
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2010

Efficient modular arithmetic units for low power cryptographic Efficient modular arithmetic units for low power cryptographic

applications applications

Rajashekhar Reddy Modugu

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Modugu, Rajashekhar Reddy, "Efficient modular arithmetic units for low power cryptographic applications"
(2010). Masters Theses. 6645.
https://scholarsmine.mst.edu/masters_theses/6645

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6645&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/6645?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6645&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

EFFICIENT MODULAR ARITHMETIC UNITS FOR LOW POWER

CRYPTOGRAPHIC APPLICATIONS

by

RAJASHEKHAR REDDY MODUGU

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER ENGINEERING

2010

Approved by:

Dr. Minsu Choi, Advisor
Dr. Yiyu Shi

Dr. Sabra Sedighsarvestani

© 2010

Rajashekhar Reddy Modugu

All Rights Reserved

111

PUBLICATION THESIS OPTION

This thesis consists of following articles that have been published as follows, and

the papers were formatted in the style used by the university.

The first paper presented in pages 02-15 entitled "A FAST LOW-POWER

MODULO 2N+1 MULTIPLIER DESIGN" was published in the proceedings ofthe IEEE

IMTC(Instrumentation and Measurement Technology Conference), 2009.

The second paper presented in pages 17-28 entitled "AN EFFICIENT IDEA

CRYPTO-HARDWARE USING NOVEL MODULAR ARITHMETIC

COMPONENTS" was published in the proceedings of the IEEE IMTC(Instrumentation

and Measurement Technology Conference), 2010.

The third paper presented in pages 31-55 entitled "Efficient On-line Self

Checking Modulo 2n+ 1 Multiplier Design" was accepted for Special Issue of IEEE

Transactions on Instrumentation and Measurement, 2010.

IV

ABSTRACT

The demand for high security in energy constrained devices such as mobiles and

PDAs is growing rapidly. This leads to the need for efficient design of cryptographic

algorithms which offer data integrity, authentication, non-repudiation and confidentiality

of the encrypted data and communication channels. The public key cryptography is an

ideal choice for data integrity, authentication and non-repudiation whereas the private key

cryptography ensures the confidentiality of the data transmitted. The latter has an

extremely high encryption speed but it has certain limitations which make it unsuitable

for use in certain applications. Numerous public key cryptographic algorithms are

available in the literature which comprise modular arithmetic modules such as modular

addition, multiplication, inversion and exponentiation. Recently, numerous cryptographic

algorithms have been proposed based on modular arithmetic which are scalable, do word

based operations and efficient in various aspects.

The modular arithmetic modules play a crucial role in the overall performance of

the cryptographic processor. Hence, better results can be obtained by designing efficient

arithmetic modules such as modular addition, multiplication, exponentiation and

squarmg.

This thesis is organized into three papers, describes the efficient implementation

of modular arithmetic units, application of these modules in International Data

Encryption Algorithm (IDEA). Second paper describes the IDEA algorithm

implementation using the existing techniques and using the proposed efficient modular

units. The third paper describes the fault tolerant design of a modular unit which has

online self-checking capability.

v

ACKNOWLEDGMENTS

It gives me great pleasure to thank all the people who have supported me and

made this thesis possible. I would like to thank Dr. Minsu Choi, who has been a great ad

visor throughout my Master's program and it has been a pleasure working with him. He

has been a continuous source of motivation and has helped me develop my skills.

I would like to express my sincere gratitude to Dr. Yiyu Shi and Dr. Sahra

Sedighsarvestani who are serving as committee members. I would like to thank Dr.

Beetner, Dr. McCracken, Dr. Al-Assadi and Dr. Ali Hurson who have taught me

excellent courses during my Master's program. I am grateful to the department secretary,

Mrs. Regina Kohout who has guided me through departmental obstacles and paperwork. I

give sincere thanks to Jun Wu for associating with me in research and publications.

I would like to also thank my friends Vikram Surendra, Murali Bottu, Dr.

Bharath, Dr. Suhas, Arun Sharma, Komal and many more friends who have supported me

continuously throughout my Degree program and provided me a refreshing environment.

Most importantly, I would like to thank my parents, Krishna Reddy, Dhana Lakshmi, my

brother, Sathish Reddy whose continuous support made this degree possible.

Vl

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION .. iii

ABSTRACT .. .iv

ACKNOWLEDGMENTS ... v

LIST OF ILLUSTRA TIONSix

LIST OF TABLES ... x

SECTION

1. INTRODUCTION .. 1

PAPER

I. A FAST LOW -POWER MODULO 2N+ 1 MULTIPLIER DESIGN 2

Abstract ... 2

1. INTRODUCTION ... 3

2. COMPRESSORS ... 4

2.1. MUX VS. XOR .. 4

2.2. DESCRIPTION OF COMPRESSORS .. 5

3. ALGORITHM FOR IMPLEMENTATION OF MODULO 2N+1
MULTIPLIER ... 7

4. PROPOSED IMPLEMENTATION OF THE MOD 2N+ 1 MUL TIPLIER 1 0

4.1. PARTIAL PRODUCTS GENERATION ... 10

4.2. PARTIAL PRODUCTS REDUCTION ... 10

4.3. FINAL STAGE ADDITION .. 11

5. SIMLA TION AND RESULTS ... 13

5.1. SIMULATION ENVIRONMENT ... 13

5 .2. SIMULATION RESULTS ... 13

6. CONCLUSIONS ... 15

7. REFERENCES .. 16

II. AN EFFICIENT IDEA CRYPTO-HARDW ARE USING NOVEL
MODULAR ARITHMETIC COMPONENTS ... 17

Abstract · 17

vii

1. INTRODUCTION .. 18

2. COMPRESSORS .. 20

2.1. MDX VS. XOR .. 20

2.2. DESCRIPTION OF COMPRESSORS .. 21

3. HARDWARE IMPLEMENTATION OF THE MOD 2N+1 23

3.1. PARTIAL PRODUCTS GENERATION ... 23

3.2. PARTIAL PRODUCTS REDUCTION ... 23

3.3. FINAL STATE ADDITION .. 24

4. NOVEL IMPLEMENTATION OF INTERNATIONAL DATA
ENCRYPTION ALGORITHM (IDEA) USING MODULO 2N+ 1 26

5. SIMULATION AND RESULTS .. 28

5.1. SIMULATION ENVIRONMENT ... 28

5.2. SIMULATION RESULTS ... 28

6. CONCLUSION ... 30

7. REFERENCES .. 31

III. EFFICIENT ON-LINE SELF-CHECKING MODULO 2N+ 1 MULTIPLIER
DESIGN ... 33

Abstract .. 33

1. INTRODUCTION ... 34

2. PRELIMINARIES AND REVIEWS .. 37

2.1. MDX VS. XOR .. 37

2.2. DESCRIPTION OF COMPRESSORS .. 37

2.3. SPARSE TREE ADDER BASED INVERTED END AROUND
CARRY ADDER ... 41

2.4. MODULO 2N + 1 MUL TIPLIER .. .46

3. PROPOSED SELF-CHECKING MODULO 2N + 1 MULTIPLIER
DESIGN ... 48

3.1. SELF-CHECKING MULTIPLIERS USING RESIDUE CODES48

3.2. SELF-CHECKING MODULO 2N + 1 MULTIPLIERS USING
RESIDUE CODES .. 52

4. pARAMETRIC COMPARISON .. 58

4.1. UNIT-GATE MODEL ANALYSIS ... 58

4.2. EXPERIMENTAL RESULTS ... 60

viii

5. CONCLUSIONS ... 62

6. REFERENCES .. 63

VITA .. 67

ix

LIST OF ILLUSTRATIONS

Figure Page

PAPER I

1. CMOS implementation of2-input (a) XOR (b) MUX4

2. 5:2 compressors; (a) Existing design (b) New design ... 6

3. Initial partial product matrix .. 8

4. Modified partial product matrix ... 8

5. Final n x n partial product matrix .. 9

6. Inverted EAC adder implemented using sparse tree structure 12

7. Proposed implementation ofthe mod 216+1 multiplier using efficient compressor .. 12

8. (a) Power (b) Delay comparisons of existing and proposed multipliers 14

PAPER II

1. CMOS implementation of2-input (a) XOR (b) MUX .. 20

2. 5:2 compressors; (a) Existing design (b) New design ... 22

3. Proposed implementation ofthe mod 216+1 multiplier using efficient compressor .. 25

4. Datapath of IDEA cipher with 4 pipeline stages ... 27

PAPER III

1. CMOS implementation of2-input (a) XOR (b) MUX ... 38

2. Block diagram of(a) 5:2 compressor (b) 7:2 compressor .. 39

3. 5:2 compressors; (a) Existing design (b) New design40

4. Proposed MUX-based design of7:2 compressor .. .41

5. (a) 16-bit Sparse tree based Inverted EAC adder (b) 4-bit conditional sum
generator ... 45

6. Hardware implementation ofthe modulo 216 + 1 multiplier47

7. A block diagram of the multiplier with residue code check49

8. A block diagram ofthe residue code checker ... 51

9. A block diagram of the self-checking modulo 2n+ 1 multiplier 54

10. Modulo generator with check base 24 - 1 for input width=16 56

11. Modulo generator with check base 24 + 1 for input width::::::I6 57

Table

PAPER II

LIST OF TABLES

1. COMPARISON OF THE PERFORMANCE MEASUREMENTS FOR

X

Page

IDEA CIPHER .. 29

PAPER III

1. AREA AND DELAY COMPARISON OF MODULO 2N + 1
MULTIPLIERS WITH AND WITHOUT SELF-CHECKING
PROPERTY USING UNIT-GATE MODEL ANALYSIS 59

2. EXPERIMENTAL RESULTS SHOWING THE AREA AND
DELAY COMPARISON OF MODULO 2N + 1 MULTIPLIERS WITH
AND WITHOUT SELF-CHECKING PROPERTY ... 60

1. INTRODUCTION

Cryptography has become an integral part of most of the security applications and

low-power embedded applications. The ability to secure and the performance of the

cryptographic algorithm are the major factors that decide the overall efficiency of the

system. Very secured cryptographic algorithms have been designed and it is really

difficult to crack these algorithms. The performance of these algorithms can be improved

by designing very efficient hardware models. This thesis focuses on the novel hardware

implementation of a cryptographic algorithm. Experiments are performed to check the

overall performance. The fault tolerant design of this multiplier is analyzed and

implemented using residue codes.

This thesis is comprised of three research publications. The first paper describes

the efficient implementation of modulo 2n+ 1 multiplier which is the basic building block

of International Data Encryption Algorithm (IDEA). For the efficient implementation of

modulo multiplier, efficient compressors and a newly designed sparse tree adder is used.

The second paper describes the design of hardware implementation of the IDEA

cipher using novel modulo 2n+ 1 multipliers. It shown that the proposed modulo 2n+ 1

multiplier improves the performance of the various cryptographic algorithms used in

secure communication systems of networked instrumentation and distributed

measurement systems. Efficient compressors and sparse tree based inverted end around

carry adders are used to reduce the delay and complexity of the multiplier. Simulations

are performed on the known implementation and the proposed implementation.

The third paper describes the online self-checking model of the modulo 2n+ 1

multiplier based on residue codes is presented. The self-checking multiplier is secured

against faults affecting a single gate at a time and produce an error at the gate output,

which may propagate through the subsequent gates and generate an error at the output of

the modulo multiplier. These self-checking modulo multipliers are analyzed using unit

gate model and compared with the modulo multipliers without self-checking property.

These models are designed for different values of the input length and simulated to get

the experimental results.

PAPER

I. A FAST LOW-POWER MODULO 2N+l MULTIPLIER DESIGN

Rajashekhar Modugu1 and Minsu Choi1

N ohpill Park2

1 Department of Electrical & Computer Engineering

Missouri University of Science and Technology

Rolla, MO 65409, USA

{ rrmt4b, choim} @mst.edu

2Department of Computer Science

Oklahoma State University

Stillwater, OK 74078-1053, USA

npark@cs.okstate.edu

2

Abstract- Modulo 2n+ 1 multipliers are the basic building blocks in many security

applications such as International Data Encryption Algorithm in cryptography. In this

paper, a fast low-power hardware implementation of modulo 2n+ 1 multiplier is proposed.

Novel hardware implementations for a previously proposed algorithm are shown by using

the efficient compressors and modulo carry look-ahead adders as the basic building

blocks. The modulo carry lookahead adder uses the sparse-tree adder technique. The

resulting implementations are compared both qualitatively and quantitatively, in standard

CMOS cell technology, with the existing implementations. The results show that the

proposed implementation is faster and consume less power than similar hardware

implementations making them a viable option for efficient designs.

Index Terms- Compressors; International Data Encryption Algorithm (IDEA); modulo

multiplier; sparse-tree adder;

3

1. INTRODUCTION

In the recent years, the number of internet and wireless communication nodes has

grown rapidly, which involves the transmission of data over channels. The confidentiality

and security requirements are becoming more and more important to protect the data

transmitted and received. Various cryptographic systems have been studied and

implemented to encode and to decode the data. International Data Encryption Algorithm

(IDEA) [1] is one of the most reliable cryptographic algorithms used for transmission of

the data. The ability to perform fast encoding and decoding operations is then still a

major issue for the implementation of IDEA, particularly from a hardware point of view.

The three major operations that decide the delay and the overall performance of

IDEA cipher are modulo 2" addition, bitwise-XOR and modulo 2"+ 1 multiplication. As

the first two operations take less time and are easy to implement, improving the delay and

power efficiency of the modulo 2"+ 1 multiplication operation leads to significant increase

in the performance of the entire IDEA cipher. Although numerous algorithms [2-5] of the

modulo 2"+ 1 multiplier were proposed, hardware implementation of the same needs

considerable effort. More recently, Vergos and Efstathiou [5] proposed an efficient

algorithm for computing modulo 2"+ 1 multiplication, in which the partial product

reduction block, which contributes most to the overall delay, is designed using full

adders. Hence, the demand for efficient implementation of the partial product reduction

block is continuously increasing.

In this paper, a new hardware implementation of the partial product reduction

module of the mod 2"+ 1 multiplier is proposed. And also, the final stage addition module

is redesigned using more efficient carry lookahead adder technique. The resulting

hardware implementation is faster and consumes less power than existing ones.

The paper is organized as follows; Section II introduces multiplexor-based

compressors. In Section Ill, the algorithm for computation of modulo 2"+ 1 multiplication

is given. Section IV discusses the proposed implementation of the multiplier, with

implementation example for the input word length, n=16, which is used in IDEA cipher.

A comparison of this implementation to a recently proposed implementation is made in

Section V. Conclusions are drawn in Section VI.

4

2. COMPRESSORS

2.1. MUX VS. XOR

Existing CMOS designs of 2-1 MUX and 2-input XOR are shown in Fig.l.

According to [6], the CMOS implementation of MUX, it performs better in terms of

power and delay compared to XOR. Suppose, X andY are inputs to the XOR gate, the

output is XY + XY. The same XOR can be implemented using MUX with inputs X, X and

select bit Y. The efficient implementation of compressors [7] is achieved by using both

output and its complement of these gates. This also reduces the total number of garbage

outputs.

(a)

(b)

Fig.l CMOS implementation of2-input (a) XOR (b) MUX

5

2.2. DESCRIPTION OF COMPRESSORS

A (p,2) compressor with p inputs Xl,X2 .. Xp and two output bits Sum and Carry

along with carry input bits and carry output bits is governed by the equation:

L:=l xi+ L:=l (Cin)i =Sum+ 2(Carry + L:=l (Cout)i)

Efficient design of the existing XOR-based 5:2 compressor [8-9], which takes 5

inputs and 2 carry inputs, is shown in Fig. 2a. The critical path delay of this compressor is

4Ll-XOR (delay denoted by.!\).

The newly designed compressors use multiplexers m place of XOR gates,

resulting in high speed arithmetic. Also, as shown in Fig. 1 in all the existing CMOS

implementations of the XOR and MUX gates both the output and its complement are

available but the designs of compressors available in literature do not use these outputs

efficiently. In the CMOS implementation of the MUX if both the select bit and its

complement are generated in the previous stage then its output is generated with much

less delay because the switching of the transistor is already completed. And also if both

the select bit and its complement are generated in the previous stage then the additional

stage of the inverter is eliminated which reduces the overall delay in the critical path. The

new MUX-based design of 5:2 compressor [7] is shown in Fig. 2b, the delay of which is

L1- XOR + 3..1 - MUX. CGEN block used in Fig. 2 can be obtained from the equation

Coutl = (xl + x2) · x3 + xl · x2.

6

(a)

(b)

Fig. 2 5:2 compressors; (a) Existing design (b) New design

7

3. ALGORITHM FOR IMPLEMENTATION OF MODULO 2N+l MULTIPLIER

The algorithm for computation of X · Y mod 2° + 1 is described below. From the

architectural characteristic comparisons [5], the algorithm presented in [5] is considered

as the best existing algorithm for the computation of X· Y mod 2° + 1 in the literature.

Hence, this algorithm is used for the proposed implementation of the modulo multiplier.

According to the algorithm it takes two n+ 1 bit unsigned numbers as inputs and gives one

n+1 bit output. The proposed implementation can be adapted to IDEA cipher [1-2], in

which the mod zn + 1 multiplication module takes two n-bit inputs and gives one n-bit

output, by assigning the most significant bits of the inputs zeros and neglecting the most

significant bit of the output.

Let IAI 8 denote the residue of A modulo B. Let X and Y be two inputs

represented as X= X 0 X 0 _ 1 ... x0 andY= YnYn-1 ... y0 where the most significant bits x0

and Yn are '1' only when the inputs are 2° and 2°, respectively. X· Y mod 2° + 1 can be

represented as follows:

The n x n partial product matrix is derived from the initial partial product matrix

in Fig. 3, based on several observations. This n X n partial product matrix is shown in

Fig. 5. First observation is, the initial partial product matrix can be divided into four

groups A, B, C and D in which the terms in only one group can be different from '0'.

Groups A, B, D and C are different from '0', if inputs (X, Y) are in the form of (OZ, OZ),

(1Z, OZ), (OZ, 1Z) and (10 .. 0,10 .. 0), respectively (here 'Z' is a 16-bit vector). Hence the

four groups can be integrated into a single group by performing logical OR operation

(denoted by v) instead of adding the bits arithmetically. Logical OR operation is

performed on the terms of the groups B, D and A in the columns with weight 2° up to

zzn-z and on the two terms of the groups B and D with weight 220- 1 (the ORed terms of

the groups B and D are represented by qi, where qi = Pn,iVPi,n). Since l220- 1lzn+1 =

zn-1 + 1, the term with weight220- 1' qn-1> can be substituted by two terms qn-1 in the

columns with weight zn-1 and 1, respectively, and ORed with any term of the group A

8

there. Moreover, since l22"1zn+1 = 1, the term Pn,ncan be ORed with Po,o· The modified

partial product matrix is shown in Fig. 4.

22" 22n-1 2 2n-2 2"+2 2"+1 2" 2"-1 2"-2 22 21 20

n-1,0 Pn-2,0 Pz.o P1,o Po,o

Pn-2,1 Pn-3,1 P1,1 Po,1

Pn-2,2 Pn-3,2 Pn-4,2 Po,2

P4,n-1 P:s,n-1 P2,n-1 P1,n-1 Po,n-2

P:s,n-1 P2,n·1 P1,n·1 Po,n-1 A

Pn-2,n P2,n P1,n Po,n ID

Fig. 3 Initial partial product matrix

22n-2 2"+1 2"
I 2"-1 2"·2 22 21 20
I
I
1 Pn-1,oYqn-1 Pn-2,0 P2.o P1.o Po,oV Pn,nY qn-1

Pn·1,1Vqo : Pn-2,1 Pn-3,1 P1,1 Po,1

Pn-1,2Yq1 Pn-2,2 I Pn-3,2 Pn-4,2 Po.2
I
I
I

Ps,n-2 P2,n-2 I P1,n-2 Po,n-2

Pn-1,n-1 vqn-2 •••• P2,n-1 P1,n·1
I

Po,n-1 I

Fig. 4 Modified partial product matrix

Second observation is repositioning of the partial product terms in the modified

partial product matrix, with weight greater than zn-t based on the following equation:

lszil = 1-szlilnl = lczn + 1- s)zlilnl
2n+1 zn+1 zn+1

= lszliln + znzlilnl
zn+1

(1)

Equation (1) shows that the repositioning of each bit results in a correction factor

of znzliln. In the first partial product vector, there is only one such bit and in the second

9

partial product vector 2 bits need to be repositioned and so on. Hence the correction

factor for the entire partial product matrix would be:

COR1 = 2n(2(1 + 2 + 22 +····· +2n-2)- (n- 1))

(2)

The n x n partial product matrix along with the equation (2) results in n+ 1

operands. These partial product terms can be reduced into two final summands Sum array

and Carry array using a Carry Save Adder (CSA) tree. Suppose the carry out bit at ith

stage of CSA is ci with weight 2n, this carryout can be reduced into:

lci2nbn+1 = 1-cdzn+l = 12n + c;bn+l

Therefore the carry output bits at the most significant bit position of each stage

can be used as carry input bits of the next stage. In an n-1 stage CSA in [5] produces n-1

such carry out bits. Hence there will be a second correction factor (3). And the overall

correction factor using this algorithm is:

(3)

The final correction factor will be the sum of COR1 and COR2. The constant '3'

in equation (4) will be the final partial product.

COR= COR1 + COR2 = l2n(n- 1) + 2n(2n- n- 1)lzn+1

(4)

2""1 2""2 211-3 22 21 20

PPo = Pn-1,0 V qn-1 Pn-2,0 Pn-3,0 P2.o P1.o Po.o V qn-1 V Pn.n

PP1 = Pn-2,1 Pn-3.1 Pn-4,1 P1.1 Po.1 Pn-1,1 vqo

PP2= Pn-3,1 Pn-4,2 Pn-5,2 Po.2 Pn-1,2 V q1 Pn-2.2

PPn-2 = P1.n-2 Po.n-2 Pn-1,n-2 V qn-3 P4.n-2 P3,n-2 P2.n-2

PPn-1 = Po.n-1 Pn-1,n-1 V qn-2 Pn-2,n-1 P3,n-1 P2.n-1 P1.n-1

Fig. 5 Final n X n partial product matrix

10

4. PROPOSED IMPLEMENTATION OF THE MOD 2N+ 1 MULTIPLIER

The proposed implementation of the modulo multiplier consists of three modules.

First module is to generate partial products, second module is to reduce the partial

products to two final operands and the last module is to add the Sum and Carry operands

from partial products reduction to get the final result.

4.1. PARTIAL PRODUCTS GENERATION

From the above n x n partial product matrix (shown in Fig. 5), it is possible to

observe that the partial product generation requires AND, OR and NOT gates. The most

complex function of partial product generation module is Pn-l,n-l V qn-z, where Pt,j =

atbj and qi = Pn,tVPi,n·

4.2. PARTIAL PRODUCTS REDUCTION

This is the most important module which largely determines the critical path delay

and the overall performance of the multiplier. Hence this module needs to be designed so

as to get minimum delay and consume less power.

The existing implementations [4-5, 11] use full adders (FA) and half adders (HA)

to construct this module. The series of full adders in any column can be replaced by the

novel compressors that take the same number of inputs. In the proposed implementation

use of suggested compressors is done which not only reduces the delay and power

consumption but also the area of the circuit. For a modulo 216+1 multiplier in IDEA

cipher the FA implementation requires fifteen full adders in series in any column, these

fifteen full adders can be replaced by two 7:2 compressors, one 5:2 compressor and two

3:2 compressors.

Computation of the correction factor COR for compressor implementation

involves computing only COR2, because CORl is obtained based on repositioning of the

11

partial product term, which is same for both implementations. The correction factor COR2

computation for FA implementation which has n- 1 stages of additions is shown in [5].

And the COR2 computation for the proposed multiplier implementation using the

compressors also yields the same result. Since, any (p, 2) compressor can be primarily

designed using (p - 2) F As which give p - 2 carry outs with 2n weight. Hence, the overall

correction factor COR computation for FA implementation and compressor

implementation yield the same result i.e, 3 as shown in (4).

4.3. FINAL STAGE ADDITION

The partial product reduction module gives one n-bit carry vector and one n-bit

sum vector which need to be added in the final stage addition module. Very efficient

parallel prefix adders are designed to do this operation [2].

Suppose S and C are sum and carry vectors produced after the partial product

reduction section. As it is shown in the work of Zimmerman [2] that:

IS+ C + llzn+1 = IS+ C + Coutl 2n (5)

The constant '1' in the above equation can be obtained from the final partial

product term COR (4) which is the constant '3'. Hence the new final partial product is the

constant '2'. The equation (5) can be implemented using an inverted End-Around-Carry

adder [2, 4-5]. Even though the propagation delay of this adder is in the order of logn, it

has a drawback of high interconnect complexity and high fan-out. This can be overcome

by sparse tree adder [1 0] based on the prefix network logic. The sparse tree adder takes

the carry for every four bits instead of taking it at every stage and using a carry select

block for selecting the final carry after the prefix network. This sparse tree adder was

proven to be much more efficient in terms of both delay and power when compared with

the existing prefix tree based adders [12]. Hence this sparse tree can be used to design

Inverted-End-Around-Carry adder. The newly designed Inverted-End-Around-Carry

adder using sparse tree adder structure is shown in Fig. 6. The proposed implementation

of the modulo 216 + 1 multiplier for IDEA cipher is shown in Fig. 7.

12

C15 C11 C7 C3

Fig. 6 Inverted EAC adder implemented using sparse tree structure

PPo-e,taPP,. .. ,,., PPo.e.t3 PP1-a, t:t PP04.2 PP,.u PPo.a, 1 PP, ... ,,

Fig. 7 Proposed implementation of the mod 216+ 1 multiplier using efficient compressor

13

5. SIMLATION AND RESULTS

5.1. SIMULATION ENVIRONMENT

All the simulations have been carried out using Mentor Graphics design suite. The

calculation of power and delay are carried out using the Eldo simulation tool. The power

and delay calculations are done using the O.l8f.1 CMOS technology. The simulations are

performed at 1.8V with all inputs fed at a frequency of 100 MHz.

5.2. SIMULATION RESULTS

The proposed and existing implementations of the modulo 2n+ 1 multipliers for

different values of n (8, 16, 32) are done with CMOS tsmc018 technology. The power

and delay comparisons with the existing implementations are given in Fig. 8a and Fig.

8b, respectively. For n=16 case which is used in the IDEA cipher, the power and delay

reduction ratios are 23.77% and 29.27%, respectively.

~
2.
4i
~
0

1:1.

Vi'
2.
> ...

20

0.59
0

2

• Existing • Proposed

0.47
2.44 1.86

8 N value 16

(a)

• Existing • Proposed

~ 0 .09 0 .07
0

8 16
N Value

(b)

9.92

32

1.38

32

Fig. 8 (a) Power (b) Delay comparisons of existing and proposed multipliers

14

15

6. CONCLUSIONS

In conclusion, an efficient implementation of modulo 2"+ 1 multiplier is proposed.

The use of novel compressors in place of full adders resulted in considerable savings in

terms of delay and power. The final stage adder is redesigned using sparse tree adder

which has less interconnection complexity. Simulations have been performed on the

proposed implementation and on the existing implementation. The proposed

implementation is proven to perform better than the existing one in every aspect, (i.e,

delay, power and power delay product).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

16

7. REFERENCES

Zimmermann, R., Curiger, A., Bonnenberg, H., Kaeslin, H., Felber, N., and
Fichtner, W., "A 177 Mb/s VLSI implementation of the international data
encryption algorithm," IEEE J. Solid-State Circuits, 1994, 29, (3), pp. 303-307.

Zimmermann, R., "Efficient VLSI implementation of modulo (2"±1) addition and
multiplication," IEEE trans. Comput, 2002, 51, pp. 1389-1399.

Sousa, L., and Chaves, R., "A universal architecture for designing efficient modulo
2"+ 1 multipliers," IEEE Trans. Circuits Syst. I, 2005, 52, pp. 1166--1178.

Efstathiou, C., and Vergos, H.T., Dimitrakopoulos, G, and Nikolos, D.: "Efficient
diminished-! modulo 2"+ 1 multipliers," IEEE Trans. Comput, 2005, 54, pp. 491-
496.

Vergos, H.T., and Efstathiou, C., "Design of efficient modulo 2"+ 1 multipliers," lET
Comput. Digit. Tech, 2007, 1, (1), pp. 49-57.

Zimmermann, R., and Fichtner, W., "Low-power logic styles: CMOS versus pass
transistor logic," IEEE J Solid- State Circuits, vol. 32, pp. 1079-1090, July 1997

Veeramachaneni, S., Avinash, L., Rajashekhar, M., and Srinivas, M.B., "Efficient
Modulo (2k±l) Binary to Residue Converters," System-on-Chip for Real-Time
Applications, The 6th International Workshop on Dec. 2006 pp.195 - 200.

Chang, C.H., Gu, J., and Zhang, M., "Ultra low-voltage lowpower CMOS 4-2 and
5-2 compressors for fast arithmetic circuits," IEEE J. Circuits and Systems I,
Volume: 51, Issue: 10 pp: 1985- 1997,2004.

Rouholamini, M., Kavehie, 0., Mirbaha, A.P., Jasbi, S.J., and Navi, K., "A New
Design for 7:2 Compressors," Computer Systems and Applications, 2007. AICCSA
'07. IEEE/ACS International Conference on 13-16 May 2007 Page(s):474- 478.

Mathew, S., Anders, M., Krishnamurthy, R.K., and Borkar, S., "A 4-GHz 130-nm
address generation unit with 32-bit sparse-tree adder core," In IEEE Journal of
Solid-State Circuits, Volume 38, Issue 5, May 2003 Page(s):689- 695.

Zhongde, W., Graham, A., and William, C., "An efficient tree architecture for
modulo 2n+ 1 multiplication," VLSI Signal Processing 14(3): 241-248 (1996).

Kogge, P., and Stone, H.S., "A parallel algorithm for the efficient solution of a
general class of recurrence equations," IEEE Trans. Comput, vol. C-22, pp. 786-
793, Aug 1973.

II. AN EFFICIENT IDEA CRYPTO-HARDW ARE USING NOVEL

MODULAR ARITHMETIC COMPONENTS

Rajashekhar Modugu and Minsu Choi

Department of Electrical & Computer Engineering

Missouri University of Science and Technology

Rolla, MO 65409, USA

{ rrmt4b, choim} @mst.edu

17

Abstract- The cryptographic algorithms such as International Data Encryption

Algorithm (IDEA) have found various applications in secure transmission of the data in

networked instrumentation and distributed measurement systems. Modulo zn+ 1 multiplier

and squarer play a pivotal role in the implementation of these algorithms. In this paper, an

efficient hardware design of the IDEA using novel modulo zn+ 1 multiplier and squarer as

the basic modules is proposed for faster, smaller and low-power IDEA circuits. Novel

hardware implementation of the modulo zn+ 1 multiplier is shown by using the efficient

compressors and sparse tree based inverted end around carry adders is given. The novel

modules are applied on IDEA algorithm and the resulting implementation is compared

both qualitatively and quantitatively with the IDEA implementation using the existing

multiplier implementations. The measurement results show that the proposed

implementation is faster and smaller and also consume less power than similar hardware

implementations making it a viable option for efficient hardware designs.

Index Terms- Modulo zn + 1 multiplier; International Data Encryption Algorithm

(IDEA); Sparse-tree adder; Power/area/speed measurement;

18

1. INTRODUCTION

The demand for high security in communications channels, networked

instrumentation and distributed measurement systems is ever growing rapidly. The

confidentiality and security requirements are becoming more and more important to

protect the data transmitted and received. This leads to the need for efficient design of

cryptographic algorithms which offer data integrity, authentication, non-repudiation and

confidentiality of the encrypted data across the communication channels. Various

cryptographic algorithms have been studied and implemented to ensure security of these

systems. In this paper, modulo 2n+ 1 multiplier has been much focus as it has found its

important role in IDEA algorithm. For example, the three major operations that decide

the overall performance and delay of the IDEA [1, 4, 15] are modulo 216 addition,

bitwise- XOR and modulo 216+ 1 multiplication and the GF(2n) Montgomery

multiplication and modular exponentiation can be implemented using repeated

multiplication and squaring of the vectors. Among these operations, improving the delay

and power efficiency of the modulo 2n+ 1 multiplication operation leads to significant

increase in the performance of the entire cryptographic cipher.

Numerous hardware implementations of the IDEA algorithm are proposed in the

literature using different modulo 216+1 multiplier architectures. The IDEA algorithm has

been implemented in software [3] on Intel Pentium II 445 MHz with encryption rate of

23:53 Mb/Sec. Later, IDEA was realized on hardware chip by curiger et.all [1] with

encryption rates up to 177 Mb/sec. By using a bit-serial implementation [4], which

enables the IDEA to be fully, pipelined the encryption rates reached 500Mb/sec with 125

MHz clock rate. The efficiency of the IDEA cipher can still be improved if efficient basic

modules such as modulo multipliers and adders are used. The efficient implementation of

the modulo 2n+ 1 multiplier based on novel compressors and sparse tree based inverted

end around carry adders is presented in [7]. Even though the architecture of the modulo

multiplier is very efficiently proposed in [6], the hardware implementation and

optimization are considerably improved in [7]. This is resulted by replacing the full adder

arrays with the novel compressors and the final stage adder with the sparse tree based

inverted end around carry adder.

19

The paper is organized as follows; Section II introduces multiplexor-based

compressors. In Section III, the hardware implementation of modulo 2" + 1 multiplier is

given. Section IV discusses the proposed implementation of the IDEA cipher which uses

modulo 2 16+ 1 multiplier. A comparison of this implementation to a recently proposed

implementation is made in Section V. Conclusions are drawn in Section VI.

20

2. COMPRESSORS

2.1. MUX VS. XOR

Existing CMOS designs of 2-1 MUX and 2-input XOR are shown in Fig.l.

According to [6], the CMOS implementation of MUX, it performs better in terms of

power and delay compared to XOR. Suppose, X andY are inputs to the XOR gate, the

output is XY + XY. The same XOR can be implemented using MUX with inputs X, X

and select bit Y. The efficient implementation of compressors [7] is achieved by using

both output and its complement of these gates. This also reduces the total number of

garbage outputs.

(a)

(b)

Fig.l CMOS implementation of2-input (a) XOR (b) MUX

21

2.2. DESCRIPTION OF COMPRESSORS

A (p, 2) compressor with p inputs Xl,XZ . . Xp and two output bits Sum and Carry

along with carry input bits and carry output bits is governed by the equation:

L~=1 xi+ L~=1 (Cin)i =Sum+ 2(Carry + L~=1 (Cout)D

Efficient design of the existing XOR-based 5:2 compressor [8-9], which takes 5

inputs and 2 carry inputs, is shown in Fig. 2a. The critical path delay of this compressor is

4.1-XOR (delay denoted by~).

The newly designed compressors use multiplexers in place of XOR gates,

resulting in high speed arithmetic. Also, as shown in Fig. 1 in all the existing CMOS

implementations of the XOR and MUX gates both the output and its complement are

available but the designs of compressors available in literature do not use these outputs

efficiently. In the CMOS implementation of the MUX if both the select bit and its

complement are generated in the previous stage then its output is generated with much

less delay because the switching of the transistor is already completed. And also if both

the select bit and its complement are generated in the previous stage then the additional

stage of the inverter is eliminated which reduces the overall delay in the critical path. The

new MUX-based design of 5:2 compressor [7] is shown in Fig. 2b, the delay of which

is .1 - XOR + 3.1 - MUX. CGEN block used in Fig. 2 can be obtained from the equation

Cout1 = (xl + x2) · x3 + x1 · x2.

22

(a)

(b)

Fig.2 5:2 compressors; (a) Existing design (b) New design

23

3. HARDWARE IMPLEMENTATION OF THE MOD 2N+l

The hardware implementation of the modulo multiplier consists of three modules.

First module is to generate partial products, second module is to reduce the partial

products to two final operands and the last module is to add the Sum and Carry operands

from partial products reduction to get the final result.

3.1. PARTIAL PRODUCTS GENERATION

The n X n partial products matrix is obtained from the n+ 1-bit input vectors. This

partial product matrix is generated after repositioning the bits of the initial partial product

matrix based on several observations presented in [6]. The partial products bits can be

computed from AND, OR and NOT gates. The most complex function of partial product

generation module is Pn-l,n-1 V qn-Z• where Pi,j = aibj and qi = Pn,iVPi,n·

3.2. PARTIAL PRODUCTS REDUCTION

This is the most important module which largely determines the critical path delay

and the overall performance of the multiplier. Hence this module needs to be designed so

as to get minimum delay and consume less power.

The implementations from the literature [5, 6, and 13] use full adders (FA) and

half adders (HA) to construct this module. The series of full adders in any column can be

replaced by the novel compressors that take the same number of inputs. In the proposed

implementation use of suggested compressors is done which not only reduces the delay

and power consumption but also the area of the circuit. For a modulo 216 + 1 multiplier in

IDEA cipher the Carry Save Adder (CSA) array implementation using Full Adders

requires fifteen full adders in series in any column, these fifteen full adders can be

replaced by two 7:2 compressors, one 5:2 compressor and two 3:2 compressors.

24

Correction factor computation is an important step while generating the partial

products matrix. The full adder implementation [6] and the compressor based

implementations [7] result in the same value. Because of the space constraints,

computation of the correction factor COR for full adder implementation [6] is not given

in this paper. COR computation for compressor implementation involves computing only

COR2, because COR1 is obtained based on repositioning of the partial product term,

which is same for both implementations. The correction factor COR2 computation for FA

implementation which has n-1 stages of additions is shown in [6]. And the COR2

computation for the proposed multiplier implementation using the compressors also

yields the same result. Since, any (p, 2) compressor can be primarily designed using (p-2)

F As which give p-2 carry outs with 2n weight. Hence, the overall correction factor COR

computation for CSA array FA implementation and compressor implementation yield the

same result i.e, 3 as shown in [5].

3.3. FINAL STATE ADDITION

The partial product reduction module gives one n-bit carry vector and one n-bit

sum vector which need to be added in the final stage addition module. Very efficient

parallel prefix adders are designed to do this operation [2].

Suppose S and C are sum and carry vectors produced after the partial product

reduction section. As it is shown in the work of Zimmerman [2] that:

IS+ C + llzn+l = IS+ C + Coutl 2n (1)

The equation (1) can be implemented using an inverted End- Around-Carry adder

[2, 5, and 6]. Even though the propagation delay of this adder is in the order of log2n, it

has a drawback of high interconnect complexity and high fan-out. This can be overcome

by sparse tree adder [12, 16] based on the prefix network logic. The sparse tree adder

generates the carry for every four bits instead of generating it at every stage and using a

carry select block for selecting the final carry after the prefix network. This sparse tree

adder was proven to be much more efficient in terms of both delay and power when

25

compared with the existing prefix tree based adders [14] . Hence this sparse tree can be

used to design Inverted-End-Around-Carry adder.

The newly designed Inverted-End-Around-Carry adder using sparse tree adder

structure is used in the final stage addition of the modulo multiplier is shown in Fig. 3.

The proposed implementation of the modulo 216+ 1 multiplier for IDEA cipher is shown

in Fig. 3 and R16R1s R2R1R0 represents the final product of the modulo 2 16+ 1 multiplier.

Fig. 3 Proposed implementation ofthe mod 216+1 multiplier using efficient compressor

26

4. NOVEL IMPLEMENTATION OF INTERNATIONAL DATA ENCRYPTION

ALGORITHM (IDEA) USING MODULO 2N+l

The modulo 2n+ 1 computation is an integral part of the International Data

Encryption Algorithm (IDEA) where n = 16 [1, 4, 15]. Three major operations that

decide the overall delay and performance of IDEA cipher are:

1) modulo 216 addition,

2) bitwise-XOR and 3) modulo 216 + 1 multiplication.

As the first two operations take less time and are easy to implement, the delay and

power efficiency of the entire IDEA cipher depends significantly on the modulo 216+1

multiplication operation. Hence, the IDEA cipher is implemented using the proposed

modulo multiplier and compared with the existing implementations. To encrypt a data

block using IDEA cipher, the data should be processed through three modulo

multiplication operations in a single round and the manipulated data again should pass

through seven such rounds iteratively and a final output transformation to produce the

final encrypted output. The IDEA cipher takes 64-bit input data and produces a 64-bit

cipher text with a 128-bit key. The encryption and decryption algorithms in IDEA are

almost identical except they utilize two different sets of sub key generated by the same

key with different processes.

The IDEA encryption and decryption processes consist of eight rounds of data

manipulation using sub keys and a final output transformation stage. In this cipher, all the

operations are carried out on 16-bit sub-blocks. In the encryption process, the input data

block of 64-bits is divided into 4 sub blocks of 16-bits each (X., X2, X3, X4). 52 sub

keys for the encryption process are generated from the original 128-bit key by shifting a

part of it. Out of the 52 sub keys, six different sub keys (i.e. z<r>l ;z<r>2 ;z<r>3,z<r>4,z<r>5 and

z<r> 6, where r is the round number) are used for each round and the remaining 4 sub keys

are used in the final output transformation stage. The 16-bit outputs at each round are

represented as y<r>t. y<r>2, y<r\ y<r>4 and W.,W2,W3,W4 are the outputs of the final output

stage transformation. The 52 subkeys used for the decryption process are obtained using a

different algorithm [17]. As shown in Fig. 4, the critical path consists of three modulo

216+1 multiplication operations, two modulo 216 addition operations and two 16-bit XOR

27

operations in each round. In the final output transformation stage, critical path consists of

a single modulo 216+ 1 multiplication operation. The throughput of the IDEA cipher can

be improved, if the delay of the modulo 216+ 1 multiplication operation is reduced in the

pipelined implementation of the IDEA cipher. Fig. 4 shows the datapath of encryption

process of the IDEA cipher and datapath of a single round with 4 pipeline stages with the

proposed modulo multiplier.

x,

z,<••-Q
w,

Round 1

y (1) y (1)

. 2 Seven more rounds 3

Output transformation :

0
rn
EB

Single round

z,

Zs--+---r----1

Pipelined datapath of a single round of IDEA cipher

Modulo 218+1 multiplication of two 16-bit
blocks, here the value ·o· is considered as 218

Modulo 218 addition of two 16-bit blocl<s

16-bit XOR operation on 16-bit blcoks

Fig. 4 Datapath of IDEA cipher with 4 pipeline stages

28

5. SIMULATION AND RESULTS

This particular design of the IDEA cipher with four pipeline stages using novel

modulo 2n+ 1 multipliers is used to analyze and compare with the well-known IDEA

cipher implementations. The use of the novel modulo multiplier improves the throughput

and performance of the IDEA cipher significantly. The hardware implementation of the

modulo multiplier consists of three modules. First module is to generate partial products,

second module is to reduce the partial products to two final operands and the last module

is to add the Sum and Carry operands from partial products reduction to get the final

result.

5.1. SIMULATION ENVIRONMENT

All the simulations hav~ been carried out using Mentor Graphics design suite. The

IDEA cipher design is specifi~d using verilog HDL and the multiplier descriptions are

mapped on a 0.18 1m CMOS standard cell library using Leonardo Spectrum synthesis

tool from Mentor Graphics. The design is optimized for high speed performance. Netlists

generated from synthesis tool fU'C passed on to standard route and place tool, the layouts

are iteratively generated to get the circuits with minimum area. The calculation of power

and delay are carried out using the Eldo simulation tool. The simulations are performed at

1.8V with all inputs fed at a frequency of 25 MHz.

5.2. SIMULATION RESUL 'l'S

The IDEA cipher is implemented using both the proposed multiplier and the

multipliers presented in [6]. Various performance measurements for the IDEA cipher

using both the proposed multiplier and the existing multiplier are parametrically obtained

and listed in Table 1.

TABLE 1. COMPARISON OF THE PERFORMANCE MEASUREMENTS FOR
IDEA CIPHER

Performance Using proposed Using the
%Reduction

Measurement Multipliers multipliers in [6]

Encryption Rate 460.25 412.15 11.25
Mb/sec

Critical Path 4.372 5.168 15.4
delay

Area of the cipher
(mm2)

3.68 4.22 12.79

29

30

6. CONCLUSION

Hardware implementation of the IDEA cipher using novel modulo 2n+ 1

multipliers is presented in this paper. It is shown that the proposed modulo 2n+ 1

multiplier improves the performance of the various cryptographic algorithms used in

secure communication systems of networked instrumentation and distributed

measurement systems. Efficient compressors and sparse tree based inverted end around

carry adders are used to reduce the delay and complexity of the multiplier. Simulations

are performed on the known implementation and the proposed implementation. The

presented implementation is proven to perform better than the existing one in various

aspects, (i.e, throughput and critical path delay).

31

7. REFERENCES

[1] Zimmermann, R., Curiger, A., Sonnenberg, H., Kaeslin, H., Felber, N., and

Fichtner, W., "A 177 Mb/s VLSI implementation of the international data

encryption algorithm," IEEE J. Solid-State Circuits, 1994, 29, (3), pp. 303-307

[2] Zimmerman, R., "Efficient VLSI implementation of modulo 2"±1 addition and
multiplication," IEEE trans. Comput, 2002,51, pp. 1389-1399.

[3] Cheung, K.H., Tsoi, P.H.W., Leong, A., and Leong, M.P., "Tradeoffs in parallel and

serial implementations of the international data encryption algorithm IDEA,"

Lecture Notes in Computer Science, vol. 2162, pp. 333-, 2001.

[4] Cheung, K.H., Tsoi, P.H.W., Leong, A., and Leong, M.P., "A bit-serial

implementation of the international data encryption algorithm IDEA," 2000 IEEE

Symposium on Field-Programmable Custom Computing Machines, pp. 122 -131,

2000.

[5] Efstathiou, C., Vergos, H.T., Dimitrakopoulos, G., and Nikolos, D., "Efficient

diminished-! modulo 2"+1 multipliers," IEEE Trans. Comput, 2005, 54, pp. 491-

496.

[6] Vergos, H.T., and Efstathiou, C., "Design of efficient modulo 2"+ 1 multipliers," lET

Comput. Digit. Tech, 2007, 1, (1), pp. 49-57.

[7] Rajashekar, M., Nohpill, P., and Minsu, C., "A Fast Low-Power Modulo 2"+ 1

Multiplier Design," 2009 IEEE International Instrumentation and Measurement

Technology Conference, pp.951-956, May 2009.

[8] Zimmermann, R., and Fichtner, W., "Low-power logic styles: CMOS versus pass

transistor logic," IEEE J. Solid- State Circuits, vol. 32, pp. 1079-1090, July 1997.

[9] Veeramachaneni, S., Avinash, L., Rajashekhar, M., and Srinivas, M.B., "Efficient

Modulo 2k±l Binary to Residue Converters System-on-Chip for Real-Time

Applications," The 6th International Workshop on Dec. 2006 pp.l95- 200.

[10] Chang, C.H., Gu, J., and Zhang, M., "Ultra low-voltage lowpower CMOS 4-2 and

5-2 compressors for fast arithmetic circuits," IEEE J. Circuits and Systems I,

Volume: 51, Issue: 10 pp: 1985- 1997,2004.

[11] Rouholamini, M., Kavehie, 0., Mirbaha, A.P., Jasbi, S.J., and Navi, K., "A New

Design for 7:2 Compressors," Computer Systems and Applications, 2007. AICCSA

'07. IEEE/ACS International Conference on 13-16 May 2007 Page(s):474- 478.

[12] Mathew, S., Anders, M., Krishnamurthy, R.K., and Borkar, S., "A 4-GHz 130-nm

address generation unit with 32-bit sparse-tree adder core," In IEEE Journal of

Solid-State Circuits, Volume 38, Issue 5, May 2003 Page(s):689- 695.

[13] Zhongde, W., Graham, A., Jullien, B., and William, C., "An efficient tree

architecture for modulo 2"+1 multiplication," VLSI Signal Processing 14(3): 241-

248 (1996).

[14]

[15]

[16]

[17]

32

Kogge, P., and Stone, H.S., "A parallel algorithm for the efficient solution of a
general class of recurrence equations," IEEE Trans. Comput, vol. C-22, pp. 786-
793,Aug 1973.

Curiger, C., "VINCI: VLSI Implementation of the New Secret-keyBlock Cipher
IDEA," Proc. ofthe Custom Integrated Circuits Conference, San Diego, USA, May
1993.

Yan, S., Dongyu, Z., Minxuan, Z., and Shaoqing, L., "High Performance Low
Power Sparse-Tree Binary Adders," 8th International Conference on Solid state and
Integrated Circuit Technology, ICSICT 2006.

Yi-Jung, C., Dyi-Rong, D., and Yunghsian, S.H., "Improved Modulo (2"+1)
Multiplier for IDEA," J. lnf. Sci. Eng. 23(3): 911-923 (2007).

III. EFFICIENT ON-LINE SELF-CHECKING MODULO 2N+l

MULTIPLIER DESIGN

Rajashekhar Modugu and Minsu Choi

Department of Electrical & Computer Engineering

Missouri University of Science and Technology

Rolla, MO 65409, USA

{ mnt4b, choim} @mst.edu

33

Abstract- Modulo 2n+ 1 multiplier is one of the critical components in the area of data

security applications such as International Data Encryption Algorithm (IDEA), digital

signal processing and fault tolerant systems that demand high reliability and fault

tolerance. Transient faults caused by electrical noise or external interference are resulting

in soft errors which should be detected online. The effectiveness of the residue codes in

the self-checking implementation of the modulo multipliers has been rarely explored. In

this paper, an efficient hardware implementation of the self-checking modulo 2n+ 1

multiplier is proposed based on the residue codes. Different check bases in the form 2c -1

or 2c + 1 (c € N) are selected for various values of the input operands. In the

implementation of the modulo generators and modulo multipliers, novel multiplexor

based compressors are applied for efficient modulo 2n + 1 multipliers with less area and

lower power consumption. In the final addition stage of the modulo multipliers and

modulo generators, efficient sparse tree based inverted end around carry adders are used.

The proposed model is capable of detecting errors caused by faults on a single gate at a

time. The experimental results show that the proposed self-checking modulo 2n+ 1

multipliers have less area overhead and low performance penalty.

34

1. INTRODUCTION

In the recent years, the number of internet and wireless communication nodes has

grown rapidly, which involves the transmission of data over channels. The confidentiality

and security requirements are becoming more and more important to protect the data

transmitted and received; consequently secured communication of the data is given the

utmost priority. Various cryptographic systems have been studied and implemented to

ensure the security of these systems. International Data Encryption Algorithm (IDEA) is

one of the most reliable cryptographic algorithms used for transmission of the data [10,

11, 12]. In the hardware implementation of IDEA, the three equation major operations

that decide the delay and the overall performance of IDEA cipher are modulo 2" addition,

bitwise-XOR and modulo 2" + 1 multiplication. The performance of data path of the

IDEA cipher significantly depends on the modulo 2" + 1 multiplication module. Apart

from this, the modulo 2" + 1 module has found applications in Fermat number transform

computation [13], digital signal processing [1] and fault tolerant design of ad-hoc

networks[2]. Hence, the efficient and fault secured design ofthe modulo 2" + 1 multiplier

is highly desired. The protection against errors is necessary in security applications such

as IDEA for reliability. In VLSI systems transient faults can be detected by built in online

fault detection circuits and self-checking circuits have this property [25, 33, 34].

Especially, transient faults caused by internal noise or external interference are not

tolerable in this high speed computing world, these faults should be detected online. The

self-checking designs detect the errors immediately as they occur and the output can be

corrected by repeating the last operation. Hence, it is highly desirable to design efficient

algorithms and methods that can detect the errors on-line, which may prevent any harm

caused by the faults. Designing efficient self-checking circuits with less area overhead

and performance penalty has been an important challenge in the area of fault tolerant

applications. In the recent years, various self-checking circuits [14, 15, 16, 17] using

different coding schemes such as parity prediction, arithmetic codes are presented, to

check the functionality of the circuits. Self-checking arithmetic circuits using residue

codes are reported in some of the industry applications [28, 29]. Parity code schemes for

memory systems and register files may achieve fault secure property at low hardware

35

cost; sometimes they fail to achieve the fault secure property in arithmetic circuits [20,

22]. In the self-checking arithmetic circuits using parity prediction scheme [24] detects

errors only at the output of the circuit; however a fault in the intermediate signal gets

propagated to other output signals and remains undetected. Even though the parity codes

result in less area overhead in self-checking circuits, arithmetic circuits may sometimes

produce multiple output errors which are not detectable by the parity codes. Especially in

case of multipliers the circuit overhead is in the range of 40% to 50% when parity

prediction codes are used [19]. Therefore, in the multipliers with large input operand

width, the overall area overhead is adversely affected with parity prediction schemes. In

the literature, self-checking implementations of the arithmetic circuits such as adders and

multipliers have been proposed [30, 31, and 32]. These self-checking circuits use parity

prediction schemes and arithmetic code schemes in the design by trading off with the

hardware overhead, performance penalty and fault secureness. Few of the self-checking

circuits are described as follows. In [23], self-checking adder circuits based on arithmetic

codes were proposed [26, 27]. These checkers using arithmetic codes suffered from

hardware complexity and overhead. An alternative method to design self-checking adders

[24] is by using parity prediction schemes. However, this approach detects errors only at

the outputs and a fault in the carry gets propagated and remains undetected leading to

unreliability. A different technique is used in [14], to design a self-checking carry-select

adder. The adders are totally self-checking for both permanent and transient stuck-at

faults. A self-checking multiplier is proposed in [25], based on parity prediction scheme.

The multiplier consists of AND matrix, Carry Save Adder and a final sum-bit duplicated

adder. Single stuck-at-faults in the combinational logic and all even or odd errors in one

of the duplicated output registers are detected. In [17], a self-checking code-disjoint

booth multiplier based on linear Carry Save Addition is designed. This implementation

can detect all the single input faults, single stuck-at-faults and all errors in the output

register. In the work of [17, 40], it is described that the transient faults in the circuits

create soft errors in the output latches of the combinational circuit when:

• An output is related to the faulty sub circuit with respect to the input(logical

condition).

36

• A pulse, altered by the faults, has a significant pulse width and amplitude

(electrical condition).

• A pulse, resulting from the faults, arriving at the clock transition (latching

window).

Because of the numerous masking effects, these transient faults result in single bit

errors. Hence, circuits which can detect single input faults, single stuck-at-faults or

multiple output faults are of usual interest. In this paper, a new hardware implementation

of the self-checking modulo 2n + 1 multiplier based on residue codes is proposed. In the

proposed implementation several techniques are used to come out with an efficient self

checking modulo 2n+ 1 multiplier and they are listed below:

• Efficient compressors are employed in the multiplier design and modulo

generators design to reduce the overhead.

• The residue code circuits with the check bases of the form 2k -1 and 2k + 1 are

efficiently designed using compressors and sparse tree based adders.

The resulting self-checking circuit has area overhead in the range of 20% to 45%

for different values of n.

The paper is organized as follows; Section II introduces multiplexor-based

compressors, which are used in the self-checking multiplier design [5]. Section III

discusses the proposed implementation of the self-checking modulo 2n + 1 multiplier, and

the efficient implementation of the modulo generators with check bases 2k -1 and 2k + 1

is given. Experimental results showing the area overhead and performance penalty of the

resulting self-checking circuits are given in IV. Conclusions are drawn in Section V.

37

2. PRELIMINARIES AND REVIEWS

2.1. MUX VS. XOR

Multiplexor (MUX) is one of the logic gates used extensively in the digital

design, which is very useful in efficient design of arithmetic and logic circuits. According

to the CMOS implementation ofMUX [6], it performs better in terms of power and delay

compared to exclusive-OR (XOR). Suppose, X and Y are inputs to the XOR gate, the

output is XY + XY. The same XOR can be implemented using MUX with inputs X, X and

select bit Y. Efficient compressors have been designed using MUX and reported in [7]. In

the proposed compressors [7], both output and its complement of these gates are used.

This also reduces the total number of garbage outputs. Existing CMOS designs of 2: 1

MUX and 2-input XOR are shown in Fig. 1 for comparison.

2.2. DESCRIPTION OF COMPRESSORS

A (p:2) compressor has p inputs X1,X2 Xp-I,Xp and two output bits (i.e., Sum

bit and Carry bit) along with carry input bits and carry output bits. Its functionality can be

represented by the following equation:

Lf=1 Xi + Lf=1 (Cin)i =Sum+ 2(Carry + Lf=l(Cout)a (1)

38

~OR
(a)

(b)

Fig. I CMOS implementation of2-input (a) XOR (b) MUX

For example, a (5, 2) compressor takes 5 inputs and 2 carry inputs and generate a

Sum and Carry bit along with two carry out bits. Block diagrams of 5:2 and 7:2

compressors are shown in Fig. 2. Efficient designs of the existing XOR-based 7:2, 5:2

and 4:2 compressors [8, 9]have critical path delays of 6~(XOR), 4~(XOR) and 3~(XOR)

(delay denoted by ~). respectively [8].

39

X1 X2 X3 ~ Xs

Cout1 Cin1

Cout2 Cin2

Carry

(a)

x1 x2 X3 ~ Xs Xs X1

Cout1 Cin1

Cout2 Cin2

Carry

(b)

Fig. 2 Block diagram of(a) 5:2 compressor (b) 7:2 compressor

The newly proposed efficient compressors [7] use multiplexers in place of XOR

gates, resulting in high speed arithmetic due to reduced gate delays. Also as shown in Fig.

1, in all the existing CMOS implementations of the XOR and MUX gates both the output

and their complements are available but the designs of compressors available in literature

do not use these outputs efficiently. In CMOS implementation of the MUX if both the

select bit and its complement are generated in the previous stage then its output can be

generated with much less delay because the switching of the transistor is already

completed. And also if both the select bit and its complement are generated in the

previous stage then the additional stage of the inverter can be eliminated which reduces

the overall delay in the critical path. The existing XOR based and proposed MUX-based

designs of a 5:2 compressor are shown in Fig. 3, the delays of which are !::.. (XOR) +3L\

(MUX) and 4L\ (XOR). These compressors are primitive blocks of the proposed self-

40

checking modulo multipliers. The proposed MUX-based design of the 7:2 compressor is

shown in Fig. 4. CGEN block used in Fig. 3, Fig. 4 can be obtained from the equation

Cout1 = (x1 + x2) · x3 + x1 · x2.

(a)

(b)

Fig. 3 5:2 compressors; (a) Existing design (b) New design

Carry

Fig. 4 Proposed MUX-based design of7:2 compressor

2.3. SPARSE TREE ADDER BASED INVERTED END AROUND CARRY
ADDER

41

In binary addition operation, the critical path is determined by the carry

computation module. Among various formulations to design carry computation module,

parallel prefix formulation [41] is delay effective and has regular structure suitable for

efficient hardware implementation. The binary addition of two numbers using a parallel

prefix network is done as follows. Let A = an-lan-2 atao and B = bn-tbn-2 btbo be two

weighted input operands to the network. The generate bit (g;) and propagate bit (p1) are

42

defined as g; = a; AND b; and p; = a; OR b;, and these generate bits can be associated

using the prefix operator ± as follows:

(g;, Pt) o{g;.t. Pt-t) = {g;+p;.g;.t. p;.p;.t) = {g;:;-t. Pt:t-t) where + is the logical OR

operator and. is the logical AND operator.

The carry outs (C;) for all the bit positions can be obtained from the group

generate (G; == C;) where (G;, P;) = {g;, p;) o (g;.t, p;.t) o {g1, Pt) o {go, po).

The function of End Around Carry (EAC) adder is to feed back the carry out of

the addition and add it to the least significant bit of the sum vector. Similarly, in inverted

End Around Carry adders the carry out is inverted and fed back to the least significant bit

of the sum vector. The parallel prefix network based Inverted EAC adder [42] achieves

the addition of the input operands by recirculating the generate and the propagate bits at

each existing level in log2n stages. Let c•; (G*;) be the carry at bit position i in the

inverted EAC, this can be related to G; as follows:

(Gj, Pt) = { (Gn-1> Pn-1) fori= -1 .
(Gi, Pi) 0 (Gn-1:1+1, Pn-1:1+1) for n - 2 ~ 1 > 0

(2)

In the above equation (Gt, P,.) == (G, P),

(Gn-1:i+l> Pn-1:i+1)

= (gn-1• Pn-1) o (gn-2• Pn-2) ··· ··· .o (gi+z, Pi+2) o (gi+v Pi+1)

In some cases it is not possible to compute (G*;, P*;) in log2n stages, then in

these cases the equations in (2) are transformed into the equivalent ones as shown in Eq.

(4) by using the following property [42]:

Suppose that (Gx, P") = (g, p) o (G,P) and (GY, PY) = ((p, g) o (G, P))

G" == g + p. G = g + p. G = g. (p + G)

= (g. p) + gG = p + gG (3)

Therefore (f = G" and in (2) pY is computed asp. P.

43

To implement the parallel prefix computation efficiently, these transformations

have to be appliedj number of times recursively on (Gi, PD o (G0 _ 1:1+V Pn-1:1+1) using

the following relation:

{
n, ifi > ~-1

1 . +. 2 n- -I J= n . . n
- If I < --1
2' - 2

(4)

The new carry outs can be computed using the following equation:

(G~ R*) = { (G0 _ 11 P0 _ 1) fori = -1
I' 1 () • (P., Gl) 0 Gn-1:1+1, Pn-1:~+ 1 for n - 2 > I > 0

(5)

Hence, the transformations used above to achieve the parallel prefix computation

in log2n stages result in more number of carry merge cells and thereby adding more

number of interstage wires. Parallel prefix adders suffer from excessive inter-stage wiring

complexity and large number of cells, and these factors make parallel prefix based adders

inefficient choices for VLSI implementations. Therefore, a novel sparse tree based EAC

and inverted EAC adders are used as the primitive blocks in this work.

In sparse tree based inverted EAC adders [3, 4], instead of calculating the carry

term G*; for each and every bit position, every J<!h (K = 4, 8 ...)carry is computed. The

value of K is chosen based on the sparseness of the tree, generally for 16 bit and 32-bit

adders K is chosen as 4 [36, 3 7, 3 8]. The higher value of K results in higher value of non

critical path delay compared to critical path delay of O(log2n) which should not be the

case. The proposed implementation of the sparse tree based Inverted End-Around-Carry

Adder (IEAC) is explained below clearly for 16-bit operands. For a 16-bit sparse IEAC

with sparseness factor (i.e, K) equal to 4, the carries are computed for bit positions -1, 3,

7 and 11. Here, bit position -1 corresponds to the inverted carry out ((G15, P15)) of the

bit position 15. The carry out equations for the 16-bit sparse tree IEAC are as follows:

c:1 = (G1s• P1s) = (g1S• P1s) o (g14, P14) o •·• ••• o (gv P1) o (go. Po)

c; = (G3, P3) 0 (G15:4• p15:4) = (g3, P3) O•••••O (go. Po) 0 (g15• P1s) 0 •••••• •0 (g4, P4)

= (P3, G3) o (G1s:4• P1s:4)

c; = (G7,P7) ° CGts:a•P1s:a) = (g7.P7) O•••••O (go. Po) 0 (g15•P1s) 0 •••••• •0 (ga.Pa)

= (P7, G7) o (Gts:a• P1s:a)

c;t = (Gll, P11) o (Gts:t2• P1s:12)

= (g11,p11) o·····o Coo. Po) o CBts•Pts) o ••· o (Btz•P12)

= (P11, G11) o (Gts:t2• P1s:12)

44

Figure 5 shows the finalized 16-bit sparse tree Inverted EAC adder. From Fig. 5,

observe that all the carry outs are computed in log2n stages with less number of carry

merge cells and reduced inter-stage wiring intensity [36]. The implementation of the

sparse tree based EAC is similar to IEAC shown in Fig. 5, except the carry is not

inverted.

I

r-~------~~--~==~==4=-b=it==~==~~-;1---4--b-it__J:
: Conditional : Conditional I

Sum Sum I
: Generator : Generator I

11_-!._f •(11_-!._f l
S11 :s S7:4

~
(G,,.ij',.. J'..)

(gi,Pi) (Gi:j• P,,j) o (Gr:s• ~:s)

(a)

(b)

4-bit
Conditional

Sum
Generator

1.-
1-+-rlJ c~~

S3:o

(G.,. s·. P..)

(G,1 , P, 1) o (G," , ~:s)

'1'1;'\ '' Carry
Merge

45

Fig. 5 (a) 16-bit sparse tree based Inverted EAC adder (b) 4-bit conditional sum generator

46

The Conditional Sum Generator (CSG) shown in Fig. 11-C is implemented using

ripple carry adder logic, two separate rails are run to calculate the carries c·i+l, c·;+2, c·i+3
and c•;+4 assuming the input carry c•; as 0 and 1. Four 2:1 multiplexers using the carry

c•; from sparse tree network as 1-in-4 select line generate the final sum vector. The

conditional sum generator is shown in Fig. 5 (b). The final sum is generated in log2n

stages in IEAC sparse tree adder with less number of cells and less inter-stage wiring.

Hence, this approach results in low power and smaller area while providing better

performance.

2.4. MODULO 2N + 1 MULTIPLIER

Modulo 2° + 1 multiplier is extensively used in many digital signal processors and

cryptographic applications. As 2° + 1 is an n+ 1 bit number, the input operands can be of

n+ 1 bits. A brief explanation of the algorithm and implementation of the modulo 2°+ 1

multiplier [3, 4] is given below.

Let lA I 8 denote the residue of A modulo B. Let X and Y be two inputs

represented as X = XnXn- 1 ••• x0 andY = YnYn- 1 ... Yo where the most significant bits Xn

and Yn are '1' only when the inputs are 2n and 2n, respectively. X · Y mod 2n + 1 can be

represented as follows:

P = IX· Ylzn+1 = ll:f:oXt2i · LJ=OYj2jlzn+1 = ILf:o (L~- Pt,j2t+j)l (6)
J-0 zn+1

where p;J = a; AND b1

From (6), observe that it results in an (2n + 1) X (n + 1) partial products matrix.

This matrix is modified into an n x n partial products matrix based on several

assumptions [43]. The conversion of the (2n + 1) x (n + 1) partial products matrix into

n x n partial products matrix results in a correction factor of 3. The n x n partial

products matrix is reduced into one sum vector and one carry vector. A part 2 of the total

correction factor 3 is added to the n x n partial products matrix and the other part 1 is

used in the final stage addition. In the reduction of the partial products, novel

47

compressors are used instead of full adders in each column of the carry save adder

network. This selection of the compressors is based on the input width. For a particular

input width, several compressor networks are possible. The best possible compressor

network consists of compressors with high order such as 7:2 and 5:2 compressors. The

sum and carry vectors generated by the partial products reduction module have to be

added in the final stage addition module. A part of the correction factor 1 left behind is

used in the final stage addition to take advantage of the following equation.

(7)

From (7), observe that the inverted carry out of the addition of Sum and Carry

vectors has to be fed back. Hence, adding a constant ' 1' to the Sum and Carry vectors

results in Inverted End Around Carry (EAC) modulo 2n addition which has regular VLSI

implementation. This inverted EAC is efficiently designed using the sparse tree adder

network, which has less interstage wiring and less cell density. A novel modulo 2 16+ 1

multiplier, which uses efficient compressors in the partial products reduction module is

shown in Fig. 6.

Fig. 6 Hardware implementation ofthe modulo 2 16 + 1 multiplier

48

3. PROPOSED SELF -CHECKING MODULO 2N + 1 MULTIPLIER DESIGN

For any self-checking circuit to detect online-errors, the circuit has to comply

with a set of properties. These properties are described below [17].

• Code disjointness: If each non-code input is mapped to a non-code output

word then the circuit is called code-disjoint.

• Fault secure: A circuit is called fault secure if for any fault in the fault set

there is no input code word that causes the circuit to generate incorrect code

word.

• Self-testing: For all faults in the fault set, there is at least one input code word

that generates an output which is not a code word.

• Self-checking: If the circuit obeys both the self-testing and fault secure

properties then it is called totally self-checking.

If input registers are used in the implementation then code-disjointness ensures

that the faults in the input registers are detectable. Using the fault secure property, for an

input fault the circuit either generates a correct output or detects the fault. In the self

testing circuits faults can be detected by applying an input vector.

In this section, the analysis of the self-checking multipliers using residue codes,

which includes fixing a fault model and selection of the check bases is given. The

analysis of the integer multipliers is extended to the proposed implementation of the

modulo 2n + 1 multipliers.

3.1. SELF -CHECKING MULTIPLIERS USING RESIDUE CODES

The self-checking two's complement multiplier is clearly studied for a fixed fault

model and appropriate check bases are designed for the same in [15]. The brief

explanation of the self-checking two's complement multiplier [15] is given below. Let

the inputs and outputs of self-checking multiplier circuit S are encoded using the error

detecting code 1(0) and F be the fault set used for the circuit S. The fault secureness of

the circuit S affected by the fault set F can be achieved by selecting the code space 0

49

such that any error in the output can be detected by a residue code check. The definition

of the fault-secureness with respect to a fault set F is as follows. Let f e F and sr denote

the circuitS affected by fault f. For a particular input i e I the output of S(Sf) is given

by (i) [st (i)]. Then, S is fault-secure for fault set F 0 for any input i € I and for any

fault f E F, S(i) =;:. Sf (i) implies Sf (i) ~ 0. The basic block diagram of the multiplier

with residue code check is shown in Fig. 7.

X Y /(x)modb I(y)modb

r··------------~------------~---1

l ~-------~-------------~---1
p,l(p) = I(x'fJI(y) l(p)modb

Fig. 7 A block diagram of the multiplier with residue code check

In the above figure, M represents the multiplier and M' represents the modulo

multiplier with residue check base b E N. I(x) mod b, /(y)mod band /(p)mod b

represent the residues of the inputs and output with check base b. The efficient

implementation of the modulo generators is given in following sections. These modulo

generators use novel compressors and sparse tree adder based end around carry adders.

The error pf in the multiplier output is detected in and only if

[pf,J(p)mod p] ~ 0

~ I(p)mod b =;:. I(pf)mod b

~ II(p) -J(pf)lmod b =;:. 0

50

To simplify the analysis, let us assume a fault model for the multiplier with

residue codes. For the fault set F, assume fault caused by a primitive block in the

multiplier circuit S [15]. The single fault is caused by the primitive blocks such as half

adders or full adders. This fault results in change in the functional behavior of the

primitive blocks thus producing an erroneous output. Let E(M) denote the set of the

absolute errors in the output of the multiplier circuit M caused by a single fault in the

primitive blocks. Then, E(M) can be represented as follows:

E(M) = {II(p)- /(pf)l f fault caused by a primitive block in M

p = M(x,y),

pf = Mf(x,y)}/0

The multiplier circuit S is fault secure to the fault set F +-+

'Ve E E(M): e mod b =F 0 (8)

Hence, to achieve low hardware costs minimum value of a check base is selected

which satisfies the above result. The selection of the check bases in the residue code

based circuits is an important task. In selecting the check bases, first the absolute error set

E(M) caused by the single faults have to be characterized. For different set of faults in

various primitive blocks, the circuit functions differently. In this paper, the fault model

consists of faults in a single primitive block.

The multiplier circuit S design so far is only fault-secure i.e, only testable fault

from the fault set F will be detected. In some cases, untestable faults from the fault set

may affect the fault-secure property of the circuit. Hence, to achieve the fault-secureness

for all the faults, the multiplier circuit has to be self-testing too. A brief explanation of the

self-testing property [15] is given below.

Let S be the self-checking multiplier circuit, I be the input code space and 0 be

the output code space. Let the set of inputs subjected to the circuit in the fault free case be

N, these inputs are given to the circuit as normal inputs, N c /.Then the circuitS is called

self-testing when:

• For a fault/E F, there exists ani EN such that d (i) fl. 0.

• The circuit S is self-testing for fault set F +-+ S is self-testing for every fault

from the set F.

51

For the multiplier circuit S with residue code check, in most applications N = I.

Hence, the input set for both M and M' can be subjected to arbitrary values. Thus, if M

and M' are realized without internal redundancy then the fault-secureness implies that the

circuit S is self-testable. A basic configuration of the multiplier with residue code checker

is shown in Fig. 8. In Fig.8, modMult b computes the residue of the multiplier output i.e,

l(p) mod b. Dual Rail Check compares the output from modMult b and output of the

inverter and asserts the error signal if the two inputs are not complementary to each other.

with the above residue and dual rail checkers the self-testing property many not be

always achieved. This guarantee the self-testing property of the multiplier circuit, the

structure of the checkers has to be properly selected.

p l(p)modb

error

Fig. 8 A block diagram of the residue code checker

The check base selection of the residue codes depends on the faults in the fault set

F and the resulting absolute error in the output vector of the multiplier. Hence, before

selecting the check base, the E(M) set has to be fixed. As only one fault in a single

52

primitive block such as half adder or full adder is assumed, corresponding E(M) can be

computed and proper check base is selected using (8). For the two's complement

multiplier studied in [15], the check base b is fixed as 3 for most of the input cases. This

result is obtained by making a particular assumption, otherwise check base 7 is used.

Suppose for ann-bit multiplier, the partial products reduction module is designed using

half adders and full adders. A single fault in any one of these primitive blocks may result

in an error in the sum or carry outputs. If the fault causes an error set E(M) given by:

E(M) c { azi Ia E [1: 3], i E [0: 2n - 2]} u {5. zzn-3 } (9)

The check base b achieves the fault secureness for the given multiplier if

bEN\ {y2ily E [1: 5], i E {O,N}} (10)

where N denotes the set of all natural numbers.

Hence, the smallest check base that satisfies (1 0) and to achieve the fault

secureness for the given multiplier is 7. Since, modulo 3 generator is very popular, the

check base 3 is used based on an assumption. In the partial products reduction module,

half adders and full adders are assumed such that error values of the form ±3 do not

occur. Assuming this error analysis, it can be shown that under the restricted fault model

the error set Ere(M) can be represented as:

EreCM) c {2ili E [0: 2n- 1]} U {3. zzn-z} (11)

From (11) there exists only one error which cannot be detected by modulo 3

check base. This error value occurs for only one input combination which is /(x) = I(y) =

-2n-l and a fault on the outputs ofthe primitive block with weight 22n-2• This case is highly

improbable and hence is neglected.

3.2. SELF-CHECKING MODULO 2N + 1 MULTIPLIERS USING RESIDUE

CODES

In this section, a fault secured implementation of the modulo 2° + 1 multiplier

using residue codes is given. The fault model for this self-checking multiplier includes

faults affecting a single gate. And consequently, the same fault may propagate through

the subsequent gates and generate errors at the multiplier outputs. Hence, to achieve fault

53

secureness these errors must be detected by the residue codes [19]. As shown in Fig. 3,

the fault model includes any fault affecting the gates that generate the outputs sum and

carry outs.

From the implementation ofthe modulo 2°+ 1 multiplier [3], it consists of partial

products generation module, partial products reduction module and final stage addition

module. The partial products generation consists of basic logic gates and the partial

products reduction module is implemented using compressors of different order (3:2, 4:2

and 5:2 compressors etc). The final stage addition module is designed using sparse tree

based inverted end around carry adder. For ordinary integer multipliers, the error in the

arithmetic value of the output caused by the faults are well studied in the literature [21].

In residue code based self-checking multipliers [15, 19, 21, and 23], to detect an error the

arithmetic difference should not be divisible by the check base of the residue codes.

The block diagram of the self-checking modulo 2°+ 1 multiplier based on residue

arithmetic codes [19] is shown in Fig. 9 (i.e, in the modulo A generator block is either 2k-

1 or 2k+ 1). From the figure, observe that the self-checking modulo 2°+ 1 multiplier

consists of a modulo multiplier, modulo generators for the input operands followed by a

modulo multiplier and modulo generators (with check bases of the form 2c - 1 or 2c + 1)

for each of the modulo multiplier outputs. In the final stage, an arithmetic code checker to

check the output of the modulo multiplier against its check part. In this case, a dual-rail

checker is used.

Input operand 1 Input Operand 2

I I l ~r---~l
r---'----~

l
Modulo 2"+1 multiplier

Modulo multiplier
Output

error

Modulo
Generator for

Input 1

Modulo
Generator for

Input 2

Modulo 2k+1 multiplier
for the check parts

Fig. 9 A block diagram of the self-checking modulo 2n+ 1 multiplier

54

As shown in Fig. 9, the modulo generator calculates input modulo 2c -1 or 2c + 1.

The check base selection for arithmetic circuits such as adders and multipliers is

presented in the literature [15, 21]. The hardware implementation and structure of the

modulo multiplier is similar to integer multipliers [3].

In the array multipliers implementation reported in [35], the partial products

reduction module consists of full adders and half adders which generates Sum and Carry

outputs. A fault on the set of the gates that generate these Sum and Carry signals cause an

output error [19, 21]. An error on the sum signal gives an arithmetic value of±2i (where i

is the weight of the error signal), similarly an error on the Carry signal gives an

arithmetic value of ±2.i. Hence, errors produced on both of these signals give an

55

arithmetic value of±3.2i. To detect the error caused by these faults, the check base ofthe

residue codes should be selected such that the arithmetic difference should not be

divisible by the check base. The final stage adder of the array multiplier is generally

implemented using parallel prefix adders. Various algorithms are proposed to select the

check bases for these fast parallel prefix adders. Unlike the ripple carry adders, the carry

computation problem is logarithmic rather than linear. Hence, the error propagation is

also different and causes various output errors. A brief description on the check base

selection discussed in [19, 21] is presented below. The arithmetic value of the errors in

the outputs is determined based on a couple of facts.

• Faults on the signals with divergent degree higher than 1 result in errors with

arithmetic value ±2i.

• Consider faults on a random signal Wi which can be propagated to the carry Cj.

The error may propagate to the other carry signals Cj G > i) which structurally

depend on Ci subsequently on Wj. In the actual implementation, not all the

carries Cj G > i) structurally depend on Wj. Hence, two kinds of errors are

possible, in the first case all the carries Cj G > i) may depend on ci resulting in

an error with final arithmetic value ±2i+ 1. In the second case, only a subset of

the carries Cj G > i) may structurally depend on ci producing an output error

given below:

• +[ao(zi+l + zi+2 +zi+k) + al(zil+l + zi1+2 +2il+k1) +

a2(zi2+1 + zt2+2 +2i2+k2) + ... + CZm(zim+l + zim+2 +zim+km)]

where a0 , a 1 .••.. am E [0,1] and im + km < n, n is the width of the operands

used in the adder.

To achieve the fault secureness of the self-checking modulo 2n+ 1 multiplier, the

resulting arithmetic value of the output errors caused by the faults must not be divisible

by the check base. Hence, the smallest odd integer is chosen which does not divide the

arithmetic value of the errors in the output. The check bases are that best suit for this

operation are of the type (2c -112c+ 1, c E N) and these check bases result in efficient

residue code computation [21, 15].

In the modulo 2n + 1 multipliers, the partial products reduction module is

designed using compressors which are similar to full adders in operation. A fault in set of

56

the gates of the compressors generate an error with arithmetic value ±K. i (K is a

constant). The final stage adder is designed using sparse tree based inverted end around

carry adder. The operation of the sparse tree adder is same as parallel prefix adders,

except the carries are computed at every 4th or 8th bit. Hence, the error analysis gives

same output error as proven in [21]. Hence, to design efficient modulo generators, the

check base of the form (2c -112c+ 1, c E N) is chosen. Efficient implementation of the

modulo generators with check bases 24-1 and 24 + 1 for an input operand of width 16 are

shown in Fig. 1 0 and Fig. 11. These modulo generators use novel sparse tree based end

around carry adder and inverted end around carry adder, respectively. In the novel

designs of the modulo generators, full adders are replaced by the efficient compressors.

Compressor Compressor Compressor

Sparse tree based end around carry adder

s, s,

Fig. 10 Modulo generator with check base 24 - 1 for input width=16

4-2
Compressor

4-2
Compressor

4-2
Compressor

4-2
Compressor

So

Fig. 11 Modulo generator with check base 24 + 1 for input width= 16

57

Thus, the proposed self-checking modulo 2n + 1 multiplier based on residue codes

efficiently detects all errors caused by the faults on a single gate at a time. The efficient

use of the compressors in the modulo generators and modulo multipliers result in good

savings in terms of area overhead and delay. The self-checking two's complement

multiplier is clearly studied for a fixed fault model and appropriate check bases are

designed for the same in [15].

58

4. PARAMETRIC COMPARISON

The efficient self-checking modulo 2" + 1 multiplier is obtained from the efficient

use of the novel compressors in the modulo multipliers and modulo generators. In this

section, the self-checking modulo 2" + 1 multipliers are compared against the modulo 2"

+ 1 multipliers without self-checking property. The comparisons are carried out using the

unit-gate model proposed by Tyagi (39] and also experimental results are compared. The

hardware overhead in the proposed implementation of the modulo 2" + 1 multiplier is

caused by the modulo generators, dual-rail checker the modulo multiplier which is used

to generate the check part for the dual-rail checker to check against the actual result of the

modulo 2" + 1 multiplier. The performance penalty of the multiplier is caused by the dual

rail checker and the modulo generators. If the combined delay of the modulo generators

and dual rail checker are more than the delay of the modulo 2" + 1 multiplier, this pays

penalty for the performance of the multiplier. For different values of the input operands

of the modulo 2" + 1 multiplier, the modulo generators have different check bases to

achieve the full fault secureness. The residue code check bases of the form 2c -1 and 2c +

1, for different values of the input operands are selected and corresponding modulo

generators are designed.

4.1. UNIT -GATE MODEL ANALYSIS

The modulo multipliers and the modulo generators contribute largely to the

overall area and delay of the multiplier. In the unit-gate model presented by Tyagi [39],

each 2-input monotonic gate is considered as a single gate equivalent for both the area

and delay comparisons, and the 2-input XOR gate and 2:1 MUX are considered as two

gate equivalents (area and delay). The area and delay terms of the modulo multiplier with

and without self-checking property are shown below.

AMWS = AMG + AMm + ADRC

TMWS = TMG + TMm + TDRC

AMw = AMM

59

In the above equations AMws, T Mws denote, respectively the area and delay of the

modulo multiplier with self-checking property. AMWs and T MWS are obtained by summing

the areas and delays of the Modulo generators (AMa,TMa), modulo multipliers (AMm,TMm)

and dual rail checker(ADRc,TDRc). AMW, TMW are the area and delay of the modulo

multiplier without self-checking property, they are nothing but the area and delay of the

ordinary modulo 2n + 1 multiplier denoted by AMM and TMM, respectively. The unit-gate

areas and delays of these multipliers are computed and tabulated in the below table.

TABLE 1. AREAAND DELAY COMPARISON OF MODULO 2N + 1

MULTIPLIERS WITH AND WITHOUT SELF -CHECKING PROPERTY USING

UNIT-GATE MODEL ANALYSIS

%Area
%

n AMw AMws overhead TMw TMws Performance
penalty

8 553 4454 43 30 33 10

16 1968 2676 36 52 56 7.7

32 7825 10251 31 94 98 4.25

64 25637 30508 19 168 173 2.98

60

4.2. EXPERIMENTAL RESULTS

Even though the unit gate model gives delay and area comparisons in terms of

gate counts, the standard cell based implementation of the proposed compressor based

multiplier gives much more accurate delay and area estimations. The proposed self

checking modulo multipliers for various values of input length are specified in Verilog

Hardware Description Language (HDL). The multiplier descriptions are mapped on a

0 .18Jlm CMOS standard cell library using Leonardo Spectrum synthesis tool from

Mentor Graphics. The design is optimized for high speed performance. Netlists generated

from synthesis tool are passed on to standard route and place tool, the layouts are

iteratively generated to get the circuits with minimum area.

TABLE 2. EXPERIMENTAL RESULTS SHOWING THE AREA AND DELAY

COMPARISON OF MODULO 2N + 1 MULTIPLIERS WITH AND WITHOUT SELF

CHECKING PROPERTY

%Area
%

n At(pm2) Az(pm2) overhead Tt Tz Performance
penalty

8 3072 4454 45 1.982 2.121 7

16 10933 14540 33 4.216 4.427 5

32 43472 56078 29 8.542 8.884 4

64 1608847 194624 21 15.315 15.621 2

61

In Table. 2 A 1 and A2 represent the area of the modulo 2n+ 1 multiplier without the

self-checking property and with the self-checking property, respectively. Similarly, T1

and T2 represent the delay of the modulo 2n + 1 multiplier without the self-checking

property and with self-checking property, respectively.

62

5. CONCLUSIONS

In this paper, a new self-checking modulo 2n+ 1 multiplier based on residue codes

is proposed and validated. In the proposed implementation, the self-checking modulo

multiplier consists of modulo generators with check bases of the form 2c -1 or 2c+ 1 (c E

N), modulo multipliers and self-checking dual rail checkers. All the modulo components

such as modulo generators, modulo multipliers are efficiently designed using novel

compressors. The final stage addition modules of the modulo multipliers and modulo

generators are efficiently designed using sparse tree based inverted end around carry

adders. The self-checking multiplier is secured against faults affecting a single gate at a

time and produce an error at the gate output, which may propagate through the

subsequent gates and generate an error at the output of the modulo multiplier. These

selfchecking modulo multipliers are analyzed using unit-gate model and compared with

the modulo multipliers without self-checking property. These models are designed for

different values of the input length and simulated to get the experimental results. The

results show that the proposed self-checking multiplier results in 20% to 45% area

overhead and 2% to 7% performance penalty for n = 64 to 8.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

63

6. REFERENCES

Soderstrand, M.A., Jenkins, W.K., Jullien, G.A., and Taylor, F.A., "Modern

Applications of Residue Number System Arithmetic to Digital Signal Processing,"

New York: IEEE Press, 1986.

Beckmann, P.E., and Musicus, B.R., "Fast fault-tolerant digital convolution using a

polynomial residue number system," IEEE Transactions on Signal Processing, vol.

41, issue 7, pp. 2300-2313.

Rajashekar, M., Nohpill, P., and Minsu, C., "A Fast Low-Power Modulo 2"+1

Multiplier Design," 2009 IEEE International Instrumentation and Measurement

Technology Conference, pp.951-956, May 2009.

Rajashekar, M., Nohpill, P., Yong-Bin, K., and Minsu, C., "Efficient On-line Self

Checking Modulo 2"+ 1 Multiplier Design," submitted to the 24th IEEE

International Symposium on Defect and Fault Tolerance in VLSI Systems, October

2009.

Zimmermann, R., and Fichtner, W., "Low-power logic styles: CMOS versus pass

transistor logic," IEEE J. Solid-State Circuits, vol. 32, pp. 1079-1090, July 1997.

Veeramachaneni, S., Avinash, L., Rajashekhar, M., and Srinivas, M.B., "Efficient

Modulo 2"±1 Binary to Residue Converters," The 6th International Workshop on

System-on-Chip for Real-Time Applications, pp.l95-200, Dec. 2006.

Chang, C.H., Gu, J., and Zhang, M., "Ultra low-voltage lowpower CMOS 4-2 and

5-2 compressors for fast arithmetic circuits," IEEE J. Circuits and Systems I,

Volume: 51, Issue: 10 pp: 1985- 1997, 2004.

Rouholamini, M., Kavehie, 0., Mirbaha, A.P., Jasbi, S.J., and Navi, K., "A New

Design for 7:2 Compressors," Computer Systems and Applications, 2007. AICCSA

'07. IEEE/ACS International Conference on 13-16 May 2007, pp:474- 478.

Curiger, C., "VINCI: VLSI Implementation of the New Secret-keyBlock Cipher

IDEA," Proc. of the Custom Integrated Circuits Conference, San Diego, USA,

May 1993

Zimmermann, R., Curiger, A., Sonnenberg, H., Kaeslin, H., Felber, N., and

Fichtner, W., "A 177 Mb/s VLSI implementation of the international data

encryption algorithm," IEEE J. Solid-State Circuits, 1994, 29, (3), pp. 303-307

Sklavos, N., and Koufopavlou, 0., "Asynchronous low power VLSI

implementation of the International Data Encryption Algorithm," Electronics,

Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International Conference

on, vol.3, no, pp.1425-1428 vo1.3, 2001.

Leibowitz, L.M., "A simplified binary arithmetic for the Fermat number transform,"

IEEE Trans. Acoust. Speech Signal Process, 1976, 24, pp. 35659.

Vasudevan, D.P., and Lala, P.K., "A technique for modular design of self-checking

carry-select adder," Defect and Fault Tolerance in VLSI Systems, 2005. DFT 2005.

20th IEEE International Symposium on, vol, no, pp. 325-333, 3-5 Oct. 2005.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

64

Sparmann, U., and Reddy, S.M., "On the effectiveness of residue code checking for

parallel two's complement multipliers," Fault-Tolerant Computing, 1994. FTCS-24.

Digest of Papers, Twenty-Fourth International Symposium on, vol, no, pp.219-228,

15-17 Jun 1994.

Marienfeld, D., Sogomonyan, E.S., Ocheretnij, V., and Gossel, M., "New Self

checking Output-Duplicated Booth Multiplier with High Fault Coverage for Soft

Errors," Test Symposium, 2005. Proceedings. 14th Asian, vol, no, pp.76-81, 21-21

Dec. 2005.

Hunger, M., and Marienfeld, D., "New Self-Checking Booth Multipliers,"

International Journal of Applied Mathematics and Computer Science Vol. 18, No. 3,

2008.

Goessel, M., and Graf, F., "Error Detection Circuits," McGraw-Hill, London, 1993.

Noufal, LA., and Nicolaidis, M., "A CAD framework for generating self-checking

multipliers based on residue codes," Design, Automation and Test in Europe

Conference and Exhibition 1999. Proceedings, vol, no, pp.122-129, 1999.

Garcia, O.N., and Rao, T.R.N., "On the method of checking logical operations,"

Proc. 2nd Annual Princeton Conf. Inform. Sci. Sys, pp. 89-95, 1968.

Sparmann, U., "On the check base selection problem for fast adders," VLSI Test

Symposium, 1993. Digest of Papers, Eleventh Annual 1993 IEEE, vol, no, pp.62-

65, 6-8 Apr 1993.

Sellers, F.F., Hsiao, M.Y., and Beamson, L.W., "Error Detecting Logic for Digital

Computers," New-York, Me GRA WHILL 1968.

Peterson, W. W. W., "On checking an adder," IBM J .Res. Develop, Vol.2, pp.166-168,

Apr. 1958.

Fujiwara, E., and Haruta, K., "Fault-tolerant Arithmetic Logic Unit Using Parity

Based Codes," Transactions ofthe IECE of Japan, pp.653-660, October 1981.

Marienfeld, D., Sogomonyan, E.S., Ocheretnij, V., and Gossel, M., "A new self

checking multiplier by use of a code-disjoint sum-bit duplicated adder," Test

Symposium, Proceedings. Ninth IEEE European, vol, no, pp. 30-35, 23-26 Mady

2004. ETS 2004. Proceedings.

Sayers, I.L., and Kinniment, D.J., "Low-cost residue codes and their application to

self-checking VLSI systems," Computers and Digital Techniques, lEE Proceedings

E, vol.132, no.4, pp.197-202, July 1985.

Debany, W.H., Macera, A.R., Daskiewich, D.E., Gorniak, M.J., Kwiat, K.A., and

Dussault, H.B., "Effective concurrent test for a parallel-input multiplier using

modulo 3," VLSI Test Symposium, 1992. '1Oth Anniversary. Design, Test and

Application: ASICs and Systems-on-a-Chip', Digest of Papers, 1992 IEEE, vol, no,

pp.280-285, 7-9 Apr 1992.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

65

Heckelman, R., and Bhavsar, D., "Self-testing VLSI," Solid-State Circuits
Conference. Digest of Technical Papers. 1981 IEEE International, vol.XXIV, no,
pp. 174-175, Feb 1981.

Siegel T.J ., and Veracca, R.J ., "Design and performance of the IBM Enterprise

System/9000 Type 9121 vector facility," IBM J. Res. Develop, vol. 35, pp. 367-
381, May 1991.

Nicolaidis, M., "Efficient implementations of self-checking adders and ALUs,"

Fault-Tolerant Computing, 1993. FTCS-23. Digest of Papers, The Twenty-Third
International Symposium on, vol, no, pp.586-595, 22-24 Jun 1993.

Kundu, S., and Reddy, S.M., "Embedded totally self-checking checkers: a practical
design," Design and Test of Computers, IEEE, vol. 7, no.4, pp.5-12, Aug 1990

Xrysovalantis, K., Dimitris, N., Foukarakis, G., and Gnardellis, T., "New efficient

totally self-checking Berger code checkers," Integration 28(1): 101-118 (1999).

Kumar, K., and Lala, P.K.,"On-line Detection of Faults in Carry-Select Adders,"

lTC, pp.912, International Test Conference 2003 (ITC'03), 2003.

Vasudevan, D.P., Lala, P.K., and Parkerson, J.P., "Self-Checking Carry-Select Adder

Design Based on Two-Rail Encoding," Circuits and Systems 1: Regular Papers,

IEEE Transactions on, vol.54, no.12, pp.2696-2705, Dec. 2007.

Behrooz, P., "Computer Arithmetic: Algorithms and Hardware Designs," Oxford

University Press, New York, 2000.

Mathew, S., Anders, M., Krishnamurthy, R.K., and Borkar, S., "A 4-GHz 130-nm

address generation unit with 32-bit sparse-tree adder core," In IEEE Journal of

Solid-State Circuits, Volume 38, Issue 5, May 2003 Page(s):689 - 695.

Grad, J., and Stine, J.E., "A Multi-Mode Low-Energy Binary Adder," Fortieth

Asilomar Conference on Signals, Systems and Computers, Oct. 29 2006-Nov. 1

2006 pp. 2065-2068.

Yan, S., Dongyu, Z., Minxuan, Z., and Shaoqing, L., "High Performance Low

Power Sparse-Tree Binary Adders," Solid-State and Integrated Circuit Technology,

2006. ICSICT '06. 8th International Conference on, vol, no, pp.1649-1651, 23-26

Oct 2006.

Tyagi, A., "A reduced-area scheme for carry-select adders," IEEE Trans. Comput,

1993,42, (10), pp. 1163170.

Shivakumar, P., Keckler, S., Kistler, M., Burger, D., and Alvisi, L., "Modeling the

effect of technology trends on the soft error rate of combinatorial logic,"

Proceedings of the International Conference on Dependable Systems and

Networks, pp. 389-398, 2002.

Kogge, P., and Stone, H.S., "A parallel algorithm for the efficient solution of a

general class of recurrence equations," IEEE Trans. Comput, vol. C-22, pp. 786-

793,Aug 1973.

66

[41] Vergos, H.T., Efstathiou, C., and Nikolos, D., "Diminished-one modulo 2°+1 adder
design," Computers, IEEE Transactions on, vol.51, no.12, pp. 1389-1399, Dec
2002.

[42] Vergos, H.T., Efstathiou, C., "Design of efficient modulo 2°+1 multipliers," lET
Comput. Digit. Tech, 2007, 1, (1), pp. 49-57.

67

VITA

Rajashekhar Reddy Modugu, was born on January 19, 1987 in Bethavole, Andhra

Pradesh, India. Raja completed his school education in Bharathi Vidya Mandir, Kodada,

India. He did his intermediate education at Vignan Junior College, Vadlamudi, India. He

completed his Bachelor of Technology (B. Tech) in Electronics and Communication

Engineering from International Institute of Information Technology, Hyderabad, India in

May 2008. He started his Master of Science program in Electrical and Computer

Engineering at Missouri University of Science and Technology in August 2008. He

graduated in December 2010. He has published several conference proceedings and IEEE

Journal articles.

	Efficient modular arithmetic units for low power cryptographic applications
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048
	Page0049
	Page0050
	Page0051
	Page0052
	Page0053
	Page0054
	Page0055
	Page0056
	Page0057
	Page0058
	Page0059
	Page0060
	Page0061
	Page0062
	Page0063
	Page0064
	Page0065
	Page0066
	Page0067
	Page0068
	Page0069
	Page0070
	Page0071
	Page0072
	Page0073
	Page0074
	Page0075
	Page0076
	Page0077

