140 research outputs found

    A Robot Operating System (ROS) based humanoid robot control

    Get PDF
    This thesis presents adapting techniques required to enhance the capability of a commercially available robot, namely, Robotis Bioloid Premium Humanoid Robot (BPHR). BeagleBone Black (BBB), the decision-making and implementing (intelligence providing) component, with multifunctional capabilities is used in this research. Robot operating System (ROS) and its libraries, as well as Python Script and its libraries have been developed and incorporated into the BBB. This fortified BBB intelligence providing component is then transplanted into the structure of the Robotis Bioloid humanoid robot, after removing the latter’s original decision-making and implementing component (controller). Thus, this study revitalizes the Bioloid humanoid robot by converting it into a humanoid robot with multiple features that can be inherited using ROS. This is a first of its kind approach wherein ROS is used as the development framework in conjunction with the main BBB controller and the software impregnated with Python libraries is used to integrate robotic functions. A full ROS computation is developed and a high level Application Programming Interface (API) usable by software utilizing ROS services is also developed. In this revised two-legged-humanoid robot, USB2Dynamixel connector is used to operate the Dynamixel AX-12A actuators through the Wi-Fi interface of the fortified BBB. An accelerometer sensor supports balancing of the robot, and updates data to the BBB periodically. An Infrared (IR) sensor is used to detect obstacles. This dynamic model is used to actuate the motors mounted on the robot leg thereby resulting in a swing-stance period of the legs for a stable forward movement of the robot. The maximum walking speed of the robot is 0.5 feet/second, beyond this limit the robot becomes unstable. The angle at which the robot leans is governed by the feedback from the accelerometer sensor, which is 20 degrees. If the robot tilts beyond a specific degree, then it would come back to its standstill position and stop further movement. When the robot moves forward, the IR sensors sense obstacles in front of the robot. If an obstacle is detected within 35 cm, then the robot stops moving further. Implementation of ROS on top of the BBB (by replacing CM530 controller with the BBB) and using feedback controls from the accelerometer and IR sensor to control the two-legged robotic movement are the novelties of this work

    Open motion control architecture for humanoid robots

    Get PDF
    This Ph.D. thesis contributes to the development of control architecture for robots. It provides a complex study of a control systems design and makes a proposal for generalized open motion control architecture for humanoid robots. Generally speaking, the development of humanoid robots is a very complex engineering and scientific task that requires new approaches in mechanical design, electronics, software engineering and control. First of all, taking into account all these considerations, this thesis tries to answer the question of why we need the development of such robots. Further, it provides a study of the evolution of humanoid robots, as well as an analysis of modern trends. A complex study of motion, that for humanoid robots, means first of all the biped locomotion is addressed. Requirements for the design of open motion control architecture are posed. This work stresses the motion control algorithms for humanoid robots. The implementation of only servo control for some types of robots (especially for walking systems) is not sufficient. Even having stable motion pattern and well tuned joint control, a humanoid robot can fall down while walking. Therefore, these robots need the implementation of another, upper control loop which will provide the stabilization of their motion. This Ph.D. thesis proposes the study of a joint motion control problem and a new solution to walking stability problem for humanoids. A new original walking stabilization controller based on decoupled double inverted pendulum dynamical model is developed. This Ph.D. thesis proposes novel motion control software and hardware architecture for humanoid robots. The main advantage of this architecture is that it was designed by an open systems approach allowing the development of high-quality humanoid robotics platforms that are technologically up-to-date. The Rh-1 prototype of the humanoid robot was constructed and used as a test platform for implementing the concepts described in this Ph.D. thesis. Also, the implementation of walking stabilization control algorithms was made with OpenHRP platform and HRP-2 humanoid robot. The simulations and walking experiments showed favourable results not only in forward walking but also in turning and backwards walking gaits. It proved the applicability and reliability of designed open motion control architecture for humanoid robots. Finally, it should be noted that this Ph.D. thesis considers the motion control system of a humanoid robot as a whole, stresses the entire concept-design-implementation chain and develops basic guidelines for the design of open motion control architecture that can be easily implemented in other biped platforms

    Walking trajectory generation & control of the humanoid robot: suralp

    Get PDF
    In recent years, the operational area of the robots started to extend and new functionalities are planned for them in our daily environments. As the human-robot interaction is being improved, the robots can provide support in elderly care, human assistance, rescue, hospital attendance and many other areas. With this motivation, an intensive research is focused around humanoid robotics in the last four decades. However, due to the nonlinear dynamics of the robot and high number of degrees of freedom, the robust balance of the bipedal walk is a challenging task. Smooth trajectory generation and online compensation methods are necessary to achieve a stable walk. In this thesis, Cartesian foot position references are generated as periodic functions with respect to a body-fixed coordinate frame. The online adjustment of these parameterized trajectories provides an opportunity in tuning the walking parameters without stopping the robot. The major contribution of this thesis in the context of trajectory generation is the smoothening of the foot trajectories and the introduction of ground push motion in the vertical direction. This pushing motion provided a dramatic improvement in the stability of the walking. Even though smooth foot reference trajectories are generated using the parameter based functions, the realization of a dynamically stable walk and maintenance of the robot balance requires walking control algorithms. This thesis introduces various control techniques to cope with disturbances or unevenness of the walking environment and compensate the mismatches between the planned and the actual walking based on sensory feedback. Moreover, an automatic homing procedure is proposed for the adjustment of the initial posture before the walking experiments. The presented control algorithms include ZMP regulation, foot orientation control, trunk orientation control, foot pitch torque difference compensation, body pitch angle correction, ground impact compensation and early landing modification. The effectiveness of the proposed trajectory generation and walking control algorithms is tested on the humanoid robot SURALP and a stable walk is achieved

    Anatomic Characterization and Profilometry of Tissues with Natural Shape: A Real-time Approach for Robotic-Assisted Minimally Invasive Surgery

    Get PDF
    This master thesis is divided into two major sections. First, anatomic characterization and profilometry of tissues with natural shape: a real-time approach for robotic-assisted minimally invasive surgery (RMIS); and second, design and characterization of a novel tactile array sensor capable of differentiating among different viscoelastic tissues that exhibit time-dependent behaviour. The first part of this thesis is focused on a tissue characterization system for RMIS applications. RMIS has gained immense popularity with the advent of high-precision robotic systems. The lack of haptic feedback, however, is considered as being one of the main drawbacks of present-day RMIS systems. In order to compensate for this deficiency, a novel tissue characterization system is proposed which is inspired from the human haptic system. Hence, kinesthetic and tactile feedback which are constitutive components of human haptic system are used to characterize naturally shaped tissues. Toward this goal, a 5-degree-of-freedom robot which is called Catalys5 is equipped with a ball caster force-cell. The system is used to simulate robotic surgery maneuvers in which an admittance control approach is implemented to design the force feedback controller. The proposed method characterizes naturally shaped tissues, which is capable of touching and palpating to: a) Identify the 2D or 3D surface profile of the target tissue (profilometry), b) Measure the modulus of elasticity of any desired point on the tissue’s surface, c) Find and map the location of any lump in the tissue, and d) Map hardness distribution around the lump. Initially, silicon-rubber materials were used to build tissue phantoms with different curvatures and degrees of softness. The surface profiles were obtained using the developed profilometry algorithm and validated using a 3D scanner. In addition, several experiments were conducted on bovine tissues to evaluate all above mentioned capabilities of the system. The results of experiments on real tissues were also compared to those that are available in current literature. The results indicate that the proposed approach can be used for reliable material characterization for RMIS application. The second part of this thesis is focused on developing an array tactile sensor for distinguishing softness of viscoelastic tissues with time-dependent behaviour for use in MIS and RMIS. Review of literature on tactile sensors reveals that the vast majority deals with determining the applied contact force and object elasticity. In this research, a novel idea is proposed in which a tactile sensor array can measure rate of displacement in addition to force and displacement of any viscoelastic material during the course of a single touch. In order to verify this new array sensor, several experiments were conducted on a range of biological tissues. It was concluded that this novel tactile sensor can distinguish among the softness of real biological tissue with time-dependent behaviour

    The Impact of Hotel Service Robot Appearance and Service Attributes on Customer Experience

    Get PDF
    In the past decade, an increasing discussion has taken place regarding the employment of hotel service robots. One critical issue is the impact service robots exhibit on customer experience. However, most of the existing studies focus on service robots’ technical functions or customer’s adoption behavior instead of customers’ psychological or attitudinal reactions toward the robot. Meanwhile, the emergence of humanoid robots has raised great attention from both researchers and industry practitioners. Humanlike features (e.g. facial expressions, emotions, and motions) inherently affect customer experience in a hotel environment. Nevertheless, limited literature exists in incorporating service robots’ anthropomorphism and service attributes into customer experience and perceived brand equity. Not many studies have included both the service robots’ traits and customers’ personality traits when assessing customer experience. Therefore, the purpose of the current study is to explore and understand the impact of service robots’ appearance, service efficiency, and service customization on customer experience interacting with the service robot in the context of a hotel front desk check-in service. Customers’ personality traits such as robot anxiety, technology readiness, and self-image congruity are also taken into consideration. This study also examines the influence of service robots’ appearance and service attributes on hotel customers’ perceptions toward the hotel brand equity. The current study used experiments and online surveys to test the theoretical model and the perception changes toward the hotel brand equity. Two samples of 220 and 161 hotel customers who have completed the check-in services in person in the past 12 months were recruited for Study 1 and Study 2, respectively. Pilot studies were conducted, and hypothetical scenarios were embedded in the online surveys. The results showed that hotel service robots’ appearance (extremely humanoid vs. humanoid vs. non-humanoid) did not lead to different customers’ experiences interacting with the service robot. Service efficiency was a significant factor while service customization was not in affecting customer experiences. Customers’ levels of technology readiness and self-image congruity exerted significant impacts on customer experiences. Moreover, customers did not show obvious perception changes before and after interacting with the hypothetical service robot. Theoretical and practical contributions were discussed

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    Contribution à la planification de mouvement pour robots humanoïdes

    Get PDF
    cette thèse porte sur des algorithmes de contrôle et de planification de mouvements pour les robots humanoïdes. Le grand nombre de paramètres caractérisant ces systèmes a conduit au développement de méthodes numériques, d'abord appliquées aux bras manipulateurs et récemment adaptées pour les structures plus complexes. On relève particulièrement les formalismes de commande cinématique et dynamique par priorité qui permettent de produire un mouvement selon une hiérarchie préétablie des tâches. Au cours de ce travail, nous avons identifié le besoin d'étendre ce formalisme afin de tenir compte de contraintes unilatérales. Nous nous sommes par ailleurs intéressés à la planification de la locomotion en fonction des tâches. Nous proposons une modélisation jointe du robot et de sa trajectoire de marche comme une structure articulée unique saisissant à la fois les degrés de liberté actionnés (articulations motorisées du robot) et non actionnés (positionnement absolu dans l'espace). L'ensemble de ces algorithmes, qui seront longuement illustrés, ont été implémentés au sein du projet HPP (Humanoid Path Planner) et validés sur le robot humanoïde HRP-2.this thesis is related to motion control and planning algorithms for humanoid robots. For such highly-parameterized systems, numerical methods are well adapted and have thus been the enter of increasing attention in the recent years. Among the prominent numerical schemes, we recognized the prioritized inverse kinematics and dynamics frameworks to hold key features to plan motion for humanoid robots, such as the possibility to control the motion while enforcing a strict priority order among tasks. We have, however, identified a lack of support of strict priority enforcement when inequality constraints are to be accounted for in the numerical schemes and we were successful in proposing a solution to this shortcoming. We also considered the problem of planning bipedal locomotion according to any given tasks. We proposed to model this problem as an inverse kinematics problem, by considering the kinematic structure of the robot and its walk path as a single unified structure that captures both the degrees of freedom of the robot which are actuated (motorized joints) and those which are not (position and orientation in space). The presented algorithms, which will be abundantly illustrated, have been implemented within the HPP (Humanoid Path Planner) project and validated on the humanoid robot HRP-2

    An Energy Efficient Electro-Hydraulic Control System For A Collaborative Humanoid Robot

    Get PDF
    DissertationThis study presents the design of an energy efficient electro-hydraulic control system for a collaborative humanoid robot. Robots can be found in almost every aspect of our lives with different applications such as manufacturing, construction, agriculture, surgery, and transportation. The need for robots is on the rise as they perform certain tasks much faster and with more precision than humans. The lack of them having cognitive ability limits them in certain tasks as human interaction is often needed. Humans are currently better than robots in performing some tasks such as decision making and problem solving. In collaborative robotics, humans and robots are required to work together to achieve a common goal. In most cases, this is achieved by confining both entities in the same space. This allows for better accuracy for these robots with the flexibility and cognition of humans. Furthermore, research lately shows an increase in robots that use hydraulics with most showing that these hydraulics have energy saving abilities in robotic actuation. It is known that hydraulics have a high power to weight ratio thus allowing for more powerful yet compact robots to be built. An electro-hydraulic control system is thus described in this research in which the system allows the human user to manipulate the robot by having it mimic the user’s moves. This approach allows the user to not do any strenuous activities while the robot does the heavy lifting. Furthermore, the system does not need to be reprogrammed for a new task therefore reducing the reconfiguration time of the system. The proposed approach further allows the robot to work in hazardous situations while the user is in a safe environment. The system uses a proportional-integral-derivative (PID) algorithm to control a hydraulic cylinder allowing it to move with the user. Experiments performed to validate the study shows the reaction time as well as energy saving abilities of the system. Additionally, the results show that hydraulic systems have the ability to save energy during stall as well as increasing power density of the robot. Furthermore, an improved response time was recorded for the hydraulic system when being controlled by a remote operator
    corecore