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Abstract 

 

This thesis presents adapting techniques required to enhance the capability of a commercially 

available robot, namely, Robotis Bioloid Premium Humanoid Robot (BPHR). BeagleBone 

Black (BBB), the decision-making and implementing (intelligence providing) component, with 

multifunctional capabilities is used in this research.  Robot operating System (ROS) and its 

libraries, as well as Python Script and its libraries have been developed and incorporated into 

the BBB. This fortified BBB intelligence providing component is then transplanted into the 

structure of the Robotis Bioloid humanoid robot, after removing the latter’s original decision-

making and implementing component (controller). Thus, this study revitalizes the Bioloid 

humanoid robot by converting it into a humanoid robot with multiple features that can be 

inherited using ROS. This is a first of its kind approach wherein ROS is used as the 

development framework in conjunction with the main BBB controller and the software 

impregnated with Python libraries is used to integrate robotic functions. A full ROS 

computation is developed and a high level Application Programming Interface (API) usable by 

software utilizing ROS services is also developed. In this revised two-legged-humanoid robot, 

USB2Dynamixel connector is used to operate the Dynamixel AX-12A actuators through the 

Wi-Fi interface of the fortified BBB. An accelerometer sensor supports balancing of the robot, 

and updates data to the BBB periodically. An Infrared (IR) sensor is used to detect obstacles. 

This dynamic model is used to actuate the motors mounted on the robot leg thereby resulting 

in a swing-stance period of the legs for a stable forward movement of the robot. The maximum 

walking speed of the robot is 0.5 feet/second, beyond this limit the robot becomes unstable. 

The angle at which the robot leans is governed by the feedback from the accelerometer sensor, 

which is 20 degrees. If the robot tilts beyond a specific degree, then it would come back to its 

standstill position and stop further movement. When the robot moves forward, the IR sensors 

sense obstacles in front of the robot. If an obstacle is detected within 35 cm, then the robot 

stops moving further. Implementation of ROS on top of the BBB (by replacing CM530 

controller with the BBB) and using feedback controls from the accelerometer and IR sensor to 

control the two-legged robotic movement are the novelties of this work. 
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1.  Introduction      

1.1 Introduction 

The term Robot means an automated, mechanized and an instrumented substitute-

device for carrying out work that is usually carried out by humans. “Robotics” 

implies the branch of science and innovation that deals with the planning, 

development, utilization, and employment of robots and also computer 

framework for their operation, management, and information assessment [1].  

Human body system includes bones as firm support system, cartilages that line 

the joints, muscles and ligaments that activate each part of the body. It is difficult 

to supplant this muscular-skeletal framework with the inert materials. Hence, 

machines could develop some equivalent human motions only [2]. 

Generally, a robot will have three types of components, namely, structural 

components, sensing components, and controlling and operating (deciding and 

intelligence providing) components [3]. The structural components are: i) 

manipulator or Rover: main body of the robot (links, joints etc.); ii) end-effector: 

usually the last component connected to the manipulator; (e.g., fore-hand with 

any needed device like gripper); and iii) actuators:  muscles of the manipulator 

(servo motor, stepper motor, pneumatic and hydraulic cylinders etc. which moves 

the end-effector in the desired manner). Sensing and deciding and enforcing 

components are the other two important parts of robots. 

There is noteworthy development in robotics and related scientific fields due to 

the access to modern sensors, powerful computing facilities, a wide range of 

active mechanical and electronic gadgets, in-depth and detail information about 

a wholesome robotic system, and different kinds of mechanical equipment’s etc. 

[4]. This research development on robots, especially at the university, is being 

undertaken with great zeal. In line with this development, the present work 

mainly focuses on robotic science and its development. 
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Repetitive and tedious tasks often involving precision and speed of control were 

the job of robots particularly in factories in the preliminary phase of robot’s life. 

Human-robot symbiosis rapidly expanded and so human-robot interaction and 

autonomous movement attracted research [5].  A humanoid robot is built to 

visibly look like a person. A few of these robots may likely to have facial features 

for example, eyes and mouth to resemble a human.  The study of design of a 

humanoid robot is either application based or research based. Humanoid robots 

are suitable for carrying out many human tasks such as helping people and 

carrying out simple jobs and also working in factory production line or dangerous 

environments [6].  

Movement of a humanoid robot should be like that of a human, namely, 

exhibiting biped gait and legged locomotion. This is the biggest and most 

essential difference between a humanoid robot and other robots. The walking 

humanoid robot requires a system integration arrangement among its deciding 

and enforcing i.e., intelligence providing, sensing, and structural components. 

Preference is either for a centralized or a distributed control. When the setup is 

centralized, the main computer has access to all the information and hence all the 

calculations must be done by the main computer only and it is also not easy to 

increase the number of connections i.e., beyond that computers capacity [6]. In 

the distributed system, it is easily possible to provide many connections and 

attach several useful equipment’s such as cameras, wireless LAN, control area 

network provision etc. However, computer or micro controller and motor 

controllers as well as provisions for connecting all of them are also required.  In 

case Real Time Operating System (RTOS) is not used as a main controller but 

only a General-Purpose Operating System (GPOS), then real-time control 

program or the Real-Time Extension (RTX - which is a program readily available 

in the market) is also required. RTX can access hardware directly. For motion 

control, depending on the Degrees of Freedom (DOF), the maximum joint motor 
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controllers are possible to be worked out. For approximately 40 DOF, 15 joint 

motor controllers are easily provided.  Here, the main controller receives sensor 

data quickly and forwards them to all the joint motor controllers [7].   

Generally, the walking humanoid robot is configured with an autonomous 

controller and a motion controller. The autonomous controller takes care of the 

autonomous processing and image processing. The autonomous processor 

controls and directs the hardware, while image processing tools like Open CV1 

(Intel C/C++ libraries for computer vision) or Direct show2 (Microsoft Multi 

Media Development Tool) are used for receiving images from the camera 

connected to the USB, while the program provided in the tools can carry out 

image processing [8, 9]. The motion controller may include a walking program 

and a special action program written in any suitable programming language such 

as C, C++, etc. The firmware program can be included in the motion controller, 

which if necessary, can be modified to suit the environment using a window note-

book PC or other suitable devices. 

For deciding whether a PC, Microcontroller and motor controller set-up is better 

or only a microcontroller and motor controller is enough the following points 

need consideration:  

1. Powerful processor is used for providing Artificial Intelligence and overall 

control and simpler microprocessor as I/O managers are being used in 

walking humanoid robots.  

2. Preferably, three-layer configuration is adopted:  

i. Top layer - Powerful PC as brain  

                                                           
 

1 OpenCV (Open Source Computer Vision) is a library of programming functions mainly aimed at real-time computer vision. 

The library is cross-platform and free for use under the open-source BSD license. 
2 The Microsoft DirectShow application programming interface (API) is a media-streaming architecture for Microsoft 

Windows. Using DirectShow, your applications can perform high-quality video and audio playback or capture. The 

DirectShow headers, libraries, SDK (Software Development Kit) tools, and samples are available in the Windows SDK. 
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ii. Middle layer - Multiple sub-system managers for motion control, 

sensor management, sensor processing etc.  

iii. Lower layer - Number of cheap microprocessors for managing 

miscellaneous tasks  

Ethernet or USB will be suitable for upper layer and RS2323, I2C4, etc. are used 

for lower level communication [10] 

3. Microprocessor is plugged in to a USB on the Notebook and it will easily 

send and receive commands over serial port and all other higher brain 

programming code could run on the Notebook. The Notebook could issue 

commands by taking decisions and the other processor could control the 

motors to execute the required tasks [10].  

4. Decisions on the use of processor is taken considering the following:  

 

i. Processing Power-If controlling the motors is only needed (i.e. all 

processing is done on the external PC) a motor driver controller is 

enough. For basic on-board processing like transformation of 

coordinates, simple command loops and inverse kinematics, a simple 

microprocessor is sufficient. If automating the robot and implementing 

advanced features are desired, BeagleBone Black, Raspberry Pi or Intel 

Atom program is sufficient. 

                                                           
 

3 In broadcast communications, RS-232 is a standard for serial correspondence transmission of data. It formally characterizes 

the signals interfacing between a Data Terminal Equipment (DTE), for example, a work station, and a Data Communication 

Equipment (DCE), for example, a modem. 
4 I2C is a serial protocol for two-wire interface to connect low-speed devices like microcontrollers, EEPROMs, A/D and D/A 

converters, I/O interfaces and other similar peripherals in embedded systems. Each I2C slave device needs an address. 
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ii. Programming – Basic5, Python6  or C/C++7 language is required for 

BeagleBone Black. But wherever necessary, libraries are included in 

addition. 

iii. Compatibility - The chosen processor should support (both number and 

type) the motors used [11]. 

The following points may generally be taken into consideration in assessing the 

requirement of software required for robot design:   

1. ROS (as development framework) depends on the machine controller that 

integrates robotic functions [12]. 

2. Python API allows either to use the entire C++APIs from a remote machine 

or Python Modules must be created that can run remotely or on the robots 

[13]. 

3. Embedded software, running on the mother-board located in the head of the 

robot allows autonomous behaviour. Desktop software running on a 

computer located outside the robot, allows creation of new behaviours and 

the remote control of the robot [13].    

 

The above theoretical considerations were carefully considered for evolving a 

ROS based humanoid robot for autonomous control, by combining two 

commercially available robots. The compatibility and suitability of both the 

replaced and replacing deciding and enforcing components were carried out. 

Thereafter, it was noticed that the substitution of the BeagleBone Black (BBB) 

deciding and enforcing multifunctional component (after strengthening it with 

                                                           
 

5 BASIC (an acronym for Beginner's All-purpose Symbolic Instruction Code) is a family of general-purpose, high-level 

programming languages whose design philosophy emphasizes ease of use. 
6 Python is a widely used high-level, general-purpose, interpreted, dynamic programming language. Its design philosophy 

emphasizes code readability, and its syntax allows programmers to express concepts in fewer lines of code than would be 

possible in languages such as C++ or Java. 
7 C++ is a high-level programming language it adds object-oriented features to its predecessor C. C++ is one of the most 

popular programming language for graphical applications, such as those that run in Windows and Macintosh environments. 
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dynamic walking capacity) instead of or in place of the CM530 deciding and 

enforcing component of Bioloid Premium Humanoid Robot (BPHR) (with 

walking capacity alone) was workable and carried out in this study. Thus, the 

adapting strategy of implanting the fortified intelligent providing component of 

BBB in the structural body (without its original intelligent providing component) 

of BPHR is implemented successfully in this research project. 

1.2 Rationale 

With the advancement of robots and robotics as a discipline of study humans have 

been interested in building human-like robots (both in structure and function). 

This desire came true to some extent, with the advent of Humanoid Robots. There 

were further expectations that humanoid robot should help and take care of 

humans in their homes, hospitals and factory floors with mild and simple jobs. 

These advancements and reciprocations have long surpassed [5]. Now-a-days, 

robots are used for arduous tasks in mines, seas, under-water, space, and 

hazardous environments like nuclear plants etc. [5]. Apart from two-legged 

dynamic motion, even four–legged flexible motion to negotiate pipes, steps, 

slippery floors etc. are very much in demand [5]. Although there is a high demand 

the market is not yet producing such tough humanoids suitable for hazardous 

work. The traditional and established robotic platforms seem lacking in efficiency 

to meet such challenges and demands. Therefore, it is necessary to intertwine the 

mere dynamic walking and simple working capabilities of humanoid robots like 

Bioloid, KHR [7], Honda  ASMIO [14], the  WABOT series of Waseda 

University [15], and H6 and H7 of Tokyo University [16], with multifunctional 

capacities of BBB (and similar) deciding and enforcing (intelligent providing) 

component. Such innovation with autonomous computing hardware has paved 

way for the much-needed flexibility in the use of hardware and software 

integration for the betterment of robotics. Hence, this thesis research work is 

undertaken to remove the deciding and enforcing (intelligence providing) 
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components of BPHR and implant in its body, instead, the advanced 

multifunctional intelligence providing component of BBB after making necessary 

changes and including in addition ROS software in Python Script with libraries. 

This type of research is an imperative need of the hour and would become 

promising as it would be befitting and beneficial and thus, capable of setting the 

baseline for alternate robotics studies. 

1.3 Aim and Objective 

Biped humanoid robots and quadruped or hexapod legged mechanical but some-

what more intelligent devices, recognized and referred to as robots, are in wide 

usage. It is the avowed aim and object of this research study to merge them 

together and develop a two-legged humanoid robot to have dynamic human-like 

stable walking with the ability of path-finding and potentially negotiating 

obstacles etc. 

A ready-made humanoid robot of one firm capable of walking and performing 

some simple functions carried out by human beings is blended with another 

highly intelligent robotic device with multifunctional capacities resulting in a 

humanoid robot capable of performing all the functions of the above two robots. 

This research study is the first of its kind as it brings together the concepts of ROS 

and replaces the CM530 controller with BBB. The walking style adopted here is 

an attempt to provide humanoid with the ability of bipedal walking without 

falling down. 

BBB controller is mounted in place of the built-in CM530 controller within the 

BPHR. Individual Dynamixel servos are accessed through BBB via 

USB2Dynamixel connector. To meet the challenges of keeping the robot upright 

and maintain its balance, a gyro/accelerometer sensor is used with an IR sensor 

for avoiding the obstacles while walking. ROS is implemented in the BBB and 

the walking of the BPHR is to be made performing using python programming 
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language with BBB. The sensors are used for obstacle avoidance and for 

providing stability while walking. The Wi-Fi in the BBB is enabled so that the 

humanoid robot can be controlled from a distance. 

The python software is modified to run by using ROS alone. Various modes of 

walking such as slow, medium and fast. There is no plan of making any physical 

modifications to the robot. The humanoid robot is to walk with the python code 

making use of BBB sensors and avoid collision too. 

1.4 Outline of the Thesis 

The thesis is divided into five chapters.  

Chapter 1: This chapter describes rationale, aims, goals and outline of the thesis.  

Chapter 2: This chapter details the existing robotics technological advancements 

and presents in detail the basic knowledge and theoretical considerations 

involved.  This chapter also formulates the scheme for adaptability of installing 

the decision-making and implementing component of BBB into the structure of 

biped walking BPHR. Further, this chapter also outlines the other considerations 

relating to robots such as their types, parts and modes of controls. The mechanics 

involved in deciding and implementing the various decisions that are taken have 

also been addressed in this chapter. The walking action performed by the robot 

including the electronic parts required, efficient way of programming, algorithms 

for various robot’s actions and developing codes for controlling robots are put 

forth in detail. The desirable requirements including expected features and 

essential functions are also described.  

Chapter 3: This chapter describes in detail the BBB decision-making and 

implementing (intelligence providing) component, also giving details about its 

versatile multi-function capability. This chapter also gives details about Robotis 

make BPHR, particularly its structural features such as manipulators, end-
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effector, and actuators and also some details about the limited capability of the 

built-in CM530 controller. 

Chapter 4: This chapter furnishes in detail the important aspects of research 

study undertaken and achieved in this thesis, particularly empowering the 

Bioloid, GP humanoid biped robot with multifunctional capabilities of the BBB’s 

decision-making capacity. The BBB instills dynamic and stable walking capacity 

in the BPHR, which was previously lacking with the CM530 controller.  

Chapter 5: This chapter concludes the thesis with the basic contributions listed. 

Future work is also discussed. 
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2.Literature Review 

This chapter details the generic humanoid robot structure, and its autonomous 

working and control in recent years. After carrying out a literature survey, a 

suitable algorithm is to be selected for robot’s walking and stability, and is to be 

implemented in the BeagleBone Black. This is to be achieved with the selected 

walking control trajectory being guided by the software, developed using Robot 

Operating System (ROS) and Python language and their libraries.  

2.1 Basics of Robotics 

2.1.1 Historical Development 

From the Russian word ‘paboTa (Rabota)’ meaning work or labour, the 

Czechoslovakian author named Karel Capek developed the word ‘Robots’. The 

robots are referred to the programmable machines used for performing 

manipulation or locomotion functions under automatic control. Most robots are 

inspired by nature adding to the field of bio-propelled ones. This has led to the 

development of another new branch of robotics called soft robotics. Currently, 

robots that function and act like humans also have the fondness to exist together 

with people as expected and symbiotically [2]. This is called emotional robotics 

and is the present attraction of industry and research.  

Robots have come a long way, from the wooden model of a pigeon activated by 

a steam jet to the Hitachi’s brain child “HIVIP Mk.1” intelligent robot; which is 

capable of understanding and performing tasks from line drawings, recognizing 

orientation of parts through computer vision, and automatic planning of sequence 

of motions required for the specified task (1970) [5]. There has been a 

phenomenal growth in robotic technology. Advanced Quadruped Robots and 

Human-Symbiotic Robots are being rapidly developed since 2000, creating even 

fear and panic in people culminating in Asimov’s “Three laws Of Robotics” for 

the robots to be no danger for humans [17].  
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Robotics research activities, benefited from the fast improvement of technologies, 

have been dramatically increased in many new cutting edge fields, such as formal 

methods, computer vision, image processing and artificial intelligence [17]. 

2.1.2 Structural components 

The three important structural components of a humanoid robot namely, 

manipulator, end-effector, and actuator are shown in Figure 1. 

Sensing components are the sensors that obtain and measure information about 

the condition of the robot and external condition to effectively deal with the real-

world. The third decision making  enforcing components are: i) Processor-the 

brain (calculates motion and velocity of robot’s joints); ii) Controllers-cerebellum 

of the brain (controls and correlates the motion of actuators); and iii) Software-

Operating system (the programming platform providing for motion, task, and 

managing functions, like the tools and library for conveying and collection of 

routine information) [3]. Further, power connection is needed for robot to enable 

its actuators to function effectively. Power is mostly obtained from batteries or 

wall-mounted electrical plugs. Alternately, they may use either pressurized 

hydraulic fluid using pumps or pneumatically compressed air using air  

 

Figure 1: Structural Components of a Humanoid Robot. 

Source [7 & 18] 
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compressor and compressed air tanks. Wired electrical circuit interfaces all 

actuators, and powers every electrical motor and solenoids directly. In addition, 

the circuit operates the hydraulic equipment by controlling electrical valves 

which decide the pressurized liquid’s circulation through the machine. For 

moving a hydraulic leg, for instance, the robot’s controller would open the valve 

driving liquid from the liquid pump to a cylinder barrel joined with that leg. This 

pressurized liquid would move the piston forward thereby stretching the leg in 

the front direction. Robots utilize cylinders that can thrust in both directions to 

move their actuators in two opposite directions i.e., front and reverse. Robot’s PC 

directs everything appended to the circuit. The PC operates all the essential 

motors and valves through microcontrollers and motor controllers to move the 

robot further [19]. 

A microcontroller can operate motor controllers in an assortment of ways: serial, 

I2C, PWM and R/C. Irrespective of the communication mode, controller’s logic 

and the microcontroller has to use similar ground reference and a similar high 

level logic (which can be accomplished by utilizing the same V+ pin to operate 

and control both gadgets). A logic level shifter might be required if the gadgets 

don’t share similar logic levels (3.3V and 5V for instance). Sensors can be 

interfaced with microcontrollers in the same manner as motor controllers. Sensors 

can be reached through the following kinds of communication: Digital, Analogue, 

Serial or I2C. Most communication technologies (e.g. ZigBee8, Bluetooth9) adopt 

serial communication, so the same Rx (Receive Connection), Tx (Transmit 

Connection), GND (Ground) and V+ (Supply) links serves the purpose [20].  

                                                           
 

8 ZigBee is a wireless technology developed as an open global standard to address the unique needs of low-cost, low-power 

wireless M2M networks. The ZigBee standard operates on the IEEE 802.15.4 physical radio specification and operates in 

unlicensed bands including 2.4 GHz, 900 MHz and 868 MHz. 
9 Bluetooth is a wireless technology standard for exchanging data over short distances (using short-wavelength UHF radio 

waves in the ISM band from 2.4 to 2.485 GHz) from fixed and mobile devices, and building personal area networks (PANs). 
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2.2 Control of Robot Functions 

2.2.1 Remotely controlling a robot                                                                     

Remotely controlled torpedoes developed during late 19th Century may probably 

be the first remotely operated vehicles or robots. The most effortless approach to 

remotely operate a vehicle is with a hand held controller physically linked with 

the vehicle through wires. The controller may have a Toggle Switch, knob, lever, 

joystick, or button for controlling the vehicle without using complex electronics. 

The motor and power source can be linked with operated with a switch for 

controlling the forward or backwards rotations.  

At times a cable may be a better choice as there is no limitation of operation time 

since power is availed from the mains, there is no loss of signals, and it is simple 

without complicated electronics, etc. However, its disadvantages are: the distance 

may be limited, dragging the cable may lower the speed of robot, cable may get 

damaged etc. Wired computer control can be provided by installing a 

microcontroller in the vehicle and using a cable to connect it with a computer’s 

I/O port (USB). More complex behaviors can be programmed, which may give 

onboard intelligence etc. but cost may increase because of the added electronics. 

Ethernet connection could also be made with cable connection and thus control 

could be via the Internet but may require complex programming.  Wire-less radio 

frequencies, Bluetooth, and Wi-Fi connections may also be used for remote 

control purposes without using cables. 

2.2.2 Semi-Autonomous Control 

Often a joint control, in which some aspects are controlled by a human and others 

are done by the robot itself, can be the best option. For example, in an advanced 

submersible robot, fundamental mobility of the robot is directed by a human 

while an on-board processor reads and responds to streams running below the 

water so as to keep the robot stable. Human being gives additional directions if 
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any after getting a video feedback from the on-board camera. Water temperature, 

pressure, and other relevant data are also tracked by the on-board sensors. In case 

the communication gets lost, an autonomous program can bring the robot to the 

surface. The level of autonomy has to be decided on priority. Similarly, humans 

can best interact and intervene in the case of a semi-autonomous wheelchair. 

2.2.3 Autonomous Control 

Self-governing business and factory robots are currently engaged extensively 

carrying out works more economically, or with more noteworthy exactness and 

dependability than people. For having more autonomy, microcontroller must be 

used with its full potential and programming has to be done for the 

microcontroller to react to input from the robot’s sensors. Pre-programming with 

no correction data from the surrounding, restricted input data from sensors, and 

lastly complicated sensor correction-information are the different types of self-

governing control. Incorporating an assortment of sensors and code which 

permits the robot to decide without any other external input, the best move to be 

made in any noted circumstance, which indicates true autonomous control. 

2.3 Decision-making & Implementing Mechanism 

2.3.1 Electronic components 

 Main piece of electronic device that is essentially needed for all computations, 

decision making and communications is a microcontroller. This microcontroller 

can be seen in everyday products like TV sets, washing machines, telephones, 

watches, practically in every home appliance and electrical device. It is a 

computing device capable of executing programs, of course, not involving 

complex algorithms. It acts as the brain or center of the Robot. Hence it is less 

capable than a PC and further they send a little quantity of electrical power 

through its pins. So it won’t have the capacity to work with huge load specifically. 

Arrangement of set of pins (electrical pulse communications) are there that can 
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be turned HIGH (1/ON) or LOW (0/OFF) through programming guidelines. They 

additionally read electrical pulses from sensors or different gadgets. 

Microcontrollers can be utilized to control other electrical gadgets, for example, 

actuators when attached with motor controllers. They additionally incorporate a 

voltage controller in their improvement sheets.  

Continuous Voltage pulses (pulses that can have a full scope of qualities rather 

than only two very much characterized states like, 0 and 1 in Digital pulses) can 

likewise be measured by most present day microcontrollers with the help of 

Analog to Digital Converter (ADC). With the assistance of the ADC a 

microcontroller can allot a numerical amount to a series of continuous pulses 

which is neither high nor low. If it is noticed that a device to be connected 

provides a value which is proportional to some factor, say, temperature, force, 

position etc. then the microcontroller must be provided with an analog pin. 

Although microcontrollers appear to be limited in its capacity it can perform 

many complex functions if its pins are set HIGH and LOW in a logical way. 

However, because of its inherent resource and speed limitations it is not possible 

for a microcontroller to handle very complex algorithms like advanced vision 

processing and very complex programs. 

The microcontroller is akin to a computer CPU (microprocessor) and its 

improvement board is similar to PC mother board. In advanced    Robots with 

complex computing and vision algorithm etc. both a PC for overall control and a 

microcontroller for accessing motors are used. 

Light and medium robots may only need a microcontroller while heavy ones may 

require a PC in addition as shown in Figure 2. A microcontroller might not have 

the capacity to provide power to electrical motors since its output can only furnish 

a meager quantity of electrical power. For a larger robot, more power will be 

required to run its motors.   
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The microcontrollers can accomplish more than the typical (usual) digital I/O, 

(essential calculation, fundamental arithmetic and decision making) if special 

hardware, for e.g., a motor driver is built into them. Most popular communication 

protocols like UART10, SPI11 and FC can be readily supported by many 

microcontrollers. This is profoundly valuable for corresponding with different 

gadgets like PCs, improved sensors, or different microcontrollers. Regardless of 

the possibility that it is conceivable to physically work orderly commands, 

committed inherent equipment which manages the particulars is particularly 

preferable. Such a course of action permits the microcontroller to focus on 

different assignments and gives room for cleaner programs.  

                                                           
 

10 A universal asynchronous receiver/transmitter (UART), is a PC equipment gadget that translates information between 

parallel and serial structures. UARTs are ordinarily utilized as a part of conjunction with correspondence principles, for 

example, TIA (once in the past EIA) RS-232, RS-422 or RS-485 
11 Serial Peripheral Interface (SPI) is an interface bus commonly used to send data between microcontrollers and small 

peripherals such as shift registers, sensors, and SD cards. It uses separate clock and data lines, along with a select line to 

choose the device to talk. 

 

Figure 2: Heavy Robot Arduous Jobs 

Source [17] 
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Next in importance is the Motor Controller which is an electronic device, an 

uncovered circuit board without being walled in an area that goes about as a 

middle of the road gadget between a microcontroller, a power supply or battery, 

and the motors. Since there are several types of motors as in Figure 3 like brushed 

DC (with or without gears) motors, brushless DC motors, linear actuators, Servo 

motors, unipolar or bipolar stepper motors etc. there are as many varieties of 

motor controllers as well. The speed and direction of these motors are decided by 

the microcontroller only, but the motors cannot be driven by the microcontrollers 

because of its restricted power. The motor controller provides necessary power at 

the required voltage and drives these motors. Both these controllers work together 

to make the motors move appropriately.  Regular and easy communication 

technique such as UART or PWM is used by the microcontroller to give 

information the motor controller as to how to power the motors. 

Motor controller’s physical size depends on the size of motors. A motor controller 

smaller than the tip of a finger has enough current capacity to drive a mini sumo 

robot (robots attempting to push each other out of a small arena) while a large 

controller weighing several kilograms (including heat sink etc.) may be required 

for an unmanned aerial vehicle. The size thus depends on the amount of power 

the controller has to provide. 

Selection of motor controllers depends on the current consumed by the motor 

which it is intended to control. The existing a motor attracts is associated to the 

 

Figure 3: Types of Motor Controllers 

Source [21] 
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torque it produces i.e., more current will be drawn to produce higher torque by a 

large motor and vice-versa. 

Motors are connected to motor controllers which in turn are connected to the 

microcontrollers. All the sensors are also connected to the microcontroller. Under 

certain conditions one computer (cf. Figure 2) or two computers (cf. Figure 4) are 

also added in addition to microcontroller and motor controllers. Batteries are 

connected to motor controllers, microcontrollers and the main computers. 

2.3.2 Programming Essentials 

Programming a microcontroller is easy now-a-days due to current Integrated 

Development Environments (IDE) that utilize most recent languages, completely 

highlighted libraries that promptly cover all regular and rare activities and a few 

instantly usable codes for beginners with easy use. Different high level languages 

like C, C++, C#, processing (a variety of C++), Java, Python, .NET, BASIC etc. 

can be programmed into a microprocessor without much difficulty.  

IDEs are likewise turning out to be much less complex as makers make graphical 

programming environments. Groupings requiring a few lines of code are 

diminished to a picture that can be associated with different other pictures to form 

 

Figure 4: Two PCs with Other Controllers 

Source [7] 
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code. If the user needs to control a motor in a robot, the user should mount the 

image which represents controlling a motor and should also specify the direction 

and speed at which the motor should run. Microcontroller Development Boards 

break out each of the pins utilized by the microcontroller and makes them simple 

to be accessed for fast circuit prototyping. Advantageous USB power and 

programming interfaces that connect appropriate to any advanced PC are also 

provided by the board. These Development Boards are the only circuit boards that 

provide microcontroller chips with all the necessary supporting hardware, for 

example, the voltage controller.  

2.3.3 Python Language 

2.3.3.1 Selection of programming language 

Programming is the last step and without it the robot cannot function at all. 

Developing the software for a computer is a task which cannot be dealt with in 

this thesis. However, programming the microcontroller can be discussed.  

The general types of languages and their main features are indicated below: 

 Basic - This is one of the earliest languages which is still being used in 

some microcontrollers like Basic micro, BasicX, Parallax etc. in 

educational robots 

 C/C++ - This is one of the well-known languages which gives high level 

functionality but at the same time keeping a good low level control.  

 Java - It is more recent language than C and possesses plenty of safety 

features but not low level control. It is best suited for microcontrollers 

produced by Parallax Company. 

 NET/C# -This Microsoft’s proprietary language is utilized to develop as 

Netduino, FEZ Rhino etc. 

 Processing - It is a variant of C++ having lots of simplifications to make 

programming easier in Arduino. 
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 Python - It is a most popular, easy to learn and enabling to place programs 

jointly very quick and efficiently scripting language. Hence the Python 

language is chosen in this research work.  

2.3.3.2 Considerations in code writing 

 Only limited, that is, manageable length of code essentially needed to each 

product must be developed along with building a library and creating a 

file system for easy tracing up of the required code. 

 Everything, (that is, every line) within a code must be documented using 

comments particularly in robotics that too at the initial stages. Later on 

after acquiring enough knowledge and experience it will be enough to add 

comments to general sections of code. 

 Different versions of code developed must be preserved without 

overwriting the same file so that when a later developed code does not 

compile it should be possible to revert back to a previously developed one 

instead of trying to rectify the later one. This correcting work may prove 

to be tedious and time consuming. 

 Keep the robot always in a safe position so that it will not destroy itself or 

get destroyed in careless or erroneous trials. 

 Power should be turned off when it is noticed that code is not carrying out 

correctly the expected functions. 

 Converting a portion of the code into subroutines will make the usage of 

code easy to use if that section of code is recurring numerous times inside 

a program.  

2.3.4 Decision-making and Enforcing Technique 

Battery is connected to the main computer, all sub-controllers, all sensors, a 

Charge Coupled Device (CCD) camera and a frame grabber, the Controller Area 

Network (CAN) module, fans etc. The inputs from various sensors like 
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force/Torque Sensor, Inertia sensor, Distance Measuring Sensor (DMS), 

Thermometer, Pressure measuring sensor, Rate Gyro Acceleration Sensor, 

Infrared (IR) Sensor12 etc. are received by the main computer which are 

forwarded to appropriate motor controllers through the main microcontrollers for 

operating the concerned actuators in the desired manner in response to the outside 

world condition. These enforcing instructions from the main computer emanate 

from out of the software included in them. Thus intelligence is imparted to the 

robots for deciding and enforcing functions.   

2.3.5 Control Architecture 

2.3.5.1 Main Controller 

For light and medium robots, microcontroller will be the main controller whereas 

for heavy, multifunctional and humanoid robot one or even two PCs will be used 

as main controllers along with microcontroller and many motor controllers. When 

a number of peripheral interfaces, simple and quick programming environment 

and good graphic user interface (GUI) are required PC is the best choice as main 

controller.  

2.3.5.2 Control Area Network (CAN) Protocol 

When Computers are used as main controller along with microcontroller and 

many motor controllers, for receiving many kinds of data from various devices 

and to give orders by the main computer, there must be bus line for 

correspondence between the primary computer and other controllers (cf. Figure 

4). For dealing with the number of sub-controller, fast communication is 

essential. The CAN protocol used in automobile industry with serial 

communication speed of 1 megabit per second is found suitable. It is very easy to 

                                                           
 

12 An infrared sensor is an electronic instrument which is utilized to detect/assess the prevailing nature/qualities of its 

surroundings by either transmitting or potentially recognizing infrared radiation. 
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expand the number of additional sub-controllers since only two lines are needed 

in this protocol. All controllers connected to this bus line are able to send out and 

also collect data one and the same time [7].  

2.3.5.3 Sub-controllers 

Trunk roll controller (for preventing the slope of the trunk) due to the transform 

in the ground slope utilizing rate accelerometer, landing position controller (for 

modifying the position schedule to prevent unstable landing of the robot if the 

landing takes place before or after the prescribed time), damping controller and 

landing orientation controller (to modify joints angles prescribed by inverse 

Kinematics by switching each other controller based on landing detection 

algorithm), etc., are the important sub-controllers used in bipedal Humanoid 

robots. The primary computer will send the reference position data to all motor 

controllers which then control the DC motors using proportional-differentiation 

(PD) control (a control feedback mechanism which calculates the difference 

between the required process variable and the actual value and applies a 

correction) [7].   

2.4 Robot Operating System (ROS) 

2.4.1 Different Operating Systems 

It is well known that the hardware and software resources of a computer are 

managed by a set of computer programs known as an operating system (OS). 

Basic tasks like controlling and allocating memory, prioritizing system requests, 

controlling input and output devices, facilitating networking, and managing files 

are performed by the OS. Various services provided by the OS are: Process 

management, Memory management, Disk and file systems maintenance, 

Networking capability, Security provision, Device driver’s interfaces provision 

etc. [22].                                                                                       
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There are a number of OS, namely, Windows, Mac OS X, UNIX, Solaris      

BS3000, MS-Dos etc. It is part of a system equipment or computerized equipment 

which deals with management and coordination of the activities of that 

computerized system. The computerized system may be a computer, a 

workstation, a server, a PC, a method, a Smartphone, a road navigation device or 

any system with some “intelligence” of its own such as a Robot.  The OS plays 

the role of host for all applications running or performed on any hardware. 

There are different types of OS [22]:   

 Real-time OS    

 Multi-user and single-user OS       

 Multi-tasking and single-tasking OS       

 Distributed OS          

 Embedded OS               

 Specialized OS like ‘Robot OS’  

2.4.2 Robot Operating System   

It is a set of software structures for robot software development providing OS like 

usefulness on different category computer system cluster. ROS gives standard OS 

services such as hardware abstraction, low-level device control, implementation 

of commonly used functionality, message –passing between processes, and 

package management. Running arrangements of ROS-based procedures are 

represented in a graph architecture where processing takes place in nodes that 

may get, post and multiplex sensor, control, state, planning, actuator and other 

messages. In spite of the significance of relativity and low latency in robot 

control, ROS itself is not a Real Time OS; however, it is possible to combine 

ROS with real time code [23]. The base OS in the present work is Debian in the 

BBB upon which ROS works.                                                  
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Software in the ROS Ecosystem can be divided into three groups:  

1. Language –and platform- independent tools used for building and 

distributing ROS- based software 

2. ROS client library implementations such as roscpp, rospy, and roslisp 

3. Packages containing application-related code which uses one or more 

ROS client libraries [24]. 

2.4.2.1 Applications of ROS 

ROS may be applied in the following sphere of areas: ROS is a generic term 

indicating the whole bunch of collection of different heterogeneous software 

programs (meant for tools, client libraries and application codes contained in 

ROS) whereas ROS packages include only one group of   software’s code using 

one or more client libraries alone of ROS (list at the end of Section 2.4.2).    

 A master coordination node 

 Publishing or subscribing to data streams, images, stereo, laser, control, 

actuator, contact 

 Multiplexing information 

 Node creation and destruction 

 Nodes are seamlessly distributed, allowing distributed operation over 

multi-core, multi-processor, GPUs and clusters 

 Logging 

 Parameter server 

 Test systems  

ROS Packages can be gainfully applied in the following areas: One group of 

software may be applied for say perception, motion etc. while another group of 

software’s may be needed for object identification, stereo vision etc. and so the 

third group.  
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 Perception 

 Object identification 

 Segmentation and recognition 

 Face recognition 

 Gesture recognition 

 Motion tracking 

 Egomotion 

 Motion understanding 

 Structure from motion 

 Stereo vision depth perception via two cameras 

 Motion 

 Mobile robotics 

 Control 

 Planning 

 Grasping [25] 

Both the language-independent tools and the main client libraries (C++, Python) 

are useful for implementing other packages involving functionality and 

applications such as hardware drivers, robot models, data types, planning, 

perception, simultaneous localization and mapping, simultaneous tools and other 

algorithms [25]. 

2.4.2.2 Benefits of Using ROS 

ROS is in actuality a meta-working framework, something between an operating 

system and middleware for service robotics. It gives not just standard operating 

services (hardware abstraction, contention management, process management) 

but in addition system high-level functionalities (asynchronous and synchronous 

calls, centralized data base, a robot configuration system etc.). 
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Before robot operating system came into use, each robot researcher and designer 

would invest impressive measures of time outlining the embedded software 

within a robot, and in addition the hardware itself. This required skill sets in 

mechanical engineering and embedded software. Normally, the programs 

designed in this were very much similar as embedded programming, like 

electronics, then they were to robotics in the strictest sense, for example, we may 

experience it these days in service robotics. There was significant re-utilization 

of programs, as they were firmly connected to the necessary hardware. Another 

advantage is that of mingling expertise from various fields which incorporates 

into the designing and programming a robot [27]: 

a) Managing the hardware’s by writing drivers 

b) Managing memory and processes 

c) Managing concurrency, parallelism, and data merging 

d) Providing abstract reasoning, making great use of artificial intelligence      

2.4.2.3 ROS Technology 

The following five principles are involved in ROS technology [27]: 

 Peer- to peer 

 Tools based (microkernel) 

 Multi-language 

 Thin 

 Free and open source                                                                            

Basic notions in ROS [26]: 

 Nodes 

 Master 

 Topics 

 Services 

 Bags 



 

27 
 

Robot operating system is the future of software for autonomous devices. The 

most critical bit of software for operational robots is the fittingly named Robot 

Operating System. ROS is a framework of programming tools used to write and 

develop robot software. It essentially works as a kind of open-source system 

providing OS like services designed specifically for robotics for example 

hardware abstraction, device control, implementation of common functionalities 

and data package management [28]. The rapid development in ROS ecosystem 

has put it in a path of becoming the Linux of robotic software. The development 

of robot undertaken in this research study is very gainfully based on and using 

ROS.  

2.5 Requirements of Walking Biped Humanoid Robots 

2.5.1 Generic Features 

2.5.1.1 Characteristic Features of Humanoid robots 

Minimum energy consumption must be aimed at for normal walking of a 

humanoid, similar to what happens in case of a human body. Achieving dynamic 

walking is the key to the success of the design and construction of a humanoid. 

The safety and firm standing on the ground of a moving biped robot is 

additionally of most prominent concern. Keeping a robot in firm and steady 

condition by making its center of gravity to remain on or near the midpoint of its 

weight bearing area is the object of providing capability for its self-control [29]. 

Set of touch-sensors (tactile) can be utilized to give information on what has been 

touched. These sensors additionally give data about forces and torques exchanged 

between the robot and different things [30].     

A sensor is a device that calculates a few traits of the surroundings. As one of the 

most important factor among three essential requisites of a robot apart from 

planning and control, sensing assumes an imperative part in the ideals of robots, 

especially that of humanoids. 
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Sensors are classified i) Proprioceptive sensors and ii) Exteroceptive sensors. The 

position, the direction and the speed of the humanoid’s body and joints are 

measured by the former while touch (tactile sensors), vision (CCD cameras) and 

sound (Microphones) are measured by the latter. Actuators are the motors that 

perform like muscles and joints to the humanoids and mainly rotary actuators are 

used [30]. They can be electric, pneumatic, hydraulic, piezoelectric or ultrasonic 

ones. 

Planning and control are other two essential requirements of humanoids. Legged 

locomotion involving biped gait walking of humanoids resemble human-like 

walking. Ideal planning must aim for minimum energy consumption and effective 

control means maintaining ideal functions of all parts, particularly, the joints [29]. 

A robot needs data about contact pressure and its present and future changes in 

position with a specific end goal to keep up its dynamic balance while it is 

walking. Another function of humanoid robots is that they move, assemble data 

(utilizing sensors) about real environmental features and communicate with it. 

Like manufacturing plant intelligent machines and similar robots that work in 

exceedingly organized situations the humanoid robots do not remain ideal. 

Planning and control should concentrate on finding out self-crash locations, path 

planning and obstacle avoidance for permitting the humanoids to move in 

complex situations [31]. 

2.5.1.2 Autonomous Control of Humanoid robots 

A robot deciding and functioning on its own, called autonomous robot, is a robot 

that performs practices and errands with a high level of self-governance, which 

is especially essential in fields like space investigation, family upkeep, (for 

example, cleaning, and conveying and providing merchandise and other helps).  

Some present day production line robots are "self-governing" inside the strict 

bounds of their immediate surroundings. It may not be that each level of 
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opportunity exists in their encompassing surroundings; however, the production 

line robot's work environment is highly testing and can regularly contain 

disorganized, unexpected factors.  

One critical region of robotic research is to empower the robot to adapt to its 

surroundings whether this is ashore, submerged, noticeable all around, 

underground, or in space.  

A self-governing robot may likewise study or acquire new information like 

modifying for new techniques for finishing its undertakings or adjusting to 

evolving environment. 

It is necessary for a humanoid exhibiting human like appearance to perform 

human like actions independently for it to cooperate and assist people in their 

everyday life. Interaction among humans takes place through their voice and 

gestures. Simple gestures arising out of repeated conducts count a lot in 

developing human communications. Likewise, a humanoid’s friendly gestures 

are important for effectively serving humans. Such gestures should, for avoiding 

misunderstanding, be in the same way as human does. The way and manner of 

walking of a humanoid, while approaching a human, is equally important. 

Dancing or other entertaining services of humanoids must also exhibit 

meaningful, artistic and creative motions as much possible as human performance 

[32]. For all this capability the humanoid robot must have autonomous control 

besides intelligence.                                                          

Natural interaction and adaptability to environments meant and designed for 

humans are the main objectives and aim of the research areas of humanoid robots 

[32]. Further, robotic technologies that integrate senses, motor responses and 

intelligence are of great importance. Robot’s safety, reliability, and human robot 

symbiosis calls for autonomous action control for humanoid robots [5]. For fast 
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dynamic walking, path finding and planning, and avoiding collision an 

autonomous humanoid robot is only unavoidably and inevitably needed.       

2.5.1.3 Intelligence Possessed by Humanoid robots 

Autonomous mobile robots are a reality today (not a fiction) on account of the 

rapid and huge progress in mechanics and electrical engineering fields. Inherent 

danger and hostile environments (deep-sea explorations, space expedition, 

nuclear plants, etc.) have welcomed intelligent humanoid robots to work as 

substitutes for humans. Further intelligent autonomous devices like robotic 

vacuum cleaners, lawn mowers etc. have flooded the market. Humanoid house 

keepers, personal assistants will soon take their place.     

2.5.2 Essential Functions 

2.5.2.1 Walking Control - Literature Review              

 A core task for humanoid walking robots is the actual walking controller, 

generally consisting of a gait pattern generator and the balance control. For this 

problem, there exist two fundamental approaches: one, possibility to set about 

this matter is to rely on a very accurate model of the walker and to compute gait 

trajectories trusting in sufficient accordance of the model with reality. The other 

direction relies on approximating the robot dynamics by a simple model with 

reduced system states e.g., an inverted pendulum.  Accordance of the simplified 

model with the real dynamics is ensured by feedback control [17]. 

An often adopted method to make the humanoid robots to walk steadily is to 

direct them to learn by trial and error and also to physically incorporate the 

moving positions and their determining factors. Central Pattern Generators 

(CPGs) techniques enable to produce joint directions, utilizing nonlinear 

oscillators. In these methodologies, it is a difficult matter to discover accurately 

applicable determining factors to accomplish a steady walk. Procedures involving 

much calculation utilize the idea of the Zero Moment Point (ZMP) and are based 
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on joint positional directions which are figured out considering dynamic 

movement of the robot. In this case, an exact model of the robot and its movement 

is required.  

A few methodologies have been introduced that go for appropriately limiting 

properties like speed or mid-body steadiness of a humanoid's walk. The 

subsequent upgraded walking patterns don't generally look like correct human 

step. We consider the issue of accomplishing steady human-like stride in a 

humanoid robot by regarding this as an optimum limiting issue and create four 

calculation procedures that work on the consideration of joint movement premise 

[33].                   

A number of diverse movement controllers and path tracing controls are utilized 

for human robots. In the ZMP approach, the fundamental target is the 

determination of robot's movement in a manner that the zero moment point-ZMP 

(the point where the entire idleness driving pressures add up to zero) does not go 

beyond the predetermined region of steadiness. Centre of Mass (CoM) based 

models are another well-known direction-tracing controlling strategy. Every one 

of these techniques experiences the ill effects of being dependent on planned 

particulars of the hidden humanoid robot structure.  

In the examination work exhibited in this proposition, the emphasis is on a novel 

direction arranging technique planned particularly for a humanoid robot to move 

along curved directions. The proposed curved strolling model presented for a 

humanoid robot utilizes a similar crucial rule adopted in the differential guiding 

framework for a wheeled robot. A standout amongst the most intriguing standards 

of this strategy is its independency from the basic humanoid robot structure. This 

new strategy likewise guarantees a vital effective direction when contrasted with 

some other outline particular strategies since a few joints e.g., hip move joints are 

not utilized as a part of this technique to change the direction [34].  
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Most legged robot endeavors have concentrated either on specific morphology 

(e.g. biped, quadruped, or hexapod) or a specific motion supposition (e.g. semi 

static or bouncing). Interestingly, past work by the authors are general, in that 

they apply free of morphology, and also apply to issues of a class which 

incorporate legged robots.  

Kinematic walking frameworks can be displayed utilizing associations on 

primary fiber packs and furthermore give outcome controllability. Non-

holonomic motion frameworks expect that the conditions of movement for the 

framework are smooth, which forbids their application to legged robotics issues 

where the conditions of movement are intermittent. Standard nonlinear 

controllability tests require that the framework's conditions of movement be 

smooth. The fundamental commitment of this work is the expansion of standard 

nonlinear control techniques to a class of issues where the conditions of 

movement are in broken manner [35]. 

Up to this point, most steadiness control methods have endeavored to keep up 

balance by controlling just the straight-line movement of a robot. Strategies have 

been developed to change the information on joint- degree directions to adjust the 

position of the Center of Pressure (CoP), a point inside the robot's support region 

through which the resultant Ground Reaction Force (GRF) acts. At the time when 

the CoP, resulting from the input joint movement, leaves the safe support base, 

showing a conceivable toppling of a foot, the movement is altered to bring the 

CoP back inside the support base while the robot still takes after the craved direct 

movement of the Center of Mass (CoM). The rotational movement of the robot 

stays pretty much disregarded in these methodologies.  

Be that as it may, rotational progression of a robot assumes a critical part in 

balance. Investigations on human steadiness control additionally demonstrate that 

people firmly direct precise force amid walk, which recommends solid 
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probability that angular momentum, could be critical in humanoid developments 

[36].  

A crucial difficulty with existing systems that create robot's movement is 

information reliance. For instance, a simple method is to assemble a model for a 

specific movement from a substantial number of samples. In a perfect situation, 

the robot could watch one (possibly awful) example of a movement and adopt it 

to a more human-like partner.  

Reliance on huge amount of sample information is frequently an approximate 

substitute for a more principled approach. For instance, rapidly examining 

Random Tree [RRT] based strategies offer no authentic human-like movement 

yet depends upon a database of sample human-like movements posing as if 

providing a true and correct answer. Verifying the database to discover a 

movement like RRT-produced direction line is a drawback for web based 

planning which can affect the procedural calculation period [59].  

Other different methods depend upon approximate connections got from the 

example information to make robot movement to seem more human-like. This 

takes into account criteria like joint comport, travel time, jolts, human stance to-

target connections. At the point when movement information obtained is utilized, 

often ignoring time details, which causes robot movement to happen at 

impossible and non-human speeds.  

Movement strategies produced for cartoon or virtual characters cannot be 

appropriately applied to robots since key contrasts exist in the real situations. The 

degree to which the methods adopted for virtual characters can be used to robots 

relies on upon the suppositions made for a specific strategy. Limitations like 

torque and speed cutoff points of real equipment frequently causes movement 

intended for virtual characters to look poor on a robot, notwithstanding the fact 
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that those movements look great on a virtual model since fewer limitations exist 

within the virtual worlds [37]. 

Motion capture technique [38,39] has been adopted to make humanoid robots 

move like humans since motion capture is a premium technique   for animation 

of human-like characters in computer graphics.                                

The stability issues of humanoid robot movement are the critical point in 

understanding the control techniques; hence this humanoid walking robot can be 

arranged in three distinct classes. To begin with, the first variety takes into 

account static walkers, whose movement is moderate so that the framework's 

security is totally depicted by the ordinary projection of the Center of Gravity, 

which just relies on upon the joint's position. Second classification includes 

dynamic walkers, i.e., biped robots with feet and induced ankles. Postural 

strength of dynamic walkers is provided by joint's speeds and acceleration as well. 

These walkers are capable of moving in a static way if they have sufficient huge 

feet and the movement is moderate. The third class involves absolutely dynamic 

walkers, robots without feet. Dynamic walkers can accomplish quicker strolling 

speeds, running, stair climbing, execution of progressive flips, notwithstanding 

that strolling is without any actuators. For this situation the stability polygon in 

the single-support stage is diminished to a point, with the result that static 

strolling is impractical. In the stroll with dynamic balance, the anticipated focus 

of mass is permitted outside of the region enclosed by the feet, and the walker 

may basically fall in the middle part of the strolling step. The control issues of 

dynamic strolling are more confused than in strolling with static balance, yet 

dynamic strolling designs give higher strolling speed and more noteworthy 

effectiveness, along with more flexible strolling structures [60].  

For all the said classifications of strolling robots, the issue of steady state and 

dependable bipedal walk is the most essential requirement, but then unsolved 
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with a high level of unwavering quality, this subject has been considered 

fundamentally through the accompanying two classes of strolling type generators 

and robot controllers. The initial approach is to produce a powerful steady 

occasional dynamic strolling design. It is done expecting that the models of robot 

and environment are accessible, and the kinematic and dynamic parameters of the 

robot model are accurately characterized. But, the second approach utilizes 

constrained or disentangled learning of the framework's progression. Be that as it 

may, for this situation, the control depends much on the input control, and it is 

important to create strategies without high calculation requirements for ongoing 

usage [61], [62].  

The rotational harmony of the foot is the main consideration of postural insecurity 

with legged robots. The question has roused the meaning of a few dynamic based 

criteria for the assessment and control of balance in biped movement. The most 

well-known criteria are the Center of Pressure (CoP), the zero-moment point 

(ZMP) and the foot-Rotation indicator (FRI). From these criteria, the ZMP idea 

has received the increased and broadest acknowledgment and assumed a 

significant part in settling the biped robot soundness and intermittent strolling 

design combination. The ZMP is characterized as the point on the ground about 

which the entirety of the considerable number of snapshots of the dynamic 

powers works out to zero. In the event that the ZMP is inside the arched structure 

of all contact focuses between the foot and the ground, the biped robot can walk. 

Regardless of the possibility that the solidness in light of ZMP just portrays 

contact condition amongst foot and the ground, ZMP based controller is for the 

most part utilized as a part of humanoid robot groups since it is known to function 

admirably. In the vast majority of cases, the direction of humanoid robot is 

decided off-line, and after that controller is intended to track these directions. A 

mobile example is created to guarantee that the robot's ZMP is all the time inside 

the supporting foot projection. This is important for the biped robot to keep up 
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dynamic balance while walking. Be that as it may, the fancied ZMP of the 

strolling example is not the same as the real ZMP of the biped robot in a solid 

walk. Keeping in mind the end goal to make up for the ZMP discrepancies, it is 

important to execute the balance control utilizing power (F/T) sensor or slope 

sensor. Most research works managing parity control have concentrated on the 

pay of ZMP variation on the grounds that the ZMP is the fundamental standard 

of dynamic balance. By and large, it has been accepted that the principle reason 

for discrepancy points to the actual ground condition or model errors. As usual, 

the balance controller ought to be strong against the slope and model 

imperfections [43]. 

The two most essential elements of biped humanoid robots are the human-like 

shape and activities. Biped humanoid robots have two legs and should stroll with 

a decent portable capacity on different territories including uneven surfaces or 

stairs. Accordingly, numerous analysts have created humanoid robot structures 

and have contemplated the biped strolling of humanoid robots. The Honda 

humanoid, the WABIAN arrangement of Waseda University, H6 and H7 of 

Tokyo University, HRP of AIST and JOHNNIE are notable human-scale biped 

humanoid robots. For the most part, the control system of dynamic strolling of 

biped robots depends on the walking pattern generation, which considers the 

steady zero-minute point (ZMP) direction and online balance control. As the 

genuine ZMP direction is not the same as the required ZMP direction because of 

reasons like the unevenness of the surface, detecting blunders and blemished 

dynamic model of the robot, a few online controllers in light of the tangible 

criticism are required. Also, numerous other researches consider the stabilization 

control strategy of humanoid robots identified with the angular momentum 

information.  

A dynamic strolling control technique has been proposed by Kim et. al., in 2006 

for biped humanoid robots utilizing the ZMP and inertial data. The control 
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procedure covers adaptive walking pattern generation, actual ZMP adjustment of 

error while standing on single leg with damping control of the ankle joint, stable 

landing control and landing position control depending on the precise speed of 

the upper body.  In this way, a biped robot can adjust to uneven landscape without 

losing steadiness at the time of actual strolling [44].  

The two most basic components of biped humanoid robots are the human-like 

shape and advancements. Biped humanoid robots have two legs and ought to walk 

around a tolerable compact limit on various domains including uneven surfaces 

or stairs. In like manner, various examiners have made humanoid robot arranges 

and have thought about the biped walking around humanoid robots. The Honda 

humanoid, the WABIAN game plan of Waseda University, H6 and H7 of Tokyo 

University, HRP of AIST and JOHNNIE are eminent human-scale biped 

humanoid robots. Generally, the control arrangement of component walking 

around biped robots relies on upon the walking outline period, which considers 

the relentless zero moment point (ZMP) course and online conform control. As 

the honest to goodness ZMP course is not the same as the looked for ZMP heading 

as a result of reasons, for instance, the unevenness of the surface, recognizing 

bungles and imperfect component model of the robot, a couple of online 

controllers in light of the substantial feedback are required. Additionally, various 

other research wears down the conformity control arrangement of humanoid 

robots related to the exact drive information have been disseminated. In any case, 

there have been decently few research manages ZMP control and alter control 

using inertial estimation at the same time [45].  

In this thesis, a dynamic walking control procedure is proposed for biped 

humanoid robots using the ZMP and inertial information. The control scheme 

fuses flexible walking plan period, progressing ZMP compensation in the single 

support stage with damping control of the lower leg joint, stable landing control 

and landing position control in perspective of the exact speed of the center. Along 
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these lines, a biped robot can change in accordance with uneven scene without 

losing strength logically in the midst of walking. 

There are three kinds of methodologies in the case of biped strolling, which are 

offline pattern generation, offline pattern generation with online feedback 

compensation, and online pattern generation with online feedback control. The 

first is to create the strolling designs in the wake of outlining ZMP directions in 

light of the exact information of the framework, for example, the snapshot of 

dormancy, masses of every part. This approach can get the steady strolling 

designs, yet it can make the robot to tumble down effortlessly, in light of the fact 

that it is touchy to the un-displayed or obscure elements of the framework like 

response and erosion strengths with the ground. The strolling design itself is 

steady, yet we ought to ascertain confused ZMP elements to get the strolling 

design. The second one is to defeat the security and the strength issues. This 

approach utilizes ZMP based strolling designs and repays them to keep adjust by 

criticism. It can build, utilizing input controller, the strolling dependability of the 

robot by diminishing the unsteadiness elements prompted by displayed flow, 

ground conditions and so forth, yet the unpredictability of stable strolling design 

era still remains [45].  

The third approach is utilized as a part of this work. The online walking pattern 

is created by the kinematical approach by producing the positional dictates of the 

joint. It is made by watching the human's conduct, and changed by tactile input 

controllers to keep the strolling solidness. This implies strolling designs have 

been separated into kinematic reference generation and dynamic controller. The 

strolling design is redesigned such that it can roll out the robot improvement, its 

progression time and walk without halting. The position bends of the pelvis focus 

are figured as for the limit conditions (position and speed) toward the beginning 

and toward the end of the progression, since they utilize third order polynomial 

addition. We can correct the form of the curve by selecting the correct limit 
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condition values by considering the strolling modes (forward, backward and side 

walk), recurrence and walk, which can be the directions from the administrator 

or from the route directing calculations [45].  

The feedback controllers used in this work are named to ZMP, landing 

orientation, landing position, landing timing, damping and vibration reduction 

controller on the point of their objectives and functions They utilized the F/T 

sensor on the lower leg and the accelerometer on the sole, and they were very 

much executed on KHR-1, KHR-2, KHR-3(HUBO) to keep the robot's security 

in the altered stride time and walk strolling condition. We utilized the controller 

exchanging strategy regarding the planning, and the period of the walk. This 

implies we are applying the diverse controllers with various circumstances. This 

technique can be a decent approach in the state of altered stride time and walk. 

We extended this way to deal with the variable stride time and walk condition 

amid strolling in this work [45]. 

Early biped strolling of robots included static strolling with a low strolling speed. 

The progression time was more than 10 seconds for each progression and the 

balance control system was performed using CoG (Center of Gravity). Thus, the 

anticipated point of CoG onto the ground at all times falls inside the supporting 

polygon that is made by two feet. While static strolling, the robot can stop the 

strolling movement at whatever time without tumbling down. The weakness of 

static strolling is that the movement is too moderate and wide to shift the CoG.  

Most biped humanoid robots have performed stable dynamic strolling on the 

effectively got ready level floors. Strolling studies on the uneven and sloping 

floors are still in the early stage. Dynamic strolling on an uneven surface is 

difficult to be obtained in light of the fact that most biped humanoid robots 

perform hard position control of the joints by utilizing motors and lessening gears 

and the reaction times of the actuators and sensors are low because of the gear 
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and sensor sound. So then, it is unimaginable for the robot to gauge the ground 

conditions promptly and it is likewise unthinkable for the robot to properly react 

regardless of the possibility that it quantifies the ground conditions quickly. But, 

the human ankle can quickly adjust to varying nature of the field. Besides, human 

muscles can contract or unwind rapidly with smooth movements [45].  

This work by Kim et. al., in 2007, depicted a dynamic strolling control calculation 

procedure that considers nearby and far-off slanting state of the floor. The writers 

propose the utilization of different online controllers to adapt to an uneven and 

sloping floor in the light of an upgraded form of a formerly proposed dynamic 

strolling calculation. These online controllers are initiated and made to work one 

after another during appropriate time in a mobile cycle [46]. 

2.6 Conclusion 

The following observation and analysis of bipedal humanoid walking is taken 

into consideration in this research study: 

There are different reasons for difficulties in control issues to arise and different 

works and stipulations that must be reasonably settled and satisfied keeping in 

mind the end goal of making substantial strolling and other performance actions 

of humanoid robots. Past investigations of organic nature, hypothetical and PC 

outputs have concentrated on the structure and choice of control calculations as 

indicated by various criteria, for example, lower power utilization, making energy 

available at all times, strength, speed, solace, capacity to keep moving, and 

environment affect. All things considered, notwithstanding these perspectives, it 

is likewise important to consider some different issues: capacity of mechanical 

execution because of the physical constraints of joint actuators, adapting to 

complex and strong nonlinear progression and instabilities in the model-based 

approach, complex nature of repeated and regular walk, incorporation of learning 

and adjustment abilities, calculation issues, and so forth.  
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The significant issues connected with the examination and control of bipedal 

frameworks is the highly-coupled nonlinear dynamics and in addition, the 

discrete changes in the dynamic phenomena because of the way of the stride. 

Regardless of the humanoid robot structure and many-faceted quality, the 

fundamental qualities for every bipedal framework are: a) the DOF shape 

developed between the foot and the ground is one-sided and under incited b) the 

repetition of walk (symmetry) and consistent compatibility of the quantity of legs 

that are at the same time in contact with the ground. while walking, two unique 

circumstances emerge one by one: the statically stable two-leg standing stage in 

which the robot is carried on both feet at the same time, and statically weak single-

leg  standing stage when just a single foot of the instrument is in contact with the 

ground, Thus, the moving method changes its structure in a solitary strolling cycle 

from an open to a shut kinematic chain [43].  
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3.Integrating Experimental Robots 

3.1 Advanced Multifunctional Quadruped BeagleBone Black Robot 

Robots have a tendency to do a few or entire functions shown herein: receipt of 

electronic programming, handle information or physical recognitions 

electronically, work independently to some extent, roam around, carry out its own 

physical parts or physical procedures, realize and control their surroundings, and 

display smart activities [28,50]. The word robot can allude to both physical robots 

and virtual programming operators, but it is usual rather to call the second ones 

as bots [51]. They can be remotely controlled, semi-autonomous or autonomous. 

Internet is available everywhere and likewise information technology has come 

to every household and so new intelligence is growing among people. Robot 

technologies also, alike the human, integrate senses, motor responses and 

therefore must possess intelligence. In addition, devices meant for constructing 

robots are also rapidly improving. This calls for new research study in industries 

and universities [5]. 

3.1.1 Developments in Robotic Research  

Servo control and trajectory planning are important research topics. Space, 

undersea, and other hazardous habitats (nuclear power plants) unavoidably 

needed robots and hence adaptability became the focal point of research, of which 

the intelligent robot represents a typical class. When harsh workplaces like 

underwater, nuclear power plants, distance unknown space etc. invited robots 

with open hands, knowledge and understanding of the physical environment and 

methods for navigating such terrains turned out to be key research issues. 

Quadruped walking robotic machines were preferred to biped humanoid walking 

robots where flexible walking motion using four legs became a necessity for 

robots to move rapidly through environments having lot of steps, piping, and 

other obstacles met with in extreme working conditions such as nuclear power 
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plants. Smooth contact of feet with ground, lowering the peak torque, and 

reducing energy consumption were the difficult problems faced. Animal style 

walking was copied for robots with four legs. 

3.2 Advanced Biped Bioloid Humanoid Robot 

3.2.1 BeagleBone Black as ‘Deciding and Enforcing Component’ 

BeagleBone Black (BBB) is a commercial ‘deciding and enforcing component’ 

which is mounted on a four legged vehicle with Lynx motion and driven by it (cf. 

Figure 5). It is equipped with several sensors such as sonar sensor, Web scam, 

GPS, etc. Such a versatile intelligence providing component has, however, not 

been endowed with the provision of mounting on and operating a biped humanoid 

dynamic walking robot and this deficiency is cured in this research work. 

Thereafter, this research study takes advantage of the powerful computing 

capability of this fortified BBB and mounts it on the structure of a commercially 

available humanoid robot (after removing the latter’s own less-efficient deciding 

and enforcing component) through the ROS technology and Python language 

based software. This is a first of its kind research in this context. 

 

 

Figure 5: BeagleBone Black Mounted on a Four-Legged Vehicle 

Source [52] 
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3.2.2 Features of Bioloid Premium Humanoid Robot (BPHR) 

The BPHR manufactured by the Korean firm Robotis stands tall among them 

especially with its structural components. In the humanoid type there are three 

Bioloid robots namely, Premium, Grand Prix (GP) and Darwin models. 

The Bioloid commercial kit is convenient, safe and also expandable. Generally, 

they are meant for building a robot including a humanoid for education, 

entertainment etc. purposes. BPHR includes gyro/accelerometer, DMs, and 

multi-channel wireless expandable remote controller. These humanoid robots 

have been designed to be completely modular. Semi-transparent humanoid skin 

is used. 

As a remote control humanoid robot BPHR can walk more safely. But it lacks 

autonomous operation, if autonomous operation is desired; different controller 

has to be used. The product contains an extensive motion library. Accelerometer 

system is found to be active during walking and so the coefficients need tweaking. 

Therefore, software is needed to be included so that it could be turned off and on. 

Similarly, it is found that if complicated sensors such as a compass or vision 

system are to be included then a different controller had to be used. The controller 

provided in BPHR is not designed for a lot of decision making and for including 

many sensors. An autonomous humanoid robot requires more than one processor 

or at least one that does multiple threads. Many users have evaluated the BPHR 

to be good in its class of limited use. Wikipedia, the free encyclopedia, in a write 

up on Robotics Bioloid says that the Bioloid framework is in this way similar to 

the LEGO Mind storms and VEXplorer sets. Hence the structural component of 

Bioloid humanoid robot is chosen for this study. This enables the autonomous 

capabilities of the robot with the help of feedback from the accelerometer and the 

IR sensor. The addition of the wi-fi capability further helps in the enhancement 

of the autonomous activity making the robot to be remotely controlled. 
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3.2.2.1 Structural Components of BPHR 

BPHR (Bioloid Premium Humanoid Robot) has a light-weight aluminum frame 

that comes with eighteen Dynamixel servo motors (eight AX-12 motors for the 

chest-to abdomen region and ten AX-18 motors for the waist and below area), 

which are integrated motors with several features, such as position. Speed can be 

controlled easily with feedback for angular position and angular velocity etc. 

Load torque can be set up in the motion. There are about 255 motions and each 

motion can be further manipulated by adding steps in the software to any of the 

specific motions made by the user [53]. The Bioloid humanoid robots are good 

walking ones as they self-adjust posture while walking. Wiring is with daisy chain 

connection and supports many Dynamixel units with very few resources. Three 

types of assembly construction are provided. In addition, other types of assembly 

are supported. The limitation however is the actuators in the level field do not 

support enough torque and therefore some of the pose cannot be completed in a 

type of assembly [53].  

3.2.2.2 Enhancement of BPHR’s Capabilities 

Since 2000, there have been many challenges in developing robots that can safely 

share spaces with ordinary people and provide helping and taking care services. 

The main focus has been on human- robot interaction and autonomous mobility 

[5]. Therefore, there is need for making the BPHR to have autonomous control. 

Humanoid robots must also be service oriented for practical use. Therefore, they 

must be capable of switching between different modes of travel, viz. on the 

surface of water, under water, air and distant space. The decision making and 

enforcing component must provide to the Bioloid humanoid robots all these 

capabilities. Voice control is also an important consideration for humanoid robots 

and so microphones must be mounted for remote speech recognition.                                                             
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3.2.3 Controller of BPHR  

3.2.3.1 Processor 

 There is no computer brain for the BPHR as it is only an educational and 

entertainment one. A humanoid robot meant for assisting and cooperating with 

human beings must possess intelligence and for this purpose at least a single 

computer or notepad is essential. The brain in the form of processor available in 

BPHR is only a microcontroller. BPHR has CM-530 controller only, which has 

the following specifications: 

 CPU: ATMEGA 2561 

 Internal I/O device, 6 buttons, Mic, Temperature sensor and voltage sensor 

 I/O device: I/O & 6 of 5P I/O for analog sensor installation  

This microcontroller has 64 pins which control individually a part of the robot, 

such as the part determining input and output; and amount of voltage used by the 

robot. This may have about 1KB RAM and 15KB memory against 4GB RAM 

and 1000GB memory of a computer. This is quite inadequate for human-like 

walking and other actions.                        

3.2.3.2 Controllers  

Cerebellum of the brain (controls and correlates the motions of actuators) is the 

CM-530 controller carrying inside it an ARM Cortex STM32F103RE 

microcontroller. This is a fairly powerful one. But it has to be changed as it is not 

having multifunctional capability except for biped humanoid walking ability.   

3.2.3.3 Software  

Operating system (tools and library for conveying and collection of routine 

information) is having improved software by using embedded C instead of the 

RoboPlus, because every part of the robot is programmed individually by the 

programmer. It is capable of multi-threading also. It encapsulates three 
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components, namely, Motion file, Task file, and Manage file. These three files 

implement the robot’s functionalities, configure the programming and set up each 

actuator and other accessories in a user friendly interface. Further, these 

components separate the hardware configuration and parameters from software 

programming mechanisms. But the communication of BBB is with the RC remote 

controller only. 

Thus the overall position of the intelligence providing component of the Bioloid 

robot is insufficient and hence it is proposed in this research work to replace it 

with the BBB intelligence providing component. 

3.3 Replacing the Deciding and Enforcing Components 

The following changes have been necessitated and made to develop the humanoid 

robot in this study in order to replace the less-efficient deciding and enforcing 

(intelligence providing) components of BPHR with that of BBB (after 

strengthening and enabling the latter to possess bipedal humanoid walking 

capabilities also in addition to its multifunctional capacity). 

The above changes are shown graphically in Figure 6. 

Table 1: Bioloid Robot listing existing and replacement components 

 Sr. 

No. 

Particulars Existing Components of 

Bioloid, GB Robot 

Replacing Components 

from BBB 

1 CPU STM32F103 AM33588 

2 Controller CM530 Beagle Bone Black 

3  Remote Controller RC100 Laptop Interface 

4 Software RoboPlus with C++ ROS with Python 

5 Wi-Fi Zigbee Wi-Fi Adapter 

6 Camera   Web Camera 
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A collection of nodes and programs called roscore are the pre-requisites of any 

ROS-based system. There must be a roscore running in order for ROS nodes to 

communicate [63]. Communication buses named ROS Topics are used while 

using the ROS modules. These comprise of anonymous publish/subscribe 

semantics that in-turn decouple the production of information from its 

consumption. Generally, the nodes are unaware of the extremities with which 

they are communicating. The nodes that are in search of data subscribe to the 

relevant topics i.e. the nodes that generate data publish to relevant topics. Thus, 

there can be multiple subscribers and publishers to a topic [64]. An rqt_graph is 

commonly used as a GUI plugin for visualizing the ROS computation graph [65]. 

 

 

 

 

Figure 6: Schematic Parts of Humanoid Robot  

Source [54] 



 

49 
 

4. Experimental Procedure and Results  

This chapter discusses the adaption strategy for improving the capability of the 

Robotis make Bioloid humanoid robot by substituting its built-in CM530 

controller with that of BeagleBone Black (BBB). This also describes the actual 

walking performance of the robot with the final results obtained. 

4.1 Adaption Strategy 

The default CM530 controller within the Bioloid robot is replaced with the BBB 

controller. Further, the BBB’s multi-functional deciding and enforcing 

component capabilities is improved to human-like dynamic walking ability which 

was not possessed by it earlier. 

The Robotis make biped BPHR is composed of the following components: 

i. Dynamixel Motor (AX-12A) 

ii. Gyro/accelerometer sensor (MPU 6050) 

iii. Infrared sensor (IR) 

iv. CM530 controller 

Generally, a walking humanoid robot requires to be configured with an 

autonomous controller and a main controller. The autonomous controller takes 

care of the autonomous processing and any associated image processing tasks. 

Both a Computer and a microcontroller may be used as the above controller or 

use can be made of just a microcontroller all alone relying upon the performance 

needs of the robot. The main controller controls the motion controller having 

programs for walking and further controls a special action program (meant for 

guiding functions of other actuators) written in a suitable programming language, 

like C, C++, and Python. 

Keeping these basic and fundamental design requirements of a humanoid robot 

the adapting strategy is evolved.  Deciding cum enforcing components of BPHR 
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are replaced under this strategy with BBB’s such components after enhancing it 

to perform biped humanoid walking which was not there earlier. This 

enhancement was made possible using ROS and Python. In BPHR, the CM530 

controller is the key for governing all the robotic movements and the control of 

the motors. The idea is to replace this default controller with a different controller 

which is easily programmable and can make the working of the robot more 

efficient. The deciding cum enforcing intelligence providing components of BBB 

Board (incorporating Robot Operating System (ROS) and Python libraries and 

walking control) are implanted in the BPHR. While carrying out this process the 

original decision making components are removed from the BPHR. This new 

method has been implemented in this thesis study. Such an installation procedure 

has been undertaken for the first time in this thesis work as far as the researchers’ 

knowledge goes.                                                                                    

4.2  Assembling the revised Humanoid Robot 

 BBB is a powerful processor-cum-intelligence providing component that can be 

used in a humanoid robot Structure with required alterations made herein. The 

structural platform of the BPHR is constructed with 2 legs to provide 12 degrees 

of freedom (DOFs) using 12 Dynamixel servos that are connected to it. All the 

Dynamixel motors are linked in daisy chain pattern. One side of the first servo is 

linked with the 12V power source and the other side of the servo is linked with 

the USB2 Dynamixel connector. The complete interface of the BeagleBone with 

the robot is shown in Figure 7. 

The two-legged robot is constructed as stated, using 12 servos resulting in 12 

Degrees of Freedom (DoF). USB2Dynamixel connector is used to operate the 

Dynamixel actuators through the Wi-Fi interface of BBB. Position of the 

Dynamixel AX-12A servos is obtained using inbuilt encoders. A 

Gyro/accelerometer sensor is mounted on the robot, which supports in the 



 

51 
 

balancing the robot. This accelerometer sensor updates its parameters 

periodically [56]. Infrared (IR) sensor fitted on the robot's upper body is utilized 

to identify objects in front of the robot that prevent it to move on. Additional 

libraries are added from ROS, thereby enabling the BBB to work with a Wi-Fi 

adaptor.  

All the Dynamixel servo motors are controlled by using the python program. The 

accelerometer sensor fixed in the body of the robot help to detect the stability of 

the robot. Thus it controls its balance for walking so that it does not topple down. 

A wireless network is used to provide communication between the computer and 

the robot. 

4.3 Humanoid Robot’s Dynamic Walking Algorithm 

A detailed consideration of many different walking methods and their drawbacks 

as well as their analyses is made in chapter 2. Based on this, the algorithm, 

Trajectory, and Walking Pattern Generation method adopted in 2006 and 2007 

was most appealing and found highly suitable and desirable and hence in this 

 

Figure 7: BeagleBone Black Robot’s Component  

Source [55] 
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study, the walking control strategy developed in references [45,46] are adopted 

and discussed in detail in this section. 

4.3.1 Evolving Dynamic Stable Humanoid Robot Walking 

A Debian image with ROS indigo implementation is installed on the Beagle Bone 

Black. A Wi-Fi module is enabled in the BBB using the necessary libraries and 

repositories which helps in maneuvering the robot freely.  A Dynamixel2USB 

connector is responsible for enabling the dynamic actuators is connected through 

Wi-Fi interface of the BBB. Accelerometer sensors are connected to the Serial 

Clock (SCA) and the Serial Data (SDA) pins while the Infrared (IR) sensors are 

connected to the analog to digital converter (ADC) pins of the BBB. The IR 

sensor senses any obstacle in front of the robot and if there is any obstacle in front 

then it will stop the further movement of the robot (cf. Figure 8). Dynamixel 

servos use serial communication. 

   

Figure 8: Flowchart Indicating Control of Robot Movement 
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The default controller baud rate is 1megabits per second (Mbps). ROS acts as the 

communication intermediate between the computer and the BeagleBone Black. 

ROSCORE is the first thing we should run in one terminal when using ROS. 

ROSRUN13 & ROSNODE14 should run in another two new terminals.  

The walking pattern of the robot is fine-tuned so the robot moves in small steps 

while balancing itself. The location of the pelvis center and ankle as seen from 

the sagittal plane is exhibited in Figure 9 & Figure 10. 

When the robot is not in motion, both the feet lies on the ground firmly. However, 

at the time when the robot begins to walk, the robot is made to swing to the right 

                                                           
 

13 rosrun is a keyword which enables to directly run a node within a package in ROS. 
14 rosnode displays information about the ROS nodes. 

   

Figure 9: Sagittal View for Walking Pattern 

Source [45] 

 

Figure 10: Schematics of Landing Position Control  

Source [46] 
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side so that the left leg is made to lift and subsequently moved forward and placed 

back on the ground. During this time the right leg is tilted to the right side to make 

the center of gravity shift and this in turn prevents the robot from falling. The 

process is repeated when the robot is made to tilt to the left side for being stable 

and keep up its posture so that the right leg is lifted and moving forward and in 

this manner the robot moves ahead. During these robot movements, the 

accelerometer sensor plays an active role by sensing the swing and movement 

through its X and Y axis. The accelerometer sensor continuously sends data to 

the BBB and the computer so that the sensor parameters are updated periodically. 

4.3.2 Stability Analysis  

This section details the heuristic approach undertaken to set the parameter values 

for individual sensors so as to prevent the robot from falling. When the parameters 

go beyond the prescribed limits inscribed in the accelerometer sensor datasheet 

then the robot is made to swing to the other side to counter the balance and the 

robot is thus prevented from falling. When the robot moves forward, if the IR 

sensors detect the presence of an obstacle, then further movement of the robot is 

stopped. This dynamic model is utilized as a building block to propel the servos 

mounted on the leg, thereby resulting in a swing-stance period of the legs for 

further movement [57]. These parameters have been obtained using a heuristic 

approach and then these values are set as limiting factors for the sensors in the 

software. 

The RoboPlus software of the BPHR is a symbol form C-language based software 

meant for simple programming and managing motion and behaviors. The present 

work replaces the RoboPlus software with ROS and python scripts for flexible 

control of the autonomous robot. The complete code used for controlling the robot 

in the present work is detailed in APPENDIX A. 
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4.4 Design and connections of components for the desired walking pattern 

4.4.1 Configuration of BBB 

The BBB comes pre-installed with a Debian image which needs to be 

upgraded prior to the configuration. A fresh installation of the Debian image is 

also suggested as the pre-installed image has stability issues. A Debian 7.5 

version is installed on the eMMC (embedded Multi-Media Controller). This 

version is stable and is configurable to the requirement of the task (cf. Figure 11 

and Figure 12). 

4.4.2 Dynamixel AX-12A servo actuators 

The dynamixel AX-12A servo actuators are used as they are considered to 

be the most advanced actuators available. These have the ability to track its speed, 

voltage, temperature, shaft position and load. All individual servos can be 

accessed independently to control their speed and their positions. The position 

and sensors are handled by the servo’s built-in the microcontrollers (cf. Figure 

12). 

 

Figure 11: Figure showing the BBB, AX-12A motors, USB2Dynamixel connector, Wi-Fi Adapter, IR Sensor and the 
Gyro+Accelerometer sensor used in the experiment. 



 

56 
 

4.4.3 USB2dynamixel connector 

This is an indispensable device that is required to connect the dynamixel 

motors to the PC. It connects to a USB port of the PC to the dynamixel motors 

via its 3p connection port. It uses the Transistor–transistor logic (TTL)15 network 

for this work (cf. Figure 11 and Figure 12). 

4.4.4 Infrared Sensor 

Infrared (IR) sensor GP2Y0A41SK0F is used in this work for obstacle 

detection. This is achieved by the transmission and reception of an infrared signal. 

This signal is emitted by the signal emitter on the sensor which traverses back to 

the receiver after being bounced by the obstacle’s surface (cf. Figure 12). 

4.4.5 Accelerometer 

The accelerometer used here is the MPU-6050 Accelerometer + Gyro. It 

determines the acceleration. Although a three-axis accelerometer could identify 

the orientation/tilt of a platform (here this is done for the robot) relatives to the 

earth’s surface (cf. Figure 12). 

4.4.6 Wi-Fi-Adapter 

A USB Wi-Fi adapter (Logic) with a Wi-Fi hub Advent (HB212) is used for 

the wireless connection for communicating with the BBB (cf. Figure 12). 

4.5 Walking procedure of the robot 

There are a total of 12 dynamixel-AX12A servomotors used to make the 

robot achieve the desired walking ability. The motors are numbered from M7 to 

M18. To provide the movement ability at the ankle position of the robot motors 

                                                           
 

15 Transistor–transistor logic (TTL) is a class of digital circuits built from bipolar junction transistors (BJTs) and 
resistors. 
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M15 and M17 assist the right leg and the motors M16 and M18 assist the left leg 

movement. M13 and M14 serve as the knee movement motors for right and left 

 

Figure 12: Actual motor positions showing (a) Posterior view (b) Anterior view. 

 

 

 

Figure 13: Physical connections of the USB2Dynamixel with the BBB 
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knee respectively. There are three motors each on every hip position assisting in 

the resulting movement. These are M7, M9 and M11 on the right and M8, M10 

and M12 on the left of the robot (cf. Figure 13 and Figure 14). 

The motors M7 and M8 on the hip position are the YAW motors. M9, M10, 

M17 and M18 are the PITCH motors where, M9 and M10 are on hip and M17 

and M18 are on the ankle. M11, M12, M13, M14, M15 and M16 are ROLL 

motors. M11 and M12 are at the hip position, M13 and M14 are the knee motors 

and M15 and M16 are at the ankles (cf. Figure 13 and Figure 14) 

4.6 Walking strategy of the robot 

When the initial command ROSRUN for the movement of the robot is given 

then there are two options for the speed of the walking of the robot i.e. slow and 

 

 

 

Figure 14: Schematic Parts of Humanoid Robot showing the motor positions for Yaw, Pitch and Roll motors. 
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normal. It is required to provide an input as 1 (slow) or 2 (normal) for further 

movement of the robot. 

In the very first step, all the motors associated with the walking movement 

of the robot are set to the default resting position (refer APPENDIX A). This is 

the standstill position of the robot.  All the four pitch motors come into action and 

make the robot lean on its left side. The angle to which the robot leans is governed 

by the feedback from the accelerometer sensor. This angle is 20 degrees. If the 

robot tilts beyond 25 degrees (margin considering the inaccuracy of the sensor in 

determining precise degree), then it would come back to its standstill position and 

stops further movement. After it leans successfully to 20 degrees, another motor 

M10 comes into action. This M10 motor gets back to the initial default position 

which enables the robot to lift the right leg. Then, the motor M11 swings it 

forward and the motor M13 brings the knee down. The IR sensor continuously 

checks for the obstacle in front. If an obstacle is detected around 35 cm, then the 

robot stops further movement and comes to its standstill position. 

In the second step, all the pitch motors make the robot lean on the right side 

and the motor M9 comes to its initial default position thereby enabling the robot 

to lift its left leg. Motor M13 is made to come to its default position so that the 

whole of the robot comes forward. Motor M12 swings the leg forward and the 

motor M14 brings the knee down. This marks the completion of step two. 

In the third step, all the pitch motors make the robot lean on the left side and 

the motor M10 comes to its initial default position enabling the robot to lift its 

right leg. Motor M14 is made to come to its default position so that the whole of 

the robot comes forward. Motor M11 swings the leg forward and motor M13 

brings the leg down, completing the step three. 

Steps two and three are repeated in succession so that the robot continues its 

bipedal forward movement.  A check is also made continually to see that the robot 
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is in a stable position. This makes it to avoid falling, if the parameters are more 

than the prescribed limits inscribed in the sensor. The angle to which the robot 

leans is governed by the feedback from the accelerometer sensor, which is 20 

degrees. If the robot tilts beyond 25 degrees, then it would come back to its 

standstill position and stops further movement. When the robot moves forward, 

the IR sensors sense obstacles in front of the robot. If an obstacle is detected to 

be present at around 35 cm, then the robot stops moving further and comes to its 

standstill position. This dynamic model can be used, as a building block, to 

actuate the motors on legs and joints for a swing-stance period of the legs for its 

further movement.  The maximum walking speed of the robot is 0.5 feet/second. 

Beyond this limit the robot becomes unstable and falls down. Slippery or uneven 

surfaces also affects the robot and it stability. The rqt graph for the connections 

during the walking of the robot is shown in Figure 15.  

  

 

Figure 15: The rqt graph of the connections during the walking of the robot. 
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5. Conclusion and Future Directions 

One of the inspirations driving the operational range of humanoid robotics 

is to create robots that are better suited to situations intended for people and that 

these robots are fit for informal intermingling with people [33]. Robotis make 

Bioloid Premium Humanoid Robot (BPHR) is a humanoid bipedal walking robot 

capable of simple functions that mimic humans. This robot’s deciding and 

enforcing components providing intelligence can only perform, as stated, simple 

functions at homes, hospitals etc. This intelligence providing component is 

removed, retaining only its structural components, namely, manipulator, end-

effector and actuators. In this structural body, the multifunctional deciding and 

enforcing, i.e. intelligence providing component of BeagleBone Black (BBB) is 

imbibed. Thus, this humanoid robot possesses both the bipedal dynamic stable 

walking capacity as well as the advanced multiple functions of robotic machines 

like BBB. 

The two-legged dynamic and stable walking capability is incorporated into the 

BBB’s by developing a walking pattern with obstacle avoidance capacity 

algorithmic code through the usage of ROS and Python Language. 

Thus, in this thesis four very important research achievements have been 

obtained. The first is, developing a method to combine the two different 

components of two readily available robots in the market. The manipulator, end-

effector and actuators of BPHR were selected as a standard robotic structure. This 

robot’s deciding and enforcing component was removed as it had only biped 

walking capacity and simple (without other advanced) human-like functions. 

Within this structure the highly advanced and multifunctional deciding and 

enforcing component of BBB was installed after vitalizing it with human-like 

walking capacity using ROS Software with Python Script and libraries. BBB did 

not possess bipedal human-like walking power previously. Thus, this new 
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humanoid robot possesses all functions that are desired in a latest humanoid class 

robot. Bipedal walking capability has been acquired by humans over time making 

human stand ahead among the various life forms. These capabilities when enacted 

by the robots will make them more human-like and will provide an upper position 

to others in comparison to the other locomotor robots with time.   

The second significant achievement is the biped walking ability that was imbibed 

to this new hybrid humanoid robot using ROS and Python libraries and walking 

algorithmic codes and controls for the first time in this research study.  

The third important result of this research study is making the hybrid humanoid 

robot developed in this study is made to possess autonomous control of its 

walking behavior. For this purpose, the hybrid humanoid is Wi-Fi enabled 

incorporating suitable and necessary libraries. The robot is capable of performing 

a bipedal movement without falling down and also getting the feedback from the 

IR sensor for and obstacle in front.  

The fourth important achievement is that this hybrid humanoid robot is made 

capable of avoiding obstacles by installing IR sensor i.e. the robot stops when it 

senses the obstacle in front of it and including in the software suitable ROS 

libraries. 

However, this thesis details the walking capability of the new robot alone, while 

its other multifunctional capacities have not been put to test or verified.  But, 

many advanced sensors and highly skilled processing power like image 

processing has been included enabling further study. Image processing adopted 

in the future study may include the finding of an item by a robot which is a work 

done in the machine vision framework. In view of the intention to copy the human 

vision capacity, a PC vision framework utilizes electronic parts and calculations 

in a like manner human eyes and mind performs. The Open Source Computer 

Vision Library (OpenCV) is the most utilized program libraries as a part of 
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robotics to notice, track and recognize the scene caught by image sensors. 

OpenCV is a program in python language having numerous libraries for PC 

visions dreams intended to investigate, prepare and comprehend the items in 

recordings and photographs meant to deliver data.  

Dynamic and stable walking biped humanoid robot is the prima donna of the 

robot research and industry now. Current humanoid bipedal robots have the 

capacity only to walk and act in homes, hospitals, and human companion service 

centers [5]. This problem is being tackled in this research project for the first time 

by fusing together two different commercially available robots possessing and 

competently satisfying all the above requirements together. 

The future directions of the present work are enlisted below: 

 OpenCV, an open source library of image processing along with a web 

camera can be added to enhance the walking and obstacle avoidance 

capabilities of the humanoid robot. 

 Voice recognition software – PocketSphinx16[58], can be added and this 

would increase the responsiveness of the humanoid robot developed here. 

Publications: 

 Ganesh K. K., Z. Yang, V. Gandhi, T. Geng, “ROS based autonomous 

control of a humanoid robot”, International Conference of Artificial Neural 

Networks and Machine Learning – ICANN, 6-9 September 2016. 

 

 Ganesh K. K., V. Gandhi, Z. Yang, T. Geng, “Using Robot Operating 

System (ROS) and Single Board Computer to Control Bioloid Robot 

Motion”, 8th Towards Autonomous Robotic Systems (TAROS) 

Conference, 19-21 July 2017. (Submitted) 

                                                           
 

16 PocketSphinx is a simple speech recognition facility, particularly made suitable for handheld and cell phone devices, 

moreover it works similarly well on the desktop also. 
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APPENDIX A 

DYNAMIC WALKING - ALGORITHM AND CODE 

#!/usr/bin/env python 

 

 

import os 

import gyro 

import dynamixel 

import sys 

import subprocess 

import optparse 

import yaml 

import time 

import serial 

import rospy 

import Adafruit_BBIO.ADC as ADC 

from std_msgs.msg import String 

 

print "Select options " 

userinput=raw_input("1.Slow \n2.Normal Walk \nEnter Choice : ") 

 

if userinput == '1': 

    dly=1 

    spd=5 

 

elif userinput == '2': 

    dly=0.3 

    spd=700 

 

else: 

    print "Not Valid Input !" 

    sys.exit() 

 

dynid="" 

d3="" 

d7="" 

d8="" 

d9="" 

d10="" 

d11="" 

d12="" 

d14="" 

d15="" 

d16="" 

d17="" 

d18="" 

 

myActuators = list() 

 

def read_adc(): 

    ADC.setup() 

    value = ADC.read_raw("P9_35") 

    values = value/1000 

    print values 

    return values 

 

def read_lean(): 
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    xvalue,yvalue = gyro.movement() 

    return xvalue,yvalue 

     

 

def default_Positions(): 

    global d3,d7,d8,d9,d10,d11,d12,d14,d15,d16,d17,d18,myActuators 

    d7.goal_position = 362#352 

    d8.goal_position = 672 

    d3.goal_position = 512 

    d9.goal_position = 512 

    d10.goal_position = 512 

    d11.goal_position = 512 

    d12.goal_position = 512 

    d14.goal_position = 512 

    d15.goal_position = 512 

    d16.goal_position = 512 

    d17.goal_position = 512 

    d18.goal_position = 512 

    print "Initial Position On Sensor" 

 

def main(settings): 

    global d3,d7,d8,d9,d10,d11,d12,d14,d15,d16,d17,d18,myActuators 

    loop=1 

    # Establish a serial connection to the dynamixel network. 

    # This usually requires a USB2Dynamixel 

    serial = 

dynamixel.SerialStream(port=settings['port'],baudrate=settings['baudRate'],

timeout=10) 

    # Instantiate our network object 

    net = dynamixel.DynamixelNetwork(serial) 

 

    pub = rospy.Publisher('robot', String, queue_size=10)     

    rospy.init_node('walk_sensor', anonymous=False, log_level=rospy.INFO, 

disable_signals=True) 

 

    # Populate our network with dynamixel objects 

    for servoId in settings['servoIds']: 

        newDynamixel = dynamixel.Dynamixel(servoId, net) 

        net._dynamixel_map[servoId] = newDynamixel 

    pub.publish(rospy.get_time)  

 

 

    if not net.get_dynamixels(): 

      print 'No Dynamixels Found!' 

      sys.exit(0) 

    else: 

      print "...Done" 

 

 

    for dyn in net.get_dynamixels(): 

        myActuators.append(net[dyn.id]) 

 

    for actuator in myActuators:       # Set up the servos to Initial 

        #dynid=str(actuator).split(" ")[1] 

        actuator.moving_speed = 100 

        actuator.torque_enable = True 

        actuator.synchronized = True 

        actuator.torque_limit = 1000 

        actuator.max_torque = 1000 

 

    d3 = myActuators[0] 
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    d7 = myActuators[1] 

    d8 = myActuators[2] 

    d9 = myActuators[3] 

    d10 = myActuators[4] 

    d11 = myActuators[5] 

    d12 = myActuators[6] 

    d14 = myActuators[7] 

    d15 = myActuators[8] 

    d16 = myActuators[9] 

    d17 = myActuators[10] 

    d18 = myActuators[11] 

 

    d7.goal_position = 362#352 

    d8.goal_position = 672 

    d3.goal_position = 512 

    d9.goal_position = 512 

    d10.goal_position = 512 

    d11.goal_position = 512 

    d12.goal_position = 512 

    d14.goal_position = 512 

    d15.goal_position = 512 

    d16.goal_position = 512 

    d17.goal_position = 512 

    d18.goal_position = 512 

    print "Initial Position" 

    net.synchronize()   # Send all the commands to the servos. 

    #time.sleep(4) 

    #for servoId in settings['servoIds']: 

    #    print "Current Position of "+str(servoId)+" : 

",net.read_register(int(servoId),36,2) 

    time.sleep(1) 

    right_initial(net) 

    time.sleep(0.5) 

    print "----------------------------------------------Initial---

Completed---------------------" 

    '''time.sleep(2) 

    d11.goal_position =532 

    net.synchronize() 

    time.sleep(2) 

    d11.goal_position =512 

    net.synchronize() 

    time.sleep(2) 

    d11.goal_position =492 

    net.synchronize() 

    time.sleep(2)''' 

 

  

    while True: 

        left(net) 

        time.sleep(dly) 

        if read_adc() < 0.5: break 

 

        right(net) 

        time.sleep(dly) 

        if read_adc() < 0.5: break 

        loop+=1 

        print "----------------------------------------------loop----------

-----------"+str(loop) 

    default_Positions() 

    net.synchronize() 
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def right_initial(net): 

    global dly,spd 

    global d3,d7,d8,d9,d10,d11,d12,d14,d15,d16,d17,d18 

 

    d9.goal_position = 462                          # Step 1 LEFT SIDE LEAN 

    d10.goal_position = 462 

    d17.goal_position = 462 

    d18.goal_position = 462 

    print "Step 1 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

     

    time.sleep(dly) 

    time.sleep(dly) 

    x,y =  read_lean() 

    print x,y  

 

    d9.goal_position = 422                           # Step 2 RIGHT LEG 

LIFT 

    d18.goal_position = 422 

    d10.goal_position = 512 

    print "Step 2 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

 

    d12.goal_position = 512                          # Step 3 MOVE FRONT 

    d14.goal_position = 512 

    print "Step 3 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

 

    d11.goal_position =432                          # Step 4 SWING LEG 

    print "Step 4 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

 

    d3.goal_position =442                           # Step 5 KNEE DOWN 

    print "Step 5 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

 

    d9.goal_position =462                           # Step 6 REST POSITION 

    d10.goal_position =462 

    d17.goal_position = 462 

    d18.goal_position =462 

    print "Step 6 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

    time.sleep(dly) 

    #for servoId in settings['servoIds']: 

    #    print "Current Position of "+str(servoId)+" : 

",net.read_register(int(servoId),36,2) 

 

#=====================first_step========================================# 

 

def left(net): 

    global dly,spd 

    global d3,d7,d8,d9,d10,d11,d12,d14,d15,d16,d17,d18 
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    d9.goal_position = 572  #572                        # Step 1 RIGHT SIDE 

LEAN 

    d10.goal_position = 572#572 

    d17.goal_position = 572#572 

    d18.goal_position = 572#572 

    #d15.goal_position = 492 

    print "Step 1 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

    time.sleep(dly) 

    time.sleep(dly) 

     

    x,y = read_lean() 

    print x,y  

    if (x>18): 

        default_Positions()    

        net.synchronize() 

        sys.exit()  

     

    d9.goal_position = 512                          # Step 2 LEFT LEG 

LIFT//// 

    d10.goal_position =592 

    d17.goal_position =602#592 

    d8.goal_position = 672#672 

    #d11.goal_position = 512# 

    print "Step 2 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

 

    d11.goal_position = 512#482                         # Step 3 MOVE FRONT 

    d3.goal_position = 512 

    d15.goal_position = 512 

    print "Step 3 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

    #time.sleep(dly) 

 

    d12.goal_position = 592                          # Step 4 SWING LEG 

    print "Step 4 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

 

    d14.goal_position = 582                          # Step 5 KNEE DOWN 

    print "Step 5 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

 

    d9.goal_position = 572                          # Step 6 REST POSITION 

    d10.goal_position = 572 

    d17.goal_position = 572 

    d18.goal_position = 572 

    print "Step 6 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

    #for servoId in settings['servoIds']: 
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    #    print "Current Position of "+str(servoId)+" : 

",net.read_register(int(servoId),36,2) 

    time.sleep(dly) 

#=============================step forward==============================# 

def right(net): 

    global dly,spd 

    global d3,d7,d8,d9,d10,d11,d12,d14,d15,d16,d17,d18 

 

    d9.goal_position = 462                          # Step 1 LEFT SIDE LEAN 

    d10.goal_position =462 

    d17.goal_position =462 

    d18.goal_position =462 

        #else: actuator.goal_position = 512 

    print "Step 1 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

    time.sleep(dly) 

    #time.sleep(dly) 

    x,y = read_lean() 

    print x,y 

    if(x<-10): 

        default_Positions() 

        net.synchronize() 

        sys.exit() 

    #time.sleep(2) 

 

    d9.goal_position = 422       #432                   # Step 2 RIGHT LEG 

LIFT 

    d18.goal_position =422#422 

    d10.goal_position =512 

    print "Step 2 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

    time.sleep(dly) 

 

    d12.goal_position =512                          # Step 3 COME FRONT 

    d14.goal_position =512 

    print "Step 3 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

 

    d11.goal_position =432                          # Step 4 SWING LEG 

    print "Step 4 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

 

    d3.goal_position =442                           # Step 5 KNEE DOWN 

    print "Step 5 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

 

    time.sleep(dly) 

 

    d9.goal_position =462                           # Step 6 COME TO 

POSITION 

    d10.goal_position =462 

    d17.goal_position =462  

    d18.goal_position =462 
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    print "Step 6 done wait "+ str(dly) 

    net.synchronize()   # Send all the commands to the servos. 

    time.sleep(dly) 

    #for servoId in settings['servoIds']: 

    #    print "Current Position of "+str(servoId)+" : 

",net.read_register(int(servoId),36,2) 

 

 

def validateInput(userInput, rangeMin, rangeMax): 

    try: 

        inTest = int(userInput) 

        if inTest < rangeMin or inTest > rangeMax: 

            print "ERROR: Value out of range [" + str(rangeMin) + '-' + 

str(rangeMax) + "]" 

            return None 

    except ValueError: 

        print("ERROR: Please enter an integer") 

        return None 

 

    return inTest 

 

if __name__ == '__main__': 

 

    parser = optparse.OptionParser() 

    parser.add_option("-c", "--clean", 

                      action="store_true", dest="clean", default=False, 

                      help="Ignore the settings.yaml file if it exists and 

\ 

                      prompt for new settings.") 

 

    (options, args) = parser.parse_args() 

 

    # Look for a settings.yaml file 

    settingsFile = 'settings.yaml' 

    if not options.clean and os.path.exists(settingsFile): 

        with open(settingsFile, 'r') as fh: 

            settings = yaml.load(fh) 

    # If we were asked to bypass, or don't have settings 

    else: 

        settings = {} 

        if os.name == "posix": 

            portPrompt = "Which port corresponds to your USB2Dynamixel? \n" 

            # Get a list of ports that mention USB 

            try: 

                possiblePorts = subprocess.check_output('ls /dev/ | grep -i 

usb', 

                                                        shell=True).split() 

                possiblePorts = ['/dev/' + port for port in possiblePorts] 

            except subprocess.CalledProcessError: 

                sys.exit("USB2Dynamixel not found. Please connect one.") 

 

            counter = 1 

            portCount = len(possiblePorts) 

            for port in possiblePorts: 

                portPrompt += "\t" + str(counter) + " - " + port + "\n" 

                counter += 1 

            portPrompt += "Enter Choice: " 

            portChoice = None 

            while not portChoice: 

                portTest = raw_input(portPrompt) 

                portTest = validateInput(portTest, 1, portCount) 
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                if portTest: 

                    portChoice = possiblePorts[portTest - 1] 

 

        else: 

            portPrompt = "Please enter the port name to which the 

USB2Dynamixel is connected: " 

            portChoice = raw_input(portPrompt) 

 

        settings['port'] = portChoice 

 

        # Baud rate 

        baudRate = None 

        while not baudRate: 

            brTest = raw_input("Enter baud rate [Default: 1000000 bps]:") 

            if not brTest: 

                baudRate = 1000000 

            else: 

                baudRate = validateInput(brTest, 9600, 1000000) 

 

        settings['baudRate'] = baudRate 

 

        # Save the output settings to a yaml file 

        with open(settingsFile, 'w') as fh: 

            yaml.dump(settings, fh) 

            print("Your settings have been saved to 'settings.yaml'. \nTo " 

+ 

                   "change them in the future either edit that file or run 

" + 

                   "this example with -c.") 

 

 

    main(settings) 

 


