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ABSTRACT

As modern Data Center workloads become increasingly complex, constrained, and

critical, mainstream CPU-centric computing has had ever more difficulty in keeping

pace. Future data centers are moving towards a more fluid and heterogeneous model,

with computation and communication no longer localized to commodity CPUs and

routers. Next generation data-centric Data Centers will compute everywhere, whether

data is stationary (e.g. in memory) or on the move (e.g. in network). While deploying

FPGAs in NICS, as co-processors, in the router, and in Bump-in-the-Wire configu-

rations is a step towards implementing the data-centric model, it is only part of the

overall solution. The other part is actually leveraging this reconfigurable hardware.

For this to happen, two problems must be addressed: code generation and deployment

generation. By code generation we mean transforming abstract representations of an

algorithm into equivalent hardware. Deployment generation refers to the runtime

support needed to facilitate the execution of this hardware on an FPGA.

Efforts at creating supporting tools in these two areas have thus far provided

limited benefits. This is because the efforts are limited in one or more of the following

ways: They i) do not provide fundamental solutions to a number of challenges, which
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makes them useful only to a limited group of (mostly) hardware developers, ii) are

constrained in their scope, or iii) are ad hoc, i.e., specific to a single usage context,

FPGA vendor, or Data Center configuration. Moreover, efforts in these areas have

largely been mutually exclusive, which results in incompatibility across development

layers; this requires wrappers to be designed to make interfaces compatible. As a

result there is significant complexity and effort required to code and deploy efficient

custom hardware for FPGAs; effort that may be orders-of-magnitude greater than

for analogous software environments.

The goal of this dissertation is to create a framework that enables re-

configurable logic in Data Centers to be targeted with the same level of

effort as for a single CPU core. The underlying mechanism to this is a frame-

work, which we refer to as Hardware as a Reconfigurable, Elastic and Specialized

Service or HaaRNESS. In this dissertation, we address two of the core challenges of

HaaRNESS: reducing the complexity of code generation by constraining High Level

Synthesis (HLS) toolflows, and replacing ad hoc models of deployment generation by

generalizing and formalizing what is needed for a hardware Operating System. These

parts are unified by the back-end of HLS toolflows which link generated compute

pipelines with the operating system, and provide appropriate APIs, wrappers, and

software runtimes.

The contributions of this dissertation are the following: i) an empirically guided

set of systematic transformations for generating high quality HLS code; ii) a frame-

work for instrumenting HLS compiler to identify and remove optimization blockers;

iii) a framework for RTL simulation and IP generation of HLS kernels for rapid

turnaround; and iv) a framework for generalization and formalization of hardware

operating systems to address the ad hoc’ness of existing deployment generation and

ensure uniform structure and APIs.
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Chapter 1

Introduction

1.1 Motivation

The proliferation of digitization in all aspects of life, including healthcare, finance,

education, and governance, has resulted in massive quantities of data being produced

at unprecedented rates; everything we do generates some form of data, and everything

we don’t do does as well. Simultaneously, the requirements of processing complexity

and performance have become increasingly stringent in order to maximize utility

of this data. Simply put, we are being overwhelmed by the aggregate demand for

compute resources to effectively process all this data. The supply of Data Centers has

consequently grown and thousands of them have been deployed worldwide as shown

in Figure 1·1. These Data Centers provide massive amounts of globally accessible

compute and storage resources, connected over high speed commodity networks.

While it is possible that the aggregate compute capability available today is suf-

ficient for us to process all data effectively, practical limitations mean that we are

unable to do so. We are on the tail end of utilization of our compute resources, with

an average of less than 1% of total computing cycles spent on doing useful work.

This is shown in Figure 1·2. With a few hundred instructions possible per byte of

data, only trivial operations can be performed if all data is to be processed. On the

other hand, more complex processing would require a substantial fraction of data to

be dropped in order to prevent buildup of a backlog.

The low utilization observed in Data Centers is because the evolution of Data
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Figure 1·1: Global distribution of Data Centers (DataCenterResearch,
2019)

Center hardware has not been matched by a similar evolution of tools that target it.

The traditional node hardware has changed from different types of resources being

concentrated on different parts of the silicon, which resulted in high overhead for data

movement, to now being implemented as multiple blocks distributed chip-wide; these

blocks can be interleaved to achieve virtually infinite on-chip throughput as shown

in Figure 1·3a. Similar to nodes, the high level structure of Data Centers has also

changed as shown in Figure 1·3b. Instead of localizing compute to compute servers

(CPU-centric), we now compute everywhere (Data-centric); in compute servers, in

storage servers, and in the network. At all levels in the Data Center, however, tools

have remained primitive i.e. they target traditional models rather than the ones

implemented today. As a result, these tools are unable to leverage enhancements to

the Data Center hardware, and a substantial fraction of available resources remains

idle for a large number of cycles.
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Figure 1·2: Low utilization of Data Centers - typically less than 1%
(Cisco, 2017; Forbes, 2017)

Figure 1·3: Hardware evolution of Data Centers and Data Center
Nodes
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1.2 Technology Domain of this Dissertation: FPGAs

One example of an FPGA enhanced Data Center is Microsoft’s Azure cloud (Chung

et al., 2018). Figure 1·4 shows the structure of a Catapult 2 node in the Azure cloud

which leverages Bump-in-the-Wire (BitW) FPGAs. These BitW FPGAs are used by

system administrators for a number of applications such as encryption, machine learn-

ing, database operations, SDN offload, Bing search, QoS, and web services. FPGAs

were preferred over ASICs due to the diversity and dynamicity of these workloads;

most offloads do not remain stable for long enough, or are only used by a small

fraction of the servers.

Figure 1·4: Microsoft Catapult 2 Node in the Azure Cloud

The reality is that FPGAs are rapidly becoming first class citizens in the Data

Center. This because FPGAs: i) can achieve high throughput and low latency by

implementing specialized architecture which eliminate a number of bottlenecks and

overheads of general purpose computing, ii) consume low power and, by extension,

have high power-performance, iii) have high speed interconnects and can tightly cou-
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ple computation with communication to mask the latency of data movement, and iv)

can be configured so that each design is tuned for individual use cases. As a result,

our focus in this dissertation is the use of FPGAs in Data Centers.

TOR Switch

FPGA

FPGA

FPGA

FPGA
Smart NIC

Secondary 
Network

FPGA

Storage

Storage
Attached

Stand
Alone

Co-Processor

Bump
In

The
Wire

CPU

FPGA

Figure 1·5: Potential configurations for deploying FPGAs in Data
Center nodes

Figure 1·5 illustrates the different configurations in which FPGAs are being de-

ployed in a Data Center. BitW FPGAs, such as Microsoft Catapult 2 in the Azure

cloud, process all traffic between server and switch for performing application and

system function acceleration. Co-Processor FPGAs, such as those available in (Al-

ibaba, 2019; Amazon, 2019; Baidu, 2019; Chameleon, 2019; Huawei, 2019; Nimbix,

2019; OVH, 2019; OpenPOWER, 2019; Telekom, 2019; Tencent, 2019), provide a

traditional accelerator configuration, similar to GPUs, with an optional back-end

secondary network for direct accelerator-accelerator connectivity. Storage Attached

FPGAs process data locally on storage servers to avoid memory copies to compute

servers. Stand Alone FPGAs, such as the IBM cloudFPGA (Weerasinghe et al., 2015;
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Weerasinghe et al., 2016a; Weerasinghe et al., 2016b), provide a pool of reconfigurable

accelerators that can be programmed and interfaced directly over the network. Smart

NICs, such as those by (Accolade, 2018; Broadcom, 2019; Endace, 2019; Ether-

nityNetworks, 2019; MiTwell, 2019; Mellanox, 2018; Molex, 2018; Myricom, 2018;

Napatech, 2018; Netcope, 2018; NewWaveDV, 2018; Portwell, 2018; Silicom, 2018;

Solarflare, 2019; Vadatech, 2018), contain embedded FPGAs which perform custom

packet processing alongside a NIC ASIC. These are typically deployed in high per-

formance systems, such as those by (LANL, 2019). Finally, Network switches, such

as those by (Arista, 2019), can also contain embedded FPGAs which operate on data

as it moves through the Data Center network e.g. for compression, collectives.

1.3 Core Problem in This Dissertation

As shown in Figure 1·6, CPUs have traditionally had well defined programming mod-

els, e.g. abstractions and toolflows, and deployment support, e.g. Operating Systems

and runtime. This enables CPUs to be easily targeted and high quality software to be

developed without requiring significant prior expertise. On the other hand, FPGAs

are predominantly spatial computers, which is where they derive high performance

from. However, this is also the primary reason for FPGAs being difficult to pro-

gram. They have traditionally lacked the clean, coherent, compatible, and consistent

support found in CPUs. Herein lies the core problem that this dissertation is target-

ing; we cannot benefit from FPGAs if we cannot effectively code and deploy custom

architectures.

In this dissertation, we “CPU-ize” FPGAs by addressing current limitations of

code generation and deployment generation within the same framework. We use the

phrase “CPU-ize” to denote an advancement to the status of CPU systems. This

does not imply that this is a limit or complete (that everything needs to get done)
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Figure 1·6: “CPU-ization” of FPGAs through effective and well de-
fined programming models and deployment support

or completely the same. As shown in Figure 1·6, this work is aimed at building

programming models and deployment support similar to what is available for CPUs.

This is a good target because CPU support for code generation and deployment

generation is both extremely well-understood and much more advanced than the

state of the art for FPGA systems.

1.4 Major Parts of the Dissertation

As mentioned above, there are three major parts of this dissertation i.e. code gener-

ation, deployment generation, and the framework that links them together.

1.4.1 Framework: High Level Synthesis (HLS)

HLS refers to generation of hardware using high level languages (Intel, 2019; Xil-

inx, 2018; Nikhil, 2004; Microsemi, 2019; MathWorks, 2018; Maxeler, 2019; Mentor,

2019). The aggregate design space for these HLS tools has evolved in a predomi-

nantly rectilinear trajectory. They are relatively simple to construct since their focus

is primarily on stringing together pre-implemented modules of a limited set of key

design patterns (e.g. systolic arrays, SIMD, pipelining) and core low level hardware
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features (e.g. registers, BRAMs streams). On the front end, these tools reduce the

complexity of specifying hardware constructs in order to minimize the effort and

lines-of-code (LOC) needed to express high performance target architecture. This

frees up developers to focus only on specifying core components of the algorithm,

instead of spending substantial overhead on engineering implementations of trivial

design aspects e.g. interconnect fabric, floating point arithmetic. On the back end,

these tools replace code-sequences/constructs/semantics in the abstraction with one

or more functionally equivalent IP blocks. With the prevalent assumption being that

IP blocks (vendor ones in particular) are the most optimal approach to implementing

hardware, this method is expected to give the best possible performance.

Figure 1·7 illustrates a typical development process using HLS tools. The top half

corresponds to code generation while the bottom half is deployment generation. We

discuss both parts in detail below.

Figure 1·7: Typical HLS Flow showing the challenges of code gener-
ation and deployment generation
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1.4.2 Code Generation

Code generation targets creating high quality application hardware. The process is

similar to that of software development, as shown in Figure 1·7. Developers begin

with an initial representation of their application. Then they perform a number of

code generation iterations, first to develop a functionally correct design, and then

to converge to an optimal implementation of this design. Unlike software, however,

they are two complexities associated with hardware code generation which makes the

process both difficult and time consuming.

First, hardware generation involves developing both an appropriate algorithm for

an application and the architecture on which this algorithm will execute. As a result,

code generation relies heavily on developer expertise in providing sufficient details

regarding the algorithm and its execution. A vast design space may need to be

explored before high quality hardware is generated. It is even possible for hardware

developers to not get good performance at all due to abstractions of HLS which limit

control over low level hardware.

Second, hardware generation can take hours/days per design iteration. Therefore,

making FPGAs easier to program does not mean only decreasing initial development

overhead. Code generation should also be fast i.e. it should enable a larger number

of optimization iterations to be done within a given timeframe. This enables a faster

convergence to a high performance solution.

1.4.3 Deployment Generation

Conversely, deployment generation builds hardware and software components needed

to enable execution of workloads on FPGA systems. Provisioning of these components

by default removes the burden on developers for building them, allowing developers

to focus on implementing the core computations in their applications. Examples of
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deployment generation include: controllers for external interfaces (e.g. host, memory

network), APIs to leverage these interfaces from high level code, wrappers to ensure

compatibility between arbitrary pipeline structures and standard system interfaces,

drivers to reconfigure the FPGA from a host machine, and use of these drivers to

provide complex high speed I/O between host and device.

While deployment generation covers a vast set of statically-provided default func-

tionality, the drawback is that there is virtually no compatibility across these functions

if they are a result of independent efforts. While developers may save time by not

having to build these functions, they still need to build wrappers to address differ-

ences in APIs and functionality. As shown in Figure 1·7, this results in an additional

stage prior to deployment generation where the developer needs to build wrappers and

APIs to ensure compatibility between application hardware and the hardware operat-

ing system. Moreover, similar to code generation, this process is not one off. Multiple

iterations may be needed to converge to an acceptable solution. In the worst case,

inherent problems can result in the application hardware being completely scrapped,

and the entire process restarting from the beginning.

1.5 HaaRNESS

To truly unlock the potential of FPGAs, not only should there be further exploration

aimed at improving current practices of how hardware is generated and deployed,

but these two branches must also begin to intersect. The traditional HLS framework

must be enhanced so that it simultaneously addresses the challenges of both code

generation and deployment generation in order to develop and deploy FPGA work-

loads with minimum effort and maximum efficiency. Perhaps the most critical impact

is that this enhanced framework removes the need for developer interaction and, by

extension, requirements for expertise in FPGA programming. The entire process can
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be completely transparent, from high level representation to high quality hardware to

the subsequent deployment on the FPGA; the same level of effort as for a single CPU

core. We refer to this enhanced HLS framework as Hardware as a RecoNfigurable,

Elastic and Specialized Service (HaaRNESS).

The motivation behind HaaRNESS is for Data Centers to effectively support:

• Reconfigurablity: In order to maximize the efficiency of compute resources,

hardware must be as malleable as software. The ability to reconfigure hard-

ware allows us to tap into the best of both CPU and ASIC worlds. Similar to

ASICs, creating custom pipelines enables us to eliminate inherent inefficiencies,

constraints and bottlenecks in hardware that would otherwise reduce the num-

ber of cycles spent doing useful work. Moreover, similar to CPUs, this custom

hardware can be easily changed to cover a wide range of frequently changing

Data Center workloads.

• Elasticity: Assigning fixed quantum of reconfigurable resource (such as a full

FPGA) results in under utilization of resources, especially in workloads where

demand is a function of physical variables e.g. time of day. As a result, the

utility of unused fabric is wasted. Our goal is therefore to support elasticity

i.e. partition the reconfigurable fabric and allocate variable quanta across one

or more devices based on runtime demand.

• Specialization: Being reconfigurable does not guarantee that a design is spe-

cialized. If designs are selected from a library of pre-built architectures, devel-

opers can only choose the best case option, and not necessarily the best possible

one. Our goal is to decouple a developer’s ability to leveraging reconfigurable

hardware effectively from the developer’s expertise in hardware programming;

this will allow them to build hardware that is tailor made for their use cases.
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Figure 1·8 illustrates the target HaaRNESS flow. The input is a HLL code with

minimum use of pragmas and low level constructs. The primary goal of a developer

is to only specify the algorithm, and hence virtually no prior expertise in hardware

development is required. Then, the code generation stage automatically infers high

quality hardware from this high level representation, with negligible developer interac-

tion and rapid turnaround if design iterations are needed. Once application hardware

is generated, it can be directly passed to the deployment generation stage due to the

compatibility between code and deployment generation (which eliminates the need for

wrappers). Finally, this deployment generation wraps the application hardware with

a hardware operating system and provides the software runtime needed to program

and interface it.

Figure 1·8: The HaaRNESS flow: fast high quality code generation
and uniform deployment generation
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1.6 Contributions

While building the entire HaaRNESS framework is beyond the scope of this dis-

sertation, we target three of the core challenges here: i) reducing the turnaround

time for design space exploration, ii) addressing optimization blockers to bridge the

HDL/HLL gap, and iii) formalizing and generalizing hardware operating systems to

address thead hoc’ess in deployment generation. This dissertation makes the following

specific contributions:

1. An empirically guided set of systematic transformations for generating high

quality HLS code.

2. A framework for instrumenting HLS compiler to identify and remove optimiza-

tion blockers.

3. A framework for RTL simulation and IP generation of HLS kernels for rapid

turnaround.

4. A framework for generalization and formalization of hardware operating sys-

tems to address the ad hoc’ness of existing deployment generation, and ensure

uniform structure and APIs.

As shown in Figure 1·9, contributions 1 and 2 add a new Pre-processor stage to

the HaaRNESS toolflow that is not available in typical HLS tools, while contributions

3 and 4 augment what is currently available in the System Generator and Hardware

Operating System stages of these HLS tools. The remaining stages are used as is.

Figure 1·10 illustrates the technical organization of this project. Here, numbered

circles represent mapping of this dissertation’s contributions to each stage. Starting

with a simple HLL code, we first pre-processes it to help the HLS compiler infer

opportunities for high quality hardware generation. The resulting transformed HLL
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Figure 1·9: Specific contributions of this dissertation

code is referred to as HLL*. This is then converted into RTL using a HLS compiler; the

compiler generates both application logic and wrappers, with the latter responsible for

implementing interface mappings, schedulers, memory controllers (Load Store Units),

resource multiplexing etc. Then, application logic is isolated from the overall RTL and

interfaced with a testbench. The resulting RTL simulation provides a cycle accurate

estimate of application logic behavior and expected performance. If this performance

is not sufficient, feedback is provided to the developer to make modifications to the

starting HLL code. On the other hand, if the performance is good, the developer

has two options. They can either generate an IP for this application logic, or deploy

the application on an FPGA system. In case of the latter, the complete RTL system

generated by the HLS compiler is tested using RTL simulation. Once performance

is deemed satisfactory, hardware and software runtime support is provided to enable

execution of the application.
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Figure 1·10: Teachnical/System organization

1.7 Underlying Systems and Tools

Here we provided details for different systems and tools used in this dissertation.

1.7.1 FPGA

Our implementations are primarily evaluated using the Gidel Proc10A board (Gidel,

2019), which contains a medium-end Intel Arria10X115 FPGA. It has 427,200 logic

and 2713 RAM blocks, with a total on-chip memory of 53Mb. We use the Intel

OpenCL SDK for FPGA v16.0.2 for compiling our codes. For a limited set of appli-

cations, we implement designs using a Stratix-VD8 FPGA. This has 262,400 ALMs

and 2567 RAM blocks, with a total of 50Mb on-chip memory. OpenCL SDK v16.0.2

is used for Stratix-V compilations as well.
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1.7.2 GPU

For GPU implementations, we use the high-end Tesla P100 PCIe 12GB GPU with

CUDA 8.0. It has 3584 CUDA cores and peak bandwidth of 549 GB/s.

1.7.3 CPU

CPU codes are compiled with the Intel C++ Compiler v16.0.1. We use MKL (Intel,

2018a) libraries for CPU codes where-ever possible to ensure high performance for

corresponding applications.

1.8 Overview

The rest of this dissertation is organized as follows.

Chapter 2 discusses the previous efforts with regards to the contributions of this

dissertation. We first highlight the role FPGAs are playing in modern Data Centers

and High Performance Computing. Then we discuss related work in pre-processing

HLS kernels, modifications to the HLS compiler (primarily as an alternative to pre-

processing), system generation for application simulation and implementation, and

development of hardware operating systems.

Chapter 3 presents our approach for achieving fast turnaround for design space ex-

ploration using RTL simulations. These simulations target both application logic

directly, as well as the overall OpenCL system. Moreover, they allow testbenches to

be modified to effectively emulate devices external to the FPGAs. By moving hard-

ware generation outside optimization iterations, we are able to substantially reduce

the time taken to obtain data points.

Chapter 4 extends the approach from Chapter 3 and uses HLS generated application

logic to build IP blocks. Not only can these blocks directly replace components in

HDL systems, but the rapid turnaround and application specific design means they
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can outperform both vendor IP and ASICs.

Chapter 5 presents our empirically guided set of systematic transformations for Open-

CL kernels. These pre-processing transforms help the HLS compiler infer opportu-

nities for parallelism and significantly improve the quality of generated hardware.

We evaluate the effectiveness of our approach using parallel computing dwarfs and

network packet processing applications.

Chapter 6 presents our first principles approach for identifying and removing opti-

mization blockers. By instrumenting HLS compilers, we can identify what, where

and how optimizations are blocked. As a result, we can then modify the compiler, or

propose new pragmas for address the compiler limitations.

Chapter 7 presents our framework for formalizing and generalizing hardware operating

systems, which we refer to as Reconfigurable Hardware Operating Systems (RHOS).

We demonstrate that our proposed RHOS generator can be integrated into HLS tools,

and can effectively target a number of different configurations in which FPGAs are

deployed in Data Centers.

Finally, Chapter 8 gives our conclusion.
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Chapter 2

Background

2.1 FPGA Enhanced Computing

FPGAs enable developers to design custom systems that leverage application-specific

optimizations. Unlike GPUs, FPGAs are not constrained to data parallelism, a copro-

cessor configuration, standard data types, or other limitations of fixed architectures.

They can support virtually any computation, can be tailored based on its nature

and context, have very high resource utilization, and consume much less energy. FP-

GAs co-locate communication and computation on the same device, eliminating most

communication overhead. Additionally, device-to-device bandwidth is high while la-

tency is low and computation can be embedded within communication to drastically

improve performance.

Here we give a sample of prior work in using FPGAs for high end computing. This

includes general overviews (Herbordt et al., 2007b; Herbordt et al., 2008a; VanCourt

and Herbordt, 2009), basic work in programmability and performance (Herbordt and

VanCourt, 2005; VanCourt and Herbordt, 2005a; VanCourt and Herbordt, 2006a;

VanCourt and Herbordt, 2006c), programmability and performance using a commer-

cial tool chain (Yang et al., 2017a; Sanaullah and Herbordt, 2017; Sanaullah and

Herbordt, 2018a; Sanaullah and Herbordt, 2018b; Sanaullah et al., 2018a; Sanaullah

et al., 2018b), FPGA system design and architecture (Pascoe et al., 2010; Khan and

Herbordt, 2012; Sheng et al., 2015; George et al., 2016; Sheng et al., 2016b; Sheng

et al., 2016a; Sheng et al., 2017; Sheng et al., 2018b; Sheng et al., 2018a), FPGAs



19

used with middleware such a MPI (Xiong et al., 2018b; Xiong et al., 2018a; Xiong

et al., 2019; Stern et al., 2017; Stern et al., 2018), and many case studies involving

applications. Bioinformatics work includes studies of dynamic programming based

algorithms (VanCourt and Herbordt, 2004; VanCourt and Herbordt, 2007), heuristic

sequence alignment such as BLAST (Herbordt et al., 2006; Herbordt et al., 2007a;

Park et al., 2009; Park et al., 2010; Mahram and Herbordt, 2010; Mahram and Her-

bordt, 2012a; Mahram and Herbordt, 2015), multiple sequence alignment (Mahram

and Herbordt, 2012b), and other string matching applications (Conti et al., 2004).

Molecular Dynamics studies include surveys (Chiu et al., 2008; Chiu and Herbordt,

2010a; Herbordt, 2013; Khan et al., 2013) integration (Gu et al., 2006c), datapath

optimization (Gu et al., 2006a; Gu et al., 2006b; Gu et al., 2008), handling neighbor

lists (Chiu and Herbordt, 2009; Chiu and Herbordt, 2010b; Chiu et al., 2011), par-

ticle mapping (Sanaullah et al., 2016a; Sanaullah et al., 2016b), the long range force

using multigrid (Gu and Herbordt, 2007), the 3D FFT (Humphries et al., 2014; Sheng

et al., 2014), the bonded force (Xiong and Herbordt, 2017) and complete FPGA in-

tegration (Yang et al., 2019b; Yang et al., 2019a). Other HPC applications include

Discrete Molecular Dynamics (Model and Herbordt, 2007; Herbordt et al., 2008b),

Molecular Docking (VanCourt et al., 2004; VanCourt and Herbordt, 2005b; Van-

Court and Herbordt, 2006b; Sukhwani and Herbordt, 2008; Sukhwani and Herbordt,

2010), Microarray Analysis (VanCourt et al., 2003; VanCourt et al., 2004), Adaptive

Mesh Refinement, (Wang et al., 2019b; Wang et al., 2019a), and Machine Learning

(Sanaullah et al., 2018c; Geng et al., 2018b; Geng et al., 2018a; Geng et al., 2019b;

Geng et al., 2019a).
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2.2 Pre-Processor

In this section, we discuss the two broad categories of existing work in pre-processing

HLL code for HLS compilers: i) General Pre-processing i.e. transforms generally ap-

plicable to nearly all application domains, and ii) Domain Specific Languages (DSLs)

2.2.1 General Pre-processing

Previous work here has primarily focused on either optimizing a given application, or

characterizing the impact of individual optimizations. In case of the former, speedups

are measured with respect to either a CPU baseline code, or an OpenCL baseline code

with no optimizations (e.g., (Abedalmuhdi et al., 2017; Rodriguez-Donate et al., 2015;

Weller et al., 2017)); in both cases, the utility of the result is low since performance

improvements over these forms of baselines are expected even with trivial optimiza-

tions. In case of the latter, the space covered in previous studies for characterizing

HLS optimizations (Rodriguez-Donate et al., 2015; Jin et al., 2017b; Krommydas

et al., 2016; Jin et al., 2017a) has mostly been limited as well. Often only a common

set of simple optimizations is applied, with the initial code being written for a GPU

with Multiple Work Item Kernels. Characterizations may be limited to varying the

number of SIMD lanes or compute units.

Overall, use of HLS has generally resulted in performance being sacrificed for

programmability. In (Yang et al., 2017a), the authors have developed multi-producer

single-consumer architectures using OpenCL for processing particle interactions. The

design suffers from a significant reduction in performance as compared to Verilog

designs. Authors in (Abedalmuhdi et al., 2017) have implemented a particle in cell

simulation on an Arria 10 board using OpenCL, but only managed a 2.5x speedup

after optimizations over a single core CPU. These algorithms have traditionally shown

orders of magnitude better performance for FPGAs over CPUs due to significant
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opportunities for parallelism. Similarly, for Smith-Waterman which has typically

achieved speedups over GPUs using HDL implementations, (Rucci et al., 2017) has

shown that GPUs outperform FPGAs when OpenCL is used. In (Ulutas et al.,

2017), the authors have implemented an anisotropic Huber-L optical flow estimation

algorithm on high-end FPGA and GPU boards. Their results show that the GPU

implementation has an average speedup of 20x over FPGAs.

2.2.2 Domain Specific Languages (DSLs)

DSLs are typically built on top of existing HLS tools/frameworks and make it easier to

express efficient algorithms for the target domain. This can be achieved through cus-

tom data structures, semantics, compiler directives etc. A popular area of research for

DSLs in previous work has been network packet processing. Microsoft’s ClickNP (Li

et al., 2016b) uses an OpenCL front end to help developers specify target workloads

using provided semantics and library components. The resulting design is translated

to intermediate C code, and then compiled using the standard vendor High Level

Synthesis (HLS) toolflow. As shown in (Li et al., 2016a), ClickNP uses both OpenCL

code and custom RTL for building designs. The Xilinx SDNet PX programming

language (Xilinx, 2019) uses object-oriented programming to specify required packet

processing components and their connectivity. The actual implementation of rules

applied to packets is done automatically. P4FPGA (Wang et al., 2017) uses Bluespec

System Verilog to implement a match-action table model. The Flowblaze abstraction

(Pontarelli et al., 2019) extends match-action languages by enabling them to store

per-flow state. Emu (Sultana et al., 2017) is a framework which provides a library for

building network functions, as well as run time and debugging support. The draw-

back of DSLs is that while they successfully address the programmability problem for

a given domain, they cannot be used for other application domains. Moreover, even

when using DSLs, the developer is still typically required to have existing knowledge
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of how algorithms map to hardware.

2.3 HLS Compilers

While modifying the HLS compiler is not one of our contributions, we still discuss pre-

vious work here since these modifications can serve as an alternative to pre-processing.

2.3.1 Profiler Driven HLS

Profiler driven HLS uses analysis of the Intermediate Representation (IR) to guide

the transformation process. Authors in (Huang et al., 2013) use profiling to accept or

reject compiler passes based on predicted impact on the number of hardware execution

cycles. The drawbacks of their approach are that i) all profiling is done based on

a single estimated metric and ii) it does not provide feedback regarding inherent

problems in the application algorithm. Work in (Wang et al., 2016) performs a more

indepth analysis of the IR. Authors first provide a GPU-like execution model for

FPGAs based on OpenCL. Through custom built-in LLVM passes, they capture a

number of parameters in the LLVM IR, which are then used in combination with user

inputs, compilation reports etc to identify performance bottlenecks. The drawbacks

here are that i) a GPU model for FPGAs is inefficient (discussed in detail later) and

ii) there is a reliance on data apart from static profiling e.g. kernel frequency.

2.3.2 Compiler Enhancements

Compiler enhancements typically improve the manner in which existing compilers

perform certain operations, by either modifying how a particular pass is done or

adding newer ones to augment it. Authors in (Ben-Nun et al., 2019) present an im-

proved IR for targeting scientific data center workloads. Their Stateful DataFlow

multiGraph (SDFG) separates code definition from its optimization, and allows high

performance hardware to be generated without modifications to the original code.
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The drawback to their approach, however, is that it requires programmer interac-

tion (and by extension, expertise) to perform transformations on a SDFG. Another

modification to the IR is provided in (Zhang et al., 2010), where authors present a

Bitwise-Only Data Flow Graph (BO-DFG). This is aimed at providing expressibility

for bitwise operations only, so that they can be analyzed and optimized. Results of

this process can then be converted into instructions in the standard DFG. Authors in

(Richter-Gottfried et al., 2016) provide limited enhancements to the OCLAcc com-

piler by only adding support for implementing conditional branches and custom data

widths.

2.3.3 Custom Compilers

Custom compilers are perhaps the most complex solutions since they involve designing

compilers that do a majority, if not all, of the code transformations needed to generate

hardware. LegUP (Canis et al., 2011) is one of the most popular compilers in this

regards, since it is open source and allows new HLS algorithms to be easily explored.

Unlike traditional compilers, LegUP targets hybrid system generation, mapping code

to a combination of specialized pipelines and softcores. Similar to LegUP, the Trident

compiler (Tripp et al., 2005) also provides an open framework, but is specifically

aimed at exploring floating point algorithms. Authors in (Koeplinger et al., 2018)

present the Spatial compiler which generates Chisel RTL code. Unlike typical HLS

compilers, Spatial automatically performs a number of code transformations that

otherwise require manual tuning in traditional HLS tools.

2.4 System Generator

Here we discuss the existing state of the system generator stage. Our focus is pri-

marily on: i) analyzing the output of HLS compilers for functional verification and

performance estimation i.e. Test System Generation, ii) packaging of application logic
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into IP blocks, and iii) alternative to (ii), wrapping application logic and providing

appropriate runtime support to deploy and interface application logic on the FPGA

system i.e. Board Support Packages.

2.4.1 Test System Generation

Emulation

Emulation is used to simulate kernel code for functional verification. Compiling for

emulation allows the compiler to generate CPU equivalent code for FPGA-specific

constructs, such as channels, and then execute the entire computation in software.

This is not only useful for ensuring that computation and memory accesses have

been correctly defined, but can also identify run-time faults, such as occurrences

of deadlocks. It does not, however, provide any information regarding kernel code

mapping to hardware or estimated performance.

Reports

We treat reports output by the HLS compiler as static systems i.e. a non compile-

able representation of the OpenCL system. Reports are generated by the compiler

to provide an overview of kernel translation to hardware. Here, we briefly list the

main categories of these reports and their contribution towards code optimization. A

comprehensive list of reports and their detailed description are provided in the Intel

OpenCL best practices guide (Intel, 2018c).

• Loop analysis is used to determine initiation intervals (II) for loops in the

kernel and the dependencies causing high IIs. Resolving these dependencies

allows loops to operate stall free.

• Area analysis provides estimates of resource usage and implementation details

for data structures. This is particularly useful for determining whether the
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compiler has correctly inferred the optimal hardware based on access patterns,

or is resorting to sub-optimal, high-resource “safe” options such as memory

replication and barrel shifters.

• System viewer gives a graphical overview of the kernel computation and

memory accesses. Kernel execution is represented as sequential blocks, with

each block carrying out a varying number of operations such as memory trans-

actions, channel calls and loop iterations. Details provided include latencies,

stalls, types and sizes of Load-Store units created for each memory transaction,

and the dependencies between blocks.

• Kernel memory viewer gives a graphical overview of the connectivity of

Load-Store units with external memory banks. This can be used to verify that

the compiler has correctly inferred off-chip access patterns.

Similar to Emulation, reports do not guarantee good performance. Kernel codes

with no loop dependencies, initialization intervals equal to 1, efficient memories and

low latencies can still be sub-optimal. This is because little information is provided

regarding the composition, organization, and connectivity of compute pipelines. To

truly identify bottlenecks in the design and optimize them, low-level details are re-

quired regarding implementation and behavior of the entire system.

Co-Simulation

Co-simulation refers to the automated generation of RTL test systems from HLL

code. Developers provide both the HLL application function code and a set of HLL

test inputs. The former is converted into RTL while the latter is used to generate

test vectors that be applied to the inputs of this RTL. There are several drawbacks

of co-simulation. First, it is not always supported in a toolflow e.g. Intel OpenCL.

Second, it only tests the application logic and cannot simulate the execution of the
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full HLS generated system (including wrappers). Finally, the testbench is constrained

since it is built automatically from HLL test inputs. As a result, the testbench cannot

effectively model the latencies and behavior of devices external to the FPGA. In the

worst case, inaccurate feedback resulting from improperly modelled test environments

can result in developers converging to a design that, when actually implemented on

an FPGA, gives worse performance than naive code; it is likely to fail to execute

altogether if deadlocks were not properly identified.

2.4.2 IP Generation

Tools such as Intel HLS (Intel, 2019) and Vivado HLS (Xilinx, 2018) provide the

option of generating IP directly from application HLL code, instead of creating a full

system as is in the case of Intel OpenCL. This enables the creation of a library of

building blocks that can be joined together to form complex systems. Since each block

is built separately, both the hardware generation time and complexity are reduced.

The drawback of these IP generation tools, however, is that they can only generate

IP for simple functions; designs containing structures such as multi-function code,

global arrays or channels are not supported.

2.4.3 Board Support Packages

A Board Support Package (BSP) is a set of components needed to target a particular

FPGA board using Intel OpenCL SDK for FPGAs. Every unique FPGA board

will have its own BSP even if it uses the same FPGA as other boards. This is

similar to the BSP in software, which contains code specific to the hardware on

which the OS executes. The low level components in an FPGA BSP include drivers,

APIs, compilation scripts, pin-out mappings, fabric partitions, freeze wrappers, and

a hardware operating system. A number of such BSPs are available from different

vendors (Nallatech, 2018; BittWare, 2018; Gidel, 2018). In this dissertation, we focus
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on two primary challenges associated with the hardware operating system of the BSP.

First, it is on the critical path of data movements between the kernel and host/off-

chip-memory interfaces; if the hardware operating system is not well designed, it can

limit the maximum achievable performance. Second, hardware operating systems

consume a significant portion of the FPGA fabric which reduces the amount of logic

available to applications; an inefficient hardware operating system design can cause

compilations to fail due to insufficient fabric availability.

2.5 Hardware Operating Systems

Here we present previous efforts in hardware operating systems for FPGAs (not ex-

clusive to those found in BSPs). These are commonly referred to as “Shells”. A Shell

is an arbitrary set of static features that encompass one or more custom logic regions.

We refer to static logic as a part of the FPGA fabric that can only be modified through

full reconfiguration, while custom logic regions are dynamically reconfigured through

(significantly faster) Partial Reconfiguration (PR). The purpose of shell hardware is to

reduce developer effort by providing key functionality, such as memory/network/host

controllers and PR, as well as managing interconnects between different static and

reconfigurable components. As shown by the literature survey below, the design of a

Shell is ad hoc i.e. it is based on the requirements of individual contexts, instead of

a formal structure.

2.5.1 Microsoft

Microsoft has developed two Shells for deploying large scale multi-FPGA systems as

part of the Catapult project: Catapult 1, which is a rack-scale infrastructure, and

Catapult 2, which can scale to millions of nodes.
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Catapult 1

Deployment of Catapult 1 (Putnam et al., 2014; Microsoft, 2018a) was done using a

1632 server testbed and initial evaluation showed a 95% per server throughput input.

Figure 2·1a shows an overview of Catapult 1 nodes (purple). The CPU and FPGA in

each node communicate via PCIe. For external connectivity, dual network interfaces

are used. The first is Ethernet based, which enables CPUs to communicate with

each other over the commodity data center network. The second is a specialized, low

latency (order of 100ns) network implemented using 10Gb SAS cables which connects

FPGAs to each other. The topology for the second network is a 2D torus. Figure

2·1b provides details of components within the FPGA. Here, custom offload logic is

implemented within an FPGA fabric allocation called “Role”, while the Shell logic is

composed of:

• PCIe Core: This is used to implement an interface between the host CPU and

the corresponding FPGA.

• SerialLite III (SL3): This is a lightweight protocol used for inter FPGA commu-

nication over the SAS links. Since each FPGA connects to four other FPGAs

(2D Torus), there are four SL3 blocks in the Shell.

• DRAM Controllers: These are used to provide off-chip memory access to the

Role or host (for DMA over PCIe).

• Inter-FPGA Router: A crossbar that connects the four SL3 blocks, PCIe Core

and Role. A software configured routing table makes routing decisions, while a

virtual cut-through transport protocol is used.
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(a) Dual network deploy-
ment with FPGAs being
connected through a sec-
ondary dedicated network

(b) Shell architecture (Mi-
crosoft, 2018b)

Figure 2·1: Microsoft Catapult 1

Catapult 2

To the best of our knowledge, Microsoft Catapult 2 (Caulfield et al., 2016) is the only

production system (deployed on all new Microsoft servers) that offers direct connec-

tivity between FPGAs and the data centre network in a Bump-in-the-Wire (BitW)

configuration. Figure 1·4 shows an overview of the architecture of a Catapult 2 node.

Each node contains two CPUs with Quick Path Interconnect (QPI) to enable fast

inter-CPU communication, a discrete NIC and a discrete FPGA. CPUs do not have a

direct network connection. Rather, all CPU based network traffic first passes through

a discrete NIC, which in turn connects to the FPGA. Logic within the FPGA is then

responsible for managing contention for Top of Rack (ToR) connectivity between

CPU and FPGA based traffic. Use of a discrete NIC enables network offload and

packet transport functionalities, without the resource, performance and complexity

overhead of implementing them in the FPGA. On the other hand, use of a discrete

FPGA (as opposed to an FPGA enhanced NIC), enables an independent FPGA-CPU
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PCIe connection for interfacing offloaded logic.

Figure 2·2 shows the intra-FPGA connectivity of each FPGA. Similar to Catapult

1, regions for implementing custom offloads are referred to as “Roles”. Unlike Cata-

pult 1 however, the FPGA can have multiple Roles. The Catapult 2 Shell includes:

• Network Bridge and Bypass: This enables the functionality of passing packets

between the NIC and TOR interfaces. A tap is also implemented which allows

Roles to “inject, inspect and alter the network traffic as needed”.

• Lightweight Transport Layer (LTL) Protocol Engine: This enables communica-

tion between the local FPGA and other local and remote devices in the data

center.

• Elastic Router (ER): This is a credit based, input buffered crossbar switch that

is used to support communication between different endpoints on the FPGA,

such as individual Roles and Shell functions. The ER can be customized based

on requirements for “number of ports, virtual channels, flit and phit sizes, and

buffer capacities”. Credit based flow control is used, with credits shared between

multiple virtual channels.

• PCIe Gen 3: This is used to interface offloaded functions with the CPU, as well

as perform DMA operations.

• DDR3 Controller: This is used to provide off-chip memory access to FPGA

logic.

2.5.2 SAVI

The Smart Applications on Virtual Infrastructure (SAVI) testbed is a nation-wide

deployment of heterogeneous infrastructure in Canada (SAVI, 2019). There are two



31

Figure 2·2: Microsoft Catapult 2 Shell architecture (Caulfield et al.,
2016)

notable efforts for providing system support for FPGAs within this testbed, which we

refer to as Byma et al (Byma et al., 2014; Byma, 2014) and Tarafdar et al (Tarafdar

et al., 2017).

Byma et al

Figure 2·3 illustrates FPGA connectivity in the SAVI testbed. Each server node is

composed of a host CPU and FPGA. CPU-FPGA connectivity is over JTAG (pos-

sibly USB based), which is used for providing i) UART interfaces to provider logic,

and ii) Partial Reconfiguration (PR) functionality. The CPU runs an agent, which

is responsible for provisioning custom logic by interfacing a remote OpenStack con-

troller and implementing functions such as getting available resource on the FPGA,

programming with a PR image, deleting PR image, and set/reset of MAC addresses.

Both FPGA and CPU have Ethernet links (10G and 1G) with the testbed network.

Figure 2·4a shows the FPGA architecture. Custom logic is referred to as Virtu-

alized FPGA Resources (VFRs), while Shell logic is referred to as static logic. The

latter is controlled by the Provider and implements the following blocks:

• Input Arbiter: As shown in Figure 2·4b, the Input Arbiter moves incoming
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unicast (multicast not supported) packets to their corresponding VFR. The

CAM is used to lookup this VFR based on the Destination MAC field in the

packet header. If it does not map to any VFR, the packet is dropped.

• Soft Processor: Interfaces the CPU Agent over UART and is used to set MAC

values and their corresponding VFR IDs in the CAM.

• Output Queue: This adds the source MAC addresses to outgoing packets to

ensure they cannot be spoofed.

• VFR Wrapper: Shown in Figure 2·4c, the VFR wrapper implements interfaces

between individual VFRs and Network/DRAM. Moreover, it prevents bus val-

ues for these interfaces from changing when the VFR is being reconfigured.

• Memory Operations Queue: This is part of the VFR wrapper and is used to

restrict VFR access to physical memory. Each VFR is assigned a limited private

address space, and the Memory Operations Queue ensures tenants cannot access

memory outside this.

Tarafdar et al

The authors have presented a framework for implementing logical connectivity of of-

floaded FPGA kernels that may reside on different physical FPGAs with network

connectivity. Figure 2·5 shows the connectivity between CPU and FPGA within a

node. The PCIe interface is used to program the FPGA through Partial Reconfigu-

ration and perform DMA reads/writes to the off-chip DRAM. Network connectivity

has not been illustrated in this figure but, based on the text, it can be derived that

both CPU and FPGAs are directly connected to the network. Shell logic is referred

to as a “Hypervisor” while custom offloads are implemented in the “Application Re-
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Figure 2·3: FPGA connectivity in the SAVI testbed (Byma et al.,
2014). The VFR agent runs on the server CPU and interfaces the
FPGA over UART for management. The FPGA also has a direct con-
nection to the data center network (not shown).

Figure 2·4: a) FPGA architecture showing an overview of important
modules and their connectivity. b) The Input Arbiter for filtering in-
coming packets and mapping them to the correct VFR. c) VFR wrapper
for implementing interfaces between VFR and Network/DRAM, and for
freezing interfaces during reconfiguration. (Byma et al., 2014)



34

gion”. It is important to note that authors have not implemented support for Partial

Reconfiguration in their current design.

Figure 2·6a illustrates the layout of the “Partial Reconfig” region. The FPGA is

composed of three blocks outlined below. Of these, Input and Output modules act

as wrappers for the custom offloads.

• Input Module: As shown in Figure 2·6b, the Input Module consists of Input

Bridge (IB) and Input Demultiplexer (ID) blocks. The former implements a

firewall that only allows MAC addresses assigned to the FPGA to pass through.

It also replaces Ethernet headers with information regarding the destination

kernel within the FPGA. The latter is responsible for sending incoming valid

data to the appropriate user kernel. If the destination is on a remote node, it

bypasses local kernels and is sent directly to the Output Module.

• User Kernels: This is used to implement custom offloads. Based on Figure 2·6b,

we assume that multiple kernels can be implemented within this assigned fabric.

• Output Module: As shown in Figure 2·6c, the Output Module is composed

of Packet Formaters (PFs) and an Output Switch. The PF block adds MAC

headers to each packet, while the Output Switch uses round robin arbitration

to address contention for the egress network port.

2.5.3 cloudFPGA

The cloudFPGA Shell (Weerasinghe et al., 2015; Weerasinghe et al., 2016a; Weeras-

inghe et al., 2016b; Abel et al., 2017) by IBM Zurich targets disaggregated deployment

of FPGAs in hyperscale data centers. By decoupling FPGAs from host CPUs and

directly connecting them to the network, clusters of multiple stand alone FPGAs can
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Figure 2·5: Overview of a SAVI testbed node, hypervisor configured
in the FPGA, and CPU-FPGA connectivity (Tarafdar et al., 2017)

Figure 2·6: a) Layout of the Partial Config region. b) Overview of the
Input Module. c) Overview of the Output Module. (Tarafdar et al.,
2017)
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be constructed. The authors claim that disaggregation enables greater compute ca-

pacity to be implemented within the same volume and power budget. Figure 2·7 gives

an overview of cloudFPGA node. The FPGA is directly connected to the Data center

traffic, independent of CPUs. The off-chip DRAM is assigned the same MAC and

IP address as the FPGA, but a different port number, and can be accessed by both

local logic and remote devices. The node also stores bitstreams in a nonvolatile flash

memory; rebooting the FPGA reconfigures it using the stored bitstream. The authors

also claim that the node contains optional scratchpad memories (not shown). Custom

offloads are referred to as “user logic’. The user logic in turn can contain 1 or more

“vFPGAs”. Figure 2·8 shows the intra-FPGA connectivity of the cloudFPGA system.

The Shell logic is primarily composed of Network, Memory and Application interfaces

which are responsible for moving data between vFPGAs and memory/network. For

the network interface, the authors have used static ARP tables, static UDP/IP tables,

and vFPGA-MAC-IP tables (which contain MAC and IP addresses of each vFPGA

and are dynamically assigned).

Figure 2·7: Overview of cloudFPGA node(Weerasinghe et al., 2016a)
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Figure 2·8: FPGA Architecture and connectivity for cloudF-
PGA(Weerasinghe et al., 2016a)

2.5.4 AWS F1

Amazon’s AWS F1 (Amazon, 2018) instances are one of the most popular production

FPGA deployments, with a global user base/community. Figure 2·9 illustrates the

intra-FPGA connectivity. Custom offloads are called Custom Logic (CL). The Shell

contains the following major components:

• Management Physical Function (MGT PF): “The Management PF provides ac-

cess to various control functions like Virtual-LED, Virtual-DIP Switch, Virtual

JTAG, FPGA metrics, and AFI management (load, clear, etc...).”

• Application Physical Function (APP PF): This is used to implement function-

ality for custom offloads, such as DMA.

2.5.5 Novo G#

Novo-G# (George et al., 2016) is a dual network multi-FPGA system, with indepen-

dent networks for CPUs and FPGAs. The focus of this work is research based i.e. to

explore integration of communication and computation using FPGAs, without being
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Figure 2·9: Overview of the FPGA Shell in an AWS F1 in-
stance(Amazon, 2019b).

restricted by particular applications, and in a manner that enables general usability

and applicability to a wider pool of workloads.

Novo-G# connectivity is similar to Catapult 1, shown in Figure 2·1a. The FPGAs

are connected in a 4x4x4 3D Torus (as opposed to 2D Torus for Catapult 1), using 24

high-speed transceivers. There are six connections in total (+x,-x,+y,-y,+z,-z) and

so four transceivers are used per connection. The CPUs are connected through a

commodity network, and communicate with FPGAs using PCIe. Figure 2·10 shows

the Shell architecture. Custom offload logic is referred to as “App Logic” while the

Shell itself implements the 3D torus network stack. This stack is composed of two

major components:

• Routing Blocks: These are used to route incoming data to egress FIFOs. Each

block implements a statically scheduled node-table routing and a Virtual Chan-

nel based switch with 4 or 7 stage pipelines (based on supported features).

• Transceiver Blocks: These are low level IP blocks which interface the high-speed

transceivers.
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Figure 2·10: Overview of FPGA architecture and connectivity for
Novo-G# (George et al., 2016)
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Chapter 3

Enabling RTL Simulation for Intel FPGA

OpenCL Kernels

3.1 Motivation

One of the primary goals of this dissertation is to achieve fast code generation. As

discussed earlier, the design space for FPGAs is massive since both the algorithm

and the architecture on which this algorithm executes need to be built. A substantial

number of code generation passes are thus spent on first building an initial archi-

tecture, and then tuning it to maximize performance and minimize resource usage.

In order to achieve fast code generation, we need to reduce the time taken per code

generation pass. This is achieved by reducing the overhead of analyzing the effec-

tiveness of code generation; if we can perform this analysis faster, we can do more

design/optimization iterations per unit time and converge to an optimal solution in

smaller timeframes. This will allow us to not only apply current best practises of

writing OpenCL code relatively quickly, but to also leverage the rapid turnaround

to explore other approaches that can bridge the performance-programmability gap in

HLS.

3.2 Analyzing Code Generation

Here we discuss three alternatives for analyzing code generation. Alternative 1 is to

do a full compilation, i.e. synthesis and place& route, and then analyze the resulting
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hardware. This is illustrated in Figure 3·1. The drawback of this approach is that

hardware generation is placed in the critical path of each design/optimization iter-

ation. This means that each individual iteration can take hours/days based on the

complexity of input code, and the overall process can take many months to complete.

Alternative 2 is co-simulation; as discussed in chapter 2, this has a number of limita-

tions and hence is not a viable approach. Alternative 3 is referred to as “transplant”.

While hardware generation can take a long time, the RTL for the design is available

within a few seconds/minutes. If we can leverage this RTL to estimate performance

and behaviour, by isolating it from the hardware operating system and wrapping

it with a custom test environment with negligible constraints, we can achieve both

reliable and rapid turnaround.

Figure 3·1: Analyzing code generation effectiveness by fully compiling
to hardware. Each design/optimization iteration can take hours/days,
and the overall process can take many months.

Figure 3·2 illustrates our two approaches for “transplanting” OpenCL kernels.

The first approach is a simulation of the full OpenCL kernel by implementing a

custom Board Support Packet (BSP), called SimBSP. Unlike a traditional BSP which

implements support for memory and host controllers, SimBSP wraps kernel logic with

a testbench which initializes kernel parameters and interfaces the data and control

signals. The second approach is to isolate application logic from the overall kernel

logic and test the former. Kernel logic contains a number of wrappers which can limit

the test vectors that can be applied to the actual application hardware. By extracting

the OpenCL generated application logic, which we refer to as OpenCL-HDL, we can
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overcome this limitation. These two approaches are discussed in detail below.

Figure 3·2: Our “transplant” based framework for simulating OpenCL
kernel logic (SimBSP) and application logic (OpenCL-HSL).

3.3 SimBSP

In this section, we present our implementation of SimBSP. It is composed primarily of

two components, (i) a testbench template that can interface Intel OpenCL generated

kernels, and (ii) compilation scripts for generating simulation models and setting up

the simulation environment.

3.3.1 Testbench

Here, we discuss details regarding the SimBSP testbench template. We first describe

the interfaces exposed by the kernel module (instantiated within the testbench). We

then list the configuration registers that are used to set kernel parameters; the test-

bench must assign appropriate values to these registers before kernel execution can

be started.
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Kernel Interfaces

Table 3.1 provides details regarding instantiated kernel ports. Clock frequency is

determined at compile time based on post-routing timing models and so an accurate

value cannot be known for simulation. Therefore, performance estimates made us-

ing SimBSP are a measure of compute latencies, instead of actual execution time.

kernel cra is an Avalon Memory Mapping (AVMM) slave interface to configura-

tion registers within the kernel while kernel mem0 is an AVMM master interface

for reads/writes to external memory. kernel irq is a 1-bit flag raised on kernel com-

pletion. Finally, the crc snoop streaming slave interface is not used in SimBSP since

it is not directly involved in kernel execution.

Table 3.1: Kernel Interface and Descriptions

Name Type Interface Description
clock clk Clock Kernel clock

clock reset n Reset Active low kernel reset
cc snoop Streaming Not used
kernel cra Memory Mapped Interface to configuration registers
kernel irq Interrupt Interrupt to host machine

kernel mem0 Memory Mapped Interface to global memory

Configuration Registers

Table 3.2 lists the addresses and kernel parameters that are stored in configuration

registers. These registers are 64 bits wide, and the testbench can set the value of an

entire register (2 32-bit parameters) every cycle using the kernel cra port. Once all

configuration registers have been assigned required values, setting Bit 0 of the register

at address 0x0 triggers the start of kernel execution.

Apart from specifying the shape and size of work-items/work-groups, configura-

tion registers are also used to store 64-bit pointers to off-chip memory for kernel

arguments. Since the number of kernel arguments can vary for individual applica-

tions, addresses from 0x60 onwards can all be used for this purpose.
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Table 3.2: OpenCL Configuration Registers

Address Bits [63:32] Bits [31:0]
0x0 - Start (Bit 0)
0x28 Workgroup Size Workgroup Dimensions
0x30 Global Size[1] Global Size[0]
0x38 Number of Workgroups[0] Global Size[2]
0x40 Number of Workgroups[2] Number of Workgroups[1]
0x48 Local Size[1] Local Size[0]
0x50 Global Offset[0] Local Size[2]
0x58 Global Offset[2] Global Offset[1]

0x60 - end Argument Pointer[63:32] Argument Pointer[31:0]

3.3.2 Compilation Scripts

In this section, we present the compilation scripts that are used as part of the Intel

OpenCL toolflow to enable RTL simulation. There are two such scripts used by

SimBSP as shown in Figure 3·3, i.e. simulate.tcl and msim setup.tcl, while the entire

process is divided into three stages. These stages are discussed in detail below. It is

important to note that only simulate.tcl is a new contribution, while msim setup.tcl

is automatically generated when compiling for simulation.

• Stage 1: We use the standard command for kernel compilation, i.e. aoc kernel.cl,

to invoke a C to HDL translation stage. The result of this translation is a QSYS

(Intel, 2019) system file which contains the kernel implementation.

• Stage 2: After generating the QSYS file, the compiler automatically runs our

custom script called simulate.tcl. This script performs three important func-

tions. First, it removes logic that cannot be simulated from the QSYS system;

this logic can be safely eliminated since it corresponds to modules that do not

impact kernel execution, e.g., System Description ROM. Next, the QSYS file

is compiled for simulation in order to generate the required HDL files. Finally,

the default testbench is replaced with a SimBSP testbench. At this point,

the simulation directories have been set up, and so the command aoc kernel.cl
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terminates.

• Stage 3: In the last stage, we use Modelsim to manually source the final script,

i.e. msim setup.tcl. This will compile the generated HDL (from stage 2) and

launch the RTL simulation.

Figure 3·3: The compilation process used by SimBSP to generate
simulation models. Blocks in the dashed rectangle represent the stan-
dard Intel OpenCL toolflow, while the remaining blocks are specific to
SimBSP.

3.4 OpenCL-HDL

OpenCL-HDL is available early in the compilation process. Therefore, similar to

SimBSP, we create a custom BSP for OpenCL-HDL which terminates the compilation

process once HDL is generated. This prevents unnecessary time spent in compiling

the full design, and allows the process to be automated by eliminating the need for

manual termination.

The compiler places source files in a directory relative to the kernel file. Specifically

this is [Path to Kernel File]/<kernel filename>/kernel subsystem/<kernel filename
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> system 140/synth/. The file <kernel filename>.v contains the implementations for

all kernels in the compiled OpenCL source. Other files include <kernel filename>

system.v, which is a wrapper, and the Intel modules that form the lowest level in the

design hierarchy. These building blocks can range from commonly used components,

such as FIFOs and Load-Store Units (LSUs), to kernel-specific ones, such as floating

point arithmetic units. While Intel maintains a large number of modules, only those

identified by the compiler as required are copied here. Before using these files, how-

ever, it is important to change their file extension to .sv from .v due to certain syntax

that would otherwise prevent compilation as Verilog. In the remaining sections of

this paper, we refer to <kernel filename>.v as the OpenCL-HDL source.

3.4.1 Basic Blocks

The OpenCL toolflow compiles kernels through multiple modules called basic blocks,

and uses a function module to describes their connectivity. The observed rules for

basic block module generation are as follows. Typically, each loop generates a ba-

sic block module. Nested normal loops will generate their independent modules and

are connected by their parent loop module. Unrolled loops will also generate a sepa-

rate module. However, consecutive unrolled loops, or any unrolled nested loop within

an unrolled loop, will not generate a new module.

3.4.2 Interfaces

We broadly categorize common interfaces to be either LSU, Direct, Control, Feed-

back, or Don’t Care. A basic block can have variations in the number and types

of these ports based on individual applications and problem sizes. Modifying inter-

faces eliminates hardware that was required for interfacing the pipelines with the

BSP OpenCL wrappers (and hence does not impact the functionality of our applica-

tion logic). This reduces resource usage and simplifies data paths resulting in lower
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latency. Once the interfaces have been mapped, the module can be used for RTL

simulation or integrated into a different HDL shell for compilation.

Load Store Unit (LSU) ports consist of Avalon interfaces to LSU modules.

LSU modules source and sink data to application logic and are typically created,

one per variable per operation (read/write), when a memory access depends on the

outer loop iterator. Both the module, as well as the Avalon protocol, have asso-

ciated overheads which can be removed by interfacing pipelines directly with vari-

able data. We bypass these LSU modules by creating explicit variable input/output

ports and connecting them to the corresponding LSU module’s source/sink interfaces

(o readdata/i writedata). The Quartus compiler then removes the LSU modules dur-

ing fitting optimizations.

Direct ports are automatically generated by the compiler to supply data directly

to application logic without requiring LSU modules or the Avalon protocol. They can

be further categorized into Constants, Variables, and Initialization. Constant direct

ports correspond to kernel inputs that are individual elements (instead of pointers).

Variable direct ports correspond to cases where the LSU unit is moved outside the

basic block. This can occur if the outer loop variable is not used to index/address

memory accesses, or if the problem size is too small. Initialization direct ports are

used to load initial values for (outer/inner) persistent variables.

Control ports primarily consist of clock, reset, Stall, and Valid ports. Stall ports

are used by a basic block to stall upstream modules, while Valid ports are used to

stall downstream basic blocks. Since we isolate the application logic from the overall

system, we hardwire both Stall and Valid ports. As a result, the Quartus compiler

minimizes or removes the associated stall hardware during fitting optimizations.

Feedback ports are typically generated to maintain the state of loop carried

dependencies. They are created in input-output pairs, with the output feedback
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ports being looped back and connected to input ports of the same basic block. If

the OpenCL compiler generates individual feedback inputs (and not pairs), then we

hardwire them since these correspond to selecting between initial and run-time values

of the loop carried dependencies.

Don’t Care ports can correspond to a variety of logic such as parallel control and

data paths that do not interact with application logic, or logic that interfaces LSU

modules, e.g., address computation. Leaving Don’t Care ports unconnected optimizes

away these unnecessary resources.

3.5 Validation

We validate our approach using RTL simulation and comparing the results of the

simulation with those obtained through Emulation (discussed in chapter 2) for the

same test test vectors. For example, Figure 3·4 shows the waveforms obtained from

compiling a simple matrix multiply kernel using SimBSP. The final results for the

RTL matched those from CPU, within a reasonable difference due to floating point

computations.

Figure 3·4: Waveforms for RTL simulation of a Matrix Matrix Mul-
tiplication kernel
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3.6 Impact Contribution

As illustrated in Figure 3·5, use of SimBSP and OpenCL-HDL moves hardware gen-

eration out of the design/optimization iterations. As a result, we can now obtain

substantially more data points for our design space exploration within a give time-

frame, which results in a faster convergence to the optimal solution as compared to

Figure 3·1.

Figure 3·5: Use of our RTL simulation framework can reduce the
time taken per design/optimization iteration from hours/days to sec-
onds/minutes.

3.7 Conclusion

In this chapter, we presented a “transplant” based framework for generating RTL test

systems. This was composed of two parts. The first was integration of full OpenCL

kernel simulations into the Board Support Package due to the standard interfaces

exposed by wrapper logic. The second was generating OpenCL-HDL by decoding ad

hoc interfaces of application logic to reduce the complexity of interfacing it. As a

result of this contribution, we can perform experiments towards exploring OpenCL

optimizations in substantially small timeframes.
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Chapter 4

IP Generation using HLS toolflows

4.1 Motivation

A number of 3rd party vendors offer IP blocks for implementing various functions.

These include both open source IP, e.g. OpenCores (OpenCores, 2019), commercial

ones (Amazon, 2019a; Zipcores, 2019; Digital Blocks, 2019; Algo-Logic, 2019; Avnet,

2019), as well as native ones shipped with standard FPGA development tools e.g.

Intel FPGA IP cores (Intel, 2019). Native IP blocks, in particular, typically offer

the best possible performance since they are designed by engineers familiar with the

internals of the FPGA. Developers can connect multiple of these IP blocks together

to implement target architectures. Using software tools like Qsys (Intel, 2019), the

complexity of designing even an interconnect fabric can be substantially reduced. The

drawback of IP blocks, however, is that the utility of these blocks depends on how

well they match developer requirements. This is because customizing IP cores is not a

viable solution; IP cores only support modifications to a limited set of parameters in

order to maintain predictable performance/behavior and protect intellectual property.

Two exceptions to this are open source IP, which do not provide the same performance

guarantees as commercial and native ones, and Intel/Vivado HLS, which are not a

viable solution as discussed in chapter 2.

In this chapter, we explore the use of OpenCL-HDL to generate custom IP. This

enables greater application specificity than vendor IP, and can even be used to build

custom Domain Specific Languages. We provide two case studies that use OpenCL-
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HDL: i) 3D FFT and ii) Multi Layer Perceptron Inference. The validation of our

approach is similar to that in chapter 3 i.e. functional validation by comparing

Emulation results against RTL simulations.

4.2 Case Study 1: 3D FFT

In this case study, we implement a broadside 64 point Radix-2 FFT module using

Intel OpenCL that outperforms CPUs, GPUs, and even HDL for FFT sizes that

can fit on a single FPGA without folding. Once the compiler translates code into

HDL, we isolate application logic from the overall OpenCL system using the processes

described earlier. We also show that this generated logic can be seamlessly integrated

into existing 3D FFT shells that were initially constructed for IP core based designs

(Which are typically pencil based FFT).

Algorithm 1 gives an overview of our baseline 1-D Radix-2 FFT code based on

OpenMM (Eastman and Pande, 2010). Each N -element input vector is processed for

log(N) stages. For a given stage and iteration, vector elements are processed in pairs;

each pair writes two values to the input vector for the subsequent stage. The variables

L and m are used to determine these input and output pairs, as well as corresponding

twiddle factors. The entire computation is done using two float2 arrays in a ping-pong

manner, with the buffers swapped after every stage.

Algorithms 2 and 3 show the result of applying our code transformations to Al-

gorithm 1. All loops are fully unrolled and the log(N) stages of the computation

are evaluated concurrently. Individual arrays are used to store the result of each

stage, which not only ensures that they are small enough for corresponding pipeline

registers to be inferred as registers, but also helps infer pipelines which may not

be implemented effectively using the ping pong buffer approach in Algorithm 1. A

large number of intermediate variables are also used to simplify dependency analysis.
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Algorithm 1 Radix-2 1D FFT Baseline Kernel

1: N ← FFT Size
2: for Array of 1D Vectors →j = 1 : M do
3: float2 data 0[N], data 1[N]
4: Initialize data 0
5: int L = N/2
6: int m = 1
7: for Stage →s = 1 : log(N) do
8: data 1 ← COMPUTE(data 0,L,m)
9: Swap (data 0 , data 1)

10: L = L >> 1
11: m = m << 1
12: end
13: end

Moreover, since the size of interest for the FFT implementation is known beforehand,

we implement twiddle factors as constant arrays instead of inputs to the kernel or

real-time computations.

Algorithm 2 Optimized 1D FFT Kernel

1: N ← FFT Size
2: for Array of 1D Vectors →j = 1 : M do
3: float2 stage 0[N] .... stage logN[N]
4: Initialize stage 0[N]
5: int L = N/2 , int m = 1
6: #pragma unroll
7: for Loop 1 →k = 0 : (N/2)− 1 do
8: stage 1 ← COMPUTE(stage 0,L,m)

9: L = L >> 1 , m = m << 1

10:
...

11: #pragma unroll
12: for Loop logN →k = 0 : (N/2)− 1 do
13: stage logN ← COMPUTE(stage logN-1,L,m)

14: end

Figure 4·1 shows the processing element generated for each iteration of each com-

pute loop in our kernel. FIFOs implemented using registers are used to source and

sink data to the pipelines, along with providing delays to synchronize pipelines and
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Algorithm 3 Compute Function Code

1: for base = 0 : (N/2)− 1 do
2: int j = base/m; int k = j*32/L; int p = (j+1)*m;
3: float c0 r = stage0 r[base];
4: float c0 i = stage0 i[base];
5: float c1 r = stage0 r[base+32];
6: float c1 i = stage0 i[base+32];
7: stage1 r[base+j*m] = c0 r+c1 r;
8: stage1 i[base+j*m] = c0 i+c1 i;
9: float c2 r = c0 r-c1 r; float c2 i = c0 i-c1 i;

10: stage1 r[base+p] =w r[k]*c2 r - w i[k]*c2 i;
11: stage1 i[base+p] =w r[k]*c2 i + w i[k]*c2 r;

12: end

reducing the critical path. The compiler also infers the two different forms of dot

products and generates appropriate modules (Dot2 and MDot2). As discussed be-

fore, for twiddle factor values (w r and w i) equal to -1, 0, or 1, dot product units are

omitted and extra depth is added to the first input FIFO of the data-path. Process-

ing elements are placed in a data parallel manner for a given stage and cascaded to

implement inter-stage stall-free connectivity. Therefore, the FFT unit can sink and

source an entire N -element 1-D vector every cycle.

Given a 1D FFT module generated using our approach, we now demonstrate that

both OpenCL-HDL and IP core based designs can utilize the same shell for performing

a 3D FFT. Consequently, the former can be seamlessly integrated into existing logic

initially designed for the latter. Since FFT is a linear operation, a high dimensional

FFT can be broken down into a series of 1D directional transforms in any order.

In order to avoid constructing complex and expensive memory structures that can

stream data every cycle in all dimensions, a transpose is performed on the overall

directional FFT result to reorder data within buffers. This reordering rotates the

grid and allows a different directional 1D FFT to be performed for the same data

access pattern.
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Figure 4·1: OpenCL-HDL processing element architecture generated
by the OpenCL compiler. Dot product units are inferred and imple-
mented instead of individual adders/multipliers. Twiddle factors are
declared as constants and hard coded to corresponding inputs of the
dot product units.

Figure 4·2 shows the typical architecture for performing a 3D FFT using 1D FFT

modules. A set of ping-pong buffers are used to source and sink vectors. The initial

grid is loaded into Buffer 1 while the final result can be read from Buffer 2. By

providing a variable data path for writes to both buffers using MUXs, the 3D FFT

shell can be used as an intermediate stage for a number of different applications .

Figure 4·3 shows the detailed organization of Buffer 1 and 2 for 4 element, 1-D

FFTs in the x-dimension. The throughput of both IP core and OpenCL-HDL Radix-2

implementations is constrained to be that of the Radix-2 design. Therefore, for an

N3 FFT, buffers are constructed using N banks of size N2 each in order to stream

the required N elements per cycle. The crossbar performs a transpose using a parallel

to serial transformation since all N results per cycle are written to the same bank.

It can operate stall free since the same output bank is accessed once every N cycles.

From the figure, we observe that FFTx for OpenCL-HDL Radix-2 is the same as

FFTy for IP cores. By extension, FFTy(OpenCL − HDL) = FFTz(IPCore) and
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Figure 4·2: Architecture for a 3D FFT using 1D FFT compute
pipelines.

FFTz(OpenCL − HDL) = FFTx(IPCore). Since FFT is a linear operation and

the order is independent, FFTxyz(IPCore) = FFTzxy(OpenCL − HDL). This

means that we can replace FFT IP cores with OpenCL-HDL designs without having

to modify almost any data or control paths in existing 3D FFT implementations.

One potential exception (to the control path) is adjusting for differences in loading

and unloading latencies.

We evaluate the effectiveness of our design by implementing the FFT module on

an Intel Arria10X115 FPGA with 427,200 ALMs, 53Mb of BRAM, and 1518 DSP

blocks. OpenCL code is compiled using Intel OpenCL SDK v16.0.2. The IP Core

used is (Intel, 2010). Our CPU code is implemented on a fourteen-core 2.4 GHz Intel

Xeon E5-2680v4 with ICC compiler and MKL DFTI (Intel, 2018a). The GPU used

is NVIDIA TESLA P100 PCIe 12GB. It has 3584 Cuda cores and peak bandwidth of

549 GB/s. FFT code is written using cuFFT library (NVIDIA, 2018) and compiled

with CUDA 8.0.
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Figure 4·3: Data source and sink patters for (a) IP Cores and (b)
OpenCL-HDL pipelines. The same 3D FFT shell can be used for both
since the access pattern is persistent. Only the dimensional order of
FFT changes, but since FFT is a linear operation, the final result will
remain the same.

Table 4.1 and 4.2 show the latency and resource usage for OpenCL-HDL and IP

Core designs for 83, 163, 323 and 643 FFTs. Figure 4·4 further illustrates the IP core

resource usage as ratio of OpenCL-HDL usage for these FFT sizes. From the results

we can see that OpenCL-HDL is significantly more resource efficient, with an average

of 7.5x fewer ALMs used and 1.6x fewer DSP blocks. For N=64, we could not fit N

parallel IP cores when using hard DSP blocks. Therefore, only 50 were implemented

on DSP blocks while the remaining used ALMs. With regards to latency, the IP Core

takes 2N cycles since input and output ordering is set to Natural. On the other hand,

OpenCL-HDL latency grows by an average of only 1.4x for every 2x increase in FFT

size.

Table 4.1: Latency and Resource usage for OpenCL-HDL 1D FFT

FFT Size Latency (cycles) ALM DSP
8 20 1,849(<1%) 56(4%)
16 37 4,387(1%) 168(11%)
32 41 7,237(2%) 456(30%)
64 53 18,705(4%) 1160(76%)
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Table 4.2: Latency and Resource usage for IP-Core 1D FFT

FFT Size Latency (cycles) ALM DSP
8 16 26,759(6%) 96(6%)
16 32 11,132(3%) 256(17%)
32 64 63,322(15%) 832(55%)
64 128 176,285(41%) 1412(93%)

Finally, we compare the total execution time for 163, 323 and 643 OpenCL-HDL

against CPU, GPU and IP core implementations. Results (Table 4.3) show that the

average speedup achieved is 29x vs CPU-MKL, 4.1x vs GPU cuFFT and 1.1x vs IP

Core FFT.

Table 4.3: Execution Time (us) for 3D FFT Implementations

Design 163 323 643

CPU 22.0 55.0 288.0
GPU 20.7 23.6 43.1

IP Core 1.8 6.8 31.1
OpenCL-HDL 1.8 6.6 25.8

Figure 4·4: IP core resource usage with respect to OpenCL-HDL.
OpenCL-HDL designs consume both fewer ALMs and DSPs.
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4.3 Case Study 2: Multi Layer Perceptron Inference

Thus far, we have presented a model for eliminating optimization blockers which

enables simple representations of arbitrary applications to compile to efficient hard-

ware. In this chapter, we explore the impact of this approach on specialization i.e.

the ability to design hardware that has been tuned for an application of interest.

Specifically, we provide a detailed case study on building an inference engine for

Multi Layer Perceptrons (MLPs), a type of Deep Neural Network. The typical ap-

proach here has been to use IP cores, parameterizable HDL templates or dedicated

ASICs. In all these cases, the resulting architecture provides limited opportunities

for application specific optimizations. To build a specialized system, we leverage the

optimizations from the previous chapter for Intel OpenCL, as well as methods for

extracting OpenCL-HDL. As discussed in detail later, we do not build a full OpenCL

system; using OpenCL-HDL allows us to independently explore the optimization

space of individual components and component interfaces.

4.3.1 Background

Machine learning (ML) is playing an integral part in solving key scientific problems,

including finding of cancer treatments (Argonne, 2017), performing weather simula-

tions (Balaprakash et al., 2014), and designing new nanocatalysts (Sen et al., 2017).

Multi-Layer Perceptrons (MLPs) are an important subset of ML that optimize exist-

ing applications to meet more stringent requirements of reliability, performance, com-

plexity, and portability. MLPs consist of multiple layers of firing neurons, with each

layer using responses of previous neurons as stimulus. Use of MLPs is divided into

two stages: training and inference. Training determines neuron connection strengths

in a given MLP by iteratively converging to values that minimize evaluation error.

Inference, on the other hand, refers to the process of performing classification (or
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regression) on a set of test input cases using the trained model. In our work, we

focus on reducing the evaluation time for real-time inference models. While training

has large computation timeframes, potentially reaching the order of days or weeks,

reducing these is not critical to the application. On the other hand, meeting real-

time inference timing constraints is integral to success, especially in end-user-facing

services (Jouppi et al., 2017).

Since real-time inference prefers latency instead of throughput (Patterson, 2004),

it is difficult for traditional processors to implement complex systems that can meet

the application latency bounds.For CPU-based implementations, batch processing is

not possible due to latency bounds and processing individual test cases results in a

large number of cache misses. This is because MLPs have virtually no data reuse for

the same test case. GPU performance is also hurt by low data reuse and batch-less

processing since the computations may not be sufficiently parallel to fully utilize the

thousands of available cores. For cores that are assigned work, a significant number of

cycles are likely to be idle as threads wait for off-chip data to be accessed. ASIC-based

designs have typically managed to fill this gap by providing massive amounts of re-

sources and specialized pipelines that are tailored for Deep Neural Networks (DNNs);

one example is the Google TPU (Jouppi et al., 2017). However, as the number of di-

verse applications and their associated models grows, these ASICs effectively address

a broad domain, rather than a particular application, and hence are unable to use

application-specific optimizations at the level needed.

Reconfigurable architectures, such as FPGAs, are becoming increasingly popular

for Machine Learning in general, and MLPs in particular. Application developers can

generate logic for their desired model, and ensure that the resulting compute pipelines

are optimal, for specific MLP application. Designs can be scaled and transferred to

newer generation technologies by recompilation. Moreover, complex HDL codes do
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not have to be written; rather designs can be generated with simple scripts because

variations across different MLP models, i.e. number and sizes of layers, can be easily

parameterized. Advances in FPGA capability are resulting in real-time MLP im-

plementations transitioning from being memory bound to compute bound. On-chip

memories are now big enough for all model parameters to fit on-chip. Moreover,

FPGAs offer support for most common high-speed protocols and thus minimize the

latency of memory and I/O transactions by supplying data directly (from sensors) to

compute pipelines (George et al., 2016; Sheng et al., 2018a).

In our work, we explore the application-aware optimization space for real-time

compute bound MLP inference processors using our proposed modular architecture.

Minimizing latency requires all pipelines to operate both stall-free and at high band-

width. The former is achieved by ensuring that modules in the design source/sink

data at rates that are constrained by the latter. We have observed that since modules

in MLP architectures are tightly coupled and operate within the same clock domain,

constraints can occur even for indirect connectivity. Therefore, by selecting higher

interface bandwidths for particular ports, the complexity (and hence latency) of mul-

tiple modules can become large. This increase in complexity can outweigh the benefits

of higher module throughput and thus increase the overall latency of the computa-

tion. By identifying modules in the critical path and their interconnectivity, we can

determine and optimize parameters for a given application in order to minimize the

latency of the entire model evaluation. Our contributions in this case study are:

• We propose a modular architecture for application specific MLP inference pro-

cessors on FPGAs. Components can be easily added, updated, or deleted to

facilitate exploration of the optimization space.

• We identify tightly coupled design parameters that are critical to performance

and develop a latency model to estimate the impact of varying them.
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• We develop OpenCL templates for component generation to ensure standard

optimizations are applied and reduce the programming effort.

• We present a state machine based control module that can be automatically

generated and used to orchestrate the flow of computations without requiring

external instructions or feedback from compute pipelines.

• We demonstrate the effectiveness of our architecture using the MNIST, Poker,

and ECP-Candle P3B1-TL benchmarks.

4.3.2 Related Work

FPGA-based MLP implementations have received significantly less attention than

other DNNs such as Convolutional Neural Networks (e.g., (Geng et al., 2018b; Geng

et al., 2018a)). The most prominent design is Microsoft’s FPGA-based inference

architecture, Brainwave (Chung et al., ), which target low compute-to-data ratio

DNN applications such as MLPs, Long Short-Term Memories (LSTMs), and Gated

Recurrent Units (GRUs). The memory bandwidth bound is alleviated by using on-

chip block RAM for weight matrix storage. For an 8-bit integer implementation

on Stratix V FPGAs, Brainwave achieves 2.0 TOps/s, while on Stratix 10 FPGAs

they claim to have 31 TOps/s performance running at 500 MHz. The drawback of

Brainwave is that it uses HDL templates for generating hardware for models.

Ortigosa, et al. (Ortigosa et al., 2006) present an MLP architecture which ad-

dresses the memory bound by storing 8-bit weights on-chip. Their design consists

of multiple processing elements, each having a single multiplier and accumulator,

that operate on individual neurons. Resulting outputs of the processing elements

are converted from 24 bits to 8 bits using a constant scaling factor. This approach

is suboptimal since the range of output values depends on both input data and the

layer under evaluation, and a single predetermined factor can result in not being able
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to utilize the entire 8-bit range (with a consequent loss of accuracy). In our design

we compute this scaling factor at run-time for individual layers and input vectors

(similar to (Tensorflow, )), and ensure that the entire data-range is used.

In (Panicker and Babu, 2012; Taright and Hubin, 1998), the authors propose

FPGA-based MLP architectures, but their work serves as a proof-of-concept and is

also constrained by off-chip memory bandwidth. Sharma et al. present an automated

DNN design generation framework, DNNWeaver (Sharma et al., 2016), which also de-

pends on DRAM access speed for performance. Moreover, the DNNWeaver compute

units are constrained to Digital Signal Processor (DSP)-only implementations and

logic cells are not used for ALUs. Gomperts et al. introduce a general purpose archi-

tecture for MLP based on FPGAs (Gomperts et al., 2011). Their design generates

individual processing elements for each layer, which is not feasible for large neural

networks where resources on a single FPGA may not even be sufficient to compute a

single layer in parallel.

To the best of our knowledge, there is no existing work on optimization space

exploration of design parameters for compute bound FPGA based MLPs.

4.3.3 Multi Layer Perceptrons

In this section, we provide an overview of Multi-Layer Perceptron based neural net-

works using both logical and computational models. Multi-Layer Perceptron models

are typically composed of an input layer containing feature values measured using

sensors, an output layer containing the diagnosis result, and, potentially, multiple

hidden layers that perform the required computations on the input data. Each layer

consists of one or more neurons, depending on the model. MLPs are fully connected

as illustrated in Figure 4·5a: a neuron in any given layer is connected to the outputs

of all neurons in the previous layer.

Inputs to the hidden and output layer neurons are scaled and accumulated by
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Figure 4·5: Illustration of (a) Logical and (b) Compute models of
Multi-Layer Perceptrons

using weights (connection strengths) that are determined during training. A non-

linear function, called the activation function, is applied to the result, which then

becomes the neuron output. Figure 4·5b shows this operation represented as a Matrix

Vector Multiplication (MVM). Each layer has a unique weight matrix which contains

connection strengths and a bias vector. Layer inputs are the result vector from the

previous layer, or the input vector if it is the first hidden layer. A given row from

the X × Y weight matrix for a given layer represents the connection strengths of Y

neurons in the previous layer assigned to one of the X neurons in the current layer.

The activation function is applied to individual elements of the output vector. During

the training process, all data are floating point. Classification can be performed by

using integer arithmetic without loss of accuracy.
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Figure 4·6: Architecture of the proposed low latency MLP inference
system. The modular approach and well defined boundaries/interfaces
enables updates, additions, and deletions to be performed easily and
with minimum changes to adjacent components

4.3.4 Proposed Architecture

In this section, we provide an overview of the proposed MLP inference architecture

(see Figure 4·6).We use a modular approach to component design that enables pa-

rameters to be varied in order to implement optimal component sizes for a given

application. Compute and control planes are segregated, enabling additions, dele-

tions, and updates to be performed easily. Individual components within each plane

also have well-defined boundaries and interfaces to ensure that design changes can

be made at large granularity, with minimal effort, and without necessitating changes

to other logic beyond parameter updates. The MLP inference architecture processes

layers sequentially, with modules performing all computations for a given layer before

evaluating the next.
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Control

One of the benefits of a highly application-specific architecture is the ability to de-

sign cycle accurate event triggers. These state machines can control data flow without

feedback from the compute modules and have seamless transitions between different

evaluation stages. By having an instruction-free implementation, overhead of fetching

and decoding instructions is avoided and end-to-end data flow for the entire applica-

tion can be made stall free.

Memory

Memory modules are composed of multiple blocks of on-chip Block RAMs (BRAMs).

FPGAs have thousands of BRAMs that can be used either independently or connected

together to form larger memories and/or complex data structures. The BRAM archi-

tecture enables data to be supplied stall-free to the Scalar Product module. Trained

module parameters are initialized in these BRAMs as part of the bit-stream which

configures the MLP architecture on the FPGA.

Scalar Product

As mentioned previously, the system does not benefit from data reuse and is thus

batch-less. Consequently, we replace the traditional Matrix-Matrix multiplication

component with individual Scalar Product modules. Developers can specify both the

number of Scalar Product evaluations and their size. Computations are performed

using 8 bit variables while results are accumulated into 32 bit outputs. In order to

minimize latency, we use tree based structures for implementing the Scalar Product

modules instead of systolic arrays. This ensures that we can scale well to larger input

vectors.
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Accumulate

If the size of a Scalar Product module is smaller than the input vector, multiple

iterations are required to accumulate partial sums and obtain a final value. Moreover,

a bias value must be added to the sum. The Accumulate module performs all of

these functions by using dedicated Accumulate Registers. It receives triggers from

the control plane on whether to accumulate or re-initialize the registers for a new

operation cycle.

Activation & Requantization

The Activation & Quantization module reads data from the buffer, performs 32-bit

ReLU activation (RELU(x) = max(x, 0)), and then quantizes data back to 8 bits for

the next layer. Quantization is performed by using truncation because of the high

costs of division hardware. Because of the nature of the operation (compression), the

difference in results is small in this particular context. Moreover, ReLU activation

ensures that the Most Significant Bit (MSB) of our 8-bit result is always 0. Therefore

the effective compression target is 7 bits, which further reduces the difference between

division and truncation results.

Max Search

Being able to perform quantization requires knowledge of the upper and lower data

limits. Because of the ReLU activation, we are guaranteed a lower limit of 0. Search-

ing for the upper limit must be done without stalling the data stream. Consequently,

we use the Max Search module to perform local maxima searches on data as it be-

comes available and update an associated register if a local maximum exceeds the

current global maximum. This approach ensures that latency is based on the di-

mensions of the accumulator outputs and not the full input vector. Employing a

tree-based search further reduces the delay.
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Leading 1

Once the maximum value for a given output has been determined, we use the Leading

1 module to find the most significant non-zero bit and use this position to perform

truncations for quantization. The output is constrained to be between 6 and 30 (on

a scale of 0-31) since the former means all values are already within 8 bits while the

latter represents the largest possible positive numbers. As with Scalar Product and

Max Search, the evaluation is performed with logarithmic complexity.

Buffer

The Buffer module stores result vectors for both the current and the previous layer

(input to current layer). While the Buffer is used purely as a memory resource, it

is included in our compute plane because of its tight coupling with the Accumulate

and Activation & Quantize modules. It is implemented by using registers in order to

meet throughput demands for architecture-specific source and sink sizes. A two-bank

architecture comprising of separate input and output memory banks is used. The

output memory bank stores results from the previous layer and supplies this data

to the Activation & Requantization module. On the other hand, the input memory

bank stores results of ongoing computations by sinking data from the Accumulate

Registers.

Critical Path

Of the compute plane modules discussed above, all but the Buffer lie in the critical

path. We divide these modules into two categories; the Variable Critical Path (VCP)

and the Persistent Critical Path (PCP). The Variable Critical Path is entirely the

Scalar Product module. It is equal to the number of calls needed for the Scalar

Product module to perform all multiplication operations. Since it is based on the

relative dimensions of the weight matrix and Scalar Product module, it will vary
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for each layer. Once the last set of results has been produced, modules that need

to evaluate this last result before a new layer can be processed are referred to as

the Persistent Critical Path. It corresponds to a fixed number of cycles independent

of layer dimensions. Applicable modules include Accumulator (with register), Max

Search (with register), Leading 1, and Activation & Quantize.

4.3.5 Implementation Details

In this section, we present the details of our compute and control module implementa-

tions using Intel OpenCL. We address multiple challenges here, ranging from scaling

the code based on values of M and N, to ensuring stall free execution to meet latency

requirements. A method for specifying tree-based computations is also presented

which can be used if the compiler is unable to infer them automatically.

Scalar Product

Our Scalar Product implementation is illustrated in Algorithm 4. Typical implemen-

tations focus primarily on DSP based resources for this stage. However, we provide

users with the capability of selecting arbitrary numbers of both DSP and ALM mul-

tipliers at the granularity of a Multiply-Add module. Based on board resources, user

can specify the number of available DSPs while the remaining compute entities are

synthesized with ALMs. All Multiply-Add module outputs are summed using ALM

based adders. By using an unrolled inner loop, the compiler is able to infer and

generate an adder tree automatically.

Accumulate

The Accumulate module is implemented in pure HDL, due to its low complexity,

using N parallel 32 bit integer adders and registers. Register values are initialized

with bias values for each new set of corresponding N scalar products (layer outputs)
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Algorithm 4 Scalar Product Code Structure

1: DSP ← Number of DSP Multiply-Accumulate
2: I [M] ← Declare and Initialize Input Vector
3: O [N] ← Declare and Initialize Output Vector
4: W [M*N] ← Declare and Initialize Weight Matrix
5: #pragma unroll
6: for i = 1 : DSP do
7: #pragma unroll
8: for j = 1 : 2 : M do
9: O[i] += MulAdd( I[j,j+1] , W[i*N+(j,j+1)] )

10: #pragma unroll
11: for i = DSP + 1 : N do
12: #pragma unroll
13: for j = 1 : 2 : M do
14: O[i] += MulAdd( I[j,j+1] , W[i*N+(j,j+1)] )

computed.

Max Value Search

While an adder tree was inferred for Scalar Product, using the same code structure

did not generate a tree for performing the maximum value search in ≈ log(N) stages.

Instead, a sub-optimal N -stage sequential pipeline was inferred which performed one

comparison per stage. An alternative code structure to explicitly define a tree was

using nested loops, with the inner loop limit being based on the value of the outer

loop variable. However this was not feasible since OpenCL requires loop limits to be

constant in order to get good performance. Consequently, we implement a tree based

comparison by utilizing the HDL compiler’s ability of synthesizing away logic that

does not have a source or sink, as shown in Algorithm 5. We define all loop limits as

constant values i.e. log(N) for the outer loop and N/2 for the inner loop. We then

load and store data into converging locations so that by the end of the last iteration,

the actual result is stored in the 0th location. By only selecting that particular value

as the final output, the compiler optimizes away unnecessary logic which results in a



70

tree being created.

Algorithm 5 Max Value Search Code Structure

1: LOGN ← dlog2(N)e
2: SIZEN ← 1 << LOGN
3: HSIZEN ← SIZEN >> 1
4: Layers [SIZEN*(LOGN+1)]
5: for i = 1 : SIZEN do
6: Layers[i] = Input[i];

7: #pragma unroll
8: for i = 1 : LOGN do
9: Shift ← (HSIZEN >> (i-1)) +1

10: #pragma unroll
11: for j = 1 : HSIZEN do
12: X ← (j < Shift) ? Layer[i*SIZEN + j] : 0
13: Y ← (j < Shift) ? Layer[i*SIZEN + j + Shift] : 0
14: Layer [(i+1)*SIZEN+j] ← ( X > Y ) ? X : Y

15: Output ← Layer [LOGN*SIZEN+1]

Leading 1

We implement the Leading 1 module by using the same approach as Max Value

Search. The loop limits in this case, as shown in Algorithm 6 are independent of

the values of M and N, and depend on the data sizes being used (32 bits in our

implementation).

Activation & Quantize

Activation & Quantize uses the result of the Leading 1 module to quantize Buffer

outputs, which are then input to the Scalar Product module. It is a two-stage data

parallel computation, as shown in Algorithm 7. The first is a ReLU activation which

simply uses the MSB of input data as the select line, with 0 causing a pass through

of the original value while 1 selecting a zero output instead. Our second stage shifts

data to the right based on the location of the leading 1.
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Algorithm 6 Leading 1 Search Code Structure

1: MAX ← Result of Max Value Search
2: Layers [32*(5+1)]
3: for i = 0 : 31 do
4: Layers[i+1] = ((MAX >> i)&1) ? i : 0;

5: #pragma unroll
6: for i = 1 : 5 do
7: Shift ← (16 >> (i-1)) +1
8: #pragma unroll
9: for j = 1 : 16 do

10: X ← (j < Shift) ? Layer[i*32 + j] : 0
11: Y ← (j < Shift) ? Layer[i*32 + j + Shift] : 0
12: Layer [(i+1)*32+j] ← ( X > Y ) ? X : Y

13: Output ← Layer [5*32+1] > 6 ? Layer [5*32+1] : 6

Algorithm 7 Activation & Quantize Code Structure

1: I [M] ← Declare and Initialize Input Vector
2: O [M] ← Declare and Initialize Output Vector
3: Loc ← Location of Leading 1
4: #pragma unroll
5: for i = 1 : M do
6: X ← (I[i] > 0) ? I[i] : 0
7: O[i] ← (X >> (Loc-6))&255
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Buffer

Since the Buffer does not lie in the critical path, we generate it using HDL. As shown

in Figure 4·7, the Buffer is a two bank design implemented entirely using 32 bit

registers.

To reduce addressing complexity, we set the number of required registers as the

first Least Common Multiple (LCM) of M and N which is greater than the largest

layer size in the application. Input data is written to contiguous blocks of N registers

using the input DeMUX. Once all results have been written, the transfer enable

immediately triggers a copy of data from Bank 1 to Bank 2. These set of registers

are accessed in contiguous blocks of size M and are used to source data to the Scalar

Product. As discussed earlier, the dual banks are necessary to maintain a copy of

the results of previous layer, while also storing Accumulator outputs from the current

one.

Control Plane

Using the modules and their functions outlined previously, Figure 4·8 provides an

overview of the algorithm for performing inference on a given test vector. The con-

trol unit is responsible for generating event triggers to coordinate the flow of data

between different modules (green). These triggers are based on system states (blue)

and include start/end indicators, variable updates (e.g., resets, increments, swap),

read/write signals, and data source selection (e.g., the buffer module, external on-

Figure 4·7: Structure of the Buffer Module. The two stage design
enables us to hold values of a previous layer (input vector to Scalar
Product) while also storing results of current layer computations
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Figure 4·8: An overview of the algorithm used to determine the event
triggers needed to control the flow of data in the inference processor.

chip memory).

A detailed implementation of the control unit is shown in Figure 4·9. For given

values of M and N and application model dimensions, we can determine how long each

layer will take, at which cycle individual triggers will be given, and the computation is

performed by each module at any given time. All these can be coordinated based on a

single global counter (Main Counter). By having an instruction-free implementation,

the overhead of fetching and decoding instructions is avoided, and end-to-end data

flow for the entire application can be made stall free.

To define ranges and trigger points for setting and resetting values of control

signals and state machine counters, we use latency tags. Each tag is based on the

latency of an individual module in the corresponding data path. Table 4.4 lists these

tags and their values. QA, MM, AC, MX, and LO refer to latencies of the Activation

& Quantization, Scalar Product, Accumulate, Max Value Search, and Leading 1

modules, respectively. Constants represent latencies of registers at the output of the
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Figure 4·9: The Control Flow Graph. Execution of the entire ap-
plication model can be done based on a single global counter without
any feedback from modules or user supplied run-time instructions. Val-
ues of latency tags for each layer are hard coded in to the system and
selected based on layer counter value. M Counter, N counter, Vector
Address and Weight Address will all be removed in future work since
this information can be directly evaluated from the Main Counter value.

Accumulate and Max Value Search Modules. MBLOCKS and NBLOCKS refer to the

number of blocks the weight matrix of a layer can be divided into in each dimension,

while BLOCKS is the product of these, that is, the number of cycles needed for all

layer input data to be picked up by the system. Tags 2 and 3 are reserved for external

connectivity in future work. The entire control architecture is automatically created

using an RTL generator, with the user only specifying latency values of individual

modules.

4.3.6 Results

In this section, we present the results from our implementation. Parameters M and N

are varied in steps of powers of 2, from 8 to 256 to show the impact on latency of the

different modules in our inference testbed. We also demonstrate that latency is heavily

reliant on module complexity since the OpenCL compiler creates deeper pipelines for
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Table 4.4: Latency Tags for Defining Trigger Ranges

Tag Value

Latency 0
L QA(M) + L MM(M,N) + BLOCKS[i] + L AC(N) + 1 +
L MX(N) + 1 + L LO

Latency 1 MBLOCKS[i]
Latency 4 L QA(M) + L MM(M,N)
Latency 5 MBLOCKS[i] -1
Latency 6 L QA(M) + L MM(M,N) + L AC(N) + 1 + L MX(N)

Latency 7
L QA(M) + L MM(M,N) + BLOCKS[i] + L AC(N) + 1 +
L MX(N)

Latency 8 MBLOCKS-1
Latency 9 MBLOCKS-1

Latency 10
L QA(M) + L MM(M,N) + BLOCKS[i] + L AC(N) + 1 +
L MX(N) + 1 + L LO -1

Latency 11 L QA(M) + L MM(M,N) + L AC(N) + 1

Latency 12
L QA(M) + L MM(M,N) + BLOCKS[i] + L AC(N) + 1

Latency 13
L QA(M) + L MM(M,N) + BLOCKS[i] + L AC(N) + 1

large modules in order to meet fan out and combination path constraints. We also

use the ECP-Candle, Poker and MNIST benchmarks to compare the performance of

our application specific design with reference GPU code compiled using TensorFlow.

Microsoft Brainwave was not available for public use at the time of writing and hence

could not be instrumented.

Hardware Specifications

We have tested our designs on the Intel Arria-10AX115H3F34E2SGE3 which has

427,200 ALMs, 1518 DSP blocks and 53Mb of on chip memory. The GPU used is

a Tesla P100 which has 3594 CUDA cores and a 12GB HBM2 memory with a peak

bandwidth of 549 GB/s. GPU reference designs are implemented in floating point

using TensorFlow (Abadi et al., 2016) r1.4, python 3.6.2, cuDNN 6.0 and CUDA 8.0.

Measured Latency

Figure 4·10 shows the latency of the Scalar Product module. Data points for (M ←
8:256 , N ← 8), (M ← 8 , N ← 8:256), (M ← 16, N ← 16), (M ← 32, N ← 32) and
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(M ← 64, N ← 64) are measured values while the remaining points are estimated

based on observed trends. As illustrated by the graph, larger M values correspond to

higher latency, while the latency due to N is mostly constant (due to simple design

replication).

Figure 4·10: Latency comparison of varying M and N. Latency in-
creases with larger M (more tree stages) but is invariant of N (tree
replication)

Figure 4·11 illustrates the latency of modules in the Persistent Critical Path (ex-

cept for Scalar Product accumulation). As was demonstrated with our system model

previously, most modules have latency offsets based on pipeline depth and thus have

nearly invariant latencies with respect to their associated parameter. With regard to

Max Value Search, however, we get very large latencies despite it being a tree-based

implementation. This is because of the resource overhead of a signed comparator as

compared with a simple adder (≈2x more ALMs per comparator based on synthesis

results). Figure 4·12 shows the total latency of our system for a single iteration of all

modules. We observe that having larger values of M, instead of N, reduces latency

by 20% on average.
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Figure 4·11: Latency of critical path modules based on their con-
straining parameter

Benchmarks

To demonstrate the impact of our approach, we evaluate performance using the Poker

(UCI, 2018b), ECP-Candle P3B1-TL (TL) (ECP, ) and MNIST (UCI, 2018a) bench-

marks. Table 4.5 lists the model parameters of each benchmark. The first and last

dimensions represent input and output vector sizes respectively. Table 4.6 gives the

post-fit resource usage of the processor. We compile the design with M=256 and

N=8. These values minimize overall inference latency based on the dimensions of

benchmark models and latency results from Figure 4·12. From the resource usage,

we see that the design occupies less than half the chip. Therefore, either a larger

value of M can be used to further reduce latency, or a second (independent) inference

processor can be included.

Table 4.5: Benchmark Dimensions

Model Dimensions Test Cases
MNIST 784 x 256 x 256 x 10 10000
Poker 10 x 512 x 512 x 10 25010

TL 400 x 1200 x 1200 x 1200 x 2 86

Figure 4·13 gives the measured speedups compared to the GPU. From the results,
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Figure 4·12: Total latency of our system for a single iteration. Having
a larger value of M gives significantly lower latency than larger values
of N

Table 4.6: FPGA Implementation Details

M N ALM DSP Frequency
256 8 57008/427200(13%) 512/1518(34%) 295MHz

we show that our FPGA design has an average of 1.47x better performance than

the high end GPU. GPU results are heavily reliant on batch processing where large

number of test cases, such as in Poker, reduce the average execution time for individual

vectors. However, this throughput comes at the cost of higher individual latencies,

which is a negative result since inference has hard latency bounds. Our design, on

the other hand, processes individual vectors in sequence and uses optimal design

parameters to achieve both high throughput and low latency.
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Figure 4·13: Performance of Arria-10 (FPGA) as compared to P-100
(GPU)

4.4 Conclusion

In this chapter, we extended our approach of creating OpenCL-HDL based test sys-

tems by utilizing the isolated application logic to generate custom IP. These IP blocks

can be used to built performance critical and complex components, which are then

inserted into existing HDL templates. Two case studies were provided in this regards:

i) 3D FFT and ii) Multi Layer Perceptron Inference. Results showed the OpenCL-

HDL can outperform both vendor IP and state-of-the-art ASICs due to rapid design

space exploration and application specific tuning of hardware.
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Chapter 5

Empirically Guided Optimization

Framework for FPGA OpenCL

5.1 Motivation

Despite the advantages of OpenCL, it has still not managed to effectively bridge the

performance-programmability gap for FPGAs. OpenCL kernels often end up having

orders of magnitude worse performance than functionally equivalent HDL designs.

Significant expertise in how the C-to-Hardware translation works is typically required

for good performance.

Automatic compilation to a complex architecture is well-known to be an extremely

difficult problem; even after decades of research it has been only partially solved. In

HPC, programmers achieve high performance by augmenting the coding process, first,

by integrating optimized libraries, and then, when these are not sufficient, by opti-

mizing the code themselves (Chellappa et al., 2008). Since this process is challenging

even for experienced programmers, a vast area of research has grown up around au-

tomating it through autotuning (Moura et al., 2005).

We propose that an analogous approach be applied to coding OpenCL for FP-

GAs. We broadly categorize types of code transformations in this domain into four

sets: i) Intel Best Practices (IBPs), ii) Anti-IBPs, iii) Universal Code Transforma-

tions (UCTs), and iv) FPGA-Specific Transformations (FSTs). IBPs refer to design

strategies given in the Intel Best Practices guide (Intel, 2018c). These provide insights
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into how to effectively express hardware using OpenCL semantics. We separate these

from UCTs and FSTs because IBPs are well-known to the FPGA OpenCL commu-

nity and there have been several studies characterizing their behavior. Anti-IBPs

are practices that are part of IBPs, but which (we have found) should actually be

avoided. UCTs consist of general approaches to optimizing programs that, to a large

degree, are independent of the compute platform. Examples of UCTs include use

of 1D arrays, records of arrays, predication, loop merging, scalar replacement, and

precomputing constants. While described, e.g., in (Chellappa et al., 2008), they are

largely missing from IBP documentation. FSTs consist of a number of FPGA-specific

optimizations that typically augment IBPs. They are based on (a) obtaining a par-

ticular FPGA-specific mapping not found as an IBP, and (b) facts stated in IBPs,

but which must be leveraged and converted into transformations.

We propose a systematic and empirically guided series of code transformations

for creating High Performance FPGA OpenCL kernels, using a combination of IBPs,

Anti-IBPs, UCTs, and FSTs. These are aimed at giving the OpenCL compiler suffi-

cient freedom to infer and exploit all possible forms and degrees of parallelism, along

with more aggressive steps such as restructuring pipeline stages to minimize latency

and resource overhead. It is important to note here that, while some FSTs may be

commonly known, since they can be based on UCTs and IBPs, our work is novel

in their application to FPGAs. We also characterize and measure the impact of all

optimizations. These results not only enable programmers to follow a script when

optimizing their own kernels, but also open the way for the development of autotuners

to perform optimizations automatically.

We also demonstrate that, by applying these proposed code modifications to a

number of parallel computing dwarfs, OpenCL FPGA code can achieve performance

within 12% of hand tuned HDL. This is an average of 5x better performance than
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existing FPGA OpenCL designs. We also apply these transformations to a number

of network packet processing workloads . Results show that OpenCL generated hard-

ware can operate at >50Gb/s line rates. Moreover, these designs have low resource

overhead which allows them to be replicated multiple times and achieve even higher

aggregate throughput.

5.2 Previous Work

One of the most important studies in this area, by Zohouri, et al. (Zohouri et al.,

2016), implements both GPU based and FPGA-specific codes. The latter, referred

to as loop-pipelined kernels, employ Single Work Item kernels and IBPs such as

sliding windows and shift registers. Our work advances that of (Zohouri et al., 2016)

in a number of ways. We have implemented many more optimizations; authors in

(Zohouri et al., 2016) only use IBPs, while we characterize Anti-IBPs, UCTs and

FSTs as well. Performance values for best case implementations in (Zohouri et al.,

2016) show an average of 35× improvement over un-optimized baselines while our

work shows an average speedup of 288× for the final optimized version (with respect

to the baseline). Moreover, the average speedup reported by Zohouri, et al. over

GPUs is approximately 0.25×, while we achieve approximately 0.5×. Finally, unlike

our reference GPU implementations, the GPU used in (Zohouri et al., 2016) does not

have High Bandwidth Memory.

5.3 Transformations

In this section, we present our design pattern agnostic OpenCL code transformations

that help the compiler infer and generate optimal architectures. There are seven

code versions, which are incrementally developed. Each version contains one or more

applied transformations. Version 1 is a cache optimized CPU code for the application
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Table 5.1: Summary of code versions and transformations applied
therein

Ver. Transformations Type
0 (GPU code for porting to FPGA OpenCL) —
1 Single thread code with cache optimization IBP,FST
2 Implement task parallel computations in separate

kernels and connect them using channels
IBP

Fully unroll all loops w/ #pragma unroll IBP,UCT
Minimize variable declaration outside compute
loops – use temps where possible

IBP,UCT

Use constants for problem sizes and data values – in-
stead of relying on off-chip memory access

IBP,FST,UCT

Coalesce memory operations IBP,UCT
3 Implement the entire computation within a single ker-

nel and avoid using channels
Anit-IBP

4 Reduce array sizes to infer pipeline registers as regis-
ters, instead of BRAMs

FST

5 Perform computations in detail, using temporary
variables to store intermediate results

FST,UCT

6 Use predication instead of conditional branch state-
ments when defining forks in the data path

FST,UCT

of interest. Version 2 is obtained by applying the IBPs to the baseline code. Versions

3-6 involve applying a number of additional transformations that, not only maximize

opportunities for parallelism, but also reduce the complexity (and hence resource

usage and latency) of the generated control and data planes. Table 5.1 summarizes

the optimizations and their type (IBP, Anti-IBP, FST, and/or UCT). We illustrate

each set of transformations through a running example, the Needleman-Wunsch (NW)

benchmark.

5.3.1 Version 0: Sub-Optimal Baseline Code

A popular starting point (e.g., in (Krommydas et al., 2016)) is kernels based on

Multiple Work Items (MWI) such as is appropriate for GPUs. Advantages of starting

here include ease of exploiting data parallelism through SIMD, and Compute Unit

Replication (CUR), which is exclusive to MWI structures.

Algorithm 8 shows a V0-type kernel (based on (Che et al., 2009)). The core

operation is to populate a matrix using known values of the first row and the first
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Algorithm 8 Needleman Wunsch-V0

1: int tx = get local id(0)
2: local int* temp
3: local int* ref
4: Initialize temp from global memory
5: barrier(CLK LOCAL MEM FENCE);
6: Initialize ref from global memory
7: barrier(CLK LOCAL MEM FENCE);
8: for i = 1 : SIZE do
9: if tx≤i then

10: compute t idx x and t idx y based on tx and i
11: temp[t idx y][t idx x] =
12: max( temp[t idx y-1][t idx x-1] +
13: ref[t idx y-1][t idx x-1],
14: temp[t idx y][t idx x-1] - penalty,
15: temp[t idx y-1][t idx x] - penalty);

16: barrier(CLK LOCAL MEM FENCE);

17: barrier(CLK LOCAL MEM FENCE);
18: for i = SIZE − 2 : 0 do
19: Perform computations similar to above

20: barrier(CLK LOCAL MEM FENCE);
21: Store temp to global memory
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column. Each unknown entry is computed based on the values of its left, up, and

up-left locations. This is achieved using loops which iterate in-order over all matrix

entries. The max function is implemented using ’if-else’ statements. In Algorithm 8,

SIZE represents the dimension of blocks of matrix entries being processed.

5.3.2 Version 1: Preferred Baseline Code (used for reference)

Algorithm 9 Needleman Wunsch-V1

1: for i = 1 : V ector B Size do
2: for j = 1 : V ector A Size do
3: Out[i,j] = max( Out[i -1,j ] - penalty,
4: Out[i -1,j -1] + ref[i,j ] , Out[i,j -1] - penalty)

A less intuitive, but preferred, alternative is to use (as a baseline) single threaded

CPU code. In particular, initial designs should be implemented as Single Work

Item (SWI) kernels. While use of MWI kernels best matches the original purpose

of OpenCL, enabling various expressions of parallelism, there are number of disad-

vantages for FPGAs.

Scheduling work-groups/items: Similar to GPUs, a scheduler is required to balance

workloads and ensure all pipelines are kept filled. Using CUR increases scheduling

effort since work-groups must be scheduled across the different compute units. Use of

a simple scheduler can result in under-utilized pipelines. But more complex schedulers

can require more resources and increase latency.

Under-utilization: CUR helps fill the chip in order to maximize use of available

resource. However, because entire workgroups are assigned to each compute unit, the

latter must divide the former perfectly; often, areas of the chip are mostly idle.

Static SIMD size: MWI kernels require a global SIMD size to be defined. This is

sub-optimal for asymmetric pipelines where opportunities for data parallelism can

vary frequently.
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Global synchronization overhead: Compute units cannot communicate with each

other directly. As with GPUs, data transfers between workgroups across compute

units must go through off-chip memory. In addition to large synchronization over-

head, the advantage of connectivity within FPGAs is lost.

Wrapper Overhead: Extra OpenCL wrapper logic is required to individually interface

compute units with the host and external memory. Arbitration is often required,

which incurs overheads similar to that of the scheduler.

Symmetry constraints: All work-items and work-groups are assigned equal amounts

of private and local memory, respectively. This symmetry is not favorable when the

workload varies as a factor of the work-item/work-group number.

In contrast, SWI kernels do not require a scheduler; pipelines are customized for

a given application; parallelism is inferred and exploited in SWI kernels by analyz-

ing the computational flow and dependencies; the compiler can employ an arbitrary

number of registers and dimensions of BRAMs; communication is global because any

set of pipeline registers can transfer data to each other; and wrapper overhead is

substantially reduced.

The CPU-like baseline code should also be optimized for cache performance; this

helps the compiler infer connectivity between parallel pipelines (i.e., whether data

can potentially be directly transferred between pipelines instead of being stored in

memory), improves bandwidth for on-chip data access, and efficiently uses the internal

cache of Load Store Units which are responsible for off-chip memory transactions.

Algorithm 9 shows the preferred baseline kernel. The first row and column of the

matrix are Vector A and Vector B respectively.

5.3.3 Version 2: IBPs

Given the preferred baseline code, we then apply the following commonly used IBPs.
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Algorithm 10 Needleman Wunsch-V2

1: N ← Size of systolic array
2: PEk → Kernel Begin
3: int up, left, up left, cached up, cached up left
4: for i = k : N : V ector A Size do
5: Initialize cached up & cached up left
6: for j = 1 : 1 : V ector B Size do
7: left ← read channel (PEk−1)
8: up = cached up
9: up left = cached up left

10: cached up = max(up - penalty,
11: left - penalty , up left + ref [j,i ])
12: cached up left = left
13: Out[j,i] = cached up
14: write channel (PEk−1)← cached up

Multiple Task Parallel Kernels

Task parallelism is conventionally leveraged by implementing independent tasks as

individual kernels. FPGA OpenCL implements direct connectivity between these

kernels using channels (FIFOs) of variable data widths and depths, with support for

both blocking and non-blocking operations. Channels are critical to performance in

this approach, since all kernels operate concurrently and potentially large amounts

of data are transferred between them. Availability of data transfers directly between

pipelines located in separate kernels avoids off-chip memory accesses.

Fully unroll all loops

All loops must be fully unrolled whenever possible. Partial unrolls should be avoided

if resources are limited since that can add significant complexity and overhead to

pipelines. Rather, the problem can be folded by increasing the outer loop limit and

doing less work per iteration. This allows the compiler to exploit all forms and degrees

of parallelism at very fine granularity.
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Minimizing State Register Usage

State registers are a special type of pipeline register whose value persists across algo-

rithm iterations. They are inferred using variables declared outside the loops where

they are used. The compiler generates feedback hardware for them to explicitly pass

values to and from compute pipelines every iteration. Moreover, the state register

hardware can also interface off-chip memory for loading initialization values. The

initialization loop should be unrolled so that the state registers can be loaded in

parallel.

We observe that the compiler is bound to ensure state register availability across

subsequent iterations. For computations involving complex updates to the variable

(as opposed to simple operations like increment/decrement), the compiler can gen-

erate enough pipeline stages to prevent data from being forwarded stall-free to the

next iteration. As a result, the pipeline is either stalled, or the operating frequency

is lowered to accommodate a larger combinational path. There is also a resource

overhead of implementing the feedback logic.

As a result, we attempt to minimize stage register use by moving variable dec-

larations to within the outer loop whenever possible. Since the compiler is then no

longer bound to ensure availability of these variables across iterations, it can perform

more aggressive optimizations such as pipeline re-ordering.

Constant Arrays

Determining whether variables of known values should be initialized as constant arrays

is a simple, yet important design decision since it impacts the implementation beyond

reducing memory accesses. The compiler analyzes how the values are used in the

context of corresponding computations and generates hardware accordingly. If the

constant array has static accesses, i.e. persistently accessing the same value at a
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particular pipeline stage, the compiler can attempt to minimize the resources needed

for that computation by pre-computing results if possible. For example, if a number

is persistently multiplied with 1, the compiler will replace the DSP block with a

delay module that simply passes the input to the output whilst ensuring data-paths

continue to be synchronized. On the other hand, random accesses of the constant

array by multiple pipelines can result in memory replication with a unique copy of the

constant array generated for each pipeline. If the array was large enough, this could

saturate board resources and the design will not compile. Therefore, while constant

arrays should be used whenever possible to improve performance, their size should

be minimized to ensure the design can successfully compile.

Coalescing

As with GPUs, coalescing is critical to effectively utilizing memory bandwidth. Even

a single un-coalesced read per iteration can result in stalls which leads to poor per-

formance. It is preferable to fetch larger blocks of data in one access and initialize

state registers, which in turn supply data to the pipelines.

Algorithm 10 shows the Needleman Wunsch kernel structure after we apply IBPs.

Parallelism is exploited using a systolic array, with each Processing Element (PE)

implemented in a separate kernel. Channels are used to connect PEs in a specified

sequence. For each inner loop iteration, PEs compute consecutive columns within

the same row. This ensures spatial locality for memory transactions. The drawback

is data dependencies between kernels, which cannot be reliably broken down by the

compiler since it optimizes each kernel as an individual entity. Thus, the overhead of

synchronizing data paths can result in performance degradation.
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5.3.4 Version 3: Single Kernel Design

In Version 3 we merge the IBP optimized task parallel kernels and declare all com-

pute loops within the same kernel. Expressing the computation as a single kernel as

opposed to multiple task parallel kernels is an Anti-IBP, since the latter approach is

given in the Intel best practises guide. There are a number of advantages in using a

single kernel.

Algorithm 11 Needleman Wunsch-V3

1: N ← Size of systolic array
2: int value[N+1], left[Vector B Size]
3: left ← Vector B
4: for i = 1 : 1 : V ector A Size/N do
5: base = f(i)
6: value ← Vector A[base:base+N+1]
7: for j = 1 : 1 : V ector B Size do
8: int up left[N+1]
9: for k = 2 : 1 : N + 1 do

10: up left[k] = value[k-1]

11: value[1] = left[j]
12: #pragma unroll
13: for k = 2 : 1 : N + 1 do
14: value[k] = max(value[k-1] - penalty,
15: up left[k] + ref[j, base+k] , value[k] - penalty)

16: left[j] = value[N+1]
17: Out ← value[2:N+1]

There is inherent global synchronization since all computations are tied to the

same outer loop variable. Moreover, there is direct connectivity between pipelines

which lowers communication overhead and enables pipelines stages, previously iso-

lated due to channels, to be merged. Within a kernel, these loops should be placed

in the same outer loop, which represents the algorithmic flow. Each loop iteration

can correspond to a complete application stage, or have multiple variables derived

from the loop iterator to emulate nested loops. Outer loops are used by the compiler

to determine data-path latencies and synchronize them. Delay modules using FIFOs
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are added in case of a latency mismatch. Since the compiler only needs the correct

variable values at the end of an iteration, it is not bound to follow explicit C code

steps. Rather, pipelines can be reordered which can result in merged computation

with reduced resource usage, as well as overlap of delay modules across pipelines to

reduce/eliminate them. This approach also reduces the control logic for tracking ap-

plication progress, which could be as simple as a counter-comparator circuit. Nested

loops are typically avoided since there are a small number of stall cycles after each

outer loop iteration.

Algorithm 11 shows the kernel structure for implementing the systolic array as a

single kernel. The compiler can now optimize the entire computation, as opposed to

individual PEs. Synchronization overhead is also reduced since almost all computa-

tion is tied to a single loop variable (j ). Nested loops are used since, in this particular

case, the cost of initiation intervals is outweighed by the reduction in resource usage.

This is because the compiler was unable to infer data access patterns when loops were

coalesced.

5.3.5 Version 4: Reduced Array Sizes

OpenCL limits the size of a register array in SWI kernels. If this limit is exceeded,

the arrays are converted to BRAM based storage. While this is acceptable for data

memory/cache, inferring pipeline registers as BRAMs can have significant drawbacks

on the design. Since BRAMs cannot source and sink data with the same throughput as

registers, barrel shifters and memory replication is required which drastically increases

resource usage. Moreover, the compiler is also unable to launch stall-free iterations

of compute loops due to memory dependencies. Our solution is to break large arrays

corresponding to intermediate variables into smaller ones. Ideally, arrays should be

avoided altogether where ever possible. Instead, scripts can be used to create and

reference individual variables.
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Algorithm 12 Needleman Wunsch-V4

1: N ← Size of systolic array
2: int value 1, value 2 ... value N plus 1
3: int left [Vector B Size]
4: left ← Vector B
5: for i = 1 : 1 : V ector A Size/N do
6: base = f(i)
7: value 1 ← Vector A[base]
8: ↓
9: value N plus 1 ← Vector A[base+N+1]

10: for j = 1 : 1 : V ector B Size do
11: int up left 2 ... up left N plus 1
12: up left 2 = value 1
13: ↓
14: up left N plus 1 = value N
15: value 1 = left [j]
16: value 2 = max(value 1 - penalty,
17: up left 2 + ref[j,base+2], value 2 - penalty)
18: ↓
19: value N plus 1 = max(value N - penalty,
20: up left N plus 1 + ref[j,base+N+1],
21: value N plus 1 - penalty)
22: left[j] = value N plus 1
23: Out ← value 2 ... value N plus 1
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Algorithm 12 shows the kernel structure for inferring pipeline registers as registers.

All arrays are expressed as individual variables, with the exception of local storage of

Vector B in ‘left,’ which has low throughput requirements.

5.3.6 Version 5: Detailed Computations

The OpenCL compiler does not reliably break down large computations being as-

signed to a single variable into intermediate stages. As a result, dependency across

iterations can be considered as the worst case, i.e., the overall result of the computa-

tion is required for the next iteration’s first evaluation in the computation chain. The

compiler thus stalls the pipeline for the required number of cycles to address this.

Our solution is to do computations in as much detail as possible by storing results in

intermediate variables. This helps the compiler infer potential pipeline stages with

forwarding hardware. Memory dependencies are removed and the critical path is de-

creased. If the pipeline is already optimal, these variables will be synthesized away

and resource is not wasted.

Algorithm 13 shows the kernel structure after performing computations in detail

with a number of intermediate variables added. The ‘max’ function is also explicitly

implemented.

5.3.7 Version 6: Predication

We optimize conditional operations by explicitly specifying architecture states which

ensure the validity of the computation. Since hardware is persistent and will always

exist once synthesized, we avoid using conditional branch statements. Instead, vari-

able values are conditionally assigned such that the output of invalid operations is

not committed and hence does not impact the overall result. Examples of this in-

clude zeroing out variables and pointer arithmetic. Algorithm 14 shows the ‘if-else’

operations replaced with conditional assignments.
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Algorithm 13 Needleman Wunsch-V5

1: N ← Size of systolic array
2: int value 1, value 2 ... value N plus 1
3: int left [Vector B Size]
4: left ← Vector B
5: for i = 1 : 1 : V ector A Size/N do
6: base = f(i)
7: value 1 ← Vector A[base]
8: ↓
9: value N plus 1 ← Vector A[base+N+1]

10: for j = 1 : 1 : V ector B Size do
11: int a 2 = value 1 + ref[j,base+2];
12: value 1 = left[j]
13:

14: int b 2 = value 1 - penalty
15: int a 3 = value 2 + ref[j,base+3];
16: int c 2 = value 2 - penalty
17:

18: if ((a 2 ≥ b 2) && (a 2 ≥ c 2))
19: value 2 = a 2
20: else if ((b 2 > a 2) && (b 2 ≥ c 2))
21: value 2 = b 2
22: else
23: value 2 = c 2
24:

25: int b 3 = value 2 - penalty
26: int a 4 = value 3 + ref[j,base+4];
27: int c 3 = value 3 - penalty

28:
...

29: left[j] = value N plus 1
30: Out ← value 2 ... value N plus 1
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Algorithm 14 Needleman Wunsch-V6

1:
...

2: int a 2 = value 1 + ref[j,base+2];
3: value 1 = left[j]
4:

5: int b 2 = value 1 - penalty
6: int a 3 = value 2 + ref[j,base+3];
7: int c 2 = value 2 - penalty
8:

9: int d 2 = (a 2 > b 2) ? a 2 : b 2
10: value 2 = (c 2 > d 2) ? c 2 : d 2

11:
...

5.3.8 Case Study: Parallel Computing Dwarfs

In this case study, we apply our transformations to a number of parallel computing

dwarfs. This includes the Fast Fourier Transform (FFT), Range Limited Molecular

Dynamics (Range Limited), Particle Mesh Ewald (PME), Dense Matrix Matrix Mul-

tiplication (MMM), Sparse Matrix Dense Vector Multiplication (SpMV), and Cyclic

Redundancy Check (CRC) benchmarks. We not only evaluate the impact of indi-

vidual transformation to each benchmark, but also demonstrate the importance of

selecting the correct baseline model. We also compare the performance of generated

pipelines against other platforms/approaches such as CPU, GPU, Verilog, and exit-

ing FPGA OpenCL implementations. To ensure fairness, values used for comparisons

are all either obtained from literature, or from implementations of available source

codes/libraries. Figure 5·1 provides a summary of these benchmarks, their associated

dwarfs, tested problem sizes, and applicable code versions. Blank table entries indi-

cate that the version was not created since the corresponding transformations were

not possible in the context of the application. For example, predication does not

apply to FFT since there is a single, fixed data path.

We implement the designs using an Altera Arria 10AX115H3F34I2SG FPGA and
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Figure 5·1: Benchmark Summary – Not all optimizations are appli-
cable to all codes

Altera OpenCL SDK 16.0. The FPGA has 427,200 ALMs, 1506K Logic Elements,

1518 DSP blocks, and 53Mb of on-chip storage. For GPU implementations, we use

the Tesla P100 PCIe 12GB GPU with CUDA 8.0. It has 3584 CUDA cores and peak

bandwidth of 549 GB/s. CPU codes are implemented on a 14 core 2.4 GHz Intel

Xeon E5-2680v4 with Intel C++ Compiler v16.0.1.

Figure 5·2: Impact of systematic application of proposed optimiza-
tions to a cache-optimized CPU baseline code. In almost all cases,
every subsequent code version shows increasing performance, with up
to orders of magnitude better performance possible for fully optimized
kernels over ones with only IBPs (V-2).

Figure 5·2 shows the results of individual transformations. In almost all cases, the
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Figure 5·3: Performance for different code versions, obtained by av-
eraging the speedup of all applicable benchmarks.

same trend can be observed where IBPs (V-2) only result in a fraction of the speedup

possible. The shortcomings of IBPs are especially highlighted in CRC and FFT. For

the former, the V-2 code for CRC has the same performance as the baseline. Results

for the latter, FFT, are worse still since implementing multi-kernel designs with chan-

nels results in a lower performance than even the baseline. On the other hand, by

applying the additional transformations on top of V-2, the achieved performance is

improved by orders of magnitude. The average impact of individual transformations

is shown in Figure 5·3. Generally, each successive set of transformations applied re-

sults in increasing performance. The exception is V-5. This is due to higher execution

times of V-5 for NW and SpMV. In both cases, performing computations in as much

detail as possible results in the use of conditional statements that outweigh bene-

fits of the transformation. Once these statements are removed in V-6, the speedup

increases.

We also highlight the importance of selecting the correct baseline model for kernel

development by implementing MMM kernels with three different approaches (Figure

5·4). MMM-JIK is the naive approach: the outer loops, i and j, select the row and

column of two matrices A and B, respectively. The inner-most loop, k, iterates over
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all elements in the selected row and column. j is selected as the outermost loop so

that the column vector, which has a poor access pattern, is only read once from global

memory, stored in local variables and reused. MMM-KIJ swaps the loops, moving

the k loop to the outermost location in the hierarchy. It is unable to outperform

MMM-JIK, despite a better access pattern, because of the writes in the inner loop.

Finally, MMM-Block is a blocked version that targets high data reuse and minimal

memory access. It is thus able to achieve the lowest execution time. In the case of

MMM-Block, we also demonstrate that despite having the worst performance in V-1,

the final version V-6 has the lowest execution time since it benefits more from the

applied transformations. On the other hand, while improvements are seen for the

other two versions as well, the benefits are relatively small.

Figure 5·4: Transformations performed for MMM versions with differ-
ent initial code structures. The observed trend is that better memory
access patterns of a given baseline results in a larger impact of each
transformation and lower overall execution time.

Finally, to demonstrate the overall effectiveness of the approach, we compare

the performance of the optimized kernels against existing CPU, GPU, Verilog, and

FPGA-OpenCL implementations. Table 5.2 lists the references for these designs;

they are either obtained from the literature or implemented using available source
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Table 5.2: References for Existing Implementations

Benchmarks CPU GPU Verilog OpenCL
NW Rodinia* Rodinia* Benkrid Zohouri

(Che et al., 2009) (Che et al., 2009) (Benkrid et al., 2009) (Zohouri et al., 2016)
FFT MKL* cuFFT* Sanaullah Intel*

(Intel, 2018a) (NVIDIA, 2018) (Sanaullah and Herbordt, 2018a) (Intel, 2018b)
Range - - Yang Yang

Limited (Yang et al., 2017b) (Yang et al., 2017b)
PME Ferit Ferit Sanaullah -

(Büyükkeçeci et al., 2013) (Büyükkeçeci et al., 2013) (Sanaullah et al., 2016a)
MMM MKL* cuBLAS* Shen Spector*

(Intel, 2018a) (NVIDIA, 2008) (Shen et al., 2018) (Gautier et al., 2016)
SpMV MKL* cuSparse* Zhou OpenDwarfs*

(Intel, 2018a) (NVIDIA, 2014) (Zhuo and Prasanna, 2005) (Krommydas et al., 2016)
CRC Brumme* - Anand OpenDwarfs*

(Brumme, 2018) (Anand et al., 2016) (Krommydas et al., 2016)

code/libraries. The latter is illustrated using an asterisk (*). Verilog FFT measure-

ment from (Sanaullah and Herbordt, 2018a) has been extended to include off-chip

access overhead. Figure 5·5 shows the average speedup achieved over the CPU code

while Figure 5·6 shows the normalized execution times for all implementations.

Figure 5·5: Average speedup wrt CPU across all applicable bench-
marks.

From the results, we observe that our work outperforms multi-core CPU imple-

mentations by approximately 1.2× due to the performance of codes written using Intel

MKL. We have also achieved an average of approximately 5× lower execution time

than existing FPGA OpenCL work. The exception is FFT, where we have a 3.7×
higher execution time than the reference FPGA OpenCL implementation. Similar to

MKL, this reference design was developed by Intel engineers, who are familiar with
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the low level details of the C-to-HDL translation, and the optimizations performed

cannot be applied in a general way to all applications.

The GPU speedup of 2.4× relative to our work is due to the use of a high-end

GPU, Tesla P100, and a medium-end FPGA, Arria-10. We therefore also provide an

estimate of a high end FPGA performance, Stratix-10, using a conservative factor of

4× that accounts for an increase in resource only. Results show that the optimized

kernels on Stratix-10 are expected to outperform GPU designs by 65%, on average.

Comparison with existing Verilog implementations shows that the kernels are, on

average, within 12% of hand-tuned HDL. This demonstrates that the transformations

are successfully able to bridge the performance-programmability gap for FPGAs and

deliver HDL-like performance using OpenCL.

Figure 5·6: Performance of Our Work as compared with existing CPU,
GPU, Verilog and FPGA OpenCL implementations. Our work outper-
forms CPU and OpenCL for most of the benchmarks. Moreover, we
also achieve speedups over GPU (SpMV, PME) and Verilog (SpMV,
Range Limited).

5.3.9 Case Study: Network Packet Processing

In the previous case study, we explored a number of ad hoc applications for eval-

uating the effectiveness of our transformations. Here, we focus on an actual core

use case for FPGAs in Data Centers i.e. Network Packet Processing (NPP). NPP

involves operating on data as it moves through the network e.g. IPSec, load balanc-
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ing, collective, Network Function Virtualization, and Software Defined Networking.

These applications are well suited for FPGAs since spatial computing enables data

processing at line rates, whereas 1000s of instructions are needed in software. The

specific workloads targeted in this case study include matching (Cuckoo hash table,

Regular expression match), encryption (AES-256), hashing (Murmur3, SHA-1) and

probabilistic data structures (HyperLogLog, Bloom filters).

Application of Transformations to NPP Workloads

Figure 5·7 illustrates the impact of applying our transformations to NPP workloads.

Instead of looping over different operations and multiplexing resources, a pipeline is

created by replicating logic as needed. This enables data to flow from input buffers

to output buffers at high throughput and without stalling.

Figure 5·7: Applying transformations to Network Packet Processing

One observation made when implementing NPP workloads is that a Read-After-
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Write (RAW) hazard can exist when using BRAMs. BRAMs are a common compo-

nent of NPP applications since data structures, such as match-tables, use them to

store or lookup rules. The limitation of BRAMs is that they cannot read from a loca-

tion in the cycle immediately after the location is written to. Since these tables can

get quite large, register based storage cannot be used. However, we can use registers

to temporary hold on to stored values for access immediately after writes. This is

referred to as a register cache.

The code for addressing the Read-After-Write hazard using a register cache is

inserted using the following process: i) for each array, a single variable is declared

outside the main loop in order to preserve its state across iterations, ii) inside the

loop, the contents of this variable are copied to a temporary variable, iii) the BRAM

array is accessed as a function of the loop iteration; this is critical since it enables

the compiler to determine if this memory location was accessed in the previous cycle,

iv) the read address of the current iteration is compared with the write address of

the previous iteration, v) if they match, the value in the temporary variable from

(ii) is used in subsequent computation, vi) if there is no match, the value of BRAM

array read in (iii) is used, vii) the temporary variable is stored in the BRAM array,

and finally viii) writes to the BRAM array are instead made to the state-preserved

variable so that the actual write to BRAM happens in the next iteration.

Workload Evaluation

We provide the implementation results of our optimized application kernels. Percent-

age resource usage of ALMs and BRAMs is plotted on the primary y axis, while the

performance (in the form of Gbps throughput) is plotted on the secondary y axis. Our

experimental results demonstrate that applying our code transformation to OpenCL

network packet processing workloads results in the generated hardware exceeding 100

Gbps line rates with low resource overhead. We also compare the implementation



103

of two applications, i.e. AES-256 and SHA-1, against the state-of-the-art Microsoft

ClickNP (Li et al., 2016b).

Regular Expression Match (Regex) is commonly used to detect a particular

sequence of characters in network packets e.g. for intrusion detection. Given a refer-

ence pattern, each character of the input string is compared against all characters in

the pattern. Based on this comparison, a two dimensional boolean table is populated,

and the comparison result appears at the last element of this table. With regards to

the pattern, it is composed of both standard and special characters. Standard char-

acters match with themselves i.e. they can be found in both the pattern and string.

Special characters are only found in the pattern, and are used for wildcard matching.

In this work, we demonstrate support for special characters by implementing ‘.’ (any

character is allowed) and ‘*’ (zero or more occurrences of the preceding character are

allowed).

To evaluate Regular Expression Match, we vary the pattern size and measure

corresponding throughput. The results are illustrated in Figure 5·8. Since the systolic

array processes all bytes of the pattern every cycle, we see that throughput increases

with increasing problem size (at the expense of higher latency). This ranges from

100Gbps for a 32 byte pattern to 19 Tbps for the 10K byte pattern. Moreover, the

design uses very little chip resource (<2.5% for 10K byte pattern) which allows the

Regular expression match modules to be replicated multiple times.

AES-256 is a popular encryption algorithm that encrypts 16 Bytes of data per

function call using a 256 bit key. The encryption happens over 14 rounds of processing,

typically implemented using a loop, plus an initial round where the key is simply

applied to the input data and stored in a state array. With the exception of the

last one, each round performs the same set of operations. First, the 256 bit key

is expanded to generate a new one for the round. Then, Rijndael’s S-Box is used
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Figure 5·8: Impact of Regular Expression Match pattern size on re-
source usage and throughput.

to substitute bytes in the state array, followed by a number of bit and byte level

operations on the state array. Each round ends with the application of the expanded

key to this state array.

Table 5.3 shows the implementation results of AES-256 for i) our designs, ii)

ClickNP, and iii) improvement of our Stratix-V implementation over ClickNP. From

the results, we can see that our implementation achieves 18% higher throughput,

while using 20% fewer RAM blocks (on the Startix-VD5) and only 1% more logic

blocks. This is primarily because of manual unroll, which gives the compiler greater

freedom in how the computation gets structured, as well as a more reliable view of

data dependencies. When operated in block cipher mode of operation, the AES-256

module can be replicated a maximum of 8 times for the Arria 10 FPGA, resulting in

an aggregate throughput of 256 Gbps.

Table 5.3: AES-256 Implementation Comparison

FPGA ALM BRAM Throughput
This Work Arria 10 10845 305 32Gbps
This Work StratixV 8168 331 33Gbps
ClickNP StratixV 6904 465 28Gbps

Improvement StratixV -1% 20% 18%
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SHA-1 is a popular cryptographic hash function for adding digital signatures to

network packets, which are subsequently used to verify the authenticity of transmis-

sions. The input message is processed in chunks of 512 bits and, unlike AES, these

chunks cannot be processed in a pipelined manner. This is because the result of

a preceding chunk is used as the starting value by the current one. Each chunk is

evaluated over 80 rounds of computation, composed primarily of bit operations and

integer additions. These rounds require the 16 - 32bit input values to be expanded

to 80 - 32bit values, with one input value used per round of computation. Table 5.4

shows the implementation results of SHA-1 in the same format. Similar to AES-256,

our SHA-1 implementation outperforms ClickNP while using significantly fewer RAM

blocks and only 2% more logic blocks.

Table 5.4: SHA-1 Implementation Comparison

FPGA ALM BRAM Throughput
This Work Arria 10 25063 21 1.4Gbps
This Work StratixV 17708 22 1.3Gbps
ClickNP StratixV 13635 133 1.1Gbps

Improvement StratixV -2% 16% 20%

Another, simpler form of hashing is required in packet processing to index into

various data structures e.g. forwarding tables. The input to these hash functions are

typically a n-tuple of packet meta data. Unlike cryptographic hashes, these do not

have strict requirements for avoiding collisions and can thus be easily parallelized.

In this work, we use Murmur3 as a representative example of such hashing. The

Murmur3 algorithm operates on arbitrary number of input bytes in two stages, and

transforms an initial seed value to the final hash based on this input. Stage 1 processes

input data in chunks of 128 bits. Stage 2 then finishes up the remaining smaller 8 bit

chunks.

We evaluated Murmur3 by using four potential Tuples sizes. 1-Tuple consists of

a single 32-bit IP address. 3-Tuple is used in layer 3 hashing, and is composed of the

source IP, destination IP and IP protocol. 5-Tuple is commonly used for TCP/IP
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Figure 5·9: Impact of N-Tuple size on Murmur3 resource usage and
throughput.

connections, and extends the 3-Tuple by also including the source and destination

ports. The total size of 3- and 5-Tuples is 12 and 16 bytes respectively. Finally, we

evaluate a 32 bytes OpenFlow 12-Tuple (OpenNetworkingFoundation, 2019). Figure

5·9 shows the results of our implementation. There is no BRAM usage in all four

cases while ALM usage is low and does not have significant variations. Since the

implementation is fully pipelined, throughput increases linearly with Tuple size; from

10Gbps for 1-Tuple to 90Gbps for 12-Tuple. Similar to Regex, however, the latency

will be higher for larger Tuples.

Bloom filters are probabilistic data structures that are used to determine if a

given input is present in a set. They trade off accuracy for speed and resource i.e.

a bloom filter can give false positives, but is guaranteed not to give a false negative.

For a given input, multiple different hashes are computed. If the operation is ‘add’,

the Bloom filter table is indexed by these hash values and corresponding entries set

to 1. If the operation is ‘find’, these entries are ANDed. If even a single entry is 0,

the result is false which guarantees that the input is not present in this set. On the

other hand, all entries being 1 does not guarantee presence since these bits could have

been set by different inputs (collisions). Selection of the number of hashes and table
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size is thus important for determining the probability of false positive generation.

To evaluate Bloom filter performance, we perform three experiments: a) we im-

plement a 16Kb Bloom filter and vary the number of hash functions, b) fix the

hash functions to 2 and vary Bloom filter size from 2Kb to 1Mb, and c) we repeat

experiment (b) but with 4 hash functions. Figure 5·10 shows the results of these ex-

periments. We observe that resource usage increases and throughput decreases with

number of hash functions. The former is because the compiler assigns independent

RAM blocks to each table, which is inefficient since it leads to under utilization of

individual blocks. Thus, more blocks are needed to construct the same 16Kb table.

On the other hand, throughput decreases because larger resource overhead reduces

operating frequency (all hash functions are computed from the same fixed size key,

and so the effective input size is independent of the number of hash functions). When

number of hash functions is fixed and table size varied, we observe that BRAM usage

increase, ALM usage remains consistent, and performance has small variations.

HyperLogLog is another probabilistic data structure used to estimate the car-

dinality of a multi-set, that is, how many unique values are present in the set. This is

particularly useful for large data sets, where calculating the exact value is impractical

since it requires a large memory footprint. We test HyperLogLog for bucket sizes

ranging from 512 to 16K. Figure 5·11 shows the results of our experiements. In all

cases, the kernel operates in a fully pipelined manner, processing a new input every

cycle. While ALM usage is invariant to the number of buckets, BRAM usage grows

proportionally since we are using BRAM based arrays. The performance also drops

as expected due to increase in BRAM usage. However, this drop is relatively small

(5Gbps). An interesting observation is that 2048 buckets give a better throughput

than 1024, despite using larger resources. This highlights the need to explore design

space before selecting architecture parameters, since certain sizes map better to the
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Figure 5·10: Impact on Bloom filter resource usage and throughput
due to variations in a) number of hash functions, b) table size for 2
hash functions, and c) table size for 4 hash functions.

FPGA.

Cuckoo Hash Tables attempt to reduce collisions by using two independent

tables, each with its own hash functions. Each table entry typically contains the

unique key used to compute hashes, as well as an association value (e.g. action

value for a match-action table). Lookups and deletions occur with O(1) complexity

by simply addressing each table and performing the appropriate operation. On the

other hand, insertion is unbounded. An insert is first attempted on one table. If

a collision occurs, the existing value is kicked out and the algorithm attempts to

insert this value in the next table. The above process repeatedly inserts and kicks

out table entries until either no valid entry is kicked, or a maximum attempt limit is

exceeded. An unbounded insert cannot be reliably implemented since the compiler

cannot synchronize this data path with the bounded find and delete operations. As a
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Figure 5·11: Impact of tables size on HyperLogLog resource usage
and throughput.

result, we make a simplifying assumption that inserts can be converted into an O(1)

problem by only performing a single insert per input. If a table entry is kicked, we

assume that is handled by logic external to the Cuckoo module and applied as a new

input to the module.

Similar to bloom filter, we perform three sets of experiments for Cuckoo hash: a)

using a 4 Byte key, 16 Byte table entry and varying the size of tables, b) repeating

(a) but with 32 Byte table entries, and c) using 16K total table size, 32 Byte entry

and varying key size. In all cases, the input size is equal to the table entry size.

Figure 5·12 shows the results of these experiments. Consistent with previous results,

we observe that in both Figure 5·12a and Figure 5·12b , increase in BRAM usage is

proportional to increase in table size. On the other hand, throughput decreases due

to lower operating frequencies. We also observe that ALM usage doubles when entry

size doubles, but does not change with table size. Finally, we observe in Figure 5·12c

that key sizes in our tested range do not significantly impact either resource usage or

throughput.
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Figure 5·12: Impact on Cuckoo hash resource usage and throughput
due to variations in a) table size of 16 byte entries, b) table size of 32
byte entries, and c) key size for 16K size tables and 32 byte entries.

5.4 Conclusion

In this chapter, it is shown that the Performance-Programmability gap of FPGA

OpenCL can be reduced and that performance comparable to GPUs, and even Verilog-

based implementations, can be achieved. By using CPU code as a starting point and

performing a series of simple optimizations that augment common best practices,

highly efficient FPGA hardware can be generated. The performance impact of all of

the optimizations is characterized using a number of parallel computing dwarfs. The

overall impact of this characterization is that programmers can now follow a script for

optimizing their FPGA OpenCL kernels and achieve HPC performance. Moreover,

auto-tuners can be developed to automate the generation of efficient hardware. For

parallel computing dwarfs, the optimized kernels have been shown to outperform CPU
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and previous FPGA OpenCL designs. Using Stratix-10, they can also outperform a

high-end GPU. Most importantly, it is demonstrated that the optimizations can,

on average, achieve performance values within 12% of hand-tuned HDL code. For

network packet processing, results show that OpenCL generated hardware can exceed

50 Gbps line rates with low resource overhead. Moreover, we demonstrated that our

designs for AES-256 and SHA-1 can perform≈20% better than current state of the-

art.
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Chapter 6

A First Principles Approach to

Indentifying and Removing Optimization

Blockers

6.1 Motivation

The logical extension to work done in Chapter 5 is to either write scripts/pre-processor

for automatic application of the proposed transforms, or to integrate them into a HLS

compiler with certain options. However, we found our approach in Chapter 5 to be

brittle. We only conjecture why the transformations work. This means that any small

change to the compiler can the either change the set of applicable transforms, or their

ordering, or both. Before a large amount of time is spent on modifying compilers

or building pre-processors, we need to get a better understanding of optimization

blockers in HLS. We need to know: i) what those optimization blockers are? ii) what

input transformations work? iii) What additional transformations are possible? and

iv) what pragmas are needed?

6.2 Optimization Blockers

For every transformation, compilers are forced to use a conservative, safety-first ap-

proach, and only perform a transform if the validity can be guaranteed. An optimizing

transform may be blocked if it: i) modifies code functionality, instead of structure only,

ii) can result in a failure to compile (e.g. exceeding available target device resources),
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iii) is based on information available at run-time (can sometimes be addressed by

creating multiple versions of the data path, with some catering to special cases and

others to generic ones e.g. implementing both division with a commonly-occurring

value and division with a variable), iv) requires a global view of the computation (e.g.

dedicating too many resources to a local computation may result in resource starva-

tion for the other procedures), and/or v) is based on implicit code behavior that may

be visible to the developer, but cannot be reliably extracted by the compiler. Simply

put, optimization blockers occur when a compiler writer is not being allowed to infer

an optimization.

An example of optimization blockers in C/C++ is memory aliasing. This occurs

when a compiler cannot guarantee that two objects, pointed to by separate pointers,

do not fully or partially overlap in memory i.e. two pointers point to different loca-

tions. Algorithm 15 illustrates an example of this. Here, the value e can be either 100

or 200 (and not always 100), since it is possible for both ∗c and ∗d to be pointing to

the same memory location. Memory aliasing can be avoided by using the “restrict”

keyword. However, this requires the developer to have sufficient expertise in low level

behavior of C/C++ code.

Algorithm 15 Memory Aliasing

1: int foo(int* c, int* d)
2: int a = 100; int b = 200;
3: *c = a; *d = b;
4: int e = *c;
5: return e;

We conjecture that all optimization blockers in HLS are of one type i.e. compiler

writers expect developers to implement HLS as HDL. This is because compilers typi-

cally perform a literal translation of HLS to HDL e.g. one variable is one register and

one thread of execution is one pipeline. Getting good performance for an algorithm

thus becomes difficult since it involves having an understanding of: i) how syntax
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maps to machine code, ii) how the machine then executes the code, iii) what the

performance is, relative to other binary code, iv) identification of where optimization

blockers may occur, and v) how to modify sub-optimal code structures.

6.3 Task: Identifying Optimization Blockers

In this section, we outline our approach towards identifying optimization blockers

for a HLS compiler. Figure 6·1 illustrates this approach. We first build a model for

Figure 6·1: Process for Identifying Optimization Blockers

FPGAs by identifying a set of core design patterns that the compiler should be able to

infer and implement effectively. Then, we instrument the HLS compiler to determine

what it has inferred given an input code. We then build a set of probes which contain

individual design patterns in relative isolation, so that we can determine compiler

effectiveness for each. Finally, by running these probes through the compiler and

looking at instrumentation results, we can tell what optimizations are blocked. By

extension, we can start to answer the questions asked above. Moreover, if we can also
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determine how these optimizations were blocked, we can better understand how the

compiler can be modified.

6.4 Eigenspace Mapping

We formalize characterizing compiler effectiveness using Equation 6.1. Let A be code

transformations applied to a multi-dimension eigenvector v (Equation 6.2). Each

dimension of this eigenvector represents a different feature of the code that impacts

either performance, or resource usage, or both. The magnitude of this impact is

represented by a multi-dimension vector of eigenvalues λ (Equation 6.3). The goal

of our profiler is to measure these eigenvalues based on analysis done on the post-

transformation eigenvectors. Given that these eigenvalues capture implementation

effectiveness of core design patterns, it is even possible to estimate the run time of a

given code without compiling it to RTL (Equation 6.4).

Av = λv (6.1)

where

v =


v11 v12 v13 . . . v1N
v21 v22 v23 . . . v2N
v31 v32 v33 . . . v3N
...

...
...

. . .
...

vN1 vN2 vN3 . . . vNN

 (6.2)

λ =
[
λ1 λ2 λ3 . . . λN

]
(6.3)

and

Performance = P (λ) cycles (6.4)
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6.5 The FPGA Computing Model

In this section, we present our proposed computing model for FPGAs. Specifically,

we list and discuss core design patterns of hardware, which form the elements of this

model, and how they relate to performance and efficiency.

6.5.1 Spatio-Temporal Computing

To build an FPGA model, we must first identify the practical high level goal for de-

signing hardware. Typically, FPGAs are considered to be spatial computers. The goal

for spatial computing is to define processing elements and the connections between

them; information used by the compiler to then generate specialized architectures,

capable of exploiting arbitrary levels of data, task and instruction parallelism. Speci-

fying custom circuits with dedicated logic for each function is one of the most efficient

approaches to computing, since it eliminates a number of inherent bottlenecks of tra-

ditional temporal computers (such as CPUs). That being said, spatial computing is

not without its own set of constraints. Specifically, a purely spatial computer is built

on the pretense of infinite resource; a concept that is certainly not practical. Not

only is resource a finite quantity, but it is also an important factor considered when

estimating performance. Consuming a lot of certain resources, such as BRAMs, can

result in lower operating frequencies since larger MUXs may need to be implemented.

Consuming too much may result in failure to compile altogether, since there would be

insufficient resources available to generate pipelines, e.g. not enough functional units

(e.g. DSPs) or interconnect fabric. In certain cases, the control plane generated can

also end up having substantial overhead. Therefore, practical circuit design has to be

mindful of a device’s resources and performance by incorporating concepts of both

spatial and temporal computing. That is, developers should express computations

spatially, but also attempt to reuse logic whenever doing so does not significantly re-
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duce performance (especially in the case of critical resources such DSPs). This is why

we believe that the high level goal in designing hardware is to build a spatio-temporal

computer, and as such we include elements of both spatial and temporal computing

in our model.

6.5.2 Spatial Elements

Here, we present some of the core spatial elements of the FPGA model (Figure 6·2).

The high level goal of these elements is to maximize parallelism for both computations

and memory accesses. For each element, we describe i) why that particular element

is a core design pattern, and ii) possible optimization blockers that can prevent this

design pattern from being reliably inferred.

Figure 6·2: Set of spatial design patterns targeted in this dissertation
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SIMD

The manifestation of SIMD is HLS code typically corresponds to loops with finite

limits, static increment sizes and no loop-carried dependencies. In such a case, it is

expected that the compilers identify the hardware needed to execute a single loop

iteration, and make multiple copies of it so that all iterations can execute the same

instructions at the same time. The advantages of SIMD are that it: i) reduces the

time taken to execute a loop, and ii) eliminates overhead of loop control logic, as well

as stall logic at the entry of the loop (if the loop is nested). While previous work,

such as (Karrenberg et al., 2013), has shown SMT solvers can be used to efficiently

detect SIMD, a compiler might still preserve the loop due to potential global resource

starvation. This means that the compiler is not certain that assigning more resources

to a loop will leave sufficient chip fabric for implementing the rest of the algorithm.

Moreover, even if SIMD is exploited in a loop, another bottleneck could be present

(perhaps another loop), which would result in limited performance improvements.

Overall, knowing how much resource to assign to each loop is a non trivial optimiza-

tion, since the entire algorithm has to fit on chip whilst maximizing performance.

And therefore, without appropriate guarantees or manual tuning, certain compilers

may not do any SIMD (despite knowing the opportunity for doing so exists) since

they are unable to determine the optimal SIMD parameters for each loop.

Pipelining

Pipelining refers to the exploitation of instruction level parallelism in an algorithm. It

enables dependent instructions to execute concurrently by generating separate hard-

ware for them, and connecting outputs of preceding instructions with inputs of sub-

sequent ones. If the subsequent instruction is not evaluated in the next cycle, a

delay is added to the data (typically using shift registers). Several pipelines can also
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be constructed in parallel, corresponding to one or more tasks. The advantages of

pipelining are that it: i) reduces the critical path in the RTL and allows concurrent

execution for operations such as floating point arithmetic, ii) increases throughput

by allowing multiple iterations of a loop to execute in parallel, with each iteration

evaluating different instructions, and ii) decreases resource needed for implementing

loop control and stall logic, similar to SIMD. Note that pipelining all iterations of a

loop for concurrent access (by implementing multiple copies of a pipelined loop body

in a sequence) is generally only useful if this loop is nested, and these replications

can fit on chip; if a loop is not nested or consumes too many resources, it is better to

have only one copy of the pipelined loop body.

The challenge with pipelines is that while a compiler may easily detect what

pipelines are to be created, it may not be able to infer the best approach to implement

them. Specifically, it may not infer that pipeline registers must be implemented as

registers and not BRAMs. BRAMs are available as a combination of blocks of fixed

sizes (e.g. M20K in Intel FPGAs). These blocks can at best be dual ported, which

means that only two pipeline registers can be implemented per block. Consequently,

a large number of blocks are needed to implement a deep pipeline, which in turn

means very little memory is left over for implementing caches and on-chip databases.

Moreover, the utilization of these blocks is also expected to be extremely low. There

are two potential optimization blockers that can prevent a compiler from inferring

registers over BRAMs. First, if the size of the pipeline register array exceeds a

certain threshold, the compiler may be hardwired to store the array in a BRAM in

an attempt to maximize resource efficiency. This is because memory available using

Logic Elements (e.g. MLABs implemented using ALMs in Intel FPGAs) is far less

than memory available using BRAMs. Second, if the compiler cannot guarantee an

access pattern e.g. data read from RegArray[i] is always processed and stored in
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RegArray[i+1], then it may make the default assumption of random access.

Caching

Off-chip Memory transactions involving individual variables typically result in stalls

while the memory access takes place. Not only does an individual access waste avail-

able memory bandwidth, but multiple such accesses within the same loop iteration

have an additive effect since one off-chip access cannot mask another. The stall may

even be large enough to prevent the loop from being pipelined. Caching reads and

writes to on-chip memory, even if there is no data reuse, helps remove these off-chip

access stalls from the critical path of a loop. Since memory can now be accessed

in blocks instead of individual variables, coalescing is also possible which improves

bandwidth utilization (and hence performance).

Caching is difficult for a compiler to infer based solely on knowing what off-

chip memory transactions occur (and where). Specifically, there are two potential

optimization blockers for caching. First, it is possible for caching to change the

overall result. For example, the result of the algorithm may change if it has two

or more concurrently running computations that share the same off-chip memory

space. By caching writes, one computation does not commit data to memory at the

instance that it was supposed to, thereby resulting in an incorrect read by another

computation (that assumed a write took place). Similarly, caching reads means the

value read at the start of execution may be different from the value at the instance

that it was actually intended to be read. Second, caching requires additional chip

resources that were not explicitly requested by the developer, and could thus result

in a global resource starvation problem.
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Constants

Constants refer to values that are fixed for the duration of an algorithm. They

can be declared both as individual values and as arrays. Use of constants not only

reduces off-chip memory access, but can also minimize the resources needed for that

computation by pre-computing results if possible. For example, in the case of compile

time constants, a guaranteed multiplication with 0 or 1 means that the multiplier may

be removed altogether. Moreover, both compile time and run time constants can be

directly applied to the inputs of pipelines; this reduces the interconnect used to fetch

them from a different location on the chip and improves design routability. While a

compiler generally infers and leverages individual constants (both compile and run

time) with ease, it may not be able to efficiently implement an array of compile

time constants that are being accessed by multiple pipelines (and pipeline stages)

concurrently. A naive approach is to always replicate the array for each sink so that

pipelines can operate stall free. However, if the array was large enough, having an

independent copy per access could saturate board resources and the design will not

compile. The optimization that a compiler is expected to do is to create smaller arrays

that are a subset of the larger one and are tailored to each sink i.e. these arrays only

contain values required by the target sink in the pipeline. This can significantly reduce

the overhead of constant memory replication, and even eliminate it altogether if every

sink accesses a unique memory space. However, a potential optimization blocker is

the compiler’s inability to correctly infer access patterns for a large constant array.

Inlining

Inlining refers to replacing a function call in the pipeline with the actual logic of

that function. The advantage of inlining is that it tightly integrates hardware, re-

sulting in: i) elimination of redundant computations and memory accesses, ii) better
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design routability, iii) lower latency, and iv) the ability to optimize both pipeline and

function together (global optimizations), including non-trivial optimizations such as

pipeline re-ordering or merging pipeline stages. The degree to which these benefits

of inlining are exploited, however, depends on the compiler. While the compiler may

easily add function logic to the pipeline, it may be blocked from performing aggres-

sive transformations if it cannot be certain that functional correctness for the entire

algorithm is preserved.

6.5.3 Temporal Elements

Unlike spatial elements, the high level goal of temporal elements is not to maxi-

mize parallelism. Rather, it is to reuse hardware in a manner that does not reduce

performance (Figure 6·3). This is typically required when a problem requires more

resources than available for spatial implementation, or if the problem has too many

dependencies to be parallelised. Similar to above, for each element we will describe:

i) why that particular element is a core design pattern, and ii) possible optimization

blockers that can prevent this design pattern from being reliably inferred.

Loops

Loops are perhaps the most common approach to folding a problem. Instead of

specifying hardware for every possible instruction in the algorithm, developers define

a hardware block (loop body) which is reused multiple times by varying inputs (based

on the loop iteration number). As discussed before, the block can also be pipelined,

enabling multiple loop iterations to concurrently use the block. Overall, an optimized,

pipelined loop can reduce the execution complexity from O(NM) to O(N + M),

where N is the number of loop iterations and M is the latency of a single iteration.

A possible optimization blocker, however, is nested loops. If loops are nested, then

the compiler cannot optimize the outer loops since each iteration of this outerloop
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Figure 6·3: Set of temporal design patterns targeted in this disserta-
tion

requires multiple iterations of the inner loop. Since the inner loop hardware block

cannot be replicated (global resource starvation), outerloop iterations may not get

scheduled till the previous one is complete in order to guarantee functional correctness.

In this case, for example for two nested loops, the execution complexity becomes

O(Nouter ∗ (Ninner +M)) (assuming there is no hardware block exclusive to the outer

loop).

BRAM Read-After-Write Hazard

In the pipelining section above, we discussed how pipeline registers should be inferred

as registers. For certain cases, however, BRAMs are actually preferred. A popular

example of this exception is network packet processing applications, where meta data

of incoming network packets is hashed and used to index into complex data structures.
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Since these data structures can be Megabits in size, it is impractical to implement

them using registers. Hence, they are stored in single BRAMs which is accessed

by every incoming packet (resource reuse). Using BRAMs in the critical path of a

pipeline is likely to result in stalls, since the compiler cannot guarantee that a valid

read can happen in the same cycle as a write to the BRAM (RAW hazard). A compiler

should be able to infer this design pattern and optimize the stall in cases where access

patterns guarantee that the hazard will not occur e.g. no read will attempt to index

a location that was just written to. It may be blocked from doing so, however, if the

BRAM access appears to be random and a valid, “hazard-free” pattern cannot be

determined with full certainty.

Execution Paths

Conditional branches in loops, including assignments done as part of loop initial-

ization and comparisons done to detect loop termination, result in multiple possible

execution paths for a computation. For temporal computers such as CPUs, the goal

is to optimize the trade-off between number of paths and path depth. This is because

having more paths increases the probability of branch misprediction (decreases perfor-

mance), but more paths could also substantially reduce the work done per iteration by

eliminating unnecessary computations (increases performance). For computers with

spatial elements, such as FPGAs, having multiple paths has no significant benefits.

The possibility of multiple paths means that the generated hardware must either sup-

port superscalar execution (higher hardware costs) or stall all smaller paths to match

the latency of the worst case (potentially no performance improvement). Typically,

the latter is preferred due to its lower complexity and overhead. In both cases, the

hardware for each path is generated irrespective of its utilization. For example, a

path using 99% of the board’s DSP resources could end up executing for only 1% of

the iterations.
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Thus, an optimal hardware design minimizes the number of paths so that the loop

can: i) achieve a high aggregate resource utilization by using the same set of resources

for every iteration, and ii) tightly integrate paths to reduce the overall resource over-

head. One approach to reducing paths is to push everything out of branches to parents

as long as there are no conflicts; performing this iteratively may result in emptying

all branches, and creating a single path. However, a compiler may be blocked from

doing so if the corresponding transformation pass occurs at a late stage of the com-

pilation. For example, if each path has already been optimized independently, then

the implementation approach of the paths may diverge substantially. At this point,

the compiler may not be able to reliably determine an efficient approach to merging

them.

Input Multiplexing

As was highlighted in execution paths above, resources assigned to a computation may

not be utilized every iteration of a loop. This is not always because some iterations

avoid the computation altogether. In some cases different paths exist because the

variables being operated on are dependent on the loop state. For example, if every

even iteration of a loop adds 10 to an accumulator and every odd iteration adds 20,

then two paths could be generated; each path has its own adder and is hardwired to

add either 10 or 20 (but not both). We refer to this as output multiplexing, where

final results for all paths are generated, and then one is selected based on the loop

iterator value. A possible optimization that compilers can perform is to move MUXs

to the inputs of resource common to paths. This allows the same resource to be used

for multiple paths, especially if the only difference in a path is the inputs. In the

example above, if we first select between 10 and 20 based on the loop state, then

we only need one adder which accumulates the result of this selection. Potential

optimization blockers here are that such a transformation may not be visible to the
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compiler, or would require algorithmic changes beyond the scope of the compilers

capabilities.

Floating Point Accumulator

Workloads such as matrix multiplication require results of loop iterations to accumu-

late to a sum variable. Since the loop body is generally well pipelined, it is expected

that a new result is available for accumulation every cycle. It is thus important for the

hardware to perform the accumulation every cycle as well, or else the pipeline will stall

and result in a significantly lower throughput. The challenge here is if the data type

is floating point, then addition can take multiple cycles to compute. If native support

for single cycle floating point accumulation is not available (e.g. hard accumulation

unit on the FPGA), the compiler may be unable to address this challenge and choose

to stall the loop for a few cycles at every iteration. A possible reason, similar to input

multiplexing, is that supporting high throughput floating point accumulation would

require algorithmic changes beyond the scope of the compilers’ capabilities. Another

reason is that these changes can result in reordering of the computation.

6.6 Compiler Instrumentation using Static Profiler

6.6.1 Method

Figure 6·4 illustrates our static profiler based method for generating high quality

hardware. We begin by extracting the Single Static Assignment (SSA) IR representa-

tion for the input HLL code after the compiler has performed optimizing transforms.

Then, we extract functions from the IR for evaluation. For each function, we run a

number of algorithms which determine what the compiler is inferring and use this

information to ID optimization blockers. Then, using the results of code evaluation,

we run another algorithm to estimate the performance of compiler output and com-
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pare it with previous revisions of the input code. Based on the results of both code

evaluation and performance estimation, we pre-process the input HLL code to remove

optimization blockers and improve performance. This revised HLL code is then input

to static profiler again for verifying the result of pre-processing.

Figure 6·4: Method: Compiler instrumentation using static profiler

6.6.2 Metrics (Eigenvectors)

Here, we propose a set of eigenvectors that must be profiled to evaluate the impact

of compiler code transformations. This set includes:

1. Floating Point Operations Per Cycle: The maximum floating point throug-

hput that the code is capable of achieving. It is dependent on how many DSP

blocks are being used for floating point arithmetic, and the type of operation

implemented by each block.

2. Fixed Point Operations Per Cycle : Similar to (1), this is also a measure

of the maximum throughput, but for fixed point arithmetic operations.
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3. Inlining Efficiency: Effectiveness of detection and tight integration of two

pipelines expressed in separate functions or instruction sequences in the high

level representation.

4. Concurrency: The amount of parallelism that a code can employ based on

the dependencies between instructions i.e. how many instructions can execute

in the same pipeline stage, and what is an estimate of the number of pipeline

stages?

5. Device Utilization: The number of unique execution paths that will be gen-

erated, and the depth of these paths.

6. Stalls: Occurrences of stalls due to BRAM RAW hazard, off-chip memory

access and floating point accumulation.

7. Loop Efficiency: How efficiently can loops be implemented based on detected

stalls, trip counts and nesting.

8. Local Memory Efficiency: Size of local memories and replication required

to meet stall-free execution.

9. Global Memory Efficiency: Size of global memories (typically constants)

and replication required to meet stall-free execution.

6.6.3 Algorithms

Overall Profiler Flow

Figure 6·5 illustrates the overall profiler flow. We first read the file containing assem-

bly code by calling the “ll read” routine. As the raw data is being read in, we process

each line in the file to decode it using the “decode instruction routine, and store it

as an array of instruction “structs”. As shown below, an instruction is composed of
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.ll code ll read decode instruction

Custom Stall Values

ll find functions

ll find blocks

merge blocks

generate report

Figure 6·5: Overview of Profiler Flow

the operation name, a single output stored as a <name, type> pair, and an array

of inputs. Next, we perform multiple passes over this array of instructions in order

to generate a compatible (wrt our analysis algorithms) hierarchy of data structures.

These are shown below as the “block” and “function” data structures.

Each file generates an array of functions, with each function containing an array of

Phi blocks (referred to as simply “blocks” in this chapter), and each block containing

an array of instructions. This hierarchy is created top down. The first pass identifies

functions defined within the input file by searching for appropriate keywords. Data

stored for each function in this pass includes: i) starting line, ii) ending line, iii)

function name, and iv) an array of arguments for the function. The second pass

identifies blocks in each function body; these are segments of code bounded by branch

instructions. For each block we store: i) starting line, ii) ending line, iii) block name

i.e. label used to identify the block as a branch source/destination, iv) parent function

name, and v) a copy of all instructions in this block. We also create a single block

structure by merging individual blocks in a function, called “AllBlocks”; this is done
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using the “merge block” routine. Finally, we run our algorithms over each function

and generate the corresponding report.

struct instruction (4.7)

string name;
vector <string> inputs
pair <string name, string type> output;

struct block (4.8)

int start;
int end;
string block name;
string function name;
vector <instruction> lines;

struct function (4.9)

int start;
int end;
string name;
vector <string> args;
vector <block> blocks;
block AllBlocks;
report rep;

We also allow the user to define custom stall values for different types of hazards

(listed later in this section). The goal behind customizing these stall values is twofold.

First, the magnitude of a stall depends on the target hardware. For example, the

number of cycles taken to read data from off-chip will vary depending on whether

the board supports DDR3, DDR4 or HBM. By being able to tune the stall values

appropriately, we can get better estimates of performance. Second, larger stalls can

mask smaller ones, resulting in a flawed analysis if a particular model element is being

tested in isolation. For example off-chip access can have a stall of hundreds of cycles,

while floating point accumulation takes orders of magnitude less. Thus, if a loop has
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Read IR Line

Function Call?

Floating Point Operation?

Compute FLOPs & Accumulate
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Figure 6·6: Floating Point Operations per Cycle

both hazards, we would only see the effects of off-chip access in the report. However,

by suppressing the off-chip access stall, we can enable the floating point accumulation

element of our model to be tested in isolation.

Floating Point Operations per Cycle

Figure 6·6 illustrates our algorithm for identifying the number of floating point oper-

ations in a function. For each instruction, we check the operation type to determine if

it is either performing a floating point operation or a call to another function defined

in the input file. For the latter, we recurse and accumulate the result of this recursion

into the final count. For the former, we lookup this operation in a dictionary which

maps operations to FLOPs/cycle. For example, FP Add will be 1 FLOPs/cycle while

FP MulAdd (multiply-accumulate) will be 2 FLOPs/cycle.

Fixed Point Operations per Cycle

We reuse the algorithm for floating point operations, except now the algorithm

searches for fixed point operations in each instruction. We include arithmetic op-

erations and integer comparisons in this search.
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Inlining

Inlining analysis is composed of two results: i) number of user function calls and ii)

integration effectiveness. Evaluating (i) gives a high level measure of a compiler’s

ability to replace a functions call with the corresponding function body. This value

is generally expected to be zero since all functions are synthesized on the same chip

and inlining, in the context of (i), simply means wiring two pipelines together. The

implied requirement here is that the latency of each function is deterministic, and

the compiler is able to use this latency value to add appropriate delays to all paths

without a particular function call. The second result extends inlining requirements of

(i) by further investigating the effectiveness with which inlined pipelines are tightly

integrated. Since an exhaustive evaluation in this regard is beyond the scope of

this work, we evaluate a single case as proof of concept. Specifically, we evaluate

the DSP Efficiency of a hardware design i.e. how effectively can a compiler detect

the connectivity between floating point additions and multiplications expressed in

different functions, and replace them with floating point “Mul-Add” units. “Mul-

Add” units can be more efficient than individual operations since they get better

utilization from a DSP block (Intel and Xilinx have both multipliers and adders in

the same DSP block).

Figure 6·7 illustrates our algorithm for determining DSP efficiency. We begin by

scanning the code for all floating point “Mul-Add” units, as well as individual floating

point multipliers and adders. Then, we iterate over these lists and search for unique

pairs of multipliers that connect to the same adder, and keep track of this count.

Finally, DSP efficiency is computed as a ratio of the number of such multiplier and

adder pairs versus the number of “Mul-Add” units plus the pair count above. Ideally

this value should be 1.
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Figure 6·7: DSP Efficiency
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Concurrency

We evaluate concurrency as a measure of the number of pipeline stages and the

amount of data/task parallelism per stage in a given function. This uses three sepa-

rate routines: i) building a global block by inlining all function calls (different from

All Blocks which only contains blocks local to a function), ii) building a pipeline

based on dependencies between instructions, and iii) evaluating the number of float-

ing point, fixed point and memory point operations being done at each pipeline stage.

In the above analysis, latency of all instructions is assumed to be the same and each

stage only performs instructions that have no inter-dependency i.e. combination path

size of 1. We expect that the actually pipeline depth can vary if delay stages are added

or if multiple stages are combined by having a longer combinational path. However,

our dependency analysis still provides useful insights when compared in a relative

manner i.e. analysis of different optimization iterations of the same application.

Figure 6·8 illustrates our algorithm for building a global block. We start by

scanning through all instructions in the function of interest (FOI) and looking for

instructions that call other user functions (OUFs). If found, we recurse and run the

algorithm for the detected OUF first. Before recursing, an argument map is built

which maps the defined function arguments of the OUF to the variables used by the

FOI when providing values for these argument. This map, as well as the name of

the FOI, is also passed as an input to our algorithm. If no OUF call is found, we

read the argument map and the function name passed to this FOI. The map is first

used to replace standard function argument names in the FOI with variables from

the calling function. Then the calling function name is appended as a prefix to all

variable name in the FOI. The All Blocks data structure of the FOI is then returned

to the calling function, which inlines it. This ensures that all variables have unique

names and dependencies across function calls are accurately represented in the global
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Figure 6·8: Build Global Block
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start Level(All Instructions) = 1

For i = 2:1:Number of Instructions
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return
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Figure 6·9: Build Pipeline

block.

Figure 6·9 illustrates our algorithm for building a pipeline for the global block.

We begin by defining a “Level” array which will contain the pipeline stage number of

each instruction. This array is initialized to 1. Starting for the second global block

instruction, we scan all instructions prior to it and identify cases where the output

of a preceding instruction is an input of the current instruction. For each match,

we compare the “Level” value of the preceding instruction with the value of the

current instruction, and store the maximum of the two. Once all prior instructions are

completed, we move to the next instruction and repeat the process. If an instruction

has no dependencies, it is evaluated with a separate set of rules. For example, all

“function return” instructions are placed in the last pipeline stage.

Figure 6·10 illustrates our algorithm for performing the concurrency analysis of

a function. We begin building the global block and determining the “Levels” data

structure for it as described above. The pipeline depth is evaluated as the maximum

value in this array. Then, for each instruction in the global block, we check to see if
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Figure 6·10: Concurrency Analysis
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Figure 6·11: Dev Utilization Analysis

it a floating point operation, a fixed point operation or a memory transaction. If any

of the three is found, we add a record of this instruction to the appropriate bucket.

The specific location of a bucket updated is equal to the value in the “Levels” array

corresponding to the instruction. Once the entire global block has been scanned, the

algorithm returns all three buckets, as well as the pipeline depth value.

Device Utilization

Figure 6·11 illustrates our algorithm for profiling the unique paths in a function.

Unlike other algorithms, we operate on function blocks individually and not the

All Blocks data structure. We begin by analyzing the first block in the function.

If it is not the terminating block i.e. does not contain a return instruction, we find all

locations where this block can branch to, and recursively run the analysis on those
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destination blocks. If a return instruction is found, we create a Path data structure

which contains the floating point operations, fixed point operations and lines of code

in the block. This Path structure is then returned. If the routine was called by

a non-terminating block, then all data returned is merged into a single array, and

information for this block computed and added to each element.

Stalls

We analyze three common types of stalls in our profiler: i) BRAM Read-After-Write

hazards, ii) floating point accumulation, and iii) off-chip memory accesses.

Figure 6·12 illustrates our algorithm for identifying BRAM based RAW stalls in a

function. We first identify all local memories by searching for allocation operations.

Then for each memory, we identify all loads and stores corresponding to it. If the

variable used to index the memory is the loop iterator, then the operation is considered

to be “loop-tied” and discarded. Loop-tied operations are guaranteed to not cause

RAW hazard since they always read from or write to a unique location every cycle.

If the index is indirectly computed, e.g. by masking bits, then the operation is

not considered to be loop-tied since uniqueness for every memory access cannot be

guaranteed. For all operations not discarded, we classify them as either definitely

causing a hazard (i.e. RAW Known) or potentially causing one (i.e. RAW Warning).

The criteria for creating these buckets is: if there is at least one execution path with

a load and at least one execution path with a store (to the same memory blocks),

and there are no paths without either a load or store operation to the memory block,

then it is a known hazard. If there exists at least one path in a loop where there are

no loads and stores, or if all memory transactions on all paths are of the same type,

then a warning is generated instead.

Figure 6·13 illustrates our algorithm for identifying floating point accumulation

hazards. We begin by identifying all floating point addition operations in a function.
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Figure 6·12: BRAM RAW Stall Analysis
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Figure 6·13: FP Accum Stall Analysis

start find Loads and Stores
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Figure 6·14: Off Chip Memory Stall Analysis

Then, we trace the outputs of each adder to check if they map to one of its inputs.

If this is true, then it is recorded as a hazard.

Figure 6·14 illustrates our algorithm for detecting off chip access stalls in a func-

tion. This simply involves scanning instructions to find memory operations, and then

determining potential off-chip accesses by identifying which indexes are derived from

pointers in the function’s arguments.

Loop Efficiency

The goal of loop profiling is to identify all loops in a given function, store correspond-

ing loop parameters, organize these loops into hierarchies and then assign stalls,
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detected using algorithms discussed above, to each loop. Similar to concurrency

analysis, we have three routines for implementing loop profiling.

Figure 6·15 shows the overall algorithm for profiling loops in a function. To

simplify the analysis, We assume that user function calls, if any, do not have any

loops in them. We begin by searching the All Blocks structure for all instructions

containing keywords corresponding to loop iterator. This indicates the number of

loops that must be analyzed. We also initialize an All Loops array to keep a record

of each loop’s parameters. These parameters include: i) start line, ii) end line, trip

count, iii) array of children (in the case of nested loops), and iv) stall value. Of

these, (iii) and (iv) cannot be determined at this stage and are thus left empty.

Once the All Loops structure has been populated with every loop, we then call two

routines called Sort Loops and Assign Stalls. The first routine takes in the array of

unsorted loops and returns a hierarchical data structure by placing loops within the

children array of their immediate out loop. For example, given the set of nested loops

(i, j, k) such that j is nested in i and k is nested in j, the input to Sort Loops will

be the array [ijk] and its output will be the array [i], where i.children(1) = j and

j.children(1) = k. The second routine then finds stalls that are unique to each loop

(i.e. not shared by its children or siblings) and determines the effective stall seen by

loops.

Figure 6·16 illustrates our algorithm for the Sort Loops routine. We begin by

initializing an array of empty Parent loops. If an empty set of unsorted loops is

passed as an input to the routine, the Parent array is returned (an empty Children

array indicates that it is an innermost loop). Otherwise, we scan the unsorted loops

to find all Parent loops i.e. which are not contained in any other loop. Then, for each

Parent, we create an array of all loops that are contained in it. This unsorted array

is then recursively passed to the Sort Loop routine and the result stored within the
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start find Loop iterators

N = number of Loops

initialize All Loops [1:N]

For i = 1:1:N

Find Loop iterator-incrementor pair

Find Loop termination check

Find Loop Info (start line, end line, trip count)

initialize Loop Info (children)

initialize Loop Info (stalls)

All Loops (i) = Loop

Done i?

All Loops = Sort Loops (All Loops)

All Loops = Assign Stalls (All Loops)

return

Yes

No

Figure 6·15: Loop Analysis
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start initialize empty Parent array

isEmpty(input loops array)?

For i = 1:1:size of input loops array

isParent(input loops array(i))?

Parent.pushback(input loops array(i))

For i = 1:1:size of Parent

initialize empty Child array

For j = 1:1:size of input loops array

isChild(input loops array(j), Parent(i))?

Child.pushback(input loops array(j))

Parent.children = Sort Loops (Child)

return

Done j?

Done i?

Done i?

No

Yes

Yes

Yes

No

No

No

No

No

Yes

Yes

Yes

Figure 6·16: Sort Loop Children
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start For i = 1:1:size(All Loops)

For j = 1:1:Stalls

Stalls(j) ∈ All Loops(i)?

Stalls(j) /∈ All Loops(i).children?

found Stalls.pushback(Stalls(j))

All Blocks(i).Stall = Effective Stall(found Stalls)

For j = 1:1:size(All Loops.children)

All Loops = Assign Stalls (All Loops.children(j))

return

Done j?

Done j?

Done i?

Yes

Yes

No

No

No

No

No

Yes

Yes

Yes

Figure 6·17: Sort Loop Stalls

Parent’s structure.

Figure 6·17 illustrates our algorithm for assigning stalls to loops. Given an

All Loops array that has been sorted based on hierarchies, we identify all stalls that

are found only within each loop and not its children. Then, based on the magnitude

and type of each stall, we compute the effective stall cycles for the loop. To reduce

the complexity of this analysis, we assume that stalls from sibling loops are zero.

Finally, for each Child or each element in the All Loops array, we recursively call the

Assign Stalls routine again.
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Local Memory Efficiency

The goal of profiling local memory efficiency is to determine the size of memory

needed to implement a given function. This size is a function of the allocation size

requested when the memory is declared, and the number of times this memory has

to be replicated to support stall-free operation.

Figure 6·18 illustrates our algorithm for analysing local memories in a function.

We begin by creating an array of all memories declared inside a function. Each

element of this array contains the requested memory size and a copy of instructions

which access this memory for loads and stores. This array is then passed onto the

recursive Loop Mem Analysis routine for determining the replication amount. Figure

6·19 illustrates the algorithm for this routine. The computation done here is in the

context of loops i.e. if a memory is used in different loops, then accesses to the

memory from different instructions may not be concurrent. Similar to loop stall

above, we make the simplifying assumption that loop siblings do not affect each

other’s analysis results. Moreover, we also assume that if a memory is replicated due

to a Parent loop, then the additional memory is not shared by any other loop (sibling

or child). For each memory, we initialize counters for loads and stores. Then we

scan uses of this memory to determine if they are exclusive to the Parent loop, and

update counters appropriately if true. After all applicable uses have been evaluated,

we compute the replication amount based on the final values of loads and stores.

The Loop Mem Analysis routine is then called recursively to determine replication

contributions by the Child loops.

Global Memory Efficiency

The algorithm for global memory follows the same approach as local memories. The

only difference is that we analyze memories declared outside all functions (which
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start find Memory allocations

N = number of Memories

initialize All Memories [1:N]

For i = 1:1:N

find Memory size

find Memory uses

set Memory replication = 0

All Memories(i) = Memory Done i?

All Memories = Loop Mem Analysis(Main Loop, All Memories)

return

Yes

No

Figure 6·18: Local Memory Efficiency
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start For i = 1:1:size(All Memories)

loads = 0

stores = 0

For j = 1:1:size(All Memories(i).uses)

All Memories(i).uses(j) ∈ Loop?

All Memories(i).uses(j) /∈ Loop.children?

All Memories(i).uses(j).op = load?

loads++stores++

Done j?mx = max(loads, stores)

if(mx > 1):All Memories(i).replication+=mx-1

For i = 1:1:size(Loop.children)

All Memories=Loop Mem Analysis(Loop.children(i).All Memories)

Done i?

Done i?

return

Yes

Yes

Yes
No

Yes

Yes

No

No

No

Yes

No

Figure 6·19: Loop Memory Analysis
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start Cycles(All Instructions) = 0

Cycle(1) = Latency(Instruction(1))

For i = 2:1:Number of Instructions

For j = 1:1:i-1

OutputInstr j ∈ InputsInstr i?

Done j?

Done i?

Cycles(i) = max(Cycles(i), Cycles(j))

Cycles(i) = Cycles(i) + Latency(Instruction(i))

Latency = Run Loops (Latency, Main loop)

return

Yes

No

No

No

Yes

Yes

Figure 6·20: Run Time

makes them globally available to every instruction).

Run Time

Finally, Figure 6·20 illustrates our algorithm for estimating function runtime. This is

similar to the Build Pipeline algorithm discussed earlier with two exceptions. First,

instead of storing pipeline stage numbers, we store the effective number of cycles

taken before an instruction is executed. This is estimated as the largest cycle count

for computing one of the instruction’s inputs, plus the latency of the instruction’s
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operation itself. Second, once the “Cycle” array has been generated, we call the

Run Loops routine which recursively emulates the execution of each loop by using

trip count values, cycle value of first instruction, cycle value of last instruction, loop

stalls, and results of nested loop executions. This routine returns an updated array of

cycle counts, with the runtime being the maximum value in this array if the routine

was called for the Main loop.

6.7 Probes

Given a profiler, we now propose a set of probes that are aimed at profiling each

spatio-temporal model element with a high degree of isolation. By running each probe

through a compiler and profiling the resulting IR, we can identify if the corresponding

design pattern is being blocked. Below, we provide details of these probes, which are

small code fragments written as C functions. To validate the effectiveness of our

probes, we compile OpenCL code (without any FPGA specific semantics such as

unroll pragmas or channels) into Static Single Assignment (SSA) IR using the Clang

front end and “-03” optimization flags. Since only standard code optimizations are

applied, we expect that FPGA specific optimizations will be blocked. Custom stall

values, unless otherwise stated, are 100, 4 and 1 for off-chip access, floating point

accumulation and BRAM RAW hazard respectively.

6.7.1 SIMD

Algorithm 16 gives our probe function for evaluating SIMD. It is a simple vector add

loop, with no dependency between iterations, and restrict keywords (to indicate that

memory spaces do not overlap). Thus, a compiler should ideally be able to perform

the additions in parallel. Based on the relevant profiler results shown in Figure 6·21,

we observe that the compiler is blocked from unrolling the loop since there is only 1

floating point operation per cycle.
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Algorithm 16 Probe Function for SIMD

kernel void vecAdd(global float* restrict const A, global float* restrict const B, global
float* restrict C){

for (int i = 0 ; i ¡ SIZE; i++)
C[i] = A[i] + B[i];

}

——————————————————————
Run Time Estimate (Cycles)

——————————————————————
9637 cycles

——————————————————————
Floating Points Operations per Cycle
——————————————————————

1 FLOPS/cycle
——————————————————————

Concurrency Analysis
——————————————————————

Pipeline Stages = 6
FLOPS per Stage: 0 0 0 1 0 0
FxpOPs per Stage: 0 1 0 0 0 0

Memory OPs per Stage: 0 0 2 0 1 0

Figure 6·21: Relevant profiler results for the SIMD probe showing a
blocked optimization

6.7.2 Pipelining

Algorithm 17 gives our probe function for evaluating Pipelining. It is a simple systolic

array implementation, expressed as two nested loops. The inner loop computes results

for each systolic array element based on the results of the preceding ones, while the

outer loop iterates over the external inputs to the array. Since there is a loop carried

dependency in the inner loop, and since it is nested within an outer loop, a compiler

should ideally be able to: i) infer instruction level parallelism and replace this inner

loop with a pipeline, and ii) implement the integer arrays “systol” and “systol 1”

as a set of individual variables, as opposed to a single memory block. The latter
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corresponds to inferring pipeline registers as registers. Based on the relevant profiler

results shown in Figure 6·22, we observe that the compiler is blocked from creating

the loop and does not infer the integer arrays as individual variables.

Algorithm 17 Probe Function for Pipelining

int maval (int a, int b, int c){
if ((a >= b) && (a >= c))

return a;
if ((b >= a) && (b >= c))

return b;
return c;

}

kernel void ram array(global int* restrict const A, global int* restrict C){
int systol[SIZE];
int systol 1[SIZE];
for (int i = 0; i < SIZE; i++){

systol[i] = 0;
systol 1[i] = 0;

}
for (int i = 0; i < ITERS; i++){

for (int j = 0; j < SIZE; j++){
systol 1[j] = systol[j];
if (j == 0)

systol[j] = maval(0 , A[i] , systol 1[j]+1);
else

systol[j] = maval(systol 1[j-1] , systol[j-1] , systol 1[j]+1);
}
C[i] = systol[SIZE-1];

}
}

6.7.3 Caching

Algorithm 18 gives our probe function for evaluating caching. It is a simple inte-

ger matrix multiplication implementation which reads data from off-chip memory,

processes it, and then stores it back off-chip. A compiler should ideally be able to

implement caches for inputs and outputs in order to coalesce memory accesses, and

prevent off-chip access of individual variable in the critical path of the computation.
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——————————————————————
Run Time Estimate (Cycles)

——————————————————————
2680750080 cycles

——————————————————————
Local Memory Analysis

——————————————————————
Name: systol
Size: 512 bits
Replication: 1

Uses: 5

Name: systol 1
Size: 512 bits
Replication: 0

Uses: 3

Figure 6·22: Relevant profiler results for the Pipelining probe showing
blocked optimizations i.e. unable to infer i) pipelines and ii) pipeline
registers as registers

Based on the relevant profiler results shown in Figure 6·23, we observe that the com-

piler is blocked from inferring these caches, since the innermost loops both have 200

cycle stalls due to off-chip access.

6.7.4 Constants

Algorithm 19 gives our probe function for evaluating the implementation efficiency

of constant arrays. It is similar to the systolic array code in Algorithm 17 above, but

with two key differences. First, we replace the inner loop with equivalent manually

written code. Second, we modify the computation to read from a constant array

when evaluating the new value of a systolic array element (as opposed to the “+1”

done previously). The memory space accessed does not overlap, and hence a compiler

should ideally split the single constant array into multiple smaller ones. Based on the

relevant profiler results shown in Figure 6·24, we observe that the compiler is blocked

from doing so, and instead replicates the constant array.
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Algorithm 18 Probe Function for Caching

kernel void no cache(global int* restrict const A, global int* restrict const B, global int*
restrict C){

for (int i = 0 ; i < SIZE; i++){
for (int j = 0 ; j < SIZE; j++){

C[i*SIZE + j] = 0;
for (int k = 0; k ¡ SIZE; k++){

C[i*SIZE + j] += A[i*SIZE + k] * B[k*SIZE + j];
}

}
}

}

Algorithm 19 Probe Function for Constants

int maval (int a, int b, int c);

constant int lookup [16*ITERS] = ....

kernel void single const array(global int* restrict const A, global int* restrict C){
int systol 0 = 0; int systol 1 = 0; ... int systol SIZE-1=0;
int systol 1 0 = 0; int systol 1 1 = 0; ... int systol 1 SIZE-1=0;
for (int i = 0; i < ITERS; i++){

systol 1 0 = systol 0;
systol 0 = maval(0, A[i], systol 1 0 + lookup [ITERS*0 + i]);
systol 1 1 = systol 1;
systol 1 = maval(systol 1 0, systol 0, systol 1 1 + lookup [ITERS*1 + i]);

...
systol 1 SIZE-1 = systol SIZE-1;
systol SIZE-1 = maval(systol 1 SIZE-2, systol SIZE-2, systol 1 SIZE-1 +
lookup [ITERS*(SIZE-1) + i]);
C[i] = systol SIZE-1;

}
}
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——————————————————————
Run Time Estimate (Cycles)

——————————————————————
1324889088 cycles

——————————————————————
Stall Analysis

——————————————————————
Off Chip Memory Access : 4

——————————————————————
Loop Analysis

——————————————————————
Loop: main
Iterator:
Limit: 1
Stall: 0

Children: 1

Loop: main 1
Iterator: indvars.iv8

Limit: 32
Stall: 0

Children: 1

Loop: main 1 1
Iterator: indvars.iv4

Limit: 32
Stall: 200
Children: 1

Loop: main 1 1 1
Iterator: indvars.iv

Limit: 32
Stall: 200
Children: 0

Figure 6·23: Relevant profiler results for the Caching probe showing
that the compiler is blocked from inferring caches, and thus causes
off-chip access stalls in the innermost loops.

6.7.5 Inlining

Algorithm 20 gives our probe function for evaluating the inlining efficiency. It is

similar to the systolic array code in Algorithm 19 above, but without the use of
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——————————————————————
Run Time Estimate (Cycles)

——————————————————————
20119 cycles

——————————————————————
Global On-Chip Memory Analysis

——————————————————————
Name: lookup

Size: 51200 bits
Replication: 15

Uses: 16

Figure 6·24: Relevant profiler results for the Constants probe showing
that the compiler is blocked from breaking the larger constant array into
smaller ones, and instead would need to replicate the memory

a constant array. Based on the relevant profiler results shown in Figure 6·25, we

observe that the compiler is able to inline the “maval” function, but is blocked from

performing a tight integration of pipelines. As a result, there are a very large number

of paths generated as the code explicitly branches between main function and “maval”

instructions.

6.7.6 Loops

We reuse the code in Algorithm 18 for evaluating loop implementation efficiency. As

shown by results in Figure 6·23, the compiler is blocked from removing nested loops,

and hence the outer loops cannot be pipelined.

6.7.7 BRAM Read-After-Write Hazard

Algorithm 21 gives our probe function for evaluating compiler effectiveness in resolv-

ing RAW hazards for on-chip memory. It is a simple hash table implementation, which

computes a key as a function of table size and the value of A[i]. Based on the value

of B[i], we either perform a store or load transaction on the hash table. This results

in a potential RAW hazard since: i) the hash table is not indexed directly using a
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Algorithm 20 Probe Function for Inlining

int maval (int a, int b, int c);

kernel void reg array func(global int* restrict const A, global int* restrict C){
int systol 0 = 0; int systol 1 = 0; ... int systol SIZE-1=0;
int systol 1 0 = 0; int systol 1 1 = 0; ... int systol 1 SIZE-1=0;
for (int i = 0; i < ITERS; i++){

systol 1 0 = systol 0;
systol 0 = maval(0, A[i], systol 1 0 + 1);
systol 1 1 = systol 1;
systol 1 = maval(systol 1 0, systol 0, systol 1 1 + 1);

...
systol 1 SIZE-1 = systol SIZE-1;
systol SIZE-1 = maval(systol 1 SIZE-2, systol SIZE-2, systol 1 SIZE-1 +
1);
C[i] = systol SIZE-1;

}
}

loop iterator, and is hence not loop-tied, and ii) the value of B[i] is non-deterministic,

which could result in a case where table[x] = C[y] is followed by C[y+1] = table[x]

(reading a table location immediately after it is written to). The compiler should

ideally infer this potential hazard, and implement hardware such that the loop does

not stall. Based on the relevant profiler results shown in Figure 6·26, we observe that

the compiler is blocked from doing so. This means that each path either does a load

or a store, and therefore doing a read after write requires stalling to ensure that the

write is complete.

6.7.8 Execution Paths

Algorithm 22 gives our probe function for evaluating compiler effectiveness in reducing

the number of execution paths. It is a variant on the vector add function, where the

actual addition done is based on the loop iteration number and the value of A[i]. Since

the code does not contain branches, a compiler should ideally be able to separate the

conditional assignment operations, and cascade them in a manner that generates a
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——————————————————————
Run Time Estimate (Cycles)

——————————————————————
3293202 cycles

——————————————————————
Inling Analysis

——————————————————————
User Function Calls = 0

Floating Point Mul-Add Efficiency = N/A
——————————————————————

Utilization Analysis
——————————————————————

Number of Paths: 65536

Figure 6·25: Relevant profiler results for the Constants probe showing
that compiler is: i) able to replace the function called with function
body, and ii) blocked from tightly integrating the function body into
the main pipeline

single path. However, based on the relevant profiler results shown in Figure 6·27, we

observe that the compiler is blocked from doing so since 3 paths are generated, each

corresponding to evaluating “in1”, “in2” and “in3” respectively.

6.7.9 Input Multiplexing

Algorithm 23 gives our probe function for evaluating compiler effectiveness inferring

input multiplexing. It is similar to Algorithm 22, except that conditional branches

are used here instead of conditional assignments. A compiler should ideally be able

to infer that the effective operation is a single floating point addition, and creates

paths such that only one adder is required. However, based on the relevant profiler

results shown in Figure 6·28, we observe that the compiler is blocked from doing so

and instead generates three different adders (3 FLOPs/cycle).
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Algorithm 21 Probe Function for BRAM based Read-After-Write Hazard

kernel void raw hazard(global int* restrict const A, global int* restrict const B, global
int* restrict const C){

int table[SIZE];
for (int i = 0 ; i < ITERS; i++){

int hash = ((A[i] >> 5) & (A[i] << 7)) & (SIZE-1);
if (B[i] == 0){

table[hash] = C[i];
}
else {

C[i] = table[hash];
}

}
}

Algorithm 22 Probe Function for Execution Paths

kernel void multi paths(global float* restrict const A , global float* restrict const B,global
float* restrict C){

for (int i = 0 ; i < SIZE; i++){
float in1 = A[i] + B[i];
float in2 = A[i] + SIZE;
float in3 = B[i] + SIZE;
float in4 = C[i];
C[i] = (i>0) ? in1 : ((A[i] < SIZE) ? in2 : ((A[i] == SIZE) ? in3 : in4 ));

}
}
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——————————————————————
Run Time Estimate (Cycles)

——————————————————————
259 cycles

——————————————————————
Utilization Analysis

——————————————————————
Number of Paths: 2

Lines of Code: 26 26
FLOPS: 0 0
FixOPS: 1 1

——————————————————————
Stall Analysis

——————————————————————
Read After Write Hazards (known) : 1

Memory = table
Line Number = 24

Figure 6·26: Relevant profiler results for the BRAM RAW probe
showing that the compiler is blocked from resolving the read after write
hazard

6.7.10 Floating Point Accumulator

We reuse Algorithm 18 here, with the exception that matrices A, B and C contain

floating point values. Moreover, we set off-chip stall values to 0 in order to prevent

it from masking stalls due to floating point accumulation. As shown by the results

in Figure 6·29, the compiler is blocked from removing the stall due to accumulating

multiplication results in the innermost loop.
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——————————————————————
Run Time Estimate (Cycles)

——————————————————————
12837 cycles

——————————————————————
Floating Points Operations per Cycle
——————————————————————

3 FLOPS/cycle
——————————————————————

Utilization Analysis
——————————————————————

Number of Paths: 3
Lines of Code: 24 24 24

FLOPS: 2 2 2
FixOPS: 1 1 1

Figure 6·27: Relevant profiler results for the Executions Paths probe
showing that the compiler is blocked from implementing the computa-
tion as a single path.

Algorithm 23 Probe Function for Input Multiplexing

kernel void branch(global float* restrict const A , global float* restrict const B, global
float* restrict C){

for (int i = 0 ; i < SIZE; i++){
if (i == 0){

if(A[i] < SIZE){
C[i] = A[i]+SIZE;

}
else if (A[i] == SIZE){

C[i] = B[i]+SIZE;
}

}
else{

C[i] = A[i] + B[i];
}

}
}
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——————————————————————
Run Time Estimate (Cycles)

——————————————————————
19237 cycles

——————————————————————
Floating Points Operations per Cycle
——————————————————————

3 FLOPS/cycle
——————————————————————

Concurrency Analysis
——————————————————————

Pipeline Stages = 6
FLOPS per Stage: 0 0 0 3 0 0
FxpOPs per Stage: 0 1 0 0 0 0

Memory OPs per Stage: 0 0 3 0 3 0

Figure 6·28: Relevant profiler results for the Input Multiplexing probe
showing that the compiler is blocked from reducing logic requirements

——————————————————————
Run Time Estimate (Cycles)

——————————————————————
173056 cycles

——————————————————————
Stall Analysis

——————————————————————
Read After Write Hazards (known) : 0
Read After Write Hazards (warning): 0

Floating Point Accumulator : 1
Off Chip Memory Access : 4

Figure 6·29: Relevant profiler results for the FP Accum Probe show-
ing that the compiler has detected a floating point accumulator
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6.8 Resolving Optimization Blockers

In the previous section, we presented a model for FPGAs which represents efficient

design patterns that a compiler must be able to effectively target in order to generate

high performance hardware. We then demonstrated, using our static profiler and

probe suite, that a compiler may be blocked from inferring and optimizing these design

patterns. In our example results using the Clang front end and -03 optimizations, we

saw that all design patterns in the model are faced with optimization blockers. In this

section, we demonstrate that by using certain code transformations, we can remove

these optimization blockers. Moreover, these code transformations can potentially be

implemented as compiler passes to automate the process. It is important to note that

this is not an exhaustive list of potential transforms; rather, our focus is on providing

a representative example for each design pattern.

6.8.1 SIMD

We address the SIMD optimization blocker by manually unrolling the loop, as shown

in Algorithm 24. Based on the relevant profiler results shown in Figure 6·30, we can

see that the code can achieve 32 FLOPs/cycle throughput. Moreover, as shown by

the concurrency analysis, the compiler can also establish lack of dependency between

additions, and thus places nearly all adders within the same pipeline stage. The

overall runtime improvement is a modest 1.03x, but this is primarily due to the off-

chip memory stalls.

6.8.2 Pipelining

To help the compiler infer pipelines and register based pipeline registers, we manually

unroll the loop and use individual variables to represent each systolic array element.

The code for this is the same as the inlining probe (Algorithm 20). As shown by

Figure 6·31, this has two benefits. First, no local memories are used and the pipeline
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Algorithm 24 SIMD Probe

kernel void vecAdd(global float* restrict const A, global float* restrict const B, global
float* restrict C){

for (int i = 0 ; i ¡ SIZE; i+=32){
C[i+0] = A[i+0] + B[i+0];
C[i+1] = A[i+1] + B[i+1];

...
C[i+31] = A[i+31] + B[i+31];

}
}

is composed solely of registers. Second, since manual unroll removes the nested loop

and the resulting code is well pipelined, we get an estimated performance improvement

of 814x.

6.8.3 Caching

We manually add caches for each off-chip data structure, as shown in Algorithm

25. The code first populates these local memories, and then uses them to performs

reads/writes during the computation. This eliminates off-chip access from the critical

path. Moreover, the off-chip memory transactions are now coalesced, which results

in higher utilization of memory bandwidth (as compared to single value accesses).

Figure 6·32 shows that stalls are removed from the nested loops, and as a result

we get an estimated 3500x improvement in run time. While our profiler currently

does not analyze block memory copy routines, such as “llvm.memcpy”, it is unlikely

that the overhead of such operations for populating local memories will significantly

increase the run time shown in Figure 6·32 .

6.8.4 Constants

To help the compiler create separate memory blocks, we manually create smaller

constant arrays. These arrays are derived from the larger one shown in Algorithm 19

and their contents are based on the application’s access patterns. Algorithm 26 shows
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——————————————————————
Run Time Estimate (Cycles)

——————————————————————
9306 cycles

——————————————————————
Floating Points Operations per Cycle
——————————————————————

32 FLOPS/cycle
——————————————————————

Concurrency Analysis
——————————————————————

Pipeline Stages = 5
FLOPS per Stage: 0 1 31 0 0
FLOPS per Stage: 0 1 31 0 0

Memory OPs per Stage: 2 62 1 31 0

Figure 6·30: Relevant profiler results for the SIMD probe showing
that 32 floating point adders have been inferred.

the resulting code. From Figure 6·33, we can see that using smaller constant arrays

reduces overall memory requirements from 51200×16 = 800Kb to 3200×16 = 50Kb,

a difference of 16x. We also observe that since this particular code transformation

was aimed at resource optimization, the run time estimate does not change.

6.8.5 Inlining

Algorithm 27 gives our code for manually inlining the systolic array. Based on Figure

6·34, we can see that while the estimated runtime increases slightly due to more

pipeline stages added, the number of paths is reduced from 65536 to 1.

Loops

Algorithm 28 shows an implementation of matrix multiplication with coalesced loops.

Effectively, the three nested loops of trip counts = 32 are replaced with a single loop

of trip count 323, while the indexes i, j an k are derived from this loop’s iterator.

From Figure 6·35, we can see that coalescing reduces the number of loops and, while
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——————————————————————
Run Time Estimate (Cycles)

——————————————————————
3293202 cycles

——————————————————————
Local Memory Analysis

——————————————————————
No Local Memories Found

Figure 6·31: Relevant profiler results for the Pipelining probe showing
that no local memories are inferred i.e. pipeline registers have been
inferred as registers.

it increases the stall amount per loop iteration, the estimated run time improves by

80x.

6.8.6 BRAM Read-After-Write Hazard

We address RAW hazards for local memories using the code shown in Algorithm 29.

Instead of storing values directly in the table, we place the result (as well as the

destination index) in a register. This register is represented as individual variables

(as opposed to an array). Unlike BRAMs, registers can be read immediately after

being written to. Therefore, when a request for load is received, we first check the

register to see if there is a match. In the event that it is a read-after-write, this

check would be true and data from the register is read out instead of the table.

Otherwise, we are guaranteed that valid data is available in the table, and is thus

read directly. Simultaneously, while the memory operation for an iteration is taking

place, the register stores the result of the previous iteration in the table. Figure 6·36

shows that this approach removes the RAW hazard, and improves estimated run time

by 2x.
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Algorithm 25 Caching Probe

kernel void all cache(global int* restrict const A, global int* restrict const B, global int*
restrict C){

int a[SIZE*SIZE]; int b[SIZE*SIZE]; int c[SIZE*SIZE];
for (int i = 0; i < SIZE*SIZE; i++)

a[i] = A[i];
for (int i =0; i < SIZE*SIZE; i++)

b[i] = B[i];
for (int i = 0; i < SIZE*SIZE; i++)

c[i] = 0;
for (int i = 0 ; i < SIZE; i++){

for (int j = 0 ; j < SIZE; j++){
for (int k = 0; k ¡ SIZE; k++){

c[i*SIZE + j] += a[i*SIZE + k] * b[k*SIZE + j];
}

}
}
for (int i = 0; i < SIZE*SIZE; i++)

C[i] = c[i];
}

6.8.7 Execution Paths

Algorithm 30 shows our approach for reducing execution paths. We manually re-

duce the amount of calculations done per instruction. This is aimed at allowing the

compiler to better infer potential pipelines in the code by simplifying its view of the

computation. Figure 6·37 shows that this approach reduces the number of paths from

3 to 1.

6.8.8 Input Multiplexing

To improve logic reuse, we restructure code such that instead of selecting the output

of a valid add operation (given values of i and A[i]), we select the inputs of the add

operation (Algorithm 31). Consequently, as shown in Figure 6·38, the number of

floating point adders needed is reduced from 3 to 1 (as shown by the FLOPS/cycle

value and concurrency analysis), and the estimated run time improves by 1.2x.
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Algorithm 26 Constants Probe

int maval (int a, int b, int c);

constant int lookup0 [ITERS] = ....
constant int lookup1 [ITERS] = ....

...
constant int lookupSIZE-1 [ITERS] = ....

kernel void single const array(global int* restrict const A, global int* restrict C){
int systol 0 = 0; int systol 1 = 0; ... int systol SIZE-1=0;
int systol 1 0 = 0; int systol 1 1 = 0; ... int systol 1 SIZE-1=0;
for (int i = 0; i < ITERS; i++){

systol 1 0 = systol 0;
systol 0 = maval(0, A[i], systol 1 0 + lookup0 [i]);
systol 1 1 = systol 1;
systol 1 = maval(systol 1 0, systol 0, systol 1 1 + lookup1 [i]);

...
systol 1 SIZE-1 = systol SIZE-1;
systol SIZE-1 = maval(systol 1 SIZE-2, systol SIZE-2, systol 1 SIZE-1 +
lookupSIZE-1 [i]);
C[i] = systol SIZE-1;

}
}

Algorithm 27 Inlining Probe

int maval (int a, int b, int c);

kernel void reg array func(global int* restrict const A, global int* restrict C){
int systol 0 = 0; int systol 1 = 0; ... int systol SIZE-1=0;
int systol 1 0 = 0; int systol 1 1 = 0; ... int systol 1 SIZE-1=0;
for (int i = 0; i < ITERS; i++){

systol 1 0 = systol 0;
int u0 = A[i]; int v0 = 0; int s0 = (u0 > v0) ? u0 : v0;
int t0 = systol 1 0 + 1; systol 0 = (t0 > s0) ? t0 : s0;

...
C[i] = systol SIZE-1;

}
}
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——————————————————————
Run Time Estimate (Cycles)

——————————————————————
37888 cycles

——————————————————————
Stall Analysis

——————————————————————
Off Chip Memory Access : 0

Read After Write Hazards (warning): 3
——————————————————————

Loop Analysis
——————————————————————

Loop: main
Iterator:
Limit: 1
Stall: 0

Children: 1

Loop: main 1
Iterator: indvars.iv21

Limit: 32
Stall: 0

Children: 1

Loop: main 1 1
Iterator: indvars.iv18

Limit: 32
Stall: 0

Children: 1

Loop: main 1 1 1
Iterator: indvars.iv

Limit: 32
Stall: 0

Children: 0

Figure 6·32: Relevant profiler results for the Caching probe showing
that there are no off-chip memory accesses within the critical path, and
as a result loops operate stall free.



170

——————————————————————
Run Time Estimate (Cycles)

——————————————————————
20119 cycles

——————————————————————
Global On-Chip Memory Analysis

——————————————————————
Name: lookup0
Size: 3200 bits
Replication: 0

Uses: 1
...Name: lookup15

Size: 3200 bits
Replication: 0

Uses: 1

Figure 6·33: Relevant profiler results for the Constants probe showing
that resource usage has been minimized i.e. each sink has its own on-
chip memory block containing only required data.

6.8.9 Floating Point Accumulator

Since floating point accumulation is difficult to resolve without hardware support,

we use an aggressive code transformation. Specifically, we unroll the inner loop such

that the need for accumulation is removed altogether. Moreover, we do not create

an adder tree (by adding brackets around additions) to ensure the computation is in

order. It is important to note that this approach is only useful if there are sufficient

resources available. Figure 6·39 shows that our approach removes the floating point

accumulation stall, and improves estimated run time by 100×.
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——————————————————————
Run Time Estimate (Cycles)

——————————————————————
3293218 cycles

——————————————————————
Inling Analysis

——————————————————————
User Function Calls = 0

Floating Point Mul-Add Efficiency = N/A
——————————————————————

Utilization Analysis
——————————————————————

Number of Paths: 1

Figure 6·34: Relevant profiler results for the Inlining probe showing
that the number of paths have been reduced to 1, which indicated a
tigheter integration of pipelines.

——————————————————————
Run Time Estimate (Cycles)

——————————————————————
16580608 cycles

——————————————————————
Loop Analysis

——————————————————————
Loop: main
Iterator:
Limit: 1
Stall: 0

Children: 1

Loop: main 1
Iterator: m.04
Limit: 32768
Stall: 500
Children: 0

Figure 6·35: Relevant profiler results for the Loops probe showing a
single coalesced loop.
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Algorithm 28 Loops Probe

kernel void coalesced matMul(global int* restrict const A, global int* restrict const B,
global int* restrict C){

int i,j,k;
i = 0; j = 0 ; k = 0;
for (int m = 0; m < SIZE*SIZE*SIZE; m++){

if (k == 0)
C[i*SIZE+j] = 0;

C[i*SIZE + j] += A[i*SIZE + k] * B[k*SIZE + j];
k++;
if (k == SIZE){

k = 0;
j++;
if (j == SIZE){

j = 0;
i++;

}
}

}
}

——————————————————————
Run Time Estimate (Cycles)

——————————————————————
131 cycles

——————————————————————
Utilization Analysis

——————————————————————
Number of Paths: 3

Lines of Code: 29 32 36
FLOPS: 0 0 0
FixOPS: 1 1 1

——————————————————————
Stall Analysis

——————————————————————
Read After Write Hazards (warning) : 1

Memory = table
Line Number = 25

Figure 6·36: Relevant profiler results for the BRAM RAW probe
showing that the known RAW Hazard has been removed
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Algorithm 29 BRAM Read-After-Write Hazard Probe

kernel void reg store(global int* restrict const A, global int* restrict const B, global int*
restrict const C){

int table[SIZE];
int temp data = 0;
int temp hash = 0;
for (int i = 0 ; i < ITERS; i++){

int local temp data = temp data;
int local temp hash = temp hash;
int hash = ((A[i] >> 5) & (A[i] << 7)) & (SIZE-1);
if (B[i] == 0){

temp data = C[i];
temp hash = hash;

}
else{

int read;
if (hash == temp hash)

read = local temp data;
else

read = table[hash];
temp data = read;
temp hash = hash;
C[i] = read;
}

table[local temp hash] = local temp data;
}

}

Algorithm 30 Execution Paths Probe

kernel void single path(global float* restrict const A , global float* restrict const B,global
float* restrict C){

for (int i = 0 ; i ¡ SIZE; i++){
float in1 = A[i] + B[i];
float in2 = A[i] + SIZE;
float in3 = B[i] + SIZE;
float out1 = C[i];
float out2 = (A[i] == SIZE) ? in3 : out1;
float out3 = (A[i] < SIZE) ? in2 : out2;
float out4 = (i > 0) ? in1 : out3;
C[i] = out4;

}
}
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——————————————————————
Run Time Estimate (Cycles)

——————————————————————
12837 cycles

——————————————————————
Floating Points Operations per Cycle
——————————————————————

3 FLOPS/cycle
——————————————————————

Utilization Analysis
——————————————————————

Number of Paths: 1
Lines of Code: 23

FLOPS: 3
FixOPS: 1

Figure 6·37: Relevant profiler results for the Execution Paths probe
showing that the number of paths have been reduced to 1 while main-
taining the same number of floating point operations.

Algorithm 31 Input Multiplexing Probe

kernel void predication(global float* restrict const A , global float* restrict const B,
global float* restrict C){

for (int i = 0 ; i < SIZE; i++){
float in1 = ((i == 0) && (A[i] == SIZE)) ? B[i] :

(((i == 0) && (A[i] > SIZE)) ? C[i] : A[i]);
float in2 = ((i == 0) && (A[i] <= SIZE)) ? SIZE :

(((i == 0) && (A[i] > SIZE)) ? 0 : B[i]);
C[i] = in1 + in2;
}

}
}
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——————————————————————
Run Time Estimate (Cycles)

——————————————————————
16037 cycles

——————————————————————
Floating Points Operations per Cycle
——————————————————————

1 FLOPS/cycle
——————————————————————

Concurrency Analysis
——————————————————————

Pipeline Stages = 10
FLOPS per Stage: 0 0 0 0 0 0 0 1 0 0
FxpOPs per Stage: 0 1 0 0 0 0 0 0 0 0

Memory OPs per Stage: 0 0 4 1 0 0 0 0 1 0

Figure 6·38: Relevant profiler results for the Input Multiplexing probe
showing that the number of floating point units needed have been re-
duced to 1.

Algorithm 32 FP Accum Probe

kernel void no cache(global float* restrict const A, global float* restrict const B, global
float* restrict C){

for (int i = 0 ; i < SIZE; i++){
for (int j = 0 ; j < SIZE; j++){

C[i*SIZE + j] =
A[i*SIZE + 0] * B[0*SIZE + j]
+ A[i*SIZE + 1] * B[1*SIZE + j]

+ A[i*SIZE + 2] * B[2*SIZE + j]
+ A[i*SIZE + 3] * B[3*SIZE + j]

...
+ A[i*SIZE + 29] * B[29*SIZE + j]
+ A[i*SIZE + 30] * B[30*SIZE + j]
+ A[i*SIZE + 31] * B[31*SIZE + j];

}
}

}



176

——————————————————————
Run Time Estimate (Cycles)

——————————————————————
5056 cycles

——————————————————————
Stall Analysis

——————————————————————
Read After Write Hazards (known) : 0
Read After Write Hazards (warning): 0

Floating Point Accumulator : 0
Off Chip Memory Access : 63

Figure 6·39: Relevant profiler results for the FP Accum probe showing
that there floating point accumulator has been removed from the design.
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6.9 Profiling Intel OpenCL SDK for FPGAs

We now apply our profiler to Intel OpenCL and evaluate compiler effectiveness. The

binary code for each stage of the compilation in the Intel OpenCL toolflow can be

obtained by setting appropriate flags in the compilation script. We use the final binary

code generated by “aocl-llc” which is a result of performing all compiler passes; in

the normal flow, this binary code is subsequently used by the “system generator”

routine to create the kernel system. To obtain the “.ll” assembly file, we run the

binary code through the LLVM disassembler. Table 6.1 shows the results of compiling

our probes using the Intel OpenCL v16.0.2 compiler, and analysing the resulting .ll

assembly files. From the table, we see that a majority of key optimizing transforms

are blocked. The compiler is only successfully able to implement a single execution

path, input multiplexing and floating point accumulation. Execution path was the

most consistent optimizating transform, since compilation results for all probes had

a single path. On the other hand, floating point accumulation was the least reliable

since it used a single cycle accumulator which is only available in Intel Arria 10

FPGAs. Moreover, while the compiler was able to inline a user function call, the

number of instructions taken was greater than if we used the probe from Algorithm

27. This indicates that the compiler has limited freedom when integrating pipelines.

Table 6.1: Summary of Profiling Intel OpenCL Compiler using Probes

Probe Results
SIMD Blocked

Pipelining Blocked
Caching Blocked
Constant Blocked
Inlining Inefficient
Loops Blocked

BRAM RAW Hazard Blocked
Execution Paths Efficient

Input Multiplexing Efficient
Floating Point Accumulation Efficient

We compare the results of our profiler with the set of systematic transformations
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given in chapter 5. From Table 6.2, we see that all our empirically guided trans-

formations are indeed needed since they address one or more optimizations being

blocked. Moreover, for optimizations that were efficiently performed by the compiler,

no pre-processing transform was needed.

Table 6.2: Matching System Code Transformations with Profiler Re-
sults

Ver. Transformations Blocked Design
Pattern

1 Single thread code with cache optimization Baseline Model
2 Implement task parallel computations in sep-

arate kernels and connect them using chan-
nels

Pipelining

Unroll loops using w/ #pragma unroll SIMD,Pipelining
Minimize variable declaration outside com-
pute loops – use temps where possible

Pipelining

Use constants to reduce spatial footprint and
reduce replicated array sizes based on access
patterns

Constants

Coalesce memory operations and loops Caching,Loops
3 Inline kernels and express computation

within a single kernel
Inlining

4 Reduce array sizes to infer pipeline regis-
ters as registers, or add support for removing
BRAM RAW hazards

Pipelining,RAW

5 Perform computations in detail to improve
the compiler’s dependency analysis

Pipelining

6 Use predication instead of conditional branch
statements when defining forks in the data
path

Inlining

6.10 Conclusion

In this chapter, we provided a framework for instrumenting HLS compilers. This

allows us to get greater insights into pre-processing transformations, i.e. what works,

how it works and why it works. The projected result of our contribution is that

transforms will become more robust, which in turn addresses limitations of work

presented in chapter 5. Moreover, the compiler will improve since we can rapidly
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explore the impact of existing and new passes, as well as their ordering. Finally, we

can also address the limitation of grammar i.e. we can identify pragmas needed if the

HLL does not have sufficient expressability for certain design patterns.
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Chapter 7

Formalization and Generalization of

Hardware Operating Systems

7.1 Motivation

Hardware operating systems are effectively any logic on the FPGA that is not part of

the application. They are responsible for partitioning device fabric between multiple

entities, data flow management and interfaces, and hardware modifications. They

also manage the flow of data between different components in the FPGAs by defin-

ing a number of specifications such as APIs, protocols, bus widths, clock domains,

FIFO depths etc. With regards to external connectivity, hardware operating sys-

tems implement interfaces through controllers and abstractions; the latter is useful in

masking the complexity of the former and making protocols/interfaces coherent with

intra-FPGA data and control planes.

For elastic and shared FPGAs in particular, a hardware operating systems sup-

ports simultaneous deployment of application logic (through application support

discussed previously) and system administrator logic. System administrator logic

in FPGAs enables implementation of important, often performance critical, ser-

vices and functions. This includes crypto, firewalls/isolation, packet processing, con-

trol/management planes, event logs/counters, firmware attestation services etc. A

hardware operating system also enables modification of deployed logic in a number of

forms with varying overhead, including i) hotfixes (run-time parameter updates), ii)
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Figure 7·1: Partial RHOS Taxonomy

partial reconfiguration (modifications to a specific pre-defined region of the FPGA),

or iii) full reconfiguration (updating the entire fabric).

The drawback of the current state of hardware operating systems, as shown in

chapter 2, is that they are ad hoc, i.e. developed for every system. Since our target

is the “CPU-ization” of these FPGA systems, we present a framework to formalize

and generalize these hardware operating systems. We call the resulting uniform OS

a Reconfigurable Hardware Operating System (RHOS).
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7.2 Partial RHOS Taxonomy

To be able to generalize hardware operating systems, we need a taxonomy. In our

work, this was done by looking a the different places the FPGA appears in a system

and what the RHOS needs to be for each. Figure 7·1 gives our partial RHOS taxonomy

based on our analysis of previous work discussed in chapter 2. While this is not an

exhaustive list, it covers some of the most common methods of deploying FPGAs in

Data Centers.

7.3 Major Components Types of a RHOS

We broadly categorize the major component types of a RHOS into four sets. These

are:

1. C1: This refers to components for which we have prior knowledge of their con-

nectivity and functionality. For example, controllers for reconfiguration, mem-

ory, and ntwork will likely be connected to appropriate pins for corresponding

external devices. While the functionality of this set can change, the average

timeframe after which it may need to be done is typically orders of magnitude

higher than other sets. Therefore, these can be assumed as static.

2. C2: This refers to components for which we have a prior knowledge of their con-

nectivity and a baseline functionality. System administrators can make small

modifications to the functionality through updates to the control plane; all op-

erational scenarios for the data path are already implemented in these compo-

nents. For example, a switch typically implements a crossbar of fixed dimension-

ality since it depends on the number of sources and destinations. However, the

rules of this crossbar depend on arbitration algorithms, which can be changed

dynamically.
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3. C3: This refers to components for which we have no prior knowledge of their

functionality and connectivity. As such, reconfigurable space is allocated in

order for these components to be deployed at run time. Moreover, these are

connected via internal crossbars to all other components, as well as developer

logic. An example of this is Network Flow in configuration (4) in the previous

section. Given a BitW FPGA, we cannot assume a particular form of network

flow i.e. it could be as simple as a wire that just connects the two network stacks

together, or it could implement complex packet processing. It also cannot be

assumed that the network flow logic will be directly connected to network stacks.

Therefore, we do not know of the functionality or connectivity of this network

flow, unless it is explicitly specified (which could happen at run time).

4. APIs: This refers to the intra-FPGA interfaces between components. Having

standardized interfaces is critical, since it ensures that components can be added

and removed without changes needed to other parts of the RHOS. This in turn

means that we do not need to build the a new hardware operating system for

the entire taxonomy above; instead, we can reuse a substantial amount of logic

and only build components unique to a configuration.

7.4 Method for Building a RHOS Generator

We build the RHOS generator as a custom Board Support Package (BSP) for the

Intel FPGA OpenCL SDK. As discussed earlier, a BSP is set of hardware and soft-

ware components, as well as Partial Reconfiguration regions and pin-out definitions,

required to compile and deploy user applications on a specific FPGA. Specifically, it

has existing implementations for the C1 set identified earlier in this section. Having

a BSP based implementation ensures compatibility across the stack, going from high

level code to hardware execution on the FPGA. Therefore, we package all RHOS
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Figure 7·2: Method for building a RHOS generator

components (including system administrator logic) into an OpenCL wrapper and

add that to a baseline BSP (containing DRAM/PCIe/PR controllers). Intel OpenCL

also supplies the drivers needed for programming the FPGA, DMA operations and

start/stop triggers for a workload.

The specific process is listed in Figure 7·2. We first identify a plausible connectivity

and hierarchy of RHOS components. Then, for a given HLS toolflow, we identify what

RHOS components present in the BSP can be reused. For the remaining components,

we add the logic to this BSP using defined APIs. A control plane is also built to

manage the augmentations made to the BSP. Finally, this new BSP is linked to the

code generation flow to ensure compatibility and automatic transition between the

code generation and deployment generation parts of HaaRNESS.
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7.5 Proposed Organization of RHOS Components

Figure 7·3 shows our proposed model for a RHOS. Here we list component types and

discuss their composition.

• C1

– PCIe Controller: Used by the CPU for DMA operations, interrupts, control

signalling etc.

– Reconfiguration Controller: Interfaces the host for modifying developer

and lookaside logic.

– Mem. Controller: Provides off chip memory access.

• C2

– Lightweight Network Stack: The Lightweight Network Stack implements

up to Layer 2 networking support. Example of baseline functionality here is

sending and receiving packets at line rates for supported network protocols.

– In-line Logic: In-line processing here refers to functions that operate on

network packets at line rates. It is connected to the network stack and

the Smart Switch. Examples of baseline functionality here are encryp-

tion/decryption and bypass switches to enable network traffic to selectively

bypass one or more modules within the in-line logic to reduce latency.

– Smart Switch: At the heart of the FPGA is the Smart Switch which imple-

ments a number of features that manage the flow of ingress and egress data,

enabling connectivity between different components within the FPGA. An

example of baseline functionality are a crossbar with support for Layer 3 of

the OSI model, which analyzes incoming meta data to switch packets be-

tween different endpoints. An example is resolving egress port contention
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based on defined Quality of Service algorithms e.g. round robin, priority

first.

– Host Interface: We include the host interface in C2 since the FPGA may

not exclusively connect to the CPU via PCIe. Similar to Microsoft Cat-

apult 2, a second network stack can also be implemented for supporting

bypass operations i.e. data moves directly from Data Center network to

host NIC and vice versa using a wire-like connection inside the FPGA.

• C3

– Lookaside Logic: This is used for implementing components which are only

useful for very specific contexts. An example is Key Value Store, which

is an important Data Center application in its own right, but has fairly

limited benefits to workloads in general. It is important to note that some

partitions of the Lookaside fabric can also be used as C2 components.

• API

– Since we have used the Intel OpenCL SDK, we leverage its APIs for inter-

facing FPGA logic from CPU.

– With regards to interfacing the RHOS, we use blocking OpenCL channel

calls to implement FIFOs between the Smart Switch and developer logic.

– Support is also provided for accessing the FPGA using the network inter-

face for modifying parameters, updating algorithms and reading internal

counters/states. By using the appropriate network addresses, system ad-

ministrators can remotely access, modify, monitor and control logic on

FPGAs.
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Figure 7·3: Proposed connectivity and hierarchy of RHOS component
types

7.6 Application of RHOS Framework to Taxonomies

Creating a new RHOS is a significant effort that would require many dissertations.

To demonstrate the viability and usefulness of our approach, we instead provide

implementation details for one taxonomy i.e. BitW FPGAs. For the other taxonomies

shown in Figure 7·1, we demonstrate that the RHOS framework can be applied to

them as well.

7.6.1 BitW FPGAs

Here we describe the design of a RHOS for BitW FPGAs, called Morpheus. We

provide details of four important aspects of the deployment i.e. Network Stack, In

line logic, Smart Switch and Control Plane.
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Network Stack

Since the baseline BSP does not contain a network stack, we provide a lightweight

modular implementation in Morpheus. Currently, we do not provide support for

FPGA bypass i.e. direct network to CPU connectivity over a low latency connection

inside the FPGA. Figure 7·4 shows the design of our network stack:

Figure 7·4: Overview of the modular Morpheus Network Stack

PHY: This is implemented using vendor IP to ensure optimal resource usage,

latency and operating frequency. An example of this is the Arria 10 Transceiver

Native PHY IP block (Intel, 2019).

MAC: This is implemented using vendor IP to leverage the benefits stated above.

An example of this is the Low Latency Ethernet 10G MAC IP block (Intel, 2019).

PTR (Packet Transmitter Receiver): Figure 7·5 shows an overview of the Packet

Transmitter Receiver (PTR) module. PTR is used to convert ingress sequential packet

data from the MAC to a full packet which can move within the FPGA in parallel.

Similarly, it also converts full egress packets to sequential data and sends them to the

MAC. Its interfaces are streaming on both the MAC and CRC side (the CRC side

has fewer wires since it is not required to support the extra ones e.g. start of packet

(sop)). Both transmitter and receiver components of PTR operate independently and

concurrently as state machines. When sending a packet, the transmitter state machine
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buffers the packet in an input register, and then locks the input ports from the CRC

module. This is done to stall other egress packets till the process is complete. When

receiving a packet, a trigger is used to buffer the full packet in the output register,

after which it is sent to the CRC module.

Figure 7·5: Packet Transmitter Receiver: Interfaces the MAC to send
and receive packets using state machines

CRC (Cyclic Redundancy Check): The CRC module is used to generate and verify

appropriate checksums, based on the packet protocol, in order to ensure that ingress

packets are received correctly. These checksums are also added to egress packets so

that the same is possible on remote nodes.

PA (Payload Alignment): Ingress payload data from the MAC to the PTR module,

received sequentially in 32 bit blocks, is trivially converted to a full vector by shift

operations. Since data arrives MSB first, we simply left shift MAC outputs into a

register. As a result valid payload data, that is less than the maximum possible size,

is right aligned. This is shown in Figure 7·6a. This right aligned format is maintained

throughout the FPGA. The problem here is that right aligned egress payload data
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cannot be trivially shifted out from the PTR module to the MAC. This is because

start of valid data can occur in any of hundreds of potential locations. A large MUX is

needed to select between these possibilities, which can significantly increase resource

consumption. This is shown in Figure 7·6b. The red line here shows the first valid

byte. The PA module left aligns payload data, so that the PTR module can trivially

left shift it out to the MAC module as shown in Figure 7·6c. The latency of PA

module can potentially be masked by the stall between transmissions since the MAC

has a fixed 32 bit interface and requires a significant number of cycles to transmit a

packet.

Figure 7·6: Conversion between 32 bit MAC interface and full payload
vector. a) Ingress data is trivially handled through left shifts. b) For
egress data, since the actual payload size can vary, using a MUX to
select an arbitrary 32 bit value in the payload has a high hardware
overhead. c) Alternative approach for egress data, where the payload
is left aligned using the PA module, so that data can be simply be
shifted similar to (a).
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In line logic

We implement AES-CTR-128 as an example of In line logic. We use counter based

AES block mode for line rate encryption since it is easy to parallelize. The “nonce”

value is hard coded in our design.

Smart Switch

Similar to In line logic, we implement a simple Smart Switch. It is composed of a

cross bar which assigns priority based on values embedded in incoming data.

Control Plane

An important design aspect that we highlight here is the use of Softcores for the

control plane. This has the following benefits:

• Softcores are programmed in Embedded C. Not only can this facilitate greater

and more effective adoption of this technology, but a number of legacy algo-

rithms are written in high level languages, and can potentially be translated to

Embedded C with little effort.

• The resource overhead of a Softcores is typically very low. We can potentially

generate a separate Softcore for each high level functionality deployed by the

system administrator. This means we can create a MPSoC with highly spe-

cialized and specific algorithms running on each Softcore, which in turn could

result in a decrease in implementation complexity and a faster response to event

flags.

• Softcores can be reprogrammed at runtime simply by updating the instruc-

tion/data memories and resetting the processor. This means that entire algo-

rithms can be modified over the network within a few microseconds. Moreover,
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Figure 7·7: Application of RHOS generator framework to Back-end,
storage attached, SmartNIC and TOR switch FPGAs.

the data needed to reprogram the Softcore will typically be in the order of a

few kilobytes, and hence is unlikely to generate large amounts of network traffic

if done remotely.

7.6.2 Other Taxonomies

Figure 7·7 illustrates how the RHOS framework can be applied to (1) Co-Processor

FPGAs with a back-end network, (2) storage attached FPGAs, (4) SmartNICs, and

(5) FPGAs embedded in TOR Switch. (3) is a BitW FPGA which is alredy discussed

above. In all designs, only components unique to the taxonomy are modified, while

the remaining components are reused. Moreover, the standard APIs ensure that

neither Developer application logic nor other RHOS components need to be modified

if changes are made.
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7.7 Conclusion

Removing ad hoc’ness in runtime support can substantially reduce developer effort.

In this chapter, we presented the design of a RHOS generator which addresses this

ad hoc’ness in hardware operating systems. We started by building a partial RHOS

taxonomy. Then we identified the major component types of a RHOS, as well as their

connectivity and hierarchy. We also presented our approach for building the RHOS

generator. Finally, we demonstrated the validity and usefulness of our proposed

RHOS generator by showing that it can be applied to a number of taxonomies.
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Chapter 8

Conclusion

In this dissertation, we demonstrated that it is possible to “CPU-ize” FPGAs by

providing capability of fast, high quality code generation and uniform deployment

generation within the same framework.

Fast code generation is achieved by building a framework for performing RTL

simulations of kernel logic and application logic, which significantly reduces design

space exploration overhead for HLS. The framework was also shown to be useful for

generating custom IP, which can outperform vendor IP and ASICs due to greater

application specificity.

High quality code generation is achieved by applying our proposed systematic set

of code transformations to HLL code. These transformations remove optimization

blockers in order to bridge the HLS/HDL gap. We also provide a framework for com-

piler instrumentation and static profiling of HLS IR code, which enables automatic

identification of these blockers and integration of pre-processing transformations into

the HLS compiler.

Finally, uniform deployment generation is achieved by making the runtime sup-

port uniform and vendor agnostic. In this regards, we presented our design of a RHOS

generator and its application to multiple common configurations of Data Center FP-

GAs.
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