

A Robot Operating System (ROS) Based Humanoid Robot

Control

Ganesh Kumar Kalyani

A Thesis submitted to Middlesex University in fulfillment of the

requirements for degree of

MASTER OF SCIENCE

Department of Design Engineering & Mathematics

Middlesex University, London

Supervisors

 Dr. Vaibhav Gandhi

 Dr. Zhijun Yang

November 2016

II

Tables of Contents

Table of Contents…………………………………………………………………………………….II

List of Figures…………………………………………………………………………………….….IV

List of Tables………………………………………………………………………………….……...V

Acknowledgement…………………………………………………………………………………...VI

Abstract……………………………………………………………………………………………..VII

List of Acronyms and Abbreviations……………………………………………………………..VIII

1. Introduction .. 1

1.1 Introduction .. 1

1.2 Rationale ... 6

1.3 Aim and Objective ... 7

1.4 Outline of the Thesis ... 8

2. Literature Review .. 10

2.1 Basics of Robotics .. 10

2.1.1 Historical Development .. 10

2.1.2 Structural components ... 11

2.2 Control of Robot Functions ... 13

2.2.1 Remotely controlling a robot .. 13

2.2.2 Semi-Autonomous Control ... 13

2.2.3 Autonomous Control ... 14

2.3 Decision-making & Implementing Mechanism ... 14

2.3.1 Electronic components ... 14

2.3.2 Programming Essentials .. 18

2.3.3 Python Language ... 19

2.3.4 Decision-making and Enforcing Technique ... 20

2.3.5 Control Architecture ... 21

2.4 Robot Operating System (ROS) ... 22

2.4.1 Different Operating Systems ... 22

2.4.2 Robot Operating System ... 23

2.5 Requirements of Walking Biped Humanoid Robots ... 27

2.5.1 Generic Features ... 27

III

2.5.2 Essential Functions .. 30

2.6 Conclusion ... 40

3. Integrating Experimental Robots ... 42

3.1 Advanced Multifunctional Quadruped BeagleBone Black Robot ... 42

3.1.1 Developments in Robotic Research .. 42

3.2 Advanced Biped Bioloid Humanoid Robot .. 43

3.2.1 BeagleBone Black as ‘Deciding and Enforcing Component’ ... 43

3.2.2 Features of Bioloid Premium Humanoid Robot (BPHR) .. 44

3.2.3 Controller of BPHR .. 46

3.3 Replacing the Deciding and Enforcing Components ... 47

4. Experimental Procedure and Results... 49

4.1 Adaption Strategy ... 49

4.2 Assembling the revised Humanoid Robot ... 50

4.3 Humanoid Robot’s Dynamic Walking Algorithm .. 51

4.3.1 Evolving Dynamic Stable Humanoid Robot Walking ... 52

4.3.2 Stability Analysis.. 54

4.4 Design and connections of components for the desired walking pattern............................ 55

4.4.1 Configuration of BBB ... 55

4.4.2 Dynamixel AX-12A servo actuators ... 55

4.4.3 USB2dynamixel connector .. 56

4.4.4 Infrared Sensor .. 56

4.4.5 Accelerometer ... 56

4.4.6 Wi-Fi-Adapter .. 56

4.5 Walking procedure of the robot ... 56

4.6 Walking strategy of the robot ... 58

5. Conclusion and Future Directions .. 61

REFERENCES .. 64

APPENDIX A .. 72

IV

LIST OF FIGURES

Figure 1: Structural Components of a Humanoid Robot. ... 11

Figure 2: Heavy Robot Arduous Jobs .. 16

Figure 3: Types of Motor Controllers .. 17

Figure 4: Two PCs with Other Controllers ... 18

Figure 5: BeagleBone Black Mounted on a Four-Legged Vehicle ... 43

Figure 6: Schematic Parts of Humanoid Robot ... 48

Figure 7: BeagleBone Black Robot’s Component .. 51

Figure 8: Flowchart Indicating Control of Robot Movement .. 52

Figure 9: Sagittal View for Walking Pattern .. 53

Figure 10: Schematics of Landing Position Control ... 53

Figure 11: Figure showing the BBB, AX-12A motors, USB2Dynamixel connector, Wi-Fi Adapter, IR

Sensor and the Gyro+Accelerometer sensor used in the experiment.. 55

Figure 12: Actual motor positions showing (a) Posterior view (b) Anterior view................................. 57

Figure 13: Physical connections of the USB2Dynamixel with the BBB ... 57

Figure 14: Schematic Parts of Humanoid Robot showing the motor positions for Yaw, Pitch and Roll

motors. .. 58

Figure 15: The rqt graph of the connections during the walking of the robot. 60

file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808408
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808409
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808410
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808411
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808412
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808413
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808414
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808415
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808416
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808417
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808418
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808418
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808419
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808420
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808421
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808421
file:///C:/Users/Vaibhav/Desktop/just%20a%20backup/Middlesex/teaching%20modules/Research%20students/MScs/Ganeshkumar/Thesis_Rev_final_V2.docx%23_Toc473808422

V

LIST OF TABLES

Table 1: Bioloid Robot listing existing and replacement components .. 47

file:///D:/Nishant1/Ganesh%20Mdx/Thesis_final_correction_3.docx%23_Toc473467571

VI

Acknowledgement

The intensive period of my M.Sc. project work has been one of the best encounters I met with

in my life. It has given me sufficient time to inculcate the research craving in me. I need to

keep up a perfect balance, taking small and cautious steps moving steadily towards the

objective. It is the consequence of sincere involvement extended by various people which

enabled me to successfully complete this dissertation. I humbly express my true appreciation

to every one of the individuals who were involved in my journey of Masters by Research. I

earnestly hope that this thesis will be useful for anyone interested in Robotics research work.

I wish to pray and then would like to remember Almighty God ever for this great act of kindness

and for showing me the light to fulfill my responsibility in writing up this thesis to the

satisfaction and approval of Middlesex University and particularly the staff of Design

Engineering and Mathematics Department.

My honest and sincere thanks are due to my Supervisors Dr. Vaibhav Gandhi and Dr. Zhijun

Yang. I would like to remember their useful suggestions, master comments and valuable

guidance which have been the heart and soul of this work from starting to finish. Their

understanding, adaptability, genuine caring and concern, and encouragement shown to me

during the dissertation process enabled me to take care of life and simultaneously likewise to

acquire my Master Degree. They have been readily cooperating with me even after working

hours and on holidays even. They had never discouraged me when they knew I needed to

manage priorities. I appreciate their sense of judgment between research interests and personal

pursuits. Further, I wish to thanks Mr. Nishant Singh, PhD researcher, Middlesex University

for his support and help throughout.

Sincere thanks are also expressed to Middlesex University for having enabled me to carry out

this research study.

VII

Abstract

This thesis presents adapting techniques required to enhance the capability of a commercially

available robot, namely, Robotis Bioloid Premium Humanoid Robot (BPHR). BeagleBone

Black (BBB), the decision-making and implementing (intelligence providing) component, with

multifunctional capabilities is used in this research. Robot operating System (ROS) and its

libraries, as well as Python Script and its libraries have been developed and incorporated into

the BBB. This fortified BBB intelligence providing component is then transplanted into the

structure of the Robotis Bioloid humanoid robot, after removing the latter’s original decision-

making and implementing component (controller). Thus, this study revitalizes the Bioloid

humanoid robot by converting it into a humanoid robot with multiple features that can be

inherited using ROS. This is a first of its kind approach wherein ROS is used as the

development framework in conjunction with the main BBB controller and the software

impregnated with Python libraries is used to integrate robotic functions. A full ROS

computation is developed and a high level Application Programming Interface (API) usable by

software utilizing ROS services is also developed. In this revised two-legged-humanoid robot,

USB2Dynamixel connector is used to operate the Dynamixel AX-12A actuators through the

Wi-Fi interface of the fortified BBB. An accelerometer sensor supports balancing of the robot,

and updates data to the BBB periodically. An Infrared (IR) sensor is used to detect obstacles.

This dynamic model is used to actuate the motors mounted on the robot leg thereby resulting

in a swing-stance period of the legs for a stable forward movement of the robot. The maximum

walking speed of the robot is 0.5 feet/second, beyond this limit the robot becomes unstable.

The angle at which the robot leans is governed by the feedback from the accelerometer sensor,

which is 20 degrees. If the robot tilts beyond a specific degree, then it would come back to its

standstill position and stop further movement. When the robot moves forward, the IR sensors

sense obstacles in front of the robot. If an obstacle is detected within 35 cm, then the robot

stops moving further. Implementation of ROS on top of the BBB (by replacing CM530

controller with the BBB) and using feedback controls from the accelerometer and IR sensor to

control the two-legged robotic movement are the novelties of this work.

VIII

LIST OF ACRONYMS AND ABBREVIATIONS

AC Alternate Current

ADC Analog to Digital Converter

API Application program interface

BBB BeagleBone Black

BPHR Bioloid Premium Humanoid Robot

I2C Inter-Integrated Circuit

CAN Control Area Network

CCD Charge Coupled Device

CoG Centre of Gravity

CoM Centre of Mass

CoP Centre of Pressure

CPG Central Pattern Generator

CPU Central Processing Unit

DC Direct Current

DCS Distributed Control System

DMS Distance Measuring Sensor

DoF Degrees of Freedom

F/T Force / Torque

GND Ground

GPS Global Positioning System

GPU Graphics Processing Unit

GRF Ground Reaction Force

GUI Graphic user Interface

HAL Hardware Abstraction Layer

IDE Integrated Development Interface

IO Input-output

IX

IR Infrared

KB Kilo Byte

LAN Local Area Network

LED Light Emitting Diode

OS Operating System

PC Personal Computer

PD Proportional Derivative

PWM Pulse Width Modulation

RAM Random Access Memory

RC Remote Controller

ROS Robotic Operating System

RRT Rapidly Exploring Random Tree

RTX Real Time Extension

Rx Receive Connection

SCA Serial Clock

SDA Serial Data

SPI Serial Peripheral Interface

TTL Transistor-transistor logic

TV Television

Tx Transmit Connection

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

Wi-Fi Wireless Fidelity

ZMP Zero Moment Point

1

1. Introduction

1.1 Introduction

The term Robot means an automated, mechanized and an instrumented substitute-

device for carrying out work that is usually carried out by humans. “Robotics”

implies the branch of science and innovation that deals with the planning,

development, utilization, and employment of robots and also computer

framework for their operation, management, and information assessment [1].

Human body system includes bones as firm support system, cartilages that line

the joints, muscles and ligaments that activate each part of the body. It is difficult

to supplant this muscular-skeletal framework with the inert materials. Hence,

machines could develop some equivalent human motions only [2].

Generally, a robot will have three types of components, namely, structural

components, sensing components, and controlling and operating (deciding and

intelligence providing) components [3]. The structural components are: i)

manipulator or Rover: main body of the robot (links, joints etc.); ii) end-effector:

usually the last component connected to the manipulator; (e.g., fore-hand with

any needed device like gripper); and iii) actuators: muscles of the manipulator

(servo motor, stepper motor, pneumatic and hydraulic cylinders etc. which moves

the end-effector in the desired manner). Sensing and deciding and enforcing

components are the other two important parts of robots.

There is noteworthy development in robotics and related scientific fields due to

the access to modern sensors, powerful computing facilities, a wide range of

active mechanical and electronic gadgets, in-depth and detail information about

a wholesome robotic system, and different kinds of mechanical equipment’s etc.

[4]. This research development on robots, especially at the university, is being

undertaken with great zeal. In line with this development, the present work

mainly focuses on robotic science and its development.

2

Repetitive and tedious tasks often involving precision and speed of control were

the job of robots particularly in factories in the preliminary phase of robot’s life.

Human-robot symbiosis rapidly expanded and so human-robot interaction and

autonomous movement attracted research [5]. A humanoid robot is built to

visibly look like a person. A few of these robots may likely to have facial features

for example, eyes and mouth to resemble a human. The study of design of a

humanoid robot is either application based or research based. Humanoid robots

are suitable for carrying out many human tasks such as helping people and

carrying out simple jobs and also working in factory production line or dangerous

environments [6].

Movement of a humanoid robot should be like that of a human, namely,

exhibiting biped gait and legged locomotion. This is the biggest and most

essential difference between a humanoid robot and other robots. The walking

humanoid robot requires a system integration arrangement among its deciding

and enforcing i.e., intelligence providing, sensing, and structural components.

Preference is either for a centralized or a distributed control. When the setup is

centralized, the main computer has access to all the information and hence all the

calculations must be done by the main computer only and it is also not easy to

increase the number of connections i.e., beyond that computers capacity [6]. In

the distributed system, it is easily possible to provide many connections and

attach several useful equipment’s such as cameras, wireless LAN, control area

network provision etc. However, computer or micro controller and motor

controllers as well as provisions for connecting all of them are also required. In

case Real Time Operating System (RTOS) is not used as a main controller but

only a General-Purpose Operating System (GPOS), then real-time control

program or the Real-Time Extension (RTX - which is a program readily available

in the market) is also required. RTX can access hardware directly. For motion

control, depending on the Degrees of Freedom (DOF), the maximum joint motor

3

controllers are possible to be worked out. For approximately 40 DOF, 15 joint

motor controllers are easily provided. Here, the main controller receives sensor

data quickly and forwards them to all the joint motor controllers [7].

Generally, the walking humanoid robot is configured with an autonomous

controller and a motion controller. The autonomous controller takes care of the

autonomous processing and image processing. The autonomous processor

controls and directs the hardware, while image processing tools like Open CV1

(Intel C/C++ libraries for computer vision) or Direct show2 (Microsoft Multi

Media Development Tool) are used for receiving images from the camera

connected to the USB, while the program provided in the tools can carry out

image processing [8, 9]. The motion controller may include a walking program

and a special action program written in any suitable programming language such

as C, C++, etc. The firmware program can be included in the motion controller,

which if necessary, can be modified to suit the environment using a window note-

book PC or other suitable devices.

For deciding whether a PC, Microcontroller and motor controller set-up is better

or only a microcontroller and motor controller is enough the following points

need consideration:

1. Powerful processor is used for providing Artificial Intelligence and overall

control and simpler microprocessor as I/O managers are being used in

walking humanoid robots.

2. Preferably, three-layer configuration is adopted:

i. Top layer - Powerful PC as brain

1 OpenCV (Open Source Computer Vision) is a library of programming functions mainly aimed at real-time computer vision.

The library is cross-platform and free for use under the open-source BSD license.
2 The Microsoft DirectShow application programming interface (API) is a media-streaming architecture for Microsoft

Windows. Using DirectShow, your applications can perform high-quality video and audio playback or capture. The

DirectShow headers, libraries, SDK (Software Development Kit) tools, and samples are available in the Windows SDK.

4

ii. Middle layer - Multiple sub-system managers for motion control,

sensor management, sensor processing etc.

iii. Lower layer - Number of cheap microprocessors for managing

miscellaneous tasks

Ethernet or USB will be suitable for upper layer and RS2323, I2C4, etc. are used

for lower level communication [10]

3. Microprocessor is plugged in to a USB on the Notebook and it will easily

send and receive commands over serial port and all other higher brain

programming code could run on the Notebook. The Notebook could issue

commands by taking decisions and the other processor could control the

motors to execute the required tasks [10].

4. Decisions on the use of processor is taken considering the following:

i. Processing Power-If controlling the motors is only needed (i.e. all

processing is done on the external PC) a motor driver controller is

enough. For basic on-board processing like transformation of

coordinates, simple command loops and inverse kinematics, a simple

microprocessor is sufficient. If automating the robot and implementing

advanced features are desired, BeagleBone Black, Raspberry Pi or Intel

Atom program is sufficient.

3 In broadcast communications, RS-232 is a standard for serial correspondence transmission of data. It formally characterizes

the signals interfacing between a Data Terminal Equipment (DTE), for example, a work station, and a Data Communication

Equipment (DCE), for example, a modem.
4 I2C is a serial protocol for two-wire interface to connect low-speed devices like microcontrollers, EEPROMs, A/D and D/A

converters, I/O interfaces and other similar peripherals in embedded systems. Each I2C slave device needs an address.

5

ii. Programming – Basic5, Python6 or C/C++7 language is required for

BeagleBone Black. But wherever necessary, libraries are included in

addition.

iii. Compatibility - The chosen processor should support (both number and

type) the motors used [11].

The following points may generally be taken into consideration in assessing the

requirement of software required for robot design:

1. ROS (as development framework) depends on the machine controller that

integrates robotic functions [12].

2. Python API allows either to use the entire C++APIs from a remote machine

or Python Modules must be created that can run remotely or on the robots

[13].

3. Embedded software, running on the mother-board located in the head of the

robot allows autonomous behaviour. Desktop software running on a

computer located outside the robot, allows creation of new behaviours and

the remote control of the robot [13].

The above theoretical considerations were carefully considered for evolving a

ROS based humanoid robot for autonomous control, by combining two

commercially available robots. The compatibility and suitability of both the

replaced and replacing deciding and enforcing components were carried out.

Thereafter, it was noticed that the substitution of the BeagleBone Black (BBB)

deciding and enforcing multifunctional component (after strengthening it with

5 BASIC (an acronym for Beginner's All-purpose Symbolic Instruction Code) is a family of general-purpose, high-level

programming languages whose design philosophy emphasizes ease of use.
6 Python is a widely used high-level, general-purpose, interpreted, dynamic programming language. Its design philosophy

emphasizes code readability, and its syntax allows programmers to express concepts in fewer lines of code than would be

possible in languages such as C++ or Java.
7 C++ is a high-level programming language it adds object-oriented features to its predecessor C. C++ is one of the most

popular programming language for graphical applications, such as those that run in Windows and Macintosh environments.

6

dynamic walking capacity) instead of or in place of the CM530 deciding and

enforcing component of Bioloid Premium Humanoid Robot (BPHR) (with

walking capacity alone) was workable and carried out in this study. Thus, the

adapting strategy of implanting the fortified intelligent providing component of

BBB in the structural body (without its original intelligent providing component)

of BPHR is implemented successfully in this research project.

1.2 Rationale

With the advancement of robots and robotics as a discipline of study humans have

been interested in building human-like robots (both in structure and function).

This desire came true to some extent, with the advent of Humanoid Robots. There

were further expectations that humanoid robot should help and take care of

humans in their homes, hospitals and factory floors with mild and simple jobs.

These advancements and reciprocations have long surpassed [5]. Now-a-days,

robots are used for arduous tasks in mines, seas, under-water, space, and

hazardous environments like nuclear plants etc. [5]. Apart from two-legged

dynamic motion, even four–legged flexible motion to negotiate pipes, steps,

slippery floors etc. are very much in demand [5]. Although there is a high demand

the market is not yet producing such tough humanoids suitable for hazardous

work. The traditional and established robotic platforms seem lacking in efficiency

to meet such challenges and demands. Therefore, it is necessary to intertwine the

mere dynamic walking and simple working capabilities of humanoid robots like

Bioloid, KHR [7], Honda ASMIO [14], the WABOT series of Waseda

University [15], and H6 and H7 of Tokyo University [16], with multifunctional

capacities of BBB (and similar) deciding and enforcing (intelligent providing)

component. Such innovation with autonomous computing hardware has paved

way for the much-needed flexibility in the use of hardware and software

integration for the betterment of robotics. Hence, this thesis research work is

undertaken to remove the deciding and enforcing (intelligence providing)

7

components of BPHR and implant in its body, instead, the advanced

multifunctional intelligence providing component of BBB after making necessary

changes and including in addition ROS software in Python Script with libraries.

This type of research is an imperative need of the hour and would become

promising as it would be befitting and beneficial and thus, capable of setting the

baseline for alternate robotics studies.

1.3 Aim and Objective

Biped humanoid robots and quadruped or hexapod legged mechanical but some-

what more intelligent devices, recognized and referred to as robots, are in wide

usage. It is the avowed aim and object of this research study to merge them

together and develop a two-legged humanoid robot to have dynamic human-like

stable walking with the ability of path-finding and potentially negotiating

obstacles etc.

A ready-made humanoid robot of one firm capable of walking and performing

some simple functions carried out by human beings is blended with another

highly intelligent robotic device with multifunctional capacities resulting in a

humanoid robot capable of performing all the functions of the above two robots.

This research study is the first of its kind as it brings together the concepts of ROS

and replaces the CM530 controller with BBB. The walking style adopted here is

an attempt to provide humanoid with the ability of bipedal walking without

falling down.

BBB controller is mounted in place of the built-in CM530 controller within the

BPHR. Individual Dynamixel servos are accessed through BBB via

USB2Dynamixel connector. To meet the challenges of keeping the robot upright

and maintain its balance, a gyro/accelerometer sensor is used with an IR sensor

for avoiding the obstacles while walking. ROS is implemented in the BBB and

the walking of the BPHR is to be made performing using python programming

8

language with BBB. The sensors are used for obstacle avoidance and for

providing stability while walking. The Wi-Fi in the BBB is enabled so that the

humanoid robot can be controlled from a distance.

The python software is modified to run by using ROS alone. Various modes of

walking such as slow, medium and fast. There is no plan of making any physical

modifications to the robot. The humanoid robot is to walk with the python code

making use of BBB sensors and avoid collision too.

1.4 Outline of the Thesis

The thesis is divided into five chapters.

Chapter 1: This chapter describes rationale, aims, goals and outline of the thesis.

Chapter 2: This chapter details the existing robotics technological advancements

and presents in detail the basic knowledge and theoretical considerations

involved. This chapter also formulates the scheme for adaptability of installing

the decision-making and implementing component of BBB into the structure of

biped walking BPHR. Further, this chapter also outlines the other considerations

relating to robots such as their types, parts and modes of controls. The mechanics

involved in deciding and implementing the various decisions that are taken have

also been addressed in this chapter. The walking action performed by the robot

including the electronic parts required, efficient way of programming, algorithms

for various robot’s actions and developing codes for controlling robots are put

forth in detail. The desirable requirements including expected features and

essential functions are also described.

Chapter 3: This chapter describes in detail the BBB decision-making and

implementing (intelligence providing) component, also giving details about its

versatile multi-function capability. This chapter also gives details about Robotis

make BPHR, particularly its structural features such as manipulators, end-

9

effector, and actuators and also some details about the limited capability of the

built-in CM530 controller.

Chapter 4: This chapter furnishes in detail the important aspects of research

study undertaken and achieved in this thesis, particularly empowering the

Bioloid, GP humanoid biped robot with multifunctional capabilities of the BBB’s

decision-making capacity. The BBB instills dynamic and stable walking capacity

in the BPHR, which was previously lacking with the CM530 controller.

Chapter 5: This chapter concludes the thesis with the basic contributions listed.

Future work is also discussed.

10

2.Literature Review

This chapter details the generic humanoid robot structure, and its autonomous

working and control in recent years. After carrying out a literature survey, a

suitable algorithm is to be selected for robot’s walking and stability, and is to be

implemented in the BeagleBone Black. This is to be achieved with the selected

walking control trajectory being guided by the software, developed using Robot

Operating System (ROS) and Python language and their libraries.

2.1 Basics of Robotics

2.1.1 Historical Development

From the Russian word ‘paboTa (Rabota)’ meaning work or labour, the

Czechoslovakian author named Karel Capek developed the word ‘Robots’. The

robots are referred to the programmable machines used for performing

manipulation or locomotion functions under automatic control. Most robots are

inspired by nature adding to the field of bio-propelled ones. This has led to the

development of another new branch of robotics called soft robotics. Currently,

robots that function and act like humans also have the fondness to exist together

with people as expected and symbiotically [2]. This is called emotional robotics

and is the present attraction of industry and research.

Robots have come a long way, from the wooden model of a pigeon activated by

a steam jet to the Hitachi’s brain child “HIVIP Mk.1” intelligent robot; which is

capable of understanding and performing tasks from line drawings, recognizing

orientation of parts through computer vision, and automatic planning of sequence

of motions required for the specified task (1970) [5]. There has been a

phenomenal growth in robotic technology. Advanced Quadruped Robots and

Human-Symbiotic Robots are being rapidly developed since 2000, creating even

fear and panic in people culminating in Asimov’s “Three laws Of Robotics” for

the robots to be no danger for humans [17].

11

Robotics research activities, benefited from the fast improvement of technologies,

have been dramatically increased in many new cutting edge fields, such as formal

methods, computer vision, image processing and artificial intelligence [17].

2.1.2 Structural components

The three important structural components of a humanoid robot namely,

manipulator, end-effector, and actuator are shown in Figure 1.

Sensing components are the sensors that obtain and measure information about

the condition of the robot and external condition to effectively deal with the real-

world. The third decision making enforcing components are: i) Processor-the

brain (calculates motion and velocity of robot’s joints); ii) Controllers-cerebellum

of the brain (controls and correlates the motion of actuators); and iii) Software-

Operating system (the programming platform providing for motion, task, and

managing functions, like the tools and library for conveying and collection of

routine information) [3]. Further, power connection is needed for robot to enable

its actuators to function effectively. Power is mostly obtained from batteries or

wall-mounted electrical plugs. Alternately, they may use either pressurized

hydraulic fluid using pumps or pneumatically compressed air using air

Figure 1: Structural Components of a Humanoid Robot.

Source [7 & 18]

12

compressor and compressed air tanks. Wired electrical circuit interfaces all

actuators, and powers every electrical motor and solenoids directly. In addition,

the circuit operates the hydraulic equipment by controlling electrical valves

which decide the pressurized liquid’s circulation through the machine. For

moving a hydraulic leg, for instance, the robot’s controller would open the valve

driving liquid from the liquid pump to a cylinder barrel joined with that leg. This

pressurized liquid would move the piston forward thereby stretching the leg in

the front direction. Robots utilize cylinders that can thrust in both directions to

move their actuators in two opposite directions i.e., front and reverse. Robot’s PC

directs everything appended to the circuit. The PC operates all the essential

motors and valves through microcontrollers and motor controllers to move the

robot further [19].

A microcontroller can operate motor controllers in an assortment of ways: serial,

I2C, PWM and R/C. Irrespective of the communication mode, controller’s logic

and the microcontroller has to use similar ground reference and a similar high

level logic (which can be accomplished by utilizing the same V+ pin to operate

and control both gadgets). A logic level shifter might be required if the gadgets

don’t share similar logic levels (3.3V and 5V for instance). Sensors can be

interfaced with microcontrollers in the same manner as motor controllers. Sensors

can be reached through the following kinds of communication: Digital, Analogue,

Serial or I2C. Most communication technologies (e.g. ZigBee8, Bluetooth9) adopt

serial communication, so the same Rx (Receive Connection), Tx (Transmit

Connection), GND (Ground) and V+ (Supply) links serves the purpose [20].

8 ZigBee is a wireless technology developed as an open global standard to address the unique needs of low-cost, low-power

wireless M2M networks. The ZigBee standard operates on the IEEE 802.15.4 physical radio specification and operates in

unlicensed bands including 2.4 GHz, 900 MHz and 868 MHz.
9 Bluetooth is a wireless technology standard for exchanging data over short distances (using short-wavelength UHF radio

waves in the ISM band from 2.4 to 2.485 GHz) from fixed and mobile devices, and building personal area networks (PANs).

13

2.2 Control of Robot Functions

2.2.1 Remotely controlling a robot

Remotely controlled torpedoes developed during late 19th Century may probably

be the first remotely operated vehicles or robots. The most effortless approach to

remotely operate a vehicle is with a hand held controller physically linked with

the vehicle through wires. The controller may have a Toggle Switch, knob, lever,

joystick, or button for controlling the vehicle without using complex electronics.

The motor and power source can be linked with operated with a switch for

controlling the forward or backwards rotations.

At times a cable may be a better choice as there is no limitation of operation time

since power is availed from the mains, there is no loss of signals, and it is simple

without complicated electronics, etc. However, its disadvantages are: the distance

may be limited, dragging the cable may lower the speed of robot, cable may get

damaged etc. Wired computer control can be provided by installing a

microcontroller in the vehicle and using a cable to connect it with a computer’s

I/O port (USB). More complex behaviors can be programmed, which may give

onboard intelligence etc. but cost may increase because of the added electronics.

Ethernet connection could also be made with cable connection and thus control

could be via the Internet but may require complex programming. Wire-less radio

frequencies, Bluetooth, and Wi-Fi connections may also be used for remote

control purposes without using cables.

2.2.2 Semi-Autonomous Control

Often a joint control, in which some aspects are controlled by a human and others

are done by the robot itself, can be the best option. For example, in an advanced

submersible robot, fundamental mobility of the robot is directed by a human

while an on-board processor reads and responds to streams running below the

water so as to keep the robot stable. Human being gives additional directions if

14

any after getting a video feedback from the on-board camera. Water temperature,

pressure, and other relevant data are also tracked by the on-board sensors. In case

the communication gets lost, an autonomous program can bring the robot to the

surface. The level of autonomy has to be decided on priority. Similarly, humans

can best interact and intervene in the case of a semi-autonomous wheelchair.

2.2.3 Autonomous Control

Self-governing business and factory robots are currently engaged extensively

carrying out works more economically, or with more noteworthy exactness and

dependability than people. For having more autonomy, microcontroller must be

used with its full potential and programming has to be done for the

microcontroller to react to input from the robot’s sensors. Pre-programming with

no correction data from the surrounding, restricted input data from sensors, and

lastly complicated sensor correction-information are the different types of self-

governing control. Incorporating an assortment of sensors and code which

permits the robot to decide without any other external input, the best move to be

made in any noted circumstance, which indicates true autonomous control.

2.3 Decision-making & Implementing Mechanism

2.3.1 Electronic components

 Main piece of electronic device that is essentially needed for all computations,

decision making and communications is a microcontroller. This microcontroller

can be seen in everyday products like TV sets, washing machines, telephones,

watches, practically in every home appliance and electrical device. It is a

computing device capable of executing programs, of course, not involving

complex algorithms. It acts as the brain or center of the Robot. Hence it is less

capable than a PC and further they send a little quantity of electrical power

through its pins. So it won’t have the capacity to work with huge load specifically.

Arrangement of set of pins (electrical pulse communications) are there that can

15

be turned HIGH (1/ON) or LOW (0/OFF) through programming guidelines. They

additionally read electrical pulses from sensors or different gadgets.

Microcontrollers can be utilized to control other electrical gadgets, for example,

actuators when attached with motor controllers. They additionally incorporate a

voltage controller in their improvement sheets.

Continuous Voltage pulses (pulses that can have a full scope of qualities rather

than only two very much characterized states like, 0 and 1 in Digital pulses) can

likewise be measured by most present day microcontrollers with the help of

Analog to Digital Converter (ADC). With the assistance of the ADC a

microcontroller can allot a numerical amount to a series of continuous pulses

which is neither high nor low. If it is noticed that a device to be connected

provides a value which is proportional to some factor, say, temperature, force,

position etc. then the microcontroller must be provided with an analog pin.

Although microcontrollers appear to be limited in its capacity it can perform

many complex functions if its pins are set HIGH and LOW in a logical way.

However, because of its inherent resource and speed limitations it is not possible

for a microcontroller to handle very complex algorithms like advanced vision

processing and very complex programs.

The microcontroller is akin to a computer CPU (microprocessor) and its

improvement board is similar to PC mother board. In advanced Robots with

complex computing and vision algorithm etc. both a PC for overall control and a

microcontroller for accessing motors are used.

Light and medium robots may only need a microcontroller while heavy ones may

require a PC in addition as shown in Figure 2. A microcontroller might not have

the capacity to provide power to electrical motors since its output can only furnish

a meager quantity of electrical power. For a larger robot, more power will be

required to run its motors.

16

The microcontrollers can accomplish more than the typical (usual) digital I/O,

(essential calculation, fundamental arithmetic and decision making) if special

hardware, for e.g., a motor driver is built into them. Most popular communication

protocols like UART10, SPI11 and FC can be readily supported by many

microcontrollers. This is profoundly valuable for corresponding with different

gadgets like PCs, improved sensors, or different microcontrollers. Regardless of

the possibility that it is conceivable to physically work orderly commands,

committed inherent equipment which manages the particulars is particularly

preferable. Such a course of action permits the microcontroller to focus on

different assignments and gives room for cleaner programs.

10 A universal asynchronous receiver/transmitter (UART), is a PC equipment gadget that translates information between

parallel and serial structures. UARTs are ordinarily utilized as a part of conjunction with correspondence principles, for

example, TIA (once in the past EIA) RS-232, RS-422 or RS-485
11 Serial Peripheral Interface (SPI) is an interface bus commonly used to send data between microcontrollers and small

peripherals such as shift registers, sensors, and SD cards. It uses separate clock and data lines, along with a select line to

choose the device to talk.

Figure 2: Heavy Robot Arduous Jobs

Source [17]

17

Next in importance is the Motor Controller which is an electronic device, an

uncovered circuit board without being walled in an area that goes about as a

middle of the road gadget between a microcontroller, a power supply or battery,

and the motors. Since there are several types of motors as in Figure 3 like brushed

DC (with or without gears) motors, brushless DC motors, linear actuators, Servo

motors, unipolar or bipolar stepper motors etc. there are as many varieties of

motor controllers as well. The speed and direction of these motors are decided by

the microcontroller only, but the motors cannot be driven by the microcontrollers

because of its restricted power. The motor controller provides necessary power at

the required voltage and drives these motors. Both these controllers work together

to make the motors move appropriately. Regular and easy communication

technique such as UART or PWM is used by the microcontroller to give

information the motor controller as to how to power the motors.

Motor controller’s physical size depends on the size of motors. A motor controller

smaller than the tip of a finger has enough current capacity to drive a mini sumo

robot (robots attempting to push each other out of a small arena) while a large

controller weighing several kilograms (including heat sink etc.) may be required

for an unmanned aerial vehicle. The size thus depends on the amount of power

the controller has to provide.

Selection of motor controllers depends on the current consumed by the motor

which it is intended to control. The existing a motor attracts is associated to the

Figure 3: Types of Motor Controllers

Source [21]

18

torque it produces i.e., more current will be drawn to produce higher torque by a

large motor and vice-versa.

Motors are connected to motor controllers which in turn are connected to the

microcontrollers. All the sensors are also connected to the microcontroller. Under

certain conditions one computer (cf. Figure 2) or two computers (cf. Figure 4) are

also added in addition to microcontroller and motor controllers. Batteries are

connected to motor controllers, microcontrollers and the main computers.

2.3.2 Programming Essentials

Programming a microcontroller is easy now-a-days due to current Integrated

Development Environments (IDE) that utilize most recent languages, completely

highlighted libraries that promptly cover all regular and rare activities and a few

instantly usable codes for beginners with easy use. Different high level languages

like C, C++, C#, processing (a variety of C++), Java, Python, .NET, BASIC etc.

can be programmed into a microprocessor without much difficulty.

IDEs are likewise turning out to be much less complex as makers make graphical

programming environments. Groupings requiring a few lines of code are

diminished to a picture that can be associated with different other pictures to form

Figure 4: Two PCs with Other Controllers

Source [7]

19

code. If the user needs to control a motor in a robot, the user should mount the

image which represents controlling a motor and should also specify the direction

and speed at which the motor should run. Microcontroller Development Boards

break out each of the pins utilized by the microcontroller and makes them simple

to be accessed for fast circuit prototyping. Advantageous USB power and

programming interfaces that connect appropriate to any advanced PC are also

provided by the board. These Development Boards are the only circuit boards that

provide microcontroller chips with all the necessary supporting hardware, for

example, the voltage controller.

2.3.3 Python Language

2.3.3.1 Selection of programming language

Programming is the last step and without it the robot cannot function at all.

Developing the software for a computer is a task which cannot be dealt with in

this thesis. However, programming the microcontroller can be discussed.

The general types of languages and their main features are indicated below:

 Basic - This is one of the earliest languages which is still being used in

some microcontrollers like Basic micro, BasicX, Parallax etc. in

educational robots

 C/C++ - This is one of the well-known languages which gives high level

functionality but at the same time keeping a good low level control.

 Java - It is more recent language than C and possesses plenty of safety

features but not low level control. It is best suited for microcontrollers

produced by Parallax Company.

 NET/C# -This Microsoft’s proprietary language is utilized to develop as

Netduino, FEZ Rhino etc.

 Processing - It is a variant of C++ having lots of simplifications to make

programming easier in Arduino.

20

 Python - It is a most popular, easy to learn and enabling to place programs

jointly very quick and efficiently scripting language. Hence the Python

language is chosen in this research work.

2.3.3.2 Considerations in code writing

 Only limited, that is, manageable length of code essentially needed to each

product must be developed along with building a library and creating a

file system for easy tracing up of the required code.

 Everything, (that is, every line) within a code must be documented using

comments particularly in robotics that too at the initial stages. Later on

after acquiring enough knowledge and experience it will be enough to add

comments to general sections of code.

 Different versions of code developed must be preserved without

overwriting the same file so that when a later developed code does not

compile it should be possible to revert back to a previously developed one

instead of trying to rectify the later one. This correcting work may prove

to be tedious and time consuming.

 Keep the robot always in a safe position so that it will not destroy itself or

get destroyed in careless or erroneous trials.

 Power should be turned off when it is noticed that code is not carrying out

correctly the expected functions.

 Converting a portion of the code into subroutines will make the usage of

code easy to use if that section of code is recurring numerous times inside

a program.

2.3.4 Decision-making and Enforcing Technique

Battery is connected to the main computer, all sub-controllers, all sensors, a

Charge Coupled Device (CCD) camera and a frame grabber, the Controller Area

Network (CAN) module, fans etc. The inputs from various sensors like

21

force/Torque Sensor, Inertia sensor, Distance Measuring Sensor (DMS),

Thermometer, Pressure measuring sensor, Rate Gyro Acceleration Sensor,

Infrared (IR) Sensor12 etc. are received by the main computer which are

forwarded to appropriate motor controllers through the main microcontrollers for

operating the concerned actuators in the desired manner in response to the outside

world condition. These enforcing instructions from the main computer emanate

from out of the software included in them. Thus intelligence is imparted to the

robots for deciding and enforcing functions.

2.3.5 Control Architecture

2.3.5.1 Main Controller

For light and medium robots, microcontroller will be the main controller whereas

for heavy, multifunctional and humanoid robot one or even two PCs will be used

as main controllers along with microcontroller and many motor controllers. When

a number of peripheral interfaces, simple and quick programming environment

and good graphic user interface (GUI) are required PC is the best choice as main

controller.

2.3.5.2 Control Area Network (CAN) Protocol

When Computers are used as main controller along with microcontroller and

many motor controllers, for receiving many kinds of data from various devices

and to give orders by the main computer, there must be bus line for

correspondence between the primary computer and other controllers (cf. Figure

4). For dealing with the number of sub-controller, fast communication is

essential. The CAN protocol used in automobile industry with serial

communication speed of 1 megabit per second is found suitable. It is very easy to

12 An infrared sensor is an electronic instrument which is utilized to detect/assess the prevailing nature/qualities of its

surroundings by either transmitting or potentially recognizing infrared radiation.

22

expand the number of additional sub-controllers since only two lines are needed

in this protocol. All controllers connected to this bus line are able to send out and

also collect data one and the same time [7].

2.3.5.3 Sub-controllers

Trunk roll controller (for preventing the slope of the trunk) due to the transform

in the ground slope utilizing rate accelerometer, landing position controller (for

modifying the position schedule to prevent unstable landing of the robot if the

landing takes place before or after the prescribed time), damping controller and

landing orientation controller (to modify joints angles prescribed by inverse

Kinematics by switching each other controller based on landing detection

algorithm), etc., are the important sub-controllers used in bipedal Humanoid

robots. The primary computer will send the reference position data to all motor

controllers which then control the DC motors using proportional-differentiation

(PD) control (a control feedback mechanism which calculates the difference

between the required process variable and the actual value and applies a

correction) [7].

2.4 Robot Operating System (ROS)

2.4.1 Different Operating Systems

It is well known that the hardware and software resources of a computer are

managed by a set of computer programs known as an operating system (OS).

Basic tasks like controlling and allocating memory, prioritizing system requests,

controlling input and output devices, facilitating networking, and managing files

are performed by the OS. Various services provided by the OS are: Process

management, Memory management, Disk and file systems maintenance,

Networking capability, Security provision, Device driver’s interfaces provision

etc. [22].

23

There are a number of OS, namely, Windows, Mac OS X, UNIX, Solaris

BS3000, MS-Dos etc. It is part of a system equipment or computerized equipment

which deals with management and coordination of the activities of that

computerized system. The computerized system may be a computer, a

workstation, a server, a PC, a method, a Smartphone, a road navigation device or

any system with some “intelligence” of its own such as a Robot. The OS plays

the role of host for all applications running or performed on any hardware.

There are different types of OS [22]:

 Real-time OS

 Multi-user and single-user OS

 Multi-tasking and single-tasking OS

 Distributed OS

 Embedded OS

 Specialized OS like ‘Robot OS’

2.4.2 Robot Operating System

It is a set of software structures for robot software development providing OS like

usefulness on different category computer system cluster. ROS gives standard OS

services such as hardware abstraction, low-level device control, implementation

of commonly used functionality, message –passing between processes, and

package management. Running arrangements of ROS-based procedures are

represented in a graph architecture where processing takes place in nodes that

may get, post and multiplex sensor, control, state, planning, actuator and other

messages. In spite of the significance of relativity and low latency in robot

control, ROS itself is not a Real Time OS; however, it is possible to combine

ROS with real time code [23]. The base OS in the present work is Debian in the

BBB upon which ROS works.

24

Software in the ROS Ecosystem can be divided into three groups:

1. Language –and platform- independent tools used for building and

distributing ROS- based software

2. ROS client library implementations such as roscpp, rospy, and roslisp

3. Packages containing application-related code which uses one or more

ROS client libraries [24].

2.4.2.1 Applications of ROS

ROS may be applied in the following sphere of areas: ROS is a generic term

indicating the whole bunch of collection of different heterogeneous software

programs (meant for tools, client libraries and application codes contained in

ROS) whereas ROS packages include only one group of software’s code using

one or more client libraries alone of ROS (list at the end of Section 2.4.2).

 A master coordination node

 Publishing or subscribing to data streams, images, stereo, laser, control,

actuator, contact

 Multiplexing information

 Node creation and destruction

 Nodes are seamlessly distributed, allowing distributed operation over

multi-core, multi-processor, GPUs and clusters

 Logging

 Parameter server

 Test systems

ROS Packages can be gainfully applied in the following areas: One group of

software may be applied for say perception, motion etc. while another group of

software’s may be needed for object identification, stereo vision etc. and so the

third group.

25

 Perception

 Object identification

 Segmentation and recognition

 Face recognition

 Gesture recognition

 Motion tracking

 Egomotion

 Motion understanding

 Structure from motion

 Stereo vision depth perception via two cameras

 Motion

 Mobile robotics

 Control

 Planning

 Grasping [25]

Both the language-independent tools and the main client libraries (C++, Python)

are useful for implementing other packages involving functionality and

applications such as hardware drivers, robot models, data types, planning,

perception, simultaneous localization and mapping, simultaneous tools and other

algorithms [25].

2.4.2.2 Benefits of Using ROS

ROS is in actuality a meta-working framework, something between an operating

system and middleware for service robotics. It gives not just standard operating

services (hardware abstraction, contention management, process management)

but in addition system high-level functionalities (asynchronous and synchronous

calls, centralized data base, a robot configuration system etc.).

26

Before robot operating system came into use, each robot researcher and designer

would invest impressive measures of time outlining the embedded software

within a robot, and in addition the hardware itself. This required skill sets in

mechanical engineering and embedded software. Normally, the programs

designed in this were very much similar as embedded programming, like

electronics, then they were to robotics in the strictest sense, for example, we may

experience it these days in service robotics. There was significant re-utilization

of programs, as they were firmly connected to the necessary hardware. Another

advantage is that of mingling expertise from various fields which incorporates

into the designing and programming a robot [27]:

a) Managing the hardware’s by writing drivers

b) Managing memory and processes

c) Managing concurrency, parallelism, and data merging

d) Providing abstract reasoning, making great use of artificial intelligence

2.4.2.3 ROS Technology

The following five principles are involved in ROS technology [27]:

 Peer- to peer

 Tools based (microkernel)

 Multi-language

 Thin

 Free and open source

Basic notions in ROS [26]:

 Nodes

 Master

 Topics

 Services

 Bags

27

Robot operating system is the future of software for autonomous devices. The

most critical bit of software for operational robots is the fittingly named Robot

Operating System. ROS is a framework of programming tools used to write and

develop robot software. It essentially works as a kind of open-source system

providing OS like services designed specifically for robotics for example

hardware abstraction, device control, implementation of common functionalities

and data package management [28]. The rapid development in ROS ecosystem

has put it in a path of becoming the Linux of robotic software. The development

of robot undertaken in this research study is very gainfully based on and using

ROS.

2.5 Requirements of Walking Biped Humanoid Robots

2.5.1 Generic Features

2.5.1.1 Characteristic Features of Humanoid robots

Minimum energy consumption must be aimed at for normal walking of a

humanoid, similar to what happens in case of a human body. Achieving dynamic

walking is the key to the success of the design and construction of a humanoid.

The safety and firm standing on the ground of a moving biped robot is

additionally of most prominent concern. Keeping a robot in firm and steady

condition by making its center of gravity to remain on or near the midpoint of its

weight bearing area is the object of providing capability for its self-control [29].

Set of touch-sensors (tactile) can be utilized to give information on what has been

touched. These sensors additionally give data about forces and torques exchanged

between the robot and different things [30].

A sensor is a device that calculates a few traits of the surroundings. As one of the

most important factor among three essential requisites of a robot apart from

planning and control, sensing assumes an imperative part in the ideals of robots,

especially that of humanoids.

28

Sensors are classified i) Proprioceptive sensors and ii) Exteroceptive sensors. The

position, the direction and the speed of the humanoid’s body and joints are

measured by the former while touch (tactile sensors), vision (CCD cameras) and

sound (Microphones) are measured by the latter. Actuators are the motors that

perform like muscles and joints to the humanoids and mainly rotary actuators are

used [30]. They can be electric, pneumatic, hydraulic, piezoelectric or ultrasonic

ones.

Planning and control are other two essential requirements of humanoids. Legged

locomotion involving biped gait walking of humanoids resemble human-like

walking. Ideal planning must aim for minimum energy consumption and effective

control means maintaining ideal functions of all parts, particularly, the joints [29].

A robot needs data about contact pressure and its present and future changes in

position with a specific end goal to keep up its dynamic balance while it is

walking. Another function of humanoid robots is that they move, assemble data

(utilizing sensors) about real environmental features and communicate with it.

Like manufacturing plant intelligent machines and similar robots that work in

exceedingly organized situations the humanoid robots do not remain ideal.

Planning and control should concentrate on finding out self-crash locations, path

planning and obstacle avoidance for permitting the humanoids to move in

complex situations [31].

2.5.1.2 Autonomous Control of Humanoid robots

A robot deciding and functioning on its own, called autonomous robot, is a robot

that performs practices and errands with a high level of self-governance, which

is especially essential in fields like space investigation, family upkeep, (for

example, cleaning, and conveying and providing merchandise and other helps).

Some present day production line robots are "self-governing" inside the strict

bounds of their immediate surroundings. It may not be that each level of

29

opportunity exists in their encompassing surroundings; however, the production

line robot's work environment is highly testing and can regularly contain

disorganized, unexpected factors.

One critical region of robotic research is to empower the robot to adapt to its

surroundings whether this is ashore, submerged, noticeable all around,

underground, or in space.

A self-governing robot may likewise study or acquire new information like

modifying for new techniques for finishing its undertakings or adjusting to

evolving environment.

It is necessary for a humanoid exhibiting human like appearance to perform

human like actions independently for it to cooperate and assist people in their

everyday life. Interaction among humans takes place through their voice and

gestures. Simple gestures arising out of repeated conducts count a lot in

developing human communications. Likewise, a humanoid’s friendly gestures

are important for effectively serving humans. Such gestures should, for avoiding

misunderstanding, be in the same way as human does. The way and manner of

walking of a humanoid, while approaching a human, is equally important.

Dancing or other entertaining services of humanoids must also exhibit

meaningful, artistic and creative motions as much possible as human performance

[32]. For all this capability the humanoid robot must have autonomous control

besides intelligence.

Natural interaction and adaptability to environments meant and designed for

humans are the main objectives and aim of the research areas of humanoid robots

[32]. Further, robotic technologies that integrate senses, motor responses and

intelligence are of great importance. Robot’s safety, reliability, and human robot

symbiosis calls for autonomous action control for humanoid robots [5]. For fast

30

dynamic walking, path finding and planning, and avoiding collision an

autonomous humanoid robot is only unavoidably and inevitably needed.

2.5.1.3 Intelligence Possessed by Humanoid robots

Autonomous mobile robots are a reality today (not a fiction) on account of the

rapid and huge progress in mechanics and electrical engineering fields. Inherent

danger and hostile environments (deep-sea explorations, space expedition,

nuclear plants, etc.) have welcomed intelligent humanoid robots to work as

substitutes for humans. Further intelligent autonomous devices like robotic

vacuum cleaners, lawn mowers etc. have flooded the market. Humanoid house

keepers, personal assistants will soon take their place.

2.5.2 Essential Functions

2.5.2.1 Walking Control - Literature Review

 A core task for humanoid walking robots is the actual walking controller,

generally consisting of a gait pattern generator and the balance control. For this

problem, there exist two fundamental approaches: one, possibility to set about

this matter is to rely on a very accurate model of the walker and to compute gait

trajectories trusting in sufficient accordance of the model with reality. The other

direction relies on approximating the robot dynamics by a simple model with

reduced system states e.g., an inverted pendulum. Accordance of the simplified

model with the real dynamics is ensured by feedback control [17].

An often adopted method to make the humanoid robots to walk steadily is to

direct them to learn by trial and error and also to physically incorporate the

moving positions and their determining factors. Central Pattern Generators

(CPGs) techniques enable to produce joint directions, utilizing nonlinear

oscillators. In these methodologies, it is a difficult matter to discover accurately

applicable determining factors to accomplish a steady walk. Procedures involving

much calculation utilize the idea of the Zero Moment Point (ZMP) and are based

31

on joint positional directions which are figured out considering dynamic

movement of the robot. In this case, an exact model of the robot and its movement

is required.

A few methodologies have been introduced that go for appropriately limiting

properties like speed or mid-body steadiness of a humanoid's walk. The

subsequent upgraded walking patterns don't generally look like correct human

step. We consider the issue of accomplishing steady human-like stride in a

humanoid robot by regarding this as an optimum limiting issue and create four

calculation procedures that work on the consideration of joint movement premise

[33].

A number of diverse movement controllers and path tracing controls are utilized

for human robots. In the ZMP approach, the fundamental target is the

determination of robot's movement in a manner that the zero moment point-ZMP

(the point where the entire idleness driving pressures add up to zero) does not go

beyond the predetermined region of steadiness. Centre of Mass (CoM) based

models are another well-known direction-tracing controlling strategy. Every one

of these techniques experiences the ill effects of being dependent on planned

particulars of the hidden humanoid robot structure.

In the examination work exhibited in this proposition, the emphasis is on a novel

direction arranging technique planned particularly for a humanoid robot to move

along curved directions. The proposed curved strolling model presented for a

humanoid robot utilizes a similar crucial rule adopted in the differential guiding

framework for a wheeled robot. A standout amongst the most intriguing standards

of this strategy is its independency from the basic humanoid robot structure. This

new strategy likewise guarantees a vital effective direction when contrasted with

some other outline particular strategies since a few joints e.g., hip move joints are

not utilized as a part of this technique to change the direction [34].

32

Most legged robot endeavors have concentrated either on specific morphology

(e.g. biped, quadruped, or hexapod) or a specific motion supposition (e.g. semi

static or bouncing). Interestingly, past work by the authors are general, in that

they apply free of morphology, and also apply to issues of a class which

incorporate legged robots.

Kinematic walking frameworks can be displayed utilizing associations on

primary fiber packs and furthermore give outcome controllability. Non-

holonomic motion frameworks expect that the conditions of movement for the

framework are smooth, which forbids their application to legged robotics issues

where the conditions of movement are intermittent. Standard nonlinear

controllability tests require that the framework's conditions of movement be

smooth. The fundamental commitment of this work is the expansion of standard

nonlinear control techniques to a class of issues where the conditions of

movement are in broken manner [35].

Up to this point, most steadiness control methods have endeavored to keep up

balance by controlling just the straight-line movement of a robot. Strategies have

been developed to change the information on joint- degree directions to adjust the

position of the Center of Pressure (CoP), a point inside the robot's support region

through which the resultant Ground Reaction Force (GRF) acts. At the time when

the CoP, resulting from the input joint movement, leaves the safe support base,

showing a conceivable toppling of a foot, the movement is altered to bring the

CoP back inside the support base while the robot still takes after the craved direct

movement of the Center of Mass (CoM). The rotational movement of the robot

stays pretty much disregarded in these methodologies.

Be that as it may, rotational progression of a robot assumes a critical part in

balance. Investigations on human steadiness control additionally demonstrate that

people firmly direct precise force amid walk, which recommends solid

33

probability that angular momentum, could be critical in humanoid developments

[36].

A crucial difficulty with existing systems that create robot's movement is

information reliance. For instance, a simple method is to assemble a model for a

specific movement from a substantial number of samples. In a perfect situation,

the robot could watch one (possibly awful) example of a movement and adopt it

to a more human-like partner.

Reliance on huge amount of sample information is frequently an approximate

substitute for a more principled approach. For instance, rapidly examining

Random Tree [RRT] based strategies offer no authentic human-like movement

yet depends upon a database of sample human-like movements posing as if

providing a true and correct answer. Verifying the database to discover a

movement like RRT-produced direction line is a drawback for web based

planning which can affect the procedural calculation period [59].

Other different methods depend upon approximate connections got from the

example information to make robot movement to seem more human-like. This

takes into account criteria like joint comport, travel time, jolts, human stance to-

target connections. At the point when movement information obtained is utilized,

often ignoring time details, which causes robot movement to happen at

impossible and non-human speeds.

Movement strategies produced for cartoon or virtual characters cannot be

appropriately applied to robots since key contrasts exist in the real situations. The

degree to which the methods adopted for virtual characters can be used to robots

relies on upon the suppositions made for a specific strategy. Limitations like

torque and speed cutoff points of real equipment frequently causes movement

intended for virtual characters to look poor on a robot, notwithstanding the fact

34

that those movements look great on a virtual model since fewer limitations exist

within the virtual worlds [37].

Motion capture technique [38,39] has been adopted to make humanoid robots

move like humans since motion capture is a premium technique for animation

of human-like characters in computer graphics.

The stability issues of humanoid robot movement are the critical point in

understanding the control techniques; hence this humanoid walking robot can be

arranged in three distinct classes. To begin with, the first variety takes into

account static walkers, whose movement is moderate so that the framework's

security is totally depicted by the ordinary projection of the Center of Gravity,

which just relies on upon the joint's position. Second classification includes

dynamic walkers, i.e., biped robots with feet and induced ankles. Postural

strength of dynamic walkers is provided by joint's speeds and acceleration as well.

These walkers are capable of moving in a static way if they have sufficient huge

feet and the movement is moderate. The third class involves absolutely dynamic

walkers, robots without feet. Dynamic walkers can accomplish quicker strolling

speeds, running, stair climbing, execution of progressive flips, notwithstanding

that strolling is without any actuators. For this situation the stability polygon in

the single-support stage is diminished to a point, with the result that static

strolling is impractical. In the stroll with dynamic balance, the anticipated focus

of mass is permitted outside of the region enclosed by the feet, and the walker

may basically fall in the middle part of the strolling step. The control issues of

dynamic strolling are more confused than in strolling with static balance, yet

dynamic strolling designs give higher strolling speed and more noteworthy

effectiveness, along with more flexible strolling structures [60].

For all the said classifications of strolling robots, the issue of steady state and

dependable bipedal walk is the most essential requirement, but then unsolved

35

with a high level of unwavering quality, this subject has been considered

fundamentally through the accompanying two classes of strolling type generators

and robot controllers. The initial approach is to produce a powerful steady

occasional dynamic strolling design. It is done expecting that the models of robot

and environment are accessible, and the kinematic and dynamic parameters of the

robot model are accurately characterized. But, the second approach utilizes

constrained or disentangled learning of the framework's progression. Be that as it

may, for this situation, the control depends much on the input control, and it is

important to create strategies without high calculation requirements for ongoing

usage [61], [62].

The rotational harmony of the foot is the main consideration of postural insecurity

with legged robots. The question has roused the meaning of a few dynamic based

criteria for the assessment and control of balance in biped movement. The most

well-known criteria are the Center of Pressure (CoP), the zero-moment point

(ZMP) and the foot-Rotation indicator (FRI). From these criteria, the ZMP idea

has received the increased and broadest acknowledgment and assumed a

significant part in settling the biped robot soundness and intermittent strolling

design combination. The ZMP is characterized as the point on the ground about

which the entirety of the considerable number of snapshots of the dynamic

powers works out to zero. In the event that the ZMP is inside the arched structure

of all contact focuses between the foot and the ground, the biped robot can walk.

Regardless of the possibility that the solidness in light of ZMP just portrays

contact condition amongst foot and the ground, ZMP based controller is for the

most part utilized as a part of humanoid robot groups since it is known to function

admirably. In the vast majority of cases, the direction of humanoid robot is

decided off-line, and after that controller is intended to track these directions. A

mobile example is created to guarantee that the robot's ZMP is all the time inside

the supporting foot projection. This is important for the biped robot to keep up

36

dynamic balance while walking. Be that as it may, the fancied ZMP of the

strolling example is not the same as the real ZMP of the biped robot in a solid

walk. Keeping in mind the end goal to make up for the ZMP discrepancies, it is

important to execute the balance control utilizing power (F/T) sensor or slope

sensor. Most research works managing parity control have concentrated on the

pay of ZMP variation on the grounds that the ZMP is the fundamental standard

of dynamic balance. By and large, it has been accepted that the principle reason

for discrepancy points to the actual ground condition or model errors. As usual,

the balance controller ought to be strong against the slope and model

imperfections [43].

The two most essential elements of biped humanoid robots are the human-like

shape and activities. Biped humanoid robots have two legs and should stroll with

a decent portable capacity on different territories including uneven surfaces or

stairs. Accordingly, numerous analysts have created humanoid robot structures

and have contemplated the biped strolling of humanoid robots. The Honda

humanoid, the WABIAN arrangement of Waseda University, H6 and H7 of

Tokyo University, HRP of AIST and JOHNNIE are notable human-scale biped

humanoid robots. For the most part, the control system of dynamic strolling of

biped robots depends on the walking pattern generation, which considers the

steady zero-minute point (ZMP) direction and online balance control. As the

genuine ZMP direction is not the same as the required ZMP direction because of

reasons like the unevenness of the surface, detecting blunders and blemished

dynamic model of the robot, a few online controllers in light of the tangible

criticism are required. Also, numerous other researches consider the stabilization

control strategy of humanoid robots identified with the angular momentum

information.

A dynamic strolling control technique has been proposed by Kim et. al., in 2006

for biped humanoid robots utilizing the ZMP and inertial data. The control

37

procedure covers adaptive walking pattern generation, actual ZMP adjustment of

error while standing on single leg with damping control of the ankle joint, stable

landing control and landing position control depending on the precise speed of

the upper body. In this way, a biped robot can adjust to uneven landscape without

losing steadiness at the time of actual strolling [44].

The two most basic components of biped humanoid robots are the human-like

shape and advancements. Biped humanoid robots have two legs and ought to walk

around a tolerable compact limit on various domains including uneven surfaces

or stairs. In like manner, various examiners have made humanoid robot arranges

and have thought about the biped walking around humanoid robots. The Honda

humanoid, the WABIAN game plan of Waseda University, H6 and H7 of Tokyo

University, HRP of AIST and JOHNNIE are eminent human-scale biped

humanoid robots. Generally, the control arrangement of component walking

around biped robots relies on upon the walking outline period, which considers

the relentless zero moment point (ZMP) course and online conform control. As

the honest to goodness ZMP course is not the same as the looked for ZMP heading

as a result of reasons, for instance, the unevenness of the surface, recognizing

bungles and imperfect component model of the robot, a couple of online

controllers in light of the substantial feedback are required. Additionally, various

other research wears down the conformity control arrangement of humanoid

robots related to the exact drive information have been disseminated. In any case,

there have been decently few research manages ZMP control and alter control

using inertial estimation at the same time [45].

In this thesis, a dynamic walking control procedure is proposed for biped

humanoid robots using the ZMP and inertial information. The control scheme

fuses flexible walking plan period, progressing ZMP compensation in the single

support stage with damping control of the lower leg joint, stable landing control

and landing position control in perspective of the exact speed of the center. Along

38

these lines, a biped robot can change in accordance with uneven scene without

losing strength logically in the midst of walking.

There are three kinds of methodologies in the case of biped strolling, which are

offline pattern generation, offline pattern generation with online feedback

compensation, and online pattern generation with online feedback control. The

first is to create the strolling designs in the wake of outlining ZMP directions in

light of the exact information of the framework, for example, the snapshot of

dormancy, masses of every part. This approach can get the steady strolling

designs, yet it can make the robot to tumble down effortlessly, in light of the fact

that it is touchy to the un-displayed or obscure elements of the framework like

response and erosion strengths with the ground. The strolling design itself is

steady, yet we ought to ascertain confused ZMP elements to get the strolling

design. The second one is to defeat the security and the strength issues. This

approach utilizes ZMP based strolling designs and repays them to keep adjust by

criticism. It can build, utilizing input controller, the strolling dependability of the

robot by diminishing the unsteadiness elements prompted by displayed flow,

ground conditions and so forth, yet the unpredictability of stable strolling design

era still remains [45].

The third approach is utilized as a part of this work. The online walking pattern

is created by the kinematical approach by producing the positional dictates of the

joint. It is made by watching the human's conduct, and changed by tactile input

controllers to keep the strolling solidness. This implies strolling designs have

been separated into kinematic reference generation and dynamic controller. The

strolling design is redesigned such that it can roll out the robot improvement, its

progression time and walk without halting. The position bends of the pelvis focus

are figured as for the limit conditions (position and speed) toward the beginning

and toward the end of the progression, since they utilize third order polynomial

addition. We can correct the form of the curve by selecting the correct limit

39

condition values by considering the strolling modes (forward, backward and side

walk), recurrence and walk, which can be the directions from the administrator

or from the route directing calculations [45].

The feedback controllers used in this work are named to ZMP, landing

orientation, landing position, landing timing, damping and vibration reduction

controller on the point of their objectives and functions They utilized the F/T

sensor on the lower leg and the accelerometer on the sole, and they were very

much executed on KHR-1, KHR-2, KHR-3(HUBO) to keep the robot's security

in the altered stride time and walk strolling condition. We utilized the controller

exchanging strategy regarding the planning, and the period of the walk. This

implies we are applying the diverse controllers with various circumstances. This

technique can be a decent approach in the state of altered stride time and walk.

We extended this way to deal with the variable stride time and walk condition

amid strolling in this work [45].

Early biped strolling of robots included static strolling with a low strolling speed.

The progression time was more than 10 seconds for each progression and the

balance control system was performed using CoG (Center of Gravity). Thus, the

anticipated point of CoG onto the ground at all times falls inside the supporting

polygon that is made by two feet. While static strolling, the robot can stop the

strolling movement at whatever time without tumbling down. The weakness of

static strolling is that the movement is too moderate and wide to shift the CoG.

Most biped humanoid robots have performed stable dynamic strolling on the

effectively got ready level floors. Strolling studies on the uneven and sloping

floors are still in the early stage. Dynamic strolling on an uneven surface is

difficult to be obtained in light of the fact that most biped humanoid robots

perform hard position control of the joints by utilizing motors and lessening gears

and the reaction times of the actuators and sensors are low because of the gear

40

and sensor sound. So then, it is unimaginable for the robot to gauge the ground

conditions promptly and it is likewise unthinkable for the robot to properly react

regardless of the possibility that it quantifies the ground conditions quickly. But,

the human ankle can quickly adjust to varying nature of the field. Besides, human

muscles can contract or unwind rapidly with smooth movements [45].

This work by Kim et. al., in 2007, depicted a dynamic strolling control calculation

procedure that considers nearby and far-off slanting state of the floor. The writers

propose the utilization of different online controllers to adapt to an uneven and

sloping floor in the light of an upgraded form of a formerly proposed dynamic

strolling calculation. These online controllers are initiated and made to work one

after another during appropriate time in a mobile cycle [46].

2.6 Conclusion

The following observation and analysis of bipedal humanoid walking is taken

into consideration in this research study:

There are different reasons for difficulties in control issues to arise and different

works and stipulations that must be reasonably settled and satisfied keeping in

mind the end goal of making substantial strolling and other performance actions

of humanoid robots. Past investigations of organic nature, hypothetical and PC

outputs have concentrated on the structure and choice of control calculations as

indicated by various criteria, for example, lower power utilization, making energy

available at all times, strength, speed, solace, capacity to keep moving, and

environment affect. All things considered, notwithstanding these perspectives, it

is likewise important to consider some different issues: capacity of mechanical

execution because of the physical constraints of joint actuators, adapting to

complex and strong nonlinear progression and instabilities in the model-based

approach, complex nature of repeated and regular walk, incorporation of learning

and adjustment abilities, calculation issues, and so forth.

41

The significant issues connected with the examination and control of bipedal

frameworks is the highly-coupled nonlinear dynamics and in addition, the

discrete changes in the dynamic phenomena because of the way of the stride.

Regardless of the humanoid robot structure and many-faceted quality, the

fundamental qualities for every bipedal framework are: a) the DOF shape

developed between the foot and the ground is one-sided and under incited b) the

repetition of walk (symmetry) and consistent compatibility of the quantity of legs

that are at the same time in contact with the ground. while walking, two unique

circumstances emerge one by one: the statically stable two-leg standing stage in

which the robot is carried on both feet at the same time, and statically weak single-

leg standing stage when just a single foot of the instrument is in contact with the

ground, Thus, the moving method changes its structure in a solitary strolling cycle

from an open to a shut kinematic chain [43].

42

3.Integrating Experimental Robots

3.1 Advanced Multifunctional Quadruped BeagleBone Black Robot

Robots have a tendency to do a few or entire functions shown herein: receipt of

electronic programming, handle information or physical recognitions

electronically, work independently to some extent, roam around, carry out its own

physical parts or physical procedures, realize and control their surroundings, and

display smart activities [28,50]. The word robot can allude to both physical robots

and virtual programming operators, but it is usual rather to call the second ones

as bots [51]. They can be remotely controlled, semi-autonomous or autonomous.

Internet is available everywhere and likewise information technology has come

to every household and so new intelligence is growing among people. Robot

technologies also, alike the human, integrate senses, motor responses and

therefore must possess intelligence. In addition, devices meant for constructing

robots are also rapidly improving. This calls for new research study in industries

and universities [5].

3.1.1 Developments in Robotic Research

Servo control and trajectory planning are important research topics. Space,

undersea, and other hazardous habitats (nuclear power plants) unavoidably

needed robots and hence adaptability became the focal point of research, of which

the intelligent robot represents a typical class. When harsh workplaces like

underwater, nuclear power plants, distance unknown space etc. invited robots

with open hands, knowledge and understanding of the physical environment and

methods for navigating such terrains turned out to be key research issues.

Quadruped walking robotic machines were preferred to biped humanoid walking

robots where flexible walking motion using four legs became a necessity for

robots to move rapidly through environments having lot of steps, piping, and

other obstacles met with in extreme working conditions such as nuclear power

43

plants. Smooth contact of feet with ground, lowering the peak torque, and

reducing energy consumption were the difficult problems faced. Animal style

walking was copied for robots with four legs.

3.2 Advanced Biped Bioloid Humanoid Robot

3.2.1 BeagleBone Black as ‘Deciding and Enforcing Component’

BeagleBone Black (BBB) is a commercial ‘deciding and enforcing component’

which is mounted on a four legged vehicle with Lynx motion and driven by it (cf.

Figure 5). It is equipped with several sensors such as sonar sensor, Web scam,

GPS, etc. Such a versatile intelligence providing component has, however, not

been endowed with the provision of mounting on and operating a biped humanoid

dynamic walking robot and this deficiency is cured in this research work.

Thereafter, this research study takes advantage of the powerful computing

capability of this fortified BBB and mounts it on the structure of a commercially

available humanoid robot (after removing the latter’s own less-efficient deciding

and enforcing component) through the ROS technology and Python language

based software. This is a first of its kind research in this context.

Figure 5: BeagleBone Black Mounted on a Four-Legged Vehicle

Source [52]

44

3.2.2 Features of Bioloid Premium Humanoid Robot (BPHR)

The BPHR manufactured by the Korean firm Robotis stands tall among them

especially with its structural components. In the humanoid type there are three

Bioloid robots namely, Premium, Grand Prix (GP) and Darwin models.

The Bioloid commercial kit is convenient, safe and also expandable. Generally,

they are meant for building a robot including a humanoid for education,

entertainment etc. purposes. BPHR includes gyro/accelerometer, DMs, and

multi-channel wireless expandable remote controller. These humanoid robots

have been designed to be completely modular. Semi-transparent humanoid skin

is used.

As a remote control humanoid robot BPHR can walk more safely. But it lacks

autonomous operation, if autonomous operation is desired; different controller

has to be used. The product contains an extensive motion library. Accelerometer

system is found to be active during walking and so the coefficients need tweaking.

Therefore, software is needed to be included so that it could be turned off and on.

Similarly, it is found that if complicated sensors such as a compass or vision

system are to be included then a different controller had to be used. The controller

provided in BPHR is not designed for a lot of decision making and for including

many sensors. An autonomous humanoid robot requires more than one processor

or at least one that does multiple threads. Many users have evaluated the BPHR

to be good in its class of limited use. Wikipedia, the free encyclopedia, in a write

up on Robotics Bioloid says that the Bioloid framework is in this way similar to

the LEGO Mind storms and VEXplorer sets. Hence the structural component of

Bioloid humanoid robot is chosen for this study. This enables the autonomous

capabilities of the robot with the help of feedback from the accelerometer and the

IR sensor. The addition of the wi-fi capability further helps in the enhancement

of the autonomous activity making the robot to be remotely controlled.

45

3.2.2.1 Structural Components of BPHR

BPHR (Bioloid Premium Humanoid Robot) has a light-weight aluminum frame

that comes with eighteen Dynamixel servo motors (eight AX-12 motors for the

chest-to abdomen region and ten AX-18 motors for the waist and below area),

which are integrated motors with several features, such as position. Speed can be

controlled easily with feedback for angular position and angular velocity etc.

Load torque can be set up in the motion. There are about 255 motions and each

motion can be further manipulated by adding steps in the software to any of the

specific motions made by the user [53]. The Bioloid humanoid robots are good

walking ones as they self-adjust posture while walking. Wiring is with daisy chain

connection and supports many Dynamixel units with very few resources. Three

types of assembly construction are provided. In addition, other types of assembly

are supported. The limitation however is the actuators in the level field do not

support enough torque and therefore some of the pose cannot be completed in a

type of assembly [53].

3.2.2.2 Enhancement of BPHR’s Capabilities

Since 2000, there have been many challenges in developing robots that can safely

share spaces with ordinary people and provide helping and taking care services.

The main focus has been on human- robot interaction and autonomous mobility

[5]. Therefore, there is need for making the BPHR to have autonomous control.

Humanoid robots must also be service oriented for practical use. Therefore, they

must be capable of switching between different modes of travel, viz. on the

surface of water, under water, air and distant space. The decision making and

enforcing component must provide to the Bioloid humanoid robots all these

capabilities. Voice control is also an important consideration for humanoid robots

and so microphones must be mounted for remote speech recognition.

46

3.2.3 Controller of BPHR

3.2.3.1 Processor

 There is no computer brain for the BPHR as it is only an educational and

entertainment one. A humanoid robot meant for assisting and cooperating with

human beings must possess intelligence and for this purpose at least a single

computer or notepad is essential. The brain in the form of processor available in

BPHR is only a microcontroller. BPHR has CM-530 controller only, which has

the following specifications:

 CPU: ATMEGA 2561

 Internal I/O device, 6 buttons, Mic, Temperature sensor and voltage sensor

 I/O device: I/O & 6 of 5P I/O for analog sensor installation

This microcontroller has 64 pins which control individually a part of the robot,

such as the part determining input and output; and amount of voltage used by the

robot. This may have about 1KB RAM and 15KB memory against 4GB RAM

and 1000GB memory of a computer. This is quite inadequate for human-like

walking and other actions.

3.2.3.2 Controllers

Cerebellum of the brain (controls and correlates the motions of actuators) is the

CM-530 controller carrying inside it an ARM Cortex STM32F103RE

microcontroller. This is a fairly powerful one. But it has to be changed as it is not

having multifunctional capability except for biped humanoid walking ability.

3.2.3.3 Software

Operating system (tools and library for conveying and collection of routine

information) is having improved software by using embedded C instead of the

RoboPlus, because every part of the robot is programmed individually by the

programmer. It is capable of multi-threading also. It encapsulates three

47

components, namely, Motion file, Task file, and Manage file. These three files

implement the robot’s functionalities, configure the programming and set up each

actuator and other accessories in a user friendly interface. Further, these

components separate the hardware configuration and parameters from software

programming mechanisms. But the communication of BBB is with the RC remote

controller only.

Thus the overall position of the intelligence providing component of the Bioloid

robot is insufficient and hence it is proposed in this research work to replace it

with the BBB intelligence providing component.

3.3 Replacing the Deciding and Enforcing Components

The following changes have been necessitated and made to develop the humanoid

robot in this study in order to replace the less-efficient deciding and enforcing

(intelligence providing) components of BPHR with that of BBB (after

strengthening and enabling the latter to possess bipedal humanoid walking

capabilities also in addition to its multifunctional capacity).

The above changes are shown graphically in Figure 6.

Table 1: Bioloid Robot listing existing and replacement components

 Sr.

No.

Particulars Existing Components of

Bioloid, GB Robot

Replacing Components

from BBB

1 CPU STM32F103 AM33588

2 Controller CM530 Beagle Bone Black

3 Remote Controller RC100 Laptop Interface

4 Software RoboPlus with C++ ROS with Python

5 Wi-Fi Zigbee Wi-Fi Adapter

6 Camera Web Camera

48

A collection of nodes and programs called roscore are the pre-requisites of any

ROS-based system. There must be a roscore running in order for ROS nodes to

communicate [63]. Communication buses named ROS Topics are used while

using the ROS modules. These comprise of anonymous publish/subscribe

semantics that in-turn decouple the production of information from its

consumption. Generally, the nodes are unaware of the extremities with which

they are communicating. The nodes that are in search of data subscribe to the

relevant topics i.e. the nodes that generate data publish to relevant topics. Thus,

there can be multiple subscribers and publishers to a topic [64]. An rqt_graph is

commonly used as a GUI plugin for visualizing the ROS computation graph [65].

Figure 6: Schematic Parts of Humanoid Robot

Source [54]

49

4. Experimental Procedure and Results

This chapter discusses the adaption strategy for improving the capability of the

Robotis make Bioloid humanoid robot by substituting its built-in CM530

controller with that of BeagleBone Black (BBB). This also describes the actual

walking performance of the robot with the final results obtained.

4.1 Adaption Strategy

The default CM530 controller within the Bioloid robot is replaced with the BBB

controller. Further, the BBB’s multi-functional deciding and enforcing

component capabilities is improved to human-like dynamic walking ability which

was not possessed by it earlier.

The Robotis make biped BPHR is composed of the following components:

i. Dynamixel Motor (AX-12A)

ii. Gyro/accelerometer sensor (MPU 6050)

iii. Infrared sensor (IR)

iv. CM530 controller

Generally, a walking humanoid robot requires to be configured with an

autonomous controller and a main controller. The autonomous controller takes

care of the autonomous processing and any associated image processing tasks.

Both a Computer and a microcontroller may be used as the above controller or

use can be made of just a microcontroller all alone relying upon the performance

needs of the robot. The main controller controls the motion controller having

programs for walking and further controls a special action program (meant for

guiding functions of other actuators) written in a suitable programming language,

like C, C++, and Python.

Keeping these basic and fundamental design requirements of a humanoid robot

the adapting strategy is evolved. Deciding cum enforcing components of BPHR

50

are replaced under this strategy with BBB’s such components after enhancing it

to perform biped humanoid walking which was not there earlier. This

enhancement was made possible using ROS and Python. In BPHR, the CM530

controller is the key for governing all the robotic movements and the control of

the motors. The idea is to replace this default controller with a different controller

which is easily programmable and can make the working of the robot more

efficient. The deciding cum enforcing intelligence providing components of BBB

Board (incorporating Robot Operating System (ROS) and Python libraries and

walking control) are implanted in the BPHR. While carrying out this process the

original decision making components are removed from the BPHR. This new

method has been implemented in this thesis study. Such an installation procedure

has been undertaken for the first time in this thesis work as far as the researchers’

knowledge goes.

4.2 Assembling the revised Humanoid Robot

 BBB is a powerful processor-cum-intelligence providing component that can be

used in a humanoid robot Structure with required alterations made herein. The

structural platform of the BPHR is constructed with 2 legs to provide 12 degrees

of freedom (DOFs) using 12 Dynamixel servos that are connected to it. All the

Dynamixel motors are linked in daisy chain pattern. One side of the first servo is

linked with the 12V power source and the other side of the servo is linked with

the USB2 Dynamixel connector. The complete interface of the BeagleBone with

the robot is shown in Figure 7.

The two-legged robot is constructed as stated, using 12 servos resulting in 12

Degrees of Freedom (DoF). USB2Dynamixel connector is used to operate the

Dynamixel actuators through the Wi-Fi interface of BBB. Position of the

Dynamixel AX-12A servos is obtained using inbuilt encoders. A

Gyro/accelerometer sensor is mounted on the robot, which supports in the

51

balancing the robot. This accelerometer sensor updates its parameters

periodically [56]. Infrared (IR) sensor fitted on the robot's upper body is utilized

to identify objects in front of the robot that prevent it to move on. Additional

libraries are added from ROS, thereby enabling the BBB to work with a Wi-Fi

adaptor.

All the Dynamixel servo motors are controlled by using the python program. The

accelerometer sensor fixed in the body of the robot help to detect the stability of

the robot. Thus it controls its balance for walking so that it does not topple down.

A wireless network is used to provide communication between the computer and

the robot.

4.3 Humanoid Robot’s Dynamic Walking Algorithm

A detailed consideration of many different walking methods and their drawbacks

as well as their analyses is made in chapter 2. Based on this, the algorithm,

Trajectory, and Walking Pattern Generation method adopted in 2006 and 2007

was most appealing and found highly suitable and desirable and hence in this

Figure 7: BeagleBone Black Robot’s Component

Source [55]

52

study, the walking control strategy developed in references [45,46] are adopted

and discussed in detail in this section.

4.3.1 Evolving Dynamic Stable Humanoid Robot Walking

A Debian image with ROS indigo implementation is installed on the Beagle Bone

Black. A Wi-Fi module is enabled in the BBB using the necessary libraries and

repositories which helps in maneuvering the robot freely. A Dynamixel2USB

connector is responsible for enabling the dynamic actuators is connected through

Wi-Fi interface of the BBB. Accelerometer sensors are connected to the Serial

Clock (SCA) and the Serial Data (SDA) pins while the Infrared (IR) sensors are

connected to the analog to digital converter (ADC) pins of the BBB. The IR

sensor senses any obstacle in front of the robot and if there is any obstacle in front

then it will stop the further movement of the robot (cf. Figure 8). Dynamixel

servos use serial communication.

Figure 8: Flowchart Indicating Control of Robot Movement

53

The default controller baud rate is 1megabits per second (Mbps). ROS acts as the

communication intermediate between the computer and the BeagleBone Black.

ROSCORE is the first thing we should run in one terminal when using ROS.

ROSRUN13 & ROSNODE14 should run in another two new terminals.

The walking pattern of the robot is fine-tuned so the robot moves in small steps

while balancing itself. The location of the pelvis center and ankle as seen from

the sagittal plane is exhibited in Figure 9 & Figure 10.

When the robot is not in motion, both the feet lies on the ground firmly. However,

at the time when the robot begins to walk, the robot is made to swing to the right

13 rosrun is a keyword which enables to directly run a node within a package in ROS.
14 rosnode displays information about the ROS nodes.

Figure 9: Sagittal View for Walking Pattern

Source [45]

Figure 10: Schematics of Landing Position Control

Source [46]

54

side so that the left leg is made to lift and subsequently moved forward and placed

back on the ground. During this time the right leg is tilted to the right side to make

the center of gravity shift and this in turn prevents the robot from falling. The

process is repeated when the robot is made to tilt to the left side for being stable

and keep up its posture so that the right leg is lifted and moving forward and in

this manner the robot moves ahead. During these robot movements, the

accelerometer sensor plays an active role by sensing the swing and movement

through its X and Y axis. The accelerometer sensor continuously sends data to

the BBB and the computer so that the sensor parameters are updated periodically.

4.3.2 Stability Analysis

This section details the heuristic approach undertaken to set the parameter values

for individual sensors so as to prevent the robot from falling. When the parameters

go beyond the prescribed limits inscribed in the accelerometer sensor datasheet

then the robot is made to swing to the other side to counter the balance and the

robot is thus prevented from falling. When the robot moves forward, if the IR

sensors detect the presence of an obstacle, then further movement of the robot is

stopped. This dynamic model is utilized as a building block to propel the servos

mounted on the leg, thereby resulting in a swing-stance period of the legs for

further movement [57]. These parameters have been obtained using a heuristic

approach and then these values are set as limiting factors for the sensors in the

software.

The RoboPlus software of the BPHR is a symbol form C-language based software

meant for simple programming and managing motion and behaviors. The present

work replaces the RoboPlus software with ROS and python scripts for flexible

control of the autonomous robot. The complete code used for controlling the robot

in the present work is detailed in APPENDIX A.

55

4.4 Design and connections of components for the desired walking pattern

4.4.1 Configuration of BBB

The BBB comes pre-installed with a Debian image which needs to be

upgraded prior to the configuration. A fresh installation of the Debian image is

also suggested as the pre-installed image has stability issues. A Debian 7.5

version is installed on the eMMC (embedded Multi-Media Controller). This

version is stable and is configurable to the requirement of the task (cf. Figure 11

and Figure 12).

4.4.2 Dynamixel AX-12A servo actuators

The dynamixel AX-12A servo actuators are used as they are considered to

be the most advanced actuators available. These have the ability to track its speed,

voltage, temperature, shaft position and load. All individual servos can be

accessed independently to control their speed and their positions. The position

and sensors are handled by the servo’s built-in the microcontrollers (cf. Figure

12).

Figure 11: Figure showing the BBB, AX-12A motors, USB2Dynamixel connector, Wi-Fi Adapter, IR Sensor and the
Gyro+Accelerometer sensor used in the experiment.

56

4.4.3 USB2dynamixel connector

This is an indispensable device that is required to connect the dynamixel

motors to the PC. It connects to a USB port of the PC to the dynamixel motors

via its 3p connection port. It uses the Transistor–transistor logic (TTL)15 network

for this work (cf. Figure 11 and Figure 12).

4.4.4 Infrared Sensor

Infrared (IR) sensor GP2Y0A41SK0F is used in this work for obstacle

detection. This is achieved by the transmission and reception of an infrared signal.

This signal is emitted by the signal emitter on the sensor which traverses back to

the receiver after being bounced by the obstacle’s surface (cf. Figure 12).

4.4.5 Accelerometer

The accelerometer used here is the MPU-6050 Accelerometer + Gyro. It

determines the acceleration. Although a three-axis accelerometer could identify

the orientation/tilt of a platform (here this is done for the robot) relatives to the

earth’s surface (cf. Figure 12).

4.4.6 Wi-Fi-Adapter

A USB Wi-Fi adapter (Logic) with a Wi-Fi hub Advent (HB212) is used for

the wireless connection for communicating with the BBB (cf. Figure 12).

4.5 Walking procedure of the robot

There are a total of 12 dynamixel-AX12A servomotors used to make the

robot achieve the desired walking ability. The motors are numbered from M7 to

M18. To provide the movement ability at the ankle position of the robot motors

15 Transistor–transistor logic (TTL) is a class of digital circuits built from bipolar junction transistors (BJTs) and
resistors.

57

M15 and M17 assist the right leg and the motors M16 and M18 assist the left leg

movement. M13 and M14 serve as the knee movement motors for right and left

Figure 12: Actual motor positions showing (a) Posterior view (b) Anterior view.

Figure 13: Physical connections of the USB2Dynamixel with the BBB

58

knee respectively. There are three motors each on every hip position assisting in

the resulting movement. These are M7, M9 and M11 on the right and M8, M10

and M12 on the left of the robot (cf. Figure 13 and Figure 14).

The motors M7 and M8 on the hip position are the YAW motors. M9, M10,

M17 and M18 are the PITCH motors where, M9 and M10 are on hip and M17

and M18 are on the ankle. M11, M12, M13, M14, M15 and M16 are ROLL

motors. M11 and M12 are at the hip position, M13 and M14 are the knee motors

and M15 and M16 are at the ankles (cf. Figure 13 and Figure 14)

4.6 Walking strategy of the robot

When the initial command ROSRUN for the movement of the robot is given

then there are two options for the speed of the walking of the robot i.e. slow and

Figure 14: Schematic Parts of Humanoid Robot showing the motor positions for Yaw, Pitch and Roll motors.

59

normal. It is required to provide an input as 1 (slow) or 2 (normal) for further

movement of the robot.

In the very first step, all the motors associated with the walking movement

of the robot are set to the default resting position (refer APPENDIX A). This is

the standstill position of the robot. All the four pitch motors come into action and

make the robot lean on its left side. The angle to which the robot leans is governed

by the feedback from the accelerometer sensor. This angle is 20 degrees. If the

robot tilts beyond 25 degrees (margin considering the inaccuracy of the sensor in

determining precise degree), then it would come back to its standstill position and

stops further movement. After it leans successfully to 20 degrees, another motor

M10 comes into action. This M10 motor gets back to the initial default position

which enables the robot to lift the right leg. Then, the motor M11 swings it

forward and the motor M13 brings the knee down. The IR sensor continuously

checks for the obstacle in front. If an obstacle is detected around 35 cm, then the

robot stops further movement and comes to its standstill position.

In the second step, all the pitch motors make the robot lean on the right side

and the motor M9 comes to its initial default position thereby enabling the robot

to lift its left leg. Motor M13 is made to come to its default position so that the

whole of the robot comes forward. Motor M12 swings the leg forward and the

motor M14 brings the knee down. This marks the completion of step two.

In the third step, all the pitch motors make the robot lean on the left side and

the motor M10 comes to its initial default position enabling the robot to lift its

right leg. Motor M14 is made to come to its default position so that the whole of

the robot comes forward. Motor M11 swings the leg forward and motor M13

brings the leg down, completing the step three.

Steps two and three are repeated in succession so that the robot continues its

bipedal forward movement. A check is also made continually to see that the robot

60

is in a stable position. This makes it to avoid falling, if the parameters are more

than the prescribed limits inscribed in the sensor. The angle to which the robot

leans is governed by the feedback from the accelerometer sensor, which is 20

degrees. If the robot tilts beyond 25 degrees, then it would come back to its

standstill position and stops further movement. When the robot moves forward,

the IR sensors sense obstacles in front of the robot. If an obstacle is detected to

be present at around 35 cm, then the robot stops moving further and comes to its

standstill position. This dynamic model can be used, as a building block, to

actuate the motors on legs and joints for a swing-stance period of the legs for its

further movement. The maximum walking speed of the robot is 0.5 feet/second.

Beyond this limit the robot becomes unstable and falls down. Slippery or uneven

surfaces also affects the robot and it stability. The rqt graph for the connections

during the walking of the robot is shown in Figure 15.

Figure 15: The rqt graph of the connections during the walking of the robot.

61

5. Conclusion and Future Directions

One of the inspirations driving the operational range of humanoid robotics

is to create robots that are better suited to situations intended for people and that

these robots are fit for informal intermingling with people [33]. Robotis make

Bioloid Premium Humanoid Robot (BPHR) is a humanoid bipedal walking robot

capable of simple functions that mimic humans. This robot’s deciding and

enforcing components providing intelligence can only perform, as stated, simple

functions at homes, hospitals etc. This intelligence providing component is

removed, retaining only its structural components, namely, manipulator, end-

effector and actuators. In this structural body, the multifunctional deciding and

enforcing, i.e. intelligence providing component of BeagleBone Black (BBB) is

imbibed. Thus, this humanoid robot possesses both the bipedal dynamic stable

walking capacity as well as the advanced multiple functions of robotic machines

like BBB.

The two-legged dynamic and stable walking capability is incorporated into the

BBB’s by developing a walking pattern with obstacle avoidance capacity

algorithmic code through the usage of ROS and Python Language.

Thus, in this thesis four very important research achievements have been

obtained. The first is, developing a method to combine the two different

components of two readily available robots in the market. The manipulator, end-

effector and actuators of BPHR were selected as a standard robotic structure. This

robot’s deciding and enforcing component was removed as it had only biped

walking capacity and simple (without other advanced) human-like functions.

Within this structure the highly advanced and multifunctional deciding and

enforcing component of BBB was installed after vitalizing it with human-like

walking capacity using ROS Software with Python Script and libraries. BBB did

not possess bipedal human-like walking power previously. Thus, this new

62

humanoid robot possesses all functions that are desired in a latest humanoid class

robot. Bipedal walking capability has been acquired by humans over time making

human stand ahead among the various life forms. These capabilities when enacted

by the robots will make them more human-like and will provide an upper position

to others in comparison to the other locomotor robots with time.

The second significant achievement is the biped walking ability that was imbibed

to this new hybrid humanoid robot using ROS and Python libraries and walking

algorithmic codes and controls for the first time in this research study.

The third important result of this research study is making the hybrid humanoid

robot developed in this study is made to possess autonomous control of its

walking behavior. For this purpose, the hybrid humanoid is Wi-Fi enabled

incorporating suitable and necessary libraries. The robot is capable of performing

a bipedal movement without falling down and also getting the feedback from the

IR sensor for and obstacle in front.

The fourth important achievement is that this hybrid humanoid robot is made

capable of avoiding obstacles by installing IR sensor i.e. the robot stops when it

senses the obstacle in front of it and including in the software suitable ROS

libraries.

However, this thesis details the walking capability of the new robot alone, while

its other multifunctional capacities have not been put to test or verified. But,

many advanced sensors and highly skilled processing power like image

processing has been included enabling further study. Image processing adopted

in the future study may include the finding of an item by a robot which is a work

done in the machine vision framework. In view of the intention to copy the human

vision capacity, a PC vision framework utilizes electronic parts and calculations

in a like manner human eyes and mind performs. The Open Source Computer

Vision Library (OpenCV) is the most utilized program libraries as a part of

63

robotics to notice, track and recognize the scene caught by image sensors.

OpenCV is a program in python language having numerous libraries for PC

visions dreams intended to investigate, prepare and comprehend the items in

recordings and photographs meant to deliver data.

Dynamic and stable walking biped humanoid robot is the prima donna of the

robot research and industry now. Current humanoid bipedal robots have the

capacity only to walk and act in homes, hospitals, and human companion service

centers [5]. This problem is being tackled in this research project for the first time

by fusing together two different commercially available robots possessing and

competently satisfying all the above requirements together.

The future directions of the present work are enlisted below:

 OpenCV, an open source library of image processing along with a web

camera can be added to enhance the walking and obstacle avoidance

capabilities of the humanoid robot.

 Voice recognition software – PocketSphinx16[58], can be added and this

would increase the responsiveness of the humanoid robot developed here.

Publications:

 Ganesh K. K., Z. Yang, V. Gandhi, T. Geng, “ROS based autonomous

control of a humanoid robot”, International Conference of Artificial Neural

Networks and Machine Learning – ICANN, 6-9 September 2016.

 Ganesh K. K., V. Gandhi, Z. Yang, T. Geng, “Using Robot Operating

System (ROS) and Single Board Computer to Control Bioloid Robot

Motion”, 8th Towards Autonomous Robotic Systems (TAROS)

Conference, 19-21 July 2017. (Submitted)

16 PocketSphinx is a simple speech recognition facility, particularly made suitable for handheld and cell phone devices,

moreover it works similarly well on the desktop also.

64

REFERENCES

1. “Robotics - definition of robotics in English | Oxford Dictionary ” [Online].

Available: https://en.oxforddictionaries.com/definition/robotics.

2. A. Takanishi, Y. Ogura, and K. Itoh, “Some Issues in Humanoid Robot

Design,” Springer Tracts in Advanced Robotics Robotics Research, pp. 357–

372.

3. A. Gandhi, “Basics of Robotics,” Basics of Robotics, 2013. [Online].

Available: http://www.slideshare.net/ameyagandhi/basics-of-robotics.

4. R. Jarvis: Intelligent Robotics: Past, Present and Future. IJCSA 5(3): 23-35

(2008)

5. M. Koga, Y. Hosoda and T. Moriya, ’Humanoid Robots’, [Online]

www.hitachi.com/ICSFiles/afieldfile/2009/09/14/r 2009_04

6. R. C. Arkin, Behavior-based robotics. Cambridge, MA: MIT Press, 1998.

ISBN 0-262-01165-4.

7. J. Y. Kim, III-Woo Park and Jun-Ho oh, ‘Design and Walking Control of the

Humanoid Robot KHR-2’, ICCAS2004, August 25-27, The Shangri-la

Hotel, Bangkok, Thailand.

8. Open CV, [Online]. http://opencv.org/

9. Direct Show, Microsoft Windows [Online].

https://msdn.microsoft.com/enus/library/windows/desktop/dd375454(v=vs.

85).aspx

10. “Is Arduino suitable to be a Humanoid Robot controller?” microcontroller.

[Online]. http://electronics.stackexchange.com/questions/4163/is-arduino-

suitable-to-be-a-humanoid-robot-controller.

11. D. Paramkusam, Roboticist, 'What-CPU-is-enough-for-running-a-

humanoid-robot' Question and Answers - Written Jul 26, 2015.

https://en.oxforddictionaries.com/definition/robotics
http://opencv.org/
https://msdn.microsoft.com/enus/library/windows/desktop/dd375454(v=vs.85).aspx
https://msdn.microsoft.com/enus/library/windows/desktop/dd375454(v=vs.85).aspx
http://electronics.stackexchange.com/questions/4163/is-arduino-suitable-to-be-a-humanoid-robot-controller
http://electronics.stackexchange.com/questions/4163/is-arduino-suitable-to-be-a-humanoid-robot-controller

65

12. T. Foote on April 15, 2015 10:55 AM, “Visualizer of delta robots using ROS

and EtherCAT,” - ROS robotics news. [Online]. Available:

http://www.ros.org/news/2015/04/visualizer-of-delta-robots-using-ros-and-

ethercat.html.

13. Python SDK“NAO Software 1.14.5 documentation,” SDKs —. [Online].

Available: http://doc.aldebaran.com/1-14/dev/sdk.html.

14. K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The Development of

Honda Humanoid Robot”, in Proc. IEEE Int. Conf. on Robotics and

Automations, pp.1321-1326, 1998.

15. H. Lim, Y. Kaneshima and A. Takanishi. Online walking pattern generation

for biped humanoid robot with trunk. Proceedings of the IEEE International

Conference on Robotics & Automation, pp.3111-3116, 2002.

16. S. Kagami, K. Nishiwaki, J. J. Kuffner, Y. Kuniyoshi, M. Inaba and H.

Inoue, 2002. Online 3D vision, motion planning and biped locomotion

control coupling system of humanoid robot: H7.

17. D. Wollherr, “Design and Control Aspects of Humanoid Walking Robots,”

Thesis (Dr. -Ing) .Technical University of Munich, 2002.

18. J. Camilo, ‘Load Sensors Increase Humanoid Robot’s sensitivity’, [Online]

April 2, 2015. http://www.assemblymag.com/articles/92788-load-sensors-

increase-humanoid-robots-sensitivity

19. T. Harris. ‘How Robots Work’, HowStuffWorks.com. [Online] 16 October

2016. http://www.howstuffworks.com/hsw-contact.htm

20. “Best microcontroller for me to use?,” Let's Make Robots!, 04-Aug-2010.

[Online]. Available: http://letsmakerobots.com/node/40140.

21. “Motor Controllers,” SuperDroid Robots - Home Page. [Online].

http://www.superdroidrobots.com/shop/custom.aspx/motor-controllers/60/.

http://www.assemblymag.com/articles/92788-load-sensors-increase-humanoid-robots-sensitivity
http://www.assemblymag.com/articles/92788-load-sensors-increase-humanoid-robots-sensitivity
http://www.howstuffworks.com/hsw-contact.htm

66

22. ‘Define operating System. What are the functions and types of operating

systems’, [Online], January 09, 2010.

http://www.enotes.com/homework-help/define-operating-system-write-

down-function-types-128847

23. K. Jackie. "Proposal for Implementation of Real-time Systems in ROS 2".

[Online]; http://design.ros2.org/articles/realtime_proposal.html

24. A. Martinez, E. Fernández, A. Romero, and E. Fernandez, Learning ROS for

robotics programming: A practical, instructive, and comprehensive guide to

introduce yourself to ROS, the top-notch, leading robotics framework.

Birmingham: Packt Publishing, 2013.

25. C. Ling, "Robot Operating System Tutorial ROS Basic", Summer School,

Shanghai University, July, 23, 2015.

26. "Basic concepts | Erle Robotics Docs", Docs.erlerobotics.com, 2016.

[Online].http://docs.erlerobotics.com/robot_operating_system/ros/basic_co

ncepts.

27. M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E.Berger, R.

Wheeler, and A. Ng, “ROS: An open-source robot operating system,” in

Proc. ICRA Workshop Open Source Software, 2009.

28. N. V. Patel, ‘Robot operating System Is the Future of Software for

Autonomous Devices’, [Online]; January 19, 2016

https://www.inverse.com/article/10346-robot-operating-system-is-the-

future-of-software-for-autonomous-devices

29. K. P. Berthold Horn, ‘Robot Vision’, MIT Press ISBN 0-262-08159-8

30. M. Brady, J. M. Hollerbach, T. Johnson, T. Lozano-Perez, and M. Mason,

‘Robot Motion: Planning and Control’, MIT Press, ISBN 0-262-12182-X.

31. J. J. Craig, ‘Introduction to Robotics: Mechanics and Control’, Addition

Wesley, ISBN 0-201-09528-9.

http://www.enotes.com/homework-help/define-operating-system-write-down-function-types-128847
http://www.enotes.com/homework-help/define-operating-system-write-down-function-types-128847
http://design.ros2.org/articles/realtime_proposal.html
http://docs.erlerobotics.com/robot_operating_system/ros/basic_concepts
http://docs.erlerobotics.com/robot_operating_system/ros/basic_concepts
https://www.inverse.com/article/10346-robot-operating-system-is-the-future-of-software-for-autonomous-devices
https://www.inverse.com/article/10346-robot-operating-system-is-the-future-of-software-for-autonomous-devices

67

32. K. Seungsu, K. ChangHwan-Kim, Y. Bumjae, and O. Sangrok, ‘Stable

Whole-body Motion Generation for Humanoid robots to Imitate Human

Motions’, 2009 IEEE/RSJ International.

33. S. Wehner, M. Bennewitz, Optimizing the Gait of a Humanoid Robot

Towards Human-like Walking, In 4th European Conference on Mobile

Robots, Mlini/Dubrovnik, Croatia. 2009

34. A. Shahriara and T. Sariel, ‘A Differential Steering System for Humanoid

Robots, ECMR, 2011.

35. B. Goodwine and J. Burdick, ‘Gait Controlability for legged Robots’,

Robotics and Automation, 1998.

36. L. Sung-Hee and A. Goswami, ‘A Momentum-based Balance Controller for

Humanoid robots on Non-level and Non-stationary Ground’, Autonomous

Robots, 2012 – Springer

37. M. J. Gielniak, C. K. Liu and A. I. Thomaz, ‘Generating Human-like Motion

for Robots’, The International Journal of Robotics Research, 2013.

38. A. Ude, Christopher G, Atkeson and M. Riley, ‘Programming Full-Body

Movements for Humanoid Robots by observation’, Robotics and

autonomous systems, 2004 – Elsevier

39. M. Do, D. Gehrig, H. Kohne, P. Azad, P. Pastor, T. Asfour, ‘Transfer of

Human Movements to Humanoid Robots’, Humanoid Robots, 2008, 8th

IEEE-RAS International Conference.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4747411
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4747411

68

40. Y. Davidor. Genetic Algorithms and Robotics: Genetic Algorithms and

Robotics - A Heuristic Strategy for Optimism. World Scientific Pub Co,

1991.

41. T. Arakawa and T. Fukuda. Natural motion trajectory generation of biped

locomotion robot using genetic algorithm through energy optimization. In

Systems, Man, and Cybernetics, 1996. IEEE International Conference on,

volume 2, pages 1495 –1500, Oct 1996.

42. D. Schreiner and C. Punzengruber, ‘Parametrizing Motion Controllers of

Humanoid Robots by Evolution’, INFORMATIK 2011 - Informatik schafft

Communities

43. M. Vukobratovic, New Frontiers in Robotics: Volume 2 Dynamics and

Robust Control of Robot-Environment Interaction, Fraunhofer Institute for

Production Systems & Design Technology IPK, Berlin, Germany, – 2009

44. K. JUNG-YUP, P. ILL-WOO and O. JUN,’ Experimental realization of

dynamic walking of the biped humanoid robot KHR-2 using zero moment

point feedback and inertial measurement’, Advanced Robotics, Vol. 20, No.

6, pp. 707–736 (2006)

45. W. Park, J. Y. Kim, J. H. Oh, ‘Online Biped walking Pattern Generation for

Humanoid Robot KHR-3 (KAIST Humanoid Robot-3,

IEEE,HUMANOIDS, 2006

46. J. Y. Kim, I. W. Park and J. H. Oh, ‘Walking Control Algorithm of Biped

Humanoid Robot on Uneven and Inclined Floors’, Journal of Intelligent and

Ribotic Systems, April 2007, Volume 48, Issue 4 pp 457-484

69

47. T. Lozano-Pérez and M. A. Wesley, (1979) An Algorithm for Planning

Collision-Free Paths Among Polyhedral Obstacles. Commun. ACM 22 (10):

560-570

48. S. MLaValle, and J. J. Kuffner. (2001) Rapidly-exploring random trees:

Progress and prospects. In B. R. Donald, K. M. Lynch, and D. Rus,

editors, Algorithmic and Computational Robotics: New Directions, pages

293--308. A K Peters, Wellesley, MA,

49. R. A. Jarvis. (1994) On Distance Transform Based Collision-Free Path

Planning for Robot Navigation in Known, Unknown and Time-Varying

Environments, invited chapter for a book entitled 'Advanced Mobile

Robots' edited by Professor Yuan F. Zang World Scientific Publishing

Co. Pty. Lt, pp. 3-31.

50. G. Hoy, ‘Robots could cause Australian economy 5 million jobs, experts

warn, as companies look to cut jobs’, ABC News, Australian Broadcasting

Corporation, Retrieved 29 may 2014

51. Telecom glossary “bot” Alliance for Telecommunications solutions, 2001-

02-28 Archived from the original 2007-02-02, Retrieved on 2007-09-05

52. R. Grimmett, ‘Mastering Beagle Bone Robotics’, PACKT Publishing,

Mumbai, 2014

53. H. Ayala, Y. Fu, and J. Fu, ‘An intial study of Bioloid Humanoid Robot &

Beyond’, International Conference on Frontiers in education, CS and

CE|FECS’! 5|pp17-23.

54. “BIOLOID Premium Robot Kit - RobotShop.” [Online].

http://www.robotshop.com/en/robotis-bioloid-premium-robot-kit.html

55. G. Michael, S. Alexey “Bioloid Robot Project”, winter 2012 – 2013.

http://www.robotshop.com/en/robotis-bioloid-premium-robot-kit.html

70

56. G. K. Kalyani, Z. Yang and V. Gandhi, ‘A ROS based Humanoid Robot

Structure for Autonomous Control’, ICANN 2016 Scientific Program,

BarcelonaTech, Universitat Polit`ecnica de Catalunya Edifici V`ertex,

September 6-9, 2016

57. Z. Yang, ‘Dynamic Control of Walking leg Joint: A Building Block Model

Perspective’, ICNC 2011, pp 359-463

58. "cmusphinx/pocketsphinx", GitHub, 2016. [Online]. Available:

https://github.com/cmusphinx/pocketsphinx. [Accessed: 13- Nov- 2016].

59. J. J. Kuffner Jr. and S. M. Lavalle ‘RRT-Connect: An efficient approach to

Single-Query Path Planning’, International Conference on Robotics and

Automation, San Francisco, CA, April 2000, pp 995-1001.

60. A. A. Saputra and I. A. Sulistijono ‘Biologically Inspired Control System for

3-D Locomotion of a Humanoid Biped Robot’, IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 46, no. 7, July 2016, pp 898 – 911.

61. Z. Yu and W. Zhang, ‘Gait planning of omnidirectional walk on inclined

ground for biped robots’, IEEE Transactions on Systems, Man and

Cybernetics, Vol. 46, No. 7, July 2016, pp 888 – 897.

62. K. Chang, C. Koh, and C. S. George Lee, ‘An automatic design of factors in

a human-pose estimation system using neural networks’, IEEE Transactions

on Systems, Man, and Cybernetics: Systems, Vol. 46, No. 7, July 2016, pp 875

– 887.

63. ROSCORE. [Online]. Available: http://wiki.ros.org/roscore, [Accessed: Oct.

2016]

71

64. ROS TOPIC [Online]. Available: http://wiki.ros.org/Topics, [Accessed: Oct.

2016].

65. Rqt_graph. [Online]. Available: http://wiki.ros.org/rqt_graph, [Accessed:

Nov. 2016].

72

APPENDIX A

DYNAMIC WALKING - ALGORITHM AND CODE

#!/usr/bin/env python

import os

import gyro

import dynamixel

import sys

import subprocess

import optparse

import yaml

import time

import serial

import rospy

import Adafruit_BBIO.ADC as ADC

from std_msgs.msg import String

print "Select options "

userinput=raw_input("1.Slow \n2.Normal Walk \nEnter Choice : ")

if userinput == '1':

 dly=1

 spd=5

elif userinput == '2':

 dly=0.3

 spd=700

else:

 print "Not Valid Input !"

 sys.exit()

dynid=""

d3=""

d7=""

d8=""

d9=""

d10=""

d11=""

d12=""

d14=""

d15=""

d16=""

d17=""

d18=""

myActuators = list()

def read_adc():

 ADC.setup()

 value = ADC.read_raw("P9_35")

 values = value/1000

 print values

 return values

def read_lean():

73

 xvalue,yvalue = gyro.movement()

 return xvalue,yvalue

def default_Positions():

 global d3,d7,d8,d9,d10,d11,d12,d14,d15,d16,d17,d18,myActuators

 d7.goal_position = 362#352

 d8.goal_position = 672

 d3.goal_position = 512

 d9.goal_position = 512

 d10.goal_position = 512

 d11.goal_position = 512

 d12.goal_position = 512

 d14.goal_position = 512

 d15.goal_position = 512

 d16.goal_position = 512

 d17.goal_position = 512

 d18.goal_position = 512

 print "Initial Position On Sensor"

def main(settings):

 global d3,d7,d8,d9,d10,d11,d12,d14,d15,d16,d17,d18,myActuators

 loop=1

 # Establish a serial connection to the dynamixel network.

 # This usually requires a USB2Dynamixel

 serial =

dynamixel.SerialStream(port=settings['port'],baudrate=settings['baudRate'],

timeout=10)

 # Instantiate our network object

 net = dynamixel.DynamixelNetwork(serial)

 pub = rospy.Publisher('robot', String, queue_size=10)

 rospy.init_node('walk_sensor', anonymous=False, log_level=rospy.INFO,

disable_signals=True)

 # Populate our network with dynamixel objects

 for servoId in settings['servoIds']:

 newDynamixel = dynamixel.Dynamixel(servoId, net)

 net._dynamixel_map[servoId] = newDynamixel

 pub.publish(rospy.get_time)

 if not net.get_dynamixels():

 print 'No Dynamixels Found!'

 sys.exit(0)

 else:

 print "...Done"

 for dyn in net.get_dynamixels():

 myActuators.append(net[dyn.id])

 for actuator in myActuators: # Set up the servos to Initial

 #dynid=str(actuator).split(" ")[1]

 actuator.moving_speed = 100

 actuator.torque_enable = True

 actuator.synchronized = True

 actuator.torque_limit = 1000

 actuator.max_torque = 1000

 d3 = myActuators[0]

74

 d7 = myActuators[1]

 d8 = myActuators[2]

 d9 = myActuators[3]

 d10 = myActuators[4]

 d11 = myActuators[5]

 d12 = myActuators[6]

 d14 = myActuators[7]

 d15 = myActuators[8]

 d16 = myActuators[9]

 d17 = myActuators[10]

 d18 = myActuators[11]

 d7.goal_position = 362#352

 d8.goal_position = 672

 d3.goal_position = 512

 d9.goal_position = 512

 d10.goal_position = 512

 d11.goal_position = 512

 d12.goal_position = 512

 d14.goal_position = 512

 d15.goal_position = 512

 d16.goal_position = 512

 d17.goal_position = 512

 d18.goal_position = 512

 print "Initial Position"

 net.synchronize() # Send all the commands to the servos.

 #time.sleep(4)

 #for servoId in settings['servoIds']:

 # print "Current Position of "+str(servoId)+" :

",net.read_register(int(servoId),36,2)

 time.sleep(1)

 right_initial(net)

 time.sleep(0.5)

 print "--Initial---

Completed---------------------"

 '''time.sleep(2)

 d11.goal_position =532

 net.synchronize()

 time.sleep(2)

 d11.goal_position =512

 net.synchronize()

 time.sleep(2)

 d11.goal_position =492

 net.synchronize()

 time.sleep(2)'''

 while True:

 left(net)

 time.sleep(dly)

 if read_adc() < 0.5: break

 right(net)

 time.sleep(dly)

 if read_adc() < 0.5: break

 loop+=1

 print "--loop----------

-----------"+str(loop)

 default_Positions()

 net.synchronize()

75

def right_initial(net):

 global dly,spd

 global d3,d7,d8,d9,d10,d11,d12,d14,d15,d16,d17,d18

 d9.goal_position = 462 # Step 1 LEFT SIDE LEAN

 d10.goal_position = 462

 d17.goal_position = 462

 d18.goal_position = 462

 print "Step 1 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 time.sleep(dly)

 x,y = read_lean()

 print x,y

 d9.goal_position = 422 # Step 2 RIGHT LEG

LIFT

 d18.goal_position = 422

 d10.goal_position = 512

 print "Step 2 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 d12.goal_position = 512 # Step 3 MOVE FRONT

 d14.goal_position = 512

 print "Step 3 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 d11.goal_position =432 # Step 4 SWING LEG

 print "Step 4 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 d3.goal_position =442 # Step 5 KNEE DOWN

 print "Step 5 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 d9.goal_position =462 # Step 6 REST POSITION

 d10.goal_position =462

 d17.goal_position = 462

 d18.goal_position =462

 print "Step 6 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 #for servoId in settings['servoIds']:

 # print "Current Position of "+str(servoId)+" :

",net.read_register(int(servoId),36,2)

#=====================first_step==#

def left(net):

 global dly,spd

 global d3,d7,d8,d9,d10,d11,d12,d14,d15,d16,d17,d18

76

 d9.goal_position = 572 #572 # Step 1 RIGHT SIDE

LEAN

 d10.goal_position = 572#572

 d17.goal_position = 572#572

 d18.goal_position = 572#572

 #d15.goal_position = 492

 print "Step 1 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 time.sleep(dly)

 time.sleep(dly)

 x,y = read_lean()

 print x,y

 if (x>18):

 default_Positions()

 net.synchronize()

 sys.exit()

 d9.goal_position = 512 # Step 2 LEFT LEG

LIFT////

 d10.goal_position =592

 d17.goal_position =602#592

 d8.goal_position = 672#672

 #d11.goal_position = 512#

 print "Step 2 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 d11.goal_position = 512#482 # Step 3 MOVE FRONT

 d3.goal_position = 512

 d15.goal_position = 512

 print "Step 3 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 #time.sleep(dly)

 d12.goal_position = 592 # Step 4 SWING LEG

 print "Step 4 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 d14.goal_position = 582 # Step 5 KNEE DOWN

 print "Step 5 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 d9.goal_position = 572 # Step 6 REST POSITION

 d10.goal_position = 572

 d17.goal_position = 572

 d18.goal_position = 572

 print "Step 6 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 #for servoId in settings['servoIds']:

77

 # print "Current Position of "+str(servoId)+" :

",net.read_register(int(servoId),36,2)

 time.sleep(dly)

#=============================step forward==============================#

def right(net):

 global dly,spd

 global d3,d7,d8,d9,d10,d11,d12,d14,d15,d16,d17,d18

 d9.goal_position = 462 # Step 1 LEFT SIDE LEAN

 d10.goal_position =462

 d17.goal_position =462

 d18.goal_position =462

 #else: actuator.goal_position = 512

 print "Step 1 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 time.sleep(dly)

 #time.sleep(dly)

 x,y = read_lean()

 print x,y

 if(x<-10):

 default_Positions()

 net.synchronize()

 sys.exit()

 #time.sleep(2)

 d9.goal_position = 422 #432 # Step 2 RIGHT LEG

LIFT

 d18.goal_position =422#422

 d10.goal_position =512

 print "Step 2 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 time.sleep(dly)

 d12.goal_position =512 # Step 3 COME FRONT

 d14.goal_position =512

 print "Step 3 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 d11.goal_position =432 # Step 4 SWING LEG

 print "Step 4 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 d3.goal_position =442 # Step 5 KNEE DOWN

 print "Step 5 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 d9.goal_position =462 # Step 6 COME TO

POSITION

 d10.goal_position =462

 d17.goal_position =462

 d18.goal_position =462

78

 print "Step 6 done wait "+ str(dly)

 net.synchronize() # Send all the commands to the servos.

 time.sleep(dly)

 #for servoId in settings['servoIds']:

 # print "Current Position of "+str(servoId)+" :

",net.read_register(int(servoId),36,2)

def validateInput(userInput, rangeMin, rangeMax):

 try:

 inTest = int(userInput)

 if inTest < rangeMin or inTest > rangeMax:

 print "ERROR: Value out of range [" + str(rangeMin) + '-' +

str(rangeMax) + "]"

 return None

 except ValueError:

 print("ERROR: Please enter an integer")

 return None

 return inTest

if __name__ == '__main__':

 parser = optparse.OptionParser()

 parser.add_option("-c", "--clean",

 action="store_true", dest="clean", default=False,

 help="Ignore the settings.yaml file if it exists and

\

 prompt for new settings.")

 (options, args) = parser.parse_args()

 # Look for a settings.yaml file

 settingsFile = 'settings.yaml'

 if not options.clean and os.path.exists(settingsFile):

 with open(settingsFile, 'r') as fh:

 settings = yaml.load(fh)

 # If we were asked to bypass, or don't have settings

 else:

 settings = {}

 if os.name == "posix":

 portPrompt = "Which port corresponds to your USB2Dynamixel? \n"

 # Get a list of ports that mention USB

 try:

 possiblePorts = subprocess.check_output('ls /dev/ | grep -i

usb',

 shell=True).split()

 possiblePorts = ['/dev/' + port for port in possiblePorts]

 except subprocess.CalledProcessError:

 sys.exit("USB2Dynamixel not found. Please connect one.")

 counter = 1

 portCount = len(possiblePorts)

 for port in possiblePorts:

 portPrompt += "\t" + str(counter) + " - " + port + "\n"

 counter += 1

 portPrompt += "Enter Choice: "

 portChoice = None

 while not portChoice:

 portTest = raw_input(portPrompt)

 portTest = validateInput(portTest, 1, portCount)

79

 if portTest:

 portChoice = possiblePorts[portTest - 1]

 else:

 portPrompt = "Please enter the port name to which the

USB2Dynamixel is connected: "

 portChoice = raw_input(portPrompt)

 settings['port'] = portChoice

 # Baud rate

 baudRate = None

 while not baudRate:

 brTest = raw_input("Enter baud rate [Default: 1000000 bps]:")

 if not brTest:

 baudRate = 1000000

 else:

 baudRate = validateInput(brTest, 9600, 1000000)

 settings['baudRate'] = baudRate

 # Save the output settings to a yaml file

 with open(settingsFile, 'w') as fh:

 yaml.dump(settings, fh)

 print("Your settings have been saved to 'settings.yaml'. \nTo "

+

 "change them in the future either edit that file or run

" +

 "this example with -c.")

 main(settings)

