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CRYPTO-HARDWARE USING NOVEL MODULAR ARITHMETIC 

COMPONENTS" was published in the proceedings of the IEEE IMTC(Instrumentation 

and Measurement Technology Conference), 2010. 

The third paper presented in pages 31-55 entitled "Efficient On-line Self­
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ABSTRACT 

The demand for high security in energy constrained devices such as mobiles and 

PDAs is growing rapidly. This leads to the need for efficient design of cryptographic 

algorithms which offer data integrity, authentication, non-repudiation and confidentiality 

of the encrypted data and communication channels. The public key cryptography is an 

ideal choice for data integrity, authentication and non-repudiation whereas the private key 

cryptography ensures the confidentiality of the data transmitted. The latter has an 

extremely high encryption speed but it has certain limitations which make it unsuitable 

for use in certain applications. Numerous public key cryptographic algorithms are 

available in the literature which comprise modular arithmetic modules such as modular 

addition, multiplication, inversion and exponentiation. Recently, numerous cryptographic 

algorithms have been proposed based on modular arithmetic which are scalable, do word 

based operations and efficient in various aspects. 

The modular arithmetic modules play a crucial role in the overall performance of 

the cryptographic processor. Hence, better results can be obtained by designing efficient 

arithmetic modules such as modular addition, multiplication, exponentiation and 

squarmg. 

This thesis is organized into three papers, describes the efficient implementation 

of modular arithmetic units, application of these modules in International Data 

Encryption Algorithm (IDEA). Second paper describes the IDEA algorithm 

implementation using the existing techniques and using the proposed efficient modular 

units. The third paper describes the fault tolerant design of a modular unit which has 

online self-checking capability. 
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1. INTRODUCTION 

Cryptography has become an integral part of most of the security applications and 

low-power embedded applications. The ability to secure and the performance of the 

cryptographic algorithm are the major factors that decide the overall efficiency of the 

system. Very secured cryptographic algorithms have been designed and it is really 

difficult to crack these algorithms. The performance of these algorithms can be improved 

by designing very efficient hardware models. This thesis focuses on the novel hardware 

implementation of a cryptographic algorithm. Experiments are performed to check the 

overall performance. The fault tolerant design of this multiplier is analyzed and 

implemented using residue codes. 

This thesis is comprised of three research publications. The first paper describes 

the efficient implementation of modulo 2n+ 1 multiplier which is the basic building block 

of International Data Encryption Algorithm (IDEA). For the efficient implementation of 

modulo multiplier, efficient compressors and a newly designed sparse tree adder is used. 

The second paper describes the design of hardware implementation of the IDEA 

cipher using novel modulo 2n+ 1 multipliers. It shown that the proposed modulo 2n+ 1 

multiplier improves the performance of the various cryptographic algorithms used in 

secure communication systems of networked instrumentation and distributed 

measurement systems. Efficient compressors and sparse tree based inverted end around 

carry adders are used to reduce the delay and complexity of the multiplier. Simulations 

are performed on the known implementation and the proposed implementation. 

The third paper describes the online self-checking model of the modulo 2n+ 1 

multiplier based on residue codes is presented. The self-checking multiplier is secured 

against faults affecting a single gate at a time and produce an error at the gate output, 

which may propagate through the subsequent gates and generate an error at the output of 

the modulo multiplier. These self-checking modulo multipliers are analyzed using unit­

gate model and compared with the modulo multipliers without self-checking property. 

These models are designed for different values of the input length and simulated to get 

the experimental results. 
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Abstract- Modulo 2n+ 1 multipliers are the basic building blocks in many security 

applications such as International Data Encryption Algorithm in cryptography. In this 

paper, a fast low-power hardware implementation of modulo 2n+ 1 multiplier is proposed. 

Novel hardware implementations for a previously proposed algorithm are shown by using 

the efficient compressors and modulo carry look-ahead adders as the basic building 

blocks. The modulo carry lookahead adder uses the sparse-tree adder technique. The 

resulting implementations are compared both qualitatively and quantitatively, in standard 

CMOS cell technology, with the existing implementations. The results show that the 

proposed implementation is faster and consume less power than similar hardware 

implementations making them a viable option for efficient designs. 

Index Terms- Compressors; International Data Encryption Algorithm (IDEA); modulo 

multiplier; sparse-tree adder; 
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1. INTRODUCTION 

In the recent years, the number of internet and wireless communication nodes has 

grown rapidly, which involves the transmission of data over channels. The confidentiality 

and security requirements are becoming more and more important to protect the data 

transmitted and received. Various cryptographic systems have been studied and 

implemented to encode and to decode the data. International Data Encryption Algorithm 

(IDEA) [1] is one of the most reliable cryptographic algorithms used for transmission of 

the data. The ability to perform fast encoding and decoding operations is then still a 

major issue for the implementation of IDEA, particularly from a hardware point of view. 

The three major operations that decide the delay and the overall performance of 

IDEA cipher are modulo 2" addition, bitwise-XOR and modulo 2"+ 1 multiplication. As 

the first two operations take less time and are easy to implement, improving the delay and 

power efficiency of the modulo 2"+ 1 multiplication operation leads to significant increase 

in the performance of the entire IDEA cipher. Although numerous algorithms [2-5] of the 

modulo 2"+ 1 multiplier were proposed, hardware implementation of the same needs 

considerable effort. More recently, Vergos and Efstathiou [5] proposed an efficient 

algorithm for computing modulo 2"+ 1 multiplication, in which the partial product 

reduction block, which contributes most to the overall delay, is designed using full 

adders. Hence, the demand for efficient implementation of the partial product reduction 

block is continuously increasing. 

In this paper, a new hardware implementation of the partial product reduction 

module of the mod 2"+ 1 multiplier is proposed. And also, the final stage addition module 

is redesigned using more efficient carry lookahead adder technique. The resulting 

hardware implementation is faster and consumes less power than existing ones. 

The paper is organized as follows; Section II introduces multiplexor-based 

compressors. In Section Ill, the algorithm for computation of modulo 2"+ 1 multiplication 

is given. Section IV discusses the proposed implementation of the multiplier, with 

implementation example for the input word length, n=16, which is used in IDEA cipher. 

A comparison of this implementation to a recently proposed implementation is made in 

Section V. Conclusions are drawn in Section VI. 
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2. COMPRESSORS 

2.1. MUX VS. XOR 

Existing CMOS designs of 2-1 MUX and 2-input XOR are shown in Fig.l. 

According to [6], the CMOS implementation of MUX, it performs better in terms of 

power and delay compared to XOR. Suppose, X andY are inputs to the XOR gate, the 

output is XY + XY. The same XOR can be implemented using MUX with inputs X, X and 

select bit Y. The efficient implementation of compressors [7] is achieved by using both 

output and its complement of these gates. This also reduces the total number of garbage 

outputs. 

(a) 

(b) 

Fig.l CMOS implementation of2-input (a) XOR (b) MUX 
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2.2. DESCRIPTION OF COMPRESSORS 

A (p,2) compressor with p inputs Xl,X2 .. Xp and two output bits Sum and Carry 

along with carry input bits and carry output bits is governed by the equation: 

L:=l xi+ L:=l (Cin)i =Sum+ 2(Carry + L:=l (Cout)i) 

Efficient design of the existing XOR-based 5:2 compressor [8-9], which takes 5 

inputs and 2 carry inputs, is shown in Fig. 2a. The critical path delay of this compressor is 

4Ll-XOR (delay denoted by.!\). 

The newly designed compressors use multiplexers m place of XOR gates, 

resulting in high speed arithmetic. Also, as shown in Fig. 1 in all the existing CMOS 

implementations of the XOR and MUX gates both the output and its complement are 

available but the designs of compressors available in literature do not use these outputs 

efficiently. In the CMOS implementation of the MUX if both the select bit and its 

complement are generated in the previous stage then its output is generated with much 

less delay because the switching of the transistor is already completed. And also if both 

the select bit and its complement are generated in the previous stage then the additional 

stage of the inverter is eliminated which reduces the overall delay in the critical path. The 

new MUX-based design of 5:2 compressor [7] is shown in Fig. 2b, the delay of which is 

L1- XOR + 3..1 - MUX. CGEN block used in Fig. 2 can be obtained from the equation 

Coutl = (xl + x2) · x3 + xl · x2. 
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(a) 

(b) 

Fig. 2 5:2 compressors; (a) Existing design (b) New design 
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3. ALGORITHM FOR IMPLEMENTATION OF MODULO 2N+l MULTIPLIER 

The algorithm for computation of X · Y mod 2° + 1 is described below. From the 

architectural characteristic comparisons [5], the algorithm presented in [5] is considered 

as the best existing algorithm for the computation of X· Y mod 2° + 1 in the literature. 

Hence, this algorithm is used for the proposed implementation of the modulo multiplier. 

According to the algorithm it takes two n+ 1 bit unsigned numbers as inputs and gives one 

n+1 bit output. The proposed implementation can be adapted to IDEA cipher [1-2], in 

which the mod zn + 1 multiplication module takes two n-bit inputs and gives one n-bit 

output, by assigning the most significant bits of the inputs zeros and neglecting the most 

significant bit of the output. 

Let IAI 8 denote the residue of A modulo B. Let X and Y be two inputs 

represented as X= X 0 X 0 _ 1 ... x0 andY= YnYn-1 ... y0 where the most significant bits x0 

and Yn are '1' only when the inputs are 2° and 2°, respectively. X· Y mod 2° + 1 can be 

represented as follows: 

The n x n partial product matrix is derived from the initial partial product matrix 

in Fig. 3, based on several observations. This n X n partial product matrix is shown in 

Fig. 5. First observation is, the initial partial product matrix can be divided into four 

groups A, B, C and D in which the terms in only one group can be different from '0'. 

Groups A, B, D and C are different from '0', if inputs (X, Y) are in the form of (OZ, OZ), 

(1Z, OZ), (OZ, 1Z) and (10 .. 0,10 .. 0), respectively (here 'Z' is a 16-bit vector). Hence the 

four groups can be integrated into a single group by performing logical OR operation 

(denoted by v) instead of adding the bits arithmetically. Logical OR operation is 

performed on the terms of the groups B, D and A in the columns with weight 2° up to 

zzn-z and on the two terms of the groups B and D with weight 220- 1 (the ORed terms of 

the groups B and D are represented by qi, where qi = Pn,iVPi,n ). Since l220- 1lzn+1 = 

zn-1 + 1, the term with weight220- 1' qn-1> can be substituted by two terms qn-1 in the 

columns with weight zn-1 and 1, respectively, and ORed with any term of the group A 
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there. Moreover, since l22"1zn+1 = 1, the term Pn,ncan be ORed with Po,o· The modified 

partial product matrix is shown in Fig. 4. 

22" 22n-1 2 2n-2 .... 2"+2 2"+1 2" 2"-1 2"-2 22 21 20 

n-1,0 Pn-2,0 Pz.o P1,o Po,o 

Pn-2,1 Pn-3,1 P1,1 Po,1 

Pn-2,2 Pn-3,2 Pn-4,2 Po,2 

P4,n-1 P:s,n-1 P2,n-1 P1,n-1 Po,n-2 

P:s,n-1 P2,n·1 P1,n·1 Po,n-1 A 

Pn-2,n P2,n P1,n Po,n ID 

Fig. 3 Initial partial product matrix 

22n-2 2"+1 2" 
I 2"-1 2"·2 22 21 20 
I 
I 
1 Pn-1,oYqn-1 Pn-2,0 P2.o P1.o Po,oV Pn,nY qn-1 

Pn·1,1Vqo : Pn-2,1 Pn-3,1 P1,1 Po,1 

Pn-1,2Yq1 Pn-2,2 I Pn-3,2 Pn-4,2 Po.2 
I 
I 
I 

Ps,n-2 P2,n-2 I P1,n-2 Po,n-2 

Pn-1,n-1 vqn-2 •••• P2,n-1 P1,n·1 
I 

Po,n-1 I 

Fig. 4 Modified partial product matrix 

Second observation is repositioning of the partial product terms in the modified 

partial product matrix, with weight greater than zn-t based on the following equation: 

lszil = 1-szlilnl = lczn + 1- s)zlilnl 
2n+1 zn+1 zn+1 

= lszliln + znzlilnl 
zn+1 

(1) 

Equation ( 1) shows that the repositioning of each bit results in a correction factor 

of znzliln. In the first partial product vector, there is only one such bit and in the second 
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partial product vector 2 bits need to be repositioned and so on. Hence the correction 

factor for the entire partial product matrix would be: 

COR1 = 2n(2(1 + 2 + 22 +····· +2n-2)- (n- 1)) 

(2) 

The n x n partial product matrix along with the equation (2) results in n+ 1 

operands. These partial product terms can be reduced into two final summands Sum array 

and Carry array using a Carry Save Adder (CSA) tree. Suppose the carry out bit at ith 

stage of CSA is ci with weight 2n, this carryout can be reduced into: 

lci2nbn+1 = 1-cdzn+l = 12n + c;bn+l 

Therefore the carry output bits at the most significant bit position of each stage 

can be used as carry input bits of the next stage. In an n-1 stage CSA in [5] produces n-1 

such carry out bits. Hence there will be a second correction factor (3). And the overall 

correction factor using this algorithm is: 

(3) 

The final correction factor will be the sum of COR1 and COR2. The constant '3' 

in equation (4) will be the final partial product. 

COR= COR1 + COR2 = l2n(n- 1) + 2n(2n- n- 1)lzn+1 

(4) 

2""1 2""2 211-3 22 21 20 

PPo = Pn-1,0 V qn-1 Pn-2,0 Pn-3,0 P2.o P1.o Po.o V qn-1 V Pn.n 

PP1 = Pn-2,1 Pn-3.1 Pn-4,1 P1.1 Po.1 Pn-1,1 vqo 

PP2= Pn-3,1 Pn-4,2 Pn-5,2 Po.2 Pn-1,2 V q1 Pn-2.2 

PPn-2 = P1.n-2 Po.n-2 Pn-1,n-2 V qn-3 P4.n-2 P3,n-2 P2.n-2 

PPn-1 = Po.n-1 Pn-1,n-1 V qn-2 Pn-2,n-1 P3,n-1 P2.n-1 P1.n-1 

Fig. 5 Final n X n partial product matrix 
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4. PROPOSED IMPLEMENTATION OF THE MOD 2N+ 1 MULTIPLIER 

The proposed implementation of the modulo multiplier consists of three modules. 

First module is to generate partial products, second module is to reduce the partial 

products to two final operands and the last module is to add the Sum and Carry operands 

from partial products reduction to get the final result. 

4.1. PARTIAL PRODUCTS GENERATION 

From the above n x n partial product matrix (shown in Fig. 5), it is possible to 

observe that the partial product generation requires AND, OR and NOT gates. The most 

complex function of partial product generation module is Pn-l,n-l V qn-z, where Pt,j = 

atbj and qi = Pn,tVPi,n· 

4.2. PARTIAL PRODUCTS REDUCTION 

This is the most important module which largely determines the critical path delay 

and the overall performance of the multiplier. Hence this module needs to be designed so 

as to get minimum delay and consume less power. 

The existing implementations [4-5, 11] use full adders (FA) and half adders (HA) 

to construct this module. The series of full adders in any column can be replaced by the 

novel compressors that take the same number of inputs. In the proposed implementation 

use of suggested compressors is done which not only reduces the delay and power 

consumption but also the area of the circuit. For a modulo 216+1 multiplier in IDEA 

cipher the FA implementation requires fifteen full adders in series in any column, these 

fifteen full adders can be replaced by two 7:2 compressors, one 5:2 compressor and two 

3:2 compressors. 

Computation of the correction factor COR for compressor implementation 

involves computing only COR2, because CORl is obtained based on repositioning of the 
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partial product term, which is same for both implementations. The correction factor COR2 

computation for FA implementation which has n- 1 stages of additions is shown in [5]. 

And the COR2 computation for the proposed multiplier implementation using the 

compressors also yields the same result. Since, any (p, 2) compressor can be primarily 

designed using (p - 2) F As which give p - 2 carry outs with 2n weight. Hence, the overall 

correction factor COR computation for FA implementation and compressor 

implementation yield the same result i.e, 3 as shown in (4). 

4.3. FINAL STAGE ADDITION 

The partial product reduction module gives one n-bit carry vector and one n-bit 

sum vector which need to be added in the final stage addition module. Very efficient 

parallel prefix adders are designed to do this operation [2]. 

Suppose S and C are sum and carry vectors produced after the partial product 

reduction section. As it is shown in the work of Zimmerman [2] that: 

IS+ C + llzn+1 = IS+ C + Coutl 2n (5) 

The constant '1' in the above equation can be obtained from the final partial 

product term COR ( 4) which is the constant '3'. Hence the new final partial product is the 

constant '2'. The equation (5) can be implemented using an inverted End-Around-Carry 

adder [2, 4-5]. Even though the propagation delay of this adder is in the order of logn, it 

has a drawback of high interconnect complexity and high fan-out. This can be overcome 

by sparse tree adder [ 1 0] based on the prefix network logic. The sparse tree adder takes 

the carry for every four bits instead of taking it at every stage and using a carry select 

block for selecting the final carry after the prefix network. This sparse tree adder was 

proven to be much more efficient in terms of both delay and power when compared with 

the existing prefix tree based adders [12]. Hence this sparse tree can be used to design 

Inverted-End-Around-Carry adder. The newly designed Inverted-End-Around-Carry 

adder using sparse tree adder structure is shown in Fig. 6. The proposed implementation 

of the modulo 216 + 1 multiplier for IDEA cipher is shown in Fig. 7. 
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C15 C11 C7 C3 

Fig. 6 Inverted EAC adder implemented using sparse tree structure 

PPo-e,taPP,. .. ,,., PPo.e.t3 PP1-a, t:t PP04.2 PP,.u PPo.a, 1 PP, ... ,, 

Fig. 7 Proposed implementation of the mod 216+ 1 multiplier using efficient compressor 
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5. SIMLATION AND RESULTS 

5.1. SIMULATION ENVIRONMENT 

All the simulations have been carried out using Mentor Graphics design suite. The 

calculation of power and delay are carried out using the Eldo simulation tool. The power 

and delay calculations are done using the O.l8f.1 CMOS technology. The simulations are 

performed at 1.8V with all inputs fed at a frequency of 100 MHz. 

5.2. SIMULATION RESULTS 

The proposed and existing implementations of the modulo 2n+ 1 multipliers for 

different values of n (8, 16, 32) are done with CMOS tsmc018 technology. The power 

and delay comparisons with the existing implementations are given in Fig. 8a and Fig. 

8b, respectively. For n=16 case which is used in the IDEA cipher, the power and delay 

reduction ratios are 23.77% and 29.27%, respectively. 
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6. CONCLUSIONS 

In conclusion, an efficient implementation of modulo 2"+ 1 multiplier is proposed. 

The use of novel compressors in place of full adders resulted in considerable savings in 

terms of delay and power. The final stage adder is redesigned using sparse tree adder 

which has less interconnection complexity. Simulations have been performed on the 

proposed implementation and on the existing implementation. The proposed 

implementation is proven to perform better than the existing one in every aspect, (i.e, 

delay, power and power delay product). 
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Abstract- The cryptographic algorithms such as International Data Encryption 

Algorithm (IDEA) have found various applications in secure transmission of the data in 

networked instrumentation and distributed measurement systems. Modulo zn+ 1 multiplier 

and squarer play a pivotal role in the implementation of these algorithms. In this paper, an 

efficient hardware design of the IDEA using novel modulo zn+ 1 multiplier and squarer as 

the basic modules is proposed for faster, smaller and low-power IDEA circuits. Novel 

hardware implementation of the modulo zn+ 1 multiplier is shown by using the efficient 

compressors and sparse tree based inverted end around carry adders is given. The novel 

modules are applied on IDEA algorithm and the resulting implementation is compared 

both qualitatively and quantitatively with the IDEA implementation using the existing 

multiplier implementations. The measurement results show that the proposed 

implementation is faster and smaller and also consume less power than similar hardware 

implementations making it a viable option for efficient hardware designs. 

Index Terms- Modulo zn + 1 multiplier; International Data Encryption Algorithm 

(IDEA); Sparse-tree adder; Power/area/speed measurement; 
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1. INTRODUCTION 

The demand for high security in communications channels, networked 

instrumentation and distributed measurement systems is ever growing rapidly. The 

confidentiality and security requirements are becoming more and more important to 

protect the data transmitted and received. This leads to the need for efficient design of 

cryptographic algorithms which offer data integrity, authentication, non-repudiation and 

confidentiality of the encrypted data across the communication channels. Various 

cryptographic algorithms have been studied and implemented to ensure security of these 

systems. In this paper, modulo 2n+ 1 multiplier has been much focus as it has found its 

important role in IDEA algorithm. For example, the three major operations that decide 

the overall performance and delay of the IDEA [1, 4, 15] are modulo 216 addition, 

bitwise- XOR and modulo 216+ 1 multiplication and the GF(2n) Montgomery 

multiplication and modular exponentiation can be implemented using repeated 

multiplication and squaring of the vectors. Among these operations, improving the delay 

and power efficiency of the modulo 2n+ 1 multiplication operation leads to significant 

increase in the performance of the entire cryptographic cipher. 

Numerous hardware implementations of the IDEA algorithm are proposed in the 

literature using different modulo 216+1 multiplier architectures. The IDEA algorithm has 

been implemented in software [3] on Intel Pentium II 445 MHz with encryption rate of 

23:53 Mb/Sec. Later, IDEA was realized on hardware chip by curiger et.all [1] with 

encryption rates up to 177 Mb/sec. By using a bit-serial implementation [4], which 

enables the IDEA to be fully, pipelined the encryption rates reached 500Mb/sec with 125 

MHz clock rate. The efficiency of the IDEA cipher can still be improved if efficient basic 

modules such as modulo multipliers and adders are used. The efficient implementation of 

the modulo 2n+ 1 multiplier based on novel compressors and sparse tree based inverted 

end around carry adders is presented in [7]. Even though the architecture of the modulo 

multiplier is very efficiently proposed in [6], the hardware implementation and 

optimization are considerably improved in [7]. This is resulted by replacing the full adder 

arrays with the novel compressors and the final stage adder with the sparse tree based 

inverted end around carry adder. 
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The paper is organized as follows; Section II introduces multiplexor-based 

compressors. In Section III, the hardware implementation of modulo 2" + 1 multiplier is 

given. Section IV discusses the proposed implementation of the IDEA cipher which uses 

modulo 2 16+ 1 multiplier. A comparison of this implementation to a recently proposed 

implementation is made in Section V. Conclusions are drawn in Section VI. 
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2. COMPRESSORS 

2.1. MUX VS. XOR 

Existing CMOS designs of 2-1 MUX and 2-input XOR are shown in Fig.l. 

According to [6], the CMOS implementation of MUX, it performs better in terms of 

power and delay compared to XOR. Suppose, X andY are inputs to the XOR gate, the 

output is XY + XY. The same XOR can be implemented using MUX with inputs X, X 

and select bit Y. The efficient implementation of compressors [7] is achieved by using 

both output and its complement of these gates. This also reduces the total number of 

garbage outputs. 

(a) 

(b) 

Fig.l CMOS implementation of2-input (a) XOR (b) MUX 
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2.2. DESCRIPTION OF COMPRESSORS 

A (p, 2) compressor with p inputs Xl,XZ . . Xp and two output bits Sum and Carry 

along with carry input bits and carry output bits is governed by the equation: 

L~=1 xi+ L~=1 (Cin)i =Sum+ 2(Carry + L~=1 (Cout)D 

Efficient design of the existing XOR-based 5:2 compressor [8-9], which takes 5 

inputs and 2 carry inputs, is shown in Fig. 2a. The critical path delay of this compressor is 

4.1-XOR (delay denoted by~). 

The newly designed compressors use multiplexers in place of XOR gates, 

resulting in high speed arithmetic. Also, as shown in Fig. 1 in all the existing CMOS 

implementations of the XOR and MUX gates both the output and its complement are 

available but the designs of compressors available in literature do not use these outputs 

efficiently. In the CMOS implementation of the MUX if both the select bit and its 

complement are generated in the previous stage then its output is generated with much 

less delay because the switching of the transistor is already completed. And also if both 

the select bit and its complement are generated in the previous stage then the additional 

stage of the inverter is eliminated which reduces the overall delay in the critical path. The 

new MUX-based design of 5:2 compressor [7] is shown in Fig. 2b, the delay of which 

is .1 - XOR + 3.1 - MUX. CGEN block used in Fig. 2 can be obtained from the equation 

Cout1 = (xl + x2) · x3 + x1 · x2. 
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(a) 

(b) 

Fig.2 5:2 compressors; (a) Existing design (b) New design 
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3. HARDWARE IMPLEMENTATION OF THE MOD 2N+l 

The hardware implementation of the modulo multiplier consists of three modules. 

First module is to generate partial products, second module is to reduce the partial 

products to two final operands and the last module is to add the Sum and Carry operands 

from partial products reduction to get the final result. 

3.1. PARTIAL PRODUCTS GENERATION 

The n X n partial products matrix is obtained from the n+ 1-bit input vectors. This 

partial product matrix is generated after repositioning the bits of the initial partial product 

matrix based on several observations presented in [6]. The partial products bits can be 

computed from AND, OR and NOT gates. The most complex function of partial product 

generation module is Pn-l,n-1 V qn-Z• where Pi,j = aibj and qi = Pn,iVPi,n· 

3.2. PARTIAL PRODUCTS REDUCTION 

This is the most important module which largely determines the critical path delay 

and the overall performance of the multiplier. Hence this module needs to be designed so 

as to get minimum delay and consume less power. 

The implementations from the literature [5, 6, and 13] use full adders (FA) and 

half adders (HA) to construct this module. The series of full adders in any column can be 

replaced by the novel compressors that take the same number of inputs. In the proposed 

implementation use of suggested compressors is done which not only reduces the delay 

and power consumption but also the area of the circuit. For a modulo 216 + 1 multiplier in 

IDEA cipher the Carry Save Adder (CSA) array implementation using Full Adders 

requires fifteen full adders in series in any column, these fifteen full adders can be 

replaced by two 7:2 compressors, one 5:2 compressor and two 3:2 compressors. 
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Correction factor computation is an important step while generating the partial 

products matrix. The full adder implementation [6] and the compressor based 

implementations [7] result in the same value. Because of the space constraints, 

computation of the correction factor COR for full adder implementation [6] is not given 

in this paper. COR computation for compressor implementation involves computing only 

COR2, because COR1 is obtained based on repositioning of the partial product term, 

which is same for both implementations. The correction factor COR2 computation for FA 

implementation which has n-1 stages of additions is shown in [6]. And the COR2 

computation for the proposed multiplier implementation using the compressors also 

yields the same result. Since, any (p, 2) compressor can be primarily designed using (p-2) 

F As which give p-2 carry outs with 2n weight. Hence, the overall correction factor COR 

computation for CSA array FA implementation and compressor implementation yield the 

same result i.e, 3 as shown in [5]. 

3.3. FINAL STATE ADDITION 

The partial product reduction module gives one n-bit carry vector and one n-bit 

sum vector which need to be added in the final stage addition module. Very efficient 

parallel prefix adders are designed to do this operation [2]. 

Suppose S and C are sum and carry vectors produced after the partial product 

reduction section. As it is shown in the work of Zimmerman [2] that: 

IS+ C + llzn+l = IS+ C + Coutl 2n (1) 

The equation (1) can be implemented using an inverted End- Around-Carry adder 

[2, 5, and 6]. Even though the propagation delay of this adder is in the order of log2n, it 

has a drawback of high interconnect complexity and high fan-out. This can be overcome 

by sparse tree adder [12, 16] based on the prefix network logic. The sparse tree adder 

generates the carry for every four bits instead of generating it at every stage and using a 

carry select block for selecting the final carry after the prefix network. This sparse tree 

adder was proven to be much more efficient in terms of both delay and power when 
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compared with the existing prefix tree based adders [ 14] . Hence this sparse tree can be 

used to design Inverted-End-Around-Carry adder. 

The newly designed Inverted-End-Around-Carry adder using sparse tree adder 

structure is used in the final stage addition of the modulo multiplier is shown in Fig. 3. 

The proposed implementation of the modulo 216+ 1 multiplier for IDEA cipher is shown 

in Fig. 3 and R16R1s ... .. R2R1R0 represents the final product of the modulo 2 16+ 1 multiplier. 

Fig. 3 Proposed implementation ofthe mod 216+1 multiplier using efficient compressor 
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4. NOVEL IMPLEMENTATION OF INTERNATIONAL DATA ENCRYPTION 

ALGORITHM (IDEA) USING MODULO 2N+l 

The modulo 2n+ 1 computation is an integral part of the International Data 

Encryption Algorithm (IDEA) where n = 16 [1, 4, 15]. Three major operations that 

decide the overall delay and performance of IDEA cipher are: 

1) modulo 216 addition, 

2) bitwise-XOR and 3) modulo 216 + 1 multiplication. 

As the first two operations take less time and are easy to implement, the delay and 

power efficiency of the entire IDEA cipher depends significantly on the modulo 216+1 

multiplication operation. Hence, the IDEA cipher is implemented using the proposed 

modulo multiplier and compared with the existing implementations. To encrypt a data 

block using IDEA cipher, the data should be processed through three modulo 

multiplication operations in a single round and the manipulated data again should pass 

through seven such rounds iteratively and a final output transformation to produce the 

final encrypted output. The IDEA cipher takes 64-bit input data and produces a 64-bit 

cipher text with a 128-bit key. The encryption and decryption algorithms in IDEA are 

almost identical except they utilize two different sets of sub key generated by the same 

key with different processes. 

The IDEA encryption and decryption processes consist of eight rounds of data 

manipulation using sub keys and a final output transformation stage. In this cipher, all the 

operations are carried out on 16-bit sub-blocks. In the encryption process, the input data 

block of 64-bits is divided into 4 sub blocks of 16-bits each (X., X2, X3, X4). 52 sub 

keys for the encryption process are generated from the original 128-bit key by shifting a 

part of it. Out of the 52 sub keys, six different sub keys (i.e. z<r>l ;z<r>2 ;z<r>3,z<r>4,z<r>5 and 

z<r> 6, where r is the round number) are used for each round and the remaining 4 sub keys 

are used in the final output transformation stage. The 16-bit outputs at each round are 

represented as y<r>t. y<r>2, y<r\ y<r>4 and W.,W2,W3,W4 are the outputs of the final output 

stage transformation. The 52 subkeys used for the decryption process are obtained using a 

different algorithm [ 17]. As shown in Fig. 4, the critical path consists of three modulo 

216+1 multiplication operations, two modulo 216 addition operations and two 16-bit XOR 
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operations in each round. In the final output transformation stage, critical path consists of 

a single modulo 216+ 1 multiplication operation. The throughput of the IDEA cipher can 

be improved, if the delay of the modulo 216+ 1 multiplication operation is reduced in the 

pipelined implementation of the IDEA cipher. Fig. 4 shows the datapath of encryption 

process of the IDEA cipher and datapath of a single round with 4 pipeline stages with the 

proposed modulo multiplier. 

x, 

z,<••-Q 
w, 

Round 1 

y (1) y (1) 

. 2 Seven more rounds 3 

Output transformation : 

0 
rn 
EB 

Single round 

z, 

Zs--+---r----1 

Pipelined datapath of a single round of IDEA cipher 

Modulo 218+1 multiplication of two 16-bit 
blocks, here the value ·o· is considered as 218 

Modulo 218 addition of two 16-bit blocl<s 

16-bit XOR operation on 16-bit blcoks 

Fig. 4 Datapath of IDEA cipher with 4 pipeline stages 
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5. SIMULATION AND RESULTS 

This particular design of the IDEA cipher with four pipeline stages using novel 

modulo 2n+ 1 multipliers is used to analyze and compare with the well-known IDEA 

cipher implementations. The use of the novel modulo multiplier improves the throughput 

and performance of the IDEA cipher significantly. The hardware implementation of the 

modulo multiplier consists of three modules. First module is to generate partial products, 

second module is to reduce the partial products to two final operands and the last module 

is to add the Sum and Carry operands from partial products reduction to get the final 

result. 

5.1. SIMULATION ENVIRONMENT 

All the simulations hav~ been carried out using Mentor Graphics design suite. The 

IDEA cipher design is specifi~d using verilog HDL and the multiplier descriptions are 

mapped on a 0.18 1m CMOS standard cell library using Leonardo Spectrum synthesis 

tool from Mentor Graphics. The design is optimized for high speed performance. Netlists 

generated from synthesis tool fU'C passed on to standard route and place tool, the layouts 

are iteratively generated to get the circuits with minimum area. The calculation of power 

and delay are carried out using the Eldo simulation tool. The simulations are performed at 

1.8V with all inputs fed at a frequency of 25 MHz. 

5.2. SIMULATION RESUL 'l'S 

The IDEA cipher is implemented using both the proposed multiplier and the 

multipliers presented in [6]. Various performance measurements for the IDEA cipher 

using both the proposed multiplier and the existing multiplier are parametrically obtained 

and listed in Table 1. 



TABLE 1. COMPARISON OF THE PERFORMANCE MEASUREMENTS FOR 
IDEA CIPHER 

Performance Using proposed Using the 
%Reduction 

Measurement Multipliers multipliers in [6] 

Encryption Rate 460.25 412.15 11.25 
Mb/sec 

Critical Path 4.372 5.168 15.4 
delay 

Area of the cipher 
(mm2) 

3.68 4.22 12.79 

29 
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6. CONCLUSION 

Hardware implementation of the IDEA cipher using novel modulo 2n+ 1 

multipliers is presented in this paper. It is shown that the proposed modulo 2n+ 1 

multiplier improves the performance of the various cryptographic algorithms used in 

secure communication systems of networked instrumentation and distributed 

measurement systems. Efficient compressors and sparse tree based inverted end around 

carry adders are used to reduce the delay and complexity of the multiplier. Simulations 

are performed on the known implementation and the proposed implementation. The 

presented implementation is proven to perform better than the existing one in various 

aspects, (i.e, throughput and critical path delay). 
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Abstract- Modulo 2n+ 1 multiplier is one of the critical components in the area of data 

security applications such as International Data Encryption Algorithm (IDEA), digital 

signal processing and fault tolerant systems that demand high reliability and fault 

tolerance. Transient faults caused by electrical noise or external interference are resulting 

in soft errors which should be detected online. The effectiveness of the residue codes in 

the self-checking implementation of the modulo multipliers has been rarely explored. In 

this paper, an efficient hardware implementation of the self-checking modulo 2n+ 1 

multiplier is proposed based on the residue codes. Different check bases in the form 2c -1 

or 2c + 1 ( c € N) are selected for various values of the input operands. In the 

implementation of the modulo generators and modulo multipliers, novel multiplexor­

based compressors are applied for efficient modulo 2n + 1 multipliers with less area and 

lower power consumption. In the final addition stage of the modulo multipliers and 

modulo generators, efficient sparse tree based inverted end around carry adders are used. 

The proposed model is capable of detecting errors caused by faults on a single gate at a 

time. The experimental results show that the proposed self-checking modulo 2n+ 1 

multipliers have less area overhead and low performance penalty. 
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1. INTRODUCTION 

In the recent years, the number of internet and wireless communication nodes has 

grown rapidly, which involves the transmission of data over channels. The confidentiality 

and security requirements are becoming more and more important to protect the data 

transmitted and received; consequently secured communication of the data is given the 

utmost priority. Various cryptographic systems have been studied and implemented to 

ensure the security of these systems. International Data Encryption Algorithm (IDEA) is 

one of the most reliable cryptographic algorithms used for transmission of the data [ 10, 

11, 12]. In the hardware implementation of IDEA, the three equation major operations 

that decide the delay and the overall performance of IDEA cipher are modulo 2" addition, 

bitwise-XOR and modulo 2" + 1 multiplication. The performance of data path of the 

IDEA cipher significantly depends on the modulo 2" + 1 multiplication module. Apart 

from this, the modulo 2" + 1 module has found applications in Fermat number transform 

computation [13], digital signal processing [1] and fault tolerant design of ad-hoc 

networks[2]. Hence, the efficient and fault secured design ofthe modulo 2" + 1 multiplier 

is highly desired. The protection against errors is necessary in security applications such 

as IDEA for reliability. In VLSI systems transient faults can be detected by built in online 

fault detection circuits and self-checking circuits have this property [25, 33, 34]. 

Especially, transient faults caused by internal noise or external interference are not 

tolerable in this high speed computing world, these faults should be detected online. The 

self-checking designs detect the errors immediately as they occur and the output can be 

corrected by repeating the last operation. Hence, it is highly desirable to design efficient 

algorithms and methods that can detect the errors on-line, which may prevent any harm 

caused by the faults. Designing efficient self-checking circuits with less area overhead 

and performance penalty has been an important challenge in the area of fault tolerant 

applications. In the recent years, various self-checking circuits [14, 15, 16, 17] using 

different coding schemes such as parity prediction, arithmetic codes are presented, to 

check the functionality of the circuits. Self-checking arithmetic circuits using residue 

codes are reported in some of the industry applications [28, 29]. Parity code schemes for 

memory systems and register files may achieve fault secure property at low hardware 
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cost; sometimes they fail to achieve the fault secure property in arithmetic circuits [20, 

22]. In the self-checking arithmetic circuits using parity prediction scheme [24] detects 

errors only at the output of the circuit; however a fault in the intermediate signal gets 

propagated to other output signals and remains undetected. Even though the parity codes 

result in less area overhead in self-checking circuits, arithmetic circuits may sometimes 

produce multiple output errors which are not detectable by the parity codes. Especially in 

case of multipliers the circuit overhead is in the range of 40% to 50% when parity 

prediction codes are used [19]. Therefore, in the multipliers with large input operand 

width, the overall area overhead is adversely affected with parity prediction schemes. In 

the literature, self-checking implementations of the arithmetic circuits such as adders and 

multipliers have been proposed [30, 31, and 32]. These self-checking circuits use parity 

prediction schemes and arithmetic code schemes in the design by trading off with the 

hardware overhead, performance penalty and fault secureness. Few of the self-checking 

circuits are described as follows. In [23], self-checking adder circuits based on arithmetic 

codes were proposed [26, 27]. These checkers using arithmetic codes suffered from 

hardware complexity and overhead. An alternative method to design self-checking adders 

[24] is by using parity prediction schemes. However, this approach detects errors only at 

the outputs and a fault in the carry gets propagated and remains undetected leading to 

unreliability. A different technique is used in [14], to design a self-checking carry-select 

adder. The adders are totally self-checking for both permanent and transient stuck-at­

faults. A self-checking multiplier is proposed in [25], based on parity prediction scheme. 

The multiplier consists of AND matrix, Carry Save Adder and a final sum-bit duplicated 

adder. Single stuck-at-faults in the combinational logic and all even or odd errors in one 

of the duplicated output registers are detected. In [17], a self-checking code-disjoint 

booth multiplier based on linear Carry Save Addition is designed. This implementation 

can detect all the single input faults, single stuck-at-faults and all errors in the output 

register. In the work of [17, 40], it is described that the transient faults in the circuits 

create soft errors in the output latches of the combinational circuit when: 

• An output is related to the faulty sub circuit with respect to the input(logical 

condition). 
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• A pulse, altered by the faults, has a significant pulse width and amplitude 

(electrical condition). 

• A pulse, resulting from the faults, arriving at the clock transition (latching 

window). 

Because of the numerous masking effects, these transient faults result in single bit 

errors. Hence, circuits which can detect single input faults, single stuck-at-faults or 

multiple output faults are of usual interest. In this paper, a new hardware implementation 

of the self-checking modulo 2n + 1 multiplier based on residue codes is proposed. In the 

proposed implementation several techniques are used to come out with an efficient self­

checking modulo 2n+ 1 multiplier and they are listed below: 

• Efficient compressors are employed in the multiplier design and modulo 

generators design to reduce the overhead. 

• The residue code circuits with the check bases of the form 2k -1 and 2k + 1 are 

efficiently designed using compressors and sparse tree based adders. 

The resulting self-checking circuit has area overhead in the range of 20% to 45% 

for different values of n. 

The paper is organized as follows; Section II introduces multiplexor-based 

compressors, which are used in the self-checking multiplier design [5]. Section III 

discusses the proposed implementation of the self-checking modulo 2n + 1 multiplier, and 

the efficient implementation of the modulo generators with check bases 2k -1 and 2k + 1 

is given. Experimental results showing the area overhead and performance penalty of the 

resulting self-checking circuits are given in IV. Conclusions are drawn in Section V. 
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2. PRELIMINARIES AND REVIEWS 

2.1. MUX VS. XOR 

Multiplexor (MUX) is one of the logic gates used extensively in the digital 

design, which is very useful in efficient design of arithmetic and logic circuits. According 

to the CMOS implementation ofMUX [6], it performs better in terms of power and delay 

compared to exclusive-OR (XOR). Suppose, X and Y are inputs to the XOR gate, the 

output is XY + XY. The same XOR can be implemented using MUX with inputs X, X and 

select bit Y. Efficient compressors have been designed using MUX and reported in [7]. In 

the proposed compressors [7], both output and its complement of these gates are used. 

This also reduces the total number of garbage outputs. Existing CMOS designs of 2: 1 

MUX and 2-input XOR are shown in Fig. 1 for comparison. 

2.2. DESCRIPTION OF COMPRESSORS 

A (p:2) compressor has p inputs X1,X2 ..... Xp-I,Xp and two output bits (i.e., Sum 

bit and Carry bit) along with carry input bits and carry output bits. Its functionality can be 

represented by the following equation: 

Lf=1 Xi + Lf=1 (Cin)i =Sum+ 2(Carry + Lf=l(Cout)a (1) 
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~OR 
(a) 

(b) 

Fig. I CMOS implementation of2-input (a) XOR (b) MUX 

For example, a (5, 2) compressor takes 5 inputs and 2 carry inputs and generate a 

Sum and Carry bit along with two carry out bits. Block diagrams of 5:2 and 7:2 

compressors are shown in Fig. 2. Efficient designs of the existing XOR-based 7:2, 5:2 

and 4:2 compressors [8, 9]have critical path delays of 6~(XOR), 4~(XOR) and 3~(XOR) 

(delay denoted by ~). respectively [8]. 
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X1 X2 X3 ~ Xs 

Cout1 Cin1 

Cout2 Cin2 

Carry 

(a) 

x1 x2 X3 ~ Xs Xs X1 

Cout1 Cin1 

Cout2 Cin2 

Carry 

(b) 

Fig. 2 Block diagram of(a) 5:2 compressor (b) 7:2 compressor 

The newly proposed efficient compressors [7] use multiplexers in place of XOR 

gates, resulting in high speed arithmetic due to reduced gate delays. Also as shown in Fig. 

1, in all the existing CMOS implementations of the XOR and MUX gates both the output 

and their complements are available but the designs of compressors available in literature 

do not use these outputs efficiently. In CMOS implementation of the MUX if both the 

select bit and its complement are generated in the previous stage then its output can be 

generated with much less delay because the switching of the transistor is already 

completed. And also if both the select bit and its complement are generated in the 

previous stage then the additional stage of the inverter can be eliminated which reduces 

the overall delay in the critical path. The existing XOR based and proposed MUX-based 

designs of a 5:2 compressor are shown in Fig. 3, the delays of which are !::.. (XOR) +3L\ 

(MUX) and 4L\ (XOR). These compressors are primitive blocks of the proposed self-
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checking modulo multipliers. The proposed MUX-based design of the 7:2 compressor is 

shown in Fig. 4. CGEN block used in Fig. 3, Fig. 4 can be obtained from the equation 

Cout1 = (x1 + x2) · x3 + x1 · x2. 

(a) 

(b) 

Fig. 3 5:2 compressors; (a) Existing design (b) New design 



Carry 

Fig. 4 Proposed MUX-based design of7:2 compressor 

2.3. SPARSE TREE ADDER BASED INVERTED END AROUND CARRY 
ADDER 
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In binary addition operation, the critical path is determined by the carry 

computation module. Among various formulations to design carry computation module, 

parallel prefix formulation [ 41] is delay effective and has regular structure suitable for 

efficient hardware implementation. The binary addition of two numbers using a parallel 

prefix network is done as follows. Let A = an-lan-2 .... atao and B = bn-tbn-2 .... btbo be two 

weighted input operands to the network. The generate bit (g;) and propagate bit (p1) are 
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defined as g; = a; AND b; and p; = a; OR b;, and these generate bits can be associated 

using the prefix operator ± as follows: 

(g;, Pt) o{g;.t. Pt-t) = {g;+p;.g;.t. p;.p;.t) = {g;:;-t. Pt:t-t) where + is the logical OR 

operator and. is the logical AND operator. 

The carry outs ( C;) for all the bit positions can be obtained from the group 

generate (G; == C;) where (G;, P;) = {g;, p;) o (g;.t, p;.t) o .... {g1, Pt) o {go, po). 

The function of End Around Carry (EAC) adder is to feed back the carry out of 

the addition and add it to the least significant bit of the sum vector. Similarly, in inverted 

End Around Carry adders the carry out is inverted and fed back to the least significant bit 

of the sum vector. The parallel prefix network based Inverted EAC adder [42] achieves 

the addition of the input operands by recirculating the generate and the propagate bits at 

each existing level in log2n stages. Let c•; (G*;) be the carry at bit position i in the 

inverted EAC, this can be related to G; as follows: 

(Gj, Pt) = { (Gn-1> Pn-1) fori= -1 . 
(Gi, Pi) 0 (Gn-1:1+1, Pn-1:1+1) for n - 2 ~ 1 > 0 

(2) 

In the above equation (Gt, P,.) == (G, P), 

(Gn-1:i+l> Pn-1:i+1) 

= (gn-1• Pn-1) o (gn-2• Pn-2) ··· ··· .o (gi+z, Pi+2) o (gi+v Pi+1) 

In some cases it is not possible to compute (G*;, P*;) in log2n stages, then in 

these cases the equations in (2) are transformed into the equivalent ones as shown in Eq. 

(4) by using the following property [42]: 

Suppose that (Gx, P") = (g, p) o (G,P) and (GY, PY) = ( (p, g) o (G, P)) 

G" == g + p. G = g + p. G = g. (p + G) 

= (g. p) + gG = p + gG (3) 

Therefore (f = G" and in (2) pY is computed asp. P. 
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To implement the parallel prefix computation efficiently, these transformations 

have to be appliedj number of times recursively on (Gi, PD o (G0 _ 1:1+V Pn-1:1+1) using 

the following relation: 

{ 
n, ifi > ~-1 

1 . +. 2 n- -I J= n . . n 
- If I < --1 
2' - 2 

(4) 

The new carry outs can be computed using the following equation: 

(G~ R*) = { (G0 _ 11 P0 _ 1 ) fori = -1 
I' 1 ( ) • (P., Gl) 0 Gn-1:1+1, Pn-1:~+ 1 for n - 2 > I > 0 

(5) 

Hence, the transformations used above to achieve the parallel prefix computation 

in log2n stages result in more number of carry merge cells and thereby adding more 

number of interstage wires. Parallel prefix adders suffer from excessive inter-stage wiring 

complexity and large number of cells, and these factors make parallel prefix based adders 

inefficient choices for VLSI implementations. Therefore, a novel sparse tree based EAC 

and inverted EAC adders are used as the primitive blocks in this work. 

In sparse tree based inverted EAC adders [3, 4], instead of calculating the carry 

term G*; for each and every bit position, every J<!h (K = 4, 8 ... )carry is computed. The 

value of K is chosen based on the sparseness of the tree, generally for 16 bit and 32-bit 

adders K is chosen as 4 [36, 3 7, 3 8]. The higher value of K results in higher value of non­

critical path delay compared to critical path delay of O(log2n) which should not be the 

case. The proposed implementation of the sparse tree based Inverted End-Around-Carry 

Adder (IEAC) is explained below clearly for 16-bit operands. For a 16-bit sparse IEAC 

with sparseness factor (i.e, K) equal to 4, the carries are computed for bit positions -1, 3, 

7 and 11. Here, bit position -1 corresponds to the inverted carry out ((G15, P15)) of the 

bit position 15. The carry out equations for the 16-bit sparse tree IEAC are as follows: 

c:1 = ( G1s• P1s) = (g1S• P1s) o (g14, P14) o •·• ••• o (gv P1) o (go. Po) 

c; = (G3, P3) 0 (G15:4• p15:4) = (g3, P3) O•••••O (go. Po) 0 (g15• P1s) 0 •••••• •0 (g4, P4) 

= (P3, G3) o (G1s:4• P1s:4) 

c; = (G7,P7) ° CGts:a•P1s:a) = (g7.P7) O•••••O (go. Po) 0 (g15•P1s) 0 •••••• •0 (ga.Pa) 

= (P7, G7) o (Gts:a• P1s:a) 



c;t = (Gll, P11) o (Gts:t2• P1s:12) 

= (g11,p11) o·····o Coo. Po) o CBts•Pts) o ••· .... o (Btz•P12) 

= (P11, G11) o (Gts:t2• P1s:12) 
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Figure 5 shows the finalized 16-bit sparse tree Inverted EAC adder. From Fig. 5, 

observe that all the carry outs are computed in log2n stages with less number of carry 

merge cells and reduced inter-stage wiring intensity [36]. The implementation of the 

sparse tree based EAC is similar to IEAC shown in Fig. 5, except the carry is not 

inverted. 



I 
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Fig. 5 (a) 16-bit sparse tree based Inverted EAC adder (b) 4-bit conditional sum generator 
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The Conditional Sum Generator (CSG) shown in Fig. 11-C is implemented using 

ripple carry adder logic, two separate rails are run to calculate the carries c·i+l, c·;+2, c·i+3 
and c•;+4 assuming the input carry c•; as 0 and 1. Four 2:1 multiplexers using the carry 

c•; from sparse tree network as 1-in-4 select line generate the final sum vector. The 

conditional sum generator is shown in Fig. 5 (b). The final sum is generated in log2n 

stages in IEAC sparse tree adder with less number of cells and less inter-stage wiring. 

Hence, this approach results in low power and smaller area while providing better 

performance. 

2.4. MODULO 2N + 1 MULTIPLIER 

Modulo 2° + 1 multiplier is extensively used in many digital signal processors and 

cryptographic applications. As 2° + 1 is an n+ 1 bit number, the input operands can be of 

n+ 1 bits. A brief explanation of the algorithm and implementation of the modulo 2°+ 1 

multiplier [3, 4] is given below. 

Let lA I 8 denote the residue of A modulo B. Let X and Y be two inputs 

represented as X = XnXn- 1 ••• x0 andY = YnYn- 1 ... Yo where the most significant bits Xn 

and Yn are '1' only when the inputs are 2n and 2n, respectively. X · Y mod 2n + 1 can be 

represented as follows: 

P = IX· Ylzn+1 = ll:f:oXt2i · LJ=OYj2jlzn+1 = ILf:o (L~- Pt,j2t+j)l (6) 
J-0 zn+1 

where p;J = a; AND b1 

From (6), observe that it results in an (2n + 1) X (n + 1) partial products matrix. 

This matrix is modified into an n x n partial products matrix based on several 

assumptions [43]. The conversion of the (2n + 1) x (n + 1) partial products matrix into 

n x n partial products matrix results in a correction factor of 3. The n x n partial 

products matrix is reduced into one sum vector and one carry vector. A part 2 of the total 

correction factor 3 is added to the n x n partial products matrix and the other part 1 is 

used in the final stage addition. In the reduction of the partial products, novel 
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compressors are used instead of full adders in each column of the carry save adder 

network. This selection of the compressors is based on the input width. For a particular 

input width, several compressor networks are possible. The best possible compressor 

network consists of compressors with high order such as 7:2 and 5:2 compressors. The 

sum and carry vectors generated by the partial products reduction module have to be 

added in the final stage addition module. A part of the correction factor 1 left behind is 

used in the final stage addition to take advantage of the following equation. 

(7) 

From (7), observe that the inverted carry out of the addition of Sum and Carry 

vectors has to be fed back. Hence, adding a constant ' 1' to the Sum and Carry vectors 

results in Inverted End Around Carry (EAC) modulo 2n addition which has regular VLSI 

implementation. This inverted EAC is efficiently designed using the sparse tree adder 

network, which has less interstage wiring and less cell density. A novel modulo 2 16+ 1 

multiplier, which uses efficient compressors in the partial products reduction module is 

shown in Fig. 6. 

Fig. 6 Hardware implementation ofthe modulo 2 16 + 1 multiplier 
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3. PROPOSED SELF -CHECKING MODULO 2N + 1 MULTIPLIER DESIGN 

For any self-checking circuit to detect online-errors, the circuit has to comply 

with a set of properties. These properties are described below [17]. 

• Code disjointness: If each non-code input is mapped to a non-code output 

word then the circuit is called code-disjoint. 

• Fault secure: A circuit is called fault secure if for any fault in the fault set 

there is no input code word that causes the circuit to generate incorrect code 

word. 

• Self-testing: For all faults in the fault set, there is at least one input code word 

that generates an output which is not a code word. 

• Self-checking: If the circuit obeys both the self-testing and fault secure 

properties then it is called totally self-checking. 

If input registers are used in the implementation then code-disjointness ensures 

that the faults in the input registers are detectable. Using the fault secure property, for an 

input fault the circuit either generates a correct output or detects the fault. In the self­

testing circuits faults can be detected by applying an input vector. 

In this section, the analysis of the self-checking multipliers using residue codes, 

which includes fixing a fault model and selection of the check bases is given. The 

analysis of the integer multipliers is extended to the proposed implementation of the 

modulo 2n + 1 multipliers. 

3.1. SELF -CHECKING MULTIPLIERS USING RESIDUE CODES 

The self-checking two's complement multiplier is clearly studied for a fixed fault 

model and appropriate check bases are designed for the same in [15]. The brief 

explanation of the self-checking two's complement multiplier [15] is given below. Let 

the inputs and outputs of self-checking multiplier circuit S are encoded using the error­

detecting code 1(0) and F be the fault set used for the circuit S. The fault secureness of 

the circuit S affected by the fault set F can be achieved by selecting the code space 0 
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such that any error in the output can be detected by a residue code check. The definition 

of the fault-secureness with respect to a fault set F is as follows. Let f e F and sr denote 

the circuitS affected by fault f. For a particular input i e I the output of S(Sf) is given 

by (i) [ st (i)]. Then, S is fault-secure for fault set F 0 for any input i € I and for any 

fault f E F, S(i) =;:. Sf (i) implies Sf (i) ~ 0. The basic block diagram of the multiplier 

with residue code check is shown in Fig. 7. 

X Y /(x)modb I(y)modb 

r··------------~------------~---1 

l .... ~-------~-------------~---1 
p,l(p) = I(x'fJI(y) l(p)modb 

Fig. 7 A block diagram of the multiplier with residue code check 

In the above figure, M represents the multiplier and M' represents the modulo 

multiplier with residue check base b E N. I(x) mod b, /(y)mod band /(p)mod b 

represent the residues of the inputs and output with check base b. The efficient 

implementation of the modulo generators is given in following sections. These modulo 

generators use novel compressors and sparse tree adder based end around carry adders. 

The error pf in the multiplier output is detected in and only if 

[pf,J(p)mod p] ~ 0 

~ I(p)mod b =;:. I(pf)mod b 

~ II(p) -J(pf)lmod b =;:. 0 
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To simplify the analysis, let us assume a fault model for the multiplier with 

residue codes. For the fault set F, assume fault caused by a primitive block in the 

multiplier circuit S [ 15]. The single fault is caused by the primitive blocks such as half 

adders or full adders. This fault results in change in the functional behavior of the 

primitive blocks thus producing an erroneous output. Let E(M) denote the set of the 

absolute errors in the output of the multiplier circuit M caused by a single fault in the 

primitive blocks. Then, E(M) can be represented as follows: 

E(M) = {II(p)- /(pf)l f fault caused by a primitive block in M 

p = M(x,y), 

pf = Mf(x,y)}/0 

The multiplier circuit S is fault secure to the fault set F +-+ 

'Ve E E(M): e mod b =F 0 (8) 

Hence, to achieve low hardware costs minimum value of a check base is selected 

which satisfies the above result. The selection of the check bases in the residue code 

based circuits is an important task. In selecting the check bases, first the absolute error set 

E(M) caused by the single faults have to be characterized. For different set of faults in 

various primitive blocks, the circuit functions differently. In this paper, the fault model 

consists of faults in a single primitive block. 

The multiplier circuit S design so far is only fault-secure i.e, only testable fault 

from the fault set F will be detected. In some cases, untestable faults from the fault set 

may affect the fault-secure property of the circuit. Hence, to achieve the fault-secureness 

for all the faults, the multiplier circuit has to be self-testing too. A brief explanation of the 

self-testing property [15] is given below. 

Let S be the self-checking multiplier circuit, I be the input code space and 0 be 

the output code space. Let the set of inputs subjected to the circuit in the fault free case be 

N, these inputs are given to the circuit as normal inputs, N c /.Then the circuitS is called 

self-testing when: 

• For a fault/E F, there exists ani EN such that d (i) fl. 0. 

• The circuit S is self-testing for fault set F +-+ S is self-testing for every fault 

from the set F. 
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For the multiplier circuit S with residue code check, in most applications N = I. 

Hence, the input set for both M and M' can be subjected to arbitrary values. Thus, if M 

and M' are realized without internal redundancy then the fault-secureness implies that the 

circuit S is self-testable. A basic configuration of the multiplier with residue code checker 

is shown in Fig. 8. In Fig.8, modMult b computes the residue of the multiplier output i.e, 

l(p) mod b. Dual Rail Check compares the output from modMult b and output of the 

inverter and asserts the error signal if the two inputs are not complementary to each other. 

with the above residue and dual rail checkers the self-testing property many not be 

always achieved. This guarantee the self-testing property of the multiplier circuit, the 

structure of the checkers has to be properly selected. 

p l(p)modb 

error 

Fig. 8 A block diagram of the residue code checker 

The check base selection of the residue codes depends on the faults in the fault set 

F and the resulting absolute error in the output vector of the multiplier. Hence, before 

selecting the check base, the E(M) set has to be fixed. As only one fault in a single 
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primitive block such as half adder or full adder is assumed, corresponding E(M) can be 

computed and proper check base is selected using (8). For the two's complement 

multiplier studied in [15], the check base b is fixed as 3 for most of the input cases. This 

result is obtained by making a particular assumption, otherwise check base 7 is used. 

Suppose for ann-bit multiplier, the partial products reduction module is designed using 

half adders and full adders. A single fault in any one of these primitive blocks may result 

in an error in the sum or carry outputs. If the fault causes an error set E(M) given by: 

E(M) c { azi Ia E [1: 3], i E [0: 2n - 2]} u {5. zzn-3 } (9) 

The check base b achieves the fault secureness for the given multiplier if 

bEN\ {y2ily E [1: 5], i E {O,N}} (10) 

where N denotes the set of all natural numbers. 

Hence, the smallest check base that satisfies (1 0) and to achieve the fault 

secureness for the given multiplier is 7. Since, modulo 3 generator is very popular, the 

check base 3 is used based on an assumption. In the partial products reduction module, 

half adders and full adders are assumed such that error values of the form ±3 do not 

occur. Assuming this error analysis, it can be shown that under the restricted fault model 

the error set Ere(M) can be represented as: 

EreCM) c {2ili E [0: 2n- 1]} U {3. zzn-z} (11) 

From (11) there exists only one error which cannot be detected by modulo 3 

check base. This error value occurs for only one input combination which is /(x) = I(y) = 

-2n-l and a fault on the outputs ofthe primitive block with weight 22n-2• This case is highly 

improbable and hence is neglected. 

3.2. SELF-CHECKING MODULO 2N + 1 MULTIPLIERS USING RESIDUE 

CODES 

In this section, a fault secured implementation of the modulo 2° + 1 multiplier 

using residue codes is given. The fault model for this self-checking multiplier includes 

faults affecting a single gate. And consequently, the same fault may propagate through 

the subsequent gates and generate errors at the multiplier outputs. Hence, to achieve fault 
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secureness these errors must be detected by the residue codes [19]. As shown in Fig. 3, 

the fault model includes any fault affecting the gates that generate the outputs sum and 

carry outs. 

From the implementation ofthe modulo 2°+ 1 multiplier [3], it consists of partial 

products generation module, partial products reduction module and final stage addition 

module. The partial products generation consists of basic logic gates and the partial 

products reduction module is implemented using compressors of different order (3:2, 4:2 

and 5:2 compressors etc). The final stage addition module is designed using sparse tree 

based inverted end around carry adder. For ordinary integer multipliers, the error in the 

arithmetic value of the output caused by the faults are well studied in the literature [21]. 

In residue code based self-checking multipliers [15, 19, 21, and 23], to detect an error the 

arithmetic difference should not be divisible by the check base of the residue codes. 

The block diagram of the self-checking modulo 2°+ 1 multiplier based on residue 

arithmetic codes [19] is shown in Fig. 9 (i.e, in the modulo A generator block is either 2k-

1 or 2k+ 1 ). From the figure, observe that the self-checking modulo 2°+ 1 multiplier 

consists of a modulo multiplier, modulo generators for the input operands followed by a 

modulo multiplier and modulo generators (with check bases of the form 2c - 1 or 2c + 1) 

for each of the modulo multiplier outputs. In the final stage, an arithmetic code checker to 

check the output of the modulo multiplier against its check part. In this case, a dual-rail 

checker is used. 



Input operand 1 Input Operand 2 

I I l ~r---~l 
r---'----~ 

l 
Modulo 2"+1 multiplier 

Modulo multiplier 
Output 

error 

Modulo 
Generator for 

Input 1 

Modulo 
Generator for 

Input 2 

Modulo 2k+1 multiplier 
for the check parts 

Fig. 9 A block diagram of the self-checking modulo 2n+ 1 multiplier 
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As shown in Fig. 9, the modulo generator calculates input modulo 2c -1 or 2c + 1. 

The check base selection for arithmetic circuits such as adders and multipliers is 

presented in the literature [15, 21]. The hardware implementation and structure of the 

modulo multiplier is similar to integer multipliers [3]. 

In the array multipliers implementation reported in [35], the partial products 

reduction module consists of full adders and half adders which generates Sum and Carry 

outputs. A fault on the set of the gates that generate these Sum and Carry signals cause an 

output error [19, 21]. An error on the sum signal gives an arithmetic value of±2i (where i 

is the weight of the error signal), similarly an error on the Carry signal gives an 

arithmetic value of ±2.i. Hence, errors produced on both of these signals give an 
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arithmetic value of±3.2i. To detect the error caused by these faults, the check base ofthe 

residue codes should be selected such that the arithmetic difference should not be 

divisible by the check base. The final stage adder of the array multiplier is generally 

implemented using parallel prefix adders. Various algorithms are proposed to select the 

check bases for these fast parallel prefix adders. Unlike the ripple carry adders, the carry 

computation problem is logarithmic rather than linear. Hence, the error propagation is 

also different and causes various output errors. A brief description on the check base 

selection discussed in [19, 21] is presented below. The arithmetic value of the errors in 

the outputs is determined based on a couple of facts. 

• Faults on the signals with divergent degree higher than 1 result in errors with 

arithmetic value ±2i. 

• Consider faults on a random signal Wi which can be propagated to the carry Cj. 

The error may propagate to the other carry signals Cj G > i) which structurally 

depend on Ci subsequently on Wj. In the actual implementation, not all the 

carries Cj G > i) structurally depend on Wj. Hence, two kinds of errors are 

possible, in the first case all the carries Cj G > i) may depend on ci resulting in 

an error with final arithmetic value ±2i+ 1. In the second case, only a subset of 

the carries Cj G > i) may structurally depend on ci producing an output error 

given below: 

• +[ao(zi+l + zi+2 ..... +zi+k) + al(zil+l + zi1+2 ..... +2il+k1) + 

a2(zi2+1 + zt2+2 ..... +2i2+k2) + ... + CZm(zim+l + zim+2 ..... +zim+km)] 

where a0 , a 1 .••.. am E [0,1] and im + km < n, n is the width of the operands 

used in the adder. 

To achieve the fault secureness of the self-checking modulo 2n+ 1 multiplier, the 

resulting arithmetic value of the output errors caused by the faults must not be divisible 

by the check base. Hence, the smallest odd integer is chosen which does not divide the 

arithmetic value of the errors in the output. The check bases are that best suit for this 

operation are of the type (2c -112c+ 1, c E N) and these check bases result in efficient 

residue code computation [21, 15]. 

In the modulo 2n + 1 multipliers, the partial products reduction module is 

designed using compressors which are similar to full adders in operation. A fault in set of 
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the gates of the compressors generate an error with arithmetic value ±K. i (K is a 

constant). The final stage adder is designed using sparse tree based inverted end around 

carry adder. The operation of the sparse tree adder is same as parallel prefix adders, 

except the carries are computed at every 4th or 8th bit. Hence, the error analysis gives 

same output error as proven in [21]. Hence, to design efficient modulo generators, the 

check base of the form (2c -112c+ 1, c E N) is chosen. Efficient implementation of the 

modulo generators with check bases 24-1 and 24 + 1 for an input operand of width 16 are 

shown in Fig. 1 0 and Fig. 11. These modulo generators use novel sparse tree based end 

around carry adder and inverted end around carry adder, respectively. In the novel 

designs of the modulo generators, full adders are replaced by the efficient compressors. 

Compressor Compressor Compressor 

Sparse tree based end around carry adder 

s, s, 

Fig. 10 Modulo generator with check base 24 - 1 for input width=16 



4-2 
Compressor 

4-2 
Compressor 

4-2 
Compressor 

4-2 
Compressor 

So 

Fig. 11 Modulo generator with check base 24 + 1 for input width= 16 
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Thus, the proposed self-checking modulo 2n + 1 multiplier based on residue codes 

efficiently detects all errors caused by the faults on a single gate at a time. The efficient 

use of the compressors in the modulo generators and modulo multipliers result in good 

savings in terms of area overhead and delay. The self-checking two's complement 

multiplier is clearly studied for a fixed fault model and appropriate check bases are 

designed for the same in [15]. 
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4. PARAMETRIC COMPARISON 

The efficient self-checking modulo 2" + 1 multiplier is obtained from the efficient 

use of the novel compressors in the modulo multipliers and modulo generators. In this 

section, the self-checking modulo 2" + 1 multipliers are compared against the modulo 2" 

+ 1 multipliers without self-checking property. The comparisons are carried out using the 

unit-gate model proposed by Tyagi (39] and also experimental results are compared. The 

hardware overhead in the proposed implementation of the modulo 2" + 1 multiplier is 

caused by the modulo generators, dual-rail checker the modulo multiplier which is used 

to generate the check part for the dual-rail checker to check against the actual result of the 

modulo 2" + 1 multiplier. The performance penalty of the multiplier is caused by the dual 

rail checker and the modulo generators. If the combined delay of the modulo generators 

and dual rail checker are more than the delay of the modulo 2" + 1 multiplier, this pays 

penalty for the performance of the multiplier. For different values of the input operands 

of the modulo 2" + 1 multiplier, the modulo generators have different check bases to 

achieve the full fault secureness. The residue code check bases of the form 2c -1 and 2c + 

1, for different values of the input operands are selected and corresponding modulo 

generators are designed. 

4.1. UNIT -GATE MODEL ANALYSIS 

The modulo multipliers and the modulo generators contribute largely to the 

overall area and delay of the multiplier. In the unit-gate model presented by Tyagi [39], 

each 2-input monotonic gate is considered as a single gate equivalent for both the area 

and delay comparisons, and the 2-input XOR gate and 2:1 MUX are considered as two 

gate equivalents (area and delay). The area and delay terms of the modulo multiplier with 

and without self-checking property are shown below. 

AMWS = AMG + AMm + ADRC 

TMWS = TMG + TMm + TDRC 

AMw = AMM 
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In the above equations AMws, T Mws denote, respectively the area and delay of the 

modulo multiplier with self-checking property. AMWs and T MWS are obtained by summing 

the areas and delays of the Modulo generators (AMa,TMa), modulo multipliers (AMm,TMm) 

and dual rail checker(ADRc,TDRc). AMW, TMW are the area and delay of the modulo 

multiplier without self-checking property, they are nothing but the area and delay of the 

ordinary modulo 2n + 1 multiplier denoted by AMM and TMM, respectively. The unit-gate 

areas and delays of these multipliers are computed and tabulated in the below table. 

TABLE 1. AREAAND DELAY COMPARISON OF MODULO 2N + 1 

MULTIPLIERS WITH AND WITHOUT SELF -CHECKING PROPERTY USING 

UNIT-GATE MODEL ANALYSIS 

%Area 
% 

n AMw AMws overhead TMw TMws Performance 
penalty 

8 553 4454 43 30 33 10 

16 1968 2676 36 52 56 7.7 

32 7825 10251 31 94 98 4.25 

64 25637 30508 19 168 173 2.98 
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4.2. EXPERIMENTAL RESULTS 

Even though the unit gate model gives delay and area comparisons in terms of 

gate counts, the standard cell based implementation of the proposed compressor based 

multiplier gives much more accurate delay and area estimations. The proposed self­

checking modulo multipliers for various values of input length are specified in Verilog 

Hardware Description Language (HDL). The multiplier descriptions are mapped on a 

0 .18Jlm CMOS standard cell library using Leonardo Spectrum synthesis tool from 

Mentor Graphics. The design is optimized for high speed performance. Netlists generated 

from synthesis tool are passed on to standard route and place tool, the layouts are 

iteratively generated to get the circuits with minimum area. 

TABLE 2. EXPERIMENTAL RESULTS SHOWING THE AREA AND DELAY 

COMPARISON OF MODULO 2N + 1 MULTIPLIERS WITH AND WITHOUT SELF­

CHECKING PROPERTY 

%Area 
% 

n At(pm2) Az(pm2) overhead Tt Tz Performance 
penalty 

8 3072 4454 45 1.982 2.121 7 

16 10933 14540 33 4.216 4.427 5 

32 43472 56078 29 8.542 8.884 4 

64 1608847 194624 21 15.315 15.621 2 
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In Table. 2 A 1 and A2 represent the area of the modulo 2n+ 1 multiplier without the 

self-checking property and with the self-checking property, respectively. Similarly, T1 

and T2 represent the delay of the modulo 2n + 1 multiplier without the self-checking 

property and with self-checking property, respectively. 
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5. CONCLUSIONS 

In this paper, a new self-checking modulo 2n+ 1 multiplier based on residue codes 

is proposed and validated. In the proposed implementation, the self-checking modulo 

multiplier consists of modulo generators with check bases of the form 2c -1 or 2c+ 1 ( c E 

N), modulo multipliers and self-checking dual rail checkers. All the modulo components 

such as modulo generators, modulo multipliers are efficiently designed using novel 

compressors. The final stage addition modules of the modulo multipliers and modulo 

generators are efficiently designed using sparse tree based inverted end around carry 

adders. The self-checking multiplier is secured against faults affecting a single gate at a 

time and produce an error at the gate output, which may propagate through the 

subsequent gates and generate an error at the output of the modulo multiplier. These 

selfchecking modulo multipliers are analyzed using unit-gate model and compared with 

the modulo multipliers without self-checking property. These models are designed for 

different values of the input length and simulated to get the experimental results. The 

results show that the proposed self-checking multiplier results in 20% to 45% area 

overhead and 2% to 7% performance penalty for n = 64 to 8. 
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