ctrl_split.sch_mod_in;

m_mod_ctrl_split.scramble_out --> m_scramble.ctrl;

m_mod_ctrl_split.modulate_out --> m_modulate.ctrl;

m_mod_ctrl_split.mimo_wrap_out --> m_mimo.ctrl;

end

7.4.2 XMODEL code generation

Hierarchical components are represented in IP-XACT in the same manner as leaf-level

components, and can be distinguished in the code generation process by their absence

of dataflow actions in the component description and presence of one or more subcom-

ponent interconnections in a referenced design description. The code generated for hi-

erarchical components is broadly similar to that for leaf components, but with a few

differences. Firstly, the subcomponents in the IP-XACT design description are declared

in the .h file and initialized in a constructor in the .cc file. Secondly, in hierarchical com-

ponents, the FIFOs on input and output ports are unnecessary: input tokens are simply

pushed downwards to the input ports of the appropriate subcomponents, and output

token pops are requested from the subcomponents’ output ports. Thirdly, the fire_all

function, instead of calling generated action functions, coordinates the movement of data

between subcomponents.

158

The execution of an actor-oriented system on a sequential processor proceeds through a

sequence of actor firings, and these are coordinated by passing the execution context to

each component in the system. This may be done in a number of ways: for example,

a scheduler could simply iterate through a list of all of the components in the system.

In the XMODEL framework, scheduling code must be written manually in each hierar-

chical component to coordinate the interactions of each of its subcomponents, and often

proceeds according to an algorithm such as the following:

done← false;

while !done do

done← true;

for i in subcomponent interconnections do

if !i.sourceport.empty() then

done← false;

token← i.sourceport.pop();

i.targetport.push(token);

end if

end for

end while

To reduce system implementation time, this scheduling code is generated automatically

for all hierarchical XMODEL components in the dataflow LTE systems. As an example of

this algorithm’s realisation in C++, the following code would be generated for the data

path of the downlink transmit modulation component.

159

void sch_modulation::process()

{

bool done = false;

while (!done)

{

done = true;

if (!m_scramble.dout_empty())

{

done = false;

scramble_dout_t token;

m_scramble.dout_pop(token);

m_modulate.din_push(token);

}

if (!m_modulate.dout_empty())

{

done = false;

modulate_dout_t token;

m_modulate.dout_pop(token);

m_mimo.din_push(token);

}

[...]

}

}

Since the empty and push functions call the fire_all function internally, the execution

context is passed to all of the subcomponents of each hierarchical component, and pro-

cessing may be initiated on the whole system by calling the fire_all function on the

top-level component.

After every actor firing that involves the production of output tokens, those output to-

kens are pushed into an output FIFO and the execution context returns to the parent

component. The parent component then pops this token from the source component’s

output FIFO, pushes it into the target component’s input FIFO, and passes the execution

context to the target.

Note that in the algorithm listed above, the data types communicated by the subcom-

ponents of a hierarchical component must be available, and this requires the subcompo-

nents’ IP-XACT definitions to be available before the generation of hierarchical compo-

nents. Thus, a code generation ordering is imposed upon the system.

160

7.4.3 Enforcing correct code generation order

In order to generate code for hierarchical components, IP-XACT definitions of their sub-

components must be available. There are three reasons for this:

• IP-XACT design interconnections do not specify the direction of data flow, instead

listing a pair of interfaces that are interconnected in an arbitrary direction. In

XMODEL hierarchical nodes, directionality information is needed so that code can

be generated which pops tokens from one port and pushes tokens into the other

port. It could be assumed that the first listed interface in the interconnection is the

master and the second is the sink, but this is not stated in the IP-XACT standard and

would cause problems in integrating external IP which does not conform to this as-

sumption. A safer approach is to determine interface direction at code generation

time by extracting master/slave interface directions from the IP-XACT component

descriptions of the subcomponents.

• IP-XACT design interconnections do not specify the data type transmitted over the

interconnection. This information is required for hierarchical component schedul-

ing code (although it may not be required if the scheduling code were implemented

differently).

• IP-XACT string literals are not quoted, while C++ string literals are quoted. This

means that if a hierarchical component sets a parameter on a subcomponent, C++

code to set this parameter must be generated either with quotes or without, de-

pending on the type of the parameter, and parameter types are associated with

subcomponent IP-XACT component descriptions which must be loaded.

This means that IP-XACT descriptions of subcomponents must be generated before the

C++ code for their encapsulating hierarchical components. One way to solve this is to

add the entire IP-XACT library to the makefile dependency list for generated C++ files,

ensuring that all IP-XACT files are created before any C++ code is generated. However,

this means that any change to any component requires a full regeneration and recompila-

tion of the C++ code for every generated component in the system. Instead, dependencies

are generated on-the-fly.

161

7.5 Action guards

Certain actions should only be fireable if some property holds of the input tokens, or

of the internal state of the component. These properties are known as guards, and they

can depend either on static (or compile-time configurable) properties of an actor, or on

dynamic properties of the received tokens in the action or the component state.

An example of an LTE downlink component requiring guards is the Resource Mapper.

This is a hierarchical component consisting of a subcomponent for each LTE channel, and

each subcomponent uses control data to calculate the location of the data in that channel

in the resource grid. Control data is provided in two packets: one that is specific to the

channel, and one that is common to all channels. Each resource mapper subcomponent

outputs a packet of data to be written to that location in the subframe memory.

In the case of the PDSCH, PDCCH, PCFICH and PHICH channels, the data to be written

is received from the appropriate modulation chain and a variable number of transport

blocks may be written in each subframe of data, with the last transport block signalled

with a last field in the resource mapper control packet. If there are no transport blocks

for a particular channel in a subframe, then the last flag is set together with a null

flag. Other channels such as the PSCH generate data on-the-fly and do not require a data

input, however the PSCH channel has transport blocks only in subframes 0 and 5. The RS

(reference symbol) channel always has a single transport block in every subframe. Only

when a resource mapper subcomponent has a non-null transport block will it output data

to the subframe memory controller.

This dynamic behaviour can be described in CAL using two guarded actions for each

of the SCH, CCH, ICH and PSCH resource mapper subcomponents. The SCH, CCH

and ICH guards test the channel-specific resource mapper control packet to determine

whether the TB is null, while the PSCH guard tests the common control packet to deter-

mine whether the subframe is 0 or 5. The SCH resource mapper actions are represented

in CAL as follows:

162

process: action din: [a],

ctrl_sch: [sch],

ctrl_com: [com],

rbmap: [rbmap]

==> dout: [process(a, sch, com, rbmap)]

repeat get_tb_size(a, sch, com, rbmap)

guard

sch.null_tb != 1 || sch.last_tb != 1

end

process_sch_ctrl_only: action ctrl_sch: [sch]

==> dout: [process_null_tb(sch)]

guard

sch.null_tb == 1 && sch.last_tb == 1

end

Once the guards are represented in CAL, they must be converted into a form that is repre-

sentable in the IP-XACT intermediate representation, and the standard way to represent

expressions in IP-XACT is to use XPath. Since the guards in this example refer to tokens

that are received as inputs to the action, a dynamic dependency must be stored in XPath

as described in Chapter 5 and as shown in the following listing:

<xilinx-dsp:guards>

<xilinx-dsp:value xilinx-dsp:resolve="runtime-dependent"

xilinx-dsp:dependency=

"spirit:decode(field(id(’SCH’),’null_tb’)) != 1

or spirit:decode(field(id(’SCH’),’last_tb’)) != 1"/>

</xilinx-dsp:guards>

The runtime-dependent resolution mode causes some difficulty, since these XPath ex-

pressions are stored in metadata and cannot be evaluated directly at run-time. To solve

this, C++ code is generated from XPath expressions and this becomes part of the exe-

cutable code defining the component. However, since no XPath-to-C++ conversion is

supported by XSLT or the base TT2 package, XPath expressions are parsed in a TT2 tem-

plate, with the parse tree used to generate equivalent expressions in C++. Details of this

process are omitted, but using this technique allows the following output code to be pro-

duced, which peeks at the token on the ctrl_sch port and then tests it against the guard

condition. If the guard condition evaluates to FALSE, the action function returns FALSE

and the action does not fire.

163

sch_ctrl_packet sch;

m_auto_fifo_ctrl_sch.dout_peek(sch);

if (!(sch.get_null_tb() != 1 || sch.get_last_tb() != 1)) return false;

7.6 Remaining components

Most of the important features of the design flow have now been described through con-

sideration of a number of the upstream components in the LTE downlink transmit sys-

tem. For completeness, the dataflow abstractions of the remaining components in that

system will now be described.

7.6.1 Subframe memory controller

The input data interfaces of the memory controller receive data from each of the resource

mapper subcomponents until there is no more data to be read on any of its inputs (i.e. a

last flag has been set on all inputs). When data is received, it is loaded into the memory

and once a null flag for an interface is received, the controller admits no new data on that

interface. Once all interfaces have received a null flag, a read is requested for all data in

the memory and it is read out into the next component in the downlink processing chain.

The subframe memory controller has been implemented with independent actions for

each data input and an action for data output. Each of the input actions has a guard

which prevents further firings when the last flag has been set, and upon each firing the

component will update a flag stating whether or not all of the data has been received for

that channel.

7.6.2 OFDM

The OFDM component consists of an XFFT core and a number of additional processing

components including zero padding, scaling, descaling, cyclic prefix addition and control

deaggregation. Each of these blocks is abstracted to a dataflow representation which is

used to generate XMODEL classes as described previously.

164

7.7 Integration into Vivado tool suite

As an alternative to NL, hierarchical systems may be constructed using the Vivado IP

Integrator tool, which was released after I had already used NL to describe the model.

However, since IP Integrator represents the future evolution of Xilinx system design tools

more closely, it is desirable to demonstrate that it can also be used to construct software

models. Since both IP Integrator and NL are used as minimal coordination languages,

and since both can be used to create IP-XACT design descriptions, design input from IP

Integrator may added to the flow with minimal difficulty.

To do this, it is necessary for components to be integrated into the Vivado IP Catalog; this

requires Xilinx-specific metadata to be added, which is normally added using the Vivado

IP Packager. However, the IP Packager does not allow arbitrary XML code to be added to

component descriptions as are required in the data types and behavioural metadata, and

instead requires all additional information to be added as component or bus interface

parameters.

There are two possible solutions to this: the first is to determine what metadata the IP

Packager adds, and add it outside of the Packager using an XSLT transform, and I have

implemented this in a transform called addXilinxInfo.xsl. The IP Catalog can then be

pointed to the repository of generated IP-XACT definitions using a Tcl command.

The second solution, implemented by Andrew Dow in Xilinx Scotland, is to add the

information using the mechanisms that are supported by the Packager. In this solution,

Tcl functions are implemented that can be used to create hierarchical data types, which

are then flattened into a string which can be stored as a bus interface parameter in IP-

XACT. So, for example, the type in Listing 5.1 would be represented as:

165

<spirit:busInterface>

<spirit:name>S_AXIS_DIN</spirit:name>

<spirit:parameter>

<spirit:name>DEF_TDATATYPE</spirit:name>

<spirit:value

spirit:id="BUSIFPARAM_VALUE.S_AXIS_DIN.DEF_TDATATYPE">datatype

{real {bitwidth {value 5} unsigned fixed {fractwidth {value

4}}}}</spirit:value>

</spirit:parameter>

</spirit:busInterface>

While this representation has some disadvantages in comparison to an XML representa-

tion of the same information, such as its need for a different parser and its incompatibility

with XML processing languages such as XPath and XSLT, it does specify the data type

information explicitly in an unambiguous manner.

7.8 Test methodology

Once a complete system has been constructed, it must be tested to ensure that the dataflow

abstraction has not introduced any errors. In the original system, test vectors were pro-

duced at the input and output interfaces of the system and at various locations within the

system. In the generated system, the input vectors were read in and used to stimulate the

model, and test vectors were automatically generated on every component interface in

the system. By comparing the relevant vectors in the original system and the generated

system, it was possible to determine that the generated system was functionally correct.

In order to do this, additional dataflow components were required which could read

and write test vectors. Data types for these vectors were available, together with type-

polymorphic XMODEL data source and sink components. To allow these to be integrated

into an IP Integrator system, dataflow abstractions were created which generated an IP-

XACT description, in the same way as the other components in the system.

To represent the type-polymorphic nature of these components, type parameters were

required in the CAL descriptions:

166

actor poly_file_source [T] (String txt_file) ==> T dout :

ifstream m_ifstream;

action ==> dout: [read_token()]

guard not_empty()

end

end

Implementations of the read_token and not_empty functions were adapted from the

original source and sink components and included in the user-defined function file. The

ifstream declaration was used to maintain the state of the file access in a C++ object, and

in future work, it would be desirable to represent this in a platform-independent manner.

7.9 Results

Both LTE systems were reconstructed to be functionally equivalent to the original models,

with no observable impact on performance since the execution time of the bit-accurate

software models dominates over the execution time of the system-level interconnection

code. Thus, success is measured by the ability to describe the systems more concisely,

and one metric that may be used to measure this is the number of lines of code that are

used to describe the system. This is not an ideal measure, since it does not take account

of issues such as coding style, but does at least indicate the degree of success.

The original XMODEL systems for the downlink transmit and uplink receive were con-

structed from approximately 16,000 lines of C++ code. In the automatically generated

models, 3,000 lines of high-level domain-specific language (CAL, ASN.1 and RMAP)

were used to generate 18,000 lines of C++ code, and 4,000 lines of code from the orig-

inal model were reused as action functions.

Thus, the total code requirement was reduced by more than 50%, and the requirement

for C++ code was reduced by around 75%.

167

7.10 Discussion

While the presented results appear to be impressive and should apply generically across

a variety of system designs, it is believed that if some improvements were made to

XMODEL that factor out commonly-used component design patterns, systems could be

designed with a reduced amount of C++ code. In turn, the results from generating this

smaller amount of code automatically would be somewhat less impressive, but the ratio

of input code to generated code is likely to remain appealing.

There are a number of other limitations of the proposed approach. Firstly, since the gen-

erated code uses the XMODEL modelling infrastructure rather than an industry-standard

set of libraries such as SystemC, it cannot be used outside of Xilinx. The production of a

SystemC back-end would therefore be a useful goal in future work. Secondly, the selec-

tion of high-level languages that are used as inputs to the flow presents a large amount of

syntactic variation, and an improved flow would integrate better with new Xilinx tools

such as the Vivado IP Packager. This would require the Packager to be adapted such that

it produces all of the dataflow and data type metadata required by the tools described

in this chapter. Thirdly, comparisons with other software modelling and code generation

approaches are required: for example, it may be preferable for IP-XACT descriptions to

be interpreted by a generic software model rather than for the model to be generated

from the IP-XACT description. Finally, Figure 4.3 proposes that components could be

mapped to different architectures as required, but this is not implemented.

7.11 Conclusions

This chapter has demonstrated that two LTE signal processing systems may be repre-

sented using high-level descriptions, that these descriptions may be converted to a meta-

data format expressed in XML, and that these metadata descriptions may be used to

generate a large amount of C++ code from a relatively small amount of input code whilst

preserving the functional correctness of the model: reductions of 75% in the amount of

C++ code were observed.

168

Chapter 8

Conclusion

This chapter concludes the thesis by summarising the contributions described in previous

chapters, and outlines some future research directions.

The aim of the thesis was to tackle the issue of creating FPGA systems more efficiently, so

that the potential benefits of reconfigurable logic over microprocessor-based processing

platforms can be realised. Challenges in FPGA system design include the need to reuse

existing IP cores, explore the design space, model the system before implementation,

design components at a high level of abstraction, maintain good quality of results, and

maintain interoperability with other tools.

To address these issues, a toolflow was presented which takes account of the trend in

industry towards the capture of component and system metadata in increasing levels of

detail, and demonstrates that the schema for this metadata can be used as a metamodel

for an intermediate representation in a model-driven engineering design flow.

This required the metadata to be extended to include descriptions of components’ data

types and high-level behaviour. Contributions in these extensions included the capturing

of:

• structure, array and complex types allowing the description of the streaming pack-

ets that are communicated over component ports, together with encodings de-

scribed as individual bit offsets or as strides in an array;

169

• timing constraints and latency between the different interfaces in a component, and

the representation of interface blocking using dataflow actions; and

• dynamic component characteristics.

It was stated that this additional information can be used to infer appropriate logic to

connect components that would otherwise have to be written manually. An example

of this was demonstrated in the context of multi-dimensional array types, and it was

shown how reorder blocks could be synthesized either from existing SID cores or from

automatically-generated C code. It was then demonstrated that depending on the way

in which the dimensions are propagated around the system, a variety of buffering sce-

narios could be produced and a process for determining the most efficient scenario was

described. In large systems, this process significantly improves the ability for a designer

to assess the implementation options in the arrangement of array dimensions, and to

select the most efficient solution.

Finally, a toolflow was demonstrated which converts high-level, abstract component and

system descriptions, via the proposed metadata schema, to an executable software model

of the system. Integration is demonstrated with existing Xilinx tools and processes such

as the Vivado IP Catalog and IP Integrator, and the XMODEL simulation framework. By

designing the system at a high level, the number of lines of input code was reduced

by more than 50%, and around 75% of the original C++ code could be automatically

generated.

8.1 Limitations and future work

This section will summarise the limitations of each of the main contributions of the thesis.

In the process of determining an appropriate metamodel, IP core features are encoun-

tered that require a sufficiently complex description that their representation in metadata

may not be appropriate. These include IPv4 options that are more simply described by

the imperative code that processes them than by a static metadata description, and FIR

advanced channel sequences, for which an expression determining the location of a par-

170

ticular element in a particular channel is not obvious. Further work is required to deter-

mine whether it is possible to represent these features in metadata, and furthermore to

determine whether this remains beneficial in light of any additional complexity that the

extended representation brings.

In using the metadata to perform buffering optimisations, complications are encountered

in the inevitability of naming conflicts between the array dimensions of different cores.

While these can be handled manually by the user, no demonstration of this process exists

and on a broader level, a demonstration of the whole process in the context of a tool such

as Vivado IP Integrator is required to prove the utility of the approach.

Finally, in the use of the metamodel in a code generation flow, limitations were encoun-

tered in the choice of an XMODEL backend rather than the industry-standard SystemC

and the heterogeneity of the high-level language inputs, and questions were raised as to

whether generating software code was preferable to interpretation of IP-XACT descrip-

tions. Also, the desirability of user-specified component mapping to allow hardware-in-

the-loop testing was noted: whilst work had begun on this topic, the results were not

sufficiently mature to be described in this thesis.

Of the limitations described above, the most pressing is the need to demonstrate interop-

erability with existing Xilinx tools. To this end, a high priority for future work is for the

Vivado IP Packager to generate data type and dataflow component metadata for all of the

cores in the Vivado IP Catalog, for the Vivado IP Integrator to use array metadata to gen-

erate reorder buffers automatically and determine minimal buffering scenarios, and for

automatically generated buffer code to be passed to Vivado HLS for fast implementation.

Other high-priority goals for future work are to use behaviour metadata to generate

wrappers allowing the automatic integration of latency-sensitive cores in contexts where

data latencies cannot be guaranteed, and to build IP core models around a unified API,

demonstrating that this allows automatic integration with no need for wrappers to be

created manually.

Finally, some other targets for future work are to capture FIR advanced channel se-

quences and IP option headers in the data type schema, or determine conclusively that no

171

solution to these challenges is possible, and to demonstrate that heterogeneous systems

can be built from a single metadata system description, with a mapping file determining

which components are implemented on which processing platforms in the system.

172

Bibliography

[1] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency in soft-

ware,” Dr. Dobb’s Journal, vol. 30, no. 3, pp. 202–210, 2005. 20

[2] J. Koomey, “Estimating total power consumption by servers in the US and the

world,” Tech. Rep., 2007. 20

[3] “TOP500 List – June 2012.” [Online]. Available: http://top500.org/list/2012/06/

100 20

[4] W.-c. Feng and K. W. Cameron, “The Green500 List: Encouraging Sustainable Su-

percomputing,” IEEE Computer, vol. 40, no. 12, pp. 50–55, 2007. 20

[5] A. Lingamneni, K. Krishna, C. Enz, R. M. Karp, and C. Piguet, “Algorithmic

Methodologies for Ultra-efficient Inexact Architectures for Sustaining Technology

Scaling,” in Proc. 9th conference on Computing Frontiers (CF), 2012, pp. 3–12. 21

[6] V. Betz and S. Brown, “FPGA Challenges and Opportunities at 40 nm and Beyond,”

in Proc. 19th International Conference on Field Programmable Logic and Applications,

2009. 21

[7] T. Erjavec, “Introducing the Xilinx Targeted Design Platform: Fulfilling the Pro-

grammable Imperative,” Xilinx, Tech. Rep., 2009. 21, 26

[8] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” IEEE Trans.

Computer-Aided Design of Integrated Circuits and Sys., vol. 26, no. 2, pp. 203–215,

2007. 22

173

http://top500.org/list/2012/06/100
http://top500.org/list/2012/06/100

[9] M. Wirthlin, B. Nelson, B. Hutchings, P. Athanas, and S. Bohner, “Future Field

Programmable Gate Array (FPGA) Design Methodologies and Tool Flows,” Air

Force Research Laboratory, Wright-Patterson Air Force Base, OH, Tech. Rep. July,

2008. 22

[10] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, and D. Buell, “The

Promise of High-Performance Reconfigurable Computing,” IEEE Computer, vol. 41,

no. 2, pp. 69–76, May 2008. 22

[11] A. Putnam, S. Eggers, D. Bennett, E. Dellinger, J. Mason, H. Styles, P. Sundararajan,

and R. Wittig, “Performance and Power of Cache-Based Reconfigurable Comput-

ing,” in Proc. 36th annual International Symposium on Computer Architecture, 2009, pp.

395–405. 22

[12] X. Tian and K. Benkrid, “High-performance quasi-monte carlo financial simulation:

FPGA vs. GPP vs. GPU,” ACM Trans. Reconfigurable Technology and Sys. (TRETS),

2010. 22

[13] J. Backus, “Can programming be liberated from the von Neumann style?: a func-

tional style and its algebra of programs,” Communications of the ACM, vol. 21, no. 8,

pp. 613–641, Aug. 1978. 22

[14] S. Singh, “Computing without processors,” Communications of the ACM, vol. 54,

no. 8, pp. 46–54, Aug. 2011. 23

[15] “MicroBlaze Processor Reference Guide,” Xilinx, Technical Manual, 2012. 23

[16] “Nios II Processor Reference Handbook,” Altera, Tech. Rep., 2011. 23

[17] “Virtex-5 Family Overview,” Xilinx, Product Guide, 2009. 23

[18] “Zynq-7000 All Programmable SoC Overview,” Xilinx, Product Guide, 2012. 23

[19] “Strategic Considerations for Emerging SoC FPGAs,” Altera, Tech. Rep., 2011. 23

[20] D. Wall, “Limits of instruction-level parallelism,” Architectural Support for Program-

ming Languages and Operating Sys., vol. 19, no. 2, 1991. 24

174

[21] D. Patterson, “The trouble with multi-core,” IEEE Spectrum, vol. 47, no. 7, pp. 28–32,

2010. 24

[22] E. A. Lee, “The problem with threads,” IEEE Computer, vol. 39, no. 5, pp. 33–42,

2006. 25

[23] “Catapult C,” Calypto, 2013, computer program. [Online]. Available: http:

//calypto.com/en/products/catapult/overview 25

[24] “Vivado Design Suite User Guide,” Xilinx, User Guide, 2012. 25, 52, 64

[25] T. Hill, “AccelDSP Synthesis Tool: Floating-Point to Fixed-Point Conversion of

MATLAB Algorithms Targeting FPGAs,” Xilinx, White Paper, 2006. 25

[26] “Low Power Hybrid Computing for Efficient Software Acceleration,” Mitrionics,

AB, White Paper, 2008. 25

[27] “Handel-C Language Reference Manual,” Agility Design Solutions, Technical

Manual, 1999. 25

[28] “FIR Compiler v6.3 LogiCORE Product Specification,” Xilinx, Data Sheet, 2011. 26

[29] A. Allan, D. Edenfeld, W. H. Joyner, A. B. Kahng, M. Rodgers, and Y. Zorian, “2001

Technology Roadmap for Semiconductors,” IEEE Computer, vol. 35, no. 1, pp. 42–

53, 2002. 26

[30] B. Nelson, M. Wirthlin, B. Hutchings, P. Athanas, and S. Bohner, “Design produc-

tivity for configurable computing,” in Proc. International Conference on Engineering

of Reconfigurable Systems and Algorithms (ERSA), 2008. 26

[31] Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP

within Tool Flows, IEEE Std. 1685, 2009. 27, 46

[32] T. P. Perry and R. L. Walke, “Determining efficient buffering for multi-dimensional

datastream applications,” U.S. Patent 8,365,109, January 29, 2013. 28

[33] T. P. Perry, R. L. Walke, and K. Benkrid, “An extensible code generation framework

for heterogeneous architectures based on IP-XACT,” in Proc. 7th Southern Conference

on Programmable Logic (SPL), 2011. 28

175

http://calypto.com/en/products/catapult/overview
http://calypto.com/en/products/catapult/overview

[34] T. P. Perry, R. L. Walke, R. Payne, S. Petko, and K. Benkrid, “IP-XACT extensions

for IP interoperability guarantees and software model generation,” in Proc. 22nd

International Conference on Field Programmable Logic and Applications, 2012. 28

[35] M. Rumney, G. Jue, M. Stambaugh, B. Zarlingo, R. Becker, B. Irvine, S. Fraser,

P. Cain, R. Yonezawa, H. Yanagawa, M. Obara, E. W. Koo, P. Kangru, C. Van

Woerkom, M. Yokoyama, B. Ying, P. Goldsack, P. Gupta, Z. Lovell, J.-P. Gregoire,

P. Jones, M. Leung, K. F. Tsang, S. Singh, S. Charlton, V. Ratnakar, D. Sabharwal,

and N. Das, LTE and the Evolution to 4G Wireless. Wiley-Blackwell, 2009. 29

[36] C. Lim, T. Yoo, B. Clerckx, B. Lee, and B. Shim, “Recent Trend of Multiuser MIMO

in LTE-Advanced,” IEEE Communications Magazine, vol. 51, no. 3, pp. 127–135, 2013.

32

[37] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli, “System-level

design: orthogonalization of concerns and platform-based design,” IEEE Trans.

Computer-Aided Design of Integrated Circuits and Sys., vol. 19, no. 12, pp. 1523–1543,

2000. 44, 54, 69

[38] A. Sangiovanni-Vincentelli and G. Martin, “Platform-based design and software

design methodology for embedded systems,” IEEE Design & Test of Comput., vol. 18,

no. 6, pp. 23–33, 2001. 44

[39] E. A. Lee, S. Neuendorffer, and M. Wirthlin, “Actor-oriented design of embedded

hardware and software systems,” J. Circuits, Sys. and Comput., vol. 12, no. 3, pp.

231–260, 2003. 44, 45, 60

[40] M. Wirthlin, D. Poznanovic, P. Sundararajan, A. Coppola, D. Pellerin, W. A. Najjar,

R. Bruce, M. Babst, O. Pritchard, P. Palazzari, and Others, “OpenFPGA CoreLib

core library interoperability effort,” Parallel Computing, vol. 34, no. 4-5, pp. 231–244,

2008. 45

[41] M. Birnbaum, F. Microelectronics, C. C. Johnson, and I. Corp, “VSIA quality metrics

for IP and SoC,” in Proc. IEEE 2001 2nd International Symposium on Quality Electronic

Design, 2001, pp. 279–283. 45

176

[42] R. Bergamaschi, W. R. Lee, D. Richardson, S. Bhattacharya, M. Muhlada, R. Wag-

ner, A. Weiner, and F. White, “Coral - Automating the Design of Systems-On-Chip

Using Cores,” in Proc. IEEE 2000 Custom Integrated Circuits Conference, 2000, pp.

109–112. 45

[43] P. E. McKechnie, “Validation and Verification of the Interconnection of Hardware

Intellectual Property Blocks for FPGA-based Packet Processing Systems,” EngD

thesis, Institute for System Level Integration, Universities of Edinburgh, Glasgow,

Heriot-Watt and Strathclyde, 2010. 45, 57

[44] R. Passerone, J. Rowson, and A. Sangiovanni-Vincentelli, “Automatic synthesis of

interfaces between incompatible protocols,” in Proc. 35th annual Design Automation

Conference. ACM, 1998, pp. 8–13. 45

[45] V. D’Silva, S. Ramesh, and A. Sowmya, “Bridge over troubled wrappers: Auto-

mated interface synthesis,” Proc. 17th International Conference on VLSI Design, pp.

189–194, 2004. 45

[46] W. Kruijtzer, P. van der Wolf, E. de Kock, J. Stuyt, W. Ecker, A. Mayer, S. Hustin,

C. Amerijckx, S. de Paoli, and E. Vaumorin, “Industrial IP integration flows based

on IP-XACT standards,” in Design, Automation and Test in Europe. IEEE, Mar. 2008,

pp. 32–37. 46

[47] A. Arnesen, N. Rollins, and M. Wirthlin, “A multi-layered XML schema and design

tool for reusing and integrating FPGA IP,” in Proc. 19th International Conference on

Field Programmable Logic and Applications, 2009, pp. 472–475. 49

[48] A. Arnesen, D. Gibelyou, and M. Wirthlin, “IP-XACT Extensions for Interface Syn-

thesis in Reconfigurable Computing,” Tech. Rep., 2010. 49, 103

[49] N. Rollins, A. Arnesen, and M. Wirthlin, “An XML schema for representing

reusable IP cores for reconfigurable computing,” in Proc. 2008 National Aerospace

and Electronics Conference (NAECON), Jul. 2008, pp. 190–197. 50

[50] A. Arnesen, K. Ellsworth, D. Gibelyou, T. Haroldsen, J. Havican, M. Padilla, B. Nel-

son, M. Rice, and M. Wirthlin, “Increasing Design Productivity Through Core

177

Reuse, Meta-Data Encapsulation and Synthesis,” in Proc. 20th International Confer-

ence on Field Programmable Logic and Applications, 2010, pp. 538–543. 50

[51] SystemC, OSCI Std., Rev. 2.0, 2002. 50

[52] B. Hutchings and B. Nelson, “Using general-purpose programming languages for

FPGA design,” Proc. 37th Design Automation Conference (DAC), pp. 561–566, 2000.

52

[53] B. Bond, K. Hammil, L. Litchev, and S. Singh, “FPGA Circuit Synthesis of Acceler-

ator Data-Parallel Programs,” in Proc. 18th IEEE Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), 2010, pp. 167–170. 52

[54] “MaxCompiler White Paper,” Maxeler Technologies, 2011. 52, 64

[55] S. Aditya and V. Kathail, “Algorithmic Synthesis Using PICO,” in High-Level Syn-

thesis: from Algorithm to Digital Circuit, P. Coussy and A. Morawiec, Eds. Springer,

2008, ch. 4, p. 55. 53

[56] J. Noguera, S. Neuendorffer, K. A. Vissers, and C. Dick, “Wireless MIMO Sphere

Detector Implemented in FPGA,” XCell, pp. 38–45, 2011. 53

[57] J. Bézivin, “On the unification power of models,” Software and Sys. Modeling, vol. 4,

no. 2, pp. 171–188, 2005. 53, 55

[58] A. Sangiovanni-Vincentelli, S. K. Shukla, J. Sztipanovits, G. Yang, and D. A. Math-

aikutty, “Metamodeling: An Emerging Representation Paradigm for System-Level

Design,” IEEE Design & Test of Comput., vol. 26, no. 3, pp. 54–69, May 2009. 54

[59] T. Mens and P. Van Gorp, “A Taxonomy of Model Transformation,” Electronic Notes

in Theoretical Computer Science, vol. 152, pp. 125–142, Mar. 2006. 54

[60] R. Soley, “Model driven architecture,” Object Management Group, Tech. Rep., 2000.

55

[61] Unified Modeling Language, OMG Std., Rev. 2.4.1, 2011. [Online]. Available:

http://www.uml.org 55

178

http://www.uml.org

[62] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Reference Man-

ual, The (2nd Edition). Pearson Higher Education, Jul. 2004. 55

[63] A. El Mrabti, F. Petrot, and A. Bouchhima, “Extending IP-XACT to support an MDE

based approach for SoC design,” in Design, Automation and Test in Europe, 2009, pp.

586–589. 55

[64] R. Nane, S. V. Haastregt, T. Stefanov, B. Kienhuis, V. M. Sima, and K. Bertels, “IP-

XACT Extensions for Reconfigurable Computing,” in Proc. 22nd IEEE International

Conference on Application-Specific Systems, Architectures and Processors, 2011, pp. 215–

218. 55

[65] D. Gelernter and N. Carriero, “Coordination languages and their significance,”

Communications of the ACM, vol. 35, no. 2, pp. 97–107, 1992. 56

[66] S. K. Shukla, F. Doucet, and R. K. Gupta, “Structured Component Composition

Frameworks for Embedded System Design,” in Proc. 9th International Conference on

High Performance Computing (HiPC), 2002, pp. 663–678. 56

[67] F. Doucet, S. K. Shukla, R. K. Gupta, and M. Otsuka, “An environment for dynamic

component composition for efficient co-design,” in Proc. 2002 Design, Automation

and Test in Europe Conference and Exhibition, 2002, pp. 736–743. 56

[68] F. Doucet, S. K. Shukla, M. Otsuka, and R. K. Gupta, “Balboa: A component-based

design environment for system models,” IEEE Trans. Computer-Aided Design of Inte-

grated Circuits and Sys., vol. 22, no. 12, pp. 1597–1612, 2003. 56

[69] D. A. Mathaikutty and S. K. Shukla, “MCF: A Metamodeling-Based Component

Composition Framework Composing SystemC IPs for Executable System Mod-

els,” IEEE Trans. Very Large Scale Integration (VLSI) Sys., vol. 16, no. 7, pp. 792–805,

2008. 56, 64

[70] A. Gamatié, S. Le Beux, E. Piel, R. Ben Atitallah, A. Etien, P. Marquet, and J.-L.

Dekeyser, “A Model-Driven Design Framework for Massively Parallel Embedded

Systems,” ACM Trans. Embedded Computing Sys., vol. 10, no. 4, pp. 1–36, Nov. 2011.

56

179

[71] P. Boulet, “Array-OL Revisited, Multidimensional Intensive Signal Processing

Specification,” INRIA, Tech. Rep. January, 2007. 56, 91

[72] V. Aggarwal, G. Stitt, A. George, and C. Yoon, “SCF: A Framework for Task-Level

Coordination in Reconfigurable, Heterogeneous Systems,” ACM Trans. Reconfig-

urable Technology and Sys. (TRETS), vol. 5, no. 2, 2012. 56, 64

[73] J. Hwang, B. Milne, N. Shirazi, and J. Stroomer, “System level tools for DSP in

FPGAs,” in Proc. 11th International Conference on Field Programmable Logic and Appli-

cations, 2001, pp. 534–543. 57, 64

[74] “EDK Concepts, Tools and Techniques: A Hands-On Guide to Effective Embedded

System Design,” Xilinx, User Guide, 2011. 57

[75] “Vivado IP Integrator: accelerated time to IP creation and integration,” Xilinx,

White Paper, 2013. 57, 64

[76] P. G. Whiting and R. S. Pascoe, “A history of data-flow languages,” IEEE Annals of

the History of Computing, vol. 16, no. 4, pp. 38–59, 1994. 58

[77] G. Kahn, “The semantics of a simple language for parallel programming,” in Infor-

mation Processing ’74: Proc. IFIP Congress, 1974, pp. 471–475. 58

[78] E. A. Lee and T. Parks, “Dataflow process networks,” Proc. IEEE, vol. 83, no. 5, pp.

773–801, 1995. 58, 59

[79] E. A. Lee and D. Messerschmitt, “Static scheduling of synchronous data flow pro-

grams for digital signal processing,” IEEE Trans. Comput., vol. 36, no. 1, pp. 24–35,

1987. 58

[80] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static dataflow,”

IEEE Trans. Sig. Proc., vol. 44, no. 2, pp. 397–408, 1996. 59

[81] T. Parks, J. Pino, and E. A. Lee, “A comparison of synchronous and cyclo-static

dataflow,” in Proc. 29th Asilomar Conference on Signals, Systems and Computers, no.

October. IEEE Comput. Soc. Press, 1995, pp. 204–210. 59

180

[82] J. Buck, “Scheduling dynamic dataflow graphs with bounded memory using the

token flow model,” Ph.D. dissertation, University of California at Berkeley, 1993.

59

[83] J. T. Buck, E. M. Rd, and M. View, “Static Scheduling and Code Generation from

Dynamic Dataflow Graphs With Integer- Valued Control Streams,” in Proc. 28th

Asilomar Conference on Signals, Systems and Computers, 1994, pp. 508–513. 59

[84] J. Piat, “Interface-based hierarchy for synchronous data-flow graphs,” in IEEE

Workshop on Signal Processing Systems, vol. 1, 2009, pp. 145–150. 59

[85] P. K. Murthy and E. A. Lee, “Multidimensional Synchronous Dataflow,” IEEE

Trans. Sig. Proc., vol. 50, no. 7, pp. 2064–2079, 2002. 59, 124

[86] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,

and Y. Xiong, “Taming heterogeneity - the Ptolemy approach,” Proc. IEEE, vol. 91,

no. 1, pp. 127–144, Jan. 2003. 60, 64

[87] P. D. O. Castro, S. Louise, and D. Barthou, “Reducing memory requirements of

stream programs by graph transformations,” in Proc. International Conference on

High Performance Computing and Simulation (HPCS), 2010, pp. 171–180. 60

[88] “SPW,” Synopsys, 2013, computer program. [Online]. Available:

http://www.synopsys.com/Systems/BlockDesign/DigitalSignalProcessing/

Pages/Signal-Processing.aspx 60, 64

[89] S. S. Bhattacharyya, G. Brebner, J. W. Janneck, J. Eker, C. von Platen, M. Mattavelli,

and M. Raulet, “OpenDF: a dataflow toolset for reconfigurable hardware and mul-

ticore systems,” Computer Architecture News, vol. 36, no. 5, pp. 29–35, 2009. 60, 64

[90] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier, M. Wipliez, and M. Raulet,

“Synthesizing Hardware from Dataflow Programs,” J. Sig. Proc. Sys., vol. 63, no. 2,

pp. 241–249, Jul. 2011. 60

[91] J. Eker and J. W. Janneck, “CAL language report,” University of California, Berke-

ley, Tech. Rep., 2003. 60

181

http://www.synopsys.com/Systems/BlockDesign/DigitalSignalProcessing/Pages/Signal-Processing.aspx
http://www.synopsys.com/Systems/BlockDesign/DigitalSignalProcessing/Pages/Signal-Processing.aspx

[92] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli, and M. Raulet,

“Overview of the MPEG Reconfigurable Video Coding Framework,” J. Sig. Proc.

Sys., vol. 63, no. 2, pp. 251–263, Jul. 2011. 61

[93] B. Kienhuis, E. Rijpkema, and E. Deprettere, “Compaan: Deriving Process Net-

works from Matlab for Embedded Signal Processing Architectures,” in Proc. 8th

International Workshop on Hardware/Software Codesign, 2000, pp. 13–17. 61

[94] H. Nikolov, M. Thompson, T. Stefanov, and A. D. Pimentel, “Daedalus: Toward

Composable Multimedia MP-SoC Design,” in Proc. 45th annual Design Automation

Conference, 2008, pp. 574–579. 61, 64

[95] B. Kienhuis, E. Deprettere, and K. A. Vissers, “An Approach for Quantitative Anal-

ysis of Application-Specific Dataflow Architectures,” in Proc. 1997 IEEE Interna-

tional Conference on Application-Specific Systems, Architectures and Processors, 1997,

pp. 338–349. 61

[96] H. Nikolov, T. Stefanov, and E. Deprettere, “Multi-processor System Design with

ESPAM,” in Proc. 4th international conference on Hardware/software codesign and system

synthesis, 2006, pp. 211–216. 61

[97] K. Huang and J. Gu, “Automatic Platform Synthesis and Application Mapping

for Multiprocessor Systems-On-Chip,” Master’s thesis, LIACS - Leiden University,

2005. 61

[98] A. D. Pimentel, T. Stefanov, H. Nikolov, M. Thompson, S. Polstra, and E. F. Depret-

tere, “Tool Integration and Interoperability Challenges of a System-Level Design

Flow: A Case Study,” in Proc. 8th International Workshop on Embedded Computer Sys-

tems: Architectures, Modeling, and Simulation (SAMOS), 2008, pp. 167–176. 61, 70

[99] C. Lattner, “LLVM,” in The Architecture of Open Source Applications, A. Brown and

G. Wilson, Eds. lulu.com, 2011, ch. 11. 70

[100] Abstract Syntax Notation One (ASN.1), ITU-T Recommendation X.680, 2002. 72, 85

[101] “ML605 Hardware User Guide,” Xilinx, User Guide, 2012. [Online]. Available:

http://www.xilinx.com/support/documentation/boards and kits/ug534.pdf 74

182

http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf

[102] N. Walsh, A. Milowski, and H. S. Thompson, XProc: An XML Pipeline

Language, W3C Recommendation, Rev. 11 May 2010, 2010. [Online]. Available:

http://www.w3.org/TR/xproc 75

[103] R. M. Stallman and R. McGrath, GNU Make — A Program for Directing Recompilation.

Free Software Foundation, Cambridge, MA, USA, 1991. 75

[104] M. Lamb, “Nailgun: Insanely Fast Java,” 2012, computer program. [Online].

Available: http://www.martiansoftware.com/nailgun 76

[105] O. Ben-Kiki, C. Evans, and B. Ingerson, YAML Ain’t Markup Language (YAML),

Working Draft, Rev. 1.2, December 2004. 79

[106] R. Orfali and D. Harkey, Client/server programming with Java and CORBA, 2nd ed.

Wiley, Mar. 1998. 85

[107] “Protocol Buffers,” computer program. [Online]. Available: http://code.google.

com/p/protobuf 85

[108] M. Slee, A. Agarwal, and M. Kwiatkowski, “Thrift: Scalable Cross-Language Ser-

vices Implementation,” Facebook, Tech. Rep., 2007. 85

[109] ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding

Rules (CER) and Distinguished Encoding Rules (DER), ITU-T Recommendation X.690,

2002. 87

[110] ASN.1 encoding rules: Specification of Packed Encoding Rules (PER), ITU-T Recommen-

dation X.691, 2002. 87, 148

[111] ASN.1 encoding rules: Specification of Encoding Control Notation (ECN), ITU-T Recom-

mendation X.692, 2002. 87

[112] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel programming with

the message passing interface. MIT Press, 1999. 91

[113] E. A. Lee and D. Messerschmitt, “Synchronous Data Flow,” Proc. IEEE, vol. 75,

no. 9, pp. 1235–1245, 1987. 122

[114] “SymPy,” software library. [Online]. Available: http://www.sympy.org 124

183

http://www.w3.org/TR/xproc
http://www.martiansoftware.com/nailgun
http://code.google.com/p/protobuf
http://code.google.com/p/protobuf
http://www.sympy.org

[115] L. de Moura and N. Bjørner, “Satisfiability modulo theories: an appetizer,” Formal

Methods: Foundations and Applications, pp. 23–36, 2009. 125

[116] L. de Moura and N. Bjoerner, “Z3: An Efficient SMT Solver,” in Proc. 14th Interna-

tional Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), C. R. Ramakrishnan and J. Rehof, Eds. Springer, 2008, pp. 337–340. 125

[117] R. Wille, D. Große, M. Soeken, and R. Drechsler, “Using Higher Levels of Abstrac-

tion for Solving Optimization Problems by Boolean Satisfiability,” in International

Symposium on VLSI, 2008, pp. 411–416. 126

[118] P. Suter, A. Köksal, and V. Kuncak, “Satisfiability modulo recursive programs,”

Static Analysis, pp. 298–315, 2011. 128

[119] X. Liu and Y. Zhao, “The Component Interaction Domain: Modeling Event-Driven

and Demand- Driven Applications,” in 5th Biennial Ptolemy Miniconference, 2003.

144

[120] T. J. Parr and R. W. Quong, “ANTLR: A Predicated-LL(k) Parser Generator,” Soft-

ware: Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995. 146

[121] J. W. Janneck, “NL – a Network Language,” Programmable Solutions Group, Xilinx

Inc., Tech. Rep., 2007. 157

184

Appendix A

Publications

185

AN EXTENSIBLE CODE GENERATION FRAMEWORK FOR HETEROGENEOUS
ARCHITECTURES BASED ON IP-XACT

Thomas P. Perry, Richard L. Walke

Xilinx Development Corporation,
Charles Darwin House,

Edinburgh Technopole, Bush Estate,
Milton Bridge, Penicuik, UK

email: Thomas.Perry@sli-institute.ac.uk,
Richard.Walke@xilinx.com

Khaled Benkrid

University of Edinburgh,
School of Engineering,

King’s Buildings,
Mayfield Road,
Edinburgh, UK

email: K.Benkrid@ed.ac.uk

ABSTRACT

In this paper, we examine the problem of abstracting
the design process for heterogeneous CPU/FPGA systems
from the perspective of a group of engineers designing
telecommunications systems, and propose a design flow that
addresses the constraints imposed in an industrial context
whilst striving for maximal compatibility with existing tools
and research projects.

We thus present a modular and extensible flow based
around the IP-XACT standard, which is gaining support in
industry, and link this to a front-end built on the semantics of
dataflow process networks and a template-based code gen-
eration back-end.

1. INTRODUCTION

With the increasing size of programmable logic devices such
as FPGAs, it is becoming increasingly difficult to design
complex systems that make full use of the resources that
these devices offer. In addition, new architectures such as
the Xilinx Extensible Processing Platform (EPP)[1] offer
greater opportunities for heterogeneous processing but de-
sign methodologies must be adapted to exploit this poten-
tial. Thirdly, despite the compelling performance and power
advantages of FPGAs over competing technologies in new
domains such as High Performance Reconfigurable Com-
puting, uptake has been stifled by the steep learning curve
and low-level nature of existing tools[2].

In response to these difficulties, attempts have been
made to raise the level of abstraction of the FPGA design
process by creating tools to automate the generation of low-
level, architecture-specific code, but these tools have met

This work was supported by the UK Engineering and Physical Sci-
ences Research Council and Scottish Enterprise through an FHPCA EngD
studentship, and by an Industrial Fellowship of the Royal Commission for
the Exhibition of 1851.

some resistance in the marketplace.
While the parallel complexity of FPGAs undoubtedly

complicates the task of designing intuitive tools, we do not
believe that it is a simple failure to address this complexity
that limits the tools’ broader adoption. Instead, we believe
that failures of uptake may in most cases be explained by
one or more of the following reasons:

choice of abstraction abstractions may be chosen that do
not provide a good model for the problem at hand,
and thus high-level description and code generation
techniques become unwieldy.

applicability the abstraction is sound but the implementa-
tion flow is a ‘point solution’, insufficiently general to
be of widespread use.

lock-in the tool allows no recourse to a prior flow, neces-
sary in the event that it fails to demonstrate the antici-
pated benefits.

aggregation of flows the tool conflates a number of aspects
of the design process that could remain separate and
be addressed using separate mechanisms, and thus
the tool is rejected on its weaknesses rather than em-
braced on its strengths.

The first of these reasons is commonly stated in the aca-
demic community (e.g. [3]), and we encounter the second
and third in informal discussions with experienced engi-
neers. The fourth derives from the principle of separation
of concerns, stated by Dijkstra[4] and finds application in,
for example, the Unix philosophy of ‘do one thing and do
it well’. It has also been invoked in the domain of system-
level design (e.g. [5]) and thus its implications will now be
discussed.

In the design of any highly parallel system implemented
on a platform such as an FPGA, there are three separable

IR

Front-ends

Back-ends

FPGACPU

Computation Communication Coordination

Fig. 1. Separating concerns in a design flow.

aspects of the problem that must be defined: the computa-
tion performed by the processing nodes, stated as sequences
of arithmetic, logical and other operations, the communica-
tion between the external interfaces of connected nodes, re-
quiring characterisation of data type serialization and low-
level data transmission processes, and the coordination of
the nodes, comprising the (possibly dynamic) topology of
the network that connects them and the interrelation of their
patterns of execution and data exchange. In other words,
we can characterise a parallel node by what it does, what it
says, and when and to whom it talks. C-to-gates technology,
for example, is marketed on the basis of the familiarity of
its entry method, but the C input only serves to address the
requirement for computational descriptions and the commu-
nication and coordination of the generated components must
be described by proprietary methods.

Each of these three aspects may also be separated into
front-end and back-end flows, connected via the use of some
intermediate representation (IR) format, as shown in Fig-
ure 1. This division is fundamental to the operation of com-
pilers in general, but finds even broader appeal in compila-
tion flows for heterogeneous architectures where multiple
back-ends are required, and additionally in flows for ho-
mogeneous architectures where multiple front-ends may be
desired (providing, for example, both textual and graphical
entry methods). If the IR is standardised, the risk of lock-
in is reduced. If the IR is also extensible, an ecosystem of
front-ends and back-ends targeting specific domains may be
constructed to extend the applicability of the original flow.

Through this division into three aspects and two levels,
the overall task of defining a system design methodology
has been decomposed into six sub-tasks that may be tackled
largely independently. In the following sections, we delib-
erately set aside the computational aspect of the problem,

since (a) there already exist adequate (though architecture-
specific) languages for computational descriptions in micro-
processors and FPGA fabric, (b) it has been difficult thus
far to demonstrate improvements over these languages in in-
dustrial contexts, and (c) there already exists a large body of
ongoing research with such a demonstration as its aim. In-
stead, we attempt to address the underspecification of com-
munication and coordination, with initial efforts focusing on
the 3GPP LTE physical layer systems described in the fol-
lowing section, but in a manner that we intend subsequently
to be more broadly applicable.

2. ANALYSIS OF INTENDED APPLICATIONS

The mobile communications industry is currently benefiting
from significant growth, and will in coming years be fueled
by the adoption of the 3GPP Long Term Evolution (LTE)
standard[6].

The engineering team with which we are working pro-
duces FPGA cores and software simulation models written
in VHDL and C++ that implement individual processing
stages of the LTE physical layer (PHY), and include these
furthermore in full LTE reference designs and software sys-
tem simulations. It can be observed, however, that the cores
may often be considered as systems since they incorporate
a number of sub-cores, and since systems are also typically
integrated into larger designs by customers, the notions of
core and system used to characterise and market these prod-
ucts may simply be reconciled for our purposes into one of
hierarchical composition.

Our objective in the first instance is to automatically gen-
erate code for an LTE PHY that would otherwise have been
written manually, and since this target is characteristic of a
broader range of intended applications (to be elaborated in
Section 2.3), it is possible to derive an appropriate abstrac-
tion through analysis of the existing code. Characterising
the software and hardware implementations separately, we
see the following:

The software models make use of a custom C++ frame-
work which provides a generic component class, and this
class must be extended for each category of required com-
ponent to provide input/output functions and one or more
processing functions. A model thus consists of a number
of instances of these extended classes, often connected by
FIFO queues, that communicate using function calls. Data
elements are composed in structures and arrays, and for
the sake of efficiency may be communicated using point-
ers. The execution of each component is driven by a sched-
ule manually specified in an encapsulating component, and
this schedule is static where the flow rates of the subcompo-
nents’ packets are apparent, and dynamic otherwise.

The reference design consists, similarly, of a number
of component instances often separated by FIFOs, in this

case communicating most commonly using streaming inter-
faces. Data packets are represented as VHDL records, but
are serialized before they are transmitted between compo-
nents. Since this communication happens only when both
the sender asserts a valid signal and the receiver asserts a
ready signal, no external scheduling is required.

In characterising the similarities between these systems,
it may be observed that the communication style in each sys-
tem fits the paradigm of asynchronous message passing, and
with the addition of some semantic rules that simplify but do
not overconstrain the character of these systems, it becomes
possible to use the language of dataflow process networks to
describe them at a higher level of abstraction.

2.1. Dataflow process networks

A dataflow process network is a collection of actors with
input and output ports that each send or receive tokens via
point-to-point, unidirectional token arcs[7]. Also associated
with each actor is a list of actions, each defining expressions
that transform tokens on input ports to tokens on output
ports, and through the repeated firing of these actions upon
arrival of sufficient input tokens, an actor executes these ex-
pressions and generates a stream of output tokens which are
sent to other actors. The topology of the actors’ intercon-
nection is captured by a dataflow graph, and by consider-
ing the structure of this graph together with the properties
of the actors, it is possible to reason about the communica-
tion patterns and thereby perform automatic optimisations
such as static scheduling that improve the performance of
the system[8].

The dataflow model as described above states no partic-
ular requirements on the specification of data types, so an
abstraction for these must be found elsewhere.

2.2. Data types and encodings

The communicational aspect of system design requires char-
acterisation of two separate sub-aspects: firstly, abstraction
of the hierarchical structure of data types, and secondly, ab-
straction of the manner in which these types are encoded in
packets. According to the commonly observed principle of
separating content (the type structure) from form (the encod-
ing), these sub-aspects should be specified separately. The
first of these may be used to generate data type definitions in
architecture-specific languages, and the second may be used
to generate appropriate serialization and deserialization rou-
tines that are required to transmit tokens of these types. In
Section 4.2, a possible approach based on existing technol-
ogy is suggested.

2.3. Other applications

By reducing the LTE PHY to its dataflow fundamentals, it
becomes apparent that this target is merely one of a more
general class of applications, characterised by high volumes
of data and frequent communication, for which a more ab-
stract view is beneficial.

While control-heavy or highly dynamic applications are
unlikely to benefit from a dataflow style of coordination,
there remain a number of targets in other forms of sig-
nal processing and in certain high performance computing
(HPC) applications, such as iterative grid calculations, that
may be amenable to a dataflow model. One example for
which the dataflow abstraction is appropriate is MPEG video
coding[9].

Having proposed a set of applications and a unifying ab-
stract model, it must now be demonstrated that a high-level
representation of these applications may be converted to a
standard but extensible intermediate representation format.
In the sections below, we propose and justify the use of IP-
XACT for this purpose.

3. IP-XACT AS AN INTERMEDIATE
REPRESENTATION

IP-XACT is an industry-standard XML schema that is being
adopted by many organisations in the FPGA industry to de-
scribe metadata about their cores and systems in a manner
that is independent of the implementation language.

A number of top-level object descriptions are permitted,
including component descriptions which store information
pertaining to individual components, and design descrip-
tions which store a list of components and their connections
to each other and to the encapsulating component. Hierar-
chy is represented by reference in a component description
to a design description listing a number of sub-components.

Extensibility is possible through the use of IP-XACT
vendor extension tags under which custom XML fragments
may be stored, and schemas for this information may be
specified externally. Defining such schemas has been the
focus of research at CHREC[10], and Neely et al. make sim-
ilar use of IP-XACT extensions in their own framework[11].

Together with a suitable set of vendor extensions, the IP-
XACT schema may thus be used to record the information
required in the coordinational aspect of system design.

3.1. Required IP-XACT extensions

The standard IP-XACT schema does not allow the specifi-
cation of dataflow information such as firing rules and to-
ken rates for components, but recent work at CHREC has
demonstrated a set of vendor extensions suitable for this
task[12] and we implement a subset of their features in our
own extension schema. We have an additional requirement,

however, for an expressive data type schema that may be
used to describe the packet structures used in LTE control
and data streams.

A close match may be found in the work of Risso and
Baldi in the form of their NetPDL schema[13], however as
this is a microprocessor-oriented solution, the syntax for de-
scribing bit-aligned fields as found in FPGA systems in-
volves bit masks rather than the preferable IP-XACT ap-
proach of lengths and offsets, and the notion of packet form
is implicit: packets are structured based on their contents
rather than from an explicit specification or selectable rule
set.

Thus, no single XML schema meets all of our require-
ments, and we have defined a bespoke IP-XACT vendor ex-
tension schema that we call ‘XCI’. Using this schema, it is
possible to define:

• Dataflow token rates and firing rules for components,
and references to ‘actions’ to be performed in C++ or
VHDL.

• Type definitions comprising leaf-level units (with cus-
tomizable bit widths, offsets, binary point presence
and placement, and numerical bounds), and hierarchi-
cal arrays (with or without a defined maximum size)
and structures consisting of sub-fields.

With the type extensions described above, it is possi-
ble to generate type definitions in both C and VHDL that
allow efficient execution and communication. For exam-
ple, boolean values specified using this schema might be
implemented in C using an 8-bit char, while in VHDL
they would be implemented as a single-bit value. Interface
functions would then be generated automatically that allow
communication of this boolean value between software and
hardware.

4. FRONT-ENDS

Having characterised the target problems and specified an
internal representation, we now attempt to find high-level
design entry methods that adequately capture the informa-
tion required to describe the class of systems we aim to gen-
erate.

There are various commercial tools available for high-
level design of dataflow systems, including GEDAE and
the Synopsys SPW tool, and we are currently investigating
the generation of IP-XACT descriptions from some of these
tools.

As a basis for research beyond the timescales of com-
mercial evaluation licenses, however, the openness of the
OpenDF dataflow toolset provides compelling advantages.

Fig. 2. IP-XACT generation flow for leaf-level components.

4.1. OpenDF

The OpenDF project[14] is a set of tools for the construc-
tion of networks of dataflow actors. Two high-level lan-
guages are specified: CAL, which is used to describe the
interfaces and operation of individual dataflow actors[15],
and NL, which acts as a minimal coordination language suit-
able for describing the components’ linear and hierarchical
composition. Descriptions in these languages may be run
in a supplied simulator or compiled so as to be run natively
on various processing devices: for example, a CAL-to-HDL
back-end is provided such that CAL actors may be instanti-
ated on FPGAs[16].

Included in the compilation flow performed by the tools
in the OpenDF suite is a stage in which dataflow compo-
nent descriptions in CAL and coordinational descriptions in
NL are converted into XML form. Selective conversion of
the coordinational aspects of this XML output to our ex-
tended IP-XACT schema is therefore feasible, and we have
achieved this using XSLT[17].

Since we explicitly avoid in this work the issue of defin-
ing computational descriptions of components, our tools un-
dertake no transformation of CAL output expressions (the
token transformations executed when an action fires) into
IP-XACT; they simply translate an NL description into an
IP-XACT design and encapsulating component, and a CAL
description into an IP-XACT leaf component that refer-
ences an output expression specified in native code (C++ or
VHDL).

4.2. High-level type definitions

The OpenDF tools do not specify a mechanism for defining
data types, and instead delegate this responsibility to exter-
nal tools and flows.

High-level description of data types is already done in
Xilinx LTE systems using a bespoke ‘rmap’ (register map)

language, which is used to define the structure of non-
hierarchical control register maps. A Perl script is then used
to generate low-level driver and HAL code in C and VHDL
from this representation.

The rmap language cannot be used to describe hierarchi-
cal types, however, and register descriptions are only char-
acterised by their size and offset. In order to generate type
metadata that includes all of the features listed in Section
3.1, another high-level representation must be found.

One high-level language that is suited to this task is
ASN.1 (Abstract Syntax Notation One)[18], which may be
used to specify the hierarchical structure of data types and
the characteristics of leaf-level fields (for example: integer,
enumeration, plain bit field). Inputs in this format are parsed
into an XML parse tree format, and these are converted us-
ing XSLT to our custom ‘XCI’ schema (see Figure 2).

Encodings may be defined manually or generated auto-
matically. Using the manual approach, encodings are spec-
ified using the rmap format, and these are then converted
to XCI format and merged with the specification derived
from ASN.1. Alternatively, the encoding is generated using
XSLT transformations which assign bit widths and offsets
for each field automatically. The generated XCI representa-
tion is then added as an IP-XACT vendor extension to the
main IP-XACT component description.

5. CODE GENERATION FROM IP-XACT

Generating an IP-XACT definition of a system is useful in it-
self, since this definition may be provided to other tools that
require an IP-XACT input, but an additional benefit arises in
the ability to automatically generate output code for multiple
targets and in multiple languages from a single specification.

At the core level, labour-saving developments could
include generation of C interfaces to the C++ core
models, VHDL entity declarations, data type serializa-
tion/deserialization routines, SystemVerilog DPI functions
for testing, core testbenches and wrappers for interoperation
with MATLAB. At the system level, we aim to fully au-
tomate the generation of hierarchical interconnection logic
and scheduling functions. Thus, our code-generation re-
quirements are manifold and our chosen approach must be
extensible by future users.

5.1. Template approach

Code generation techniques may be broadly classified into
those that store output code fragments inline with the re-
mainder of the generator source, and those that store this
code separately in templates. The essential difference be-
tween these approaches may once again be distilled down
to separation of concerns, in this case separation of presen-
tation and application logic, or separation of form from the
mechanism with which form is applied to content.

In order to encourage adoption of any code generation
framework, it is desirable firstly for the output code to be
easily readable, and furthermore, for it to look as much as
possible like the code that would have been written manu-
ally. These properties prevent lock-in by allowing later re-
course to manual editing of the generated files, but they also
require a greater degree of flexibility in presentation.

To provide this flexibility, we build our code generation
strategy around a template processing engine with code tem-
plates that are manipulable by the user and populated upon
demand from an IP-XACT definition. We use the Perl Tem-
plate Toolkit[19] for this purpose, since it is widely used and
understood.

To demonstrate the intuitive nature of the template ap-
proach, we pass the IP-XACT output from the previous ex-
ample to the Perl Template Toolkit engine together with the
following template, which specifies how the contents of the
componentInstances tag in an IP-XACT design de-
scription should be processed.

// Subcomponents
[% FOREACH ci IN design.componentInstances %]
[% ci.componentRef.name %]& [% ci.instanceName %];
[% END %]

The output from this flow is a pair of C++ subcomponent
declarations, as follows.

// Subcomponents
xlte_scramble& m_scramble;
xlte_modulate& m_modulate;

Using this approach, we generate C++ subclasses of a
pre-existing component class and add component-specific
communication and coordination code. The implementa-
tions of computational functions (output expressions) that
are produced using an external process are stored in sepa-
rate files and are incorporated into the build at link-time.

6. FUTURE WORK

The aim in writing the templates that we have produced so
far is to recreate the existing software model structure as
accurately as possible.

This model does not fully conform to the dataflow pro-
cess network model of computation, since components’ out-
put ports are demand-driven rather than data-driven. Written
this way, it is possible to avoid associating target actors with
output ports since an encapsulating component is responsi-
ble for all of the token transfers in and out of a subcompo-
nent.

Generating fully dataflow code would allow the auto-
matic generation of static schedules for hierarchical nodes,
so this will be attempted in further work.

In a similar manner to the generation of C++ from IP-
XACT using templates, we aim to create VHDL templates

to allow an implementation on FPGA fabric. With the addi-
tion of a mechanism for message passing between software
and hardware components, the C++ and VHDL code gener-
ation flows may be combined to allow implementation on a
heterogeneous platform such as the Xilinx EPP.

7. CONCLUSION

We have proposed the use of IP-XACT with appropriate
extensions as an intermediate representation in a compila-
tion flow from high-level, domain-restricted communica-
tion and coordination languages to low-level, architecture-
specific languages. In order to demonstrate this flow, we
have implemented conversions from a dataflow front-end to
IP-XACT and provided a template-based back-end that al-
lows user-extensible code generation. This is currently be-
ing tested through generation of C++ code for Xilinx LTE
software models, but VHDL templates will be produced in
future work in order to automate the low-level communi-
cation and coordination code for designs implemented on
FPGA fabric.

We have also defined an XML schema for the descrip-
tion of data types used in Xilinx cores and systems, and
tested this by writing descriptions in this format for the data
types used by a number of existing cores and system com-
ponents. In order to allow high-level entry, we have imple-
mented a compilation flow that generates these descriptions
using ASN.1 specifications as input.

8. REFERENCES

[1] K. DeHaven, “Extensible Processing Platform,” Xilinx, Tech.
Rep. April, 2010.

[2] R. Wain, I. Bush, M. Guest, M. Deegan, I. Kozin, and
C. Kitchen, “An overview of FPGAs and FPGA program-
ming; Initial experiences at Daresbury,” Computational Sci-
ence and Engineering Department, CCLRC Daresbury Labo-
ratory, Tech. Rep. November, 2006.

[3] M. Wirthlin, B. Nelson, B. Hutchings, P. Athanas, and
S. Bohner, “Future Field Programmable Gate Array (FPGA)
Design Methodologies and Tool Flows,” Air Force Research
Laboratory, Wright-Patterson Air Force Base, OH, Tech.
Rep. July, 2008.

[4] E. Dijkstra, “On the role of scientific thought,” in Selected
Writings on Computing: A Personal Perspective. Springer-
Verlag, Mar. 1982, vol. 12, no. 3, pp. 60–66.

[5] W. Cesário, G. Nicolescu, L. Gauthier, D. Lyonnard, and
A. Jerraya, “Colif: A design representation for application-
specific multiprocessor SOCs,” IEEE Design & Test of Com-
put., vol. 18, no. 5, pp. 8–20, 2001.

[6] D. McQueen, “The momentum behind LTE adoption,” IEEE
Communications Magazine, vol. 47, no. 2, pp. 44–45, 2009.

[7] E. A. Lee and T. Parks, “Dataflow process networks,” Proc.
IEEE, vol. 83, no. 5, pp. 773–801, 1995.

[8] E. A. Lee and D. Messerschmitt, “Static scheduling of syn-
chronous data flow programs for digital signal processing,”
IEEE Trans. Comput., vol. 36, no. 1, pp. 24–35, 1987.

[9] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz,
M. Mattavelli, and M. Raulet, “Overview of the MPEG Re-
configurable Video Coding Framework,” J. Sig. Proc. Sys.,
July 2009.

[10] A. Arnesen, N. Rollins, and M. Wirthlin, “A multi-layered
XML schema and design tool for reusing and integrating
FPGA IP,” in Field Programmable Logic and Applications,
2009, pp. 472–475.

[11] C. Neely, G. Brebner, and W. Shang, “ShapeUp: A High-
Level Design Approach to Simplify Module Interconnec-
tion on FPGAs,” in 18th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 2010, pp. 141–
148.

[12] A. Arnesen, K. Ellsworth, D. Gibelyou, T. Haroldsen, J. Hav-
ican, M. Padilla, B. Nelson, M. Rice, and M. Wirthlin, “In-
creasing Design Productivity Through Core Reuse, Meta-
Data Encapsulation and Synthesis,” in Field Programmable
Logic and Applications, 2010, pp. 538–543.

[13] F. Risso and M. Baldi, “NetPDL: An extensible XML-based
language for packet header description,” Computer Networks,
vol. 50, no. 5, pp. 688–706, Apr. 2006.

[14] S. S. Bhattacharyya, G. Brebner, J. W. Janneck, J. Eker,
C. von Platen, M. Mattavelli, and M. Raulet, “OpenDF: a
dataflow toolset for reconfigurable hardware and multicore
systems,” Computer Architecture News, vol. 36, no. 5, pp.
29–35, 2009.

[15] J. Eker and J. W. Janneck, “CAL language report,” University
of California, Berkeley, Tech. Rep., 2003.

[16] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier,
M. Wipliez, and M. Raulet, “Synthesizing Hardware from
Dataflow Programs,” J. Sig. Proc. Sys., July 2009.

[17] J. Clark, “XSL transformations (XSLT)—version 1.0,”
World Wide Web Consortium, Tech. Rep., 1999. [Online].
Available: http://www.w3.org/TR/xslt

[18] “Recommendation X.680: Abstract Syntax Notation One
(ASN.1),” ITU-T, Tech. Rep., 2002.

[19] D. Chamberlain, D. Cross, and A. Wardley, Perl Template
Toolkit. O’Reilly & Associates, Inc., 2003.

IP-XACT EXTENSIONS FOR IP INTEROPERABILITY GUARANTEES AND SOFTWARE
MODEL GENERATION

Thomas P. Perry∗, Richard L. Walke, Rob Payne, Stefan Petko

Xilinx Development Corporation,
Charles Darwin House,

Edinburgh Technopole, Bush Estate,
Milton Bridge, Penicuik, UK

email: firstname.lastname@xilinx.com

Khaled Benkrid

University of Edinburgh,
School of Engineering,

King’s Buildings,
Mayfield Road, Edinburgh, UK

email: K.Benkrid@ed.ac.uk

ABSTRACT

This paper presents a set of novel metadata extensions
that are used to specify the interfaces on Xilinx IP cores and
their software models under a uniform data model which al-
lows enhanced design rule checking in the system design
process. We also present a suite of tools which can be
used to generate executable software simulation models of
complete systems from their specifications under that data
model. These tools may be used stand-alone, or may be
used to extend the capabilities of the Vivado IP Integrator
tool that [as of the intended publication date] has recently
been released by Xilinx.

Our toolflow has been used successfully to generate soft-
ware simulation models for two 3GPP Long Term Evolution
(LTE) physical layer systems: uplink receive and downlink
transmit.

1. INTRODUCTION

The capacity of FPGA devices is continually increasing, and
there is a concomitant rise in the complexity of the systems
designed for them. A commonly accepted mechanism for
dealing with this complexity is to use IP cores, but for an
IP-based design flow to be of use, the task of connecting
cores together must be significantly more cost-effective than
designing those blocks from scratch.

To address the issue of IP usability, Xilinx has released
Vivado IP Integrator. This is a new tool that allows stitch-
ing of abstract, pre-configured IP blocks (for example, with
no bus widths chosen) using either a graphical editor or a
Tcl-based textual interface, with intelligent parameter prop-
agation used to assign configurations to those blocks before
generation of HDL to link them together.

∗This work was supported by the UK Engineering and Physical Sci-
ences Research Council and Scottish Enterprise through FHPCA EngD stu-
dentships, and by an Industrial Fellowship of the Royal Commission for the
Exhibition of 1851.

One aspect of IP usability is the provision of appro-
priate design rule checks (DRCs) in a system-level design
tool, and thus one of the design goals of IP Integrator is for
the tool to provide assistance in determining which inter-
face connections are compatible and which should be dis-
allowed. When incompatible cores are connected together
in the tool, it should flag an error or propose an intelligent
solution to the problem, which might involve generation of
additional infrastructure to enable connections in situations
where cores are ‘almost’ compatible. However, this process
requires detailed information about IP cores to be provided.

The first of the two novel contributions made by this pa-
per is to define a set of metadata extensions that may be lay-
ered on top of the existing IP core metadata in order to ex-
tend the design rule checking capabilities of the IP Integra-
tor tool and to permit automatic data type coercion on con-
nections between similar interfaces. These extensions focus
particularly on the data types communicated by IP cores.

The second contribution tackles another issue of design
productivity, which is that for a system of significant size
and complexity, development of that system does not always
start with the interconnection of cores in the HDL domain.
Instead, a software model is produced which connects bit-
accurate models of those cores and integrates bespoke soft-
ware components which perform additional data movement
and manipulation functions. Due to the higher-level input
representation, greater levels of architectural exploration are
permitted than when stitching cores in HDL. The simulation
model created in this process is used to generate test vectors
at a variety of points in the system and HDL components are
instantiated or created to replicate the functionality of each
of the software blocks.

However, recreating the system in two different lan-
guages is laborious. Our key realisation, introduced in pre-
vious work[1], is that much of the information required to
generate these systems has already been captured in compo-
nent metadata for the purpose of ensuring interoperability,

and that a software simulation model or a hardware imple-
mentation can be generated from this metadata together with
a system design description which is also stored in metadata.
In this paper, we demonstrate this with the automatic gener-
ation of LTE software models, and find that the only signif-
icant requirement beyond the metadata is a C++ function to
be executed in a ‘dataflow action’, and in the case of many
Xilinx IP cores (LogiCOREs), this function already exists in
the form of a bit-accurate software model.

Thus we conclude that with the current metadata, plus
some extensions that we describe, plus dataflow actions
specified in C++, the automatic generation of a software sys-
tem model is possible.

The remainder of this paper is organised as follows. In
Section 2 we discuss useful background to the problem. In
Sections 3 and 4 we present our metadata extensions. In Sec-
tion 5 we show how this metadata can be used to generate a
software system simulation model. In Section 6 we state our
current and future avenues for research, and in Section 7 we
conclude the paper.

2. BACKGROUND AND RELATED WORK

We use two Xilinx LTE baseband telecommunications sys-
tems as the focus of our research: a downlink transmit (DL
TX) system and an uplink receive (UL RX) system.

There are a number of situations in the Xilinx LTE sys-
tems where one component outputs a multidimensional ar-
ray of data and the core to which it is connected requires the
same array structure but with the dimensions in a different
order. Figure 1 shows one example of this in the context
of the UL RX system: the Channel Estimator v1.1 Logi-
CORE groups data elements by ‘codeword’ then by ‘an-
tenna’, whereas the MIMO Decoder v2.1 groups elements
by ‘antenna’ then by ‘codeword’[2]. If these cores are con-
nected directly, an incorrect sequence of data transfers will
occur: a design environment should either prevent this by
refusing to connect the components, or propose a solution.

All Xilinx LogiCOREs have an associated metadata de-
scription in the IP-XACT schema, which is gaining broad
acceptance as a standard schema in which to represent meta-
data about electronic components and systems, such as bus
interface types.

In the IP-XACT schema, a number of top-level object
descriptions are permitted, including component descrip-
tions, which store information pertaining to individual com-
ponents, and design descriptions which can be used to repre-
sent hierarchical designs consisting of those components[3].

The information in IP-XACT component descriptions
can be used to determine compatibility between two con-
nected components at the level of bus interfaces. Previous
work, for example in the Coral tool[4], deals with compat-
ibility at the interface level. Since Xilinx is standardising

on the AMBA AXI interface, the compatibility issue within
the domain of AXI-compatible cores may be considered at
a higher level of abstraction: the problem becomes one of
ensuring data type and dataflow compatibility.

At various points in the IP-XACT schema, vendor-
specific extensions may be included to extend the descrip-
tion. Previously, other authors have proposed extensions
to IP-XACT for this purpose[5], and we take a similar ap-
proach but focus in greater depth on data type descriptions.

Other authors have produced tools which generate soft-
ware models from a high-level description[6]. However, the
introduction of novel high-level languages is difficult to mo-
tivate in industry, so in contrast we base our approach on
standard IP-XACT representations of components and sys-
tems that already exist.

3. DATA TYPE METADATA

Our approach is influenced by interface definition languages
(IDLs) such as ASN.1[7] and Thrift[8]. None of these tools
can be used to specify the interfaces of FPGA IP, since they
do not allow fine-grained control of data type encodings.
Also, in contrast, we do not specify a front-end input lan-
guage and instead focus on the data model and its represen-
tation in XML.

Our schema allows data types to be associated with el-
ements such as bus interfaces and register fields in an IP-
XACT component description. These may be specified in-
line, as follows:

<spirit:busInterface>
<spirit:vendorExtensions>
<x:dataType>

...
</x:dataType>

</spirit:vendorExtensions>
</spirit:busInterface>

Since data types are often shared between components,
we also allow for libraries of types to be created and refer-
enced in IP-XACT component descriptions:

<spirit:busInterface>
<spirit:vendorExtensions>
<x:dataTypeRef
spirit:vendor="example.com"
spirit:library="lte"
spirit:name="resource_block"
spirit:version="1.0" />

</spirit:vendorExtensions>
</spirit:busInterface>

In components with a configurable data type, the type
may be specified using an elaboration-time configurable pa-
rameter, which allows polymorphic components to be de-
scribed:

LTE Uplink Receive

PUSCH channel

Channel
estimator

MIMO
decoder

IDFT

Uplink
SCH channel

decoder

OFDM

FFT

Resource
demapperPUCCH channel

Digital
front-end

Turbo
decoder

Demodulator
MAC
layer

DDC

LogiCORE

Composite LogiCORE

Baseband system

Key:

Custom block

Data

Control

cw

ant

ant

cw

Fig. 1. The Xilinx LTE UL RX system, showing a data type interoperability issue between the channel estimator and MIMO
decoder blocks due to different orderings of array dimensions.

<spirit:component>
<spirit:busInterface>
<spirit:vendorExtensions>

<x:configurableDataTypeRef
spirit:resolve="depends"
spirit:format="string"
spirit:dependency
="id(’PARAM_VALUE.OPERAND_TYPE’)"/>

</spirit:vendorExtensions>
</spirit:busInterface>
<spirit:parameter>
<spirit:name>operand_type</spirit:name>
<spirit:value

spirit:format="string"
spirit:id="PARAM_VALUE.OPERAND_TYPE" />

</spirit:parameter>
</spirit:component>

The schema permits a hierarchy of types consisting of
structures and multi-dimensional arrays to be described.
Structures and arrays both contain spirit:field ele-
ments as defined in the base IP-XACT schema, extended
to include an interpretation of the constituent bits which
may be a boolean, integer, fixed-point value or floating-point
value. Complex values are also permitted which can hold
two integer, fixed-point or floating-point values.

In the base IP-XACT schema, bitWidth and
bitOffset tags are associated with each field in a reg-
ister. We extend the interpretation of register fields in the
base IP-XACT schema such that they can be included in
streaming packets such as those that are transmitted over a
streaming interface.

The position of the fields within these packets may
be specified using the base IP-XACT bitWidth and
bitOffset tags, but we reinterpret the bitOffset tag
to indicate the offset from the start of the packet, rather than
from the start of a data word within that packet. This allows
packets to be described in a manner that is independent of
any particular word size, since this may be confused with the
width of a particular interface over which they are transmit-
ted. The intended interpretation is that values in the abstract

Q0A2 I0A2 Q0A1 I0A1

Q1A2 I1A2 Q1A1 I1A1 Q0A4

I0A4

Q0A3

I0A3

Q1A4

I1A4

Q1A3

I1A3Q2A2 I2A2 Q2A1 I2A1

Q3A2 I3A2 Q3A1 I3A1

Q0A2

I0A2

Q0A1

I0A1

Q1A2

I1A2

Q1A1

I1A1

TDM: false, NANT: 2 TDM: true, NANT: 4

0

t
0

t
1

t
2

t
3

t
n

t
0

t
1

t
2

t
3

t
n

163248640324864 16

Fig. 2. DUC/DDC Compiler data format in two modes: no
TDM and 2 antennas; TDM and 4 antennas.

type are mapped from least-significant to most-significant
bit across successive data beats transmitted across the inter-
face, and this allows the automatic inference of blocks to
bridge interfaces with different widths to be handled as an
orthogonal issue to the contents of the data streams.

For fields contained in an array or a complex value, we
introduce a ‘stride’ tag. The stride specifies the offset be-
tween successive elements of an array, or between the real
and imaginary values in a complex value.

The concept of array strides is particularly useful in the
DUC/DDC Compiler v2.0 LogiCORE[2], which is a con-
figurable digital up-converter or digital down-converter that
operates on parallel streams of complex data to or from a
configurable number of radio antennas. The real and imag-
inary parts of each complex value may be communicated in
parallel, or they may be sent in a time-division multiplexed
(TDM) form according to a core parameter, as shown in Fig-
ure 2.

In attempting to capture both data encoding possibilities
in the same metadata description, it is desirable to preserve
the same abstract type (a multidimensional array of complex

<x:dataType>
<x:param name="TDM"/>
<x:param name="NANT"/>
<x:param name="D_WIDTH"/>
<x:array>
<x:name>antennas</x:name>
<x:size dependency="$NANT"/>
<x:stride dependency="if($TDM)

then $D_WIDTH
else $D_WIDTH * 2"/>

<x:dataType>
<x:complex>
<x:real>
<x:bitWidth dependency="$D_WIDTH"/>

</x:real>
<x:realInLSBs/>
<x:stride dependency="if($TDM)

then $D_WIDTH * $NANT
else $D_WIDTH"/>

</x:complex>
</x:dataType>

</x:array>
</x:dataType>

Fig. 3. DUC/DDC Compiler data format expressed in XML
metadata. In parallel mode, the complex value has a stride of
one element-width, but in TDM mode the stride is the num-
ber of antennas multiplied by the element width. In parallel
mode, the antenna array has a stride of two element-widths,
but in TDM mode the stride is one element width.

values) and layer a configurable description of the type en-
coding on top of it. This allows for high-level (e.g. software)
interfaces based only upon complex values to be presented
to the user, avoiding the need to present different interfaces
for different encoding configurations of the core. This can
be achieved using array strides, as shown in Figure 3.

By using strides in this way, the behaviour of the data
interfaces on the DUC/DDC Compiler can be captured in a
single metadata description.

4. DATAFLOW METADATA

The second group of metadata extensions deals with the
dataflow properties of IP cores and software components.
We use dataflow metadata for two purposes: firstly, to de-
scribe the operation of the cores to enable correct integra-
tion; secondly, to unify IP cores and their bit-accurate soft-
ware models under a single model of computation.

Most Xilinx DSP LogiCOREs require some form of
control information, and operate in one of a number of
modes. In the first mode, control information is processed
asynchronously to the data stream, and changes take effect
some time after the receipt of the control packet. In the sec-
ond, there is a fixed dependency between the number of con-
trol packets and the number of data packets received: if, for
example, a control packet fails to arrive, the data interface

Pre-existing
LogiCOREs

Manually-defined Automatically generatedKey:

High-level type
definitions

XML type
library

CAL actor
definitions

IP-XACT component descriptions

Dataflow action references

Data type references

C++ dataflow
actions

IP-XACT
hierarchical

system design
description

IP Integrator
or NL designs

C++ actors

C++ data type
classes

C++ hierarchical
componentsDataflow action

function

“generates”

“references”

Executable binary

Fig. 4. Software generation flow.

will block until the control packet arrives. Cores of this type
are essentially synchronous dataflow (SDF) actors. In the
third mode, the relative rates of control and data are variable,
depending, for example, on data communicated in the con-
trol packet. These may be characterised as dynamic dataflow
(DDF) actors.

Examples of the first case are the XFFT v8.0 and FIR
Compiler v6.3 LogiCOREs, which have no pre-defined rate
relationship between control and data[2]. An example of
the second case is the LTE MIMO Decoder LogiCORE. An
example of the third case is the LTE PUCCH LogiCORE.

5. GENERATING A LIBRARY OF SOFTWARE
COMPONENTS

The need for software modelling has already been described,
and the first step we take is to construct a library consist-
ing of three main classes of software components: wrapped
IP core models, bespoke components, and polymorphic test
vector sources and sinks.

These components may be imported into the Xilinx IP
Catalog, allowing IP Integrator to construct software sys-
tems in addition to the HDL systems that it can already cre-
ate from the cores in the Xilinx IP Catalog.

The process is shown in Figure 4 and explained in the
following sections.

5.1. Creating data type descriptions

XML data type descriptions are created from a high-level
language. For this purpose, we have extended a simple
domain-specific language called RMAP that is used inter-
nally in Xilinx, but the toolflow is agnostic with regard to
the particular input language used.

5.2. Creating IP-XACT component descriptions with
dataflow extensions

A dataflow description of the component is created. We use
CAL[9], but as in the data type step, the flow is agnostic to
the input language.

To create new components, these CAL descriptions
are converted to an IP-XACT component description with
dataflow extensions and references to the previously-defined
data types.

To add dataflow information to existing cores in the IP
Catalog, we create a CAL description with the same name as
the core and extend the IP-XACT description for that com-
ponent with the generated dataflow metadata from the CAL
description.

5.3. Creating C++ action functions

C++ functions are written to specify the computation to be
performed when firing rules specified in the dataflow meta-
data are satisfied.

Many existing IP blocks have bit-accurate software
models, but since their APIs vary slightly they cannot be
integrated automatically. To handle this situation, we write
small wrappers which map function names referenced in the
CAL description to the function names provided by the IP
model API.

5.4. Generating C++ code

C++ classes are generated for the data types, leaf-level com-
ponents, and hierarchical components.

The data type classes contain data members, accessor
and mutator methods, and encoding and decoding functions.
The encoding functions create a byte stream using the data
in the class members, and the decoding functions read data
from a byte stream and populate the class members. A type
encoding function generated from the XML representation
is shown in Figure 5.

Component classes are generated from extended IP-
XACT component descriptions. For leaf-level components,
the manually-written C++ functions are copied into the gen-
erated file. For hierarchical components, a function is gen-
erated which schedules data movement between its subcom-
ponents.

Test vector monitor points are generated on every com-
ponent interface, which use the data type encoding functions

void cch_resmap_ctrl_packet::v_append_packet
(xuint32_packet& p) const

{
size_t s;

s = p.size();
p.resize(s + 2);
p[s] |= (get_last_tb () & (1 << 1) - 1);
p[s] |= (get_null_tb () & (1 << 1) - 1) << 1;
p[s] |= (get_bch_cch () & (1 << 1) - 1) << 2;
p[s] |= (get_start_cce () & (1 << 7) - 1) << 8;
p[s] |= (get_cch_format() & (1 << 2) - 1) << 16;
p[s] |= (get_frame_mod4() & (1 << 2) - 1) << 24;
p[s + 1] |= (get_cch_scale () & (1 << 12) - 1);

}

Fig. 5. C++ data type encoding function.

to output a byte stream to a test vector. The data in this
vector is in the format used by the IP cores and HDL com-
ponents, allowing testing of hardware blocks against their
software model equivalents.

5.5. Compiling C++ code and importing into IP Catalog

The C++ code is compiled into static objects, ready to be
linked into a binary that is generated when a system is
stitched together.

In order for the components to be imported in the Xilinx
IP Catalog, they require IP-XACT files, but we have already
generated these. The new or extended IP-XACT component
descriptions are added to the IP Catalog with a simple Tcl
command.

5.6. Generating software system models

We provide the ability to stitch systems together using a va-
riety of coordination languages, which are all converted to
an IP-XACT design description. The NL language is one
option, which is provided alongside CAL in the OpenDF
toolkit[10]. Another option is Xilinx IP Integrator, which
outputs IP-XACT design descriptions natively.

Figure 6 shows an LTE system constructed in IP Inte-
grator, with test vector sources and sinks connected to the
inputs and outputs of the system. Each source and sink is
configured with a test vector filename and a data type, such
that the data in the vector is decoded or encoded correctly.

In its standard use model, IP Integrator generates HDL
code to stitch IP cores together. Since the tool exports an
IP-XACT design description for any systems it is used to
create, the code generation possibilities can be extended in
various ways.

In this paper, we stitch together the software components
generated as described in Section 5 by generating C++ code
from IP-XACT design descriptions.

Fig. 6. Screenshot from IP Integrator showing hierarchical
blocks in the LTE downlink transmit system connected to-
gether with test vector sources and sinks.

This C++ code transfers tokens between its subcompo-
nents by executing the following algorithm:

done← false;
while !done do

done← true;
for i in subcomponent interconnections do

if !i.sourceport is empty then
done← false;
tokentype← i.sourceport.type;
tokentype token← i.sourceport.pop();
i.targetport.push(token);

end if
end for

end while

6. ONGOING AND FUTURE WORK

Our ongoing work addresses three extensions to this topic
that we hope to publish in the near future.

Firstly, with the ability to create a software model and
an HDL system of interconnected IP cores from the same
high-level description, an obvious next step is to enable the
construction of heterogeneous systems with both software
and hardware IP components. This would permit a design
flow in which a software model is produced first, and then
the software components are gradually replaced with hard-
ware components that are tested ‘in-the-loop’.

Secondly, bespoke software components have been cre-
ated by generating C++ code from metadata and adding a
C++ function to specify computation. A similar process
could be applied to generate bespoke HDL components.
This could be achieved through manual implementation or
through high-level synthesis of software code.

Thirdly, with a sufficiently detailed data type schema it
becomes possible to automatically coerce the data transmit-
ted on one interface into the type expected on another. For
example, if the data array transmitted by the master inter-
face is the transpose of that expected by the slave, a reorder

buffer can be inferred.

7. CONCLUSION

We have described metadata extensions that allow sophis-
ticated design rule checks to be performed by system-level
design environments. These extensions are categorised into
data type and dataflow groups. We have also shown that
once these extensions are added to component descriptions,
only a small amount of software code is required as user in-
put in order for the generation of full software system sim-
ulation models to be possible. Finally, we have successfully
demonstrated our generation flow in two practical systems,
namely the uplink receive and downlink transmit physical
layers of 3GPP LTE.

8. REFERENCES

[1] T. P. Perry, R. L. Walke, and K. Benkrid, “An extensible
code generation framework for heterogeneous architectures
based on IP-XACT,” in Proc. 7th Southern Conference on
Programmable Logic (SPL), 2011.

[2] “Xilinx IP Product Specifications,” Tech. Rep. [Online].
Available: www.xilinx.com/support

[3] “IEEE Standard for IP-XACT, Standard Structure for Pack-
aging, Integrating, and Reusing IP within Tool Flows,” IEEE,
Tech. Rep., 2009.

[4] R. Bergamaschi, W. R. Lee, D. Richardson, S. Bhattacharya,
M. Muhlada, R. Wagner, A. Weiner, and F. White, “Coral -
Automating the Design of Systems-On-Chip Using Cores,”
in IEEE 2000 Custom Integrated Circuits Conference, 2000,
pp. 109–112.

[5] A. Arnesen, K. Ellsworth, D. Gibelyou, T. Haroldsen, J. Hav-
ican, M. Padilla, B. Nelson, M. Rice, and M. Wirthlin, “In-
creasing Design Productivity Through Core Reuse, Meta-
Data Encapsulation and Synthesis,” in Proc. 20th Interna-
tional Conference on Field Programmable Logic and Appli-
cations, 2010, pp. 538–543.

[6] F. Doucet, S. K. Shukla, M. Otsuka, and R. K. Gupta, “Bal-
boa: A component-based design environment for system
models,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Sys., vol. 22, no. 12, pp. 1597–1612, 2003.

[7] “Recommendation X.680: Abstract Syntax Notation One
(ASN.1),” ITU-T, Tech. Rep., 2002.

[8] M. Slee, A. Agarwal, and M. Kwiatkowski, “Thrift: Scalable
Cross-Language Services Implementation,” Facebook, Tech.
Rep., 2007.

[9] J. Eker and J. W. Janneck, “CAL language report,” University
of California, Berkeley, Tech. Rep., 2003.

[10] S. S. Bhattacharyya, G. Brebner, J. W. Janneck, J. Eker,
C. von Platen, M. Mattavelli, and M. Raulet, “OpenDF: a
dataflow toolset for reconfigurable hardware and multicore
systems,” Computer Architecture News, vol. 36, no. 5, pp.
29–35, 2009.

	Abstract
	Acknowledgements
	Declaration of Originality
	Contents
	List of Figures
	List of Tables
	List of Code Listings
	List of Abbreviations
	Introduction
	Configurable logic
	Heterogeneous platforms
	Programming abstractions
	Goals
	Contributions
	Thesis outline

	Challenges in designing signal processing systems
	Xilinx LTE baseband systems
	Coding, modulation and MIMO
	Channel multiplexing and multiple access

	Challenges in LTE system design
	Automatic integration of IP cores
	Design space exploration and optimisation
	Software modelling
	Heterogeneous processing

	Summary

	Background
	Platform-based design and IP reuse
	Interface specification in IP-XACT

	Designing new components
	High-level synthesis
	Metamodelling

	Composition of components
	Models of computation
	Process networks and actor-oriented design

	Platform mapping
	Summary of existing design tools
	Conclusion

	Architecture
	Idealised design process
	Tool flow overview
	Intermediate representation
	High-level inputs
	Optimisations
	Code generation

	Implementation aspects
	Conclusion

	A metamodel for Xilinx IP cores and systems and its representation in extended IP-XACT
	Requirements
	Data type specification
	Basic type descriptions
	Hierarchical composition of types
	Data type encoding
	Naming and reference
	Parameterisation and dependencies
	Full examples

	Component behaviour specification
	Rate relationships
	Dynamic data dependencies
	Timing constraints
	Blocking
	Summary

	Discussion
	Conclusion

	Tool-assisted design of multidimensional streaming systems
	Determining buffering requirements
	Automatic buffer instantiation
	Chaining SID cores
	Custom implementation

	Determining repetition lists using pairwise propagation
	Determining repetition lists using Synchronous Dataflow
	Determining repetition sets automatically
	Determining buffer-minimising repetition lists
	Solver output

	Inferring efficient data ordering to assist in component implementation
	Eliminating redundant calculations
	Generalisation to arbitrary generation and reduction functions

	Implementation considerations
	Discussion
	Conclusion

	A software model generation framework based on extended IP-XACT
	Simple leaf-level components
	Input language
	Xmodel code generation

	Data type input and code generation
	Input language
	Xmodel code generation

	Integrating bit-accurate core simulation models
	Actions
	Parameters
	Fully automatic integration of software models

	Hierarchical components and scheduling
	Input language
	Xmodel code generation
	Enforcing correct code generation order

	Action guards
	Remaining components
	Subframe memory controller
	OFDM

	Integration into Vivado tool suite
	Test methodology
	Results
	Discussion
	Conclusions

	Conclusion
	Limitations and future work

	Bibliography
	Publications

