455 research outputs found

    Design of a fault tolerant airborne digital computer. Volume 1: Architecture

    Get PDF
    This volume is concerned with the architecture of a fault tolerant digital computer for an advanced commercial aircraft. All of the computations of the aircraft, including those presently carried out by analogue techniques, are to be carried out in this digital computer. Among the important qualities of the computer are the following: (1) The capacity is to be matched to the aircraft environment. (2) The reliability is to be selectively matched to the criticality and deadline requirements of each of the computations. (3) The system is to be readily expandable. contractible, and (4) The design is to appropriate to post 1975 technology. Three candidate architectures are discussed and assessed in terms of the above qualities. Of the three candidates, a newly conceived architecture, Software Implemented Fault Tolerance (SIFT), provides the best match to the above qualities. In addition SIFT is particularly simple and believable. The other candidates, Bus Checker System (BUCS), also newly conceived in this project, and the Hopkins multiprocessor are potentially more efficient than SIFT in the use of redundancy, but otherwise are not as attractive

    Efficient modular arithmetic units for low power cryptographic applications

    Get PDF
    The demand for high security in energy constrained devices such as mobiles and PDAs is growing rapidly. This leads to the need for efficient design of cryptographic algorithms which offer data integrity, authentication, non-repudiation and confidentiality of the encrypted data and communication channels. The public key cryptography is an ideal choice for data integrity, authentication and non-repudiation whereas the private key cryptography ensures the confidentiality of the data transmitted. The latter has an extremely high encryption speed but it has certain limitations which make it unsuitable for use in certain applications. Numerous public key cryptographic algorithms are available in the literature which comprise modular arithmetic modules such as modular addition, multiplication, inversion and exponentiation. Recently, numerous cryptographic algorithms have been proposed based on modular arithmetic which are scalable, do word based operations and efficient in various aspects. The modular arithmetic modules play a crucial role in the overall performance of the cryptographic processor. Hence, better results can be obtained by designing efficient arithmetic modules such as modular addition, multiplication, exponentiation and squaring. This thesis is organized into three papers, describes the efficient implementation of modular arithmetic units, application of these modules in International Data Encryption Algorithm (IDEA). Second paper describes the IDEA algorithm implementation using the existing techniques and using the proposed efficient modular units. The third paper describes the fault tolerant design of a modular unit which has online self-checking capability --Abstract, page iv

    A concurrent error detection based fault-tolerant 32 nm XOR-XNOR circuit implementation

    Get PDF
    As modern processors and semiconductor circuits move into 32 nm technologies and below, designers face the major problem of process variations. This problem makes designing VLSI circuits harder and harder, affects the circuit performance and introduces faults that can cause critical failures. Therefore, fault-tolerant design is required to obtain the necessary level of reliability and availability especially for safety-critical systems. Since XOR-XNOR circuits are basic building blocks in various digital and mixed systems, especially in arithmetic circuits, these gates should be designed such that they indicate any malfunction during normal operation. In fact, this property of verifying the results delivered by a circuit during its normal operation is called Concurrent Error Detection (CED). In this paper, we propose a CED based fault- tolerant XOR-XNOR circuit implementation. The proposed design is performed using the 32 nm process technology.published_or_final_versio

    Fault-tolerant computer study

    Get PDF
    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed

    Investigations into the feasibility of an on-line test methodology

    Get PDF
    This thesis aims to understand how information coding and the protocol that it supports can affect the characteristics of electronic circuits. More specifically, it investigates an on-line test methodology called IFIS (If it Fails It Stops) and its impact on the design, implementation and subsequent characteristics of circuits intended for application specific lC (ASIC) technology. The first study investigates the influences of information coding and protocol on the characteristics of IFIS systems. The second study investigates methods of circuit design applicable to IFIS cells and identifies the· technique possessing the characteristics most suitable for on-line testing. The third study investigates the characteristics of a 'real-life' commercial UART re-engineered using the techniques resulting from the previous two studies. The final study investigates the effects of the halting properties endowed by the protocol on failure diagnosis within IFIS systems. The outcome of this work is an identification and characterisation of the factors that influence behaviour, implementation costs and the ability to test and diagnose IFIS designs

    Design of a 1.9 GHz low-power LFSR circuit using the Reed-Solomon algorithm for Pseudo-Random Test Pattern Generation

    Get PDF
    A linear feedback shift register (LFSR) has been frequently used in the Built-in Self-Test (BIST) designs for the pseudo-random test pattern generation. The volume of the test patterns and test power dissipation are the key features in the large complex designs. The objective of this paper is to propose a new LFSR circuit based on the proposed Reed-Solomon (RS) algorithm. The RS algorithm is created by considering the factors of the maximum length test pattern with a minimum distance over the time. Also, it has achieved an effective generation of test patterns over a stage of complexity order O (m log2 m), where m denotes the total number of message bits. We analyzed our RS LFSR mathematically using the feedback polynomial function for an area-sensitive design. However, the bit-wise stages of the proposed RS LFSR are simulated using the TSMC 130 nm IC design tool in the Mentor Graphics platform. Experimental results showed that the proposed LFSR achieved the effective pseudo-random test patterns with a low-test power dissipation (25.13 µW). Ultimately, the circuit has operated in the highest operating frequency (1.9 GHz) environment.   &nbsp

    Radiation Hardened by Design Methodologies for Soft-Error Mitigated Digital Architectures

    Get PDF
    abstract: Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and computer aided design (CAD) methodologies. Radiation vulnerability and design overhead are studied on VLSI sub-systems including an advanced encryption standard (AES) which is DCE mitigated using module level coarse separation on a 90-nm process with 99.999% DCE mitigation. A radiation hardened microprocessor (HERMES2) is implemented in both 90-nm and 55-nm technologies with an interleaved separation methodology with 99.99% DCE mitigation while achieving 4.9% increased cell density, 28.5 % reduced routing and 5.6% reduced power dissipation over the module fences implementation. A DMR register-file (RF) is implemented in 55 nm process and used in the HERMES2 microprocessor. The RF array custom design and the decoders APR designed are explored with a focus on design cycle time. Quality of results (QOR) is studied from power, performance, area and reliability (PPAR) perspective to ascertain the improvement over other design techniques. A radiation hardened all-digital multiplying pulsed digital delay line (DDL) is designed for double data rate (DDR2/3) applications for data eye centering during high speed off-chip data transfer. The effect of noise, radiation particle strikes and statistical variation on the designed DDL are studied in detail. The design achieves the best in class 22.4 ps peak-to-peak jitter, 100-850 MHz range at 14 pJ/cycle energy consumption. Vulnerability of the non-hardened design is characterized and portions of the redundant DDL are separated in custom and auto-place and route (APR). Thus, a range of designs for mission critical applications are implemented using methodologies proposed in this work and their potential PPAR benefits explored in detail.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    High throughput low power decoder architectures for low density parity check codes

    Get PDF
    A high throughput scalable decoder architecture, a tiling approach to reduce the complexity of the scalable architecture, and two low power decoding schemes have been proposed in this research. The proposed scalable design is generated from a serial architecture by scaling the combinational logic; memory partitioning and constructing a novel H matrix to make parallelization possible. The scalable architecture achieves a high throughput for higher values of the parallelization factor M. The switch logic used to route the bit nodes to the appropriate checks is an important constituent of the scalable architecture and its complexity is high with higher M. The proposed tiling approach is applied to the scalable architecture to simplify the switch logic and reduce gate complexity. The tiling approach generates patterns that are used to construct the H matrix by repeating a fixed number of those generated patterns. The advantages of the proposed approach are two-fold. First, the information stored about the H matrix is reduced by onethird. Second, the switch logic of the scalable architecture is simplified. The H matrix information is also embedded in the switch and no external memory is needed to store the H matrix. Scalable architecture and tiling approach are proposed at the architectural level of the LDPC decoder. We propose two low power decoding schemes that take advantage of the distribution of errors in the received packets. Both schemes use a hard iteration after a fixed number of soft iterations. The dynamic scheme performs X soft iterations, then a parity checker cHT that computes the number of parity checks in error. Based on cHT value, the decoder decides on performing either soft iterations or a hard iteration. The advantage of the hard iteration is so significant that the second low power scheme performs a fixed number of iterations followed by a hard iteration. To compensate the bit error rate performance, the number of soft iterations in this case is higher than that of those performed before cHT in the first scheme

    Design of a modular digital computer system

    Get PDF
    A design tradeoff study is reported for a modular spaceborne computer system that is responsive to many mission types and phases. The computer uses redundancy to maximize reliability, and multiprocessing to maximize processing capacity. Fault detection and recovery features provide optimal reliability
    • …
    corecore