
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Restructuring C code for High-Level
Synthesis Targeting FPGAs

Renato Alexandre Sousa Campos

MASTER’S DISSERTATION

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: João M.P. Cardoso

Co-supervisor: João Bispo

October 22, 2020

Restructuring C code for High-Level Synthesis Targeting
FPGAs

Renato Alexandre Sousa Campos

Mestrado Integrado em Engenharia Informática e Computação

October 22, 2020

Abstract

FPGAs have emerged as hardware accelerators capable of frequently being faster and/or more
efficient than general-purpose hardware, such as central processing units (CPUs) and graphics
processing units (GPUs). In the last decades, researchers have proposed several new languages
and frameworks to allow more efficient hardware design.

This dissertation proposes a framework to automatically restructure and annotate C code with di-
rectives optimised to target FPGAs using Xilinx Vivado HLS. The inputs of the framework consist
of an execution trace of an algorithm, given as a data-flow graph (DFG), and a configuration file
provided by the user. We explore algorithms to generate, manipulate and optimise DFGs, such
as graph pruning, reordering addition chains and isomorphic graph clustering, with the main fo-
cus set on restructuring the DFGs to efficiently exploit data-level parallelism. This approach was
based on work previously developed in the Special-Purpose Computing Systems, languages and
tools (SPeCS) research group. Our main contributions over the previous iteration include a new
specification of the input DFG, improved pruning and leveling algorithms, and support for bench-
marks with simple control-flow and array accesses that depend on input data. Such contributions
allow us to target a new range of benchmarks.

The framework is evaluated in regards to the complexity of the output code, scalability, and syn-
thesis results. For that, we use three benchmarks: dotprod, SVM, and KNN. We conclude that the
code generated is not easily manually replicated due to its complexity. Furthermore, the scala-
bility tests show that with the right configuration, it is possible to execute the backend in linear
time concerning the number of nodes of the DFG. Several input sizes with multiple user configu-
rations are synthesised for each benchmark. The experiments show that the framework is capable
of generating efficient hardware implementations with significant speedups over the unmodified
source codes, as is the case of the SVM, with a speedup of up to 1392×. Our best results are also
competitive with other approaches proposed in the state-of-the-art.

Keywords: FPGA. High-Level Synthesis. Data Flow Graph. Data-Level Parallelism.

ACM Categories: Data flow architectures, Hardware accelerators

i

ii

Resumo

FPGAs têm surgido como aceleradores de hardware que conseguem frequentemente ser mais
rápidos e/ou mais eficientes do que hardware de uso geral, tais como unidades centrais de proces-
samento (CPUs) e unidades de processamento gráfico (GPUs). Durante as últimas décadas, foram
propostas várias linguagens e ferramentas que têm como objetivo permitir um desenvolvimento
mais eficiente de hardware.

Neste contexto, esta dissertação propõe uma ferramenta que gera código C restruturado e ano-
tado com diretivas para ser sintetizado com o Xilinx Vivado HLS. A ferramenta tem como en-
tradas um traço de execução, na forma de um grafo de fluxo de dados (DFG), e um ficheiro de
configurações dado pelo utilizador. São exploradas metodologias de geração, manipulação e op-
timização de grafos de fluxo de dados, tais como poda de grafos, balanceamento de sequências
de somas e deteção de subgrafos isomórficos, sendo o foco principal restruturar as DFGs para
eficientemente expor paralelismo de dados. Esta abordagem é baseada em trabalho desenvolvido
anteriormente no grupo Special-Purpose Computing Systems, languages and tools (SPeCS). As
nossas contribuições principais sobre a iteração anterior incluem uma nova especificação da DFG
de entrada, algoritmos de poda e nivelação de grafos mais eficazes, e suporte para benchmarks
com controlo de fluxo simples e acessos a vetores que dependem dos dados de entrada. Estas
contribuições permitem-nos processar um novo conjunto de benchmarks.

A ferramenta é avaliada em relação à complexidade do código produzido, ao tempo de execução,
e aos resultados do processo de síntese. Para tal, recorremos a três benchmarks, sendo eles o dot-
prod, o SVM e o KNN. Concluímos que o código gerado é geralmente bastante mais complexo do
que o código original, e por isso, dificilmente replicado manualmente. Além disso, dado um de-
terminado conjunto de configurações, a complexidade de execução é linear em relação ao número
de nós da DFG. São testados vários tamanhos de dados de entrada e múltiplas configurações de
utilizador para cada benchmark. As experiências realizadas mostram que a ferramenta é capaz
de gerar implementações de hardware eficientes e competitivas com as ferramentas propostas no
estado da arte, como é o caso do SVM em que existe uma aceleraçáo de 1392× em relação ao
código fonte.

iii

iv

Acknowledgements

I want to express my gratitude to my supervisor, João M.P. Cardoso, and co-supervisor, João Bispo,
for the guidance, revision and motivation provided. I also want to acknowledge Afonso Ferreira
for establishing much of the groundwork of my dissertation and Tiago Lascasas dos Santos for
helping me with the instrumentation of several benchmarks. To all the people of the SPeCS group
which welcomed and took the time to help me with diverse tasks, to my family and friends, thank
you!

Renato Alexandre Sousa Campos

v

vi

“The mind is not a vessel to be filled, but a fire to be kindled.”

Plutarch

vii

viii

Contents

Abbreviations xvii

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Problem Statement . 2
1.4 Objectives . 2
1.5 Contributions . 2
1.6 Dissertation Structure . 3

2 Background about FPGAs and HLS 5
2.1 Reconfigurable Systems . 5

2.1.1 Benefits of Reconfigurability . 5
2.1.2 Limitations and Challenges . 6
2.1.3 Application domains . 6

2.2 FPGA’s architecture . 7
2.3 Hardware Description Languages . 8
2.4 High-Level Synthesis Tools . 9

2.4.1 Xilinx Vivado HLS . 10
2.5 Domain Specific Languages . 12
2.6 Summary . 14

3 State of the Art 15
3.1 Value State Flow Graph: A dataflow compiler IR for accelerating control-intensive

code in spatial hardware . 15
3.2 A Trace-Based Approach for Code Restructuring targeting HLS for FPGAs . . . 17
3.3 Transforming Loop Chains via Macro Dataflow Graphs 19
3.4 Using graph isomorphism for mapping of data flow applications on reconfigurable

computing systems . 22
3.5 Summary . 22

4 Description of the Framework 23
4.1 DFG DOT description requirements and specification 23

4.1.1 Data reads and writes . 25
4.1.2 Arithmetic operations . 25
4.1.3 Variable nodes . 25
4.1.4 Constant nodes . 26
4.1.5 Ternary / conditional operators . 26

ix

x CONTENTS

4.1.6 No operation node . 26
4.1.7 Assignment node . 27
4.1.8 Complex Assignment node . 27
4.1.9 Calls to functions . 27

4.2 Frontend limitations . 28
4.2.1 Information lost through tracing . 28

4.3 User configuration . 28
4.3.1 Mandatory configuration options . 28

4.4 Backend stages . 29
4.4.1 Pruning . 29
4.4.2 Leveling . 30
4.4.3 Balancing addition chains . 31
4.4.4 Isomorphic Matching . 31
4.4.5 Folding parallel subgraphs . 35
4.4.6 Prologue and Epilogue . 37
4.4.7 Arithmetic optimizations . 37

4.5 Summary . 38

5 Experimental Results 41
5.1 Experimental Setup . 41
5.2 Benchmarks Description . 42

5.2.1 SVM . 42
5.2.2 Dot Product . 43
5.2.3 kNN . 43

5.3 Synthesis Results . 44
5.3.1 SVM . 44
5.3.2 Dot Product . 44
5.3.3 kNN . 47
5.3.4 Summary . 49

5.4 Backend Execution Time & Scalability . 50
5.5 State of the Art Comparison . 53

5.5.1 SVM . 54
5.5.2 Dot Product . 54
5.5.3 kNN . 54

5.6 Summary . 55

6 Conclusions 57
6.1 Concluding remarks . 57
6.2 Future work . 58

A Benchmarks 59
A.1 SVM . 59
A.2 Dotprod . 59
A.3 kNN . 60

B Framework output 63
B.1 SVM . 63
B.2 Dotprod . 66
B.3 kNN . 70

CONTENTS xi

C Configuration file 83

D User Configurations 85

References 87

xii CONTENTS

List of Figures

1.1 Framework flow overview . 3

2.1 Architecture of a generic FPGA system, from Piltan et al. [79] 8
2.2 Spartan 3 vs Kintex 7 block diagrams, from Lyke et al. [62] 9
2.3 Overview of the synthesis process of an HDL into a bitstream 9
2.4 Vivado HLS array partitioning styles from Xilinx [28] 11
2.5 Dataflow optimization from Xilinx [105] . 12
2.6 Overview of Hipacc target architectures . 13

3.1 Speculation, predication and subgraph predication from Zaidi et al. [107] 16
3.2 A code example and the corresponding VSFG 16
3.3 Overview of the compilation flow from [32] . 18
3.4 Overview of loop chain pragmas and the modified macro dataflow graph, from

Davis et al. [22] . 21

4.1 Framework flow overview . 23
4.2 DFG representing c = (a > b) ? a : b . 24
4.3 DFG representing Listing 4.2. 26
4.4 Backend execution flow. 29
4.5 Pruning execution (see Section 4.4.1) on a DFG representing the Dotprod with

N = 2. 30
4.6 The pruning task. 30
4.7 The leveling algorithm. 31
4.8 Balancing addition chains on the Dotprod DFG with N = 5. 32
4.9 Balance Addition Chains algorithm . 32
4.10 Detect Addition Chains algorithm . 33
4.11 Rotate Graph algorithm . 33
4.12 Algorithm to Find All Subgraphs. 35
4.13 Parallel subgraphs colorized for the Dotprod graph with N = 10. 36
4.14 Main and parallel graphs generated after the folding stage for the Dotprod DFG

with N = 10. 37
4.15 Fold parallel subgraphs algorithm. 38
4.16 Final Main, Epilogue, and Parallel graphs for the Dotprod with N = 10. 39

5.1 Speedups for the SVM benchmark with 1274 support vectors and 18 features. . . 45
5.2 Speedups for the Dotprod benchmark, N = 4000 and maxNodesPerSubgraph = 33. 46
5.3 Speedups for the KNN benchmark with 8 data points and multiple number of

features. 50
5.4 Backend execution time for the kNN benchmark using 8 data points. 52

xiii

xiv LIST OF FIGURES

5.5 Execution comparison of the Leveling algorithm for a similar SVM DFG. 53

List of Tables

2.1 Overview of HLS tools . 10
2.2 Vivado HLS synthesis report for different styles of array declarations 13

4.1 Description of the nodes that can be used in the input DFG. 24
4.2 Dotprod parallel subgraphs for N=10 . 34
4.3 Call edge attributes. 37

5.1 xc7z020clg484-1 available resources . 42
5.2 Benchmarks information. 42
5.3 The complexity of the code generated vs the unmodified versions (first row of each

benchmark). 43
5.4 SVM synthesis results using 1274 support vectors with 18 features each. 44
5.5 Synthesis results for the Dotprod benchmark, N = 2000 45
5.6 Synthesis results for the Dotprod benchmark, N = 4000. The results with re-

sources above 100% are merely indicative and are not implementable in the target
FPGA. 46

5.7 Synthesis results for the Dotprod benchmark, N = 4000 and maxNodesPerSubgraph=
33. 46

5.8 Synthesis results of the code produced by the framework for the kNN benchmark
with 8 data points and 32 features. The results with resources above 100% are
merely indicative and are not implementable in the target FPGA. 47

5.9 Synthesis results of the code produced by the framework for the kNN benchmark
with 8 data points and 64 features. The results with resources above 100% are
merely indicative and are not implementable in the target FPGA. 48

5.10 Synthesis results of the code produced by the framework for the kNN benchmark
with 8 data points and 128 features. The results with resources above 100% are
merely indicative and are not implementable in the target FPGA. 48

5.11 Synthesis results of the code produced by the framework for the kNN benchmark
with 8 data points, 128 features. Float input data and calculations. Removed the
"sqrt" from the calculation of the Euclidean distances. 49

5.12 Synthesis results of the code produced by the framework for the kNN benchmark
with the epilogue manually optimized. Only the unmodified and best results are
shown for each input size. 49

5.13 Backend execution times for the kNN benchmark using 8 data points and varying
the number of features. 51

5.14 Profiling results for the SVM benchmark. Levels in the best parallel cluster: 24.
Levels in graph before executing the AllSubgraphs algorithm: 38. Input size: 1274
support vectors with 18 features each. 51

xv

xvi LIST OF TABLES

5.15 Profiling results for the dotprod benchmark. Levels in the best parallel cluster:
6. Levels in graph before executing the AllSubgraphs algorithm: 17. Input size:
N=4000. 52

5.16 Profiling results for the kNN benchmark. Levels in the best parallel cluster: 70.
Levels in graph before executing the AllSubgraphs algorithm: 243. Input size: 8
data points with 128 features each. 52

5.17 Pruning data for each DFG. 53
5.18 SVM synthesis report published in [30] . 54
5.19 kNN synthesis report for the code output by the tool developed by Santos et al.

[83]. Input size: 8 data points, 128 features. "xFeatures" and "knownFeatures"
with float types. 55

D.1 Examples and description of each mandatory configuration option. 85
D.2 Examples and description of each optional configuration. 86

Acronyms

ADAS Advanced Driver Assistance System
AES Advanced Encryption Standard
ASIC Application-Specific Integrated Circuit
ATR Automatic Target Recognition
BRAM Block Random Access Memory
CAD Computer-Aided Design
CDFG Control Data Flow Graph
CPU Central Processing Unit
DCE Dead-Code Elimination
DES Data Encryption Standard
DFG Data Flow Graph
DNA Deoxyribonucleic acid
DSL Domain Specific Language
DSP Digital Signal Processor
FF Flip-Flop
FFT Fast Fourier Transform
FIR Finite Impulse Response
FSM Finite State Machine
FPGA Field-Programmable Gate Array
GPL General Purpose Language
GPU Graphics Processing Unit
HDL Hardware Description Language
HLL High-Level Language
HLS High-Level Synthesis
ICAP Internal Configuration Access Port
II Initiation Interval
ILP Instruction Level Parallelism
IR Intermediate Representation
KNN K-Nearest Neighbors
LUT Lookup Table
NIDS Network Intrusion Detection System
PAL Programmable Array Logic
PDE Partial Differential Equation
RAM Random-Access Memory
RC Reconfigurable Computing
RC4 Rivest Cipher 4
RSA Rivest–Shamir–Adleman
RTL Register-Transfer Level
RTR Run-Time Reconfigurability
SSA Static Single Assignment
SVM Support-Vector Machine
VHDL Very High Speed Integrated Circuit Hardware Description Language
VHSIC Very High Speed Integrated Circuits
VSFG Value State Flow Graph

xvii

Chapter 1

Introduction

1.1 Context

Field-programmable gate arrays (FPGAs) [68] are semiconductor devices based around a ma-

trix of configurable logic blocks (CLBs) connected via programmable interconnects. FPGAs can

be reprogrammed, an arbitrary number of times, to meet application requirements. This feature

distinguishes FPGAs from application-specific integrated circuits (ASICs) [86], which are man-

ufactured for specific functionality. The hardware-reconfigurability property presents a potential

performance boost and energy savings compared to software-programmable units, such as central

processing units (CPUs) and graphics processing units (GPUs).

In the early days, the only way to program FPGAs was by using hardware description lan-

guages (HDLs) [34]. However, HDL writing requires expertise about hardware design. Program-

ming in such low-level languages is very time consuming and prone to errors. As FPGAs grew

in size and applications became more complex, there was a need to increase the programming

abstraction. Consequently, high-level synthesis (HLS) tools [71] were developed, which allow de-

signers to use high-level languages (HLLs) to target FPGA-based hardware. HLLs can be split into

two major categories: general-purpose languages (GPLs) and domain-specific languages (DSLs)

[91], [29], [24]. GPLs include languages such as C, C++, and C#, while DSLs can either be

defined as completely new languages or be embedded in a GPL.

1.2 Motivation

Access to fast and affordable computation is of extreme importance for applications that rely

on image and signal processing, cryptography, NP-hard problems, pattern matching, networking,

numerical and scientific computing, amongst many others. Some industries that currently benefit

from FPGA-based acceleration are the aerospace [70], medical [41] and automotive [72] ones.

Therefore, softening the entry barrier for software developers to efficiently target FPGAs, will

further drop the costs of using FPGAs. In turn, this will set us one step closer to a world where

FPGAs are mainstream [7].

1

2 Introduction

1.3 Problem Statement

Programming using HDLs, such as SystemVerilog [48] or VHDL [49], is time-consuming, prone

to error, and requires expertise on the language and hardware being targeted. The problem is

that even when using HLS tools, there is no easy way to target FPGAs without having to acquire

knowledge on code optimizations and FPGAs architecture. Although HLS tools raised the pro-

gramming abstraction level, now we have to manage the balance between ease of programming

and performance.

1.4 Objectives

We intend to provide scientific research on high-level synthesis optimisations. This research in-

cludes developing and evaluating new approaches, as well as replicating and assessing compelling

methodologies suggested by state-of-the-art studies. To perform such evaluations, we will develop

a new framework that uses execution traces to generate C code optimised for Xilinx Vivado HLS,

an idea taken from the work by Ferreira et al. [30]. We expect to develop a system that is robust

and mature enough to target some real-world applications and to challenge the performance of

state-of-the-art tools. We can list four major limitations of the framework developed by Ferreira

et al. [30] that we plan to undertake:

• Performance - increase the performance of the synthesized code on the FPGA. The perfor-

mance will be measured as a function of latency, resources used and energy costs.

• Scalability - reduce the framework execution time to make feasible to process larger pro-

gram inputs.

• Control flow - handle branch conditions. This is a crucial step to be able to process a wider

range of applications.

• User configurations - provide a simple interface to give the user the option to optimize

different criteria, such as energy or performance.

With all of these objectives in mind, we should not forget the major one, which is to contribute to

a scenario where targeting FPGAs is as easy as any other computing platform.

1.5 Contributions

In this dissertation, we contribute with a framework to automatically restructure software code for

HLS. Figure 1.1 illustrates a simple flow of such framework. The process of instrumentation and

execution collects tracing information about the program execution. The execution traces used

consist of a linear listing of operations executed in a particular run of the application which rep-

resent information such as function calls, arithmetic operations, changes to variables, and branch

conditions. The linear listing of operations is captured by instrumenting each statement in the

1.6 Dissertation Structure 3

original source code to report each executed operation. In the specific case of ternary/condition

operators, the trace represents all operands, even the ones which are not used. For a given input

size, the trace is generic, meaning that it does not collect input data. The trace is logged in the DOT

language, so it is directly represented by an acyclic DFG. This DFG is then optimized and trans-

formed, namely to maximize data-level parallelism. The approach without considering data-level

parallelism was first described in [32, 31]. Execution traces are used as they provide the real oper-

ation dependencies, which is not always true for compiler-based DFGs. However, problems such

as representing control-flow and balancing runtime information vs a data-independent representa-

tion, arise when using traces. Our approach considers more complex code structures than previous

work, as it is capable of dealing with simple control-flow, creating generic representations of only

runtime-computable array accesses, and handling code with multiple outputs. We also contribute

with algorithmic descriptions of the transformations that allow to maximize parallelism, such as

reordering addition chains, isomorphic graph detection and folding of parallel subgraphs. Lastly,

we provide an evaluation of the approach that shows the potential of the framework. This includes

a comparison to unmodified code and to state-of-the-art results. Moreover, we study the scalability

of the framework and provide evidence for its linear time complexity concerning the number of

nodes of the DFG.

Instrumentation
and ExecutionC code

C code
+

Directives
Acyclic
DFG

Code
Restructuring &
HLS Directives

Figure 1.1: Framework flow overview

1.6 Dissertation Structure

This dissertation is structured as follows: Chapter 2 gives an introduction to reconfigurable sys-

tems, high-level synthesis tools and compiler optimisations. Chapter 3 provides the state-of-the-

art of high-level synthesis methodologies. Chapter 4 explains the method used to approach the

problem and the solution developed. Chapter 5 uses benchmarks to evaluate all aspects of the

framework, from performance, scalability, and complexity of the code generated to its applica-

bility in real-world problems. Chapter 6 discusses ideas for further work and highlights the most

crucial points of this dissertation.

4 Introduction

Chapter 2

Background about FPGAs and HLS

This chapter describes and explains some concepts related to FPGAs and HLS which might be

useful to understand the following chapters. It provides an overview of reconfigurable systems,

FPGA’s architecture, compilation methods, and optimization techniques.

2.1 Reconfigurable Systems

According to Tessier et al. [93], Reconfigurable Computing (RC) refers to performing computa-

tion with spatially programmable architectures, such as FPGAs. To the best of our knowledge, the

first FPGA was the XC2064, developed by Xilinx in 1984 [17]. FPGAs were created to mitigate

the limitations of PALs (Programmable Array Logic) [94]. PALs were efficient to manufacture

because their structure was very similar to memory arrays. Therefore, companies in the memory

business added PALs to their lineup. Although PALs were capable of implementing custom logic,

they failed to scale when the architecture grew larger to satisfy the market needs. Upon the inven-

tion of FPGAs, re-programmability was not considered an advantage, but it later proved to be a

fundamental factor to reduce development costs.

2.1.1 Benefits of Reconfigurability

One could argue that the most important benefit of reconfigurability is the flexible reshaping of

resources, which allows for mass customization of the hardware, reduction of nonrecurring engi-

neering expenses (NRE), design rectification and iterative refinement to accommodate evolution

[62]. The second benefit is that reconfigurability allows for robustness and resilience. Fault-

tolerant systems, based on redundancy, can be implemented given that there are enough spatial

resources in the reconfigurable fabric [55]. Another advantage is that offloading tasks to an FPGA

might reduce energy consumption [88]. The last benefit of FPGAs is that they can change their

functionality at run-time. This asset is called run-time reconfigurability (RTR). The benefits of

RTR include having specialized hardware when required, which has to balance with the energy

and space used for storing and swapping the hardware configurations. The RTR benefits have

5

6 Background about FPGAs and HLS

been shown in applications such as video processing [98], human genome searching [60] and data

sorting [56].

2.1.2 Limitations and Challenges

The challenges with reconfigurable computing lie around maximizing performance while mini-

mizing area and energy. How can we exploit the reconfigurable architecture to program these

machines and make the programming tools available to domain experts and software developers?

Optimization problems that one would previously solve manually for each custom design, such as

cache sizing and bit-width selection, became automation problems. There is also the challenge of

how to use FPGAs as accelerators for general-purpose computers. One example of this application

is a floating-point accelerator. How to manage communication between the two devices? Another

challenge with reconfigurable computing is how to handle failure detection and correction. This

is of extreme importance for space-deployed devices [80], due to the errors that are introduced

through radiation. Thanks to partial reconfigurability, FPGAs can use their free space to perform

tests for failure during operation and automatically apply corrections, extending their lifetime. A

substantial part of FPGAs’ success was due to advancements in Moore’s law, thus there is the

need to keep increasing gate density, and as such, some of the focus has been put on 3-D inte-

gration [62]. The last challenge is related to cybersecurity since it is a widespread problem in the

world. As Lyke et al. [62] refer, security measures such as channel encryption, component au-

thentication and privileged modes for self-configuring devices must be implemented in the future

reconfigurable devices.

2.1.3 Application domains

In this subsection, we provide an overview of some of the FPGAs application domains.

One obvious application of reconfigurable hardware is emulation of custom logic, which

might then be implemented as an ASIC.

As FPGAs grew in size, one became able to fit entire processors into a single FPGA, therefore

they have been used to research multi-core architectures (see, e.g. [101], [75]).

Signal and image processing algorithms apply a set of operations repeatedly to a set of inputs.

This type of operations can be highly parallelized, making them an excellent target for FPGAs.

Application examples include the fast fourier transform (FFT) [52], the finite-impulse response

(FIR) filter [77] and matrix-matrix multiplication kernels [54] [85]. They have also been used for

image compression [35] [27] real-time face detection [64] [92] and object tracking [36].

RC is being used in the Financial sector to estimate prices faster than the competitors, using

Monte Carlo simulations [108].

In the Security domain, encryption and decryption has been used to demonstrate FPGA’s

benefits [12]. The first demonstrations showed the performance of FPGAs on the Data Encryption

Standard (DES) algorithm [61] and latter on the Advanced Encryption Standard (AES) [65] [26].

They have been used to accelerate RSA [84] [102] and to break the Rivest Cipher 4 (RC4) [95].

2.2 FPGA’s architecture 7

NP-hard problems usually require substantial amounts of computation compared to the prob-

lem state, making them attractive targets for FPGAs. Problems such as boolean satisfiability (SAT)

[1] [76] and the travelling sales problem (TSP) [37] [63] have been successfully accelerated using

FPGAs.

Pattern matching consists of finding patterns in large datasets, which is generally computa-

tionally intensive, but the operations are extremely regular, thus it is possible to have a computa-

tional advantage with FPGAs. Some examples of pattern matching with FPGAs include automatic

target recognition (ATR) in images [99] and DNA sequence matching [42] [60] [53].

Networking requires handling packets at high throughput in an environment where the pro-

tocols are always evolving. FPGAs thrive in this situation because they can be reprogrammed to

cope with the changes. FPGAs can be used either as routers and switches [82] [21] or as network

intrusion detection systems (NIDS) [18] [40].

Numerical and scientific computing is dependent on the performance of floating-point arith-

metic, which has been to shown to be better on FPGAs than on conventional microprocessors, at

least on matrix and vector operations [97].

Molecular dynamics simulations involve simulating newton mechanics on thousands of parti-

cles, which is computationally demanding. FPGAs have been used to model biological molecules

[6] with a 20-fold performance advantage over a conventional microprocessor.

2.2 FPGA’s architecture

A generic representation of the architecture of an FPGA system is shown in Figure 2.1. The

basic elements of reconfigurable systems are switches, building blocks, input/output blocks, con-

figurable wiring, and a configuration management engine. Switches allow for the insertion of a

configurable state. The primitive building block in FPGAs is the LUT (lookup table), which com-

putes boolean logic. A set of LUTs is defined as a configurable logic block that can be used to

implement complex functions. The other type of building block is the hard-core intellectual prop-

erty (IP) which implements a well defined recurring function. Wiring connects the building blocks,

thus it should be configurable to allow for flexible connections. Usually, the building blocks are

not connected to all the others because this would lead to a quadratic increase in the number of

wires with respect to the number of building blocks. Therefore, hierarchical wiring strategies

have been developed to balance the connection degree with the performance [23]. Modern FPGAs

have evolved to provide complex heterogeneous fabrics driven by market demand and technology

progress. A comparison between the block diagram of an early FPGA (Spartan 3 [103]) and a

modern one (Kintex 7 [104]) is shown in Figure 2.2. The configuration management engine man-

ages the state of the reconfigurable fabric. The state is defined via a bitstream, which is a chain

of bits that defines the state of each reconfigurable component. Normally, the bitstream would be

transferred to the FPGA using an external configuration access port implementing the JTAG pro-

tocol, but nowadays some FPGAs can access their own configuration via the internal configuration

access port (ICAP) interface.

8 Background about FPGAs and HLS

Figure 2.1: Architecture of a generic FPGA system, from Piltan et al. [79]

2.3 Hardware Description Languages

The process of converting a given function into an optimal set of gates is error prone and labour

intensive. In the 1990s, designers realized that they would be more efficient if they raised the

abstraction level. Aided by a computer-aided design (CAD) tool, designers were able to specify

the logic function and automatically produce a set of optimized gates. The specifications were

given in a hardware description languages (HDL). The two leading HDLs are Verilog and VHDL.

Verilog was developed by Gateway Design Automation in 1984 [74]. Cadence acquired Gate-

way in 1989 and Verilog was first published as an IEEE standard in 1996 [44]. It received revisions

in 2001 [45] and 2006 [47]. The SystemVerilog [46] standard defines extensions to the IEEE 1364-

2005 Verilog standard.

VHDL is a language for describing digital eletronic systems. It was developed by the US

Department of Defense out of the VHSIC program that started in 1980 [5]. It became an IEEE

standard in 1988 [43] and it has received several updates since.

The two major objectives of HDLs is logic simulation and synthesis. Simulation applies a

set of inputs to each module and the outputs are checked to verify correct functioning. Synthesis

converts each module into a netlist describing the hardware.

Using an HDL one can design circuits in different levels of abstraction. The behavioural
level describes the order in which operations should execute. It is often not synthesizable, but

it is helpful to perform logic simulation and verification. The Register Transfer Level (RTL)

describes the hardware in more detail and defines which operations execute in each control step.

2.4 High-Level Synthesis Tools 9

Figure 2.2: Spartan 3 vs Kintex 7 block diagrams, from Lyke et al. [62]

The lowest level of abstraction is the gate level, in which one describes the hardware as a set of

boolean gates, but these are not assigned to the physical hardware yet.

When targeting FPGAs, additional processes (see Figure 2.3) select which physical wires and

basic logic elements to use from a specific FPGA.

Figure 2.3: Overview of the synthesis process of an HDL into a bitstream

2.4 High-Level Synthesis Tools

HLS tools can synthesise a high-level language, like C, into a register transfer level (RTL) abstrac-

tion. HLS tools are designed to increase the level of abstraction in the development of applica-

tions running in hardware accelerators such as FPGAs. High-level synthesis enables designers to

shorten time-to-market and to address today’s complex systems. In recent years, HLS has been a

popular research topic and plenty of new tools were developed, each with its optimisation tech-

niques and input languages. A survey that compares the state-of-the-art in HLS tools, as of 2016,

was published by Nane et al. [71]. Although there were a great amount of tools developed, only a

few survived through time. Table 2.1 provides an overview of HLS tools still in use as of 2020.

Although LegUp HLS is a commercial tool, it started as an academic open-source tool [13]

owned by the University of Toronto.

10 Background about FPGAs and HLS

Table 2.1: Overview of HLS tools

Compiler Owner Input License First Release Latest Release

Vivado HLS [28] Xilinx C, C++, SystemC Commercial 2012 2020

LegUp HLS [14] LegUp Computing C, C++ Commercial 2011 2020

Intel HLS [90] Intel C++ Commercial 2017 2020

MaxCompiler [89] Maxeler MaxJ Commercial 2010 2019

Kiwi 2 [38] U. Cambridge C# Academic 2017 2019

It might be worth to highlight the key tasks involved in high-level synthesis:

Scheduling: Programs in high-level languages are written as a sequence of instructions, but

there is no notion of timing. The scheduling task assigns computations to specific clock cycles.

In other words, it creates a finite state machine (FSM) that associates each computation in the

programming language with a state in the FSM.

Allocation: defines the number of hardware units and registers that are available to execute

each operation.

Binding: assigns each operator and value in the programming language to a specific unit in

the hardware.

HDL generation: After all the above tasks complete, an FSM and a data-path are defined.

With this information, the HLS tool generates a circuit description in an HDL.

For a more detailed explanation about the high-level synthesis process, see [16].

2.4.1 Xilinx Vivado HLS

As this work uses Xilinx Vivado HLS to synthesize C code into hardware, it is important to un-

derstand some of the directives that can be applied to the code.

2.4.1.1 Directives

Vivado HLS lets the users control the synthesis process through optimization directives. The tool

developed explores the ARRAY_PARTITION, DATAFLOW, and PIPELINE directives.

When an array is defined inside of a function, Vivado HLS assign it to a BRAM, which has a

maximum of 2 data ports. This limits the amount of read/write operations to 2 in each clock cycle.

The problem can be solved by splitting the BRAM into multiple smaller BRAMs, increasing

the number of data ports. In Vivado HLS arrays are partitioned using the ARRAY_PARTITION

directive. Vivado HLS provides 3 styles of array partitioning: block, which splits the original

array into equally sized blocks of consecutive elements of the original array; cyclic, which splits

the original array into equally sized blocks of interleaved elements of the original array; complete,

which maps each element of the original array into a register. These styles of partitioning are

illustrated in Figure 2.4.

The DATAFLOW directive allows a series of sequential tasks to execute in parallel, thus ex-

ploiting task-level parallelism. When using this directive, tasks connect through channels, which

2.4 High-Level Synthesis Tools 11

Figure 2.4: Vivado HLS array partitioning styles from Xilinx [28]

are implemented as FIFOs for scalar variables, pointers, reference parameters, and the function

return. Ping-pong buffers are used for non-scalar variables like arrays [105] if Vivado HLS de-

termines that the data is accessed in an arbitrary manner. Otherwise, if Vivado HLS determines

that an array is accessed in sequential order, the memory channel is implemented using a FIFO

channel with depth 1. These channels allow a task to begin before the previous task finishes and

that is why the tasks overlap. This optimisation has the potential to increase throughput and re-

duce latency. However, there are some limitations: Xilinx recommends writing the code inside the

dataflow region using the canonical form, which states that only variable declarations and function

calls can be used. Moreover, each task needs to follow the single-producer-consumer model, there

can not be feedback between tasks, or conditional execution of tasks, or loops with multiple exit

conditions. Figure 2.5 shows that in situation B, task C effectively starts outputting the result 3

cycles before compared to situation A.

When the PIPELINE directive is given to a loop, it applies the software pipelining optimiza-

tion.

2.4.1.2 Synthesising Arrays

During initial testing of Vivado HLS, we noticed that the reported BRAM usage was dependent

of array declaration and initialization. Thus, we created a synthetic benchmark (see Listing 2.1)

to further investigate this issue. In this benchmark we test the effects of the const keyword, ini-

tialization and scope of the input array. According to the report in Table 2.2, using uninitialized

global arrays or local const arrays seems to produce the best results. However, these are invalid,

because Vivado HLS skips the operations of loading the values from the arrays. All the other

configurations are valid, but declaring arrays as arguments of the top function does not use any

BRAMs. This happens because parameters in the top function are by default synthesised into RTL

RAM ports with the I/O protocol ap_memory.

12 Background about FPGAs and HLS

Figure 2.5: Dataflow optimization from Xilinx [105]

2.5 Domain Specific Languages

Domain-specific languages (DSLs) are tailored to a specific application domain and trade gener-

ality for ease of use compared to general-purpose languages (GPLs). DSL compilers can apply

certain optimizations that would not be possible to do in a general domain. DSLs are not easy to

develop because it requires expertise both in a specific application domain and in languages and

compilers development. In spite of this fact, DSLs research and development is currently a hot

topic. The following paragraph presents some state of the art DSL-to-FPGA approaches.

Watanabe et al. [100] designed an OpenACC compiler that uses the Stream Processor Gener-

ator (SPGen) DSL to target FPGAs. The SPGen DSL is being developed by the RIKEN center for

computational science. Fernandes et al. [29] developed a new DSL for data analytics that can tar-

get FPGAs using pragmas. The DSL compiler developed can generate annotated C code ready to

Listing 2.1: Mini benchmark to test array declarations

1 #define SIZE 1024
2 int test_bram(float *avg)
3 {
4 float sum = 0;
5 for (int i=0; i < SIZE; i++) {
6 sum += input[i];
7 }
8 *avg = sum / SIZE;
9 return 0;

10 }

2.5 Domain Specific Languages 13

Table 2.2: Vivado HLS synthesis report for different styles of array declarations

Scope Const keyword Initialized Latency (cycles) BRAM Array Loads

Global

F F 5124 0 No

F T 7172 2 Yes

T F 5124 0 No

T T 7172 2 Yes

Param F F 7172 0 Yes

T F 7172 0 Yes

Local

F F 7172 2 Yes

F T 7172 2 Yes

T F 5124 0 No

T T 7172 2 Yes

be used by Xilinx Vivado HLS. Sozzo et al. [24] developed FROST, a tool that can target FPGAs

from multiple DSLs, such as Halide [81] and Tiramisu [8]. FROST takes as input an algorithm de-

scribed in one of the supported DSLs and applies IR optimizations to generate HLS code. Takano

et al. [91] propose a framework to synthesize Rust code into RTL. Chugh et al. [19] propose

a DSL compiler to accelerate image processing pipelines on FPGAs using the PolyMage DSL.

Stewart et al. [87] propose the Rathlin image processing language (RIPL), an image processing

DSL for FPGAs. Fickenscher et al. [33] used the Heterogeneous Image Processing Acceleration

[66] (Hipacc) DSL and compiler framework to examine the suitability of writing typical Advanced

Driver Assistance System’s (ADAS) algorithms in a DSL. Hipacc is a C++ embedded DSL and

its compiler is capable to target Xilinx and Intel FPGAs, as well as GPUs and CPUs (see Figure

2.6). With one description of the algorithm, it was possible to generate program code for three

completely different hardware architectures automatically.

Figure 2.6: Overview of Hipacc target architectures

14 Background about FPGAs and HLS

2.6 Summary

Reprogrammability is arguably FPGA’s major advantage when it comes to reducing development

costs. The current challenges lay on optimising their efficiency and developing user-friendly au-

tomation tools to synthesise programs into hardware. They can be used in multiple areas, like

emulation of custom logic, signal and image processing, pattern matching, network and scien-

tific computing. FPGA building blocks are the lookup tables, flip-flops, digital signal processors

and block RAM, which together can be used to implement complex functions. HDLs provided

a way to simulate and synthesise hardware while being less error-prone and faster to program

than describing each gate. Meanwhile, HLS tools raised the level of abstraction again, allowing

developers to synthesise GPLs and DSLs. Even though HLS tools are more user-friendly than

HDLs, usually one needs expertise about the HLS tool to have satisfying results. The latter justi-

fies why a considerable effort is put into researching methods to automate the generation of code

targeted at HLS tools. The following chapter gives an overview of some projects that apply graph

transformations that can be used to automate tasks that potentially lead to better synthesis results.

Chapter 3

State of the Art

This chapter presents the state of the art related to code optimizations that can be targeted at FPGAs

and related to the approach proposed in this dissertation. Most of the optimizations referred in the

following sections have the potential to improve execution times or to decrease area usage.

3.1 Value State Flow Graph: A dataflow compiler IR for accelerating
control-intensive code in spatial hardware

Although reconfigurable hardware has proven to be capable of accelerating many parallel appli-

cations by orders of magnitude [107], there is a vast amount of legacy code which remains se-

quential. The achievable speedup is always restricted by the sequential fraction of an application.

Even for applications that exhibit high parallelism, sequential performance remains essential due

to constraints not considered by Amdahl’s law [107], such as IO and memory bandwidth.

A new method for exploiting sequential performance is proposed by Zaidi et al. [107]. The

approach consists in trying to mimic techniques already in use by conventional processors, such

as aggressive branch prediction and dynamic execution scheduling. Branch prediction allows for

independent instructions to be executed out of order. Dynamic execution scheduling is a method

in which instructions are scheduled at run time according to the hardware resources available, in

order to take advantage of parallelism which would not be visible at compile time.

Branch prediction is achieved through aggressive speculation. Figure 3.1a shows how specu-

lation is performed by executing both data paths before the predicate is available. This may have

negative consequences if the data path that takes 64 cycles does not execute regularly. The oppo-

site of speculation is predication, which consists of executing a data path only when the predicate

result is available, as shown in Figure 3.1b. The authors developed a solution called subgraph

predication, in which the data path that uses 2 clock cycles is always speculated while the longer

one is predicated, as shown in Figure 3.1c.

Dynamic execution scheduling was achieved by using a spatial computation model. To do so,

a new compiler IR was developed, the value state flow graph (VSFG). In the VSFG, the entire

program is represented as an acyclic graph, and loops are implemented as tail-recursive functions.

15

16 State of the Art

(a) Speculation (b) Predication (c) Subgraph predication

Figure 3.1: Speculation, predication and subgraph predication from Zaidi et al. [107]

It is also a hierarchical graph as all loops and function calls are represented as nested subgraphs.

Such subgraphs may execute concurrently, as long as their dataflow dependencies and resources

needed are satisfied. Each VSFG can be described as a labeled, directed, acyclic, hierarchical Petri

net [78].

Figure 3.2 presents a VSFG of a for loop with a branch condition inside. There is no explicit

notion of control flow from one block to another. The value edges (solid black arrows) retain the

dataflow dependences from the original CDFG. The state edges (dashed black arrows) enforce

sequentialization. The predicate edges (dotted purple arrows) in conjunction with multiplexers

convert control flow into dataflow.

(a) Pseudo-code of a loop (b) A VSFG from Zaidi et al. [107]

Figure 3.2: A code example and the corresponding VSFG

LLVM [58] is used to create an intermediate representation (IR). The main advantages of using

LLVM are that it is possible to use any of the high-level languages supported and that the LLVM

IR [58] is essentially a CDFG with some optimizations. The backend converts the LLVM IR into

3.2 A Trace-Based Approach for Code Restructuring targeting HLS for FPGAs 17

a VSFG and then into Bluespec HDL [3] and Verilog HDL [48]. Bluespec is used because it is

well suited for static-dataflow execution and it provides a higher level of abstraction than Verilog.

The main objective of the evaluation was to compare the performance of the VSFG and the

CDFG to that of general-purpose processors on control-intensive sequential code. Cycle counts

were compared against two conventional processors: an Intel Nehalem Core i7 and an Altera Nios

II/f. All of the generated hardware was implemented on an Altera Stratix IV FPGA [51], using

the VSFG and LegUp HLS [14] tools as backends. The LegUp HLS tool was used to provide a

baseline for the CDFG performance.

Three different levels of VSFGs optimizations were tested: VSFG_0 used no loop unrolling,

VSFG_1 unrolled all loops once, and VSFG_3 unrolled all loops three times. All of these imple-

mentations were configured to maximize speculative execution and used subgraph predication.

Six benchmarks were selected from the CHStone benchmark suite [106] (dfadd, dfdiv, dfmul,

dfsin, adpcm, and mips) as well as two other benchmarks, bimpa and epic [11].

Although the VSFG showed to be consistently equivalent to or better than the LegUp CDFG in

terms of cycle counts, the opposite is true in terms of energy consumption. VSFG_3 was capable

of improving performance up to 35% over LegUp, in spite of using 3 times more energy. The cycle

counts approached a simulated Intel Core i7 while using only 25% of the energy of an in-order

Altera Nios IIf.

The results seem promising, and the authors refer that the following work should focus on

exploiting memory architectures to improve the locality, concurrency and energy efficiency of the

memory infrastructure. Another important point of research is to use code profiling to mitigate the

energy needs of speculation without compromising performance.

3.2 A Trace-Based Approach for Code Restructuring targeting HLS
for FPGAs

This section summarizes the approach by Ferreira et al. [30] [32] [31], which optimizes and re-

structures code targeting HLS for FPGAs, using a trace-based dataflow graph. Figure 3.3 presents

an overview of the approach, which consists of the following major tasks:

1. Manually add instrumentation code to the input code. These are just print instructions that

will output a DFG on execution.

2. Apply a series of optimizations: pruning, pattern matching, pipelining, reduce memory

accesses, and unfold loops according to the available FPGA resources.

3. Output restructured C code annotated with the HLS tool directives.

The frontend of the framework executes the code with a given set of parameters and outputs a

DFG, in the DOT language [25]. This DFG is based on a specific execution trace of the algorithm.

A DFG explicitly shows the data dependencies, thus it is a natural choice when trying to improve

parallelism.

18 State of the Art

Figure 3.3: Overview of the compilation flow from [32]

The node’s description is relatively simple: each node is described at least by an id, a type,

and a label. A node can only be of one of three types: constant, variable or operation.

In order to output a DFG, one needs to add instrumentation code to the input code. The

instrumentation rule is that one should add instrumentation code before each operation in the

input code.

In practice, only C code was instrumented, but theoretically, it is possible to instrument other

programming languages as well.

The backend consists of seven stages and it is responsible for restructuring and optimizing the

code along with injecting the HLS directives.

The first stage is responsible for preprocessing the graph. This includes pruning of unnecessary

nodes and replacing local arrays by scalar variables whenever possible. The second stage attempts

to identify patterns in the DFG and returns a graph with common operations and a list of graphs

of unique sequences responsible for each output. The third stage is in charge of folding the graphs

output by the previous stage into a loop, compacting them into a single graph. The fourth stage

implements loop pipelining on the variable that is written more often. The fifth stage improves

data reuse by detecting redundant memory accesses between consecutive loop iterations. The

sixth stage unfolds loops to increase parallelism, taking into account the FPGA resources made

available in a configuration file. The seventh and last stage writes the DFG as C code annotated

with the directives supported by the target HLS tool.

Five different benchmarks were used to evaluate the performance of the tool: the dotproduct,

the Autocorrelation and the 1D fir from the DSPLIB from Texas Instruments [50], as well as the

filter subband from an MPEG audio encoder [15], and the 2D Convolution provided by the UTDSP

Benchmark Suite [59].

Four different optimization levels were evaluated. Level 01 applies no DFG optimizations.

Level 02 applies all backend optimizations except for the fifth stage. Level 03 adds memory

partitioning directives to level 02. Level 04 adds the fifth stage optimizations to level 03. These

optimization levels were compared to manually optimized versions of the algorithms: C represents

the original code, C-inter represents the code optimized with basic HLS directives, and the C-high

improves the C-inter version with unroll and memory partition directives.

In the filter subband benchmark, the optimization level 03 achieved the highest speedup

(2.81×) as compared to the C-high version. In the dotproduct benchmark level 03 and 04 had

3.3 Transforming Loop Chains via Macro Dataflow Graphs 19

the same performance as the C-high version. For the 1D fir benchmark the optimization level 04

had a 14.39× speedup as compared to the C-high version, showing the impact of the data reuse

optimization. This is possible in the 1D fir benchmark because 31 values can be reused from the

previous iteration. The Autocorrelation benchmark showed that the developed tool was able to

generate better unrolled loops than the unroll directive applied to the Xilinx Vivado HLS. This is

true due to the fact that the unroll directive does not consider loop fusion of inner loops. The op-

timization level 04 was able to achieve a 7.91× speedup as compared to the C-high version. The

2D Convolution benchmark showed that optimizing data reuse may cause imperfect loop nests,

decreasing the expect speedups. However, the optimization level 04 was still able to achieve a

1.36× speedup as compared to the C-high version.

As the framework is still in its initial phase, the authors have identified several limitations:

1. The instrumentation process is manual;

2. It does not handle conditional statements yet;

3. It has scalability issues when dealing with large input traces;

4. Array accesses have to be independent of the input values;

5. It does not handle complex function calls;

6. The folding algorithm lacks flexibility;

7. There is no direct way of dealing with resource usage.

In conclusion, Ferreira et al. [32] approach has softened the entry barrier for software devel-

opers to use the computing power of FPGAs, by achieving consistent speedups even compared to

manually optimized versions of the algorithms. The authors mention that the future work should

focus on tackling the current limitations, by improving the flexibility and scalability of the frame-

work.

3.3 Transforming Loop Chains via Macro Dataflow Graphs

This section presents the work by Davis et al. [22], which explores the use of loop chains to

optimize structured grid problems on a multi-core CPU. Even though the work was not done in

the context of FPGAs, there are interesting ideas in their approach which could be translated into

our work.

Structured grids have been defined by Asanovic et al. [4] as one of the original seven dwarfs of

computation, which means that it represents a computational kernel of many future applications.

Structured grid problems can usually be solved by performing stencil computations. According

to Hagedorn [39], in a stencil computation, elements of a multidimensional grid are iteratively

updated. An element is updated by performing a stencil operation that applies a stencil function to

a neighborhood of elements. Stencil codes may occur in specific domains, e.g. Partial Differential

20 State of the Art

Equation (PDE) solvers or image processing. As referred by Davis et al. [22], in stencil codes

there are many opportunities for parallelism, but the execution time is often dominated by the time

required to move large quantities of data.

Approaches to improve the performance of these applications include rewriting them using

domain-specific languages (DSLs), such as PolyMage [69] and Halide [81], two DSLs developed

to optimize image processing pipelines.

Loop chaining is an abstraction in which a sequence of parallel loops share data and are

grouped into a chain. "In loop chaining, once an iteration of a loop completes, dependent iter-

ations of subsequent loops are enabled to execute, rather than waiting for the entire preceding loop

to complete first" [57]. A loop chain can be viewed as a set of iterations under partial ordering

that makes scheduling across loops possible. Scheduling across loops enables better management

of the data locality.

The work developed by Davis et al. [22] consists of optimizing stencil computations using

modified macro dataflow graphs. Dataflow graphs represent data dependences, typically per state-

ment. The modified macro dataflow graphs (M2DFG) suggested by Davis et al. [22], group all

iterations of a loop into a single macro node, represent data explicitly as a node and express the

execution schedule.

A cost model for memory interaction is provided and transformations such as loop fusion and

graph tiling are implemented. The overall objective is to minimize temporary storage requirements

and to reduce storage allocations.

The benchmarks have to be annotated using loop chain pragmas (see Figure 3.4a). Afterward,

a loop chain compiler developed by Bertolacci et al. [9] uses the annotations to apply shifts, fusion,

tiling and wavefront.

Each M2DFG (see Figure 3.4b) contains a set of values nodes V, a set of statement nodes S,

and a set of directed edges E. A value node represents a set of values with cardinality depicted

by the node’s label. A statement node represents a set of expressions applied to the value sets on

incoming edges. The edges of the graph express a partial execution schedule. Graphs are executed

from left to right and top to bottom.

The cost model uses two metrics: the total amount of data read (SR), and the maximum number

of streams being accessed simultaneously (SC). The transformations applied to the graph intend to

reduce the SR while keeping the SC under a certain threshold.

There are 3 graph transformations defined: reschedule, and two types of loop fusion opera-

tions, producer-consumer and read reduction. Rescheduling moves a node from one row to another

within the graph layout, effectively changing the execution schedule. Producer-consumer fusion

merges loops resulting in a lower temporary data storage requirement. Read-reduction fusion

merges loops when they read data from the same value node, effectively reducing the number of

times the same data are read.

Another operation performed is graph overlapped tilling, which, unlike the previous opera-

tions, is applied to the graph as a whole. Tilling divides a problem domain into smaller subdo-

mains called tiles. With overlapped tiles, it is possible to remove all data dependencies between

3.3 Transforming Loop Chains via Macro Dataflow Graphs 21

(a) Annotated Source Code (b) Modified Macro Dataflow Graph

Figure 3.4: Overview of loop chain pragmas and the modified macro dataflow graph, from Davis
et al. [22]

tiles. On the one hand, overlapped tiling has the disadvantage that some computation is repeated

across tiles, but on the other hand, there is a significant increase in parallelism [73].

The last optimization consists in reducing temporary memory usage. To do it, the temporary

value nodes need to be mapped into memory. The mapping depends on if a node is standalone

or if it has been pulled into a statement node through fusion. Standalone nodes use a one-to-one

mapping. The memory mapping for a node subject to producer-consumer fusion depends on the

loop chain pragmas defined, and on the reuse distance. The memory address is provided by static

liveness analysis applied to the graph.

The authors performed the experiments on the MiniFluxDiv benchmark [73], which was opti-

mized using different schedules. Each schedule was applied to a small box of size 163 and a large

box of size 1283. The scalability of each schedule was explored by varying the thread count from

1 to 28. The experiments were conducted on a dual-socket node with an Intel Xeon E5-2680 v4

CPU with 28 cores and 192GB of RAM. Four different schedule variations were explored:

1. Series of loops: baseline implementation without any scheduling optimization.

2. Fuse among directions: performs read reduction fusion.

3. Fuse all levels: maximize both producer-consumer and read reduction fusion

22 State of the Art

4. Fuse within directions: maximize producer-consumer fusion.

For each of the previous schedules, two versions were created: a single assignment (SA) one

with no storage optimizations and a version with storage optimizations (reduced). Moreover, an

overlapped tiling version was applied to the Fuse all levels schedule. The overlapped tiling tech-

nique together with memory traffic reduction outperformed the state of the art embedded DSLs

Halide and PolyMage. Although overlapped tiling complicates vectorization, it reduces the tem-

porary storage needs. According to Davis et al. [22], preserving the vectorization requires an

increase in temporary storage use, which scaled to 28 cores puts pressure on the memory subsys-

tem, at least in the MiniFluxDiv benchmark.

In summary, Davis et al. [22] propose transformations on modified dataflow graphs that allow

for the creation of different schedules and tilings. An algorithm for temporary storage reduction

and a cost model for memory traffic are provided. The experimental results on the MiniFluxDiv

benchmark show that some of the proposed optimizations outperform the achievements of the state

of the art DSLs.

3.4 Using graph isomorphism for mapping of data flow applications
on reconfigurable computing systems

Finding two similar graphs is a problem called the graph isomorphism problem. The complexity

of this problem is not know, however there are algorithms that solve it for most of the input graphs

in polynomial time. Mishra et al. [67] propose an algorithm to find isomorphic subgraphs in

polynomial time for dataflow graphs and interface them as hardware accelerators in the system-on-

chip design flow. Although with a different objective, in this dissertation we base the identification

of data-parallelism in their algorithm to find isomorphic subgraphs. It works by computing the

weight of each graph, which is like computing an identity for each one. Then, graphs with the

same weight are clustered together and labeled as isomorphic.

3.5 Summary

This chapter presents some state-of-the-art approaches of compilation techniques that may be

applied to restructure code for HLS. In control-intensive code, subgraph predication and dynamic

execution schedule can be used to gain a performance advantage, as shown by Zaidi et al. [107].

Another promising approach to restructure code to HLS uses execution traces and applies DFG

optimisations to generate code with directives [30] [32] [31]. Its main limitations are related to

scalability for large input traces and the number of C features supported. Also, Davis et al. [22]

show that it is possible to use loop chains to optimise stencil computations. Even though the target

was a multi-core CPU, the idea could be applied to FPGAs. Lastly, Mishra et al. [67] describe an

efficient method to detect and cluster isomorphic graphs in polynomial time.

Chapter 4

Description of the Framework

The framework developed takes an algorithm in C code and outputs code optimized for Vivado

HLS. The flow of this process is illustrated in Figure 4.1. The first step is to instrument the C

source code and execute it to generate a DFG in the dot language. The instrumentation process

is partially automatic thanks to Santos et al. [83]. Given a DFG in the dot language and a JSON

configuration file provided by the user, the backend applies a series of algorithms that restructure

and optimize the DFG. Lastly, the backend uses the DFG to write C code optimized for Vivado

HLS.

C source code Instrumentation
and execution

DFG dot
description

User
Configuration

Frontend Backend

DFG
Optimizations

Write C
code

C optimized for
HLS

Figure 4.1: Framework flow overview

4.1 DFG DOT description requirements and specification

The objective of the frontend is to generate a DFG that represents an algorithm execution. A brief

description of the traces used is given in Section 1.5. This DFG should contain all the operations

of a given algorithm and each edge represents a data dependence. In addition, the DFG has to be

a direct acyclic graph. If a cyclic graph is given to the backend, the leveling algorithm will detect

it and halt execution. In the DOT language a direct graph is created using the "Digraph" keyword.

The DFG should be written in the SSA form, meaning that each time a variable is written, a new

node should be created for it. The SSA form is used because it improves and eases a variety

23

24 Description of the Framework

of compiler optimizations, such as dead-code elimination and constant propagation. The task of

creating the DFG can be done manually or automatically, through the insertion of print commands

in the original code. At the moment, the types of nodes supported at the input DFG are described

in Table 4.1.

Table 4.1: Description of the nodes that can be used in the input DFG.

Node Type Attributes

Operation
label: symbol of the operation

att1: op

Variable

label: name of the variable
att1: var

att2: scope of the variable
att3: type of the variable

Constant
label: value of the constant

att1: const

No Operation att1: nop

Multiplexer att1: mux

Assignment att1: assignment

Complex Assignment att1: complexAssignment

Figure 4.2: DFG representing c = (a > b) ? a : b

4.1 DFG DOT description requirements and specification 25

1 Digraph {

2 const_0 [label=0, att1=const];

3 a_0 [label=a, att1=var, att2=param, att3=int];

4 b_0 [label=b, att1=var, att2=loc, att3=double];

5 op_0 [label=’>’, att1=op];

6 mux_0 [att1=mux];

7 c_0 [label=c, att1=var, att2=loc, att3=double];

8 const_0->b_0 [];

9 a_0->op_0 [pos=l];

10 b_0->op_0 [pos=r];

11 op1->mux_0 [pos=sel];

12 a_0->mux_0 [pos=t];

13 b_0->mux_0 [pos=f];

14 mux_0->c_0 [];

15 }

Listing 4.1: DOT description of the DFG in Figure 4.2.

4.1.1 Data reads and writes

At the frontend, edges represent data dependencies, thus an edge that enters a node carries a

dependency from the previous node. As an example, in Figure 4.2 the edges from a and b to the

">" node represent data reads, while the edge that leaves the operator represents a data write into

the mux node. In the DOT language [25], directed edges are represented by the arrow symbol (->).

For example, line 9 of the listing above, represents an edge from the node a_0 to the node op_0,

with the attribute ’pos’ set to ’l’ (left).

4.1.2 Arithmetic operations

Arithmetic operations such as additions, subtractions, divisions, multiplications, shifts, and com-

parisons, can be represented by nodes that have their labels equal to the symbol of the operation

and their attribute "att1" equal to "op". Each operation should be represented by a node with a

unique ID, otherwise the data dependencies may be incorrect. Each operation has 2 operands rep-

resented by two entering edges, and each edge needs to have the "pos" attribute equal to "l" or "r",

meaning "left" or "right", to ensure a correct order. The "pos" attribute is used by the backend to

compare edges, thus even sum operations should have the "pos" attributes defined. Each operation

should have a single output to avoid doing the operation multiple times.

4.1.3 Variable nodes

Each time that a variable node is written, a new node with a different ID should be created for it.

The label attribute refers to the name of the variable in the source code. The attribute "att1" refers

to the type of node, so this should always be set to "var". There are 3 scopes defined: "global",

"param" or "inte", and "loc". The scope "global" refers to global variables, that are defined outside

of the top-level function. "param" or "inte" refer to variables that are arguments of the top-level

26 Description of the Framework

function. They refer both to the same thing. "inte" is only supported for legacy reasons, and it is

short for "interface". "param" is short for "parameter". The last scope available, "loc", stands for

"local" variables.

4.1.4 Constant nodes

Constant nodes hold their value in the "label" attribute. The "att1" field should always be set to

"const".

4.1.5 Ternary / conditional operators

Ternary operators are a simple form of conditional expressions. In C, a ternary operator a ? b : c,

where a, b, and c can be expressions, evaluates to b if a is true, and otherwise to c. A DFG that

represents a ternary operator is shown in Figure 4.2. The node that allows for ternary operators to

be represented in the DFG is the mux node. This node needs to have exactly three entering edges,

with the "pos" attributes set to "sel" (selector), "t" (true), and "f" (false) respectively. The output

of a "mux" node should be a variable that will store the result.

4.1.6 No operation node

Figure 4.3: DFG representing Listing 4.2.

The "nop" node can be used to represent data dependences that are not defined otherwise. For

example, in Listing 4.2 the "nop" node is needed to ensure that the operation "a[input]=3" executes

only after "a[0]=0" and that "*output = a[0]" executes only after the previous two instructions.

The "nop" node is only needed because the array "a" is accessed at an index that is unknown at

compile-time.

4.1 DFG DOT description requirements and specification 27

1 void f(int input, int a[10], int* output) {

2 a[0]=0;

3 a[input]=3;

4 *output = a[0];

5 }

Listing 4.2: C code example that justifies the need for the "assignment", "complexAssignment"

and "nop" nodes.

4.1.7 Assignment node

The assignment node is used to guarantee that the variable written is not going to be pruned by the

backend. This is needed in situations where there are array accesses that can only be computed

at run-time or to ensure that an output variable gets written. As an example, if we represent the

statement "a[0]=0" from Listing 4.2 as a simple edge from a "const" node to a "var" node, the

pruning algorithm will effectively replace all of the "a[0]" data reads by the constant 0. In this

situation this would be incorrect, because the statement "a[input]=3" may change the value of

"a[0]".

Thus, to represent the code in Listing 4.2 we need to use the assignment node with an entering

edge coming from the "0 const" node and a leaving edge going to the "a[0] var" node, as illustrated

in Figure 4.3. Notice also the use of the assignment node to represent the statement "*output

= a[0]". This is needed to prevent the backend from making any invalid optimizations in this

statement.

4.1.8 Complex Assignment node

The "complexAssignment" node should be used when the left-hand side of an assignment state-

ment contains a dependency that is unknown at compile time. This is exemplified by the statement

"a[input]=3" from Listing 4.2. The "complexAssignment" node has always two entering edges,

one that represents the left-hand side dependency ("pos" attribute set to "l") and other that rep-

resents the right-hand side of the assignment ("pos" attribute set to "r"), as illustrated by Figure

4.3.

4.1.9 Calls to functions

Calls to functions with a single parameter are supported through the use of the "mod" attribute in

a node. As an example, the DOT description that represents the C code "a = sqrt(b)", should be

written as in Listing 4.3. This syntax was carried over from the work by Ferreira et al. [30], but

we reckon that a more generic approach should be used in a future version.

28 Description of the Framework

1 Digraph {

2 a_0 [label=a, att1=var, att2=param, att3=int];

3 b_0 [label=b, att1=var, att2=param, att3=double];

4 a_0 -> b_0 [mod=’sqrt(’]

5 }

Listing 4.3: Use of the mod attribute

4.2 Frontend limitations

There is no syntax defined for calls to functions with more than one parameter. Thus, it is not

possible to instrument a call to f unc1(a,b), but it is possible to instrument f unc2(a) using the mod

attribute. This is a restriction of a particular representation and not a restriction of our approach.

It is also important to notice the disadvantages inherited by using a DFG that is a full trace of

execution: when the benchmarks generate graphs with millions of nodes, which happens when

there are cycles that iterate millions of times, it becomes infeasible for any algorithm to parse and

transform these. The last limitation is related to the fact that "if" and "switch" constructs are not

supported directly, thus one needs to manually transform these into ternary/conditional operations,

which might not always be feasible.

4.2.1 Information lost through tracing

A downside of the fact that the input DFG represents a trace of execution, is that if there are kernel

parameters which control the flow of execution, then the DFG is only correct for that combination

of parameters.

4.3 User configuration

The user configuration is a JSON file which allows to control backend execution. At the moment of

writing, there are 13 optional and 6 mandatory configurations. The SVM benchmark (see Listing

A.1) is used to give examples for each configuration. A full example of a configuration file for the

kNN benchmark is available in Listing C.1.

4.3.1 Mandatory configuration options

The mandatory configurations are the following: "inputs", "input_types", "outputs", "output_types",

"graph", and "outputFile". An example of these configurations being used in the SVM benchmark

is shown in Table D.1. The remaining options have defaults values defined. The optional configu-

rations list includes: "fold", "parallelizeSums", "arithmetic", "pruneLocalArrays", "saveEnergy",

"parallelFunctions", "maxNodesPerSubgraph", "subgraphRepeats", "minFoldLevels", "maxFoldLevels",

"varsToPartition", "includes" and "defines". Syntax examples and a brief description for each op-

tion is shown in Table D.2.

4.4 Backend stages 29

4.4 Backend stages

This section explains the transformations that the DFG goes through in the backend. The algo-

rithms applied are hardcoded into a transformation queue because for the benchmarks tested there

was no need to provide a different execution order. However, in the future this queue might be

provided by the user. At the moment there are six main stages defined, but the code might be

extended to add new ones. Figure 4.4 shows the complete flow of execution of the backend.

Add
Start

&
End

Nodes

Transform
Local
Arrays

Into
Scalars

Pruning Leveling
Is finished?Reorder

Addition
Chains

Weight
Algorithm

Find All
Subgraphs

Fold
Parallel

Subgraphs

Select
Best

Isomorphic
Cluster

Leveling YES

NO

Fold
Prologue

&
Epilogue

Arithmetic
Optimizations

Order
Level
Graph

PrintC
For

VivadoHLS
Leveling

DFG

C code
+

directives

Figure 4.4: Backend execution flow.

Stage 1 prunes and simplifies the DFG. Stage 2 reorders addition chains to increase operation-

level parallelism. Stage 3 finds clusters of nodes that can be executed in parallel. Stage 4 folds

the parallel clusters found in Stage 3. Stage 5 wraps the nodes that were not folded into new

graphs. Stage 6 applies arithmetic optimizations. All the stages depend on the output of the

Pruning algorithm because it modifies the structure of the graph significantly. In order to ensure

the extensibility of the code, each stage was designed with no assumptions about the input graph,

except for the structure that is defined in Subsection 4.4.1. The Dotprod benchmark (see Listing

A.2) is used as an example to help describe the algorithms.

4.4.1 Pruning

The pruning algorithm removes redundant information and moves data from nodes into edges,

reducing the graph complexity. Nodes that are variables or constants are selected for replacement.

Of these nodes, if one is between two op nodes, it is removed and replaced by an edge containing

the information removed - e.g., the node sum that is between edges 7 and 12 in Figure 4.5a is

removed and replaced by an edge containing the sum variable (see Figure 4.5b). Nodes that are

disconnected from the graph are also removed. If a constant is being assigned to a variable, we

replace both the constant and the variable nodes by a single edge - e.g., in Figure 4.5a the constant

30 Description of the Framework

(a) Before pruning. (b) After pruning.

Figure 4.5: Pruning execution (see Section 4.4.1) on a DFG representing the Dotprod with N = 2.

node 0 is an input to the variable node sum, but in Figure 4.5b both have been replaced by an edge

from the start node into the + operation node, containing the constant data.

Input: graph
Output: Simplified graph

1: for each node ∈ graph do
2: if ISDISCONNECTED(node) then REMOVE(node)
3: else if ISVAR(node) OR ISCONST(node) then replaceByEdge(node)
4: end if
5: end for

Figure 4.6: The pruning task.

4.4.2 Leveling

Some graph transformations require knowing the level of each node. We define the level l of the

"Start" node to be l = 0. Then for each other node N, its level Nl is given by:

Nl = max(N.parentsl)+1 (4.1)

where N.parentsl corresponds to the levels of all parent nodes of N. A consequence of Equation

4.1 is that a node can only be leveled when all of its parents are already leveled. Our Leveling

algorithm is described in Figure 4.7.

4.4 Backend stages 31

Input: A DFG graph
Output: a graph with leveled nodes and a levelGraph containing the lists of nodes in each level.

1: nodesLeveled←∅
2: levelGraph←∅
3: StartN← graph.get(”Start”)
4: LEVELNODE(StartN,0, levelGraph)
5: nodeSet← GETLEVELABLECHILDREN(StartN)
6: level← 0
7: while nodeSet 6=∅ do
8: level← level +1
9: nodesToAdd←∅

10: for each N ∈ nodeSet do
11: LEVELNODE(N, level, levelGraph)
12: nodesLeveled← nodesLeveled∪{N}
13: nodesToAdd← nodesToAdd∪GETLEVELABLECHILDREN(N)
14: end for
15: nodeSet← (nodeSet \nodesLeveled)∪nodesToAdd
16: nodesLeveled←∅
17: end while
18: return levelGraph

Figure 4.7: The leveling algorithm.

4.4.3 Balancing addition chains

The core transformations that allow extraction of data-level parallelism start with an algorithm that

balances addition chains to increase operation-level parallelism and potentially unlock data-level

parallelism, which was not clear otherwise. In the case of the Dotprod benchmark, this trans-

formation affects the order in which the multiplication results are added, reshaping the addition

process from an operation chain into a triangle-shaped subgraph. As an example, in Figure 4.8a

there is a sequence of five additions and after balancing we obtain the graph represented by Figure

4.8b.

The BalanceAdditionChains 4.9 algorithm iterates through all graph levels and searches for

addition chains starting at each level using the DetectChains 4.10 algorithm. If there are addition

chains starting at a given level, then rotations are applied, using the algorithm described in Figure

4.11, to maximize the number of addition operations in that level.

4.4.4 Isomorphic Matching

This stage is responsible for finding clusters of nodes that can be executed in parallel. The algo-

rithm works very similar to the one presented by Mishra et al. [67] as it gives a weight to each

node, computes a list of subgraphs and finally matches subgraphs that have the same weight.

32 Description of the Framework

(a) Before balancing (b) After balancing

Figure 4.8: Balancing addition chains on the Dotprod DFG with N = 5.

Input: a graph to apply the transformation.
Output: a graph with reordered addition chains.

1: additionChains←∅ . List<LinkedList>
2: LG← graph.levelGraph
3: for level = 1; level < graph.maxLevel; level← level +1 do
4: additionChains← DETECTCHAINS(LG, level)
5: if additionChains 6=∅ then
6: ROTATEGRAPH(additionChains)
7: LEVELGRAPH(graph)
8: end if
9: end for

Figure 4.9: Balance Addition Chains algorithm

4.4 Backend stages 33

Input: leveled graph levelGraph, level in which addition chains start minLevel.
Output: a list where each element is a linkedlist of addition nodes.

1: chains←∅ . Hashmap
2: chainHeads←∅ . Hashmap
3: nodesToAnalyze←∅ . LinkedList
4: for each node ∈ levelGraph.at(minLevel) do
5: if ((node.isSum)) then
6: chains.add(node,{node})
7: nodesToAnalyze.add(node)
8: end if
9: end for

10: while nodesToAnalyze 6=∅ do
11: parent← nodesToAnalyze.head
12: chainHead← chainHeads.parent
13: for each child ∈ parent.children do
14: if (child.isSum) then
15: chainHeads.put(child,chainHead)
16: chains.get(chainHead).add(child)
17: nodesToAnalyze.add(child)
18: end if
19: end for
20: end while
21: return chains.values. f ilter(chain.size > 3)

Figure 4.10: Detect Addition Chains algorithm

Input: a graph conatining the additionChains
Output: a graph with reordered addition chains.

1: for each chain ∈ additionChains do
2: while chain.size≥ 4 do
3: MOVEEDGE(secondNode,”r”, thirdNode,”l”) . Move the edge with attribute

pos="r" that points to the second node in the chain, to point to the third node and set pos="l"
4: MOVEEDGE(f ourthNode,”l”,secondNode,”r”)
5: MOVEEDGE(thirdNode,”l”, f ourthNode,”l”)
6: chain.removeAtIndex(2)
7: chain.removeFirst()
8: end while
9: end for

Figure 4.11: Rotate Graph algorithm

34 Description of the Framework

4.4.4.1 Weighting Algorithm

To compute the weight of each node we use hash tables that map each supported operation, node

types, edge types and edge positions to integer values. Thus, we defined the weight of a node N,

WN as:

WN = k1 ·N.level +(k2 +n.degree) ·N.typeW + ∑
E∈N.inEdges

WE (4.2)

, where k1 and k2 are constants, N.typeW is the weight of the node type, N.inEdges are the edges

that enter node N, and the weight of an edge E, WE , is defined as:

WE = E.typeW +E.positionW +E.nameW +E.dim (4.3)

, where E.typeW is the weight of the edge type, E.positionW is the weight of the position label,

and E.nameW is an integer hash code of the variable name modulo by a constant. E.nameW and

E.dim are 0 if E is not an array.

4.4.4.2 All Subgraphs Algorithm

The all subgraphs algorithm finds all the subgraphs in a given graph. In graphs which have many

levels this is the algorithm that takes most time to execute, because its average complexity is

O((l2− l) · avg(nl)), where l is the number of levels in the graph and nl is the number of nodes

per level. The pseudo-code for the algorithm is available in Figure 4.12. As it can take a while to

execute this algorithm for large graphs, we give the user the option to limit the minimum and the

maximum levels of the subgraphs. While building each temporary subgraph, the subgraph weight

is computed as:

subgraphWeight = ∑
node∈graph

node.weight (4.4)

Therefore, subgraphs can be grouped by weight immediately after building each one. The idea is

that subgraphs with the same weight can be executed in parallel. Figure 4.13 and Table 4.2 depict

the groups of subgraphs detected in this stage.

Table 4.2: Dotprod parallel subgraphs for N=10

Color # Subgraphs # Subgraph Nodes # Subgraph Levels #Subgraphs * #Subgraph Nodes

Red 10 1 1 10

Green 5 1 1 5

Purple 2 1 1 2

Blue 4 3 2 12

Pink 2 7 3 14

4.4 Backend stages 35

Input: leveled graph LG
Output: isomorphic subgraphs IS mapping weights to a list of subgraphs

1: IS←∅ . Implemented as an HashMap
2: for i = 1; i < maxLevel; i++ do
3: for j = i; j < maxLevel : j++ do
4: NodesInS←∅ . Implemented as an HashSet
5: for each N ∈ LG.at(i) do
6: if (N /∈ NodesInS) then
7: S← addNode(N,NinS, i, j) . Adds node N and all of its direct and indirect

connections between levels i and j
8: if (S.maxLevel == j) then
9: IS.add(S.weight,S)

10: end if
11: end if
12: end for
13: end for
14: end for
15: return IS

Figure 4.12: Algorithm to Find All Subgraphs.

4.4.5 Folding parallel subgraphs

The first step of the folding algorithm is to select which subgraphs are to be folded. This is done by

using an heuristic that evaluates each subgraph. The current heuristic, h(s), is defined as follows:

h(s) = sp×ns (4.5)

sp > 2 (4.6)

It takes into account only the number of parallel subgraphs, sp and the number of nodes in

each subgraph ns. Therefore, it maximizes both the number of parallel subgraphs and the size of

each subgraph. Constraint 4.6 is needed to compute the arithmetic and geometric progressions of

each edge. Since in the FPGA’s realm we are always constrained by the available resources, the

framework lets the user choose the maximum number of nodes in each subgraph. By reducing

the number of nodes in each subgraph the complexity of the functions that are to be parallelized

decreases. In spite the fact that reducing the complexity of the subgraph usually leads to a larger

number of parallel subgraphs, the area used is effectively reduced because the number of parallel

calls is a constant defined by the user. Increasing the number of parallel subgraphs leads only to a

larger number of iterations of the parallel functions.

In Table 4.2, the pink group maximizes the selection heuristic. However, it is invalidated by

Equation 4.6. Therefore, the blue clusters are selected to be folded. The output of the folding stage

consists of two graphs. The main graph (see Figure 4.14a) represents the top-level function, while

the other one (see Figure 4.14b) represents the function that may be called in parallel.

The algorithm that folds parallel subgraphs is outlined in Figure 4.15. To represent calls to

36 Description of the Framework

Figure 4.13: Parallel subgraphs colorized for the Dotprod graph with N = 10.

functions, a call node and a function node are created. Each edge from a call node to a function

node represents a new function call. Thus, each edge contains a list with the call arguments to be

used. The next step is to connect all the input edges of the parallel subgraphs to the call node. This

step is not strictly needed. Another option would be to simply remove all those edges and to add

a single edge to the call node with no information, which would generate a less complex graph.

However, we have implemented the first option, has it describes best the graph dependencies. Next,

the algorithm adds the edges that leave the function node. These are in fact the same edges that

are outputs of the parallel subgraphs. Then, the subgraphs list is ordered using the input edges of

each subgraph. The next step is to transform scalar inputs and outputs into arrays. Afterwards, the

nodes that exist in the parallel subgraphs are removed from the main graph. We proceed to analyze

the minimum and maximum accesses on each variable in the parallel subgraphs to compute where

each array should be partitioned. Then, we fold all subgraphs into a single subgraph where each

edge contains the variable progression along the loop. When folding, we need to update the array

accesses on the first three subgraphs according to the partitions defined previously. We use three

subgraphs because it allows us to fully determine the type and factors of the progressions. At

the moment we support arithmetic and geometric progressions, however the latter needs further

testing. Having folded the graph, we add the call edges in the main graph, from the call node to the

function node. The call edge syntax is defined in Table 4.3. Lastly, the tool splits the arrays defined

as inputs or local variables in the main graph, according to the partitions defined previously, and

updates the respective array accesses.

4.4 Backend stages 37

(a) Dotprod main graph after folding. (b) Dotprod parallel graph folded.

Figure 4.14: Main and parallel graphs generated after the folding stage for the Dotprod DFG with
N = 10.

4.4.6 Prologue and Epilogue

All the nodes that were not wrapped into the parallel function need to be wrapped into other

functions. This is done to ensure that the code inside the dataflow region is in the canonical form.

We start by selecting the nodes to wrap in the prologue. This is done by finding all the "Call" nodes

in the main graph and selecting all the nodes in the path upwards until the "Start" node. Then, the

nodes selected are wrapped into a new graph that represents the prologue function. Lastly, the

algorithm replaces all the nodes selected previously by new "Call" and "Function" nodes. The

same process undergoes for the epilogue, but there is a difference in the selection process: any

node that is not a "Call", "Function", "Start", or "End" node is selected to be moved into the

epilogue. In our Dotprod example there are no nodes between the "Start" and the "Call" node.

Therefore, only the Epilogue graph is created. The final result is illustrated in Figure 4.16.

4.4.7 Arithmetic optimizations

All the functions available in the "math.h" library take double as an argument and return double as

the result. The arithmetic optimizations algorithm replaces these functions by their respective float

Table 4.3: Call edge attributes.

att1 att2 att3
"call" function name parameters list

38 Description of the Framework

Input: main graph MG and a list of isomorphic subgraphs IS
Output: main graph MG and folded graph FG

1: CREATECALLNODE(MG)
2: CREATEFUNCTIONNODE(MG)
3: ORDERSUBGRAPHS(IS)
4: INPUTSTOARRAYS(IS,MG) . Transforms IS inputs into arrays and updates the variables in

MG as well.
5: UPDATEOUTPUTS(IS,MG) . Gives the same label to scalar outputs across subgraphs.
6: OUTPUTSTOARRAYS(IS,MG) . Transforms IS outputs into arrays and updates the variables

in MG as well.
7: REMOVENODESFROMMAINGRAPH(IS,MG) . Removes the nodes in IS from the main

graph.
8: COMPUTEMANUALPARTITIONS(IS. f irst, IS.last) . Sets the indexes where each var should

be split.
9: FG← FOLDSUBGRAPHS(IS)

10: UPDATEFOLDWIDTH(FG, parallelDegree)
11: COMPUTEINPUTANDOUTPUTVARS(FG)
12: ADDCALLEDGES(MG, parallelDegree) . Adds edges from the Call node to the Function

node in MG.
13: SPLITARRAYS(MG, parallelDegree)

Figure 4.15: Fold parallel subgraphs algorithm.

versions. This step appends an "f" to the "mod" attribute of nodes which "mod" attribute matches

a predefined list of math functions, e.g. "sqrt" becomes "sqrtf". This algorithm can in the future

be extended to, for example, replace multiplications by powers of two by shift operations.

4.5 Summary

The framework proposed consists of two main stages, the frontend and the backend. At the fron-

tend, we instrument an ANSI C application and execute it to generate execution traces. These

traces are written in the DOT language and are a direct representation of an acyclic DFG. How-

ever, our traces differ from the common debug traces because they do not make direct use of any

input data. However, if the application contains a loop that executes x times, then the DFG will

contain operations that represent the loop body x times. This means that the DFG is only valid

for inputs that generate a loop with x iterations. Simple branch conditions need to be manually

converted into ternary operators, which are represented in the DFG as "Multiplexer" nodes and

require all of its operands to be executed beforehand. Currently, the DFG is written to a file and

then processed by the backend. The backend reads the DFG and the configuration file and adds

the Start and End nodes. These nodes are useful because we consider that every graph is a direct

representation of a code function. Thus, it makes sense that edges leaving the Start node represent

inputs of such function, while edges entering the End node represent outputs. Moreover, these

nodes provide a starting point for most of the algorithms that follow. Figure 4.4 summarizes the

flow of the backend execution. The core transformations focus on the extraction of data-level

4.5 Summary 39

(a) Final main graph. (b) Epilogue graph. (c) Parallel graph.

Figure 4.16: Final Main, Epilogue, and Parallel graphs for the Dotprod with N = 10.

parallelism using isomorphic graph clustering. This kind of parallelism can be coupled with task-

level pipelining to achieve significant performance. However, task-level pipelining in HLS needs

to follow a set of guidelines which requires aggressive graph restructuring techniques, described in

the Fold Parallel Subgraphs and Prologue & Epilogue algorithms. The following chapter presents

the evaluation methodology and results achieved by applying the framework to a set of FPGA

benchmarks.

40 Description of the Framework

Chapter 5

Experimental Results

This chapter outlines the results obtained by the proposed framework when applied to a series

of benchmarks. The instrumentation of the benchmarks was generated partially automatically

using Clava [10] and the backend processed the graphs and generated C code with directives

optimized for Vivado HLS. The results obtained depend on configuration parameters that the user

has to provide to the backend. Section 5.1 explains the setup used to obtain the results shown

in the following sections. Section 5.2 describes each benchmark, giving examples of real world

applications and justifying the need for FPGA acceleration. In addition, it explains the algorithmic

structure and highlights the code sections in which we can exploit parallelism. In Section 5.3, we

provide detailed metrics from the synthesis process, such as resource usage and execution delay.

Section 5.4 evaluates the scalability of the approach in terms of the size of the inputs used in each

benchmark. Finally, Section 5.5 is dedicated to evaluating the results and comparing them to the

ones reported in state of the art.

5.1 Experimental Setup

The benchmarks used are all operation heavy, since they are not control-dominated. The output C

code is synthesized using Vivado HLS 2019.2 targeting an ArtixTM-7 FPGA Xilinx (xc7z020clg484-

1, see Table 5.1) . The backend was executed in a computer with a Ryzen 5 3600 and 16GB of

RAM. From the synthesis reports, we take for each benchmark the estimated number of LUTs,

DSPs, FFs, BRAMs, identified as resource usage. The reports give us also the estimated latency,

which is the number of clock cycles necessary to complete the kernel in hardware. The clock

period reported is the minimum time in nanoseconds that each cycle takes to execute. The execu-

tion delay is calculated by multiplying the latency by the clock period. The area is defined as an

average of the percentages of all the resources used:

R = {LUT,DSP,FF,BRAM} (5.1)

Area =
1
4 ∑

r∈R

rused

ravailable
(5.2)

41

42 Experimental Results

Since resource usage may be as important as execution delay in FPGAs, the objective function,

h(x), to minimize is given by:

h(x) = Delay(x)×Area(x) (5.3)

, where x is a synthesizable solution. The h(x) values reported are normalized in relation to the

h(x) value of the unmodified code. The synthesized solutions are identified by the benchmark

name, size, and parallel degree. An undefined parallel degree represents the unmodified code. A

parallel degree p of value p = 0 represents unfolded code where all instructions are flattened in

a single function. A parallel degree p > 0 represents code that goes through the data parallelism

transformations and contains p pipelined calls to the parallel function.

Table 5.1: xc7z020clg484-1 available resources

BRAM DSP FF LUT

280 220 106400 53200

5.2 Benchmarks Description

This section introduces the benchmarks used to evaluate the developed framework. Only 3 bench-

marks were used because each one introduced new features that had to be developed into the

framework and the input DFG. Table 5.2 summarizes each benchmark. Analyzing table 5.3, it is

clear that the restructuring transformations result in higher code complexity with a larger number

of lines, functions, and array declarations.

Table 5.2: Benchmarks information.

Benchmark Source Loops Nested structure Time complexity
Flow

depends
on input

If
conditions Brief description

SVM Paper [96] 2 Single Nested Loop O(N_sv * D_sv) false true
Support Vector Machine

(SVM) kernel

Dotprod DSPLIB [50] 1 Single Loop O(N) false false

Takes two vectors and
calculates their vector product.
The inputs are 16-bit numbers,

and the result is a 32-bit
number.

kNN In-House 3 Outer Loop with 2 inner loops O(N*(D+K)) true true

Assigns to an unclassified
data point the classification of

the K nearest previously
classified data points.

5.2.1 SVM

Support-Vector Machines (SVM) [96] are supervised machine learning models used for data clas-

sification. An SVM is trained to classify an input vector into one of two classes. Using a kernel

function K, it is capable of performing non-linear classifications. The kernel function used in this

benchmark is the Radial Basis Function (RBF), which for two vectors a and b is defined as:

K(a,b) = exp(−γ‖a−b‖) (5.4)

5.2 Benchmarks Description 43

Table 5.3: The complexity of the code generated vs the unmodified versions (first row of each
benchmark).

Benchmark Parallel Degree #Lines #Functions #Loops #Arrays Directives

SVM 1274SV*18D

- 16 1 2 3 -

2 1800 3 1 11
1 pipeline
1 dataflow

15 2460 4 2 50
2 pipelines
1 dataflow

Dotprod N2000

- 5 1 1 2 -

2 420 3 1 10
1 pipeline
1 dataflow

10 array partitions

8 530 4 2 28
2 pipelines
1 dataflow

28 array partitions

kNN 8P*128F

- 65 1 3 5 -
0 4503 1 0 5 -

1 917 3 1 6
1 pipeline
1 dataflow

2 array partitions

The original SVM code is available in Listing A.1.

The SVM kernel used contains a very big outer loop (1274 iterations) and a small inner loop

(18 iterations), thus the smaller loop is a good candidate for loop unrolling. Moreover, by allocat-

ing the results calculated in the outer loop into a temporary array, we eliminate any dependency

between iterations and the values can be added together in the end. Thus, this is a kernel with

high instruction level parallelism which can be exploited into data level parallelism. To achieve

this kind of parallelism, the backend splits the sup_vectors, the sv_coef and the temporary array

mentioned before into multiple arrays, depending on the parallelism degree set in the configuration

file.

The first row in Table 5.3 compares the complexity of the unmodified SVM code with the

versions p = 2 and p = 15 produced by the framework. It is clear that manually transforming the

original C code into the any of those versions is almost infeasible.

5.2.2 Dot Product

The dotprod benchmark [50] consists of a kernel that computes the dot product of two vectors and

returns a single scalar number. Since the dot product is an algebraic operation, it is widely used,

and thus it is a good candidate for FPGA acceleration. In this benchmark we have used vectors

with size N = 2000 and N = 4000. The dot product can be parallelized by storing the intermediate

sum values into an array and reducing it in the end, thus eliminating the dependencies between

loop iterations. As there is only one loop, the multiplication operations can all be calculated in

parallel. However, in practice we are restricted by the FPGA available resources. The benchmark

code is available in Listing A.2.

5.2.3 kNN

The k-Nearest Neighbours [20] classifier is a machine learning algorithm, which assigns to an

unclassified sample data point the classification of the K nearest previously classified data points.

The implementation used was developed in-house and uses K = 3. This benchmark is used to

demonstrate the ability of the framework to deal with ternary operations and with array accesses

44 Experimental Results

that depend on input parameters. The original code is displayed in Listing A.3. For each classified

data point it calculates its distance to the unclassified data point and updates the best 3 data points

using the distance calculated previously. The execution trace of this kernel shows that there are

no dependencies between distances calculations, but the updateBest calls need to be executed

sequentially. Therefore, this kernel does not present so much ILP as the other kernels tested.

5.3 Synthesis Results

This section provides the synthesis results obtained for each benchmark. It reports the speedups

and objective function gains compared to the original source codes.

5.3.1 SVM

Table 5.4 contains the results of synthesizing the original SVM kernel [96] and for the output of the

backend. The output C code uses the dataflow directive to make parallel calls to the kernel while

pipelining its outer loop and manually unrolling the inner loop. Listing B.1 shows an example

of the code produced. Note that the support vectors and the test vector are already stored in the

FPGA RAM. Thus, the speedups achieved do not take into account input delays. An advantage of

declaring these variables in the local scope of the top-level function is that Vivado HLS is capable

of automatically defining the optimal partitions. However, in a practical scenario we would need

to have at least the test vector defined as an argument of the top-level function.

Table 5.4: SVM synthesis results using 1274 support vectors with 18 features each.

Parallel
Degree

Clock
(ns)

Latency
(cycles)

FF
(%)

LUT
(%)

BRAM
(%)

DSP
(%)

Area
(%)

Delay
(ms) h(x) Speedup

- 8.23 333826 3.3 11.6 23.6 20.5 15 2.747 1.000 -
1 10.25 1977 11.5 25.3 1.4 10.0 12 0.020 0.006 135.6×
2 10.25 1033 12.3 33.3 1.4 16.4 16 0.011 0.004 259.4×
4 9.92 556 18.0 44.4 2.9 30.9 24 0.006 0.003 498×
8 9.72 317 24.3 67.2 5.7 58.2 39 0.003 0.003 891.9×
15 9.63 205 34.6 98.1 10.7 100.0 61 0.002 0.003 1392×

Table 5.4 shows the synthesis report for the SVM benchmark varying the parallelism degree

p. For this benchmark we are limited by the number of LUTs and DSPs available. Version

p = 15 reached a speedup of 1392× with 15 calls to the parallel function. Versions p = 4, p = 8,

and p = 15 minimized the objective function h(x), meaning that they achieved the best balance

between speedup and area used. Figure 5.1 shows the speedup evolution as the parallelism degree

is increased.

5.3.2 Dot Product

Table 5.5 shows the synthesis results for the Dotprod benchmark with N = 2000. The code gen-

erated by the framework uses the dataflow directive to pipeline the parallel calls to the Dotprod

kernel. One may notice that the latency is not inversely proportional to the number of parallel

5.3 Synthesis Results 45

Figure 5.1: Speedups for the SVM benchmark with 1274 support vectors and 18 features.

calls, and that is expected because only the multiplications are executed in parallel. The latency

corresponds to the cycles used for kernel execution plus the cycles used in the epilogue, which

reduces the values calculated in the kernel into a single scalar. For N = 2000 the version with

p = 8 has a speedup of 122.8× compared to the unmodified C code. With respect to h(x), the

unmodified source code performs the best. The latter is explained by the fact that the original C

code uses a low number of FPGA resources (0.2%).

Table 5.5: Synthesis results for the Dotprod benchmark, N = 2000

Parallel
Degree

Clock
(ns)

Latency
(cycles)

FF
(%)

LUT
(%)

BRAM
(%)

DSP
(%)

Area
(%)

Delay
(ns) h(x) Speedup

- 6.4 6001 0.1 0.1 0.0 0.5 0.2 38286.4 1.000 -
1 10.8 165 3.6 10.1 1.4 14.5 7.4 1773.9 2.043 21.6×
2 10.8 86 4.8 15.0 0.0 21.8 10.4 924.6 1.495 41.4×
3 10.8 61 5.8 16.5 0.0 29.1 12.8 655.8 1.308 58.4×
4 10.8 48 6.7 18.0 0.0 36.4 15.3 516.0 1.224 74.2×
5 10.8 40 7.7 19.2 0.0 43.6 17.6 430.0 1.178 89.0×
6 10.8 36 8.5 20.1 0.0 50.9 19.9 387.0 1.195 98.9×
7 10.8 32 9.7 21.2 0.0 58.2 22.3 344.0 1.190 111.3×
8 10.8 29 10.5 22.2 0.0 65.5 24.5 311.8 1.188 122.8×

Table 5.6 contains the synthesis results of the code produced by the framework with N = 4000.

Only the unmodified source code and p= 1 would actually be possible to implement in the selected

FPGA, because versions with p > 1 overuse DSPs. Nonetheless, it is interesting to notice that the

number of cycles is actually lower than the corresponding version in table 5.5. This happens

because the framework detects larger parallel node clusters, thus it is able of performing more

computation in each cycle, but at the cost of using more resources.

As most of the rows in Table 5.6 represent RTL that does not fit the FPGA, we decided to

assess the code generated by the framework when limiting the maximum number of nodes in each

parallel cluster. Table 5.7 shows the synthesis results for the Dotprod benchmark with N = 4000

and the isomorphic subgraphs size limited to 33 nodes. Figure 5.2 shows the speedups evolution

with respect to the parallelism degree. We limited the amount of nodes in each subgraph because

otherwise the hardware designs would not fit in the FPGA. Limiting the nodes in each isomorphic

46 Experimental Results

Table 5.6: Synthesis results for the Dotprod benchmark, N = 4000. The results with resources
above 100% are merely indicative and are not implementable in the target FPGA.

Parallel
Degree

Clock
(ns)

Latency
(cycles)

FF
(%)

LUT
(%)

BRAM
(%)

DSP
(%)

Area
(%)

Delay
(ns) h(x) Speedup

- 6.4 12001 0.1 0.1 0 0.5 0.2 76566.4 1.000 -
1 10.8 86 9.9 25.0 0 72.7 26.9 924.6 1.933 82.8×
2 10.8 48 13.5 44.8 0 101.8 40.0 516.0 1.605 148.4×
3 10.8 36 16.1 47.6 0 130.9 48.6 387.0 1.462 197.8×

subgraph is usually an effective method to reduce the total area used, because it trades computation

inside the loop by more cycles. Again, the code with p = 8 achieves the highest speedup, 145.3×,

while the unmodified code minimizes h(x). Limiting the number of nodes in each subgraph to

33 resulted in finding the same isomorphic subgraph for N=4000 and for N=2000. Therefore, the

parallel function for both input sizes looks the same, except for the number of iterations of the

loop, which is 249 for N = 4000 and 124 for N = 2000. The parallel function in N = 4000 takes

twice the number of cycles compared to N = 2000. However, the epilogues takes roughly the same

time to execute. This explains why the delays observed in N = 4000 are always less than twice the

delays observed in N = 2000 for the same value of p, p > 0.

Table 5.7: Synthesis results for the Dotprod benchmark, N = 4000 and maxNodesPerSubgraph =
33.

Parallel
Degree

Clock
(ns)

Latency
(cycles)

FF
(%)

LUT
(%)

BRAM
(%)

DSP
(%)

Area
(%)

Delay
(ns) h(x) Speedup

- 6.4 12001.0 0.1 0.1 0.0 0.5 0.2 76566.4 1.000 -
1 10.8 322.0 4.2 13.6 1.4 14.5 8.4 3461.8 2.268 22.1×
2 10.8 167.0 5.8 18.5 2.9 21.8 12.3 1795.4 1.709 42.6×
3 10.8 114.0 7.2 20.1 4.3 29.1 15.2 1225.6 1.443 62.5×
4 10.8 88.0 7.6 21.6 2.1 36.4 16.9 946.1 1.244 80.9×
5 10.8 72.0 8.9 23.6 0.0 43.6 19.0 774.1 1.145 98.9×
6 10.8 62.0 9.9 25.2 0.0 50.9 21.5 666.6 1.114 114.9×
7 10.8 54.0 11.1 27.4 0.0 58.2 24.2 580.6 1.090 131.9×
8 10.8 49.0 11.5 26.1 0.0 65.5 25.8 526.8 1.054 145.3×

Figure 5.2: Speedups for the Dotprod benchmark, N = 4000 and maxNodesPerSubgraph = 33.

5.3 Synthesis Results 47

5.3.3 kNN

When the kNN DFG was processed by the framework and the output code synthesised, Vivado

HLS reported in most cases an overuse of LUTs. Thus, for this benchmark we had to turn the

saveEnergy option on in the configuration file (only when the fold option was on), which generates

sub-optimal array partitions that balance area with performance. We evaluated this benchmark for

3 different input sizes, all with 8 data points, and with 32, 64 and 128 features per data point.

In the kNN version used, only the distances calculation can be executed in parallel. Thus, when

folding and restructuring the code to use the dataflow directive, the framework detects the distances

calculation as parallelizable and wraps that section into a function. The remainder of the code

goes into the epilogue function. Listing B.3 contains an example of the code produced by the

framework.

Tables 5.8, 5.9, and 5.10 show the synthesis results of the kNN benchmark for multiple input

sizes, considering the types of the operations and of the arrays xFeatures and knownFeatures to

be "double". For all of the inputs written by the backend, the arithmetic and parallelizeSums

optimization was set to "true", while the pruneLocalArrays configuration was set to "false".

For the benchmark with 8 data points with 32 features each, the best valid speedup is ac-

complished by the p = 4 input, which runs 14× faster than the unmodified code. However, the

objective function h(x) is minimized by the No Fold input, p = 0. In this benchmark, the input

with p = 8 overused LUTs.

Table 5.8: Synthesis results of the code produced by the framework for the kNN benchmark with
8 data points and 32 features. The results with resources above 100% are merely indicative and
are not implementable in the target FPGA.

Parallel
Degree

Clock
(ns)

Latency
(cycles)

FF
(%)

LUT
(%)

BRAM
(%)

DSP
(%)

Area
(%)

Delay
(ns) h(x) Speedup

- 8.6 4954 3.6 12.4 0 6.4 5.6 42718 1 -
0 10.7 291 7.8 30.6 0 7.3 11.4 3123 0.15 13.68×
1 10.6 311 22.3 65.0 0.4 40.0 31.9 3282 0.44 13.01×
2 9.4 313 32.8 86.5 0.4 43.6 40.8 2943 0.50 14.51×
4 9.3 321 37.1 88.6 0.4 29.1 38.8 2983 0.48 14.32×
8 9.3 171 52.2 153.2 0.4 50.9 64.2 1589 0.43 26.88×

To understand how the resource usage scales with the saveEnergy option activated, we proceed

to analyze the results for 8 data points and 64 features from Table 5.9. This time, both the p = 4

and p= 8 versions overuse LUTs. Thus, the best valid speedup is achieved by the code with p= 2,

which was 23.47× faster compared to the unmodified version. h(x) is minimized by the unfolded

code, p = 0.

For the the 8 data points and 128 features benchmark (see Table 5.10), the versions with p = 4

and p = 8 overused resources as expected. Thus, the best valid speedup is achieved by p = 1,

which was 20.43× faster than the unmodified code. The objective function is again minimized by

the unfolded code, p = 0.

Examining the previous results, we conclude that the inputs which use the dataflow directive

always achieve the best speedups. However, when we consider the area used to be as important as

48 Experimental Results

Table 5.9: Synthesis results of the code produced by the framework for the kNN benchmark with
8 data points and 64 features. The results with resources above 100% are merely indicative and
are not implementable in the target FPGA.

Parallel
Degree

Clock
(ns)

Latency
(cycles)

FF
(%)

LUT
(%)

BRAM
(%)

DSP
(%)

Area
(%)

Delay
(ns) h(x) Speedup

- 8.6 9562 3.6 12.4 0 6.4 5.6 82453 1 -
0 11.1 451 8.0 34.3 0 7.3 12.4 5006 0.13 16.47×
1 10.6 359 22.3 53.6 0.4 29.1 26.3 3789 0.22 21.76
2 9.3 378 32.0 82.3 0.4 29.1 35.9 3513 0.27 23.47
4 9.3 381 45.9 115.4 0.4 29.1 47.7 3562 0.37 23.15
8 9.5 171 76.1 222.0 0.4 76.4 93.7 1632 0.33 50.53

the delay, then the No Fold version performs best. Observing the code generated by the framework,

there are ternary operations which have the same argument on the true and false sides. This could

be optimized by searching through all multiplexer nodes and reducing these operations into simple

assignments.

Table 5.11 holds the synthesis results considering the xFeatures and knowsFeatures arrays as

floats as removing the the call to the "sqrt" function in the calculation of the Euclidean distances.

We only report the results for an input size of 8 points and 128 features as this is the most mean-

ingful of the three input sizes considered previously. The use of the "sqrt" function is not expected

to have a significant impact, due to the low number of classified data points used. To study the

impact of changing the data size from doubles to floats, we can compare the best results from Ta-

ble 5.10 and Table 5.11. We conclude that there is a 60.6% delay reduction for p = 1 and that the

function h(x) is now minimized by p = 1 instead of p = 0. Figure 5.3 summarizes the speedups

achieved across the different input sizes and data types.

One weak point of the backend is that it does not implement yet detection and folding of

sequential patterns. As the updateBest instructions are sequential in the DFG, they are moved

into the epilogue. Thus, the epilogue grows linearly with the the number of classified data points.

Moreover, as we increase the number of classified data points, the percentage of parallel code

decreases. This explains why the results presented for this benchmark have a low number of data

points compared to the number of features.

Nevertheless, to demonstrate the potential of the framework, we experimented processing the

DFG with more realistic sizes while manually rewriting the epilogue. The results are shown in

Table 5.10: Synthesis results of the code produced by the framework for the kNN benchmark with
8 data points and 128 features. The results with resources above 100% are merely indicative and
are not implementable in the target FPGA.

Parallel
Degree

Clock
(ns)

Latency
(cycles)

FF
(%)

LUT
(%)

BRAM
(%)

DSP
(%)

Area
(%)

Delay
(ns) h(x) Speedup

- 8.6 18778 3.6 12.4 0 6.4 5.6 161923 1 -
0 11.3 771 8.4 39.6 0 7.3 13.8 8678 0.13 18.66×
1 10.6 751 22.3 52.6 0.4 21.8 24.3 7926 0.21 20.43×
2 9.4 888 41.8 98.4 0.4 14.5 38.8 8377 0.36 19.33×
4 9.4 760 81.4 182.7 0.4 29.1 73.4 7169 0.58 22.59×
8 9.6 436 125.1 351.7 0.4 83.6 140.2 4182 0.65 38.72×

5.3 Synthesis Results 49

Table 5.11: Synthesis results of the code produced by the framework for the kNN benchmark
with 8 data points, 128 features. Float input data and calculations. Removed the "sqrt" from the
calculation of the Euclidean distances.

Parallel
Degree

Clock
(ns)

Latency
(cycles)

FF
(%)

LUT
(%)

BRAM
(%)

DSP
(%)

Area
(%)

Delay
(ns) h(x) Speedup

- 8.40 16498 1.1 4.6 0.0 2.3 2.0 138500.7 1 -
0 10.28 582 16.0 45.9 0.0 16.8 19.7 5983.5 0.43 23.15×
1 9.58 326 10.1 31.9 0.4 19.1 15.4 3122.4 0.17 44.36×
2 8.75 450 17.2 61.6 0.4 12.7 23.0 3937.5 0.33 35.17×

Table 5.12. All results used float data types and had no call to the sqrt function. Column "II"

represents the initiation interval of the loop in the parallel function. To achieve these results, we

manually increased the II until a valid implementation was obtained. To get the most out of the

dataflow pipelining, we extracted data-level parallelism out of the updateBest task and the results

were merged in the end. An example of the code produced is shown in Listing B.4. The best

speedups range from 97.89× to 164.28×, showing that the approach achieves consistent results

for all the input sizes considered. The biggest concern in terms of area is with the number of

estimated LUTs, which reaches values close to 100%.

Table 5.12: Synthesis results of the code produced by the framework for the kNN benchmark with
the epilogue manually optimized. Only the unmodified and best results are shown for each input
size.

Input
Size

Parallel
Degree II Clock

(ns)
Latency
(cycles)

FF
(%)

LUT
(%)

BRAM
(%)

DSP
(%)

Area
(%)

Delay
(ms) h(x) Speedup

1000p,32f
- - 8.40 535010 1.5 5.9 0 2.3 2.4 4.4914 1 -
4 8 8.64 4299 37.2 85.0 1.4 50.9 43.7 0.0371 0.15 120.99×

1000p, 64f
- - 8.40 1047010 1.5 5.9 0 2.3 2.4 8.7896 1 -
4 16 8.64 6196 34.2 99.4 1.4 50.9 46.5 0.0535 0.12 164.28×

1000p, 128f
- - 8.40 2071010 1.5 5.9 0 2.3 2.4 17.3861 1 -
2 16 8.74 12567 45.8 99.5 0.7 50.9 49.2 0.1098 0.13 158.27×

10000p, 16f
- - 8.40 2790010 1.5 5.9 0 2.3 2.4 23.4221 1 -
4 3 8.64 27710 29.1 84.4 11.4 72.7 49.4 0.2393 0.21 97.89×

10000p, 32f
- - 8.40 5350010 1.5 5.9 0 2.3 2.4 44.9133 1 -
4 6 8.64 35216 39.4 97.6 11.4 72.7 55.3 0.3041 0.15 147.70×

5.3.4 Summary

Although none of the 3 benchmarks tested are originally written as producer-consumer algorithms,

the developed framework is capable of restructuring the code to use the dataflow directive and

extract better results than the original versions, both in terms of speedup and Area×Delay. The

SVM kernel proved to be an ideal candidate for this transformation, achieving a 1392× speedup

with great efficiency h(x) = 0.003. The dotprod benchmark is used to evaluate the power of

limiting the number of nodes in each parallel cluster to produce results that are more energy-

efficient, as area is closely related to the energy used. Nonetheless, in this benchmark we have

speedups of up to 122.8×. The kNN benchmark is the most complex one, as it has conditional

operations, array accesses than depend on inputs, and a lower amount of ILP. It was used to

demonstrate that this approach is not limited to simple kernels. Although the results do not show

speedups as high as the other benchmarks, we still see speedups of up to 44.36× compared to the

50 Experimental Results

Figure 5.3: Speedups for the KNN benchmark with 8 data points and multiple number of features.

unmodified source code. From the results that we have, it seems that the speedups remain fairly

constant as the input sizes increase, but more data is needed to make that conclusion.

5.4 Backend Execution Time & Scalability

This section evaluates the scalability of the backend in relation to the size of the input DFG and

provides profiling data to better understand the execution bottlenecks. When dealing with large

DFGs, the execution time of the backend depends largely on some user provided configurations.

The options that affect the execution time the most are the following: fold, which tells the backend

to search for code that can be executed in parallel and to restructure it to use the dataflow directive;

minFoldLevels, which sets the minimum number of levels of each parallel cluster; maxFoldLevels,

which sets the maximum number of levels of each parallel cluster. The kNN benchmark has

the less amount of ILP and the number of levels of the DFG increase directly proportional to

the dimension of each data point. It happens that the algorithm that finds all combinations of

subgraphs in the DFG has an average O((l2− l) ·avg(nl)) time complexity, where l is the number

of levels in the graph and nl is the number of nodes per level. Therefore, the kNN benchmark is

the one which execution time scales more poorly of the three. To gather the execution times of the

kNN benchmark, each test was run 3 times and the times were averaged out. Table 5.13 contains

the results.

Figure 5.4 traces the evolution of the execution time with the number of features of each data

point. Both axes use a logarithmic scale and the two variables seem to follow a linear relation.

This is only possible thanks to the user options minFoldLevels and maxFoldLevels, which allowed

to limit the search space of the parallel clusters. The values for these variables were chosen so

that maxFoldLevels−minFoldLevels <= 50. Without these configurations, the execution times

would scale quadratically, making it unfeasible to execute the backend tool. To estimate how many

5.4 Backend Execution Time & Scalability 51

levels the folded graph should have for large input DFGs, the user can execute the tool for smaller

inputs and extract the levels from the execution logs.

Tables 5.14, 5.15, and 5.16 show the results of profiling each benchmark using the Java Flight

Recorder profiler. All of the results shown represent an average of 3 executions. Only the al-

gorithms which used significant CPU time are shown. The "Levels Search Range" column is

defined as maxFoldLevels−minFoldLevels+ 1, e.g., if it is equal to 1 for the SVM benchmark,

it means that the "AllSubgraphs" algorithm will only search for subgraphs that have exactly 24

levels because that is the number of levels of the best parallel cluster. Using an optimal search

range, we were able to reduce the execution times by 48%, 19%, and 87% for the SVM, dotprod,

and kNN benchmarks respectively. The dotprod benchmark execution times are dominated by the

"Leveling" algorithm, which happens because the input DFG has 4002 levels. For comparison,

the SVM and kNN input DFGs have 1299 and 242 levels respectively. Both the SVM and kNN

benchmarks have poor execution times when the search range is not defined. This is expected,

because searching for all the possible subgraphs in a graph with 243 levels, as in the kNN, results

in a huge number of possible subgraphs. The "FoldParallelSubgraphs" algorithm is the second one

to use more CPU time in most of the results, so in the future one may take a better look at it to

gain some time.

Table 5.13: Backend execution times for the kNN benchmark using 8 data points and varying the
number of features.

Features Nodes Edges Levels
Execution

Time 1
(sec)

Execution
Time 2

(sec)

Execution
Time 3

(sec)

Average
Execution
Time (sec)

32 1833 2556 146 0.643 0.579 0.599 0.607
64 3145 4380 178 0.855 0.824 0.813 0.831

128 5769 8028 242 1.449 1.480 1.540 1.490
256 11017 15324 370 3.610 4.015 4.027 3.884
512 21513 29916 626 6.051 5.844 5.971 5.955
1024 42505 59100 1138 25.821 25.756 26.574 26.050
2048 84489 117468 2162 43.585 46.635 43.032 44.417

Table 5.14: Profiling results for the SVM benchmark. Levels in the best parallel cluster: 24. Levels
in graph before executing the AllSubgraphs algorithm: 38. Input size: 1274 support vectors with
18 features each.

Levels Search
Range

AllSubgraphs
(%)

FoldParallelSubgraphs
(%)

FileParser
(%)

Leveling
(%)

Pruning
(%)

Others
(%)

Execution time
(sec)

No range defined 69.5 10.1 4.8 5.9 4.6 5.1 13.014
10 47.8 15.6 9.2 9.9 8.5 9.0 8.728
1 11.4 27.1 15.6 16.4 14.6 14.9 6.745

In order to improve backend scalability, the pruning algorithm was improved from the one pro-

posed by Ferreira et al. [32] [31]. The efficiency of this algorithm is of great importance because

it decreases the execution time of all the algorithms that follow. Table 5.17 shows the pruning

efficiency that was evaluated for each benchmark. We achieved about 60% nodes reduction and

52 Experimental Results

25 26 27 28 29 210 211

29

211

213

215

Number of features

A
ve

ra
ge

ex
ec

ut
io

n
tim

e
[m

s]

kNN

Figure 5.4: Backend execution time for the kNN benchmark using 8 data points.

Table 5.15: Profiling results for the dotprod benchmark. Levels in the best parallel cluster: 6.
Levels in graph before executing the AllSubgraphs algorithm: 17. Input size: N=4000.

Levels Search
Range

AllSubgraphs
(%)

FoldParallelSubgraphs
(%)

FileParser
(%)

Leveling
(%)

Pruning
(%)

Others
(%)

Execution time
(sec)

No range defined 14.6 5.1 4.7 68.1 0.6 6.9 4.71
10 10.9 5.4 4.9 72.7 0 6.1 4.298
1 2.5 5.7 4.5 78.4 0.6 8.2 3.809

Table 5.16: Profiling results for the kNN benchmark. Levels in the best parallel cluster: 70.
Levels in graph before executing the AllSubgraphs algorithm: 243. Input size: 8 data points with
128 features each.

Levels Search
Range

AllSubgraphs
(%)

FoldParallelSubgraphs
(%)

FileParser
(%)

Leveling
(%)

Pruning
(%)

Others
(%)

Execution time
(sec)

No range defined 96.4 1.6 0.5 0.5 0.5 0.5 6.120
30 89.3 6.1 0.5 2.3 0.5 1.3 1.846
1 37.1 19.9 17.4 5.5 2.8 17.2 0.783

5.5 State of the Art Comparison 53

43% to 50% edges reduction, which is a significant improvement over the 42% node reduction

and 24% edge reduction of the previous work.

Table 5.17: Pruning data for each DFG.

Benchmark Dataset Size
Nodes
before

pruning

Edges
before

pruning

Nodes
after

pruning

Edges
after

pruning

Nodes
Reduction

(%)

Edges
Reduction

(%)
Levels

SVM
N_sv = 1274

D_sv = 18
126158 175847 49691 99380 60.6 43.5 1299

Dotprod N=2000 12005 16004 4002 8001 66.7 50.0 2002
Dotprod N=4000 24005 32004 8002 16001 66.7 50.0 4002

kNN N=8, D=32 1833 2556 748 1471 59.2 42.4 146
kNN N=8, D=64 3145 4380 1260 2495 59.9 43.0 178
kNN N=8, D=128 5769 8028 2284 4543 60.4 43.4 242
kNN N=8, D=256 11017 15324 4332 8639 60.7 43.6 370
kNN N=8, D=512 21513 29916 8428 16831 60.8 43.7 626
kNN N=8, D=1024 42505 59100 16620 33215 60.9 43.8 1138
kNN N=8, D=2048 84489 117468 33004 65983 60.9 43.8 2162

The Leveling (see Section 4.7) algorithm is used multiple times depending on the configura-

tions provided. Thus, it is important that it executes as efficiently as possible. For this reason, we

developed a new algorithm which is capable of leveling the whole graph while processing each

node only once. This algorithm attributes a level to each node and returns a levelGraph which lists

all nodes that exist in each level. Figure 5.5 shows an execution comparison between the previous

algorithm [32], [31] and the new one for a similar SVM graph.

1 I t e r 0 : { S t a r t }
2 I t e r 1 : { cons t1 , t e s t _ v e c t o r [0] _0 , . . . , b_0 } #21
3 I t e r 2 : { norma_1 , op10 , op19 , op28 , . . . , op37 } #22
4 I t e r 3 : { op16 , op25 , op34 , op7 , op8 , . . . , op30 } #22
5 I t e r 4 : { op16 , op25 , op34 , op7 , op8 , . . . , op6 } #18
6 I t e r 5 : { op16 , op25 , op34 , op7 , op8 , . . . , op6 } #14
7 I t e r 6 : { op16 , op25 , op34 , op7 , op8 , . . . , op37 } #9
8 I t e r 7 : {op8 , op9 , op17 , op26 , op35 , op37 }
9 I t e r 8 : {op9 , op37 , op18 , op27 , op36 }

10 I t e r 9 : { op37 , op18 , op27 , op36 }
11 I t e r 1 0 : { op37 , op27 , op36 }
12 I t e r 1 1 : { op37 , op36 }
13 I t e r 1 2 : { op37 }
14 I t e r 1 3 : {∗sum_5}
15 I t e r 1 4 : {End}

Listing 5.1: Previous Leveling algorithm

1 I t e r 0 : { S t a r t }
2 I t e r 1 : {op3 , op10 , op17 , op1 , op8 , op15 , op22 , op24 }
3 I t e r 2 : { op16 , op23 , op2 , op9 }
4 I t e r 3 : { op11 , op25 , op18 , op4 }
5 I t e r 4 : { op26 , op12 , op19 , op5 }
6 I t e r 5 : { op13 , op20 , op27 , op6 }
7 I t e r 6 : { op21 , op7 }
8 I t e r 7 : { op14 }
9 I t e r 8 : { op28 }

10 I t e r 9 : { op29 }
11 I t e r 1 0 : { op30 }
12 I t e r 1 1 : {mux_1}
13 I t e r 1 2 : {End}

Listing 5.2: New Leveling algorithm

Figure 5.5: Execution comparison of the Leveling algorithm for a similar SVM DFG.

5.5 State of the Art Comparison

This section compares the synthesis results with those reported by state-of-the-art approaches.

54 Experimental Results

5.5.1 SVM

When comparing the version with 15 function calls with the framework-08 version published in

[30] (see Table 5.18), there is a 15.6× speedup in terms of latency cycles, and 13.7× in terms

of execution delay. framework-08 used a very similar approach, taking an execution trace as

input, but did not explore the use of the dataflow directive. Notice that the numbers reported for

framework-08 were calculated using 1248 support vectors instead of 1274, but we consider the

difference to be low enough to allow for a direct comparison.

Table 5.18: SVM synthesis report published in [30]

Framework Clock
(ns)

Latency
(cycles)

FF
(%)

LUT
(%)

DSP
(%)

BRAM
(%)

Area used
(%)

Delay
(ns) Speedup

Framework-08 8.4 3208 12 27 41 0 20 26947 14.99×

Tsoutsouras et al. [96] refer a latency gain of 98.78% compared to Vivado HLS default opti-

mized solution, using the same target FPGA and same input size. Our SVM implementation that

makes 15 parallel calls to the SVM kernel achieves 99.93% latency gains in respect to the original

source code. One might notice that we report different latency for the code with no optimizations

(333826 vs 412783), which may be explained by the different Vivado HLS versions used.

Santos et al. [83] used their framework to synthesise the SVM code with Vivado HLS, using

the same FPGA but 1248 support vectors instead of 1274. As they have got different latency

results for the original source code, it is not fair to compare the latencies directly, but only the

speedups achieved. They got a speedup of 24.85× compared to the original source code, while

our is of 1392×, making our speedup 56× higher.

Recently, Afifi et al. [2] published a review on 44 papers about FPGA-based SVM classifiers.

However, it is not easy to find a meaningful comparison with other implementations, as there is no

standard for the sizes of the inputs, target clock, or FPGA to use.

5.5.2 Dot Product

Ferreira et al. [30] studied the performance of their approach for the dotprod benchmark with

N = 2000, getting the same results as us in the synthesis of the original source code. They report

a 16.8× speedup while we are able to achieve a 122.8× speedup by making 8 parallel calls to

the kernel. Such a speedup difference happens because we are able to extract ILP into data-level

parallelism.

5.5.3 kNN

Santos et al. [83] developed a tool which searches and inserts directives using heuristics. In addi-

tion, the tool is capable of providing compile-time optimized mathematical functions for HLS. For

the kNN benchmark with an input size of 8 data points and 128 features, the tool adds complete

array partitioning to the "xFeatures", "knownFeatures", and "knownClasses" arrays. In addition,

it pipelines the outermoost loop which fully unrolls the inner loop. Thus, the major differences

5.6 Summary 55

between our approaches are in the partition factors used and in the use of the dataflow directive.

Table 5.19 shows the synthesis report obtained by the tool developed by Santos et al. [83], achiev-

ing a speedup of 14.62× compared to the unmodified code. Our results for the same input size

and data types are available in Table 5.11, where we achieve a speedup of 44.36×.

Table 5.19: kNN synthesis report for the code output by the tool developed by Santos et al. [83].
Input size: 8 data points, 128 features. "xFeatures" and "knownFeatures" with float types.

Clock
(ns)

Latency
(cycles)

FF
(%)

LUT
(%)

BRAM
(%)

DSP
(%)

Area Used
(%)

Delay
(ns) Speedup

8.46 1120 13.1 24.6 0 3.6 10.3 9472 14.62×

This is a benchmark which was not yet possible to execute using the similar approach devel-

oped by Ferreira et al. [30], which layed the ground work for this thesis.

5.6 Summary

This chapter presented the evaluation of the framework using the SVM, dotprod, and kNN bench-

marks. C code was synthesised using Vivado HLS 2019.2 targeting a Xilinx Artix-7 FPGA. The

objective function of the synthesis process considers the area to be as important as the delay be-

cause in real-world applications the energy used might be as important as the time that it takes to

execute. The speedups varied all the way from 14× to 1392×. We evaluated the scalability of

the backend in respect to the size of the input DFG and concluded that using the right configu-

ration options, the execution time scales linearly with the size of the input DFG. The last section

compared the synthesis results with those achieved by state-of-the-art approaches. Our framework

proved to achieve outstanding results for the SVM and dotprod benchmarks and competitive results

for the kNN benchmark. Being able to process the kNN benchmark is a significant step in order to

be able to execute a whole new range of benchmarks. Further benchmark evaluations are needed

to better understand the potential of the framework, but so far the results seem very promising.

56 Experimental Results

Chapter 6

Conclusions

This chapter presents an overview of the approach, contributions provided, results achieved, and

lastly, suggests some topics that should be handled by future work.

6.1 Concluding remarks

This dissertation proposes a new framework to generate efficient hardware implementations for a

whole range of algorithms. This framework is two-stage, meaning that the first stage produces the

input DFG, while the second one transforms this DFG into C code annotated with Vivado HLS

directives. Although we have only used ANSI C benchmarks, the second stage is not strictly bound

to any input language, as its input is a description of an execution trace, which can derive from any

imperative high-level language (HLL). Moreover, as the transformations are independent of the

target HLS tool, we can extend the framework to output code suitable for other HLS tools. Another

advantage is that unlike some DSL approaches to the problem, this framework is not bond to any

algorithm family, such as "machine learning" or "image processing". However, it performs best

when there is high ILP to be exploited. The analysis of the complexity of the code generated shows

that it is not trivial to manually replicate the transformations applied by the framework. The current

work focuses on the extraction of operation-, data-, and task-level parallelism. However, task-level

parallelism requires aggressive restructuring of the code to comply with the dataflow canonical

guidelines. To exploit the use of the Vivado HLS dataflow directive, the framework extracts data-

level parallelism by distributing data across multiple function calls, which are placed inside the

dataflow region to be pipelined. Other contributions over the work proposed by Ferreira et al. [30]

include more efficient pruning and leveling algorithms, support for simple control-flow and array

accesses that depend on input data, and generation of code that leads to hardware with significant

speedup improvements. Our experiments show results with speedups from 14× to 1392× when

compared to the performance achieved by using the unmodified source code. When compared

with state-of-the-art approaches, the framework proved to be competitive in all of the benchmarks.

In conclusion, this framework fulfils its major objective, which is to enable developers to easily

57

58 Conclusions

generate efficient hardware implementations without the need for HLS expertise. However, there

is still work to be done in order to increase the applicability of the approach.

6.2 Future work

Our future plans include the research of an efficient algorithm to cluster sequential isomorphic

subgraphs, which would allow us to fold repetitive patterns of sequential operations. This is an

essential transformation to be able to handle benchmarks, such as the kNN, in which the Prologue

or Epilogue subgraphs grow at least linearly with the size of the input DFG. When the output code

grows large it overuses resources and becomes unsynthesisable by any HLS tool. A possible so-

lution to detect sequential subgraphs is to rerun the Find All Subgraphs algorithm in the Prologue

and Epilogue graphs, but this time we would use the sequential weight of each node, which does

not take into account the node level. However, this strategy would only give us lists of similar

subgraphs, without any guarantee about their connection. Nevertheless, as the Find All Subgraphs

algorithm performs a Breadth-First search, it would guarantee that a list of subgraphs with the

same weight is ordered by their position in the graph from the top to the bottom. Thus, it would

be trivial to check the subgraphs connections and find the largest chain of similar patterns. As

the number of similar patterns might grow very large, it would be wise to use an heuristic to filter

the most relevant ones. We intend to further research possible solutions to address the scalability

problem. The current input DFG represents a full-trace of execution, therefore it does not have a

way to represent loop constructions. Unfortunately, this can lead to graphs with millions of nodes

which are unfeasible to parse. Possible solutions include having parameterized DFGs or provid-

ing user configurations that allow automatic scaling of the iteration space. However, the new DFG

would no longer represent a full execution trace, which might in turn, blurry optimizations that

were obvious otherwise. Thus, a balance needs to be considered. Finally, we intend to extend

our framework with state-of-the-art analytical estimation models to refine the selection and con-

figuration of directives. This can be achieved by integrating into our approach the COMBA model

proposed by Zhao et al. [109], which is capable of finding a near-optimal configuration of multiple

directives within minutes.

Appendix A

Benchmarks

This appendix provides the original code of each of the benchmarks.

A.1 SVM

1 const float sv_coef[N_sv];

2 const float sup_vectors[D_sv][N_sv];

3
4 void svm_predict(float test_vector[D_sv], int *y){

5 float diff;

6 float norma;

7 float sum = 0;

8 for(int i=0; i< N_sv;i++){

9 norma=0;

10 for(int j=0; j<D_sv;j++){

11 diff=test_vector[j] - sup_vectors[j][i];

12 diff=diff*diff;

13 norma=norma + diff;

14 }

15 sum = sum + (exp(-gamma*norma)*sv_coeff[i]);

16 }

17 sum= sum-b;

18 *y = sum < 0 ? -1 : 1;

19 }

Listing A.1: SVM benchmark original prediction code

A.2 Dotprod

1 int DSP_dotprod_golden_c(const short x[N], const short y[N])

2 {

3 int sum = 0, i;

59

60 Benchmarks

4 for (i = 0; i < N; i++)

5 sum += x[i] * y[i];

6
7 return sum;

8 }

Listing A.2: Dot product original kernel

A.3 kNN

1 #include "kNN.h"

2
3 /*
4 Update the set of k best points so far.

5 Points represent instances in the kNN model.

6 Those instances are the ones used in a previous learning phase.

7 */

8 void updateBest(dtype distance, ctype classifID, dtype BestPointsDistances[

K], ctype BestPointsClasses[K]) {

9 dtype max = 0;

10 int index =0;

11
12 //find the worst point in the BestPoints

13 for(int i=0; i<K; i++) {

14 dtype dbest = BestPointsDistances[i];

15 dtype max_tmp = max;

16 max = (dbest > max_tmp) ? dbest : max;

17 index = (dbest > max_tmp) ? i : index;

18 }

19 // if the point is better (shorter distance) than the worst one (longer

distance) in the BestPoints

20 // update BestPoints substituting the wrost one

21
22 dtype dbest = BestPointsDistances[index];

23 ctype cbest = BestPointsClasses[index];

24
25 BestPointsDistances[index] = (distance < max) ? distance : dbest;

26 BestPointsClasses[index] = (distance < max) ? classifID : cbest;

27 }

28
29 /**
30 kNN function without classifying but returning the k nearest points

31 We use here a linear search.

32 */

33 ctype kNN(ftype xFeatures[NUM_FEATURES], ftype knownFeatures[

NUM_KNOWN_POINTS][NUM_FEATURES], ctype knownClasses[NUM_KNOWN_POINTS]) {

34

A.3 kNN 61

35 dtype BestPointsDistances[K]; // array with the distances of the K nearest

points to the point to classify

36 ctype BestPointsClasses[K]; // array with the classes of the K nearest

points to the point to classify

37
38
39 // initialize the data structures (array) with the K best points

40 initializeBest(BestPointsClasses, BestPointsDistances);

41
42
43 // perform the Euclidean distance between the point to classify and each

one in the model

44 // and update the k best points if needed

45 for(int i=0; i<NUM_KNOWN_POINTS; i++) {

46 dtype distance = (dtype) 0;

47
48 // perform Euclidean distance

49 for(int j=0; j<NUM_FEATURES; j++) {

50 distance += sqr((dtype) xFeatures[j]-(dtype) knownFeatures[i][j]);

51 }

52 distance = sqrt(distance);

53 //printf("distance %e\n", distance);

54
55 // maintains the k best points updated

56 updateBest(distance, knownClasses[i], BestPointsDistances,

BestPointsClasses);

57 }

58
59 // classify the point based on the K nearest points

60 ctype classifyID = classify3NN(BestPointsClasses, BestPointsDistances);

61
62 return classifyID;

63 }

64
65 /**
66 Classify based on the K BestPoints returned by the kNN function

67 Specialized code when using K = 3

68 */

69 ctype classify3NN(ctype BestPointsClasses[K], dtype BestPointsDistances[K])

{

70
71 ctype c1 = BestPointsClasses[0];

72 dtype d1 = BestPointsDistances[0];

73
74 ctype c2 = BestPointsClasses[1];

75 dtype d2 = BestPointsDistances[1];

76
77 ctype c3 = BestPointsClasses[2];

78 dtype d3 = BestPointsDistances[2];

62 Benchmarks

79
80 ctype classID;

81 dtype mindist = d1;

82
83 classID = (mindist > d2) ? c2 : c1;

84 mindist = (mindist > d2) ? d2 : d1;

85
86 classID = (mindist > d3) ? c3 : classID;

87 mindist = (mindist > d3) ? d3 : mindist;

88
89 classID = (c2 == c3) ? c2 : classID;

90 classID = (c1 == c3) ? c1 : classID;

91 classID = (c1 == c2) ? c1 : classID;

92
93
94 return classID;

95 }

Listing A.3: kNN original benchmark

Appendix B

Framework output

This appendix provides the output of the framework for each benchmark. Some parts of the code

are omitted with "..." to avoid having dozens of pages per benchmark.

B.1 SVM

1 void parallel_0(float sup_vectors[18][80], float test_vector[18], float

sv_coeff[80], int width, float temp_l111_2_i2_array[80])

2 {

3 // Step 2: Initialize local variables

4 float diff_w1;

5 float norma_w1;

6 float temp_l111_1_i1_w1;

7 ...

8 // Initialization done

9 // starting Loop

10 for (int i = 0; i < width; i = i + 1) {

11 #pragma HLS pipeline

12
13 diff_w16 = test_vector[9] - sup_vectors[9][i];

14 diff_w10 = test_vector[8] - sup_vectors[8][i];

15 diff_w18 = test_vector[17] - sup_vectors[17][i];

16 diff_w9 = test_vector[10] - sup_vectors[10][i];

17 diff_w4 = test_vector[2] - sup_vectors[2][i];

18 diff_w11 = test_vector[5] - sup_vectors[5][i];

19 diff_w12 = test_vector[11] - sup_vectors[11][i];

20 diff_w14 = test_vector[1] - sup_vectors[1][i];

21 diff_w5 = test_vector[14] - sup_vectors[14][i];

22 diff_w17 = test_vector[15] - sup_vectors[15][i];

23 diff_w7 = test_vector[12] - sup_vectors[12][i];

24 diff_w13 = test_vector[13] - sup_vectors[13][i];

25 diff_w1 = test_vector[7] - sup_vectors[7][i];

26 diff_w8 = test_vector[0] - sup_vectors[0][i];

27 diff_w15 = test_vector[3] - sup_vectors[3][i];

63

64 Framework output

28 diff_w3 = test_vector[6] - sup_vectors[6][i];

29 diff_w2 = test_vector[4] - sup_vectors[4][i];

30 diff_w6 = test_vector[16] - sup_vectors[16][i];

31
32 norma_w14 = 0 + square(diff_w8);

33 norma_w4 = norma_w14 + square(diff_w14);

34 norma_w15 = norma_w4 + square(diff_w4);

35 norma_w2 = norma_w15 + square(diff_w15);

36 norma_w11 = norma_w2 + square(diff_w2);

37 norma_w3 = norma_w11 + square(diff_w11);

38 norma_w1 = norma_w3 + square(diff_w3);

39 norma_w9 = norma_w1 + square(diff_w1);

40 norma_w16 = norma_w9 + square(diff_w10);

41 norma_w8 = norma_w16 + square(diff_w16);

42 norma_w12 = norma_w8 + square(diff_w9);

43 norma_w7 = norma_w12 + square(diff_w12);

44 norma_w13 = norma_w7 + square(diff_w7);

45 norma_w5 = norma_w13 + square(diff_w13);

46 norma_w17 = norma_w5 + square(diff_w5);

47 norma_w6 = norma_w17 + square(diff_w17);

48 norma_w18 = norma_w6 + square(diff_w6);

49 norma_w10 = norma_w18 + square(diff_w18);

50 temp_l111_1_i1_w1 = norma_w10 * (-gamma);

51 temp_l111_2_i2_array[i] = sv_coeff[i] * expf(temp_l111_1_i1_w1);

52 }

53 }

54
55 void epilogue(float temp_l111_2_i2_array_15[80], float

temp_l111_2_i2_array_14[80], float temp_l111_2_i2_array_12[80], float

temp_l111_2_i2_array_10[80], float temp_l111_2_i2_array_7[80], float

temp_l111_2_i2_array_1[80], float temp_l111_2_i2_array_3[80], float

temp_l111_2_i2_array_11[80], float temp_l111_2_i2_array_0[80], float

temp_l111_2_i2_array_9[80], float temp_l111_2_i2_array_6[80], float

temp_l111_2_i2_array_8[80], float temp_l111_2_i2_array_2[80], float

temp_l111_2_i2_array_13[80], float temp_l111_2_i2_array_4[80], float

temp_l111_2_i2_array_5[80], int *y)

56 {

57 // Initialize local variables

58 double operationOutput_w1;

59 float sum_w1;

60 float sum_w2;

61 float sum_w3;

62 ...

63 // Initialization done

64 sum_w787 = temp_l111_2_i2_array_3[7] + temp_l111_2_i2_array_3[8];

65 sum_w672 = temp_l111_2_i2_array_8[29] + temp_l111_2_i2_array_8[30];

66 sum_w368 = temp_l111_2_i2_array_4[51] + temp_l111_2_i2_array_4[52];

67 ...

68 sum_w1191 = sum_w5 + sum_w6;

B.1 SVM 65

69 sum_w1189 = sum_w295 + sum_w296;

70 sum_w437 = sum_w692 + sum_w693;

71 ...

72 sum_w669 = sum_w1159 - b;

73 operationOutput_w1 = sum_w669 < 0;

74
75 *y = operationOutput_w1 ? -1 : 1;

76 }

77
78 void svmResult(int *y)

79 {

80 // Step 2: Initialize local variables

81 float test_vector[18];

82 float sup_vectors_0[18][80];

83 ...

84 float sup_vectors_15[18][80];

85 float sv_coeff_0[80];

86 ...

87 float sv_coeff_15[80];

88 float temp_l111_2_i2_array_0[80];

89 ...

90 float temp_l111_2_i2_array_15[80];

91 // Initialization done

92 #pragma HLS dataflow

93
94 parallel_0(sup_vectors_0, test_vector, sv_coeff_0, 80,

temp_l111_2_i2_array_0);

95 parallel_0(sup_vectors_1, test_vector, sv_coeff_1, 80,

temp_l111_2_i2_array_1);

96 parallel_0(sup_vectors_2, test_vector, sv_coeff_2, 80,

temp_l111_2_i2_array_2);

97 parallel_0(sup_vectors_3, test_vector, sv_coeff_3, 80,

temp_l111_2_i2_array_3);

98 parallel_0(sup_vectors_4, test_vector, sv_coeff_4, 80,

temp_l111_2_i2_array_4);

99 parallel_0(sup_vectors_5, test_vector, sv_coeff_5, 80,

temp_l111_2_i2_array_5);

100 parallel_0(sup_vectors_6, test_vector, sv_coeff_6, 80,

temp_l111_2_i2_array_6);

101 parallel_0(sup_vectors_7, test_vector, sv_coeff_7, 80,

temp_l111_2_i2_array_7);

102 parallel_0(sup_vectors_8, test_vector, sv_coeff_8, 80,

temp_l111_2_i2_array_8);

103 parallel_0(sup_vectors_9, test_vector, sv_coeff_9, 80,

temp_l111_2_i2_array_9);

104 parallel_0(sup_vectors_10, test_vector, sv_coeff_10, 80,

temp_l111_2_i2_array_10);

105 parallel_0(sup_vectors_11, test_vector, sv_coeff_11, 80,

temp_l111_2_i2_array_11);

66 Framework output

106 parallel_0(sup_vectors_12, test_vector, sv_coeff_12, 80,

temp_l111_2_i2_array_12);

107 parallel_0(sup_vectors_13, test_vector, sv_coeff_13, 80,

temp_l111_2_i2_array_13);

108 parallel_0(sup_vectors_14, test_vector, sv_coeff_14, 80,

temp_l111_2_i2_array_14);

109 parallel_0(sup_vectors_15, test_vector, sv_coeff_15, 74,

temp_l111_2_i2_array_15);

110
111 epilogue(temp_l111_2_i2_array_15, temp_l111_2_i2_array_14,

112 temp_l111_2_i2_array_12, temp_l111_2_i2_array_10,

temp_l111_2_i2_array_7,

113 temp_l111_2_i2_array_1, temp_l111_2_i2_array_3,

temp_l111_2_i2_array_11,

114 temp_l111_2_i2_array_0, temp_l111_2_i2_array_9,

temp_l111_2_i2_array_6,

115 temp_l111_2_i2_array_8, temp_l111_2_i2_array_2,

temp_l111_2_i2_array_13,

116 temp_l111_2_i2_array_4, temp_l111_2_i2_array_5, y);

117 }

Listing B.1: Framework output for the SVM benchmark with 15 parallel calls.

B.2 Dotprod

1
2 void parallel_0(short x[256], short y[256], int sum_array[16])

3 {

4 // Step 2: Initialize local variables

5 int sum_w1;

6 ...

7 int sum_w14;

8
9 int temp_l83_i14_w1;

10 ...

11 int temp_l83_i29_w1;

12 // Initialization done

13 // starting Loop

14 for (int i = 0; i < 16; i = i + 1) {

15 #pragma HLS pipeline

16
17 temp_l83_i14_w1 = x[(16) * i] * y[(16) * i];

18 temp_l83_i15_w1 = x[(16) * i + 1] * y[(16) * i + 1];

19 temp_l83_i16_w1 = x[(16) * i + 2] * y[(16) * i + 2];

20 temp_l83_i17_w1 = x[(16) * i + 3] * y[(16) * i + 3];

21 temp_l83_i18_w1 = x[(16) * i + 4] * y[(16) * i + 4];

22 temp_l83_i19_w1 = x[(16) * i + 5] * y[(16) * i + 5];

B.2 Dotprod 67

23 temp_l83_i20_w1 = x[(16) * i + 6] * y[(16) * i + 6];

24 temp_l83_i21_w1 = x[(16) * i + 7] * y[(16) * i + 7];

25 temp_l83_i22_w1 = x[(16) * i + 8] * y[(16) * i + 8];

26 temp_l83_i23_w1 = x[(16) * i + 9] * y[(16) * i + 9];

27 temp_l83_i24_w1 = x[(16) * i + 10] * y[(16) * i + 10];

28 temp_l83_i25_w1 = x[(16) * i + 11] * y[(16) * i + 11];

29 temp_l83_i26_w1 = x[(16) * i + 12] * y[(16) * i + 12];

30 temp_l83_i27_w1 = x[(16) * i + 13] * y[(16) * i + 13];

31 temp_l83_i28_w1 = x[(16) * i + 14] * y[(16) * i + 14];

32 temp_l83_i29_w1 = x[(16) * i + 15] * y[(16) * i + 15];

33
34 sum_w13 = temp_l83_i14_w1 + temp_l83_i15_w1;

35 sum_w14 = temp_l83_i16_w1 + temp_l83_i17_w1;

36 sum_w11 = temp_l83_i18_w1 + temp_l83_i19_w1;

37 sum_w12 = temp_l83_i20_w1 + temp_l83_i21_w1;

38 sum_w1 = temp_l83_i22_w1 + temp_l83_i23_w1;

39 sum_w2 = temp_l83_i24_w1 + temp_l83_i25_w1;

40 sum_w5 = temp_l83_i26_w1 + temp_l83_i27_w1;

41 sum_w6 = temp_l83_i28_w1 + temp_l83_i29_w1;

42
43 sum_w3 = sum_w1 + sum_w2;

44 sum_w8 = sum_w11 + sum_w12;

45 sum_w7 = sum_w13 + sum_w14;

46 sum_w4 = sum_w5 + sum_w6;

47
48 sum_w10 = sum_w3 + sum_w4;

49 sum_w9 = sum_w7 + sum_w8;

50
51 sum_array[i] = sum_w9 + sum_w10;

52 }

53 }

54
55 void parallel_1(short x[192], short y[192], int sum_array[12])

56 {

57 // Step 2: Initialize local variables

58 int sum_w1;

59 ...

60 int sum_w14;

61
62 int temp_l83_i1806_w1;

63 ...

64 int temp_l83_i1821_w1;

65 // Initialization done

66 // starting Loop

67 for (int i = 0; i < 12; i = i + 1) {

68 #pragma HLS pipeline

69
70 temp_l83_i1806_w1 = x[(16) * i] * y[(16) * i];

71 temp_l83_i1807_w1 = x[(16) * i + 1] * y[(16) * i + 1];

68 Framework output

72 temp_l83_i1808_w1 = x[(16) * i + 2] * y[(16) * i + 2];

73 temp_l83_i1809_w1 = x[(16) * i + 3] * y[(16) * i + 3];

74 temp_l83_i1810_w1 = x[(16) * i + 4] * y[(16) * i + 4];

75 temp_l83_i1811_w1 = x[(16) * i + 5] * y[(16) * i + 5];

76 temp_l83_i1812_w1 = x[(16) * i + 6] * y[(16) * i + 6];

77 temp_l83_i1813_w1 = x[(16) * i + 7] * y[(16) * i + 7];

78 temp_l83_i1814_w1 = x[(16) * i + 8] * y[(16) * i + 8];

79 temp_l83_i1815_w1 = x[(16) * i + 9] * y[(16) * i + 9];

80 temp_l83_i1816_w1 = x[(16) * i + 10] * y[(16) * i + 10];

81 temp_l83_i1817_w1 = x[(16) * i + 11] * y[(16) * i + 11];

82 temp_l83_i1818_w1 = x[(16) * i + 12] * y[(16) * i + 12];

83 temp_l83_i1819_w1 = x[(16) * i + 13] * y[(16) * i + 13];

84 temp_l83_i1820_w1 = x[(16) * i + 14] * y[(16) * i + 14];

85 temp_l83_i1821_w1 = x[(16) * i + 15] * y[(16) * i + 15];

86
87 sum_w11 = temp_l83_i1806_w1 + temp_l83_i1807_w1;

88 sum_w12 = temp_l83_i1808_w1 + temp_l83_i1809_w1;

89 sum_w13 = temp_l83_i1810_w1 + temp_l83_i1811_w1;

90 sum_w14 = temp_l83_i1812_w1 + temp_l83_i1813_w1;

91 sum_w7 = temp_l83_i1814_w1 + temp_l83_i1815_w1;

92 sum_w8 = temp_l83_i1816_w1 + temp_l83_i1817_w1;

93 sum_w3 = temp_l83_i1818_w1 + temp_l83_i1819_w1;

94 sum_w4 = temp_l83_i1820_w1 + temp_l83_i1821_w1;

95
96 sum_w9 = sum_w11 + sum_w12;

97 sum_w10 = sum_w13 + sum_w14;

98 sum_w6 = sum_w3 + sum_w4;

99 sum_w5 = sum_w7 + sum_w8;

100
101 sum_w2 = sum_w5 + sum_w6;

102 sum_w1 = sum_w9 + sum_w10;

103
104 sum_array[i] = sum_w1 + sum_w2;

105 }

106 }

107
108 void epilogue(int sum_array_3[16], int sum_array_2[16], short y_9[3], int

sum_array_5[16], short x_9[3], int sum_array_4[16], int sum_array_7[12],

int sum_array_6[16], short x_0[13], short y_0[13], int sum_array_1[16],

int sum_array_0[16], int *out)

109 {

110 // Step 2: Initialize local variables

111 int sum_w1;

112 ...

113 int sum_w139;

114
115 int temp_l83_i1_w1;

116 ...

117 int temp_l83_i2000_w1;

B.2 Dotprod 69

118
119 // Initialization done

120 sum_w137 = sum_array_0[0] + sum_array_0[1];

121 ...

122 temp_l83_i1_w1 = x_0[0] * y_0[0];

123 ...

124 temp_l83_i2000_w1 = x_9[2] * y_9[2];

125
126 sum_w123 = sum_w100 + sum_w101;

127 ...

128 sum_w79 = sum_w104 + sum_w105;

129
130 *out = sum_w79 + temp_l83_i2000_w1;

131 }

132
133 void dotprod_parallel8(short x_0[13], short x_1[256], short x_2[256], short

x_3[256], short x_4[256], short x_5[256], short x_6[256], short x_7

[256], short x_8[192], short x_9[3], short y_0[13], short y_1[256],

short y_2[256], short y_3[256], short y_4[256], short y_5[256], short

y_6[256], short y_7[256], short y_8[192], short y_9[3], int *out) {

134 // Step 2: Initialize local variables

135 int sum_array_0[16];

136 int sum_array_1[16];

137 int sum_array_2[16];

138 int sum_array_3[16];

139 int sum_array_4[16];

140 int sum_array_5[16];

141 int sum_array_6[16];

142 int sum_array_7[12];

143 #pragma HLS ARRAY_PARTITION variable = x_0 cyclic factor = 13 dim = 0

144 #pragma HLS ARRAY_PARTITION variable = x_1 cyclic factor = 16 dim = 0

145 #pragma HLS ARRAY_PARTITION variable = x_2 cyclic factor = 16 dim = 0

146 #pragma HLS ARRAY_PARTITION variable = x_3 cyclic factor = 16 dim = 0

147 #pragma HLS ARRAY_PARTITION variable = x_4 cyclic factor = 16 dim = 0

148 #pragma HLS ARRAY_PARTITION variable = x_5 cyclic factor = 16 dim = 0

149 #pragma HLS ARRAY_PARTITION variable = x_6 cyclic factor = 16 dim = 0

150 #pragma HLS ARRAY_PARTITION variable = x_7 cyclic factor = 16 dim = 0

151 #pragma HLS ARRAY_PARTITION variable = x_8 cyclic factor = 16 dim = 0

152 #pragma HLS ARRAY_PARTITION variable = x_9 cyclic factor = 3 dim = 0

153 #pragma HLS ARRAY_PARTITION variable = y_0 cyclic factor = 13 dim = 0

154 #pragma HLS ARRAY_PARTITION variable = y_1 cyclic factor = 16 dim = 0

155 #pragma HLS ARRAY_PARTITION variable = y_2 cyclic factor = 16 dim = 0

156 #pragma HLS ARRAY_PARTITION variable = y_3 cyclic factor = 16 dim = 0

157 #pragma HLS ARRAY_PARTITION variable = y_4 cyclic factor = 16 dim = 0

158 #pragma HLS ARRAY_PARTITION variable = y_5 cyclic factor = 16 dim = 0

159 #pragma HLS ARRAY_PARTITION variable = y_6 cyclic factor = 16 dim = 0

160 #pragma HLS ARRAY_PARTITION variable = y_7 cyclic factor = 16 dim = 0

161 #pragma HLS ARRAY_PARTITION variable = y_8 cyclic factor = 16 dim = 0

162 #pragma HLS ARRAY_PARTITION variable = y_9 cyclic factor = 3 dim = 0

70 Framework output

163 #pragma HLS ARRAY_PARTITION variable = sum_array_0 cyclic factor = 2 dim =

0

164 #pragma HLS ARRAY_PARTITION variable = sum_array_1 cyclic factor = 2 dim =

0

165 #pragma HLS ARRAY_PARTITION variable = sum_array_2 cyclic factor = 2 dim =

0

166 #pragma HLS ARRAY_PARTITION variable = sum_array_3 cyclic factor = 2 dim =

0

167 #pragma HLS ARRAY_PARTITION variable = sum_array_4 cyclic factor = 2 dim =

0

168 #pragma HLS ARRAY_PARTITION variable = sum_array_5 cyclic factor = 2 dim =

0

169 #pragma HLS ARRAY_PARTITION variable = sum_array_6 cyclic factor = 2 dim =

0

170 #pragma HLS ARRAY_PARTITION variable = sum_array_7 cyclic factor = 2 dim =

0

171 // Initialization done

172 #pragma HLS dataflow

173
174 parallel_0(x_1, y_1, sum_array_0);

175 parallel_0(x_2, y_2, sum_array_1);

176 parallel_0(x_3, y_3, sum_array_2);

177 parallel_0(x_4, y_4, sum_array_3);

178 parallel_0(x_5, y_5, sum_array_4);

179 parallel_0(x_6, y_6, sum_array_5);

180 parallel_0(x_7, y_7, sum_array_6);

181 parallel_1(x_8, y_8, sum_array_7);

182
183 epilogue(sum_array_3, sum_array_2, y_9, sum_array_5, x_9, sum_array_4,

sum_array_7, sum_array_6, x_0, y_0, sum_array_1, sum_array_0, out);

184 }

Listing B.2: Framework output for the Dotprod benchmark with 8 parallel calls.

B.3 kNN

1 #include <stdio.h>

2 #include <math.h>

3 #include <stdlib.h>

4 #include <string.h>

5 #include <float.h>

6
7 #define NUM_CLASSES 2

8 #define MAXDISTANCE DBL_MAX

9 #define sqr(x) ((x) * (x))

10

B.3 kNN 71

11 void parallel_0(double knownFeatures[4][32], double xFeatures[32], double

distance_array[4])

12 {

13 // Step 2: Initialize local variables

14 float distance_w1;

15 ...

16 float distance_w32;

17 float temp_l77_i1_w1;

18 ...

19 float temp_l77_i32_w1;

20 // Initialization done

21 // starting Loop

22 for (int i = 0; i < 4; i = i + 1) {

23 #pragma HLS pipeline

24
25 temp_l77_i1_w1 = xFeatures[0] - knownFeatures[i][0];

26 temp_l77_i2_w1 = xFeatures[1] - knownFeatures[i][1];

27 temp_l77_i3_w1 = xFeatures[2] - knownFeatures[i][2];

28 temp_l77_i4_w1 = xFeatures[3] - knownFeatures[i][3];

29 temp_l77_i5_w1 = xFeatures[4] - knownFeatures[i][4];

30 temp_l77_i6_w1 = xFeatures[5] - knownFeatures[i][5];

31 temp_l77_i7_w1 = xFeatures[6] - knownFeatures[i][6];

32 temp_l77_i8_w1 = xFeatures[7] - knownFeatures[i][7];

33 temp_l77_i9_w1 = xFeatures[8] - knownFeatures[i][8];

34 temp_l77_i10_w1 = xFeatures[9] - knownFeatures[i][9];

35 temp_l77_i11_w1 = xFeatures[10] - knownFeatures[i][10];

36 temp_l77_i12_w1 = xFeatures[11] - knownFeatures[i][11];

37 temp_l77_i13_w1 = xFeatures[12] - knownFeatures[i][12];

38 temp_l77_i14_w1 = xFeatures[13] - knownFeatures[i][13];

39 temp_l77_i15_w1 = xFeatures[14] - knownFeatures[i][14];

40 temp_l77_i16_w1 = xFeatures[15] - knownFeatures[i][15];

41 temp_l77_i17_w1 = xFeatures[16] - knownFeatures[i][16];

42 temp_l77_i18_w1 = xFeatures[17] - knownFeatures[i][17];

43 temp_l77_i19_w1 = xFeatures[18] - knownFeatures[i][18];

44 temp_l77_i20_w1 = xFeatures[19] - knownFeatures[i][19];

45 temp_l77_i21_w1 = xFeatures[20] - knownFeatures[i][20];

46 temp_l77_i22_w1 = xFeatures[21] - knownFeatures[i][21];

47 temp_l77_i23_w1 = xFeatures[22] - knownFeatures[i][22];

48 temp_l77_i24_w1 = xFeatures[23] - knownFeatures[i][23];

49 temp_l77_i25_w1 = xFeatures[24] - knownFeatures[i][24];

50 temp_l77_i26_w1 = xFeatures[25] - knownFeatures[i][25];

51 temp_l77_i27_w1 = xFeatures[26] - knownFeatures[i][26];

52 temp_l77_i28_w1 = xFeatures[27] - knownFeatures[i][27];

53 temp_l77_i29_w1 = xFeatures[28] - knownFeatures[i][28];

54 temp_l77_i30_w1 = xFeatures[29] - knownFeatures[i][29];

55 temp_l77_i31_w1 = xFeatures[30] - knownFeatures[i][30];

56 temp_l77_i32_w1 = xFeatures[31] - knownFeatures[i][31];

57
58 distance_w27 = 0 + sqr(temp_l77_i1_w1);

72 Framework output

59 distance_w4 = sqr(temp_l77_i28_w1) + sqr(temp_l77_i29_w1);

60 distance_w32 = sqr(temp_l77_i30_w1) + sqr(temp_l77_i31_w1);

61 distance_w24 = distance_w27 + sqr(temp_l77_i2_w1);

62 distance_w3 = distance_w4 + distance_w32;

63 distance_w23 = distance_w24 + sqr(temp_l77_i3_w1);

64 distance_w30 = distance_w23 + sqr(temp_l77_i4_w1);

65 distance_w22 = distance_w30 + sqr(temp_l77_i5_w1);

66 distance_w21 = distance_w22 + sqr(temp_l77_i6_w1);

67 distance_w19 = distance_w21 + sqr(temp_l77_i7_w1);

68 distance_w18 = distance_w19 + sqr(temp_l77_i8_w1);

69 distance_w16 = distance_w18 + sqr(temp_l77_i9_w1);

70 distance_w15 = distance_w16 + sqr(temp_l77_i10_w1);

71 distance_w29 = distance_w15 + sqr(temp_l77_i11_w1);

72 distance_w28 = distance_w29 + sqr(temp_l77_i12_w1);

73 distance_w14 = distance_w28 + sqr(temp_l77_i13_w1);

74 distance_w13 = distance_w14 + sqr(temp_l77_i14_w1);

75 distance_w12 = distance_w13 + sqr(temp_l77_i15_w1);

76 distance_w9 = distance_w12 + sqr(temp_l77_i16_w1);

77 distance_w8 = distance_w9 + sqr(temp_l77_i17_w1);

78 distance_w20 = distance_w8 + sqr(temp_l77_i18_w1);

79 distance_w7 = distance_w20 + sqr(temp_l77_i19_w1);

80 distance_w6 = distance_w7 + sqr(temp_l77_i20_w1);

81 distance_w17 = distance_w6 + sqr(temp_l77_i21_w1);

82 distance_w11 = distance_w17 + sqr(temp_l77_i22_w1);

83 distance_w10 = distance_w11 + sqr(temp_l77_i23_w1);

84 distance_w2 = distance_w10 + sqr(temp_l77_i24_w1);

85 distance_w1 = distance_w2 + sqr(temp_l77_i25_w1);

86 distance_w5 = distance_w1 + sqr(temp_l77_i26_w1);

87 distance_w31 = distance_w5 + sqr(temp_l77_i27_w1);

88 distance_w26 = distance_w31 + distance_w3;

89 distance_w25 = distance_w26 + sqr(temp_l77_i32_w1);

90 distance_array[i] = sqrtf(distance_w25);

91 }

92 }

93
94 void epilogue(char knownClasses[8], double distance_array_1[4], double

distance_array_0[4], char *out)

95 {

96 // Step 2: Initialize local variables

97 char BestPointsClasses[3];

98 double BestPointsDistances[3];

99 char c1_w1;

100 char c2_w1;

101 char c3_w1;

102 char cbest_w1;

103 ...

104 char cbest_w8;

105
106 char classID_w1;

B.3 kNN 73

107 char classID_w2;

108 char classID_w3;

109 char classID_w4;

110
111 double d1_w1;

112 double d2_w1;

113 double d3_w1;

114
115 float dbest_w1;

116 ...

117 float dbest_w32;

118
119 int index_w1;

120 int index_w24;

121
122 double max_tmp_w1;

123 ...

124 double max_tmp_w24;

125
126 float max_w1;

127 ...

128 float max_w24;

129
130 double mindist_w1;

131 double mindist_w2;

132
133 double muxOutput_w1;

134 ...

135 double muxOutput_w16;

136
137 double operationOutput_w1;

138 ...

139 double operationOutput_w38;

140
141 // Initialization done

142 max_tmp_w15 = 0;

143 max_tmp_w8 = 0;

144 max_tmp_w13 = 0;

145 max_tmp_w6 = 0;

146 max_tmp_w24 = 0;

147 max_tmp_w19 = 0;

148 max_tmp_w1 = 0;

149 max_tmp_w4 = 0;

150 BestPointsDistances[2] = MAXDISTANCE;

151 BestPointsDistances[0] = MAXDISTANCE;

152 BestPointsDistances[1] = MAXDISTANCE;

153 BestPointsClasses[0] = NUM_CLASSES;

154 BestPointsClasses[1] = NUM_CLASSES;

155 BestPointsClasses[2] = NUM_CLASSES;

74 Framework output

156
157 dbest_w18 = BestPointsDistances[0];

158 dbest_w32 = BestPointsDistances[1];

159 dbest_w23 = BestPointsDistances[2];

160
161 operationOutput_w21 = dbest_w18 > max_tmp_w4;

162
163 index_w7 = operationOutput_w21 ? 0 : 0;

164 max_w24 = operationOutput_w21 ? dbest_w18 : 0;

165
166 max_tmp_w22 = max_w24;

167
168 ...

169
170 muxOutput_w3 = operationOutput_w2 ? knownClasses[0] : cbest_w3;

171 muxOutput_w1 = operationOutput_w2 ? distance_array_0[0] : dbest_w2;

172
173 BestPointsClasses[index_w4] = muxOutput_w3;

174 BestPointsDistances[index_w4] = muxOutput_w1;

175
176 dbest_w9 = BestPointsDistances[0];

177 dbest_w5 = BestPointsDistances[1];

178 dbest_w27 = BestPointsDistances[2];

179
180 ...

181
182 c1_w1 = BestPointsClasses[0];

183 c2_w1 = BestPointsClasses[1];

184 c3_w1 = BestPointsClasses[2];

185 d1_w1 = BestPointsDistances[0];

186 d2_w1 = BestPointsDistances[1];

187 d3_w1 = BestPointsDistances[2];

188
189 mindist_w1 = d1_w1;

190 operationOutput_w6 = c1_w1 == c3_w1;

191 operationOutput_w8 = c1_w1 == c2_w1;

192 operationOutput_w14 = c2_w1 == c3_w1;

193
194 operationOutput_w5 = mindist_w1 > d2_w1;

195 operationOutput_w32 = mindist_w1 > d2_w1;

196
197 classID_w1 = operationOutput_w5 ? c2_w1 : c1_w1;

198 mindist_w2 = operationOutput_w32 ? d2_w1 : d1_w1;

199
200 operationOutput_w27 = mindist_w2 > d3_w1;

201
202 classID_w3 = operationOutput_w27 ? c3_w1 : classID_w1;

203
204 classID_w2 = operationOutput_w14 ? c2_w1 : classID_w3;

B.3 kNN 75

205
206 classID_w4 = operationOutput_w6 ? c1_w1 : classID_w2;

207
208 *out = operationOutput_w8 ? c1_w1 : classID_w4;

209 }

210
211 void kNN_8p32f_2parallel_saveEnergy(double xFeatures[32], char knownClasses

[8], double knownFeatures_0[4][32], double knownFeatures_1[4][32], char

*out)

212 {

213 // Step 2: Initialize local variables

214 double distance_array_0[4];

215 double distance_array_1[4];

216 #pragma HLS ARRAY_PARTITION variable = xFeatures cyclic factor = 32 dim =

1

217 #pragma HLS ARRAY_PARTITION variable = knownFeatures_0 cyclic factor = 3

dim = 2

218 #pragma HLS ARRAY_PARTITION variable = knownFeatures_1 cyclic factor = 3

dim = 2

219 // Initialization done

220 #pragma HLS dataflow

221
222 parallel_0(knownFeatures_0, xFeatures, distance_array_0);

223 parallel_0(knownFeatures_1, xFeatures, distance_array_1);

224
225 epilogue(knownClasses, distance_array_1, distance_array_0, out);

226 }

Listing B.3: Framework output for the kNN benchmark (8 data points, 32 features) with 2

parallel calls.

1 #include <stdio.h>

2 #include <math.h>

3 #include <stdlib.h>

4 #include <string.h>

5 #include <float.h>

6
7 #define NUM_CLASSES 2

8 #define MAXDISTANCE DBL_MAX

9 #define sqr(x) ((x) * (x))

10
11 void parallel_0(float knownFeatures[500][32], float xFeatures[32], float

distance_array[500])

12 {

13 // Step 2: Initialize local variables

14 float distance_w1;

15 float distance_w10;

16 float distance_w11;

76 Framework output

17 float distance_w12;

18 float distance_w13;

19 float distance_w14;

20 float distance_w15;

21 float distance_w16;

22 float distance_w17;

23 float distance_w18;

24 float distance_w19;

25 float distance_w2;

26 float distance_w20;

27 float distance_w21;

28 float distance_w22;

29 float distance_w23;

30 float distance_w24;

31 float distance_w25;

32 float distance_w26;

33 float distance_w27;

34 float distance_w28;

35 float distance_w29;

36 float distance_w3;

37 float distance_w30;

38 float distance_w31;

39 float distance_w4;

40 float distance_w5;

41 float distance_w6;

42 float distance_w7;

43 float distance_w8;

44 float distance_w9;

45 float temp_l77_i10_w1;

46 float temp_l77_i11_w1;

47 float temp_l77_i12_w1;

48 float temp_l77_i13_w1;

49 float temp_l77_i14_w1;

50 float temp_l77_i15_w1;

51 float temp_l77_i16_w1;

52 float temp_l77_i17_w1;

53 float temp_l77_i18_w1;

54 float temp_l77_i19_w1;

55 float temp_l77_i1_w1;

56 float temp_l77_i20_w1;

57 float temp_l77_i21_w1;

58 float temp_l77_i22_w1;

59 float temp_l77_i23_w1;

60 float temp_l77_i24_w1;

61 float temp_l77_i25_w1;

62 float temp_l77_i26_w1;

63 float temp_l77_i27_w1;

64 float temp_l77_i28_w1;

65 float temp_l77_i29_w1;

B.3 kNN 77

66 float temp_l77_i2_w1;

67 float temp_l77_i30_w1;

68 float temp_l77_i31_w1;

69 float temp_l77_i32_w1;

70 float temp_l77_i3_w1;

71 float temp_l77_i4_w1;

72 float temp_l77_i5_w1;

73 float temp_l77_i6_w1;

74 float temp_l77_i7_w1;

75 float temp_l77_i8_w1;

76 float temp_l77_i9_w1;

77 // Initialization done

78 // starting Loop

79 for (int i = 0; i < 500; i = i + 1)

80 {

81 #pragma HLS pipeline II = 3

82
83 temp_l77_i1_w1 = xFeatures[0] - knownFeatures[i][0];

84 temp_l77_i2_w1 = xFeatures[1] - knownFeatures[i][1];

85 temp_l77_i3_w1 = xFeatures[2] - knownFeatures[i][2];

86 temp_l77_i4_w1 = xFeatures[3] - knownFeatures[i][3];

87 temp_l77_i5_w1 = xFeatures[4] - knownFeatures[i][4];

88 temp_l77_i6_w1 = xFeatures[5] - knownFeatures[i][5];

89 temp_l77_i7_w1 = xFeatures[6] - knownFeatures[i][6];

90 temp_l77_i8_w1 = xFeatures[7] - knownFeatures[i][7];

91 temp_l77_i9_w1 = xFeatures[8] - knownFeatures[i][8];

92 temp_l77_i10_w1 = xFeatures[9] - knownFeatures[i][9];

93 temp_l77_i11_w1 = xFeatures[10] - knownFeatures[i][10];

94 temp_l77_i12_w1 = xFeatures[11] - knownFeatures[i][11];

95 temp_l77_i13_w1 = xFeatures[12] - knownFeatures[i][12];

96 temp_l77_i14_w1 = xFeatures[13] - knownFeatures[i][13];

97 temp_l77_i15_w1 = xFeatures[14] - knownFeatures[i][14];

98 temp_l77_i16_w1 = xFeatures[15] - knownFeatures[i][15];

99 temp_l77_i17_w1 = xFeatures[16] - knownFeatures[i][16];

100 temp_l77_i18_w1 = xFeatures[17] - knownFeatures[i][17];

101 temp_l77_i19_w1 = xFeatures[18] - knownFeatures[i][18];

102 temp_l77_i20_w1 = xFeatures[19] - knownFeatures[i][19];

103 temp_l77_i21_w1 = xFeatures[20] - knownFeatures[i][20];

104 temp_l77_i22_w1 = xFeatures[21] - knownFeatures[i][21];

105 temp_l77_i23_w1 = xFeatures[22] - knownFeatures[i][22];

106 temp_l77_i24_w1 = xFeatures[23] - knownFeatures[i][23];

107 temp_l77_i25_w1 = xFeatures[24] - knownFeatures[i][24];

108 temp_l77_i26_w1 = xFeatures[25] - knownFeatures[i][25];

109 temp_l77_i27_w1 = xFeatures[26] - knownFeatures[i][26];

110 temp_l77_i28_w1 = xFeatures[27] - knownFeatures[i][27];

111 temp_l77_i29_w1 = xFeatures[28] - knownFeatures[i][28];

112 temp_l77_i30_w1 = xFeatures[29] - knownFeatures[i][29];

113 temp_l77_i31_w1 = xFeatures[30] - knownFeatures[i][30];

114 temp_l77_i32_w1 = xFeatures[31] - knownFeatures[i][31];

78 Framework output

115
116 distance_w26 = sqr(temp_l77_i6_w1) + sqr(temp_l77_i7_w1);

117 distance_w27 = sqr(temp_l77_i4_w1) + sqr(temp_l77_i5_w1);

118 distance_w28 = sqr(temp_l77_i2_w1) + sqr(temp_l77_i3_w1);

119 distance_w19 = sqr(temp_l77_i10_w1) + sqr(temp_l77_i11_w1);

120 distance_w4 = sqr(temp_l77_i28_w1) + sqr(temp_l77_i29_w1);

121 distance_w11 = sqr(temp_l77_i22_w1) + sqr(temp_l77_i23_w1);

122 distance_w14 = sqr(temp_l77_i12_w1) + sqr(temp_l77_i13_w1);

123 distance_w12 = sqr(temp_l77_i14_w1) + sqr(temp_l77_i15_w1);

124 distance_w10 = sqr(temp_l77_i16_w1) + sqr(temp_l77_i17_w1);

125 distance_w6 = sqr(temp_l77_i26_w1) + sqr(temp_l77_i27_w1);

126 distance_w30 = 0 + sqr(temp_l77_i1_w1);

127 distance_w21 = sqr(temp_l77_i20_w1) + sqr(temp_l77_i21_w1);

128 distance_w24 = sqr(temp_l77_i18_w1) + sqr(temp_l77_i19_w1);

129 distance_w20 = sqr(temp_l77_i8_w1) + sqr(temp_l77_i9_w1);

130 distance_w1 = sqr(temp_l77_i24_w1) + sqr(temp_l77_i25_w1);

131 distance_w3 = sqr(temp_l77_i30_w1) + sqr(temp_l77_i31_w1);

132
133 distance_w2 = distance_w4 + distance_w3;

134 distance_w5 = distance_w1 + distance_w6;

135 distance_w8 = distance_w21 + distance_w11;

136 distance_w13 = distance_w14 + distance_w12;

137 distance_w18 = distance_w20 + distance_w19;

138 distance_w9 = distance_w10 + distance_w24;

139 distance_w25 = distance_w27 + distance_w26;

140 distance_w29 = distance_w30 + distance_w28;

141
142 distance_w31 = distance_w5 + distance_w2;

143 distance_w7 = distance_w9 + distance_w8;

144 distance_w23 = distance_w18 + distance_w13;

145 distance_w22 = distance_w29 + distance_w25;

146
147 distance_w16 = distance_w22 + distance_w23;

148 distance_w17 = distance_w7 + distance_w31;

149
150 distance_w15 = distance_w16 + distance_w17;

151
152 distance_array[i] = distance_w15 + sqr(temp_l77_i32_w1);

153 }

154 }

155
156 void epilogue_0(char knownClasses[500], float distance_array[500], float

BPD[3], char BPC[3])

157 {

158 // Step 2: Initialize local variables

159 char BestPointsClasses[3];

160 float BestPointsDistances[3];

161 #pragma HLS ARRAY_PARTITION variable = BestPointsClasses complete dim = 1

162 #pragma HLS ARRAY_PARTITION variable = BestPointsDistances complete dim = 1

B.3 kNN 79

163
164 BestPointsDistances[0] = MAXDISTANCE;

165 BestPointsDistances[2] = MAXDISTANCE;

166 BestPointsDistances[1] = MAXDISTANCE;

167 BestPointsClasses[1] = NUM_CLASSES;

168 BestPointsClasses[0] = NUM_CLASSES;

169 BestPointsClasses[2] = NUM_CLASSES;

170 float max;

171 int index;

172 float distance;

173 float dbest;

174 float max_tmp;

175 char cbest;

176 for (int pi0 = 0; pi0 < 500; pi0++)

177 {

178 #pragma HLS PIPELINE

179 max = 0;

180 index = 0;

181 distance = distance_array[pi0];

182
183 //find the worst point in the BestPoints

184 for (int i = 0; i < 3; i++)

185 {

186 dbest = BestPointsDistances[i];

187 max_tmp = max;

188 max = (dbest > max_tmp) ? dbest : max;

189 index = (dbest > max_tmp) ? i : index;

190 }

191 // if the point is better (shorter distance) than the worst one (longer

distance) in the BestPoints

192 // update BestPoints substituting the wrost one

193
194 dbest = BestPointsDistances[index];

195 cbest = BestPointsClasses[index];

196
197 BestPointsDistances[index] = (distance < max) ? distance : dbest;

198 BestPointsClasses[index] = (distance < max) ? knownClasses[pi0] : cbest

;

199 }

200 BPD[0] = BestPointsDistances[0];

201 BPD[1] = BestPointsDistances[1];

202 BPD[2] = BestPointsDistances[2];

203 BPC[0] = BestPointsClasses[0];

204 BPC[1] = BestPointsClasses[1];

205 BPC[2] = BestPointsClasses[2];

206 }

207
208 void epilogue(float BPD0[3], char BPC0[3], float BPD1[3], char BPC1[3],

char *out)

80 Framework output

209 {

210 int bestDistances[6];

211 int bestClasses[6];

212 #pragma HLS ARRAY_PARTITION variable = bestDistances complete dim = 1

213 #pragma HLS ARRAY_PARTITION variable = bestClasses complete dim = 1

214 float d1 = MAXDISTANCE, d2 = MAXDISTANCE, d3 = MAXDISTANCE;

215 char c1, c2, c3;

216 for (int i = 0; i < 6; i++)

217 {

218 bestDistances[i] = BPD0[i];

219 bestDistances[i + 3] = BPD1[i];

220 bestClasses[i] = BPC0[i];

221 bestClasses[i + 3] = BPC1[i];

222 }

223
224 for (int j = 0; j < 6; j++)

225 {

226 if (bestDistances[j] < d1)

227 {

228 d3 = d2;

229 c3 = c2;

230 d2 = d1;

231 c2 = c1;

232 d1 = bestDistances[j];

233 c1 = bestClasses[j];

234 }

235 else if (bestDistances[j] < d2)

236 {

237 d3 = d2;

238 c3 = c2;

239 d2 = bestDistances[j];

240 c2 = bestClasses[j];

241 }

242 else if (bestDistances[j] < d3)

243 {

244 d3 = bestDistances[j];

245 c3 = bestClasses[j];

246 }

247 }

248
249 char classID = c1;

250 float mindist = d1;

251
252 classID = (c2 == c3) ? c2 : classID;

253
254 *out = classID;

255 }

256
257 void kNNFloatNoSqrt1000p32f_2parallel(

B.3 kNN 81

258 float xFeatures[32], char knownClasses0[500],

259 char knownClasses1[500], float knownFeatures_0[500][32],

260 float knownFeatures_1[500][32], char *out)

261 {

262 // Step 2: Initialize local variables

263 float distance_array_0[500];

264 float distance_array_1[500];

265 float BPD0[3];

266 float BPD1[3];

267 char BPC0[3];

268 char BPC1[3];

269 #pragma HLS ARRAY_PARTITION variable = BPD0 complete dim = 1

270 #pragma HLS ARRAY_PARTITION variable = BPD1 complete dim = 1

271 #pragma HLS ARRAY_PARTITION variable = BPC0 complete dim = 1

272 #pragma HLS ARRAY_PARTITION variable = BPC1 complete dim = 1

273 #pragma HLS ARRAY_PARTITION variable = xFeatures cyclic factor = 32 dim = 1

274 #pragma HLS ARRAY_PARTITION variable = knownFeatures_0 cyclic factor = 16

dim = 2

275 #pragma HLS ARRAY_PARTITION variable = knownFeatures_1 cyclic factor = 16

dim = 2

276 // Initialization done

277 #pragma HLS dataflow

278
279 parallel_0(knownFeatures_0, xFeatures, distance_array_0);

280 parallel_0(knownFeatures_1, xFeatures, distance_array_1);

281
282 epilogue_0(knownClasses0, distance_array_0, BPD0, BPC0);

283 epilogue_0(knownClasses1, distance_array_1, BPD1, BPC1);

284 epilogue(BPD0, BPC0, BPD1, BPC1, out);

285 }

Listing B.4: kNN benchmark with a manually written epilogue (1000 data points, 32 features)

with 2 parallel calls.

82 Framework output

Appendix C

Configuration file

This chapter contains an example of the configuration file that was used in the kNN benchmark.

1 {

2 "inputs": [

3 "xFeatures[32]",

4 "knownFeatures[8][32]",

5 "knownClasses[8]"

6],

7 "input_types": [

8 "double",

9 "double",

10 "char"

11],

12 "outputs": [

13 "*out"

14],

15 "output_types": [

16 "char"

17],

18 "fold": true,

19 "parallelizeSums": false,

20 "arithmetic": true,

21 "pruneLocalArrays": false,

22 "graph": "kNN8p32f.dot",

23 "outputFile": "kNN_output",

24 "saveEnergy": true,

25 "parallelFunctions": 2,

26 "maxNodesPerSubgraph": 1000,

27 "subgraphRepeats": 0,

28 "minFoldLevels": 30,

29 "maxFoldLevels": 70,

30 "varsToPartition": [

31 {

32 "var": "knownFeatures",

33 "dim": 0

83

84 Configuration file

34 }

35],

36 "includes": [

37 "<stdio.h>",

38 "<math.h>",

39 "<stdlib.h>",

40 "<string.h>",

41 "<float.h>"

42],

43 "defines": [

44 "NUM_CLASSES 2",

45 "MAXDISTANCE DBL_MAX",

46 "sqr(x) ((x)*(x))"

47]

48 }

Listing C.1: Sample configuration file for the kNN benchmark.

Appendix D

User Configurations

This appendix describes the user configuration options that allow controlling of the backend exe-

cution.

Table D.1: Examples and description of each mandatory configuration option.

Configuration Option Value Brief Description

"inputs"

[
"test_vector[18]",

"sup_vectors[18][1274]",
"sv_coeff[1274]"

]

Input arguments of the top-level function.
If an input is an array, then it has only read accesses.

"input_types" ["float","float","float"] C types of each input.

"outputs" ["*y"]
Output arguments of the top-level function.
Outputs are pointers or arrays which have write operations.

"output_types" ["int"] C types of each output.

"graph" "svm1274.dot" Path to the file that contains the input DFG.

"outputFile" "svm1274parallel1"
Name of the file to be output.
The .c extension will be added automatically.
This name will also be used as the name of the top-level function.

85

86 User Configurations

Table D.2: Examples and description of each optional configuration.

Configuration Option Value Default Value Brief Description

"fold" true false

If true, the graph will be restructured to use the
dataflow directive. The backend will search for
the best subgraph that can be executed in parallel
and wrap it into a function that folds all parallel
subgraphs into a loop.

"parallelizeSums" true false
If true, the ParallelizeSums algorithm will execute
after the Pruning algorithm.

"arithmetic" true true
If true, the ArithmeticOptimisations algorithm will
execute before printing the restructured code.

"pruneLocalArrays" true true
If true, it will replace all positions of local arrays by
new scalar variables. Don’t use if there are positions
which can only be calculated in run-time.

"saveEnergy" false false
If true, it may reduce the array partition factors to
generate more area-efficient implementations.

"parallelFunctions" 1 1
The number of calls to the function that can be
executed in parallel.

"maxNodesPerSubgraph" 1000 1000
Upper bound on the number of nodes that can exist
in each parallel subgraph.

"subgraphRepeats" 0 0
If 0, then it has no effect.
Otherwise, it sets the number of times that the
parallel subgraphs repeat themselfs.

"minFoldLevels" 1 1
Sets the minimum number of levels of each parallel
subgraph. This option has high impact in execution
time.

"maxFoldLevels" 100 100
Sets the maximum number of levels of each parallel
subgraph. This option has high impact in execution
time.

"varsToPartition"

[
{"var": "sup_vectors",

"dim: 1},
{"var": "sv_coeff",

"dim: 0}]

[]
Sets the vars and respective dimensions that should
be split to allow for data-level parallelism.

"includes" ["<math.h>"] [] List of includes to be written in the output file.

"defines" [] [] List of defines to be written in the output file.

References

[1] Miron Abramovici and Daniel Saab. Satisfiability on Reconfigurable Hardware. In Wayne
Luk, Peter Y. K. Cheung, and Manfred Glesner, editors, Field-Programmable Logic and
Applications, pages 448–456, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[2] Shereen Afifi, Hamid GholamHosseini, and Roopak Sinha. FPGA Implementations of
SVM Classifiers: A Review. SN Computer Science, 1:1–17, 2020. doi:10.1007/
s42979-020-00128-9.

[3] Arvind. Bluespec: A Language for Hardware Design, Simulation, Synthesis and Verifi-
cation Invited Talk. In Proceedings of the First ACM and IEEE International Conference
on Formal Methods and Models for Co-Design, MEMOCODE ’03, page 249, USA, 2003.
IEEE Computer Society.

[4] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Hus-
bands, Kurt Keutzer, David A Patterson, William Lester Plishker, John Shalf, Samuel Webb
Williams, and Katherine A Yelick. The Landscape of Parallel Computing Research: A
View from Berkeley. Technical report, UC Berkley, USA, 2006.

[5] Peter J Ashenden. The VHDL Cookbook. Department of Computer Science, University of
Adelaide, 1990.

[6] N. Azizi, I. Kuon, A. Egier, A. Darabiha, and P. Chow. Reconfigurable Molecular Dynamics
Simulator. In 12th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 197–206, April 2004. doi:10.1109/FCCM.2004.48.

[7] David F. Bacon, Rodric Rabbah, and Sunil Shukla. FPGA Programming for the Masses.
Commun. ACM, 56(4):56–63, April 2013. doi:10.1145/2436256.2436271.

[8] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrah-
man Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman Amarasinghe.
Tiramisu: A Polyhedral Compiler for Expressing Fast and Portable Code. In Proceedings
of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization,
CGO 2019, page 193–205. IEEE Press, 2019.

[9] I. J. Bertolacci, M. M. Strout, S. Guzik, J. Riley, and C. Olschanowsky. Identifying
and Scheduling Loop Chains Using Directives. In 2016 Third Workshop on Accelerator
Programming Using Directives (WACCPD), pages 57–67, Nov 2016. doi:10.1109/
WACCPD.2016.010.

[10] João Bispo and João M.P. Cardoso. Clava: C/C++ source-to-source compilation using
LARA. SoftwareX, 12:100565, 2020. doi:doi.org/10.1016/j.softx.2020.
100565.

87

https://doi.org/10.1007/s42979-020-00128-9
https://doi.org/10.1007/s42979-020-00128-9
https://doi.org/10.1109/FCCM.2004.48
https://doi.org/10.1145/2436256.2436271
https://doi.org/10.1109/WACCPD.2016.010
https://doi.org/10.1109/WACCPD.2016.010
https://doi.org/doi.org/10.1016/j.softx.2020.100565
https://doi.org/doi.org/10.1016/j.softx.2020.100565

88 REFERENCES

[11] Mihai Budiu, Pedro V. Artigas, and Seth Copen Goldstein. Dataflow: A Complement to
Superscalar. In IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 177–186, Austin, TX, Mar 2005. URL: www.cs.cmu.edu/
~seth/papers/budiu-ispass05.pdf.

[12] T. J. Callahan, J. R. Hauser, and J. Wawrzynek. The Garp Architecture and C Compiler.
Computer, 33(4):62–69, April 2000. doi:10.1109/2.839323.

[13] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason H.
Anderson, Stephen Brown, and Tomasz Czajkowski. LegUp: High-Level Synthesis for
FPGA-Based Processor/Accelerator Systems. In Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, FPGA ’11, page 33–36,
New York, NY, USA, 2011. Association for Computing Machinery. doi:10.1145/
1950413.1950423.

[14] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz
Czajkowski, Stephen Brown, and Jason Anderson. LegUp: An Open-Source High-Level
Synthesis Tool for FPGA-Based Processor/Accelerator Systems. ACM Transactions on
Embedded Computing Systems (TECS), 13, 09 2013. doi:10.1145/2514740.

[15] João M. P. Cardoso, Pedro C. Diniz, Zlatko Petrov, Koen Bertels, Michael Hübner, Hans
van Someren, Fernando Gonçalves, José Gabriel F. de Coutinho, George A. Constan-
tinides, Bryan Olivier, Wayne Luk, Juergen Becker, Georgi Kuzmanov, Florian Thoma,
Lars Braun, Matthias Kühnle, Razvan Nane, Vlad Mihai Sima, Kamil Krátký, José Car-
los Alves, and João Canas Ferreira. REFLECT: Rendering FPGAs to Multi-core Em-
bedded Computing. In João M. P. Cardoso and Michael Hübner, editors, Reconfig-
urable Computing, pages 261–289. Springer New York, New York, NY, 2011. doi:
10.1007/978-1-4614-0061-5_11.

[16] João M. P. Cardoso and Markus Weinhardt. High-Level Synthesis, pages 23–47. Springer
International Publishing, Cham, 2016. doi:10.1007/978-3-319-26408-0_2.

[17] William Carter. A User Programmable Reconfigurable Gate Array. In Proc. Custom Inte-
grated Circuits Conf., May 1986, 1986.

[18] Y. H. Cho and W. H. Mangione-Smith. Deep Packet Filter with Dedicated Logic and Read
Only Memories. In 12th Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines, pages 125–134, April 2004. doi:10.1109/FCCM.2004.25.

[19] N. Chugh, V. Vasista, S. Purini, and U. Bondhugula. A DSL Compiler for Accelerat-
ing Image Processing Pipelines on FPGAs. In 2016 International Conference on Paral-
lel Architecture and Compilation Techniques (PACT), pages 327–338, Sep. 2016. doi:
10.1145/2967938.2967969.

[20] T. Cover and P. Hart. Nearest Neighbor Pattern Classification. IEEE Transactions on
Information Theory, 13(1):21–27, 1967.

[21] Zefu Dai and Jianwen Zhu. Saturating the Transceiver Bandwidth: Switch Fabric Design
on FPGAs. In Proceedings of the ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, FPGA ’12, page 67–76, New York, NY, USA, 2012. Association
for Computing Machinery. doi:10.1145/2145694.2145706.

www.cs.cmu.edu/~seth/papers/budiu-ispass05.pdf
www.cs.cmu.edu/~seth/papers/budiu-ispass05.pdf
https://doi.org/10.1109/2.839323
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/2514740
https://doi.org/10.1007/978-1-4614-0061-5_11
https://doi.org/10.1007/978-1-4614-0061-5_11
https://doi.org/10.1007/978-3-319-26408-0_2
https://doi.org/10.1109/FCCM.2004.25
https://doi.org/10.1145/2967938.2967969
https://doi.org/10.1145/2967938.2967969
https://doi.org/10.1145/2145694.2145706

REFERENCES 89

[22] Eddie C. Davis, Michelle Mills Strout, and Catherine Olschanowsky. Transforming Loop
Chains via Macro Dataflow Graphs. In Proceedings of the 2018 International Symposium
on Code Generation and Optimization, CGO 2018, page 265–277, New York, NY, USA,
2018. Association for Computing Machinery. doi:10.1145/3168832.

[23] A. DeHon. Unifying Mesh- and Tree-Based Programmable Interconnect. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 12(10):1051–1065, Oct 2004.
doi:10.1109/TVLSI.2004.834237.

[24] E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and M. D. Santambrogio. A Unified Back-
end for Targeting FPGAs from DSLs. In 2018 IEEE 29th International Conference on
Application-specific Systems, Architectures and Processors (ASAP), pages 1–8, July 2018.
doi:10.1109/ASAP.2018.8445108.

[25] The DOT Language. URL: graphviz.gitlab.io/_pages/doc/info/lang.
html [cited 2020-01-23].

[26] Saar Drimer, Tim Güneysu, and Christof Paar. DSPs, BRAMs, and a Pinch of Logic:
Extended Recipes for AES on FPGAs. ACM Trans. Reconfigurable Technol. Syst., 3(1),
January 2010. doi:10.1145/1661438.1661441.

[27] Esam El-Araby, Tarek El-Ghazawi, J. Le Moigne, and K. Gaj. Wavelet Spectral Dimen-
sion Reduction of Hyperspectral Imagery on a Reconfigurable Computer. In Proceed-
ings. 2004 IEEE International Conference on Field- Programmable Technology (IEEE Cat.
No.04EX921), pages 399–402, Dec 2004. doi:10.1109/FPT.2004.1393309.

[28] Tom Feist. Vivado Design Suite. White Paper, 5:30, 2012.

[29] Daniel A. P. L. Fernandes and João M. P. Cardoso. Accelerating Human Activity Recogni-
tion Systems on FPGAs through a DSL approach. In FSP Workshop 2019; Sixth Interna-
tional Workshop on FPGAs for Software Programmers, pages 1–8. VDE, 2019.

[30] A. C. Ferreira. Restructuring Software Code for High-Level Synthesis using a Graph-based
Approach Targeting FPGAs. Master’s thesis, MIEEC program, Faculty of Engineering of
the University of Porto, Portugal, July 2018.

[31] A. C. Ferreira and João M. P. Cardoso. Graph-Based Code Restructuring Targeting HLS
for FPGAs. In Christian Hochberger, Brent Nelson, Andreas Koch, Roger Woods, and
Pedro Diniz, editors, Applied Reconfigurable Computing, pages 230–244, Cham, 01 2019.
Springer International Publishing. doi:10.1007/978-3-030-17227-5_17.

[32] A. C. Ferreira and João M. P. Cardoso. Unfolding and Folding: a New Approach for
Code Restructuring targeting HLS for FPGAs. In FSP Workshop 2018; Fifth International
Workshop on FPGAs for Software Programmers, pages 1–10, Aug 2018.

[33] Jörg Fickenscher, Frank Hannig, and Jürgen Teich. DSL-Based Acceleration of Automo-
tive Environment Perception and Mapping Algorithms for Embedded CPUs, GPUs, and
FPGAs. In Martin Schoeberl, Christian Hochberger, Sascha Uhrig, Jürgen Brehm, and
Thilo Pionteck, editors, Architecture of Computing Systems – ARCS 2019, pages 71–86,
Cham, 2019. Springer International Publishing.

[34] Peter Flake, Phil Moorby, Steve Golson, Arturo Salz, and Simon Davidmann. Verilog HDL
and Its Ancestors and Descendants. Proc. ACM Program. Lang., 4(HOPL), June 2020.
doi:10.1145/3386337.

https://doi.org/10.1145/3168832
https://doi.org/10.1109/TVLSI.2004.834237
https://doi.org/10.1109/ASAP.2018.8445108
graphviz.gitlab.io/_pages/doc/info/lang.html
graphviz.gitlab.io/_pages/doc/info/lang.html
https://doi.org/10.1145/1661438.1661441
https://doi.org/10.1109/FPT.2004.1393309
https://doi.org/10.1007/978-3-030-17227-5_17
https://doi.org/10.1145/3386337

90 REFERENCES

[35] T. W. Fry and S. A. Hauck. SPIHT Image Compression on FPGAs. IEEE Transactions
on Circuits and Systems for Video Technology, 15(9):1138–1147, Sep. 2005. doi:10.
1109/TCSVT.2005.852625.

[36] M. Genovese and E. Napoli. ASIC and FPGA Implementation of the Gaussian Mixture
Model Algorithm for Real-Time Segmentation of High Definition Video. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 22(3):537–547, March 2014.
doi:10.1109/TVLSI.2013.2249295.

[37] Paul Graham and Brent E. Nelson. A Hardware Genetic Algorithm for the Travelling Sales-
man Problem on SPLASH 2. In Proceedings of the 5th International Workshop on Field-
Programmable Logic and Applications, FPL ’95, page 352–361, Berlin, Heidelberg, 1995.
Springer-Verlag.

[38] D. J. Greaves. Kiwi Scientific Acceleration at Large: Incremental Compilation and Multi-
FPGA HLS Demo. In 2017 27th International Conference on Field Programmable Logic
and Applications (FPL), pages 1–1, Sep. 2017. doi:10.23919/FPL.2017.8056830.

[39] Bastian Hagedorn, Sergei Gorlatch, and Michel Steuwer. An Extension of a Functional
Intermediate Language for Parallelizing Stencil Computations and its Optimizing GPU Im-
plementation using OpenCL. Master’s thesis, University of Münster, 2016.

[40] T. T. Hieu, T. N. Thinh, T. H. Vu, and S. Tomiyama. Optimization of Regular Expression
Processing Circuits for NIDS on FPGA. In 2011 Second International Conference on Net-
working and Computing, pages 105–112, Nov 2011. doi:10.1109/ICNC.2011.23.

[41] B. Hill, J. Smith, G. Srinivasa, K. Sonmez, A. Sirasao, A. Gupta, and M. Mukherjee. Pre-
cision Medicine and FPGA Technology: Challenges and Opportunities. In 2017 IEEE 60th
International Midwest Symposium on Circuits and Systems (MWSCAS), pages 655–658,
2017.

[42] D. T. Hoang. Searching Genetic Databases on SPLASH 2. In [1993] Proceedings IEEE
Workshop on FPGAs for Custom Computing Machines, pages 185–191, April 1993. doi:
10.1109/FPGA.1993.279464.

[43] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-1987, pages
1–218, 1988.

[44] IEEE. IEEE Standard Hardware Description Language Based on the Verilog(R) Hardware
Description Language. IEEE Std 1364-1995, pages 1–688, Oct 1996. doi:10.1109/
IEEESTD.1996.81542.

[45] IEEE. IEEE Standard Verilog Hardware Description Language. IEEE Std 1364-2001,
pages 1–792, 2001.

[46] IEEE. IEEE Standard for SystemVerilog: Unified Hardware Design, Specification and
Verification Language. IEEE Std 1800-2005, pages 1–648, 2005.

[47] IEEE. IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-2005
(Revision of IEEE Std 1364-2001), pages 1–590, 2006.

[48] IEEE. IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and
Verification Language. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), pages 1–
1315, Feb 2018. doi:10.1109/IEEESTD.2018.8299595.

https://doi.org/10.1109/TCSVT.2005.852625
https://doi.org/10.1109/TCSVT.2005.852625
https://doi.org/10.1109/TVLSI.2013.2249295
https://doi.org/10.23919/FPL.2017.8056830
https://doi.org/10.1109/ICNC.2011.23
https://doi.org/10.1109/FPGA.1993.279464
https://doi.org/10.1109/FPGA.1993.279464
https://doi.org/10.1109/IEEESTD.1996.81542
https://doi.org/10.1109/IEEESTD.1996.81542
https://doi.org/10.1109/IEEESTD.2018.8299595

REFERENCES 91

[49] IEEE. IEEE Standard for VHDL Language Reference Manual. IEEE Std 1076-2019, pages
1–673, 2019.

[50] Texas Instruments. SPRC265 TMS320c6000 DSP Library (DSPLIB) | TI.com. URL: www.
ti.com/tool/SPRC265 [cited 2020-01-11].

[51] Intel. Stratix R© IV FPGA Overview - Intel R© FPGAs. URL: www.intel.com/
content/www/us/en/products/programmable/fpga/stratix-iv.html
[cited 2020-01-23].

[52] Preston A. Jackson, Cy P. Chan, Jonathan E. Scalera, Charles M. Rader, and M. Michael
Vai. A Systolic FFT Architecture for Real Time FPGA Systems. Technical report, Mas-
sachusetts Institute of Technology Lincoln Laboratory, 2005.

[53] Arpith Jacob, Joseph Lancaster, Jeremy Buhler, Brandon Harris, and Roger D. Chamber-
lain. Mercury BLASTP: Accelerating Protein Sequence Alignment. ACM Trans. Reconfig-
urable Technol. Syst., 1(2), June 2008. doi:10.1145/1371579.1371581.

[54] Ju-wook Jang, Seonil Choi, and V. K. K. Prasanna. Area and Time Efficient Implemen-
tations of Matrix Multiplication on FPGAs. In 2002 IEEE International Conference on
Field-Programmable Technology, 2002. (FPT). Proceedings., pages 93–100, Dec 2002.
doi:10.1109/FPT.2002.1188669.

[55] F. L. Kastensmidt, L. Sterpone, L. Carro, and M. S. Reorda. On the Optimal Design of
Triple Modular Redundancy Logic for SRAM-based FPGAs. In Design, Automation and
Test in Europe, pages 1290–1295 Vol. 2, March 2005. doi:10.1109/DATE.2005.
229.

[56] Dirk Koch and Jim Torresen. FPGASort: A High Performance Sorting Architecture Ex-
ploiting Run-Time Reconfiguration on FPGAs for Large Problem Sorting. In Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA ’11, page 45–54, New York, NY, USA, 2011. Association for Computing Machin-
ery. doi:10.1145/1950413.1950427.

[57] Christopher D. Krieger, Michelle Mills Strout, Catherine Olschanowsky, Andrew Stone,
Stephen Guzik, Xinfeng Gao, Carlo Bertolli, Paul H.J. Kelly, Gihan Mudalige, Brian
Van Straalen, and Sam Williams. Loop Chaining: A Programming Abstraction for Bal-
ancing Locality and Parallelism. In 2013 IEEE International Symposium on Parallel
Distributed Processing, Workshops and Phd Forum, pages 375–384, May 2013. doi:
10.1109/IPDPSW.2013.68.

[58] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis,
Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, USA,
Dec 2002. See llvm.cs.uiuc.edu.

[59] Corinna Lee. UTDSP Benchmark Suite. URL: www.eecg.toronto.edu/
~corinna/ [cited 2020-01-11].

[60] E. Lemoine and D. Merceron. Run Time Reconfiguration of FPGA for Scanning Genomic
Databases. In Proceedings IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM’95), pages 90–98, April 1995. doi:10.1109/FPGA.1995.477414.

www.ti.com/tool/SPRC265
www.ti.com/tool/SPRC265
www.intel.com/content/www/us/en/products/programmable/fpga/stratix-iv.html
www.intel.com/content/www/us/en/products/programmable/fpga/stratix-iv.html
https://doi.org/10.1145/1371579.1371581
https://doi.org/10.1109/FPT.2002.1188669
https://doi.org/10.1109/DATE.2005.229
https://doi.org/10.1109/DATE.2005.229
https://doi.org/10.1145/1950413.1950427
https://doi.org/10.1109/IPDPSW.2013.68
https://doi.org/10.1109/IPDPSW.2013.68
www.eecg.toronto.edu/~corinna/
www.eecg.toronto.edu/~corinna/
https://doi.org/10.1109/FPGA.1995.477414

92 REFERENCES

[61] P. H. W. Leong, M. P. Leong, O. Y. H. Cheung, T. Tung, C. M. Kwok, M. Y. Wong, and
K. H. Lee. Pilchard — A Reconfigurable Computing Platform with Memory Slot Interface.
In Proceedings of the the 9th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, FCCM ’01, page 170–179, USA, 2001. IEEE Computer Society.

[62] J. C. Lyke, C. G. Christodoulou, G. A. Vera, and A. H. Edwards. An Introduction to
Reconfigurable Systems. Proceedings of the IEEE, 103(3):291–317, March 2015. doi:
10.1109/JPROC.2015.2397832.

[63] I. Mavroidis, I. Papaefstathiou, and D. Pnevmatikatos. A Fast FPGA-Based 2-Opt Solver
for Small-Scale Euclidean Traveling Salesman Problem. In 15th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM 2007), pages 13–22, April
2007. doi:10.1109/FCCM.2007.40.

[64] Rob McCready. Real-Time Face Detection on a Configurable Hardware System. In
Reiner W. Hartenstein and Herbert Grünbacher, editors, Field-Programmable Logic and
Applications: The Roadmap to Reconfigurable Computing, pages 157–162, Berlin, Heidel-
berg, 2000. Springer Berlin Heidelberg.

[65] Máire McLoone and John V. McCanny. Single-Chip FPGA Implementation of the Ad-
vanced Encryption Standard Algorithm. In Gordon Brebner and Roger Woods, editors,
Field-Programmable Logic and Applications, pages 152–161, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

[66] R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Körner, and W. Eckert. HIPAcc: A
Domain-Specific Language and Compiler for Image Processing. IEEE Transactions on Par-
allel and Distributed Systems, 27(1):210–224, Jan 2016. doi:10.1109/TPDS.2015.
2394802.

[67] Ashish Mishra, Mohit Agarwal, Abhijit Rameshwar Asati, and Kota Solomon Raju. Using
Graph Isomorphism for Mapping of Data Flow Applications on Reconfigurable Computing
Systems. Microprocessors and Microsystems, 51:343 – 355, 2017. doi:doi.org/10.
1016/j.micpro.2016.12.008.

[68] Andrew Moore. FPGAs For Dummies R©, 2nd Intel R© Special Edition. John Wiley & Sons,
Inc., 111 River St. Hoboken, 2 edition, 2017.

[69] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. PolyMage: Automatic Op-
timization for Image Processing Pipelines. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating Systems
- ASPLOS ’15, pages 429–443, Istanbul, Turkey, 2015. ACM Press. doi:10.1145/
2694344.2694364.

[70] S. Murugan M., P. Kumar B., C. M. Ananda, and G. Lakshminarayanan. Design Approach
for FPGA based High Bandwidth Fibre Channel Analyser for Aerospace Application. In
2019 4th International Conference on Electrical, Electronics, Communication, Computer
Technologies and Optimization Techniques (ICEECCOT), pages 223–227, 2019.

[71] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. Brown,
F. Ferrandi, J. Anderson, and K. Bertels. A Survey and Evaluation of FPGA High-Level
Synthesis Tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 35(10):1591–1604, Oct 2016. doi:10.1109/TCAD.2015.2513673.

https://doi.org/10.1109/JPROC.2015.2397832
https://doi.org/10.1109/JPROC.2015.2397832
https://doi.org/10.1109/FCCM.2007.40
https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/doi.org/10.1016/j.micpro.2016.12.008
https://doi.org/doi.org/10.1016/j.micpro.2016.12.008
https://doi.org/10.1145/2694344.2694364
https://doi.org/10.1145/2694344.2694364
https://doi.org/10.1109/TCAD.2015.2513673

REFERENCES 93

[72] J. H. Oh, Y. Hyun Yoon, J. K. Kim, H. Bin Ihm, S. H. Jeon, T. Heon Kim, and S. E. Lee.
An fpga-based electronic control unit for automotive systems. In 2019 IEEE International
Conference on Consumer Electronics (ICCE), pages 1–2, 2019.

[73] C. Olschanowsky, M. M. Strout, S. Guzik, J. Loffeld, and J. Hittinger. A Study on Bal-
ancing Parallelism, Data Locality, and Recomputation in Existing PDE Solvers. In SC ’14:
Proceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 793–804, Nov 2014. doi:10.1109/SC.2014.70.

[74] Samir Palnitkar. Verilog HDL: a guide to digital design and synthesis, volume 1. Prentice
Hall Professional, 2003.

[75] D. A. Patterson. RAMP: research accelerator for multiple processors - a community vi-
sion for a shared experimental parallel HW/SW platform. In 2006 IEEE International
Symposium on Performance Analysis of Systems and Software, pages 1–, March 2006.
doi:10.1109/ISPASS.2006.1620784.

[76] Peixin Zhong, M. Martonosi, P. Ashar, and S. Malik. Accelerating Boolean Satisfiabil-
ity with Configurable Hardware. In Proceedings. IEEE Symposium on FPGAs for Cus-
tom Computing Machines (Cat. No.98TB100251), pages 186–195, April 1998. doi:
10.1109/FPGA.1998.707896.

[77] Russell J. Petersen and Brad Hutchings. An Assessment of the Suitability of FPGA-Based
Systems for Use in Digital Signal Processing. In Proceedings of the 5th International
Workshop on Field-Programmable Logic and Applications, FPL ’95, page 293–302, Berlin,
Heidelberg, 1995. Springer-Verlag.

[78] Carl Adam Petri and Wolfgang Reisig. Petri Net. Scholarpedia, 3(4):6477, 2008.

[79] Farzin Piltan, Omid Avatefipour, Samira Soltani, Omid Mahmoudi, Mahmoud Reza, Safaei
Nasrabad, Mehdi Eram, Zahra Esmaeili, Sara Heidari, Kamran Heidari, and Mohammad
Ebrahimi. Design FPGA-Based CL-Minimum Control Unit. International Journal of Hy-
brid Information Technology, 9:101–118, 01 2016. doi:10.14257/ijhit.2016.9.
1.10.

[80] H. Quinn and P. Graham. Terrestrial-Based Radiation Upsets: a Cautionary Tale. In
13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM’05), pages 193–202, April 2005. doi:10.1109/FCCM.2005.61.

[81] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman Amarasinghe. Halide: A Language and Compiler for Optimizing Parallelism,
Locality, and Recomputation in Image Processing Pipelines. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation, vol-
ume 48 of PLDI ’13, page 519–530, New York, NY, USA, June 2013. Association for
Computing Machinery. doi:10.1145/2491956.2462176.

[82] K. Ravindran, N. Satish, Yujia Jin, and K. Keutzer. An FPGA-Based Soft Multiprocessor
System for IPv4 Packet Forwarding. In International Conference on Field Programmable
Logic and Applications, 2005., pages 487–492, Aug 2005. doi:10.1109/FPL.2005.
1515769.

https://doi.org/10.1109/SC.2014.70
https://doi.org/10.1109/ISPASS.2006.1620784
https://doi.org/10.1109/FPGA.1998.707896
https://doi.org/10.1109/FPGA.1998.707896
https://doi.org/10.14257/ijhit.2016.9.1.10
https://doi.org/10.14257/ijhit.2016.9.1.10
https://doi.org/10.1109/FCCM.2005.61
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1109/FPL.2005.1515769
https://doi.org/10.1109/FPL.2005.1515769

94 REFERENCES

[83] Tiago Lascasas dos Santos. Acceleration of Applications with FPGA-based Computing
Machines: Code Restructuring. Master’s thesis, MIEIC program, Faculty of Engineering
of the University of Porto, Portugal, July 2020.

[84] M. Shand and J. Vuillemin. Fast Implementations of RSA Cryptography. In Proceedings
of IEEE 11th Symposium on Computer Arithmetic, pages 252–259, June 1993. doi:10.
1109/ARITH.1993.378085.

[85] J. Shen, Y. Qiao, Y. Huang, M. Wen, and C. Zhang. Towards a Multi-array Architecture
for Accelerating Large-scale Matrix Multiplication on FPGAs. In 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5, May 2018. doi:10.1109/
ISCAS.2018.8351474.

[86] Michael John Sebastian Smith. Application-Specific Integrated Circuits. Addison-Wesley
Professional, 1st edition, 2008.

[87] Robert Stewart, Kirsty Duncan, Greg Michaelson, Paulo Garcia, Deepayan Bhowmik,
and Andrew Wallace. RIPL: A Parallel Image Processing Language for FPGAs. ACM
Transactions on Reconfigurable Technology and Systems, 11(1):7:1–7:24, March 2018.
doi:10.1145/3180481.

[88] G. Stitt, B. Grattan, J. Villarreal, and F. Vahid. Using On-Chip Configurable Logic to
Reduce Embedded System Software Energy. In Proceedings. 10th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, pages 143–151, April 2002. doi:
10.1109/FPGA.2002.1106669.

[89] S. Summers, A. Rose, and Peter Sanders. Using MaxCompiler for the High Level Synthesis
of Trigger Algorithms. Journal of Instrumentation, 12:C02015–C02015, 02 2017. doi:
10.1088/1748-0221/12/02/C02015.

[90] M Sussmann and T Hill. Intel HLS Compiler: Fast Design, Coding, and Hardware. In
White paper. Intel, 2017.

[91] Keisuke Takano, Tetsuya Oda, and Masaki Kohata. Design of a DSL for Converting Rust
Programming Language into RTL. In Leonard Barolli, Yoshihiro Okada, and Flora Amato,
editors, Advances in Internet, Data and Web Technologies, pages 342–350, Cham, 2020.
Springer International Publishing.

[92] Abdelfatah Tamimi, Omaima Al-Allaf, and Mohammad Alia. Real-Time Group Face-
Detection for an Intelligent Class-Attendance System. International Journal of Information
Technology and Computer Science, 7:66–73, 05 2015. doi:10.5815/ijitcs.2015.
06.09.

[93] R. Tessier, K. Pocek, and A. DeHon. Reconfigurable Computing Architectures. Pro-
ceedings of the IEEE, 103(3):332–354, March 2015. doi:10.1109/JPROC.2014.
2386883.

[94] Stephen M Steve Trimberger. Three Ages of FPGAs: A Retrospective on the First Thirty
Years of FPGA Technology. IEEE Solid-State Circuits Magazine, 10(2):16–29, 2018.

[95] K. H. Tsoi, K. H. Lee, and P. H. W. Leong. A Massively Parallel RC4 Key Search En-
gine. In Proceedings of the 10th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, FCCM ’02, page 13, USA, 2002. IEEE Computer Society.

https://doi.org/10.1109/ARITH.1993.378085
https://doi.org/10.1109/ARITH.1993.378085
https://doi.org/10.1109/ISCAS.2018.8351474
https://doi.org/10.1109/ISCAS.2018.8351474
https://doi.org/10.1145/3180481
https://doi.org/10.1109/FPGA.2002.1106669
https://doi.org/10.1109/FPGA.2002.1106669
https://doi.org/10.1088/1748-0221/12/02/C02015
https://doi.org/10.1088/1748-0221/12/02/C02015
https://doi.org/10.5815/ijitcs.2015.06.09
https://doi.org/10.5815/ijitcs.2015.06.09
https://doi.org/10.1109/JPROC.2014.2386883
https://doi.org/10.1109/JPROC.2014.2386883

REFERENCES 95

[96] Vasileios Tsoutsouras, Konstantina Koliogeorgi, Sotirios Xydis, and Dimitrios Soudris. An
Exploration Framework for Efficient High-Level Synthesis of Support Vector Machines:
Case Study on ECG Arrhythmia Detection for Xilinx Zynq SoC. Journal of Signal Pro-
cessing Systems, 88(2):127–147, Aug 2017. doi:10.1007/s11265-017-1230-1.

[97] K. D. Underwood and K. S. Hemmert. Closing the gap: CPU and FPGA trends in sus-
tainable floating-point BLAS performance. In 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 219–228, April 2004. doi:10.
1109/FCCM.2004.21.

[98] J. Villasenor, C. Jones, and B. Schoner. Video Communications using Rapidly Recon-
figurable Hardware. IEEE Transactions on Circuits and Systems for Video Technology,
5(6):565–567, Dec 1995. doi:10.1109/76.475899.

[99] J. Villasenor, B. Schoner, Kang-Ngee Chia, C. Zapata, Hea Kim, C. Jones, S. Lansing, and
Bill mangione smith. Configurable Computing Solutions for Automatic Target Recognition.
In FPGAs for Custom Computing Machines, pages 70 – 79, 05 1996. doi:10.1109/
FPGA.1996.564749.

[100] Yutaka Watanabe, Jinpil Lee, Kentaro Sano, Taisuke Boku, and Mitsuhisa Sato. Design
and Preliminary Evaluation of OpenACC Compiler for FPGA with OpenCL and Stream
Processing DSL. In HPCAsia2020: Proceedings of the International Conference on High
Performance Computing in Asia-Pacific Region Workshops, pages 10–16, 01 2020. doi:
10.1145/3373271.3373274.

[101] Sewook Wee, Jared Casper, Njuguna Njoroge, Yuriy Teslyar, Daxia Ge, Christos Kozyrakis,
and Kunle Olukotun. A practical FPGA-based framework for novel CMP research. In
Proceedings of the ACM/SIGDA 15th International Symposium on Field Programmable
Gate Arrays, pages 116–125, 01 2007. doi:10.1145/1216919.1216936.

[102] Tao Wu, ShuGuo Li, and LiTian Liu. Fast RSA Decryption through High-Radix Scalable
Montgomery Modular Multipliers. Science China Information Sciences, 58(6):1–16, 2015.
doi:10.1007/s11432-014-5215-4.

[103] Xilinx. Spartan-3 FPGA Family Data Sheet, 2013. URL: www.xilinx.com/
support/documentation/data_sheets/ds099.pdf [cited 2020-09-05].

[104] Xilinx. 7 Series FPGAs Data Sheet: Overview, February 2018. URL:
www.xilinx.com/support/documentation/data_sheets/ds180_
7Series_Overview.pdf [cited 2020-05-09].

[105] Xilinx. Vivado Design Suite User Guide High-Level Synthesis, UG902, April
2018. URL: www.xilinx.com/support/documentation/sw_manuals/
xilinx2018_1/ug902-vivado-high-level-synthesis.pdf [cited 2020-
16-9].

[106] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya Ishii. CH-
Stone: A Benchmark Program Suite for Practical C-based High-Level Synthesis. In 2008
IEEE International Symposium on Circuits and Systems, pages 1192–1195, May 2008.
doi:10.1109/ISCAS.2008.4541637.

https://doi.org/10.1007/s11265-017-1230-1
https://doi.org/10.1109/FCCM.2004.21
https://doi.org/10.1109/FCCM.2004.21
https://doi.org/10.1109/76.475899
https://doi.org/10.1109/FPGA.1996.564749
https://doi.org/10.1109/FPGA.1996.564749
https://doi.org/10.1145/3373271.3373274
https://doi.org/10.1145/3373271.3373274
https://doi.org/10.1145/1216919.1216936
https://doi.org/10.1007/s11432-014-5215-4
www.xilinx.com/support/documentation/data_sheets/ds099.pdf
www.xilinx.com/support/documentation/data_sheets/ds099.pdf
www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug902-vivado-high-level-synthesis.pdf
www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug902-vivado-high-level-synthesis.pdf
https://doi.org/10.1109/ISCAS.2008.4541637

96 REFERENCES

[107] Ali Mustafa Zaidi and David Greaves. Value State Flow Graph: A Dataflow Compiler IR
for Accelerating Control-Intensive Code in Spatial Hardware. ACM Trans. Reconfigurable
Technol. Syst., 9(2), December 2015. doi:10.1145/2807702.

[108] G. L. Zhang, P. H. W. Leong, C. H. Ho, K. H. Tsoi, C. C. C. Cheung, D. . Lee, R. C. C. Che-
ung, and W. Luk. Reconfigurable Acceleration for Monte Carlo based Financial Simulation.
In Proceedings. 2005 IEEE International Conference on Field-Programmable Technology,
2005., pages 215–222, Dec 2005. doi:10.1109/FPT.2005.1568549.

[109] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He. Performance Modeling
and Directives Optimization for High-Level Synthesis on FPGA. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 39(7):1428–1441, July 2020.
doi:10.1109/TCAD.2019.2912916.

https://doi.org/10.1145/2807702
https://doi.org/10.1109/FPT.2005.1568549
https://doi.org/10.1109/TCAD.2019.2912916

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem Statement
	1.4 Objectives
	1.5 Contributions
	1.6 Dissertation Structure

	2 Background about FPGAs and HLS
	2.1 Reconfigurable Systems
	2.1.1 Benefits of Reconfigurability
	2.1.2 Limitations and Challenges
	2.1.3 Application domains

	2.2 FPGA's architecture
	2.3 Hardware Description Languages
	2.4 High-Level Synthesis Tools
	2.4.1 Xilinx Vivado HLS

	2.5 Domain Specific Languages
	2.6 Summary

	3 State of the Art
	3.1 Value State Flow Graph: A dataflow compiler IR for accelerating control-intensive code in spatial hardware
	3.2 A Trace-Based Approach for Code Restructuring targeting HLS for FPGAs
	3.3 Transforming Loop Chains via Macro Dataflow Graphs
	3.4 Using graph isomorphism for mapping of data flow applications on reconfigurable computing systems
	3.5 Summary

	4 Description of the Framework
	4.1 DFG DOT description requirements and specification
	4.1.1 Data reads and writes
	4.1.2 Arithmetic operations
	4.1.3 Variable nodes
	4.1.4 Constant nodes
	4.1.5 Ternary / conditional operators
	4.1.6 No operation node
	4.1.7 Assignment node
	4.1.8 Complex Assignment node
	4.1.9 Calls to functions

	4.2 Frontend limitations
	4.2.1 Information lost through tracing

	4.3 User configuration
	4.3.1 Mandatory configuration options

	4.4 Backend stages
	4.4.1 Pruning
	4.4.2 Leveling
	4.4.3 Balancing addition chains
	4.4.4 Isomorphic Matching
	4.4.5 Folding parallel subgraphs
	4.4.6 Prologue and Epilogue
	4.4.7 Arithmetic optimizations

	4.5 Summary

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Benchmarks Description
	5.2.1 SVM
	5.2.2 Dot Product
	5.2.3 kNN

	5.3 Synthesis Results
	5.3.1 SVM
	5.3.2 Dot Product
	5.3.3 kNN
	5.3.4 Summary

	5.4 Backend Execution Time & Scalability
	5.5 State of the Art Comparison
	5.5.1 SVM
	5.5.2 Dot Product
	5.5.3 kNN

	5.6 Summary

	6 Conclusions
	6.1 Concluding remarks
	6.2 Future work

	A Benchmarks
	A.1 SVM
	A.2 Dotprod
	A.3 kNN

	B Framework output
	B.1 SVM
	B.2 Dotprod
	B.3 kNN

	C Configuration file
	D User Configurations
	References

