
I .. Lo,!ghb.orough
,., UnIVersIty

Pllklngton LIbrary

1----'---:------
i Author/Filing Title••.....• y."'~~.'i?~.~ ~.:

I
..................................... , :
Accession/Copy No.

Vol. No ..•........••..•• Class Mark ,"

25 JUN 1999 ~ CAlPf

INVESTIGATIONS INTO THE

FEASIBILITY OF AN ON-LINE TEST

METHODOLOGY

By

JuIian Yeandel
MSc.AMIEE

A Doctoral Thesis.

Submitted in partial fulfilment of the requirements
for the ll':"lI!d oC .

' .. , - '.
~~" ""r\ ::!~.",'.::'.: :'~.~:~.

~ t.\ .. ~~).,j~'" • > •
~- < "' ... ~ • • , .; ~. ~ ',' .-', (, ,- •

. Doctor of Philosophy ;
i ,,'4 , ~. .. .,.. of' ,,,.,.~ "
("L'o~ghborough UniversitY .. '.

© by Julian Yeandel

...... ~.

ABSTRACT

This thesis aims to understand how information coding and the protocol that it

supports can affect the characteristics of electronic circuits. More specifically, it

investigates an on-line test methodology called IFIS (If it Fails It Stops) and its

impact on the design, implementation and subsequent characteristics of circuits

intended for application specific le (ASIC) technology.

The first study investigates the influences of information coding and protocol on the

characteristics of IFIS systems. The second study investigates methods of circuit

design applicable to IFIS cells and identifies the· technique possessing the

characteristics mOllt suitable for on-line testing. The third study investigates the

characteristics of a 'real-life' commercial UART re-engineered using the techniques

resulting from the previous two studies. The final study investigates the effects of the

halting properties endowed by the protocol on failure diagnosis within IFIS systems.

The outcome of this work is an identification and characterisation of the factors that

influence behaviour, implementation costs and the ability to test and diagnose IFIS

designs.

ACKNOWLEDGEMENTS

Firstly, I would like to thank the Royal Academy of Engineering for providing the

necessary funding to attend international conferences.

Secondly, special thanks are more than deserved by my supervisor and mentor

Professor Simon Jones with whom I shared numerous stimulating conversations. I

would also like to thank him for the patience and encouragement extended by him

throughout the duration of the learning process.

Thirdly, I must extend my thanks to members past and present of the Electronic

Systems Design Group at Loughborough University for taking the time to listen

during the process of idea formulation. In particular I should thank Dr Dave Thulborn

who defined the state transition sequence for the UART controller and coded it in

VHDL according to the structure defined in chapter 6. Furthermore, he coded the

controller model using the 'C' programming language according to my specification.

I also owe my gratitude to Mr Ryan Lirn for translating my specification for a

software interface to Labview and turning it into reality.

Finally, I shall always be indebted to Daniela and Jeremy, my wife and small son, for

their continued support and understanding throughout the last three years. This work

wOl;lld have been impossible without them.

ii

TABLE OF CONTENTS

CHAPTER ONE

INTRODUCTION

1.1 Introduction and Motivation.......... I
1.2 On-line testing.. 2

1.2.1 Problems addressed by on-line testing......... 3
1.2.2 Advantages and disadvantages of on-line testing....... 5

1.3 IFlS........................ 6
1.4 Aims of Thesis.......................... ... 9
1.5 Structure of Thesis............ 9

CHAPTER Two
REVIEW

2.1 Objectives of Chapter....................................... 11
2.2 Motivation........................ 11

2.2.1 Typical causes of system failure...... 12
2.2.2 IFIS specific requirements............ 12·

2.3 Hardware Redundancy......... 13
2.3.1 Duplication with comparison... 13
2.3.2 Fault-secure networks... 14
2.3.3 N-modular redundancy... 14
2.3.4 Summary of hardware redundancy techniques... 15

2.4 Information Redundancy. 16
2.4.1 Parity codes......... 16
2.4.2 Arithmetic codes........... 17
2.4.3 Unidirectional error detecting codes......... 19
2.4.4 Summary of information redundancy techniques.................. 23

2.5 Time Redundancy......... 26
2.5.1 Functional Re-Mapping... 26
2.5.2 Functional Partitioning.................. 27
2.5.3 Duality............... 28
2.5.4 Summary of Time Redundancy Techniques... 28

2.6 Analysis of Review.. 30
2.6.1 Coding between computation elements... 30
2.6.2 Design techniques for computation...................... 32
2.6.3 Areas open to research within the context ofIFlS................. 33

CHAPTER THREE

OVERVIEW OF INVESTIGATIONS

3.1 Objectives of Chapter... 34
3.2 Objectives of Research.. 34

iv

3.2.1 Identification of Research Topics.................................... 34
3.2.2 Statement of Research Objectives............... 35

3.3 Status ofIFIS Methodology.......... 35
3.4 Introduction to Investigations... 36

3.4.1 Choosing a Version ofIFIS............ 36
3.4.2 IFIS Cell Design...... 38
3.4.3 Feasibility study....................................... 38
3.4.4 Fault Diagnosis in IFIS.................................... 39

CHAPTER FOUR

SELECTING A VERSION OF IFIS

4.1 Objectives of Chapter..................... 41
4.2 Introduction.. 41
4.3 Coding................................. .. 43

4.3.1 Return to zero coding....... 44
4.3.2 Saturated coding ;.................................. 45
4.3.3 Application of codes to IFIS.. 45

4.4 ProtocoL :............... 47
4.4.1 Elastic pipelines......... 47
4.4.2 Inelastic pipelines........................... 50
4.4.3 Application of protocol to IFIS....................................... 51

4.5 Behaviour of alternative IFIS versions... 51
4.5.1 Existing protocol conditions
4.5.2 Proposed protocol conditions
4.5.3 Summary of behaviour of alternative versions ofIFIS

4.6 Test Coverage associated with alternative versions ofIFIS
4.7 Conclusions

CHAPTER FIVE

IFIS CELL DESIGN

52
56
60
61
64

5.1 Objectives of Chapter......... 66
5.2 Introduction... 66
5.3 Cell Partitioning................... .. 67
5.4 Computation : ; ,....................... 68

5.4.1 Adapting conventional techniques to IFIS.......................... 68
5.4.2 IFIS code generation: the need for redundancy.. 69
5.4.3 Relevant design properties......................... 70
5.4.4 Information redundancy... 71
5.4.5 Hardware redundancy......... 73
5.4.6 Time redundancy............... .. 75
5.4.7 Summary of computation techniques................................ 77

5.5 Transmission.............. 78
5.5.1 Partitioned design................................. 79
5.5.2 Non·partitioned design.. 86
5.5.3 Summary of transmission control techniques.'................. 88

5.6 Conclusions... 91

v

· CHAPTER SIX

FEASIBILITY STUDY

6.1 Objectives of Chapter
6.2 IFIS UART Design and Implementation

6.2.1 Receiver
6.2.2 Transmitter
6.2.3 Controller
6.204 Provision for IFIS
6.2.5 Design issues

6.3 Results .. .
6.3.1 Faulty and fault-free operation
6.3.2 Complexity and performance .. .
6.3.3 Fault coverage

604 Summary .. .
6.5 Conclusons

CHAPTER SEVEN

FAULT DIAGNOSIS IN IFIS

93

~}
95
95
96
96
101
102
104
105
107
107

7.1 Objectives of Chapter... 109
7.2 Motivation...... 109
7.3 Expectations of Failure Diagnosis in IFIS III

7.3.1 Inherent influences ofIFIS.................. III
7.3.2 Limitations on resolution using halting sequence...... 113
7.3.3 Summary of expectations. 118

704 Application to IFIS.................................... 118
704.1 Fault Sites Within IFIS Designs......... 119
704.2 The Influence of Different Connection Faults............... 120
704.3 The Halting Dictionary Generation Algorithm..................... 121

7.5 Fault Injection in the IFIS UART.............................. 124
7.6 Results.. 126
7.7 Conclusions............ 128

CHAPTER EIGHT

CONCLUSIONS

8.1 Objectives of Chapter.............................. 130
8.2 Review of Objectives ;.......................... 130
8.3 Main Conclusions... 131
804 Measures of Success... 133
8.5 Limitations............... 134
8.6 Further Work... 136
8.7 Summary................. 137

vi

REFERENCES : .. 138

PUBLICATIONS........................ 146

LIST OF TABLES

Table 2-1 Properties associated with hardware redundant techniques IS

Table 2-2 Properties of infonnation redundant techniques 25

Table 2-3 Properties oftime redundant techniques .. . 29

Table 2-4 Properties of codes suitable for communication 31

Table 2-5 Properties of computation techniques applicable to any digital function .. . 33

Table 4-1 Dual-rail codes and their meanings 46

Table 4-2 Code classification .. . 53

Table 4-3 Behaviour of the protocol/coding combinations 60

Table 4-4 Characteristics of existing protocol conditions on a single data bit RTZ 61
code

Table 4-5 Characteristics of code/protocol combinations carrying d data bits 62

Table 5-1 Complexity of an unprotected architecture for generating IFrS codes 71

Table 5-2 Complexity of an architecture protected by infonnation redundancy 73

Table 5-3 Complexity of an architecture protected by hardware redundancy 74

Table 5-4 Complexity of an architecture protected by time redundancy 76

Table 5-5 Suitability of different architectural design approaches to the IFIS 77
function .. .

Table 5-6 Complexity of alternative checkers .. . 82

Table 5-7 Maximum SSA test coverage for alternative checkers 84

Table 5-8 Characteristics of the selector units .. . 86

Table 5-9 Characteristics ofthe combined checker/selector architectures 88

Table 6-1 Signal names and descriptions 102

Table 6-2 Complexities of the three top level UART design blocks 104

Table 6-3 Perfonnance of the three top level UART design blocks 104

Table 7-1 Classification of activities for different methods offault diagnosis 110

Table 7-2 Classification of activities for different methods of on-line testing 110

Table 7-3 Observable primary halting sequence of the system shown in Figure 7-4
mapped to the cells which initiate each halt.. 117

Table 7-4 Application ofthe XI model to describe different faults 121

Table 7-5 Characteristics of application of the different algorithms to the IFrS
UART design 122

Table 7-6 Mapping of signal pin names to faults as ·shown in Figure 7-5 125

Table 7-7 The fault code placed on the fault injection channels and the code
description .. . 126

Table 7-8 Diagnosis of the injected faults .. . 127

vii

-- --

LIST OF FIGURES

Figure 1-1 The structure ofIFIS systems........ 7

Figure 2-1 Bose-Lin codes............... 21

Figure 2-2 Bose code example.. 22

Figure 2-3· Blaum code example...... 23

Figure 2-4 Recomputing with shifted operands... 27

Figure 4-1

Figure 4-2

State transition diagrams for Binary and Return-to-zero systems

State transition diagram for saturated coding scheme

44

45

Figure 4-3 Interconnection of processing elements 'A', 'B' and 'C' forming a
pipeline... 48

Figure 4-4 Data movement in an elastic pipeline.................................... 49

. Figure 4-5 Data movement in an inelastic pipeline............... 50

Figure 4-6 Neighbouring elements within an IFIS pipeline............... 52

Figure 4-7 Architecture used to demonstrate fault conditions........................... 54

Figure 4-8 Effects of a specific fault on the behaviour base on the existing inelastic
protocol... 55

Figure 4-9 Interconnection of processing elements according to the proposed
protocol.. 57

Figure 4-10 Behaviour of the proposed protocol under fault-free conditions........... 58

Figure 4-11 Behaviour of the proposed protocol under a single injected fault
condition................................. 59

Figure 4-12 Proposed protocol under fault-conditions: code translators ignoring halt. 59

Figure 4-13 Proportion of states that allow processing in different code/protocol
combinations... 62

Figure 4-14 Proportion of binary state codes that allow processing in different
code/protocol combinations.. 63

Figure 5-1 Anatomy of an IFIS cell...................... 67

Figure 5-2 Code generation without computation protection............................. 70

Figure 5-3 Code generation with computation protection provided by information
redundancy.. 72

Figure 5.-4 Code generation with computation protection provided by hardware
redundancy. 74

Figure 5-5 Code generation with computation protection provided by time
redundancy.. 75

Figure 5-6 Complexity comparison of the techniques applied to computation block
design... 77

Figure 5-7 Protocol validation architectures..................... 79

Figure 5-8 Generic decoder architecture................................. 81

Figure 5-9 Test properties of the decoder architecture where n is equal to 1.......... 83

Figure 5-10 Selector architectures for selecting one of two busses....................... 85

viii

Figure 5-11 Combined decoder/selector architecture... 87

Figure 5-12 Combined comparator/selector architecture... 87

Figure 5-13 Scaling of design complexity for the alternative architectures.............. 89

Figure 5-14 Maximum production test coverage............ 89

Figure 5-15 Maximum test coverage when restricted to protocol obeying vectors..... 90

Figure 5-16 Maximum test coverage when restricted to protocol obeying vectors
followed by an enforced freeze... 90

Figure 6-1 Top level architecture of the UART.. 94

Figure 6-2 IFlS computation architecture.. 97

Figure 6-3 The flow used to generate verification patterns for the UARTs... 99

Figure 6-4 Design verification in the software and hardware environments........... 100

Figure 6-5 The injected fault, marked by tt, activated in the controller................. 101

Figure 6-6 The IFlS UART under normal operation.................................... ... 102

Figure 6-7 The IFlS UART under an injected fault condition............ \03

Figure 6-8 Comparison of SSA fault coverage.................................... 106

Figure 7-1 An IFlS chain where only one halting path exists from the primary
input cell to the primary output cell............ 114

Figure 7-2 Generic IFlS system where two paths exist between cell A and cell Z.... 115

Figure 7-3 An example IFIS system where two paths of equal length exist between
the primary input cell and the primary output cell... 116

Figure 7-4 An example IFlS system where two paths of unequal length exist
between the primary input cell and the primary output cell............ 116

Figure 7-5 Protocol affecting fault sites......... .. 119

Figure 7-6 The context of each type offault.. 120

Figure 7-7 The IFIS structure of the IFIS UART......... 124

Figure 7-8 Fault injection sites within the selected IFIS cell contained in the IFlS
UART .. :................ 125

Figure 7-9 The relation between fault types which are indistinguishable when
halting of primary outputs is used for diagnosis.............................. 128

ix

CHAPTER ONE

INTRODUCTION

1.1 INTRODUCTION AND MOTIVATION

The ability to make increasingly. complex integrated circuits (lCs) stems from

continuing advances in microelectronic technology. Recent surveys showed that in

1970 there were typically a thousand transistors per IC, whereas in 1990 there were a

million. This trend is expected to continue resulting in complexities of approximately

one thousand million transistors by 2010 [Sherwani95, Meindl87J. Increasing

integration results in:

• A reduction in the average costs per logic gate. This is due to reduced

packaging costs, a reduction in the numbers of ICs required to implement any

specific system and the associated simplification of printed circuit boards.

• An increase in reliability for any specific system if fewer I Cs are needed to

realise it. The need for fewer ICs results in fewer interconnections between

them and therefore increases system reliability [Brasington95, Siewiorek92J.

There are a number of problems associated with increased levels of integration,

namely:

• Larger ICs are more prone to errors. Technological advances have enabled

both the shrinking of minimum geometry and expansions in die sizes. This

increase in monolithic area raises the chances of manufacturing defects and

increases the susceptibility ofICs to environmental factors.

• Systems containing ICs are more difficult to test. This is due to increased

circuit complexity and reduced access to internal circuit nodes.

• The increased susceptibility ofICs to environmental factors suggests that they

must be checked more often if their integrity is to be relied on.

1

CHAPTER ONE INTRODUCTION

Applications are demanding higher levels of integration and higher levels of

confidence in system integrity. Many techniques exist that· facilitate checking of

systems and the ICs that they contain. These techniques can be classified as:

• Off-line testing techniques

• On-line testing techniques

Off-line testing techniques predominate and indeed substantial investment has been

made in the development of such techniques. Off-line testing can be used at the time

of system (IC) manufacture with the aim of prohibiting the shipment of faulty

products. Enonnous efforts continue to be devoted to the development of off-line

testing techniques in an attempt to reduce test costs while maintaining product quality.

Despite the enonnous attention afforded to the development of off-line testing

techniques, the pace of such developments is not keeping up with technological

advancements [Bahram92]. This coupled with relatively high costs associated with

production testing makes it increasingly difficult to test for all possible defects at the

time of fabrication [Dislis95, Thompson96]. It is therefore more likely that faulty

. products are put into service.

. 1.2 ON-LINE TESTING

On-line testing techniques occur concurrently with nonnal operation and thus they

provide up-to-date infonnation without the need to set aside time for testing. The

objectives of the on-line testing of electronic designs are twofold, namely:

• To detect sources of failure that were caused during system manufacture but

were not detected prior to commissioning: either those that cause logical faults

or are responsible for premature ageing (for example, high resistance bridging

faults or undersized metal tracks).

• To detect errors that are caused after system commissioning. These may be

2

CHAPTER ONE INTRODUCTION

caused by environmental conditions such as heat, vibration, alpha particles,

user error or abuse. Intermittent and transient faults are 20 - 100 times more

prevalent in commissioned systems than those directly attributable to

premature ageing [Siewiorek92].

The testing of commissioned digital electronic systems should provide facilities for

detecting abnormalities in system behaviour due to environmental conditions and

wear-out in addition to compensating for the inadequacies of production testing.

1.2.1 Problems Faced by On-line Testing

The problems faced by on-line testing of electronic systems include:

• The difficulty in ensuring system integrity at the time of manufacture

combined with environmental factors makes it difficult to predict the nature of

faulty behaviour.

• It is difficult to differentiate between faulty operation and fault-free operation

at any point in time because reference information is not available. Unlike the

production (off-line) test environment, system stimuli are not pre-determined,

and consequently system responses cannot be predicted prior to testing.

• It cannot be assumed that correct behaviour results from structural integrity.

Faults caused by the operating environment may not be permanent but their

effects maybe long lasting. Intermittent and transient faults may corrupt the

state of a system at a specific point in time. The fault may disappear leaving a

physically fault free-system that subsequently fails.

• Differentiating faulty behaviour from fault-free behaviour for any error that

may occur during the lifetime of a specific system requires knowledge of the

errors that may occur.

• Increased system complexity makes immediate fault detection more difficult.

The effects of an internal failure that causes a change in the state graph of a

system may not have an immediate effect on primary system outputs.

3

CHAPTER ONE INTRODUCTION

On-line test techniques approach these problems by allowing additional tasks to be

performed concurrently with normal operations, namely:

• The generation of additional data that can be used as a dynamic reference.

• The dynamic checking of operational data against that reference data.

Methods of providing reference information include:

• Hardware redundancy

• Information redundancy

• Time redundancy

Often it is possible to place specific techniques under more than one redundancy

category. In most cases, additional hardware is required even if the specific technique

relies on re-calculating a function output during consecutive periods of time (time

redundancy) or relies on the comparison of different representations of the same data

(information redundancy).

Generally, hardware redundant techniques exploit the properties associated directly

with circuit structure to ensure the independence of operational and reference data.

These techniques are typically applied to facilitate the checking of operational data

calculation.

Information redundant techniques exploit the dynamic relationship between

operational data and reference data to facilitate checking. By knowing the relationship

between incoming data and supplementary (reference) information, the relationship

between outgoing operational and reference data can be predicted. Information

redundancy is therefore used to facilitate the checking of both data calculation and

communication.

Time redundant techniques sacrifice data rate to facilitate on-line testing. These

techniques can be applied to calculation, by comparison of the results of successive

4

CHAPTER ONE INTRODUCTION

function computation or to communication by return transmission according to a

specific protocol [Grant89].

1.2.2 Advantages and Disadvantages of On-line Testing

On-line testing has a number of advantages and disadvantages associated with it. The

advantages include:

• On-line testing enables immediate detection of errors that could result in

system failure. This is important for applications where loss of life or security

could result under prolonged failure conditions. . Permanent faults and

temporary faults are automatically flagged as soon as the system detects

anomalous behaviour.

• On-line testable designs can reduce the time taken for production testing

because they incorporate response analysis facilities [Gupta96]. This reduces .
communication between the device under test and the tester while also

permitting higher clock frequencies to be used during testing.

• While the fault-models on which on-line testing techniques are based do not

reflect the defects common to CMOS Ies, on-line testing detects errors that

arise from them as soon as digital values are affected.

• On-line testing increases system availability because it removes the need for

periodic off-line testing.

The disadvantages associated with on-line testing include:

• Additional action(s) must be taken before the results of on-line testing are to

be of use. It is pointless to know that system integrity has been compromised

unless this information results in action. This action may be undertaken by

circuitry that itself is error prone.

• Additional system outputs are required to represent the system error status.

• The degree offault coverage achieved during any specific period oftime is not

directly quantifiable during normal operation. This is because no specific

5

CHAPTER ONE INTRODUCTION

restrictions are exercised over incoming data.

• A complexity penalty is always incurred in comparison with the non-test

oriented design. Depending on the technique employed, this penalty can be in

excess of 100% for error detection. [Al-Saad96, Siewiorek92]

• A greater complexity penalty is typically incurred to obtain a specific fault

coverage in the on-line testing environment than for an equivalent design in

the off-line environment. This is at least partly due to the additional

complexity incurred by the data analysis hardware incorporated within on-line

testable designs.

Clearly, there are a number of disadvantages associated with on-line testing. If these

disadvantages are to be combated, new techniques must be explored and their

properties characterised.

1.3IFIS

IFIS (If it Fails It Stops) is an on-line design for testability approach that is currently

under investigation at Loughborough University. IFIS performs error management in

addition to error detection. If knowledge of system integrity is to serve some purpose

then some action must be undertaken following error detection. This action may be

performed by a dedicated error manager or by other means. When performed by a

dedicated error manager, communication between it and the error detection

mechanism must exist. Both the error manager and communication link may

themselves be error prone. Error management is inherent in IFIS systems and

therefore removes these additional sources' of potentially unchecked error. The

additional advantages ofIFIS are summarised below:

• The effect of a failure is propagated through to all circuit elements causing

them all to halt. Thus, the system error status can be discovered by observing

any primary output.

• The need to generate and apply test vectors to propagate failures to an

6

. CHAPTER ONE INTRODUCTION

observable primary output (at the time of manufacture) is eliminated. Faults

within IFIS cells need only be sensitised to the cell output because propagation

to a system output is automatic by virtue of the halting mechanism.

• The halting mechanism used to flag errors and manage the flow of erroneous

data is not maskable and does not permit the propagation of corrupt data.

Figure I-I shows a structure that incorporates communications supporting the above

description. This is the generic structure of IFIS systems. Figure 1-1 shows that IFIS

systems comprise computation elements (cells) and interconnections between cells.

status

Data

stafus

Data

Computation
Element

stafus

COmputation
Element

Figure I-lThe structure of IF IS systems.

stafus

Data

Computation elements interpret received status information, compute some function

of the received data and generate status information. The interconnections carry data

and status information between computation elements. Data flows between

computation elements in a conventional manner while status is propagated bi­

directionally to neighbouring elements.

This type of design structure is normally associated with asynchronous digital systems

where data is permitted to progress from its source depending on the readiness of its

destination to receive it [Hulgaard94,David92,Sutherland89]. The destination cell

signals its readiness to receive new data only after it has processed old data. In

7

CHAPTER ONE INTRODUCTION

practical asynchronous designs this signal is combined with the recently computed

data by using information redundancy in the form of data coding [Linder96, Dean91].

In contrast to the data coding found in asynchronous designs, the coding found in IFIS

designs uses information redundancy to incorporate the error status of IFIS cells

[Jones91]. A cells error status reflects the integrity of incoming data and the status of

neighbouring cells.

Following the detection of an error by a computation element, the error status of the

element is updated and the information passed to neighbouring elements. The

neighbouring elements respond by refusing to compute and by updating their

, associated error status accordingly. A halting of data processing results, progressing

away from the error source until all primary system inputs and outputs are reached.

This mechanism provides a clear error indication that cannot be ignored.

From the behavioural description of IFIS, it is apparent that the integrity of incoming

data and status information must be checked by each computation element before its

local error status can be calculated. Incoming data and status information are carried

from neighbouring elements via interconnections that may themselves be prone to

errors. This suggests that reference information must accompany the data/status

information to enable validation to be performed.

A variety of communication coding techniques exist from which a suitable code must

be selected to enable appropriate error detecting capabilities to be endowed while still

permitting efficient data transfer. Included in the list of candidate codes is the dual-rail

return-to-zero code presented in the original IFIS patent [Jones91].

The selection of reference information depends on the severity of the error to be

detected, and the type of error that is most likely to occur. Additionally, the domains

. of computation and communication are subject to different types of errors. For this

reason, a method must be devised to additionally ensure the integrity of the circuit

used to perform data computation and communication code generation.

8

CHAPTER ONE INTRODUCTION

From the description of halt propagation within IFIS systems, it can be deduced that

an interesting consequence of this mechanism exists, namely: the halting sequence of

primary system outputs must contain information relating to the. source of error. The

utility of this information is yet to be determined.

1.4 AIMS OF THESIS

This thesis focuses on the IFIS on-line test methodology. More specifically, this thesis

provides an assessment of different aspects of the methodology and offers evidence as

to its suitability for application to on-line testable systems. This evaluation is achieved

through the fulfilment of the following aims:

• To identify protocol/coding schemes that provide the halting mechanism

characteristic of IFIS systems and to assess their impact on system level test

coverage, complexity and performance.

• To discover the utility of the halting sequence information available at primary

outputs for locating the source of error.

1.5 STRUCTURE OF THESIS

This chapter has introduced and justified the need to provide on-line testing.

Furthermore, the IFIS on-line test methodology has been presented and the aims of

this thesis have been identified.

Chapter 2 supports the aims of this thesis by reviewing design techniques relevant to

IFIS. The requirements and expectations of IFIS systems are presented and the

suitability of selected state-of-the-art techniques is assessed within this context. This

assessment results in an identification of areas open to research.

Chapter 3 formulates a set of objectives to meet the research aims. Furthermore,

9

CHAPTER ONE INTRODUCTION

investigations are introduced that target the fulfilment of the fonnulated objectives.

Chapter 4 describes an investigation that results in the selection of a protocol/coding

combination for future IFIS systems. The candidate IFIS protocols and data codes are

described and the suitability of their characteristics to a design for test environment

are assessed.

Chapter 5 describes an investigation that assesses the influence of using specific

structural design techniques selected from those described in Chapter 2 on the

properties associated with IFIS cells: the fundamental components within an IFIS

system. The investigation results in the detennination of a generic cell structure for

future IFIS designs.

The investigation described in Chapter 6 builds on the results of the investigations

described in Chapter 4 and Chapter 5. A complex design is realised using IFIS and

implemented on FPGA. The resultant design is used to demonstrate the behaviour of

an IFIS system under both faulty and fault-free conditions. The characteristics of the

system are presented.

Chapter 7 establishes the inherent support of failure diagnosis provided by IFIS

designs. It also describes the limitations imposed on the resolution attainable using the

halting property of IFIS designs as a means of diagnosis. Furthennore, Chapter 7

describes an algorithm which can be used to perfonn fault diagnosis and introduces

extensions to the original IFIS cell model with the goal of discovering the resolution

implications of model extension. The algorithm is then applied to responses of the

case study implementation under controlled fault conditions.

Chapter 8 summarises and concludes this thesis, discussing the measure of success

achieved with respect to this work.

10

CHAPTER TWO

REVIEW

2.1 OBJECTIVES OF CHAPTER

The main objectives of this chapter are to:

• Introduce the requirements imposed by the IFIS on-line test methodology.

.. Present and compare different state-of-the-art design techniques used for on­

line testing.

• Assess the suitability of selected techniques to IFIS identifying shortcomings

and areas warranting investigation.

2.2 MOTIVATION

IFIS is a developing test methodology that uses encoded data and handshaking

between computation elements to achieve system level on-line test [Jones91].

For any on-line test methodology to be widely applicable, it should result in designs

that conform to the following requirements:

• Same data throughput/data-flow under error-free conditions as equivalent

conventional systems. This minimises the impact of incorporating on-line test.

• Ability to detect a high proportion of possible system failures (error coverage).

• Minimal delay between error detection and error flagging (error latency).

• Minimal hardware complexity penalty.

Furthermore, to avoid unnecessary engineering effort, while exhibiting useful

properties, it is important that the on-line test methodology be tailored to detect and

flag errors typical of the intended operational environment.

11

CHAPTER Two REVIEW

2.2.1 Typical Causes of System Failure

.IFIS is intended for implementing systems comprising ICs and electrical

interconnections. The type of errors to be detected by IFIS result from previously

undetected manufacturing defects and environmental conditions.

The faults most commonly attributed to CMOS IC manufacture are those resulting

from missing connections (stuck-open faults) and extra connections (bridging faults)

[Chakra94,Aitken92,Ferguson91,Champac91,Nigh90,Ma090]. Such faults often result .

in unintended sequential behaviour and are not restricted to specific le structures.

Under operational conditions, ICs are particularly prone to unidirectional errors.

Unidirectional errors are characterised by ones being transfonned to zero's (I ~O) or

vice-versa, but not both at the same. Furthennore, the direction of error cannot be

predicted a priori. Unidirectional errors are typically associated with ROMs, RAMs

and Bus Structures [pradhan80a,Biaum88,Piestrak95]. Current levels of integration

are characterised by the feature that signal routing area is significant and therefore

stands a significant chance of being a source of error [Brassington95,Sherwani95].

2.2.2 IFIS Specific Requirements

IFIS imposes a specific structure to support its halting mechanism. This mechanism,

coupled with the original specification impose two further restrictions, namely:

• The structure of computation elements should not inherently exclude the

computation of particular functions. This is to enable the IFIS methodology to

be applicable to any digital system.

• The coding used for inter-cell communications should be chosen to facilitate

modular checker design. One function perfonned by IFIS cells is code

checking. Incoming codes represent data and status infonnation from multiple

sources where no restriction is applied to bus width. Checker architecture

should support the design of different checkers accepting different numbers of

codes, perhaps of different code widths.

12

CHAPTER Two REVIEW

As an on-line test methodology providing protection of computation and

communication, IFIS should be designed using appropriate on-line testing techniques.

Computation can be protected by hardware redundancy, information redundancy and

time redundancy techniques, while communication requires information redundancy

that must itself, be computed. To identify areas open to research, this review assesses

the suitability of relevant techniques taken from each redundancy category to IFIS by:

• Comparing the characteristics of specific redundancy techniques and

separating them into groups containing those suitable for computation and

those suitable for communication.

• Assessing the communication techniques with respect to data rate, to the

failure types expected in IFIS systems and to modular checker design.

• Assessing the computation techniques with respect to data rate, to failure type

and to the generation of suitable communication codes.

2.3 HARDWARE REDUNDANCY

All redundancy techniques aimed at on-line testing result in some hardware overhead

with respect to their conventional counterparts. This section has however been limited

to those techniques for which the hardware structure itself is the key to the provision

of on-line testing.

2.3.1 Duplication with Comparison

In duplication with comparison (DWC), reference data and its intended duplicate are

calculated concurrently using independent hardware. While this technique provides

error detection capabilities, the complexity penalty with respect to a conventional

equivalent implementation is high [AI-Saad96]. However, duplication is recognised as

being the most effective method for checking generic logical operations

[Avizienis71a,PateI82]. This technique has been effectively incorporated into fault

tolerant systems to increase system reliability by identifying faulty circuitry prior to

its resultant removal from the system [Avizienis71a,Bartlett92].

13

CHAPTER Two REVIEW

2.3.2 Fault-Secure Networks

The output from a hardware duplication scheme can be thought of as a code. Fault­

secure logic networks operate on and generate codes; however, the important feature

. of fault-secure networks is the structure of the network used to generate the code

rather than the code itself. By definition, the sets of all codewords and non-codewords

combined represent all possible input (or output) combinations for a given circuit. A

circuit is said to be fault-secure if, for every fault from a prescribed set, the circuit

never produces an incorrect code space output for code space inputs [Anderson73].

In [K078,Smith78] a technique is presented for designing fault-secure circuits. The

technique involves identifying paths from internal fault sites that can affect more than

one output under fault conditions, thus resulting in an incorrect codeword. Once

found, hardware is added using rninterm duplication and the paths are separated. Any

fault is therefore guaranteed to affect only one output and consequently can only

. result in a non-codeword output when sensitised [Smith78]. Recently, techniques have

been developed to synthesise fault-secure state-machines [Parekhji91,Bolchini95].

2.3.3 N-Modular Redundancy

N-modular redundancy (NMR) is a technique that is intended to provide fault

masking in highly reliable systems. The underlying concept is to provide N means of

calculating a function and propagate the most popular result. The unit responsible for

selecting the most popular result is called a voter. A number of NMR configurations

exist, where N is varied and/or the number of voting elements are adjusted resulting in

a complexity/reliability trade-off [Russe1l89,Audet96]. For systems which are

unsupervised for long periods, such as deep space missions, it was found that system

reliability is maximised by maintaining a constant number of active elements which

can take part in the voting process [Avizienis7Ia,Siewiorek92]. This is best realised

by incorporating a number of additional, spare functional units that can be used as

substitutes following identification and removal of faulty units [Russe1l89]. To adapt

N-modular redundant designs to provide fault detection, in addition to masking,

requires the addition of inequality detectors. A resulting disadvantage is that the

voter(s) are never explicitly checked by the inequality checker.

14

CHAPTER Two REVIEW

2.3.4 Summary of Hardware Redundancy Techniques

Hardware redundancy techniques facilitate verification of data computation by

employing circuit topology to ensure that normal calculations and reference

information are not simultaneously subjected to the effects of single faults. All of the

reviewed hardware redundant techniques exhibit the common feature that they do not

affect the data rate during error-free operation. Consequently, these techniques do not

incur error latency. Table 2-1 describes additional properties associated with hardware

redundant techniques.

Circuit Style Error Complexity Unchecked
Coverage ('C' means Hardware

conventional)
DWC Any 100% 2C+ None

Comparator
Fault- Combinational Code :s; (2C + None
secure / Sequential specific Comparator)

Networks
NMR Any 100%- (N*C) + Voter Voter

Voter + Comparator

Table 2-1 Properties associated with hardware redundant techniques.

The hardware redundancy techniques ofDWC and NMR are not limited in the type of

circuit to which they may be applied. Both can be applied to state machines,

combinational designs and datapath structures. Conversely, fault secure networks do

. not appear to be suitable for protecting datapath structures. Hardware redundant

design techniques exhibit no error latency and are applicable to all known error

models, namely: symmetric errors, asymmetric errors and unidirectional errors.

In addition to those techniques specifically targeted at generating outputs for error

detection, NMR techniques are intended to mask errors. The addition of an in-equality

checker enables NMR designs to also be used for real-time error detection. However,

this configuration does not perform any checks on the voting element itself, and

. consequently there is no guarantee that it is not calculating incorrect information.

While DWC offers the simplest concept targeted specifically at error detection, it is

15

- -------------------------

CHAPTER Two REVIEW

that which results in the highest hardware complexity. Fault secure networks

potentially offer the most efficient hardware implementation of the techniques

presented, in the worst case being comparable to DWC. However, designing using the

technique is more time consuming than with DWC because of the iteration necessary

to ensure the independence of primary outputs under fault conditions.

Within the context of IFIS design, the above discussion suggests that DWC is the

most suitable hardware redundancy technique.

2.4 INFORMATION REDUNDANCY

Information redundancy is the technique by which data is combined with additional

information to form codes. The code words thus represent the information to be

manipulated but are intended to be less vulnerable to errors. Codes can be error

detecting and/or error correcting [HanuningSO]. The context of this review is limited

to on-line testing and therefore only error detecting codes are discussed. When

selecting a coding strategy, the issues of error type, speed of operation, functional

environment, code performance and the ease with which codes can be verified all

require consideration [Pradhan80a]. The techniques for building error-detecting codes

can be partitioned in the following way:

• Parity codes

• Arithmetic codes

• Unidirectional error-detecting codes

2.4.1 Parity Codes

. These codes use checkbits that are calculated by performing modulo 2 addition on

some or all information bits contained in the code. R. W. Hamming recognised the

benefits of performing modulo 2 addition on transmission data to provide information

redundancy capable of performing error detection [Hamming50]. The formation of

parity codes dictates their error detecting properties and as such two distinct variations

16

CHAPTER Two REVIEW

exist, namely word-based and interlaced parity schemes.

2.4.1.1 Word-based parity

Hamming defined parity as the modulo 2 addition of selected information

[Hamming50]. To achieve error detection, a non-code word must be detectable under

error conditions. In the case of a single error a non-code word must exist that differs

in one bit position from the intended code word. Thus, successive Hamming codes

must differ in at least two bit positions. This can be achieved by the addition of a

single parity bit to existing data. Hamming showed that in general a code exhibiting a

Hamming distance of'd+l' can detect od' errors. [Siewiorek92] showed that by using

a Hamming code with a distance of 2, any odd number of errors can be detected.

Parity codes may be generated using independent calculation based upon circuit

inputs (protecting computation) or by direct encoding of output data using modulo 2

arithmetic (protecting communication) [Fujiwara90,GoesseI93].

2.4.1.2 Interlaced parity codes

When modulo 2 addition is performed on a group of bits and an even number of errors

occur within the group, these errors are not detected. However, by partitioning

information into smaller groups and applying modulo 2 addition on each sub-group, it

is only when an even number of errors occur within the same sub-group that errors

become masked [Ko78,Fujiwara84]. The degree of error detection offered is

dependent on the group size which in turn influences the hardware penalty incurred

by the scheme. An extreme example of interlaced parity coding is demonstrated in the

bitwise parity code (dual-rail code). In this case, 100% information redundancy is

incurred by protecting each original data bit with its own parity bit [Lo93].

2.4.2 Arithmetic Codes

Arithmetic codes are formed by applying some arithmetic function to the value

represented by data bits resulting in a codeword. The original data may be directly

retrievable (separable) from the resultant codeword or may require decoding (in­

separable) [Siewiorek92, Piestrak95]. The separable codes considered are those

17

CHAPTER Two REVIEW

derived from the residue number system that was introduced in [Garner59J. The in­

separable codes are those based on AN coding which was introduced in [Brown60J.

2.4.2.1 Separable arithmetic codes

Separable codes take the form N={X: X=DC} where D is the data symbol and C is

the check symbol. Using the residue numbering system developed in [Garner59J, the

check symbol (residue), C, for the data symbol, D, is [D[b, where b is the base of the

residue code. For residue codes it is therefore possible to predict the residue part of a

code for the output of some arithmetic function when provided with only the residue

of the inputs to that function. This means that residue codes can be used to check

arithmetic operations in addition to communication (transfer) operations [Sayers86J.

A variation of residue coding is inverse residue coding where each residue bit is

inverted with respect to that of the equivalent residue code. Inverse residue codes are

particularly well suited to transmission enviromnents because they exhibit increased

immunity to unidirectional errors [Avizienis71bJ. In addition to the benefits offered

by residue codes, a number of limitations exist, namely:

• Residue codes are not suited to checking division operations due to the

difficulty in determining the absolute magnitude of a number associated with

the residue [Garner59J.

• To maintain a high error detection ability requires a large residue base

[Avizienis71bJ. Maximising the residue base maximises the number of

available unique check symbols.

• The larger the residue base, the larger the number of bits required to represent

it and therefore the more complex is the self-checking checker required to

perform comparison [Russe1l89J.

• While residue coding can be applied to logical operations, the efficiency with

which the technique can be employed depends heavily on the exact function to

be checked. In the case of an ALU the prediction of output residues often

requires correction by mediation circuitry [Sayers85,Russe1l89J.

18

CHAPTER Two REVIEW

2.4.2.2 Inseparable arithmetic codes

Aritlunetic scaling of data can be used to calculate codes that are capable of error

detection and correction [Brown60]. The codes, known as AN codes, are calculated

using the fonn C = AN + B, where C is the codeword and A and B are constants with

N being the original data. To allow negative numbers to be represented using AN

. error-detecting codes, the multiplier (A) must be greater than 1 and odd [Brown60].

This provides codes separated by a minimum Hamming distance of 3.

It was noted in [Avizienis71b] that while the value of B was non-zero, specific

knowledge of the aritlunetic function being checked must be available. For example,

for addition, the adder perfonns the function (Ai+B)+(Aj+B) = A(i+j) + 2B, where i

and j are two operands. The validity of the result can be established by subtracting 2B

and showing that the result is divisible by A. For further operations to be performed

on the result, its code should be modified by subtracting B to obtain A(i+j) + B.

However, B need only be non-zero when optimising the code to exhibit specific

Hamming distances in excess of 3. If error detection abilities for up to 2 simultaneous

bit errors is sufficient, the hardware overhead required to realise AN coding is

therefore minimal. Consequently, this class of AN codes are known as low cost

aritlunetic codes [Avizienis71 b]. AN codes are not suitable for checking logical

operations [Brown60, Avizienis71b, Russe1l89, Siewiorek92].

2.4.3 Unidirectional Error Detecting Codes

Unidirectional Error Detecting Codes (DEDs) are those codes that are designed

specifically to detect unidirectional errors as described in section 2.2.1. UED codes

can be sub-divided into three groups, namely:

• Unordered UED codes

• T-UED codes

• Burst-UED codes

19

CHAPTER Two REVIEW

2.4.3.1 Unordered UED codes

These codes exhibit the property that no codeword covers another in the same code

set. Considering the relationship between two codes, X and Y: X is said to cover Y if

X contains' 1 ' s in all positions in which Y contains' 1 ' s. Vnordered codes can be sub­

divided further into systematic and non-systematic codes [piestrak95].

Systematic unordered codes are formed by concatenating check bits and data to form

a codeword. Systematic unordered codes are widely used for data transmission

because they provide direct access to the message (data) content. This eliminates the

need to translate received codes prior to message processing. A class of codes known

. as Berger codes has developed from an idea described in [Berger61] to exploit this

characteristic. In Berger codes, which have been frequently reviewed, the checkbits

are the inverse binary representation of the number of I' s in the data

[Berger61 ,Frieman62,Ashjaee77 ,Pradhan80b,Smith84,Piestrak95]. This means that

there must be enough checkbits to represent the maximum number of I's in the data

word. If D represents the number of data bits and C the number of checkbits, then the

condition, 2c_I = D describes a maximum length Berger code. Not all transmitted data

sequences require the full data space offered by Berger codes. In [Smith84] the

properties of the data itself were exploited to minimise the number of unique check­

symbols to be concatenated with the original data. This resulted in a more efficient

coding but was specific for the data set employed. In [Ashjaee77] a technique for

designing self-checking checkers (SCCs) for maximum length Berger codes was

presented. Furthermore, an algorithm was developed which can process non­

maximum length Berger codes to make them suitable for checking using an SCC.

Non-systematic unordered codes are typically weighted and in the case of m-out-of-n

codes contain 'm' ones and 'n-m' zeros. They can detect all unidirectional errors (V­

errors) because any V-error changes the weight (the number of I's or O's) of the code.

The code capacity, the number of possible codewords, for any m-out-of-n code was

proven to be maximal when m=nl2 in [Frieman62]. Frieman also showed that for the

same code capacity, the m-out-of-2m code is less redundant than Berger codes. M­

out-of-n codes can be validated by using either a counter or a self-checking checker as

described in [Anderson73,Piestrak95].

20

CHAPTER Two REVIEW

2.4.3.2 T-UED codes

In modem processing systems, it is common that data is processed as parallel words.

It is reasonable to assume that once an error has occurred it will probably occur again

because of repeated use of the same hardware. T-ued codes rely on the assumption

that data transmissions are built from the concatenation of parallel data words. These

codes are designed to detect up to 't' unidirectional errors contained within single

words. They are therefore inherently less redundant than generic UEDs which are

capable of detecting all unidirectional errors .

. The number of concurrent unidirectional errors that can be detected using Berger

(systematic) codes is determined by the number of checkbits [Dong86]. However,

only errors in the information bits can be guaranteed detectable [Dong86]. Dong

codes are modified Berger codes where the original checkbits are replaced by their

dual-rail code equivalent. This makes the checkbits in Dong codes immune from

unidirectional error masking. Bose-Lin codes offer an alternative method of

protecting checkbits. In [Bose85] two different methods for checkbit partitioning were

presented with the aim of choosing the most efficient checkbit generation algorithm

that would result in unordered codes. The detection abilities of these codes depend

only on the number of checkbits used, and not on the number of information bits. The

first method uses a partitioning of '2:r-2' bits using a l-out-of-2 code in the most

significant 2 bits and the second partitioning scheme uses '4:r-4' bits with a 2-out-of-

4 code. Figure 2-1 shows both code structures.

a) b)
I INFORMATION I 2 I r-2 I 1r-I-NF-O-R-MA-r-IO-N--rI-4--rI-r--4 1

'-y-J '-y-J
CHECK BITS CHECK BITS

Figure 2-1 Bose-Lin codes: a) code type 1, b) code type II

For values of r = 2, 3 and 6, code I is optimal because it can detect 2, 3 and 6

unidirectional errors respectively. For other values of r, code II is more effective. In

21

CHAPTER Two REVIEW

[Jha87] a systematic t-ued code was presented for which the capabilities depend on

the relationship between the number of information bits and the number of checkbits.

Non-systematic t-UED codes were presented in [Borden82]. Borden codes are m-out­

of-n codes that conform to specific criteria enabling them to detect 't' concurrent

unidirectional errors. To exhibit this characteristic, they are designed so that m = Lnl2J

mod(t+ I), where 'm' and 'n' are used in the conventional sense [Borden86].

2.4.3.3 Burst-UED codes

Efficient data coding can be achieved by combining multiple neighbouring data words

into a block prior to coding [Grant89]. Burst-UED codes are capable of detecting

bursts of errors spanning more than the length of a component data word.

Bose codes are systematic codes where the checkbits represent the weight of the

information bits and are interleaved with them [Bose86]. The R checkbits are

positioned so that some information bits are placed between the most significant

checkbit and the rest. The code structure is shown in Figure 2-2.

R CHECK BITS

,.......,.,..,INc:-FO::-::R--M-A---JI---O-N-,I'~1 INFORMATION ,Cb
I '" ~I 21-1 Bits

Figure 2-2 Bose code example.

A burst error capable of just spanning the length of the interleaved information carmot

simultaneously cause an error in the checkbits. Thus, burst-ueds affecting the

checkbits are detected in addition to those affecting data bits. The concept of

exploiting interleaved checkbits was developed further by Blaum in [Blaum88].

Like Bose codes, the check bits in Blaum codes combine to form a symbol that

represents the weight of the information bits. Unlike Bose codes, check-symbols are

22

CHAPTER Two REVIEW

coded so that the ability to detect unidirectional errors is maximised. The component

bits of each check-symbol are interleaved with infonnation bits to maintain the

protective characteristics across the entire Blaum code.

INFORMATION
-!. -!. -!. -!.

1000000001010000100111 10000111011 10000100110

t t t t
CHECKBITS

Figure 2-3 Blaum code example.

Figure 2-3 shows the fonnation of an example Blaum code. In the example, suppose

that infonnation must be protected from a burst of up to 8 unidirectional errors

[Blaum88]. This requires a minimum inter-symbol distance (between check-symbols)

of 9 and can be achieved using 4 checkbits. To ensure that a burst of 8 or less

unidirectional errors are detectable requires that 8 infonnation bits are placed between

- each check symbol component. The Blaum code for the infonnation burst '00000000

0000 I 00 I 0000 III 0 0000 I 00 I' requires a check symbol that represents a data weight

of7 because there are 7 ones in the infonnation. The specific symbol may be '0110'

and is combined with the infonnation bits in the way shown in Figure 2-3.

Blaum codes have been shown capable of detecting burst errors of up to 2R
.! bits

where R is the number of check bits in the code [Blaum88]. As R increases, this error

detecting ability becomes asymptotic to 2R.

2.4.4 Summary ofInformation Redundant Techniques

Like hardware redundancy, infonnation redundancy does not impose error latency.

Furthennore, infonnation redundancy is attractive because a variety of coding

techniques has been developed, each individually tailored to specific error models.

This means that redundant infonnation can be minimised to suite the operating

environment.

Parity codes are simple and systematic, therefore incurring only a small complexity

23

CHAPTER Two REVIEW

, penalty, being fast to calculate and not requiring codeword translation. By

maximising message length, the efficiency of word based codes offering a specific

degree of protection is increased. Conversely, interlaced parity schemes increase

overall immunity to an even number of bit errors.

The check-base choice in arithmetic error detecting codes can significantly affect the

complexity of the hardware implementation. Using either separable arithmetic codes

or in-separable arithmetic codes, the best hardware efficiency is achieved when the

total number of data symbols is exactly divisible by the number of check-symbols

(modulus) [Avizienis71b]. In this case, where the codes are low cost codes, with

check-base 2"_1, n is called the group length. According to Wakerly, low cost AN

codes and inverse residue codes with a group length of 'n' can detect all

unidirectional errors of weight less than 'n' [Wakerly75]. Therefore, as the modulus

(residue base) increases, the error detecting ability rises correspondingly. Finally, both

separable and in-separable arithmetic coding methods are poorly suited to the

checking oflogical operations.

The algorithmic error detecting codes presented have all been specifically developed

with the goal of detecting unidirectional errors. For the situation where bursts of data

are transmitted, the direct application of non-systematic codes has not been deemed

appropriate. However, non-systematic coding has been successfully and beneficially

applied to the coding of checkbits which themselves are separable from the data bits

contained in bursts.

Table 2-2 contains information extracted from the reviewed literature and summarises

the properties of representative information redundant techniques. The suitability of

information redundancy techniques to the communication and computation domains

is contained within Table 2-2. The types of detectable errors are also included.

The number of concurrent detectable errors is dependent on the inter-codeword

Hamming distance. For AN codes the Hamming distance between codes depends on

the the modulus. Dong codes are capable of detecting <100% of t-unidirectional

errors [Dong84]. Dong codes are based on residue codes. As such, simultaneous

errors are masked when their weight matches that of the residue modulus. As the

24

CHAPTER Two REVIEW

number of checkbits is increased, the number of possible occurrences is reduced for

the same data width and thus the coverage becomes asymptotic to 100% [Dong84].

The abilities of Jha-Vora codes vary according to the ratio of checkbits to information

bits, I. In some cases these codes were found superior to Bose-Lin codes [Jha87].

Domain Error Number of Checkers
Detection concurrent errors TS(C),TS(T)

Type detectable using R
checkbits

Parity Computation I Any single bit R~l: Any odd Hamming50(C),
(even): Communication error number of errors Russe1l89(C)
Word
Parity Computation I Any single bit R -1 per group Any Fujiwara84(T),
(even): Communication error odd number of Kakbaz84(T),

Interlaced errors in a group Lo93(C)
Residue Computation I Arithmetic, 100% - all mod(R) Kundu96(C),

Communication Logical valued deviations Metra97(C)
Inverse Computation I Arithmetic, 100% - all mod(R) Comparator:
residue Communication Unidirectional deviations, 100% Lo93(C),

Unidirectional Metra97(C)

AN Computation Arithmetic (Hamming distance No
-1) implied by

multiplier
M-of-N Communication Unidirectional 100% Reynolds78(C),

Piestrak96b(T)
Borden Communication t- 100%, m ~ Ln/2J Piestrak96a(T)
(m-of-n) Unidirectional mod(e+l)

, Symmetrical
Berger Communication Unidirectional 100% Ashjaee77(C),

Chang96(C),
Metra96(T)

Bose-Lin Communication t- Re{2,3}: R Bose85(C)
(1) Unidirectional RS4: 2R.2 +R - 2

Bose-Lin Communication t- ~5: 5.2"" Bose85(C)
(2) Unidirectional +R-4

Dong Communication t- <100% Dong84(C)
Unidirectional

Jha-Vora Communication t- ~5: better than Jha87(C)
Unidirectional Bose-Lin (2) if

2R::; I <1.42.2R

Bose Communication Burst 2R-1 Bums92(C),
Unidirectional Bose86(C)

Blaum Communication Burst Re{2,3}: 2"-' Blaum88(C),
Unidirectional ~4: > 2R-1 Piestrak95(T)

Table 2-2 Properties of information redundant techniques.

25

CHAPTER Two REVIEW

The wide range of codes that have been developed necessitates the availability of a

large number of different checker designs. If systems as a whole are to be trusted, the

properties of the available checkers within them need to be established. Table 2-2

includes references to suitable checking techniques that have been developed for code

checking. In the checker column, the checker techniques are provided along with the

appropriate properties, namely: totally self checking (TSC) and totally self testing

(TST) given by C and T respectively. Where neither of these properties exist, the

checker does not check its own integrity.

2.5 TIME REDUNDANCY

The main disadvantage of hardware redundant schemes is the general overhead in

circuit complexity. Similarly, a disadvantage associated with information redundant

schemes is the need to encode/decode data thus potentially incurring a hardware

penalty associated with calculation. In addition to this direct hardware penalty comes

. an increase in routing complexity and pin count needed for code transmission. Not all

data processors require the continuous data throughput furnished by hardware

redundancy and information redundancy [PateI82]. For such applications, where the

metric of time is not fully exploited, the potential to provide reference data without

the aforementioned drawbacks can be realised by using time redundancy. The time

redundant techniques described are categorised within this review into three types

namely those which incorporate functional re-mapping, those which incorporate

functional partitioning and those based on duality.

2.5.1 Functional Re-mapping

Patel described a technique that allows efficient re-use of resources and yet provides a

method for performing a calculation while furnishing an independent reference

[PateI82, PateI83]. The technique was that of re-computing with shifted operands

(RESO). During the first operation, the reference calculation is performed and the

result stored. During the second operation, an equivalent calculation is performed

using different paths through the same hardware structure as that used during the first

operation. Figure 2-4 shows the concept of the approach.

26

CHAPTER Two REVIEW

step 1: X ----+I f Reg

step 2: X f = Error signal

Figure 2-4 Recomputing with shifted operands.

In Figure 2-4, 'f represents the hardware common to each processing step. X is the

data input during both processing steps. The function labelled 'c' is chosen such that

the output of 'c' causes different paths to be sensitised within f during step 2 to those

that were sensitised during step 1. 'C·l> is some function that compensates for the

effects of 'C'. In [PateI82], the function 'C' was a shift function which was applied to

an arithmetic logic unit while in [pateI83] it was applied to multiply and divide arrays.

Extensions to this technique were presented in [Laha83] to identify faulty partitions in

a multiplier array prior to the masking of their effects.

In [Hana86] a variation of RESO was reported. ,The technique was that of re­

computing with swapped operands (RES WO) and like RESO makes use of different

signal paths to provide answers to be compared. Firstly, conventional functional

calculation is performed on the input values. Re-computation is subsequently

performed on reconfigured hardware. The reconfigured hardware is organised such

that the section previously used to calculate the most significant part of the answer is

now used to recalculate the least significant part, and vice-versa. An alternative

variant on the theme of RESO was presented by Li and Swarzlander in [Li92] where

shifting was replaced by barrel shifting thus requiring less hardware (RERO). To be

sure that no interference occurs between the most and least significant bits of the pre­

shifted operands, they are separated by the insertion of a zero. This requires an

additional bitslice. These techniques are only applicable to iterative functions and are

therefore not suited to Boolean operations.

2.5.2 Functional Partitioning

In [Johnson88] the application of a technique was described for performing a

27

CHAPTER Two REVIEW

calculation by combining the partial products resulting from two calculation steps

(RESWOIDWC). In the example provided, a 32-bit adder, addition of the two least

significant 16 bit words is performed twice in parallel during the first computation

step. This allows immediate comparison of results. Following comparison, one of the

results is stored in a register along with the overflow, and then the additions of the

most significant 16 bit words are performed in parallel. The final answer is made up

of the current adder outputs and the stored result. This technique while exhibiting time

redundancy exhibits error latency typical of hardware or information redundancy due

to the ability to perform checking following each processing step. However, this

technique, like those based on RESO is only suitable for application to iterative

designs because it relies on duplicate functionality between bitslices.

2.5.3 Duality

In [Shedletsky78] the technique of alternate data-retry was introduced as a method of

fault masking. This technique requires that data be represented by codes. Furthermore,

two codes, the bitwise complement of each other, exist for each data value. By

checking the validity of received codes, a re-transmission can be requested using the

alternate code for the last data sent. Assuming the single stuck-at fault model, the re­

transmission is guaranteed to mask any single bit error. In [Reynolds78] a technique

specifically targeted at error detection using self-duals was proposed. As in

[Shedletsky78], functions are designed such that h(X)",;; (X), if X is the input data set

to the function. Computations are performed twice: once where the original data is

supplied to the function inputs, and once where the bitwise complement is supplied.

By combining the successive outputs, a dual-rail code is formed under fault-free

conditions. It is important to ensure that the same computational path is not used

during successive repetitive computations otherwise fault masking may occur

[Shedletsky78, Reynolds78]. In the case of logical functions, this constraint may lead

to a complexity increase in excess of 100%.

2.5.4 Summary of Time Redundancy Techniques

Time redundant techniques exploit the metric of time as an alternative mechanism to

28

CHAPTER Two REVIEW

hardware or infonnation redundant techniques. The properties associated with time

redundant techniques were obtained from the literature and are presented in Table 2-3.

Design Data Error Error Complexity
Style Throughput Coverage Latency ('C' means

I

(conventional conventional)
= 100%)

Alternating Any 50% S; 100% 1 S; (2C +
Logic Comparator +

Double
storage)

Alternate Any 50-100% - 1 S;2C+
Data Retry Comparator

RESO Iterative 50% 100% 1 (C+Shift)/C +
Array Comparator

RESWO Iterative 50% 100% 1 C+
Array Comparator

RERO Iterative 50% 100% 1 (C+1)/C +
Array Comparator

RESWOI Iterative 50% 100% s;1 =1.7 C
DWC Array

(REDWC)

Table 2-3 Properties a/time redundant techniques.

With the exception of Alternating logic, the techniques specifically designed with the

purpose of error detection all exhibit error coverage of 100% for single errors

occurring in either the reference or calculation. In the case of Alternating Logic, the

structure of the circuitry used to realise a self-dual function influences the maximum

error coverage. The error coverage characteristics for Alternate Data-Retry were not

encountered in the reviewed literature.

Time redundant techniques generally offer a potentially lower hardware penalty than

hardware redundant techniques. Furthennore, recently developed time redundancy

techniques remove the necessity to increase the data bus width between processing

. blocks with respect to their conventional counterparts. Therefore, for systems that

contain blocks that do not need to compute during each clock cycle, time redundancy

techniques may prove to be useful. For safety critical applications, most time

redundancy techniques exhibit unacceptably high error latency.

29

---- ---------------------

CHAPTER Two REVIEW

2.6 ANALYSIS OF REVIEW

A restriction that influences the suitability of certain time redundantlhardware

redundant techniques for adoption in IFIS is the lack of support for generic functions.

For example, re-computation with swapped (or rotated) operands requires identical

functionality between neighbouring bits within the datapath. This is not to be

expected in the case of a decoder. Additionally, techniques of hardware redundancy

and time redundancy have been found only to provide information that supports

dynamic testing of computation, while information redundancy provides techniques

for both computation and communication.

This information has resulted in the ability to exclude techniques that are not suitable

for adoption within IFIS. Further conclusions can be drawn by closer examination of

the remaining reviewed techniques with respect to the characteristics directly related

to communication and computation.

2.6.1 Coding between Computation Elements

Table 2-4 shows the information redundant techniques that are applicable to data

communication. An important consideration when choosing a coding technique is the

ease with which a code can be built and checked in addition to the rate at which the

data can be extracted for subsequent calculation. This is related to the hardware

required to calculate and check the code and the ability to access the data contained in

the code. Clearly, codes requiring ROMs and counters (sequential logic) are more

difficult to calculate and check than those built using combinational techniques.

Similarly, separable codes permit concurrent data access and code checking.

The failure types for which IFIS is intended were identified as unidirectional errors

and those resulting from stuck-openlbridging (combinational/sequential) faults. IFIS

was additionally specified to use encoding that supports modular checker design.

Based on the above discussion, only bitwise even parity coding or l-out-of-2 coding

can be built/checked fast while also supporting modular checker design. Both result in

100% information redundancy forming a dual-rail code.

30

CHAPTER Two REVIEW

Encoding Failure Type Supports Modular
Method / Type Checker Design

Parity (even): Xor/Separable Any single bit error No
Word

Parity (even): Xor/Separable Any single bit error Bitwise
Interlaced

Residue Coder/Separable Arithmetic No
Inverse Residue Coder/Separable Arithmetic, No

Unidirectional
M-of-N ROM/ Unidirectional l-of-2

Inseparable
Borden ROMl t-Unidirectional, No
(m-of-n) Inseparable Symmetrical
Berger Counter/ Unidirectional No

Separable
Bose-Lin (1) Counter or t-Unidirectional No

adder tree /
Separable

Bose-LiD (2) Counter or t-Unidirectional No
adder tree /
Separable

DODg Separable t-Unidirectional No
Jha-Vora Counter + ROM t-Unidirectional No

/ Separable
Bose Counter or Burst No

adder tree / Unidirectional
Separable

B1aum Counter + ROM Burst No
/ Separable Unidirectional

Table 2-4 Properties of codes suitable for communication

Bitwise odd parity dual-rail codes detect unidirectional errors because unidirectional

errors result in even parity (non-codewords). However, the even parity scheme cannot

detect unidirectional errors because they result in incorrect codewords.

Data coding alone is insufficient to guarantee the detection of errors resulting from

stuck-open or bridging faults because they typically affect the time taken for a correct

value to occur. To detect them requires checking for corrupt data at specific points in

time. To ensure that the codes currently appearing at checker inputs are up-to-date

requires the ability to differentiate between successive sets of codewords.

An example of such a scheme is where consecutive dual-rail codewords exhibit

alternating parity, thus ensuring monotonic transitions. Monotonic transition

31

CHAPTER Two REVIEW

checking, in the form of dual-rail return-to-zero coding, was proposed to provide on­

line testing in [J ones91]. However, the scheme was not characterised in this context.

Additionally, saturated (four-phase) dual-rail coding schemes (where all codes carry

data) have been employed to co-ordinate computation within asynchronous designs by

using monotonic code transitions to signal completion detection [Linder96,David92,

Dean91]. The advantages of applying such coding schemes to on-line testing are that:

• Successive sets of codewords can be distinguished by alternating parity.

• Single errors are detected by the appropriate parity code-set. These may result

from combinational (temporary) faults or from sequential faults.

• Unidirectional errors (more than one bit) lasting more than one processing

cycle enforce fixed (even) parity, thus being detected by the inability to

assume odd parity.

2.6.2 Design Techniques for Computation

IFIS computation elements accept and compute communication codes. The data

content of input codes is operated upon to generate the data content of output codes.

The IFIS communication codes can be computed in one of the following ways:

• As a direct result of data computation.

• Following data computation and based on its validity.

If communication codes are to be generated as a direct result of data computation the

computation circuit should generate outputs that are similar to those required to

protect communication. If the outputs generated directly from data computation are

not similar to those required, then a complex mapping function may be required.

Alternatively, communication code generation may be performed based on the

validity of data computation. Vaiid IFIS codes are assigned to IFIS cell outputs if data

computation is verified. Otherwise, invalid IFIS codes are assigned. Table 2-5 shows

the on-line test techniques from those reviewed that are specifically targeted at

facilitating error detection within the computation domain.

32

CHAPTER Two REVIEW

Data Rate Failure Type Dual-rail
Compatibility

DWC 100% Alllogical errors Inherent
(duplication)

Residue 100% Arithmetic Not Inherent
Inverse Residue 100% Arithmetic / Not Inherent

Unidirectional
Alternating Logic 50% Alllogical errors Inherent

(duplication)

Table 2-5 Properties of computation techniques that can be applied to any digital junction.

Duplication with comparison (DWC) and alternating logic both compare duplicate

data thus, they can reasonably be expected to be compatible to dual-rail coding.

However, residue codes rely on a representation of data that requires translation

before direct comparisons can be made. These techniques are therefore not expected

to be directly compatible to dual-rail code generation.

2.6.3 Areas Open to Research within the Context ofIFIS.

IFIS designs exhibit strong similarities to those asynchronous systems that use dual­

rail codes. However, saturated dual-rail coding schemes do not appear to have been

applied to on-line testing. Furthermore, the properties associated with the dual-rail

return-to-zero code proposed in the original IFIS patent were not characterised

[Jones91]. The lack of available information regarding such applications suggests that

the application of dual-rail code sequences to on-line testing warrants attention.

Having identified dual-rail coding coupled to a sequential protocol as candidates

. worthy of investigation, circuit structures that support their implementation should

also be investigated. In section 2.6.2, it was highlighted that no quantitative

information is available regarding the suitability of specific redundancy techniques to

support the generation of dual-rail code sequences. To quantify the characteristics of

the selected redundancy techniques to dual-rail code generation, requires further

investigation.

By investigating both of the specified areas, the direct and indirect influences of

coding and protocol on IFIS system characteristics can be quantified.

33

CHAPTER THREE

OVERVIEW OF INVESTIGATIONS

3.1 OBJECTIVES OF CHAPTER

The objectives of this chapter are to select and introduce the investigations contained

within this thesis. More specifically, the objectives are to:

• Provide a statement of research objectives

• Present the status of the IFIS design methodology prior to this research

• Introduce the proposed investigations

3.2 OBJECTIVES OF RESEARCH

This thesis focuses on the IFIS on-line test methodology. More specifically, this thesis

provides an assessment of different aspects of the methodology and offers evidence as

to its suitability for application to on-line testable systems.

3.2.1 Identification of Research Topics

Chapter I identified the possibility to perform failure diagnosis in IFIS systems based

on the halting sequence ofIFIS system outputs.

Chapter 2 highlighted the need to investigate the implications of using dual-rail code

sequences to provide on-line testing. The specific coding schemes that were identified

were saturated-four-phase coding and return-to-zero coding. These schemes exhibit

the common feature that consecutive codewords are distinguishable. To support this

feature, transitions must conform to a suitable protocol.

34

CHAPTER THREE OVERVIEW OF INVESTIGATIONS

3.2.2 Statement of Research Objectives

This thesis aims to understand the impact of the IFIS on-line test methodology on

system design. The following objectives have been identified to enable an assessment

to be achieved:

• To quantify the restrictions on performance and test coverage imposed by

different dual-rail coding and protocol schemes and select a suitable

combination for IFIS.

• To assess the characteristics of test coverage, complexity and performance

associated with different circuit design techniques used to implement the

chosen IFIS coding scheme and protocol.

• To characterise a demonstration IFIS system that incorporates multiple

computation elements that are interconnected such that the IFIS protocol is

enforced.

• To quantify the diagnostic resolution attainable based only on the halting

sequence of primary system outputs following error detection.

The issues relating to test coverage, complexity" and performance are all issues that

directly influence the potential future use of the IFIS methodology.

Failure diagnosis is important because it can be used to assist in the repair of

repairable systems, thus reducing or eliminating system outage. Furthermore, it can be

used to identify weak-points in design, thus permitting preventive measures to be used

in future implementations. If the inherent diagnostic ability of IFIS systems is

sufficient to facilitate system repair, then IFIS designs may increase system

availability because diagnosis occurs during system shutdown rather than afterwards.

,
3.3 STATUS OFTHE IFIS METHODOLOGY

IFIS (If it Fails It Stops) is currently under investigation at Loughborough University

35

CHAPTER THREE OVERVIEW OF INVESTIGATIONS

and is the subject of the investigations contained in this thesis. The status of IFIS at

the beginning of this research is sununarised below.

A patent was issued in 1991 describing the concept of applying asynchronous

communication techniques in the on-line testing environment [Jones91]. This patent

specified that coding be employed to carry data and cell status information.

System level modelling was needed to explore the data throughput and halting

properties associated with combinations of different dual-rail coding schemes and

inelastic/elastic protocols. This motivated a group effort to generate behavioural

VHDL models for IFIS processing elements. At that time, the potential implications

of protocol, encoding and processing element structure on testability, performance or

halting behaviour had not been quantified. Furthermore, the identification of the

potential to use halting sequence as a means of failure diagnosis had not occurred.

3.4 INTRODUCTION TO INVESTIGATIONS

This section introduces each investigation, detailing the issues to be addressed and the

approaches applied to answer them.

3.4.1 Selecting a Version ofIFIS: The Influences of Data Coding and Protocol

The behavioural specification of the IFIS design methodology is influenced by the

halting mechanism itself. This influence stems from the requirement to ensure error

containment: a task passed to external circuitry following the recognition of an error

by detection circuitry in conventional systems. The objectives of this investigation are

to:

• Introduce the requirements of designs implemented using an on-line test

methodology which uses halting as a mechanism for error flagging and data

management.

36

--

CHAPTER THREE OVERVIEW OF INVESTIGATIONS

• Understand the potential influences of data coding and protocol on the

testability, behaviour and performance ofIFIS designs.

• Select the combination of data coding and protocol that exhibits the most

attractive attributes.

This investigation examines the properties associated with different coding techniques

and protocols. IFIS has already been defined to use dual-rail coding where two rails

are used to encode each information bit. The exact dual-rail code employed can affect

the following:

• Data throughput rate

• The code space

The data rate influences the attractiveness of the design methodology when

considering it as a candidate for adoption in future designs. The code space restricts

the range of vectors that can be applied to processing elements and thus may limit the

ability to stimulate fault sites within them.

The protocol controls the activity of processing elements. The choice of protocol to be

adopted can affect:

• The data throughput rate

• The code space

• The behaviour

The behaviour ofIFIS systems under normal operating conditions depends on the type

of protocol used, while the behaviour following fault-conditions also depends on the

selection of protocol monitoring points.

This investigation examines dual-rail code and protocol combinations in the above

context and identifies a suitable combination to apply to future IFIS designs.

37

CHAPTER THREE OVERVIEW OF INVESTIGATIONS

3.4.2 IFIS Cell Design

The structure of designs is known to affect the properties associated with them.

Within the context of design-for-test, circuit structure is tailored to provide the most

acceptable combination of test coverage and hardware penalty for the specific

application. The objectives of this investigation are to:

• Understand the influence of applying different design techniques to the

generation of reference information and verification/error management

circuitry within IFIS processing elements.

• Select that structure which provides the best features in the context of IFIS

on-line testable systems. The selected structure will then be adopted as a

template for future designs.

This investigation examines the influence of the circuit structure applied to IFIS

processing elements on the following:

• Testability

• Data throughput

• Complexity

These attributes were chosen because they are those which are commonly used to

distinguish between design-for-test techniques. Cell partitioning is considered and a

number of alternative structures that were described in the review are applied to

processing element sub-blocks. The options, together with alternative proposals are

quantitatively compared and a generic IFIS processing element architecture is

developed.

3.4.3 IFIS Feasibility Study

The previous two investigations independently addressed issues related to the IFIS

processing elements and the connections/communications between them. The

38

CHAPTER THREE OVERVIEW OF INVESTIGATIONS

feasibility study aims to:

• Report the application of IFIS to a real-world design implemented in

hardware.

• Outline the design experiences associated with designing using IFIS.

• Demonstrate the operation of the circuit both in fault-free mode and with a

specific failure.

• Compare the performance, complexity and fault coverage of the conventional

and IFIS equivalent implementations. This empirically quantifies the

characteristics of a combined system built upon the results of the previous

two investigations.

The feasibility study exploits the results obtained from the previous two investigations

and applies them to the re-design of a commercial UART. The UART was considered

to be a representative design because it includes busses, state machines and registers,

all of which are frequently used design elements.

To assess the effectiveness of the methodology a comparison is made between a

conventional UART and its IFIS equivalent implementation on FPGA. The UART

represents one of the most complex designs using a single on-line test technique to

date. Output traces are shown for the IFIS implementation on FPGA operating under

fault-free conditions and with deliberate failures injected. Comparisons of size and

speed are presented in addition to an indication of on-line test coverage.

3.4.4 Failure Diagnosis iu IFIS

This investigation presents and assesses a failure diagnosis technique that exploits the

halting properties associated with IFIS designs. The aims of this investigation are to:

• Develop a strategy that is appropriate for performing failure diagnosis in

designs that have been implemented using the IFIS on-line test methodology.

• Describe the fault models that are to be applied to IFIS designs.

39

.;, '

•
~ ..
~ ,

'.
':.:

CHAPTER THREE OVERVIEW OF INVESTlGA TlONS

• Identify a relationship between the behaviour of models to simplify

algorithmic diagnosis.

• Show that the technique is suitable for automation by presenting algorithmic

approaches to failure diagnosis in IFIS.

• Compare and select the most efficient algorithm for future use.

• Present the failure-diagnosis view of the experimental vehicle.

• Perform failure diagnosis on the experimental vehicle under a variety of fault

conditions.

• Assess the diagnosis technique within the context of the investigation .

With the aim of developing an efficient method of failure diagnosis for use with IFIS

. designs, the essential capabilities required to perform failure diagnosis are identified.

The facilities inherent in IFIS designs are identified and described within the context

offailure diagnosis.

Having established which properties are provided by IFIS it remains to develop a

complementary technique that provides the missing attributes required to perform
.

fault diagnosis. A technique for fault diagnosis is proposed that exploits the halting

properties associated with IFIS designs.

Based on the logical feedback structure of IFIS cells, logical fault sites with differing

halting effects are identified with respect to the cell structure to form an expanded

fault list. Algorithms are presented which' can generate dictionaries for different

logical fault sites (fault classes). The performance of these algorithms is compared and

one is selected for application to the UART used in the feasibility study under

different injected fault conditions.

The individual faults that can be injected in the IFIS UART and the effects of

combining them to emulate other fault conditions are described. Failure diagnosis is

performed on the IFIS UART containing a number of different injected fault

conditions .. The ability to distinguish between single occurrences of the extended fault

list is quantified empirically.

40

ia
i
r
I
I

: I
I
I

I
i ,

, !
I
I

(

I
I

I
I

CHAPTER FOUR

SELECTING A VERSION OF IFIS

4.1 OBJECTIVES OF CHAPTER

The behavioural specification of the IFIS design methodology is influenced by the

halting mechanism itself. This influence stems from the requirement to ensure error

containment: a task passed to external circuitry following the recognition of an error

by detection circuitry in conventional systems. The objectives of this investigation are

to:

• Introduce the requirements of designs implemented using an on-line test

. methodology which uses halting as a mechanism for error flagging and

data management.

• Understand the potential influences of data coding and protocol on the

testability, behaviour and performance ofIFIS designs.

• Select the combination of data coding and protocol which exhibits the

most attractive attributes.

4.2 INTRODUCTION

IPIS (If it Fails It Stops) is an on-line test methodology that uses halting as a

mechanism to provide on-line test features [Jones91]. The halting mechanism is

provided by a protocol that permits/prohibits data flow according to the validity of

received data. The data is coded to provide the necessary information for validation

according to the protocol. It was suggested that dual-rail coding be the technique

applied to IFIS in [Jones91]. To assess the implications of employing different coding

41

CHAPTER FOUR SELECTING A VERSION OF IFIS

and protocol techniques, the expectations oflFIS in the context of on-line testing must

be defined. Forany on-line test methodology, the following attributes are important:

• Behaviour under fault-free and faulty conditions

• The on-line test coverage

• The performance and complexity

The behaviour ofIFIS designs must be such that the inherent error management only

permits correct (uncorrupted) data to propagate. The implications of this statement are

that IFIS must detect incorrect data, prevent the incorrect data from propagating and

prevent future data propagation. The permanency of halting is necessary because it is

not only the validity of data at any single point in time that is important, but also the

validity of the complete data burst. If corrupted data were removed from a data burst,

the received data burst would be different in length from the transmitted burst and

must therefore be corrupt.

In addition to the behaviour of designs under faulty and fault-free conditions, it is

important that the IFIS on-line test methodology be capable of checking a high

proportion of the design during normal operation. In the context of off-line testing, the

measure of quality applied to a test vector set is the test coverage. The test coverage of

a vector set refers to the percentage of modelled faults that are detectable for a specific

design when the vector set is applied. Similarly, on-line test coverage is intended to be

a measure of the ability to detect modelled faults. Unlike the off-line test environment,

the test vector set is neither constrained in size nor data content. However, the data in

IFIS is coded to permit protocol checking. The data coding therefore restricts the

range of vectors that can be applied to IFIS processing elements and may limit the

maximum on-line test coverage.

As with any other design methodology, maximal data throughput, minimal

complexity overhead and maximal ease of implementation are all factors that affect

the attraction of the methodology to potential users.

42

CHAPTER FOUR SELECTING A VERSION OF IFIS

This investigation examines dual-rail code and protocol combinations in the above

context and identifies a suitable combination to apply to future IFIS designs.

4.3 CODING

When transmitting messages from one location to another, the message is built from a

sequence of symbols (or codewords). These symbols are decoded upon message

reception to extract the original data content. Multi-rail encoding schemes supplement

data with additional information that can be used to provide completion detection (to

distinguish between symbols) in an asynchronous environment or endow error checking

in a test environment. The haltabiIity and error propagating characteristics of

asynchronous circuits were reported by Varshavsky in [Varshavsky86].

Dual-rail coding is one implementation of the general set of multi-rail encoding schemes

and is well established. IFIS has already been defined to use dual-rail coding, where two

rails are used to encode each information bit, to carry data and status information

between cells. The exact dual-rail code employed can affect the following:

• Data throughput rate

• The code space

The data rate influences the attractiveness of the design methodology when

considering it as a candidate for adoption in future designs. The code space restricts

the range of vectors that can be applied to processing elements and thus may limit the

ability to stimulate fault sites within them. Two dual-rail coding schemes which are

commonly applied to asynchronous systems were selected for examination namely,

return-to-zero coding and saturated coding.

43

CHAPTER FOUR SELECTING A VERSION OF IFIS

4.3.1 Return to Zero Coding

Return-to-zero (RTZ) coding is widely used in telecommunications systems. Within

the domain of integrated circuit engineering, Mead and Conway introduced it as a

means of delivering sequence information within asynchronous circuits [Mead80].

Figure 4-1 shows the state transition diagrams for the conventional binary coding

scheme and the RTZ coding scheme. The binary coding scheme is not suitable for

providing completion detection or error detection because it does not possess sufficient

code space to permit representation of data and supplementary information. In binary

systems, there are no constraints on state transitions, i.e. a '0' can be followed by a '0'. To

ensure that codes representing data and error status within IFIS designs are current,

successive code states must be distinguishable.

Binary

C1~Q'))
DATA
STATE

DATA
STATE

DATA
STATE

Return-To-Zero

TOKEN
STATE

DATA
STATE

o
ILLEGAL

STATE

Figure 4-1 State transition diagrams/or Binary and Return-ta-zero systems.

In the RTZ coding scheme shown in Figure 4-1 data is supplemented with additional

information by increasing the code space. The code space is increased to include a

spacer that enables transitions to be observed between data states of identical value.

Only those transitions shown in the (RTZ) state diagram are considered error-free.

Figure 4-1 shows that self-transitions are prohibited when using such schemes.

The maximum data transfer rate associated with RTZ coding is restricted because not

all symbols carry useful data. When implemented using binary logic levels, the RTZ

scheme requires two rails to encode the three states, namely: data state 0, data state 1

and the spacer. This results in a spare (illegal) state.

44

CHAPTER FOUR SELECTING A VERSION OF IFIS

4.3.2 Saturated Four Phase Coding

Saturated-four-phase dual-rail coding was used to provide completion detection in

asynchronous designs in [Dean91, David92, Linder96].

Figure 4-2 shows the state transition diagram for a saturated dual-rail coding scheme.

As with the RTZ coding scheme described in section 4.3.1, self-transitions are not

permitted. Comparison with Figure 4-1 reveals that the illegal state and spacer

associated with the RTZ scheme have been replaced by alternative data states.

DATA
STATE

'0'

ALTERNATIVE
DATA

STATE '0'

ALTERNATIVE
DATA

STATE '1'

DATA
STATE

'1 '

Figure 4-2 State transition diagram/or saturated coding scheme.

This saturated coding scheme maximises the capacity of the code because each state is

a data carrying state. Thus the data rate is the same as the symbol rate. Figure 4-2

shows that two codes represent each data value (0 and I) and yet transitions between

states are still constrained. This type of saturated coding scheme was employed to

encode data in an asynchronous environment in [Dean91].

4.3.3 Application of Codes to IFIS

As specified in section 4.3.1 transitions between successive codes must be verifiable.

The following options for verification have been identified:

• Translate the codes appearing at the processing elements into state labels

and verify the state sequence.

4S

CHAPTER FOUR SELECTING A VERSION OF IFIS

• Choose codes such that an easily identifiable relationship between

successive codes exists.

Code translation could be perfonned and valid state neighbours identified from the

previous state using a dictionary. While this is an option, it is complex and therefore

not attractive for such a fundamental process.

Identification of a relationship between successive codes revealed that the same dual­

rail code representation used to provide completion detection in asynchronous designs

could be adopted for error detection. The particular dual-rail coding scheme ensures

that only monotonic transitions occur when adhering to a valid state sequence. Two

advantages of this option are: .

• The code used exhibits closure and is therefore suitable for the saturated

scheme in addition to the RTZ scheme.

• Transitions can be easily checked based on the alternating parity of

successive codes.

Table 4-1 relates the dual-rail code representations and meanings in the context of the

RTZ coding scheme and in the context of the saturated coding scheme. The dual-rail

code is carried on a pair of single-bit signals, nominally labelled t and f. An asterisk

denotes the alternative data states, as shown in Figure 4-2.

Bit't' Bit'r RTZCode Saturated
Name Code Name

0 1 0 0*
0 0 Spacer 0
1 0 1 1*
1 1 Illegal 1

Table 4-1 Dual-rail codes and their meanings.

In Table 4-1 the rows have been arranged such that neighbouring rows represent valid

neighbours in both the RTZ and saturated coding schemes described in section 4.3.1 and

section 4.3.2.

46

CHAPTER FOUR SELECTING A VERSION OF IFIS

Considering that the codes are carried by signal lines, the effect of a logic-affecting fault

occurring on one of those signal lines is to change the possible transitions between

states. For example, considering the saturated coding shown in Table 4-1 in conjunction

with Figure 4-2, a stuck-at-l on the t line will make it impossible to represent 0 or 0*.

Thus the arcs from state 1 * to state 0 and from state 1 to 0*, shown in Figure 4-2, are

removed. Hence if the last state received by a circuit element was 1 (1*) and an

upstream element is attempting to write a 0* (0) on the faulty lines, that transition will

never complete. As a result, the receiving element therefore does not process.

4.4 PROTOCOL

Received data codes are verified for adherence to the protocol that in turn controls the

activity of processing elements. The choice of protocol to be adopted can affect:

• The data throughput rate

• The code space

• The behaviour

The behaviour ofIFIS systems under normal operating conditions depends on the type

of protocol used, while the behaviour following fault-conditions also depends on the

selection of protocol monitoring points. Protocols can be partitioned into elastic

protocols and inelastic protocols. The fundamental concepts of these categories are

described.

4.4.1 Elastic Pipelines

Elastic pipelines are those formed by the interconnection of asynchronous processing

elements as described in [Sutherland89]. Figure 4-3 shows the interconnection of

processing elements to form a generic pipeline structure combining actual data with

data control signals, as is the case where dual-rail encoding is employed. The heavy

arrows, from left to right, represent data flow, while the lighter arrows, right to left,

47

CHAPTER FOUR SELECTING A VERSION OF IFIS

represent feedback. Two phase handshaking can be performed using a dual-rail

encoding scheme by treating data-flow states as a source of requests and feedbacks as

a source of acknowledgements .

...

L. -> L
... A ... B ... C ...
... ~ ,.. ~

Figure 4-3 Interconnection ojprocessing elements 'A: 'B' and 'C'jorming a pipeline.

An elastic pipeline is a variable depth symbol buffer. The pipeline can contain a

variable number of symbols between the minimum symbol buffer depth and the

maximum symbol buffer depth, the latter state being that of saturation.

The number of symbols held in the pipeline is dependent on the rates of symbol

supply and removal. If the removal rate is lower than the supply rate, eventually the

pipeline becomes saturated thus limiting the supply rate to be the same as the removal

rate.

If the removal rate is faster than the supply rate, the contents of the pipeline eventually

reach a minimum. In this situation, all elements contain a function of a copy of the last

symbol supplied to the pipeline. For example, if each of the elements shown in Figure 4-

3 act only as temporary storage, then all elements in the pipeline contain a copy of the

last symbol supplied to element A. As soon as a new symbol is supplied, it progresses

through the complete pipeline and appears at C, leaving each element in the pipeline

containing a copy of the symbol.

Figure 4-4 shows the sequence of events that might occur in an elastic pipeline. For

the sake of generality, two symbol types are shown. Symbol type 1 represents the

data state 0 or 1. Symbol type 2 represents the token state (spacer) for the RTZ coding

scheme and represents the alternative data state for 1 or 0 for the saturated coding

48

CHAPTER FOUR SELECTING A VERSION OF IFIS

scheme. As was the case in Figure 4-3, conventional data (symbol) flow is from left to

right, while feedback, described above, flows from right to left.

In Figure. 4-4, i) shows a stable saturated state; meaning that none of the processing

elements A, B or C can process symbols. According to the elastic protocol, the

pipeline cannot accept new symbols until a symbol is removed downstream.

Therefore, this state remains until a change on the feedback input to cell C occurs as a

result of downstream symbol removal. ii) As soon as data changes on the feedback

supplying element C, the protocol condition for the element is satisfied, thus allowing

a new element output to occur in step iii). Step iv) shows that element B has now

processed as a result of step iii), thus allowing element A to process during the next

clock cycle. This results in the state shown in step v).

I) KEY

Data-flow ---+
Feed-back _
E _ SYMBOl TYPE 1

11)
o _ SYMBOL TYPE 2

Ill)

Iv)

Figure 4-4 Data movement in an elastic pipeline. i) the stable state, ii) a change on the
feedback input to cell C at time O. iii) new output of cell C one clock cycle later at time 1.

ivY at time 2 the output of cell B has changed v) the next stable state.

Examination of Figure 4-4 as a whole, shows that symbols are copied (processed) by

the immediate neighbouring downstream element before being overwritten by an

49

CHAPTER FOUR SELECTING A VERSION OF IFIS

upstream neighbour. For example, the symbol held in element B is copied to element

C during step iii prior to being overwritten by a copy of the symbol held in element A

during step iv. This is characteristic of elastic pipelines.

It may be noticed that during step iii it would have been possible to change the data

applied to the feedback to element C. This is what would happen if data was

continually removed from the pipeline. By repeating steps iv and v while also

updating the feedback input to element C once every two clock cycles, the maximum

symbol rate of one element per two processing cycles is achieved.

4.4.2 Inelastic Pipelines

Inelastic pipelines contain a constant number of symbols. This is because symbols

move in lock-step throughout the pipeline. As a symbol appears at the output of the

pipeline, so a new symbol must appear at the input to the pipeline. Symbols are not

duplicated within inelastic pipelines.

I)

·4 ·4

11)

·4 ·4

KEY

Data-flow ~
Feed-back +--
E - SYMBOl. TYPE 1
o - SYMBOL TYPE 2

Ill) E

Figure 4-5 Data movement in an inelastic pipeline. i) the pipeline at any nominal time t .
. ii) the state of the pipeline at t+ 1. iii) the state of the pipeline at t+ 2.

The inelastic protocol requires that the quantity of data held in the pipeline remains

constant. For this reason, data is supplied to the pipeline at one end while data is

simultaneously removed from the other. As a result, the data held within the pipeline

progresses from left to right at the rate of one cell per clock cycle.

50

CHAPTER FOUR SELECTING A VERSION OF IFIS

4.4.3 Application of Protocols to IFIS

Figure 4-3 shows a generic pipeline that allows bi-directional transfer of infonnation

between neighbouring processing elements. In the asynchronous environment, the

infonnation is used to control data flow based on the readiness of downstream

processing elements to receive new data. However, in the IFIS environment, the

infonnation is used to control data flow based on its validity as interpreted by the

current processing element.

Prior to code validation in IFIS, time must be allowed for codes to stabilise. This

necessity is eliminated in the asynchronous environment because precautions are

taken to avoid race hazards, thus eliminating intennediate values from occurring

during transitions. The precautions taken in asynchronous designs are often costly in

tenns of complexity and should be avoided if possible.

The need to avoid the occurrence of intennediate code transitions in IFIS designs is

C' eliminated by ensuring that validation only occurs following a predetennined passing

of time. IFIS designs are synchronous and therefore all internal states are expected to

have stabilised prior to consecutive active clock edges. Validation is therefore applied

only to codes that have been stored in synchronous registers.

4.5 BEHAVIOUR OF ALTERNATIVE IFIS VERSIONS

The dual-rail protocols used in asynchronous designs are designed to allow processing

elements to resume processing as soon as specific requirements have been fulfilled.

The selection of nodes that are monitored to provide handshaking in IFIS can

influence the behaviour following the occurrence of a fault condition. The nodes

conventionally monitored in asynchronous designs are used as a basis for the protocol

in IFIS designs and the resultant halting behaviour is compared against the

requirement described in section 4.2. A new protocol is proposed and its behavioural

attributes are verified.

51

CHAPTER FOUR SELECTING A VERSION OF IFIS

4.5.1 Existing Protocol Conditions

Figure 4-6 shows three neighbouring cells within an IFIS pipeline. As was the case in

Figure 4-3, data flow is from left to right while feedback is from right to left. All cell

inputs appear on the left hand side cif each cell while cell outputs appear on the right.

The current cell refers to any cell that is currently under examination within the

pipeline. In Figure 4-6 it is apparent that the current cell monitors the predecessor

and successor cells by means of their data and feedback connections respectively.

Predessessor Current Successor

~ .. ~

. t t t Clock

Figure 4-6 Neighbouring elements within an IFIS pipeline.

The activation of the current cell depends on the compliance of the monitored outputs

to the protocol.

4.5.1.1 General behaviour

The behaviour of the current cell can be described in the following way:

Iff (the protocol condition is satisfied)

then

the next cell output = f(current input)

else

the next cell output = the current cell output

The protocol condition depends on the coding scheme and the type of pipeline

employed. According to the discussion in section 4.3.3 the codes presented in Table 4c

52

CHAPTER FOUR SELECTING A VERSION OF IFIS

1 can be classified into code sets such that codes of equal parity are placed in the same

set. For clarity, this classification is presented in Table 4-2.

Generic Label RTZCoding Saturated Coding
Scheme Scheme

Set 0 {O,l} {O,l }
Set 1 {spacer} {O*,l *}

Table 4-2 Code classification.

Considering that the union of Set 0 and Set 1 within a specific coding scheme

-
represents all codewords in that scheme, then let the union of Set x and Set x

represent all codewords in that scheme.

If the outputs of the predecessor, current and successor cells are labelled as S(P), S(c)

and S(s), respectively then the current cell behaviour for a cell according to an elastic

protocol is given below.

Iff((S(P) = Set x) and (S(s) = Set x))

then

next S(c) = f(S(P))

else

next S(c) = S(c)

Similarly, for the inelastic protocol, behaviour is described in the following way.

Iff((S(P) = Set x) and (S(s) = Set x»

then

next S(c) = f(S(P»

else

next S(c) = S(c)

53

--- ---

CHAPTER FOUR SELECTING A VERSION OF IFIS

4.5.1.2 Faulty couditions

The behaviour exhibited by the both the elastic and inelastic protocols under normal

conditions was presented in sections 4.4.1 and 4.4.2 respectively. This section

explores the influence of the protocol on IFIS designs when subjected to fault

conditions using an example architecture. This is done to discover if the expectations

described in section 4.2.1 are fulfilled. Figure 4-7 shows the architecture of the

example used to explore the behaviour of the existing protocols under fault conditions.

Figure 4-7 shows a shift register of the form described in Figure 4-6. The shift register

has coded data input at A and coded data output at Z. Furthermore, the intermediate

element outputs are observable and are labelled according to the parent element

names. · -------------Aa
~ EI~ent

FB ,
. I- -'

Element _ Element ~ Element

A
EO El E2

Z

EO El E2

Figure 4-7 Architecture used to demonstrate fault conditions.

In Figure 4-7 the dotted line shows the feedback from the element labelled El as

being separate from the element output. This is also the case for the remaining

elements in the shift register and more typically represents practical design

implementations. This can be attributed to the difference in output buffering required

as a result of fanout in complex designs. Furthermore, the clock line has been omitted

from Figure 4-7 for clarity. The fault site is marked by a. and is positioned such that

the effects are not observable at El but are observable by element E2. Such a fault

may be caused by a defect in the physical interconnect such as a crack (intermittent

behaviour) or may result from metal migration. The following discussions describe

behaviour resulting from the injection of a I -+ 0 fault injection and simulations of

behaviour under such fault conditions are presented where necessary. The generic

54

CHAPTER FOUR SELECTING A VERSION OF IFIS

behaviour of the design is unaffected by the coding scheme. The saturated coding

scheme described in section 4.3 is employed for the purpose of example.

Elastic protocol: According to the expectations from IFIS described in section 4.2.1,

self-transitions resulting from the processing of upstream elements signify an error.

Furthermore, once an error has occurred the protocol must prevent future data

propagation. The introduction of a temporary logic affecting fault has the effect of

temporarily halting data flow within the shift register because the protocol condition is

not fulfilled. However, once the fault is removed, it is possible for new data to be

correctly represented at the original fault site. Following data loss processing resumes

according to the behaviour described in Figure 4-4. The elastic protocol is therefore

incapable of ensuring permanent prevention of data propagation following fault

manifestation.

Inelastic protocol: Figure 4-8 shows a simulation of the example design under fault

conditions.

FAULT

RESET

CLOCK

E2 o o

z 0* o

FB U : 1

Fig we 4-8 Effects of a specific fault on the behaviour base on the existing inelastic protocol.

55

CHAPTER FOUR SELECTING A VERSION OF IFIS

The fault is activated between the rising clock edge labelled i and that labelled ii

following nonnal design' initialisation using the RESET signal. The fault becomes

apparent at the output to element E2 at the edge ii. This is because the input to E2 is

not El (0*) due to the fault a. Element E2 observes a 0 from El and a 0* from

element Z. This does not fulfil the existing inelastic protocol condition and so E2 does

not process. The halting is shown to propagate to elements Z and El at edge iii and to

element EO at edge iv. At the edge iv element El processes. This is because the stable,

halted, state of E2 belongs to the same state set as the most recent state held on the

output of element EO. The resultant transition at output El (I to 0) is illegal according

to table 4-1. Hence, this protocol condition does not satisfy the requirements defined

in section 4.2.1.

The reason that this behaviour occurs is that the difference between the initial halting

of the predecessor element and the successor element (say, EO and E2) is two clock

cycles. Thus the outputs of these cells belong to the same data set and therefore fulfil

the protocol condition for the current element.

4.5.2 Proposed Protocol Condition

In section 4.5.1 it was found that neither the elastic nor the inelastic protocol could be

guaranteed to completely prevent error recovery. They both exhibit the potential to

generate corrupt data. This is because recovery is inherent in the elastic protocol and

because an insufficient number of node values were considered by the inelastic

protocol. A modification to the inelastic protocol is presented and the behaviour is

analysed.

Examination of Figure 4-8 shows that the initial halt of all elements results in all

element outputs holding data from a single set (Set 0 or Set I). This follows from

halting being propagated at the rate of one element per clock cyc!e. Clearly, for fault­

free operation, the outputs of neighbouring elements always belong to different code

sets. To check this requires the monitoring of direct neighbours. The existing protocol

conditions do not perfonn this check.

56

CHAPTER FOUR SELECTING A VERSION OF IFIS

To address the problem highlighted in section 4.5.1 a new protocol condition is

proposed. The behaviour of the current cell according to the proposed protocol is

described in the following way.

Iff((S(P) = Set x) and (S(c) = Set x) and (S(s) = Set x))

then

next S(c) = f(S(P))

else

next S(c) = S(c)

Figure 4-9 Interconnection of processing elements ~: 'B: 'C: and 'D' according to the
proposed protocol condition.

Figure 4-9 shows the implication of the proposed protocol condition. The proposed

protocol condition requires that processing elements monitor their own outputs thus

increasing the number of inputs to each element. Figure 4-9 shows the additional self­

feedback as FBI while the existing successor output supplies FB2.

4.5.2.1 Fault-free conditions

The proposed protocol condition is now applied to the example introduced in section

4.5.1. For clarity, the signals labelled FB I in Figure 4-9 can be considered as internal

to each processing element, thus the architecture shown in Figure 4-7 still applies.

57

CHAPTER FOUR SELECTING A VERSION OF IFIS

RESET

CLOCK

A u

EO 0 1*

El 0* 1

E2 0

Z 0* 1

FB u

Figure 4-10 Behaviour of the proposed protocol under fault:free conditions.

Comparison of the inelastic protocol condition in section 4.5.1 and the proposed

protocol condition in section 4.5.2 reveal that under fault-free conditions, both the

behaviour and symbol rate are identical. Examination of Figure 4-10 shows this to be

the case. Figure 4-10 shows that under fault-free conditions the data progresses

through the pipeline at the rate of one element per clock cycle.

4.5.2.2 Faulty conditions

Despite identical behaviour between the inelastic protocol condition in section 4.5.1

and the proposed protocol condition in section 4.5.2 under fault-free conditions, the

behaviour of designs implemented according to the different protocol conditions can

differ under fault conditions.

In Figure 4-11, the fault is enabled between the rising clock edges labelled i and ii.

The cell with output E2 cannot process on the clock edge ii because the fault modifies

El causing its parity to be incorrect. Furthermore, unlike the scenario shown in Figure

4-8, element El cannot process on the clock edge labelled iv. While the outputs from

58

CHAPTER FOUR SELECTING A VERSION OF IFIS

element EO and E2 confonn to the protocol condition, the monitored output of El

itself is not from the correct data set. The protocol condition is therefore not fulfilled.

FAULT

RESET

CLOCK

A u 0* : 1* : 0 1* :

EO 0 0* .. : 1 : 1*: 0

El 0*

E2 0 0

Z 0* 0

FB u 0 1 * :

III Iv v

Figure 4-11 Behaviour of the proposed protocol under a single injected fault condition.

FAULT

RESET

CLOCK

A u 1* : 0 0* : 1 * , 0 1 * : o
!"

EO 0 O~.: 1* : 0
r····

El o· 0 0"

E2 0 0*, 0

Z 0* 0 : 0* : 0

FB 1* : 0*: 0 0* : 0* : 1 * : 1*

11 HI Iv

Figure 4-12 Behaviour of the proposed protocol under a single injected fault-condition and
where the code translation blocks ignore the effects of error detection.

59

CHAPTER FOUR SELECTING A VERSION OF IFIS

Figure 4-12 shows that the pipeline remains frozen even when data is continually

applied to the upstream/downstream pipeline inputs. This situation can occur if the

. circuit external to the pipeline ignores the halting information passed to it by the

pipeline itself. This may result from additional faults or from design techniques not

conforming to the specification.

4.5.3 Summary of Behaviour of Alternative Versions of IFIS

The behaviour of a potential on-line test system based on a commonly used

asynchronous (elastic) protocol under faulty conditions was described in addition to

the generic protocol under normal conditions. Furthermore, an inelastic protocol based

on monitoring the same number of nodes in the same logical position was examined.

Neither of these protocols satisfied the behavioural requirements specified in section

4.2.1. A modification to the inelastic protocol was proposed and the behavioural

attributes examined under fault-free and fault conditions. While the example only

highlighted a specific fault type, a more in depth examination of behaviour under

different fault conditions applied to a design implemented using the proposed protocol

condition is performed in chapter 7.

Table 4-3 summarises the behavioural properties associated with the different

protocol/coding techniques.

ProtocoVcode Maximum Maximum Halting type
combination symbol rate data rate (worst case)
Elastic-R TZ Y, clocks Y. clocks Temporary

Elastic-Saturated Y, clocks Y, clocks Temporary
lnelastic-RTZ lIc10ck Y, clocks Temporary

Inelastic-Saturated lIc10ck lIclock Temporary
Proposed-RTZ lIc10ck Y, clocks Permanent

Proposed-Saturated lIc10ck lIclock Permanent

Table 4-3 Behaviour a/the protocollcoding combinations.

60

CHAPTER FOUR SELECTING A VERSION OF IFIS

Table 4-3 shows that when considering data rate and halting behaviour, the proposed

inelastic protocol using the saturated coding exhibits the most attractive properties

within the context of on-line testing.

4.6 TEST COVERAGE ASSOCIATED WITH ALTERNATIVE VERSIONS OF IFIS

The maximum test coverage that can be achieved for a specific design is restricted by

its structure and the test vectors which can be applied to it. By definition, a protocol

restricts the vector set which can be processed by processing elements and therefore

potentially restricts the maximum test coverage achievable for a specific design.

The proportion of codes which allow processing is dependent on the coding scheme

used and the protocol in addition to the width of data to be carried by the code. Table

4-4 contains data relating to existing RTZ code/protocol combinations designed to

transfer data of width one.

Data Feedback RTZLegal RTZElastic RTZ Inelastic
code code State Process Process

00 00 ~ v
00 01 ..J
00 10 ..J ..J
00 11
01 00 ~ v
01 01 ..J
01 10 ..J ..J
01 11
10 00 ~ v
10 01 ..J
10 10 ..J ..J
10 11
11 00
11 01
11 10
11 11
Total 9 4 5

Table 4-4 Characteristics of existing protocol conditions on a single data bit RTZ code.

61

CHAPTER FOUR SELECTING A VERSION OF IFIS

All possible binary combinations obtained by concatenating the data code and

feedback code are represented in table 4-4. Those combined words that do not contain

the illegal RTZ code described in section 4.3.1 are marked in the RTZ legal state

column. The markers in the RTZ Inelastic Process and RTZ Elastic Process column

correspond to combinations that fulfil the appropriate protocol conditions.

ProtocoVcode Number of Number of possible Number of codes which
combination state codes binary codes cause processing
Elastic-RTZ 3(d+1) 2'(d+1) . 2"+ 2

Elastic-Saturated 2 2(d+1) 2 2(d+1) 2(d+2)

Inelastic-RTZ 3(d+1) 2 2(d+1) 2("+1)+1

Inelastic-Saturated 2 4d+1) 2 2(d+1) 2(d+,)

Proposed-RTZ 3(d+') 2'(d+') 2(d+1)+1

Proposed-Saturated 2,(d+2) 2,(d+2) 2(d+')

Table 4-5 Characteristics of code/protocol combinations carrying d data bits.

Table 4-5 describes the characteristics of the code/protocol combinations presented in

this chapter. In the table d represents the width of the data applied. Table 4-4 applies to

RTZ codes where d is 1. The infonnation contained in Table 4-5 is graphically

represented in Figure 4-13 and Figure 4-14.

PROPORTION OF POSSIBLE STATES WHICH ARE ALLOWABLE AND
THEREFORE CAUSE PROCESSING (IMPLEMENTATION INDEPENDENT)

~r---~

•

..

•

-+- ELASTIC RTZ
-INELASTIC RTZ
-Existing Saturated
- Proposed RTl
- Proposed Saturated

• • • No. oflndlpend,nllFIS DATA Inputl
..

Figure 4-13 Proportion of states that allow processing in different codelprotocol
combinations and with different input data widths.

62

CHAPTER FOUR SELECTING A VERSION OF IFIS

PROPORTION OF POSSIBLE STATES WHICH ARE ALLOWABLE
AND THEREFORE CAUSE CELL PROCESSING (CONVENTIONAL

DIGITAL IMPLEMENTATION)

",------------------------,

"
..

-+- ELASTIC RIZ
-INELASTIC RTZ
-Existing Saturated
-Proposed RTZ
- Proposed Saturated

"

3 I 5 11 7
No. of Independent IFIS DATA Inputs "

Figure 4-14 Proportion of binary state codes that allow processing in different code/protocol
combinations and with different input data widths.

Figure 4-13 shows the proportion of states for each coding/protocol combination that

fulfil the appropriate protocol condition. Figure 4-13 shows that the inelastic protocol

with RTZ coding appears to be the least restrictive of those examined. The

information presented in Figure 4-13 is independent of implementation, and therefore

ignores the illegal state that is inherent of providing three separate states using a dual­

rail coding scheme.

Figure 4-14 shows the proportion of protocol condition fulfilling codes for each

coding/protocol combination. The information contained in Figure 4-14 is specific to

binary implementations and is therefore more relevant to the remainder of the work

presented in this thesis. In Figure 4-14, the existing saturated codes are the least

restrictive of the schemes examined. Furthermore, as the data width increases, the

difference in potential restriction between all of the considered coding/protocol

combinations becomes indistinguishable.

63

CHAPTER FOUR SELECTING A VERSION OF IFIS

4.7 CONCLUSIONS

Evidence has been presented showing that data throughput; behaviour under fault

conditions and the potential to restrict on-line test coverage can all be influenced by

~. the choice of coding scheme, type of protocol and choice of monitored nodes.

Three sets of processing rules (protocols) were identified. Elastic and inelastic

protocols that required the monitoring of predecessor and successor outputs were both

found to be incapable of ensuring permanent halting after error detection. This is

inherent for elastic protocols because the states of monitored nodes do not change

concurrently, thus an unstable relationship between them exists. In the case of the

inelastic protocol this behaviour could be attributed to insufficient monitoring. This

was confinued by comparison with the third protocol: an inelastic protocol that

incorporates an additional condition (monitored node).

Data throughput is affected by the choice of protocol type (elastic/inelastic) and the

coding scheme. In the case of inelastic protocols all symbols move in unison.

Consequently, the symbol rate is the same as that for conventional binary systems.

The elastic protocol only allows symbols to progress following acknowledgement of

their previous use. This requires a minimum of two processing cycles to achieve and

therefore elastic protocols are limited to a maximum of half the processing rate of that

exhibited by conventional binary systems. Coding can limit the data throughput when

the symbol rate does not represent the data rate. The RTZ coding scheme separates

data with tokens and therefore falls into this category.

The potential to restrict on-line test coverage is caused by restricting the ratio of

codewords to non-codewords, thus restricting the range of vectors that can be used for

on-line fault stimulation. Evidence resulting from comparisons of the three protocols

shows that the additional protocol condition further restricts the ability to process,

thus restricting the ratio of codewords to non-codewords. Comparison of the coding

schemes shows that the RTZ coding scheme has a greater potential to restrict on-line

test coverage because of its lower ratio of codewords to non-codewords. Furthenuore,

64

CHAPTER FOUR SELECTING A VERSION OF IFIS

due to the imbalance in the RTZ coding scheme, the choice of protocol can further

influence this ratio.

Where increased test coverage depends on the application of specific vectors to the

processing element under scrutiny, the more restrictive coding/protocol combinations

are least likely to pennit the specific vector application. While the potential

constraints of the protocol/coding combinations indicate that test vectors can only be

chosen from a subset of all possible input vectors, this does not necessarily constrain

the test coverage exhibited by the chosen vectors. The test coverage exhibited by

applicable vectors depends on the suitability of the vectors to the circuit under test and

the structure of the circuit.

Based on the previous discussion in the context of the expectations presented in

section 4.2.1, the proposed protocol condition in conjunction with saturated dual-rail

coding offer the most attractive properties. This combination is therefore selected as a

basis for the design ofIFIS systems.

65

CHAPTER FIVE

IFIS CELL DESIGN

5.1 OBJECTIVES OF CHAPTER

The choice of IFIS protocol directly influences the interconnectivity of processing

elements (cells) within IFIS systems. The protocol was selected in chapter four. This

investigation is targeted at the internal circuit structure of the IFIS cells that support

the chosen protocol and dual-rail code. The objectives of this investigation are to:

• Understand the influence of applying different design techniques to the

generation of reference information and verification/error management

circuitry within IFIS processing elements.

• Select that structure which provides the best features in the context of on-line

testable systems. The selected structure will then be adopted as a template for

future designs.

5.2 INTRODUCTION

The structure of designs is known to affect the properties associated with them.

Within the context of design-for-test, circuit structure is tailored to provide the most

acceptable combination of test coverage and hardware penalty for the specific

application. This investigation examines the influence of the circuit structure applied

to IFIS processing elements on the following:

• Testability

• Data throughput

• Complexity

66

CHAPTER FIVE IFIS CELL DESIGN

These attributes were chosen because they are those which are commonly used to

distinguish between design for test techniques. Cell partitioning is considered and a

nwnber of alternative structures that were described in the review are applied to

processing element sub-blocks. The options, together with altemative proposals are

quantitatively· compared and a generic IFIS processing element architecture is

developed.

5.3 CELL PARTITIONING

Each IFIS processing element (cell) must be capable of providing reference data,

. performing validation and contributing to error management. Error management

results from validation of incoming data to each IFIS cell. According to the protocol

selected in chapter four, IFIS cell outputs are updated or they retain their previous

value depending on the validity of incoming data. This output data is transmitted to

other cells which in turn validate it. From the above discussion the processes of

computation and transmission are separate tasks which can be performed in parallel.

Figure 5-1 shows the generic cell structure implied by the above description.

fEEDBACK
0F<lIltMIl0N

COOED
DATA

r--

PIlOTOCOl
VERlFICA1l0N S
AND T
TRANSMISSKlN ~ 0
CONTROL

,
A

1
,..... G

E
-

-+ COMPUTATION

,
, , ,

--_.---------------------------------------,

Figure 5-IAnatomy of an IFIS cell.

COOED
DATA

In Figure 5-1 the cell boundary is marked by a dotted line. All signals, with the

exception of the clock and reset signals are represented using dual-rail codes of the

form chosen in chapter four. The clock and reset signal are carried by single wires in

the conventional sense.

67

-- ---- ---

CHAPTER FIVE IFIS CELL DESIGN

Figure 5-1 shows that the IFIS cell comprises three sub-blocks that perfonn the

functions of protocol verification and transmission control, computation and storage.

The functions of protocol verification and transmission control are perfonned within a

single sub-block that controls which data codes are to be transmitted according to the

validity of the codes appearing at the cell inputs. The computation sub-block operates

on data codes appearing at the IFIS cell inputs and generates IFIS coded outputs. The

computation block generates codes that represent a combinational function of the data

content of the codes appearing at the cell inputs. The storage sub-block is updated on

the rising edge of each clock cycle with data supplied at its inputs.· The sub-blocks of

interest within the scope of this investigation are the computation block and the block

responsible for transmission control. The remainder of this investigation is structured

to reflect this partitioning.

5.4 COMPUTATION

In Chapter two a number of techniques were described which pennit reference data to

be calculated for the purpose of validation. These techniques were classified as being

infonnation redundant, hardware redundant or time redundant. The techniques

described were not specifically intended for use within a system that is controlled by a

strict protocol like IFIS, and consequently modifications to the techniques need to be

made to pennit their use.

The generic modifications required to calculate IFIS codes are described and a

representative design technique from each redundancy category is presented. The

effects of design scaling in association with these techniques is assessed with respect

to the attributes of testability, data throughput and complexity.

5.4.1 Adapting Conventional Techniques to IFIS

It is the task of the computation block to accept dual-rail codes and generate dual-rail

codes. The dual-rail codes appearing at the computational block/cell inputs represent

68

CHAPTER FIVE IFIS CELL DESIGN

binary data words where each component bit is represented as an individual dual-rail

code. The dual-rail codes conform to the saturated four-phase coding scheme

described in chapter four.

Examination of the saturated coding scheme (shown in table 4-1) reveals that the t bit

from the dual-rail pair (t,f) always contains the binary representation of the coded

data. This implies that the data content of the generated output codes can be calculated

by examination of the incoming t bits alone.

The computation block output codes must belong to the same code set as the current

inputs. This is because the outputs of the computation block become the outputs of the

current cell on the next rising clock edge if the protocol is obeyed. If the symbol

movement within IFIS designs is to conform to the selected protocol, codes appearing

at the current cell outputs must belong to a different code set from the codes appearing

at the outputs of the predecessor/successor cells.

In chapter four the code sets were shown to be distinguishable by examination of the

parity of member codes. This suggests that output codes can be generated by knowing

which is the parent set of the input codes, and knowing the data content of the codes

to be generated. While it is important that the output codes are valid according to the

protocol, a number of techniques can be employed to generate them.

5.4.2 IFIS Code Generation: The Need for Redundancy

The discussion presented in section 5.4.1 suggests that the structure associated with

accepting and generating t bits (henceforth known as the t-structure) is independent of

the structure associated with accepting and generating f bits (henceforth known as the

f-structure). Indeed, the t-structure is conventional in nature.

Figure 5-2 shows the behavioural architecture that generates correct output codes to

satisfy the IFIS protocol under fault-free conditions but does not take fault effects into

account. The f-structure monitors the parity of a selected dual-rail input data bit (all

69

CHAPTER FIVE IFIS CELL DESIGN

should be from the same set) and ensures that the parity of all dual-rail outputs is the

same.

F bits F bits.

l~
•

T bits FUNCTION
T bits'

Figure 5-2 Code generation without computation protection.

The architecture shown in Figure 5-2, while generating IFIS codes, does not generate

the reference information independently from the data that it is supposed to protect.

Indeed, the reference information is calculated from it thus ensuring the occurrence of

fault masking under fault-conditions.

5.4.3 Relevant Design Properties

Unlike the context in which testability is normally applied, the on-line test

environment provides error detection based on the comparison between data observed

and reference data that was concurrently calculated. In the case ofIFIS, the actual data

and the reference data are combined to form IFIS codes at the output of the IFIS cell.

The IFIS codes themselves are checked for correctness by other IFIS cells. The ability

of codes to detect errors was defmed in [Russe1l89] and is called the error detection

abilty (EDA). The EDA is applied to on-line error detecting techniques and as such

assumes independence between generation of reference information and the data that

it corroborates.

It is well known that for dual rail codes all single bit errors can be detected because

the Hamming distance between codewords is 2. Therefore any error that is confined

either to data or is confined to reference generation is detectable.

70

CHAPTER FIVE IFIS CELL DESIGN

A scalable complexity approximation can be obtained for the architecture shown in

Figure 5-2 in terms of nand gate equivalents. To enable comparison with other

techniques while also providing an insight into design scaling, a function with known

scalability characteristics was selected.

The function is an an nxn cellular array multiplier. The particular architecture is

described in [AImainiS9] and comprises nl partial product and gates and nl_n full

adders. For such a multiplier with 2n outputs, 2n+1 exclusive-or gates are required to

realise the structure shown in Figure 5-2. As a basis for future comparison the

complexity characteristics associated with this design are presented in Table 5-1.

Structure Nand Gate Equivalent

And Gate I

XorGate 3

Full Adder S

Multiplier (S+I)n2_ Sn

Top 9n2-2n+3

Table 5-1 Complexity of an unprotected architecture for generating IFIS codes.

Table 5-1 shows the nand gate equivalent of each component where n represents the

number of bits in the multiplicand (multiplier). The nand gate equivalents shown are

approximations based on the number of MOS transistors in the CMOS

implementations of standard cells, where a nand gate comprises four transistors. The

entry labelled Top describes the number of nand gate equivalents in the complete

structure shown in Figure 5-2.

5.4.4 Information Redundancy

The architecture shown in Figure 5-3 constructs valid IFIS codes if the coded function

generates valid residue codes. If this is not the case, the exclusive-or gate supplied by

the comparator attempts to force the parity of all IFIS cell dual-rail outputs to be

incorrect. This implementation contains only combinational circuitry. The speed of

the components need therefore only be sufficient to ensure that function outputs are

stable within the duration of one system clock cycle.

71

CHAPTER FIVE IFIS CELL DESIGN

The IFIS protocol can detect any logical fault that affects only one rail of each dual­

rail output pair. This property is characteristic of dual-rail codes. Assuming a single

fault multiplicity, the fault can either occur within the f-structure or within the t­

structure.

Fbits --~ .--+t:~H~ F bits

A
1----"--"-"-----"1

T bits --~-,I f-j1-;:r=+B==~_+ T bits
+i-r-+!Arifhmeffc I r- ---- --,

Mutllplier I r~ - Q r

'i-f-"'; Comparator I

I __ .. _J

L-______ i

Key:

RGI

RGO

MA

Input Residue
Generator
Output Residue
Generator
Modular
Adder

Figure 5-3 Code generation with computation protection provided by information
redundancy

Under fault-free conditions the signal line 'A' should alternate on successive clock

cycles because it carries the parity of dual-rail codes on the cell inputs. Any fault that

affects 'A' either makes it assume an incorrect value or is insignificant. If 'A' is

incorrect the signal 'C' becomes incorrect and therefore the cell outputs belong to the

" incorrect code set, as defined in Table 4-1. Any fault that is detectable by the residue

coding scheme causes the signal line 'B' to rise. This causes 'C' to be inverted

causing the cell outputs to be incorrect. If a fault occurs on 'B' such that it remains at

zero, this is not detectable. For this reason, the ability of the function block to generate

codes that accurately represent its internal integrity is less than the ability of the

residue code to detect errors within the t-structure. The architecture exhibits the

following additional limitations:

• Increasing the number of bits in the residue (to increase probability of

error detection) decreases the suitability of the architecture. This is

because the number of bits in the IFIS data inputs must be exactly

72

CHAPTER FIVE IFIS CELL DESIGN

divisible by the number of bits in the associated residue prior to

multiplication if a low cost residue code is to be used.

• Although it is possible to generate residue codes for Boo lean algebra

functions, the area overhead can be significant in comparison to the area

overhead incurred for arithmetic functions [Russe1189].

Table 5-2 shows the scalable nand gate equivalent of each component in the

architecture with the exception of those defined in Table 5-1.

Structure Nand Gate Equivalent

Arithmetic Multiplier 9n2
- 8n

Residue Multiplier 20

Modular Adder (MA) 3Xor+ 8

Residue Generator (RGi) «n-l)/2)MA

Residue Generator (RGo) (n-l)MA

Comparator 4Xor+2

Top 9n2+38n

Table 5-2 Complexity of an architecture protected by information redundancy.

The Table applies to a two check-bit residue code (base 22-1=3). The modulo adders,

residue generators and comparator are therefore identical to those described in

[Russe1189] .

. 5.4.5 Hardware Redundancy

The architecture shown in Figure 5-4 uses hardware redundancy to generate reference

information and data independently. As was the case in section 5.4.4, this structure is

purely combinational and therefore the speed of the components need only be

sufficient to ensure that function outputs are stable within the duration of one system

clock cycle. The f-structure in Figure 5-4 is constructed such that it forms a self-dual

function as described in [Shedletsky78]. The employed exclusive-or structure ensures

that the values held at 'A' and 'B' are always identical under fault-free conditions.

The same properties apply to the values at 'C' and 'D'.

73

CHAPTER FIVE IFIS CELL DESIGN

r

~~ Multiplier -S~
~ F bits. F bits ..

, •

j,., 1" p T
"w

B .. D .. ,
T bits Multiplier T bits

Figure 5-4 Code generation with computation protection provided by hardware.redundancy.

Under fault-free conditions, the signal labelled 'P' alternates with each successive

clock cycle. Any fault that causes 'P' not to be correct ensures a code from the

incorrect code set to appear at the function outputs. The independence of the f­

structure and the t-structure ensure that incorrect codes are formed at the function

output under all excited fault conditions that affect only the outputs of the t-structure

or the outputs of the f-structure. This architecture has the following advantages:

• The architecture is generic and can be. directly applied to any Boolean

function. Furthermore, being generic facilitates the design process.

• Test patterns generated for testing one internal function can be used to test

the other identical function in parallel during production test. This

minimises pattern generation time and minimises production test time.

• All checking is performed by the IFIS code checker, thus maintaining the

conceptual design partitioning.

Structure Nand Gate Equivalent

Multiplier 9n2 _ 8n

Xor 3

Top 18n2 -4n+3

Table 5-3 Complexity of an architecture protected by hardware redundancy.

74

CHAPTER FIVE IFIS CELL DESIGN

Table 5-3 shows the scalable nand gate equivalent of each component in the

architecture shown in Figure 5-4.

5.4.6 Time Redundancy

The architecture shown in Figure 5-5 uses time redundancy to generate reference

information and data independently.

p

F bits ..,
A C ..,. F bits

L~ l.:4;;-
T bits r '" ,

'"
-

1

B -':;r Multiplier "'t' I"" 4 Sync,
Reg.

Tblts T-1ype '" """" Flip-Flop "'" - D ~

I 1-
Figure 5-5 Code generation with computation protection provided by time redundancy

Unlike the architectures based on information redundancy and hardware redundancy,

the components must be fast enough to perform calculations twice within the duration

of a normal system clock cycle.

A similar exclusive-or structure is incorporated in the f-structure to that in Figure 5-4

such that under fault-free conditions 'A' and 'B' carry the same values. A similar

observation holds for 'C' and '0'.

The operation of the architecture shown in Figure 5-5 is based loosely on that

described in [PateI83], During the first calculation step the value held at 'B' is

operated upon and the answer is stored in the synchronous register. Then the output of

the synchronous Hype flip-flop toggles thus disabling the register and selecting the

value held at 'A'. 'A' is processed through the multiplier using a different path to that

used for processing 'B'. The shifted output of the multiplier appears at 'C' in time for

the function outputs to be stable by the next rising system clock edge.

75

CHAPTER FIVE IFIS CELL DESIGN

A description of fault-conditions affecting 'P'. was described in section 5.4.5. In

[pateI83] it was shown that for multiplication, a single bit shift in both the

multiplicand and the multiplier is sufficient to ensure that fault masking does not

occur. Consequently single faults are always detectable for the described multiplier.

The following disadvantages are associated with this architecture:

• A local clock generator is required to produce a local clock for the

function. This can cause testability problems by increasing the number of

sequential elements, thus adding nodes with low levels of controllability

and observability.

• Due to the requirement for storage, test pattern generation for such a block

requires a sequential test pattern generator unless the synchronous register

itself provides additional test access for use during production testing.

• The scaling of the arithmetic function outputs is dependent on the

function. If the function is an adder, then only one dividing shift is

required (11+11 = «110 + 110) shifted once). However, 11 multiplied by

11 = «110 x 110) shifted twice».

• The same principle of operation carmot be applied to Boolean functions.

Structure Nand Gate Equivalent

Multiplier (n+1) x (n+1) 9n2 + IOn + 1

Multiplexer 3

T-type Flip-flop 7

Register (width 2n) 14n

Top 9n2+42n+ 18

Table 5-4 Complexity of an architecture protected by time redundancy.

Table 5-4 shows the scalable nand gate equivalent of each component in the

architecture shown in Figure 5-4.

76

CHAPTER FIVE IFIS CELL DESIGN

5.4.7 Summary of Computation Techniques

A number of alternative computation block architectures have been presented and

their characteristics have been discussed. Table 5-5 summarizes the most important

characteristics of the alternative techniques in the context of IFIS computation block

design.

.

Protection Suitability Suitability Protocol Effect on
Method to to Non- Based SSA Circuit

Arithmetic arithmetic Coverage Speed
None " " Very Iow -equal to

(behavioural) dual
Residue " "oO Statistically <dual
coding high
Duality " " 100% -1.0
Pipeline " X 100% max. =0.5

Table 5-5 Suitability of different architectural design approaches to the IFlSfunction.

All of the described techniques can be used for designing arithmetic computation

blocks. However, residue coding is known to be inefficient for protecting logical

(non-arithmetic) functions [RusseII89]. This is characteristic of arithmetic codes.

20000

18000

'"
16000 ...

Z
W 14000
..J

~ 12000
:> a w 10000
W

< '000
Cl
C

.000 Z
<
Z

'000

2000

0
0

Complexity comparisons for differing architectural implementations
of an IFIS function based on cellular multiplication

-Duallly
-Pipelined
-Residue
- Behavioural

• 10 15 20 25 30 35

NUMBER OF IFIS INPUT BITS

Figure 5-6 Complexity comparison of the techniques applied to computation block design.

77

CHAPTER FIVE IFIS CELL DESIGN

While it was shown that non-arithmetic operations could be protected by the pipeline

architecture used in [PateI83], the architectures were all regular in nature. This

technique is not suitable for non-datapath Boolean functions.

The protocol based single stuck-at (SSA) fault coverage refers to the proportion of

faults that cause protocol disruption. A qualitative approach has been applied because

the values depend on the ratio of collapsed faults within a function block to the

complete number of collapsed faults existing within the computation block (IFIS cell).

The effect of different techniques on circuit speed is described with respect to a

conventional equivalent implementation.

Figure 5-6 provides a graphical representation of the complexity data accompanying

the descriptions of each design alternative. Clearly, the architecture based on hardware

redundancy results in the most complex designs.

5.5 TRANSMISSION

The selection of codes for transmission to other IFIS cells is based on the adherence of

cell inputs to the IFIS protocol. As such, the task of transmission control can be

partitioned into the sub-tasks of data validation and data selection. This partitioning

leads to independent circuits that perform the separate tasks. The partitioned design

option implies a clear boundary between the sub-functions thus allowing the

application of a number of standard design approaches to the task of data validation.

An alternative approach is to design a single unit that performs both tasks, without

constraining the structure to contain a logical interface between them. This approach

may lead to a more efficient design.

A number of alternative techniques for realising the different partitioning options are

presented. The effects of design are assessed with respect to the attributes of

testability, and complexity.

78

-- -------------------------------------

CHAPTER FIVE IFIS CELL DESIGN

5.5.1 Partitioned Design

A number of design techniques are presented for the separate tasks of code validation

and code selection. The techniques are compared with respect to complexity and

single stuck-at fault coverage.

5.5.1.1 Detection alternatives

The task of the presented architectures is to check the validity of the IFIS codes

appearing at the IFIS cell inputs and generate an output accordingly. Figure 5-7 shows

the architectures that were chosen for comparison.

The decoder architecture shown in Figure 5-7(A) is that which is directly derived from

the behavioural description of the validation circuitry and synthesised using the

Intergraph tools. When the parity of the codes placed on the dual-rail data inputs and

successor cell feedback are all even and the parity of the current cell output is odd or

visa-versa, then the design output assumes a logic' I '.

A)

SELF
FEEDBACK

SUCCESSOR
FEEDBACK

DUAL·RAlL
DATA

Cl

b c, ." ~VALID .
'--------' rl·I!;····~····~~~

~ ~~n
,.1- J I !
L. .. ~ .. _ ... _ J GfP

[f] : NOMINAL FUNCTION

IQ] : DECODER
~ : COMBINATIONAL CIRCUIT

B)

SELF
FEEDBACK

SUCCESSOR
FEEDBACK

DUAL·RAlL
DATA

D)
SELF

FEEDBACK

SUCCESSOR t
FEEDBACK tD

DUAL-RAlL t
DATA f

Figure 5-7 Protocol validation architectures. A) Decoder B) Exclusive-or tree C) Group
Parity Prediction based protection D) Self-checking checker hybrid.

79

CHAPTER FIVE IFIS CELL DESIGN

The exclusive-or-tree architecture shown in Figure 5-7(B) forms a comparator.

Exclusive-or trees are known to be difficult to test under production test conditions

because of the inability to control internal circuit nodes independently. However, the

on-line test coverage afforded by IFIS codes applied to these structures is unknown.

When the parity of the codes placed on the dual-rail data inputs and successor cell

feedback are all the same and the parity of the current cell output is different then the

design output assumes a logic' I ' .

The ability of an on-line test system to test the checking circuitry in addition to the

circuitry that it protects is evidently attractive. The IFIS validation circuitry is no

exception. The architectures presented in Figure 5-7(C) and Figure 5-7(0) are targeted

at fulfilling this goal.

The group parity prediction architecture shown in Figure 5-7(C) was presented in

[Fujiwara84] and can be applied to any combinational design. It is not specifically

targeted at IFIS and consequently is not shown with IFIS specific modifications. This

technique checks the outputs of the combinational circuit 'Cl' against reference data

provided by 'C/. The relationship between Cl and C2 is such that when combined by

the function 'F', members of a specific code set occur at 'Z', where Z={ZO,ZI, .. Zn}.

This is definable at the time of design and determines the valid codeword inputs to the

output decoder shown in Figure 5-7C. Zo, ZI and Zn are shown in Figure 5-7C. To

access parity information within an IFIS code checker, the checker inputs can be

checked directly. The only circuitry thus checked becomes an array of exclusive-or

gates. To check this array (Cl) requires that C2 is an array of exciusive-(n)or gates,

which increases the circuit complexity by -100%. However, the nature of IFIS code

sequences ensures that if computation blocks are fully testable, then the parity

checking gates within any IFIS checker can be fully exercised. If an incorrect output is

generated by the IFIS checking circuitry then the characteristic halting takes over. The

above discussion preciudes further examination of this architecture.

The self-checking-checker hybrid shown in Figure 5-7(0) is based on a self-checking

dual-rail checker described in [Siewiorek92]. The SCC expects and only generates

80

CHAPTER FIVE IFIS CELL DESIGN

odd parity codes under fault-free conditions. The outputs ZIP and Z2 are additional

IFIS cell outputs and thus must form correct IFIS codes under fault-free conditions.

This increases the observability of the output of validation checking circuitry. The ZI

and Z2 outputs are used to control code selection. When the parity of the self­

feedback input is even (odd), the parity of the remaining dual-rail inputs should be

odd (even) and the ZIP and Z2 outputs should form an odd (even) parity code.

a). Complexity

Once a specific checker architecture has been chosen, it must be possible to tailor it to

the specific application.

SELF
FEEDBACK

SUCESSOR
FEEDBACK

DATA
BIT 1

DATA
BIT N

18>-------11

18---i1

:8:::)))1·· .:.

I El::::::::::::::::)) :::~:>i:::::: .. :.

iJ------1I~VALlD

Figure 5-8 Generic decoder architecture.

In the case of the code checking circuitry for IFIS cells the number of coded data

inputs to the IFlS cell dictates the complexity of the checker used to validate them.

Figure 5-8 shows a generic implementation of the decoder that was introduced in

Figure 5-7. This circuit is used as an example to describe how input scaling effects the

complexity of the various architectural alternatives.

Figure 5-8 shows that irrespective of the number of dual-rail data inputs, the number

offeedback inputs remains constant at 2. The generic architecture thus contains 'n+2'

excIusive-or/exclusive-nor gates and one two-input nand gate. The complexity of the

remaining two gates varies according to 'n' such that together they contain 4(n+2) + 2

81

CHAPTER FIVE IFIS CELL DESIGN

transistors. This is equivalent to 'n+2' two-input nand gates and an inverter. Based on

the nand gate equivalent for an exclusive-or/exclusive-nor gate used in Table 5-1, the

total generic complexity associated with this architecture is (3+ 1)(n+2) + 1.5 nand

gate equivalents. Table 5-6 describes the effects of scaling 'n', the number of dual-rail

data inputs, on the complexity of the examined architectures.

Architecture Nand Gate Equivalent
Decoder 4n +9.5

Exclusive-or tree (13n + 26) 12
SCChybrid 9(n+ 1)

Table 5-6 Complexity of alternative checkers.

b). Test coverage

The maximum test coverage that can be exhibited by a design depends on the design

structure and the range of vectors to which it can be subjected. Conventional

synchronous designs are frequently subjected to structural tests during production

testing. To simplify test application and response retrieval test structures are

introduced that allow access to combinational circuit inputs and outputs. This is the

scenario assumed when referring to production testing in this thesis.

In Chaper four, a potential restriction in the range of values appearing at the inputs of

IFIS cells was identified. This restriction was due to the IFIS protocol. As such, the

effects of this restriction can be quantified in terms of the maximum test coverage

affordable by a set of protocol obeying (those occuring under fault-free conditions)

vectors when applied to specific design structures. Furthermore, advantage can be

taken of the halting properties of the IFrS methodology. By introducing an incorrect

IFIS code, the halting mechanism can be exercised. This results in a cell freeze under

true fault-free conditions; the only recovery being a system reset. Figure 5-9 shows a

specific implementation of the decoder architecture which is used as an example to

describe the effects of changing On' on the maximum single-stuck-at fault coverage

achievable under the conditions described above. The inputs SFB_T, SFB], FB_T,

FB_F, A_T and A_F combine to form the dual-rail self-feedback, successor feedback

82

CHAPTER FIVE IFIS CELL DESIGN

and data inputs respectively.

In Figure 5-9 the positions and multiplicity of certain stuck-at faults have been

labelled. For example, this design possesses six input lines with twelve possible single

stuck-at faults associated with them. Generally, this equates to 4(n+2) SSA faults. To

represent the physical implementation of a design more than two SSA faults can be

associated with a single logical node. This is the case for the outputs of gates 'U', 'V'

and 'W'. The outputs of these gates can be directly associated with 2(n+2) possible

SSA faults. Due to the fanout of these nodes, additional SSA faults are associated with

the inputs of gates 'X' and 'Y'. Fault collapsing results in the total number of faults

described in Figure 5-9.

A_T
B]

II,~ __ --HU

ID>-----H V

W
I
I
I

12 6

4(n+2) 2(n+2)

Total collapsed stuck-@ faults
Total undetectable by protocol
Total detectable by protocol
Most detectable by freeze

= 28 = 8 n+2! + 4
= 7 = 2 n+2 + 1
= 21 = 6n+2 + 3

Total detectable by production test
=21 +2 =6n+2l+5
= 28 = 8 n+2 + 4

)::r-'7I'''''-L_--IC::) VAliD

'S@l Y
I
I I
6 2 2

2(n+2)

Figure 5-9 Test properties of the decoder architecture where n is equal to 1.

Protocol obeying vectors cannot simultaneously sensitise the paths from the output of

cell 'X' to cell 'Z' and from cell 'Y' to cell 'Z'. Consequently the faults labelled at the

inputs to cell 'X' and cell 'Y' are not testable by the protocol. Similarly, under fault­

free conditions, the output of cell 'Z' never assumes a logic '0' and the stuck-at-l

fault associated with it is never tested. The total number of SSA faults not testable by

protocol obeying vectors is thus 2(n+ 2) + l.

An incorrect code combination applied to the decoder inputs causes the outputs from

83

CHAPTER FIVE IFIS CELL DESIGN

cell 'X' and cell 'Y' to be sensitised and an additional SSA fault on one of their

respective inputs is tested. In this case a freeze was suggested as resulting in the

vector (1,1,0) occurring on the cell outputs (U,V,W). The SSA fault tested by this

specific occurrence is marked with an asterisk in the figure. When no fault exists

within the decoder, the inputs to cell 'z' assume a logic' l' and the decoder output

assumes a logic '0', thus testing it for a stuck-at-l condition. An induced freeze thus

tests for an additional 2 faults.

Further examination of Figure 5-9 shows that the faults undiscovered by the protocol

followed by a freeze are located at the inputs to two gates namely, gate 'X' and gate

'Y'. Only one of these faults is tested by the freeze condition. Anapproach that could

reduce the need to check these faults could be to implement the complete checking

structure as a standard cell and design the connections to these nodes defensively.

While still being testable during production testing, the requirement to continually

check them in the on-line test environment would be reduced. This technique would

not be suitable for application to all nodes because it invariably increases the physical

area of the standard cell and could become prohibitive. The effects of applying this

method are described within Table 5-7 in the row labelled *Decoder.

Architecture Collapsed Production Protocol Protocol +
SSAFaults Test Freeze

Decoder 8(n+2)+4 8(n+2)+4 6(n+2)+3 6(n+2)+5
* Decoder 8(n+2)+4 8(n+2)+4 6(n+2)+3 6(n+2)+4
(std cell) [6(n+2)+4]

Exclusive-or II(n+2)+2 10(n+2)+2 10(n+2)+1 10(n+2)+2
tree

SCChybrid 30n+22 30n+22 30n+22 30n+22

Table 5-7 Maximum SSA test coverage for alternative checkers.

Table 5-7 describes the total number of collapsed stuck-at faults and the maximum

coverage under different test conditions in terms of n: the number of dual-rail data

inputs to the IFIS cel\. These descriptions were obtained by applying the techniques

described in the above example to the examined architectures.

84

CHAPTER FIVE IFIS CELL DESIGN

5.5.1.2 Data-flow Control

The task of the presented architectures is to supply the storage block within the IFIS

cell with its own, current output, or with the output of the computation block. Figure

5-10 shows the considered architectures.

The simple multiplexer array, shown in Figure S-IO(A), accepts a single control signal

(valid signal) which when high causes the selector to route the output of the

computation block to the IFIS cell output. The valid signal is that which is generated

by selected architectures described in section 5.5.1.1.

A)

VALID
SIGNAl

FROM
SlORE

FROM
FUNC110N

B)

Zl

Z2

FROM
STORE

FROM
FUNCllON

.....
c-&'

~

~
2P

~ /

2P
'==" /

/

1 2P
/ r

o SEl
2P, 2P

MUX
LO/&El 1

I MUX
2P ~

2P,1

1 10
o &El SlORE

MUX
1

Figure 5-10 Selector architectures for selecting one of two busses. each containing p dual-
. rail codes. A) Simple multiplexer array. B) Selector controlled by a dual-rail code.

The selector controlled by a dual-rail code, shown in Figure S-IO(B), causes data to be

routed from the computation block output to the IFIS cell output when a dual-rail code

of odd parity appears on the control lines 'Zl' and 'Z2'. This architecture is suitable

for use with the SCC hybrid shown in Figure 5-7. The Zl and Z2 outputs from the

SCC hybrid are connected directly to the Zl and Z2 inputs of the selector respectively.

The data contained in Table 5-8 summarises the effects upon complexity, total number

of collapsed stuck-at faults and maximum number of detectable faults for each of the

examined selector architectures. This information was obtained in the same way as

previously described.

85

CHAPTER FIVE IFIS CELL DESIGN

Architecture Complexity Collapsed Production Protocol P rotocol
SSA Faults Test + Freeze

Conventional 6p 16p [+2] 16p [+2] lOp [+ I] I 4p [+2]
multiplexer
Multiplexer ISp 4Sp [+4] 4Sp [+4] 36p [+4] 4 2p [+4]

for SCC guard

Table 5-8 Characteristics of the selector units.

In Table 5-S 'p' represents the dual-rail data width of the computation block output.

The selector architectures connect to the outputs of validation circuitry. As such, the

number of combined collapsed stuck-at faults is not accUrately represented by

summing those in each circuit because the connected nodes would be duplicated. The

numbers within square brackets refer to the additional faults that must be considered if

. each architecture is to be considered as stand-alone.

5.5.2 Non-partitioned Design

These design alternatives combine the functionality of code validation and selection

into a single design block. This design approach does not impose a conceptual

interface between the functions and therefore does not inflict artificial constraints on

the circuit. The need to impose a freeze on the IFIS system to test the single

communication path between the otherwise separate functions may therefore be

eliminated.

Figure 5-11 shows a single architecture that exhibits the functionality described. In

Figure 5-11A the top level architecture is shown, while Figure 5-11B shows the

selector block. The self-feedback and successor feedback are shown as 'SFB' and

'FB' respectively. The data inputs, labelled 'DN' in Figure 5-IIA, also connect to the

control input labelled 'CNTRL(N+2), in Figure 5-11B.

The architecture selects data codes from the computation block or the storage output

depending on the codes that it receives. The computation block outputs are selected if

the parity of the IFIS cell data codes and the parity of the successor cell feedback are

all even while the parity of the current cell output is odd, or visa-versa. Otherwise, the

86

CHAPTER FIVE IFIS CELL DESIGN

current cell output is selected.

A)

2\N+~ [:' B=lDr------,

DN B:::::j]>!r-... __ __ .,

B)
~I ~ __________________ ~

CNTRl2 0-

CNlRl
(N+2)

,rrFRCM ~--r----,
FUNcnON

A

err FRCM 0-+-1
SIORE

I.-. ___ ~ ____ .J

N+3 MULTIPlEXERS

Figure 5-11 Combined decoder/selector architecture.

Examination of Figure 5-118 shows that under fault-free conditions, when the parity

of 'DN' is even, the path from the function to the selector output via the '0'

multiplexer inputs is taken. Conversely, when the parity of'DN' is odd then 'A' is

logic level '1' and the route via the '1' input of the output multiplexer is taken. Under

all fault conditions the storage output is selected.

A)

10
SIORE

8)

CNJRll

CNlRl2

CNIRl(N+2) [g. , i'

:~J:~~ ~M~ll
1 i

err FRCM ______ .L! ____ .1
STORE \. ____ ~ __ ~)

N+2 MILTIPlEXERS

Figure 5-12 Combined comparator/selector architecture.

Cl

10 SIORE

Figure 5-12 shows an alternative architecture based on comparison rather than

decoding. The labelling convention adopted in Figure 5-11 is also used in Figure 5-12.

Figure 5-12A shows the top level architecture and Figure 5-128 shows the structure of

the selector within Figure 5-12A. Under fault-free conditions, the parity of'DN' is the

87

CHAPTER FIVE IFIS CELL DESIGN

same as the parity of 'FB' and is different from that of 'SFB'. This results in all

signals with the prefix 'CNTRL' being set to zero, thus routing the computation block

outputs to the store.

Architecture Complexity Collapsed Production Protocol Protocol +
SSAFaults Test Freeze

Decoder/ 3(n+2) + 12pn+9n+ 12pn+9n 6pn+ 7n 6pn + 17n
selector 6p(n+3) + 48p+ 17 +48p+17 +36p+ +38p+ 14

«n+l)/2) 14
Comparator / 6(n+2) + 12pn + 12n + 12pn +12n 6pn+ 8p 8pn+ 12p

selector 6p(n+2) 24p+24 + 24p+24 +lln +22 + lln+23

Table 5-9 Characteristics of the combined checker/selector architectures.

The characteristics of the combined architectures were obtained using the same

techniques as those previously described and are contained in Table 5-9.

5.5.3 Summary of Transmission Control Techniques

A number of different architectures have been presented and their characteristics

described. To compare the design techniques in a quantitative way requires that a

relationship be established between the number of dual-rail data inputs (n) and the

number of dual-rail outputs from the computation block (p). Clearly not all Boolean

functions can be scaled. However, the multiplier example used in section 5.4 has 2n

inputs and 2n outputs. For the purposes of comparison, it is therefore assumed that the

data transmission controllers are part of an IFIS cell containing such a multiplier

structure.

Figure 5-13 combines data from Table 5-6 to Table 5-9 inclusive and shows a

comparison of the effects of scaling n on design complexity. In Figure 5-13 the

complexities of the combined architectures, namely 'DEC_MUX' and 'CMP_MUX',

are shown not to scale favourably. Conversely, the partitioned architectures scale in a

similar way to one another in a linear fashion.

88

CHAPTER FIVE IFIS CELL DESIGN

Complexity Comparisons for Data Transmission
Controllers

SOOO -----------------------,

7000 .,
C 6000 ..
~ 5000
::J

'" W 4000

~DEC_Valid

-DEC_MX
-CMP_Valid
-CMP_MX

~
(!) 3000 ..,

- DECvalid_std

; 2000
Z

1000

···-SCC SEL

~.-.~-.. -----..
o~~~~·~-·~·-~-·~--±-·± .. -~·-~--± .. ·~· .. ~-.. ~·--~ .. ·~--~·-~--~""~-~~~..J

o 5 10 15 20 25 30 35

Number of Inputs

Figure 5-13 Scaling of design complexity for the alternative architectures.

Figure 5-14 follows the same labelling convention as that adopted in Figure 5-13. The

maximum single stuck-at fault coverage for architectures based on comparison is

shown to be limited to values of less than 100%. This is because of the inability to

control internal circuit nodes independently even when access to design inputs is not

restricted.

Maximum Production Test SSA coverage

100 --. "11- a-a--II-11 -.-.--.-'.' ,.-,.,·,11".".-." 11'.-11-- .,111-." •• ' 5- 11-11-'5-11-11-11-

" ..

92

"
oo~--_--_--_--_---_--_--~ , 10 " 20 " 30 "

Number of Inputs

Figure 5-14 Maximum production test coverage.

-+-OEC_Valid
-&-DEC_MX
-CMP_Valid
-CMP_MX
""'*- OECvalid_st
.... ·scc SEL

89

CHAPTER FIVE IFIS CELL DESIGN

Maximum Protocol SSA coverage

00,--,

"
'-
'-.~~--.---.. -.-.... -.-.. ----.--......... - - .. ---... -----_.-.-.----_ .. _-----.-.-.

-DEC_valld
-DEC_MX
-CMp_valld
-CMP_MX
- DECvalld_std

i<80 ~
~7S :::::::::~============================ ::
~ 70

S
•..•• SCC_SEL cc"

::l
"
"
"L-_-====::;::==========_--J

o • 10 " 20 " 30 35

Number of Inputs

Figure 5-15 Maximum test coverage when restricted to protocol obeying vectors.

Figure 5-15 shows the effect of scaling on the maximum single stuck-at fault coverage

provided by protocol obeying vectors. This is a comparison of the on-line testability

exhibited by the various scaled architectures. The best on-line testability is provided

by the self-checking checker based architecture (which has a dedicated selector

design). The lowest protocol SSA coverage is exhibited by those transmission

controllers implemented using the combined (non-partitioned) architecture.

Maximum Protocol + Freeze SSA coverage

,,~---.~-------------------------------------,

" -* ';'80
Cl
I! 15

~ S 70

~ 65
",

" ..
oo~----__ ----__ ----____ ----__ ----__ ----__ ----~

o 10 " " " 30 "
Number of Inputs

-DEC_Valld
--OEC.MX
--CMP_Valld
--CMP.MX
--OECvalid_std
··--scc SEL

Figure 5-16 Maximum test coverage when restricted to protocol obeying vectors followed by
an enforced freeze.

90

CHAPTER FIVE IFIS CELL DESIGN

In addition to protocol obeying vectors, test coverage can be increased by initiating a

system halt. This causes the IFIS cells within the system to freeze. Figure 5-16 shows

the combined maximum single stuck-at fault coverage which results from maximum

protocol potential followed by such a freeze. Figure 5-16 shows that the difference in

SSA coverage between the architectures that employ partitioning, is less following a

freeze that shown in Figure 5-15.

5.6 CONCLUSIONS

Comparison of four different techniques for designing the functional block within

IFIS processing elements offers evidence that architectures based on duplication

exhibit the highest on-line test coverage (100%) and the highest complexity.

Additionally, this technique does not reduce the data throughput in comparison to

conventional binary systems and does not restrict the range of applications that can be

realised. This approach has the additional advantage over the other techniques in that

it facilitates design construction due to its modular nature. Furthermore, it simplifies

manufacturing test vector generation by permitting exploitation of vectors originally

intended to test the conventional binary equivalent design. While the complexity

overhead associated with this technique is unattractive, it is the only technique of

those examined that fulfils the test coverage, application range and data throughput

requirements specified earlier in this thesis.

The degree of checking that can be achieved without resorting to periodic off-line

testing reflects the level of confidence that can be placed in an on-line testable system

at any point in time. It is clearly advantageous for this confidence level to be high.

Comparison of alternative techniques for achieving data flow control, based on

incoming data validity, show that specific architectures based on comparators are not

100% testable even when unrestricted access is afforded to cell input/outputs. For an

on-line testable system to display such attributes is clearly unacceptable.

Of those techniques that provide 100% production test coverage, the best compromise

91

CHAPTER FIVE IFIS CELL DESIGN

between on-line test coverage and complexity is, perhaps surprisingly, not displayed

by designs derived from a self-checking checker. This is because the selector circuitry

required to utilise an SCC itself contains untestable nodes. Other techniques aimed at

removing the single signal that controls data flow all result in significant complexity

penalties in addition to an increase in the number of untestable nodes.

Based on the above discussion, it would seem that a favourable compromise between

design complexity and on-line test coverage (without the need for a production tester)

is provided by the simple decoder and conventional multiplexer approach. While this

does leave the possibility of a single point of failure (select signal), this need not

become a weakness if the remainder of the IFIS computation block is code disjoint.

This is because a non-codeword appearing at the computation block (cell) inputs

results in a non-codeword cell output in this case. This is then detected by the

neighbouring IFIS cell, causing a system halt.

92

CHAPTER SIX

IFIS FEASIBILITY STUDY

6.1 OBJECTIVES OF CHAPTER

This investigation is the final investigation in a series that explores the influence on

design characteristics imposed by the coding/protocol and structure adopted by the

IFIS methodology. This investigation aims to:

• Report the application of IFIS to a real-world design implemented in

hardware.

• Outline the design experiences associated with designing using IFIS.

• Demonstrate the operation of the circuit both in fault-free mode and with a

specific failure.

• Compare the performance, complexity and fault coverage of the conventional

and IFIS equivalent implementations. This empirically quantifies the

characteristics of a combined system built upon the results of the previous

two investigations.

6.2 IFIS UART DESIGN AND IMPLEMENTATION

To verify the methodology, a representative design task has been undertaken. The

DART was considered to fulfill this role as it was both a reasonably complex design

and also includes busses, state machines and registers, all of which are frequently used

design elements. To obtain comparative data for designs implemented using the IFIS

on-line test methodology, a DART has been realised in both conventional and IFIS

forms in FPGA technology. A survey was performed and the features offered by

commercially available DARTs were identified. The following generic functions were

included in the DART design:

93

CHAPTER SIX IFIS FEASIBILITY STUDY

• 7 bit serial data with single start/stop bits

• 1 bit even parity checking

• ParitylFraming/Overrun error flag generation

• Provision for external serial port clock

• TransmitterlReceiver data buffers

• Interrupt generation

FEEDBACK
TO CPU (IFIS) --- --- .. IFIS DATA - - - - - - - -;":-:':-:':-=f-:::-=-~-!- FEEDBACK

~ 0 : feedbaCk out ~ I. ~ L ~ FROM CPU (IFIS)

PARAllEL DATA ~ 01 IFIS DATA: ~ ~~---<J!:F~'" b!DA~TA_-I ['",,- PARALLEL DATA
FROM CPU (IFIS) , "I ~·I : r CONmOLLER ffi'l "', -.- TO CPU (IFIS DATA)

LJ : Data out : t I
TO/FROM <!----+---f'....I : PREG 1 :
CPU ' • t .;$ SERIAl DATA

TRANSc.roR Si IFIS DATA : TRANSlATOR :" ~II ~ ;' STATUS FLAGS

:;;:, .' w,
L--,----' ~ Sl,

<>" --- ----'

SERIAL DATA OUT (NON-IFIS) SERIAL DATA IN (NON-IFIS)

Figure 6-1 Top level architecture of the UART.

Figure 6-1 shows the control/data-flow graph of an IFIS UART. The UART shown in

the figure and its behaviour were first defined by choosing from typical specifications

of commercially available designs. Both versions of the UART were developed using

this architecture. Figure 6-1 shows that the generic UART is partitioned into three

blocks, namely the receiver, transmitter and controller. An outline of the function of

each block now follows.

6.2.1 Receiver

The task of the receiver is to receive a serial bitstream in the form: start bits, data,

parity information and stop bits and store the contained data until it is retrieved by the

host CPU. The arrival of new data is signalled to the receiver by a transition from a

sequence of stop bits to a start bit value at the serial data input. Following the

reception of data, the receiver generates a set of error flags, intended for use by the

94

CHAPTER SIX IFIS FEASIBILITY STUDY

source of the bitstream. These flags reflect the validity of the data received by the

receiver and may be used to trigger a re-transmission of the data if required.

Simultaneously, the receiver communicates its status to the internal UART controller

using asynchronous handshaking. This form of communication was required because

the clock domain associated with the serial bitstream (and hence the receiver) is

different from the clock domain associated with the host CPU (CPU clock domain)

and controller. Received data words are stored in a First In First Out (FIFO) data

buffer of depth 3. The receiver FIFO was implemented as 3 synchronous registers:

each a self-contained IFIS cell in the IFIS UART. These are shown as PREG_l,

PREG_2 and PREG_3 in Figure 6-1.

6.2.2 Transmitter

The task of the transmitter is to take data words placed in its data buffer by the host

CPU and convert them into a serial bitstream of standard format including start bits,

data, parity information and stop bits. The parallel data lies within the CPU clock

domain while the bitstream exists in the serial clock domain. The status of the

transmitter is communicated to the internal UART controller using asynchronous

handshaking. When no new data is placed into the transmitters data buffer it generates

a bitstream at the serial data output containing only stop bits. PREG _0 represents the

transmitters data buffer in Figure 6-1. I

6.2.3 Controller

This circuit controls data flow within the UART. This comprises two sub-tasks:

Namely receiver FIFO management and transmitter FIFO management. Receiver

FIFO management is to ensure that data is removed from the FIFO when the host

CPU has read data from it and to inform the receiver that space exists in the FIFO.

This occurs as a result of the CPU servicing an interrupt generated by the UART

controller. Once the data has been removed from the receiver FIFO, the controller

must also issue control signals that cause the data inside the FIFO to be moved. Thus

allows more data to be added by the receiver and more data to be read by the CPU.

95

CHAPTER SIX IFIS FEASIBILITY STUDY

Transmitter FIFO management involves requesting new data from the host CPU when

the FIFO is empty, generating the correct control signals to cause the FIFO to load

data when supplied by the CPU, and informing the transmitter that data is in the FIFO.

The controller issues different levels of interrupt requests to the host CPU depending

on the data content of the receiver and transmitter FIFOs.

6.2.4 Provision for IFIS

In the IFIS UART, it was necessary to provide translation between IFIS codes and

conventional external data and vice-versa because serial data arrives in a normal

binary format. It was decided to place these translator units in the receiver and

transmitter so that conventional data is transmitted/received via the serial ports. This

allows the state machines controlling the Serial-In-Parallel-Out (SIPO) and Parallel­

In-Serial-Out (PISO) registers to follow the same sequences of state transitions in both

designs. These local state machines are implemented in a conventional manner. This

is because no advantage is gained by implementing them in IFIS. Data is controlled

within the UART by the controller which operates in parallel with the other state

machines communicating with it using a handshaking protocol. If the controller halts

due to a failure detected by the IFIS protocol, it is unable to generate an acknowledge

signal. Since the local state machines do not receive the acknowledge signal they

retain their current state and cannot direct data movement within the serial ports.

Following the definition of block specification, the receiver, transmitter and controller

blocks were designed independently following the IFIS structure selected in chapter 5

whenever IFIS cells were employed. The function blocks within each of the IFIS cells

were designed such that single faults could only affect one bit of each (t,f) pair. This

was necessary to ensure that the IFIS protocol would be disrupted following

stimulation of a single fault.

6.2.5 Design Issues

The main issues associated with the using the IFIS methodology are design

implementation and design verification. These issues are discussed below.

96

CHAPTER SIX IFIS FEASIBILITY STUDY

6.2.5.1 Design implementation

There are a number of ways in which IFIS designs can be implemented. The key to

implementing IFIS designs is to exercise control over the structure of the netlist such

that the computation block is of the generic structure shown in Figure 6-2.

'------' Conventional f--<

'f bits
Function 'f bits

•
L~ T
r~

•
't' bits Conventional 't' bits

Function

Figure 6-2 IFIS computation architecture.

Duplication is used because it is considered to be the most effective generic method

for checking logical operations [Avizienis71a, PateI82]. This block structure is partly

based on an idea that appeared in [Reynolds78] and [Shedletsky78] for the purposes

of error detection and error masking respectively. This structure should be used

because

• No single fault internal to the function can affect both rails of the dual-rail pair

carrying an IFIS code. Active faults therefore always result in non-codeword

output and violate the protocol.

• It is generic making it easy to understand and simple to implement. Both of

these properties result in minimised design time and hence reduced cost.

• A direct structural relationship between the functionality contained in the

conventional and IFIS implementations is established. This permits design

structures of known characteristics to be used and facilitates test pattern

generation for off-line testing.

97

CHAPTER SIX IFIS FEASIBILITY STUDY

The two primary factors that influence the final design structure are:

• Design description

• Design manipulation

When using an HDL in conjunction with the IFIS methodology, a key issue is the

level of abstraction to use. A high level of abstraction is used to describe the

behaviour of a design when its structure is unimportant. The fault detecting abilities of

IFIS cells, as with most other design for test techniques, depend on the circuit

structure. To obtain the structure for the function part of an IFIS cell, shown in Figure

6-2, requires that the conventional function be realised and then placed using a

structural description. This technique must also be applied at the IFIS cell level if the

cells are to be structured as described in chapter five. The style of description applied

to the conventional function within the IFIS cell is left to the discretion of the designer

for who additional control over the structure may not be required. It is, however

suggested that it be identical to that used in the original conventional implementation

so that advantage can be taken of existing test vectors/design verification.

Design manipulation occurs during optimisation. It can traditionally be applied at any

level of the design hierarchy and results in the loss of hierarchical structure below the

level to which it is applied. To maintain the structure of IFIS cells, a pre-requisite if

the fault detection properties are to be maintained, the design manipulation should

only be performed at the level of the conventional function block in both the

conventional and IFIS implementations. The selector logic is made from paralleled

standard cell multiplexors and thus optimisation brings no benefit. A similar

reasoning applies to the storage section of the IFIS cell. The protocol checking logic

can be optimised as long as the resultant structure is not an exclusive-or tree which for

checking the IFIS protocol is not 100% testable. This is due to the internal fanout of

the checker inputs.

98

CHAPTER SIX IFIS FEASIBILITY STUDY

6.2.5.2 Verification

Since there is a strong structural relationship between IFIS and conventional

implementations, vector sets designed for functional verification (and structural

testing) of both implementations should be strongly related. By ensuring that the same

data sequences are applied to the primary inputs of both implementations, the same

sequence of internal states occur in each under fault free conditions. The advantages

of this are:

• Once confidence is gained in the correctness of a conventional design using a

functional vector set, the investment already made in the vector set can be

exploited when verifying the IFIS design.

• Vectors designed to test the structural integrity of the conventional

implementation can be manipulated to test the structure of the corresponding

IFIS implementation, thus reducing the costs of test vector generation for use

during production test.

The UART designs were verified by applying input vectors to software models of the

UARTs written in the 'c' programming language and storing the responses. The

vector sets were related in the way described above. Figure 6-3 shows the design flow

used to generate the stimulus files for the UARTS.

SERIAL PARALLEL DATA TO
DATA DATA IFISDATA

GENERATOR GENERATOR TRANSLATOR

, /
CONVENllONAL

,
IFIS

UART
,

UART ,
MODEL , MODEL , , ,

I
I ,

CONVENllONAL
,

IFISUART
UART SllMULUS FILE

,
SllMULUS FILE ,

Wffii EXPECTED , WITH EXPECTED
RESPONSES , RESPONSES ,

Figure 6-3 The flow used to generate verification patterns for the UARTs.

99

CHAPTER SIX IFIS FEASIBILITY STUDY

Examination of Figure 6-3 shows that serial data is applied to both the IFIS and to the

conventional UARTs directly. This data is intended for application to the serial port of

the UARTs. Serial data ports were not implemented using IFIS coding for the reasons

described in section 6.2.4. However the data generated for application to the parallel

data port (to/from the host CPU) requires translation prior to application to the IFIS

UART because the parallel port is implemented using the IFIS protocol in the IFIS

UART.

When simulating, vector files containing input vector sequences and expected outputs

were read by VHDL testbenches and the simulation responses compared to the 'c'
model responses. When the designs were placed in FPGAs, the Labview enviromnent

mnning on a PC was able to apply the same vector files as those applied to the

simulations and use them to check the FPGA responses. Figure 6-4 shows the

similarities between verification of the design data base and the verification of the

hardware implementations.

SIMULATION HARDWARE

I

STIMULUS
FILE

/ ~
DESIGN VHDL LABVIEW FPGA

DATA TESTBENCH TEST CONTAINING
BASE ENVIRONMENT DESIGN

I PASS/FAIL
I I PASS/FAIL I I
I

Figure 6-4 Design verification in the software and hardware environments.

Using this method of test pattern application following the generation of a reference

test response set, it was possible to generate and apply large vector sets which

increased confidence in the similarity in behaviour between the 'c' based models and

the VHDL sourced design.

100

CHAPTER SIX IFIS FEASIBILITY STUDY

6.2.5.3 Fault injection

To demonstrate a fault condition, a means for faultinjection was added to the UART

design. Figure 6-5 shows the position of the injected fault, marked by the symbol a,

within the controller block which itself comprises two IFIS cells. The insert to Figure

6-5 shows the logic for injecting the example fault under control ofDATA]LT.

FEEDBACK: .+=::::::::~--~::::::::::~~·FEEDBACK
OUT '" . IN

IFIS DATA ._ -1
IN

IFISCELL
A

IFIS CELL
B

1--'" IFIS DATA ..-__ _
• OUT

Figure 6-5 The injected/ault, marked by a, activated in the controller.

Since the error detection abilities of dual structures are well known, this fault was

chosen to demonstrate the effect of an error occurring at an IFIS cell boundary. The

equivalent ofa stuck-at 0 fault can be applied to a single bit of the code generated at the

output of the cell labelled IFIS cell A. Stimulation of this fault results in a non­

monotonic transition between the last value and the current value held on the affected

dual-rail pair.

6.3 RESULTS

This section contains the results obtained from implementing the UART using the two

design methodologies. The design flow used was that from VHDL through synthesis

and optimisation, then finally to XiIinx netIist. The XiIinx netIist was placed in the

FPGA, using the XiIinx software provided.

101

CHAPTER SIX IFIS FEASIBILITY STUDY

6.3.1 Faulty and Fault-free Operation

Table 6-1 relates the signal names occurring in Figure 6-6 and Figure 6-7 to the

interfacial descriptions shown on Figure 6-1 with the exception of the clock signals, .

reset request line and test mode select, which were omitted from the figure for reasons

of clarity.

Signals Signal Descriptions
Global and Serial clock signals

RRQ, TMS Reset request and Test Mode Select
lACK, IRQO, IRQ1 Controller - host CPU handshaking

PAR ERR, FRAM ERR, - - Parity, Frame and Overrun errors
OVRN_ERR

SDI, SDO Serial Data In / Out
Parallel Data from UART to CPU (IFIS coded)

IFIS Feedback from CPU to UART
Parallel Data from CPU to UART (IFIS coded)

IFIS Feedback from UART to CPU

Table 6·1 Signal names and descriptions.

Figure 6-6 shows the FPGA containing the IFIS UARToperating under normal

conditions. Figure 6-7 shows what happens when a fault is introduced which affects the

output of an IFIS cell, in this case a cell inside the controller.

LK

"0

so,
lACK

"'
FB_T_IN

FB_F_IN

X_T_BUS

X_F_BUS

DATA_f"LT

'DO ~"~""~"r----------------------------c ______ ~
'0D

IR01

PAR_ERR

FRAM_ERR

VRN_ERR

RX_T_BUS

RX_F'_BUS

F'B_T_DUT

FB_F_DUT

lK "K 10K "K >OK 31K "K 41K

Figure 6-6 The IFIS UART under normal operation.

102

CHAPTER SIX IFIS FEASIBILITY STUDY

The arrows that appear on Figure 6-6 and Figure 6-7 denote the following:

1. The IFIS data bus from the CPU carrying IFIS coded data to the UART.

2. The IFIS data bus to the CPU carrying IFIS coded data from the UART.

3. The activation of the fault at a by signal DATA_FLT.

4. The deactivation of the fault.

Examination of Figure 6-7 shows that following fault injection, and excitation, the

RX_T_BUS and RX]_BUS collectively halt. That means that both busses retain

data. In this case, the fault was not excited by incoming data immediately following

injection. This is evident by the delay in halting of the RX_T_BUS and RX]_BUS

outputs. Once halted, this status remains even after the removal of the fault.

CC<

"0

'" lACK

8_T_IN

8_"_IN

x_T_BUS

"_F'_BUS

ATA_f'LT

00

1 ______________________ ~r__oL ________ ~r__oL ________ __

'00 ~~i===r===============~±=======r=====~~~====== '0' j:;ooooooo

AR_ERR

R"M_ERR

VRN_ERR

RM_T_BUS

RX_F'_BUS

Fa_T_OUT

FB_f'_OUT

",'.IL''''UU''''''

"

Figure 6-7 The IFIS UART under an injected fault condition.

'"

4

Under normal conditions this halting would also trigger the CPU to no longer supply

data via the TX_T_BUS and TX_F_BUS, however the worst case scenario occurs

when this halting is ignored by the host CPU which continues to supply data. This is

the case in Figure 6-7.

103

CHAPTER SIX IFIS FEASIBILITY STUDY

6.3.2 Complexity and Performance

To obtain comparative results for pure IFIS circuitry and conventional circuitry, the

controller was implemented purely in IFIS. For completeness comparative results for all

blocks with respect to complexity and performance have been included.

Table 6-2 shows the comparative complexities for the two implementations of the

UART. The measures are of gate counts rather than configurable logic blocks (CLBs),

which are the standard measure of complexity for Xilinx FPGAs, because the

resolution is higher. The complexities were extracted using 'Logsyn' under the

Intergraph v12.01.2 design suite.

Implementation
Block Name Conventional IFIS Relative

(Std. Cells) (Std. Cells) Complexity
Controller 135 301 2.23
Receiver 183 375 2.05

Transmitter 87 148 1.70

Table 6-2 Complexities of the three top level UART design blocks.

Examination of data relating to the controller in Table 6-2 reveals that the IFIS

implementation is a 2.23 times as large as the conventional counterpart. This can be

attributed to a combination of function duplication, as shown in Figure 6-2, and the

overhead incurred by the necessity of having transmission control logic. The overhead

related to the checker logic is directly proportional to the number of IFIS cell inputs,

while the overhead associated to the selector is directly proportional to the number of

IFIS cell outputs.

Block Name Maximum Maximum Relative
Frequency (MHz) Frequency (MHz) Performance

Conventional IFIS
Controller 12.0 9.0 0.75
Receiver 9.4 9.4 1.00

Transmitter 18.5 16.1 0.87

Table 6-3 Performance of the three top level UART design blocks.

104

CHAPTER SIX IFIS FEASIBILITY STUDY

Table 6-3 shows the maximum frequencies of each of the design blocks according to

the back-annotated netlist data-base. The target technology was a Xilinx 4013 FPGA

(theoretical maximum frequency of 50MHz). It was not possible to verify these results

by applying test vectors to the FPGA at such high speed due to limitations imposed

by the PC based test bed. Since IFIS uses a saturated dual-rail code (as described in

chapter four) and data changes during every clock cycle, its data rate is the same as

the code rate which is 1 data state/clock.

Examination of data relating to the controller in Table 6-3 reveals that the IFIS

implementation is 0.75 as fast as the conventional counterpart. This can be attributed

to the additional signal delay from conventional function outputs to storage inputs by

the additional exclusive-or gate, shown in each F bit path in Figure 6-2, and the

selector circuitry described in chapter five.

6.3.3 Fault Coverage

For the purpose of obtaining comparable fault coverage information, the 'c' models

described in section 6.2.5.2 were developed to reflect the top level partitioning. Thus

each UART model comprises models of the three major sub-blocks, each with

interface lists matching their hardware counterparts. The interface lists of the

conventional and IFIS controllers differ due to the coding used in the IFIS

implementation. However, the control sequences issued by each controller under

similar input conditions result in the same data flow in both UARTs.

Using the models it was possible to extract the data sequences occurring at the

controller interfaces from identical top level data sequences applied to each of the two

UART implementations. Standalone netlists of the two controllers were separately

subjected to these local vector sequences and the cumulative fault coverage for each

sequence calculated using the TDX fault simulator. In IFIS systems, any logical

deviation reaching the IFIS cell boundary compromises the IFIS protocol thus

triggering a system halt. For this reason, the fault coverage measured at the controller

interface is representative of the on-line coverage which would be exhibited if the

105

r---r----------

CHAPTER SIX IFIS FEASIBILITY STUDY

UART were subjected to the same top level data sequence.

The best case and worst case fault coverage predictions for the IFIS design can be

approximated from the cumulative coverage observed for the conventional

implementation. This is because the structural relationship between the two

implementations is known to be of the fonn shown in Figure 6-2. The minimum

predicted coverage corresponds to the case where no cumulative fault coverage is

expected within the transmission control logic shown in Figure 5-9 and Figure 6-2.

The maximum predicted fault coverage would occur if the gates within the

. transmission control logic are 100% tested and contribute to the overall coverage.

60r-------------------------------------~
.. " .. -....... -

50

40 ,J
. .. ' .. _ , -

30

20 f ____ IFIS Controller
____ PLAIN Controller

10 Max.Predicted IFIS
....... Min.Predicted IFIS

0
0 500 1000 1500 2000 2500

Number of Vectors

Figure 6-8 Comparison of SSA fault coverage.

Figure 6-8 shows the cumulative fault coverage exhibited by the conventional

controller, the maximum (minimum) predicted coverage assuming 100% (0%) fault

coverage of the additional circuitry in the IFIS implementation and the observed

coverage in the IFIS implementation. It is important to note that it is the relative

coverage observed in the IFIS system with respect to the predicted IFIS values (and

not the absolute values) that characterises the testability of the IFIS control circuitry.

Following the application of approximately 1800 vectors, a fault was injected, and the

106

CHAPTER SIX IFIS FEASIBILITY STUDY

observed fault coverage in the IFIS controller is seen to rise correspondingly.

Unlike off-line testing, the test time is infinite in the on-line test environment.

However, comparison of the fault coverages shown in Figure 6-8 (which covers a

finite period of time) shows that the increase in complexity incurred in the IFIS

implementation is offset by the ability to provide on-line testing with a high fault

detection ability. Furthermore, the additional complexity introduced by duplication

and data flow control logic is shown to be well tested by vectors which were not

specifically targeted for that purpose.

6.4 SUMMARY

The feasibility of the IFIS methodology has been explored using a contemporary IC

design. A UART was chosen for implementation because it contains examples of

features typical of state of the art designs, namely: Serial to parallel converters,

parallel to serial converters, state machines and synchronous registers.

The UART was implemented on FPGA and its operation was verified using vectors

generated by an independent functional model. In addition to functional verification,

the design was characterised with respect to data throughput, complexity and

behaviour under fault conditions. Additionally, a method to assess on-line test

coverage was derived and applied to the design. This enabled the assessment of the

on-line test coverage enjoyed by an IFIS state machine buried deep within the UART

design.

6.5 CONCLUSIONS

From the results obtained, it can be concluded that the concept of the IFIS

methodology is sound and additionally, that the halting mechanism provided by IFIS

successfully provides error detection, error flagging and error management.

107

,--- .

CHAPTER SIX IFIS FEASIBILITY STUDY

Furthennore, the combination of protocol/encoding scheme selected in chapter four

with the cell structure derived in chapter five results in systems that:

• Display the same data throughput rate as their conventional binary equivalent

systems while supporting umnodified data flow during error-free operation.

• Display a high level of on-line test coverage. Despite the increase in

complexity, a substantial fraction of the additional hardware required for the

implementation of IFIS designs is tested concurrently with the hardware that it

protects.

• Provide the intended pennanent halting behaviour under fault conditions.

• Do not pennit erroneous data to propagate to primary system outputs.

As expected, the complexity of IFIS designs is more than double that of their

equivalent binary implementation. Two factors affect the complexity of IFIS designs,

namely:

• The duplication required for providing a dynamic functional reference. This is

a direct consequence of incorporating enough flexibility into the methodology

so as not to restrict the range of applications to which it may be applied.

• The overhead required for checking infonnation communicated between IFIS

processing elements. The simplicity of the dual-rail-coding scheme allows this

dedicated hardware to be built in a modular way, thus resulting in a predictable

complexity for checking a specific number of data bits.

Based on the above discussion, it can be concluded that to minimise the complexity

penalty associated with IFIS, maximum functionality should be included within each

IFIS processing element.

108

CHAPTER SEVEN

FAILURE DIAGNOSIS IN IFIS

7.1 OBJECTIVES OF CHAPTER

This investigation assesses the utility of knowing the sequence in which system

outputs halt for performing failure diagnosis in IFIS systems. The objectives of this

investigation are to:

• Develop a strategy for failure diagnosis in IFIS

• Identify the limitations of the strategy

• Describe the practical application of the diagnosis technique

• Demonstrate the application of the technique to hardware

• Empirically identify the practical limitations of the technique

• Explain the results obtained from the technique application

7.2 MOTNATlON

Failure diagnosis is useful to the IC manufacturer because its output can be used to

identify faulty regions within designs. When a number of manufactured ICs fail in the

same region this can often be attributed to manufacturing process problems. In some

cases, it is possible to adjust the physical implementation of future versions of the

same IC design to reduce the chance of problems occurring in the same region

[S~erwani951.

Any mechanism that assists with failure diagnosis of repairable systems has the

potential to increase system availability by reducing the time taken to locate a

replaceable unit.

109

CHAPTER SEVEN FAULT DIAGNOSIS INIFIS

On-line testable designs inherently exhibit some of the properties that are needed to

perform failure diagnosis. The common tasks of monitoring, modelling and partial

analysis, can be identified by comparison of Table 7-1 and Table 7-2 that refer to

representative diagnosis and on-line test techniques respectively.

Expert 'Golden' Dictionary Consistency Elimination
System Device (Aitken95) checking [Cox88)

[Bernard94) [Purcell88) [Girard95)
Monitoring. Device Device Device Device Device

outputs outputs outputs outputs outputs
Modelling Model Device used Model Individual Component/

contained in as reference described component connection
rule base in matrix models models

Analysis System Differences Quality of Localise Analyse
traverses rule highlighted match is inconstancy history of

base assessed node values
Hypothesis Candidate list Physical Candidate Candidate Candidate

(probable region list list (probable list (possible
causes) (probable causes) causes)

causes)

Table 7-1 Classification of activities for different methods offault diagnosis.

In Table 7-1, the tasks of monitoring, modelling, analysis and hypothesis are mapped

to the appropriate activity for specific diagnosis techniques. Table 7-2 maps the

techniques of monitoring, modelling and analysis to tasks appropriate to on-line

testing.

Information Hardware Time
Redundancy Redundancy Redundancy

Monitoring Design block Design block Design Block
outputs outputs outputs

Modelling Model Spare hardware Previous
contained in used as behaviour used as

code reference reference
Analysis Design block Design block Design block

PasslFail PasslFail PasslFail

Table 7-2 Classification of activities for different methods of on-line testing.

The high proportion of activities common to both on-line testing and to failure

diagnosis suggest that on-line testable systems can themselves assist in system level

110

CHAPTER SEVEN FAULT DIAGNOSIS IN IFIS

diagnosis, thus reducing the need for external intervention. IFIS systems must

therefore also be capable of assisting in the diagnosis of system failure.

The halting property associated with IFIS designs distinguishes them from the other

on-line test techniques. IFIS inherently performs error management following error

detection. The halting mechanism that provides this feature is triggered following

error detection at an IFIS cell input. The cell that detects an error condition ceases

processing, thus causing an error condition to appear on monitored inputs of

immediately neighbouring cells. In this way, halting of IFIS cells progresses

throughout the entire IFIS system, progressing away from the error source at the rate

of one cell per system clock cycle until all primary system inputs and outputs are

reached. The way in which IFIS systems halt following error detection suggests that

diagnostic information be contained in the halting sequence of system outputs. This

investigation assesses the ability to perform failure diagnosis within IFIS designs

based on the halting sequence ofIFIS system outputs.

7.3 EXPECTATIONS OF FAILURE DIAGNOSIS IN IFIS

While the inherent error management characteristic of IFIS systems results in

diagnostic information, it also affects the range of diagnostic techniques that can be

applied to them.

7.3.1 Inherent Influences ofIFIS

The effects of preventing erroneous data from being processed/propagated are

associated with a number of advantages and disadvantages in the context of failure

diagnosis. The advantages associated with this mechanism are:

• The activities of monitoring, modelling and analysis reduce the workload on

external failure diagnosis equipment. This facilitates failure diagnosis in the

manufacturing environment and can be exploited to provide in-the-field

111

CHAPTER SEVEN FAULT DIAGNOSIS IN IFIS

diagnostic capability with minimal external intervention. This must result in

increased system availability.

• There is no need to re-stimulate a known faulty design with tests that are

designed to test for specific fault conditions.

• The information required to perform diagnosis is simplified by referencing

information rather than using actual data values. Information de-referencing

was used to perform diagnostic simplification in [Aitken95].

• Failure diagnosis of state machines using explicit post test diagnosis is feasible

in IFIS because of the abstract nature of the available information. Explicit

post test diagnosis is commonly restricted to combinational designs [Maly91 ,

Millman91 ,Somayula93,Chang70, Tsiang62].

The disadvantages associated with the halting mechanism are:

• It makes IFIS designs unsuitable candidates for multiple defect diagnosis.

Multiple defect diagnosis can be performed on conventional binary designs by ,

using implicit methods based on analysing results obtained from the

application of predetermined test vector sets (Post test diagnosis) [Aitken91,

Aitken92,Millman94,Waikuk89]. Additionally, implicit diagnosis can be

performed on conventional designs using interactive test vector selection

(Diagnostic testing) [Cox88, Abromov80]. In both cases, multiple examples of

failure must occur before diagnosis is considered to be achieved. IFIS systems

stop on the first occurrence of error (SOFE).

• When diagnosing IFIS systems, the resolution achievable for single defect

diagnosis cannot be guaranteed when using explicit diagnostic testing because

of the SOFE characteristic of IFIS. Explicit diagnostic testing requires less

storage capacity than that required for post test diagnosis [Girard95,

Bernard94,Brugnoni93, Favila91,Purce1l88, Genes84, Kautz68, Chang65]. For

this reason this class of techniques is considered preferable for performing

single defect diagnosis in conventional designs.

The listed disadvantages are generally associated with defect analysis that results in

112

CHAPTER SEVEN FAULT DIAGNOSIS IN IFIS

information useful for adjusting the manufacturing process. This level of resolution is

not necessary for performing diagnosis within repairable systems.

7.3.2 Expected Limitations on Resolution Based on Halting Sequence

. The purposes of identifying the limitations associated with failure diagnosis based on

the hal ting sequence ofIFIS system outputs are twofold, namely:

• To discover the potential usefulness of the teclmique.

• To identify design restrictions that may be required to maximise the abilities of

the diagnosis technique.

An informal discussion of the expected limitations in diagnostic resolution based on

the halting sequence ofIFIS primary outputs is presented below.

The protocol adopted for IFIS designs was selected in chapter four. The selected

protocol is inelastic and halts permanently following fault detection. The effect of the

outputs of a specific cell signalling an error are to initiate a halt which propagates

throughout an IFIS system at the rate of one cell per clock cycle. Halting is bi­

directional. This means that IFIS cells connected to primary inputs, in addition to

those connected to primary outputs, cease to process when the protocol is no longer

. satisfied. This means that once a cell initiates a halt a complete system halt follows.

The most complex diagnosis tasks are those where the minimum diagnostic

information is available. To satisfy the IFIS protocol the system feedback output

(coming from a primary input cell) must be monitored in addition to the output of the

primary output cell. In this way IFIS systems provide access to a minimum of two

system outputs.

It can be inferred that a path must exist from each primary input to each primary

output via any internal cell. If this were not the case certain cells would exist for

which local error detection would not cause a complete system halt. When

113

CHAPTER SEVEN FAULT DIAGNOSIS INIFIS

considering the number of paths existing between an IFIS primary input cell and an

IFIS primary output cell, two scenarios exist, namely:

• There is only one path

• There are multiple paths

7.3.2.1 Single path scenario

Figure 7-1 shows a generic IFIS chain (as presented in chapter four) where only one

path exists between a primary input cell and a primary output cell which are separated

by N cells.

The structure of the design influences the time taken (in clock cycles) for data to

progress through the design. Therefore, the position of each cell in the data path is a

fixed number of cells (clock cycles) from both the primary input cell and the primary

output cell. Thus the time taken (path length, measured in clock cycles) for an

initiated halt to become apparent at the primary input and primary output cells is

unique for each initiating cell.

PRIMARY PRIMARY
INPUT CELL OUTPUT CELL

~..Jr::::;::;::::;;:;I~-:,:::-~;:r-:;;-::.:-;-::.~,-~I- -::'"i';: ~.:; --G ----~: ~z DATA
DATA A .' ,.L __ +, ,.L ___ ~ .-,~. --'_ ."

IN ' __ • ' __ • ' __ • our

N cells
I .. . ,

Figure 7-IAn IFIS chain where only one halting path exists from the primary input cell to the
primary output cell.

When monitoring primary system outputs, the absolute time taken from internal error

detection to primary output halting is not available. The available information is the

difference in time taken between the halting of the first primary output and the halting

of the others. In the scenario shown in Figure 7-1, all cells can be distinguished using

the reduced information.

114

CHAPTER SEVEN FAULT DIAGNOSIS IN IFIS

7.3.2.2 Multiple path scenario

Where multiple paths exist between two cells a minimum of one closed loop exists

between the input cell and the output cell. Once a loop exists, it is not possible to

distinguish between all cells in the loop if only two cell outputs are monitored.

Where one closed loop exists, two halting paths exist from each cell to each primary

output. Figure 7-2 shows a simple generic multiple-path IFIS system. In this system, a

clockwise path exists from each cell to both the primary input cell and to the primary

output cell. Similarly, an anti-clockwise path exists from each cell to both the primary

input cell and to the primary output cell. This is due to the bi-directional

communication used in IFIS systems.

DATA
IN

PRIMARY
INPUT CEll

PRIMARY
OUTPUT CELl

r--------F=====~- -----,
L_ l....,.. - -, I - -,J

... 1 __ J ,"--------+1
~ __ I , ,

======L_~=====I-;=====~_ ------, t .r'" - - I , r- - - I I ,.. - - I - - I ..,.. I I L_)o, J..,; l_" I I L.J
... ' __ +, ,---+' ~

~ - _, I I I I ,
1 ,

: Ncells , : 2(K) cells :
,Ill • i i III • i

DATA
OUT

Figure 7-2 Generic IFIS system where two paths exist between cell A and cell Z.

The inelastic nature of the protocol dictates that the length of all paths from the

primary input cell to the primary output cell must either be identical or differ by an

even number of cells. Referring to Figure 7-2, K can be zero or any integer. The

ability to distinguish between cells is described using examples.

Example 1: K=O

Figure 7-3 shows an example IFIS system of the type shown in Figure 7-2 where N=3

and K=O. In this example, the path lengths from cell A to cell Z are equal in length.

For clarity, the IFIS feedback and data have been combined and denoted as bi-

115

CHAPTER SEVEN

directional arrows on the figure. Cells are shown as circles.

PRIMARY

FAULT DIAGNOSIS IN IFIS

PRIMARY
OUTPUT CELL

0· DATA OUT

Figure 7-3 An example IFIS system where two paths of equal length exist between the
primary input cell and the primary output cell.

While cell BI is distinguishable from cell Cl and cell DI, it is not distinguishable

from cell B2. Similarly, cell C I is not distinguishable from cell C2. This is due to the

symmetry exhibited in the paths.

Example 2: K=2

Figure 7-4 shows an example IFIS system where N=3 and K=2 using the same

notation as in Figure 7-3. In this example the multiple path lengths from the primary

input cell, A to the primary output cell, I, are different depending on the route taken.

PRIMARY
INPUT CELL
---tAf-r-+--''--­

DATA IN

DATA OUT

Figure 7-4 An example IFIS system where two paths of unequal length exist between the
primary input cell and the primary output cell.

116

CHAPTER SEVEN FAULT DIAGNOSIS INIFIS

It was stated above that each path length from the primary input cell to the primary

output cell (such as that shown in Figure 7-4) is identical or the path lengths differ by

an even number of cells. This implies that the loop length, given by the number of

cells contained in the closed loop, is always even. This further implies that for any

monitored cell in the loop (either the primary input cell or the primary output cell)

there exists only one cell at the maximum path length from it. In Figure 7-4 cell '0' is

the furthest away from cell 'A' and cell 'c' is the farthest cell from cell '1'.

Halts initiated at cells C, B, A, L, K and J propagate via the clockwise path to cell!.

Similarly, halts initiated by cells C, D, E, F, 0 and H propagate via the anti-clockwise

path to cell!. This is because the IFIS protocol ensures that cell halting propagates via

the fastest (shortest) path. A similar observation can be made for the halt propagation

paths to cell A. Further examination of Figure 7-4 shows that when cells C, B and A

initiate a system halt, it is propagated to both the output of the primary input cell and

to the primary output cell in the same (clockwise) direction. This makes these cells

indistinguishable as the initiator of a system halt. The reason that these cells are

indistinguishable is that it is the difference between the halting times of system

outputs which is observable. Fault diagnosis is based on this information alone.

CELL ABSOLUTE ABSOLUTE OBSERVED OBSERVED
INITIATING HALT TIME HALT TIME HALT TIME HALT TIME

HALT OF CELLA OF CELL I OF CELLA OF CELL I
A 1 5 I 5
B 2 6 I 5
C 3 7 1 5
D 4 6 1 3
E 5 5 1 I
F 6 4 3 1
0 7 3 5 1
H 6 2 5 I
I 5 1 5 1
J 4 2 3 1
K 3 3 1 1
L 2 4 I 3

Table 7-3 Observable primary halting sequence of the system shown in Figure 7-4 mapped to
the cells which initiate each halt.

117

CHAPTER SEVEN FAULT DIAGNOSIS IN IFIS

Table 7-3 shows the halting behaviour of the primary system outputs when halts are

initiated at the cells shown in Figure 7-4. Examination of Table 7-3 further' reveals

that cell A and cell E are indistinguishable. Similarly, cells L and J are

indistinguishable from cells D and F respectively. This is due to symmetry which was

also apparent in the example with K=O.

7.3.3 Summary of Expectations

This section has demonstrated that the error detection/flagging mechanism used in

IFIS designs can be used as a basis for fault diagnosis. Furthermore, resolution

restrictions resulting directly from system architecture have been discussed using

simple examples. System architecture was shown to influence the resolution

attainable. Where only a single path exists from input cells to output cells resolution

to the single cell can be achieved. Where multiple paths exist, this is not always

possible. To predict the resolution restriction imposed by a typical system architecture

requires knowledge of what represents a typical system. A first impression is obtained

by applying the technique to the IFIS DART that was discussed in chapter six.

7.4 ApPLICATION TO IFIS

In current designs implemented on ICs, the trend has been an increase in the ratio of

the physical areas occupied by interconnect to the area of functional circuitry in

standard cell designs [Sherwani95]. For this reason, it is inappropriate to ignore the

effects of defects which affect interconnections. It is appropriate to determine if logic

affecting faults (those which cause IFIS designs to halt) can be correctly diagnosed

using the halting sequence apparent at the primary system outputs. This section

therefore explores the effects of connection faults in addition to empirically

determining the diagnostic resolution obtainable within the IFIS equivalent of a

commercial DART.

The IFIS UART described in chapter six is used as a means to determine the ability to

118

CHAPTER SEVEN FAULT DIAGNOSIS IN IFIS

perform diagnosis in IFIS systems under functional fault and connectivity fault

conditions. The faults are induced and fault diagnosis is performed using an

algoritlunically generated dictionarY of the type suggested in section 7.3.2.

7.4.1 Fault Locations within the IFIS Structure

There are a number of general fault positions within the IFIS structure that affect the

protocol in the event of occurrence. These are shown by x,. in Figure 7-5 (which

reflects the IFIS cell design technique used in the IFIS UART) where n is an integer.

It should be noted that while the physical structure of an IFIS cell may result in the

cell self feedback being downstream of the external feedback, this is unlikely because

the self-feedback is internal to the cell. This means that there is no need to provide

external access to the signal and therefore the shortest route from cell output to cell

input can be used during cell design [Weste85]. This is not the case for the external

feedback signals.

.--------------
I
I Guard

Key:
Data""" --+
F.ed-back +--­
Cell boundary

Xl

Figure 7-5 Protocol affecting/ault sites.

XI represents a fault within the cell (not in the checker logic) which affects the cell

output and is equivalent to X2• Furthermore, faults XI and X4 are equivalent in terms

of halting sequence as long as the first halt shown at the cell output is considered in a

single cell system. In a multi-cell system the system will remain frozen when a fault

occurs even in the case of a single fault at X4• X2 affects cell outputs and, by

119

CHAPTER SEVEN F AUL T DIAGNOSIS IN IFIS

implication, the feedbacks. X3 represents a fault occurring only on the self-feedback to

the cell. X4 represents a fault that is equivalent to a combination of X, and X6. It must

be noted that in all cases except that of X" cell outputs are affected with this model.

X" however affects data to downstream elements without affecting the cell output

itself. Based on this discussion, the unique fault types warranting examination are

represented by those of type Xl> X3, X" X6 and X,. Having reduced the fault list, it

remains to identifY relationships between the fault thus enabling the use of a simple

algorithm to generate the dictionary.

7.4.2 The Influence of Different Connection Faults on the Cell Halting Sequence

The halting sequences presented in Table 7-3 assumed that the fault occurred

upstream of the external cell feedback. Following the discussion presented in the

previous section, this applies the model for an XI fault. Figure 7-6 shows the

interconnection of three neighbouring IFIS cells with the fault positions associated

with the current cell superimposed.

r-------- -------- -I 1-------- - ~
I I

W I L I ~
I

I
3 f-s I I

I ~
I

"I I
I

I I 1

I
I I X, . "4 '0'''7' I
I I I I

I I --------_ .. ---- ______ 1 L __ - - - --
PREDECESSOR CURRENT SUCCESSOR

Data-flow --+-
Feed-back ...-
Cell boundary

Figure 7-6 The context of each type of fault.

Table 7-4 describes the effects of named faults occurring at the current cell with

respect to the halting times based on an XI fault.

120

CHAPTER SEVEN FAULT DIAGNOSIS IN IFIS

INITIATION TIME FOR Xl MODEL
FAULT TYPE Predecessor Cell Current Cell Successor Cell

Xl - I -
X3 - 2 -
X5 2 - -
X6 - - 2
X7 - - 2

Table 7-4 Application of the Xl model to describe differentfaults.

An explanation of Table 7-4 now follows. Assume that time is incremented at the

beginning of each cell processing cycle. A fault is considered to occur during the first

cycle, hence an Xl fault in the current cell occurs time I. An X3 fault associated with

the current cell directly affects the current cell. That is it causes the current cell to halt

at time 2. Thus, the halting sequence associated with an X3 fault is the same as if it

were an Xl fault delayed by I processing cycle. Similarly, an Xs fault associated with

the current cell only directly affects the predecessor cell, which at time 2 halts. This is

the equivalent of an Xl fault being sourced from the predecessor cell at time 2. Since

all faults influence the halting sequence in a similar manner to that of the Xl fault with

a modifier, only a description of the base algorithm is necessary.

7.4.3 The Halting Dictionary Generation Algorithm

The halting dictionary itself has already been defined to contain a complete set of

halting sequences for all IFIS cells according to the models associated with Xl' X3, X s,

X6 and X7 faults. With this in mind any alternative algorithms that may be compared

must result in an identical dictionary output, and hence must have no influence on the

resolution obtainable for fault diagnosis. The remaining commonly used metrics for

comparison are those of CPU time and memory requirement. More appropriate to my

algorithms are a comparison of the number of node assignments made and the

memory requirement. Two algorithms for dictionary generation are informally

discussed and the pseudo code for the better algorithm is presented.

Node Oriented Generation: The dictionary is constructed by examining the effects of

a halt occurring on the outputs of each IFIS cell within the system in turn. To achieve

121

CHAPTER SEVEN FAULT DIAGNOSIS IN IFIS

this, each IFIS cell is in turn considered as the halt source and the halting times of the

observable system outputs are calculated and stored. If n is the number of IFIS nodes

in the complete system, then a minimum of n2 assignments are required to build the

complete dictionary.

Output Oriented Generation: The dictionary is constructed by calculating the time

taken for the outputs of each IFIS cell in the system to affect each of the primary

system outputs in turn. To acheive this, each primary system output is considered in

turn, storing the halt propagation times associated with the outputs of each IFIS cell.

If n is the number of IFIS nodes in the complete system and p the number of dual-rail

primary system outputs, then a minimum of p. n assignments are required to build the

complete dictionary.

Both of the above algorithms are performed using models of the IFIS system and

involve bi-directional path tracing. This may result in multiple attempted assignments

associated with the outputs of each IFIS cell during calculation of each entry in the

dictionary. It is for this reason that the actual number of assignments required to build

the dictionary exceeds the minimum values provided above. To demonstrate the

difference in efficiency of the two algorithms, each was applied to the same

representation of the IFIS UART. The IFIS UART comprises 6 instances, 8 nets, 2

primary inputs and 2 primary outputs. Table 7-5 summarises the requirements for

dictionary compilation for both algorithms when performed on the IFIS UART.

Node Oriented Output Oriented
Model size (bytes) 4120 4120

Temporary storage (bytes) 1032 1032
N°' Of Node Assignments 82 20

Table 7-5 Characteristics of application of the different algorithms to the IFIS UART design.

In Table 7-5, the model size is the quantity allocated to storing the design structure

within the computer memory. It is calculated at the time of reading the design data

base. The data structures used for performing each algorithm were identical. The

temporary storage is the quantity of memory needed to store temporary variables

122

CHAPTER SEVEN FAULT DIAGNOSIS INIFIS

during the calculation of the dictionary. Table 7-5 shows that the only difference

between the two algorithms are the number of node assignments. In this case, more

than 300% penalty is incurred by the node-oriented algorithm with no offsetting

advantage. For completeness, the pseudo code for the Output oriented algorithm is

provided.

Pseudo code:

Read netlist;
for each primary system output
node {

set event time = 'I ';
create two empty lists A and B;
add the current node name to the list called A;

label: while A is
not empty {

for each node
listed inA {

for each cell
connected to
the node {

for each cell
output node {

associate the minimum value of 'event time + I'
and it's already associated value of event time
with the node and then add it's name to B;

}
}

remove the node name from list A;
}

}
increment event time;
if B is not empty {

swap list labels A & B and goto label;
}

if B is empty {
store the event values associated with IFIS nodes
for this primary output in the halt dictionary;

}
}

write out the halt-dictionary table.

123

CHAPTER SEVEN FAULT DIAGNOSIS INIFIS

7.5 FAULT INJECTION IN THE IFIS UART

The IFIS UART was used as a vehicle on which to perform fault diagnosis using real

hardware. Figure 7-7 shows the IFIS view of the IFIS UART previously described in

chapter 6.

,--------------, .--------" ,,----------, ,----------,
r- --I
,HOS! ,
'CPU
'OUT ,
1- ___ I ,

,- - - - - - - - - - - - __ I

Figure 7-7 The IFIS structure afthe IFIS UART.

i ---I
,HOS! ,
CPU ,

'iN ,
1 __ - _I

For reasons of clarity the names in parentheses are those which are subsequently used

to refer to the cells shown in Figure 7-7. The view shown in Figure 7-7 is that which

is used by the algorithms described in section 7.4.3 to model the effects of faults

within the system.

The host CPU cells are not part of the UART design but have been shown in the

figure because the host CPU must provide/accept signals conforming to the IFIS

protocol to/from the UART. The IFIS cells containing the prefix P form the FIFOs

while the IFIS cells containing the prefix C form the UART controller which oversees

all data movement to/from and within the IFIS UART. The controller is the most

complex section of the UART, and is the most distant from the IFIS primary

inputs/outputs. For these reasons, the CTRLI IFIS cell, one of the 2 IFIS cells of the

controller, was targeted for fault injection.

Faults are injected in the IFIS UART (specifically the Cl IFIS cell) via four signal

pins, namely functionjault, feedbackjault, intjeedbackjault, and datajault. Table

7-6 shows the mapping between signal pin names on the UART and the associated

fault locations that are affected with respect to the selected controller block.

124

CHAPTER SEVEN FAULT DIAGNOSIS IN IFIS

PIN NAME FAULT
Function fault XI
Int feedback fault X3
Feedback fault X,
Data fault Xo

Table 7-6 Mapping of signal pin names to faults as shown in Figure 7-5.

To enable the pins to be referred to collectively, let us define a fault code to mean a

. four bit 'Yord made from the bits applied to activate/disable the four pins controlling

locations X6,X"X3 and XI (left to right).

I CTRLl(Cl)

FUNCTlON]AULT _____ ---l
INUEEDBACK..FAULT--------...J

FEEDBACK..FAULT :===========---.J DATA...FAULT C .. I boUndary --

Figure 7-8 Fault injection sites within the selected IFIS cell contained in the IFIS UART.

Each of the named faults relates to the injection of a nominal stuck@zero fault

affecting the data carrying bit of the IFIS bit pair. Figure 7-8 shows how the Cl cell

has been adapted to permit fault injection within the controller. Faults are injected to

the C I block by activating signals corresponding to appropriate faults.

The fault injection signals are active low as shown in Figure 7-8. Advantage was

taken of the multiple activation sites shown in Figure 7-8 to allow the UART to be

subjected to fault combinations which are equivalent to other faults or for which no

entry has been calculated in the dictionary.

Table 7-7 shows fault injection codes and the fault description which applies to each

code.

125

CHAPTER SEVEN FAULT DIAGNOSIS IN IFIS

Fault Code Description .

1111 No fault
1110 Function fault
1101 Internal feedback fault
1100 XI dominates feedback fault - function fault
1011 External feedback fault
1010 XI dominates feedback fault - function fault
1001 Multiple feedback fault
1000 XI dominates feedback fault - function fault
0111 Data Output fault
0110 XI dominates feedback fault - function fault
0101 Multiple fault, external feedback not affected
0100 XI dominates feedback fault - function fault
0011 Equivalent to X4 fault
0010 XI dominates feedback fault - function fault
0001 Equivalent to an XI function fault
0000 XI dominates feedback fault - function fault

Table 7-7 The fault code placed on the fault injection channels and the code description.

Table 7-7 shows that by applying the code 0011, an X6 and an X5 fault, the

equivalent of an X4 fault is applied. Furthermore, it is possible to provide

combinations offaults that have no equivalent (IOOI).The appropriate fault injection

codes were applied to the IFIS DART during otherwise normal operation. The codes

were later removed to discover the permanence of each injected fault. Before injecting

different faults by changing the fault injection code, a system reset was performed and

normal operation resumed.

7.6 RESULTS

Table 7-8 shows the results of performing diagnosis on the IFIS DART using a

dictionary containing halting sequences for all possible Xl, X3, X5, X6 and X7 faults

on all IFIS cells within the design. The columns labelled actual fault and diagnosed

fault list contain fault descriptions. The descriptions are of the format Cell name:

Fault type. Therefore the fault code 1110 injects an Xl fault in cell Cl. The observed

halting sequences at the primary outputs of the FPGA containing the IFIS DART were

diagnosed as being consistent with a number of different possible fault sites. These

126

CHAPTER SEVEN FAULT DIAGNOSIS IN IFIS

included an Xl fault in cell Cl and a number of other candidates.

Fault Code Actual Fault Diagnosed Fault List
1111 No fault No fault
1110 Cl:Xl Cl:Xl, Cl :X3, PI :X5, CO:X6, CO:X7
1101 Cl:X3 Cl:Xl, Cl:X3, Pl:X5, CO:X6, CO:X7
1100 Cl:Xl (dominant) Cl:Xl, Cl:X3, Pl:X5, CO:X6, CO:X7
1011 Cl:X5 CO:Xl, CO:X3, Cl:X5, UFB:X6, UFB:X7
1010 Cl:Xl (dominant) Cl:Xl, Cl:X3, Pl:X5, CO:X6, CO:X7
1001 Cl:X3, Cl:X5 Not diagnosable (no match)
1000 Cl:Xl (dominant) Cl:Xl, Cl :X3, PI :X5, CO:X6, CO:X7
0111 Cl:X6 Pl:Xl, Pl:X3, P2:X5, Cl:X6, Cl:X7
0110 Cl:Xl (dominant) Cl:Xl, Cl:X3, Pl:X5, CO:X6, CO:X7
0101 Cl:X3, Cl:X6 Not diagnosable (no match)
0100 Cl:Xl (dominant) Cl:Xl, Cl:X3, Pl:X5, CO:X6, CO:X7
0011 Cl:X4(Xl) Cl:Xl, Cl:X3, Pl:X5, CO:X6, CO:X7
0010 Cl:Xl (dominant) Cl:Xl, Cl:X3, Pl:X5, CO:X6, CO:X7
0001 Cl :Xl (equivalent) Cl:Xl, Cl:X3, Pl:X5, CO:X6, CO:X7
0000 Cl:Xl (dominant) Cl:Xl, Cl:X3, Pl:X5, CO:X6, CO:X7

Table 7-8 Diagnosis a/the injected/aults.

The data contained in Table 7-8 shows that diagnosed fault lists contain a specific

grouping of fault types that are indistinguishable when halting of primary outputs is

used for diagnosis. Closer examination of Table 7-8 reveals the following:

• Each diagnosed fault list contains only a single representative of each type of

fault. Therefore if the type of fault were known, the parent cell can be

identified.

• There is no situation that results in the false diagnosis of a non-existent fault.

The results of diagnosis are therefore not misleading.

• In all cases the intended fault, the dominant fault or an equivalent fault was

correctly identified and appears within the diagnosed fault list.

• It is not always possible to positively match mUltiple faults (Cl:X3, Cl :X6 has

no equivalent). However, no false diagnosis was given.

127

CHAPTER SEVEN FAULT DIAGNOSIS IN IFIS

r- - - -- - - .-------- - 1 ,-------- - ~

I L
I

x.~
I

I L I

l!--!
I

I I
I

I
~

I I I I , I ,
I X' X, I X, X. I ' I

" I
I I I I - -- -----~ ---------- L _________

Data·ftow ----+--
Feed-back <Of---
Call boundary

Figure 7-9 The relation between fault types which are indistinguishable when halting of
primary outputs is usedfor diagnosis.

Figure 7-9 shows the relation between indistinguishable fault types and their relative

logical positions within the system architecture. In Figure 7-9 it is apparent that faults

occurring in the function block of a specific cell are indistinguishable from faults

occurring in the connections to/from the same cell. This clearly demonstrates that the

maximum resolution that can be expected using this technique is to the IFIS cell level.

7.7 CONCLUSIONS

The purpose of this investigation was to discover the influence of the halting inherent

in IFIS designs on the ability to perform diagnosis on them. The approach taken was

to identify a strategy for performing fault diagnosis in IFIS designs, assess the

inherent diagnostic limitations of the strategy and then discover if the strategy could

be simply implemented.

Fault diagnosis was successfully performed on the FPGA implementation of the IFIS

UART using only the relative . halting times of primary system outputs. This

demonstrates the feasibility of the technique. The advantages of using this fault

diagnosis method are summarised below:

• Diagnosis can be performed using primary design inputs and outputs without

internal probing.

• IFIS properties are exploited allowing the simple concept of dictionary based

128

CHAPTER SEVEN FAULT DIAGNOSIS IN IFIS

diagnosis to be applied to sequential designs.

• The dictionary generation can be automated.

• The resources required to build and store the fault diagnosis dictionary are

dependent on the number of IFIS cells in the system and not necessarily the

complexity of the design.

• Once a dictionary has been generated for a specific design, it can be reused.

• Diagnosis can be performed by analysing the output halting sequence observed

during production testing.

• Diagnosis in-the-field may be simplified because fault stimulation need not be

repeated if the output halting information is available following on-line error

detection. Simplifying field diagnosis can hasten repair thus increasing system

availability.

The following disadvantages are associated with the fault diagnosis method:

• The highest diagnostic resolution is restricted to the IFIS cell level. For

manufacturing diagnosis, this resolution is not sufficient. However, this

technique may be applicable as part of a hierarchical diagnostic methodology.

• To ensure maximum diagnostic resolution for a specific design, constraints are

imposed on the architecture.

While the halting based diagnosis technique may prove adequate for identifying a

faulty module, a supplementary diagnosis technique that can bypass the IFIS protocol

may be required if diagnosis is to be of significant use to an le manufacturer.

129

CHAPTER EIGHT

CONCLUSIONS

8.1 OBJECTIVES OF CHAPTER

This chapter concludes the thesis. It reviews the objectives of the thesis and

summarises the conclusions resulting from Chapter 2 in addition to those from the

investigations described in this thesis. Additionally, the success of the investigations

is considered and limitations presented. This chapter concludes by suggesting ways in

which this research may be extended.

8.2 REVIEW OF OBJECTIVES

This thesis has assessed different aspects of the IFIS methodology. More specifically,

the aims of this thesis were:

• To identify protocol/coding schemes that provide the haIting mechanism

characteristic of IFIS systems and to assess their impact on system level test

coverage, complexity and performance.

• To discover the utility of the halting sequence information available at primary

outputs for locating the source of error.

To enable the aims to be achieved, the following objectives were identified:

• To quantify the restrictions on performance and test coverage imposed by

different dual-rail codes and protocols.

130

CHAPTER EIGHT CONCLUSIONS

• To assess the characteristics of test coverage, complexity and performance

associated with different circuit design techniques used to implement the

chosen IFIS protocol.

• To characterise a demonstration IFIS system that incorporates multiple

computation elements that are interconnected such that the IPIS protocol is

enforced.

• To quantify the diagnostic resolution attainable based only on the halting

sequence of primary system outputs following error detection.

In Chapter 2 design techniques developed to support on-line testing were presented in

order to assess their· suitability for adoption within IFIS systems. The following

conclusions were drawn:

• Of coding schemes examined, none intended for on-line testing was inherently

capable of detecting timing errors caused by manufacturing defects.

• Dual-rail-coding schemes developed for asynchronous designs support

modular checker design and can detect such timing and unidirectional errors.

The application of such schemes to on-line testing has not been characterised.

• The suitability of specific on-line test techniques that were intended for

computation, to the generation of dual-rail codes was not quantified.

A series of investigations were identified in Chapter 3 to address the above issues. The

outcome of these investigations was an assessment of the impact on system

characteristics imposed by coding and protocol combinations supporting the IFIS

halting mechanism. Additionally, conclusions could be made regarding the effects of

the halting mechanism on the ability to perform failure diagnosis within IFIS systems.

8.3 MAIN CONCLUSIONS

This section presents the main conclusions resulting from the investigations that were

performed.

131

CHAPTER EIGHT CONCLUSIONS

System level perfonnance can be restricted by the protocol and coding scheme: of

those examined in Chapter 4, the highest perfonnance is exhibited by inelastic

protocols based on a saturated coding scheme.

The pennanence of system halting is affected by the protocol and the specific nodes

monitored. Chapter 4 contains evidence that to provide pennanent halting requires an

inelastic protocol that monitors the outputs of consecutive cells, namely: the

predecessor cell, current cell, and successor cell.

The potential for the protocol and coding to restrict on-line test coverage is caused by

restricting the ratio of codewords to non-codewords, thus restricting the range of

vectors that can be used for on-line fault stimulation. It was shown in Chapter 4 that

the ratio of codewords to non-codewords is increasingly restricted by raising the

number of monitored nodes (protocol conditions) and/or by reducing the range of

symbols that represent codewords.

Despite the restriction in stimuli applicable to IFIS cells during nonnal operation, it is

possible to construct IFIS cells that exhibit high levels of on-line test coverage.

Chapter 5 provides evidence that in order to obtain a high level of on-line test

coverage, while also being applicable to any digital function, the duality architecture

is the most suitable for code computation in IFIS cells. Alternatives to duality are

available for IFIS code computation but to gain more attractive complexity statistics

than the duality architecture requires forfeiting test coverage, data throughput or

generality. Within IFIS cells, a simple decoder is used for checking incoming codes

and a multiplexer is used to control data-flow. This architecture is low in complexity

and provides high test coverage due to the indirect observability of the decoder output

by virtue of the IFIS halting characteristic.

The interconnection of IFIS cells facilitates the testing of the checker circuitry used

within each IFIS cell for transmission control. This is because an artificial fault

132

CHAPTER EIGHT CONCLUSIONS

condition (non-codeword) can be injected at the IFIS system interface, thus enabling

the IFIS halting mechanism to be exercised.

The investigation described in Chapter 6 shows that by interconnecting IFIS cells such

that they support the selected protocol, on-line testable systems exhibiting the register

transfer level data-flow of their conventional counterparts can be realised.

Furthermore, the characteristics of such systems are consistent with expectations. The

ability to convert any synchronous digital system to an on-line testable equivalent

using IFIS techniques makes the IFIS methodology attractive. The ability to predict

the impact of such a conversion for any such system enables its feasibility to be

assessed.

In Chapter 7 it was shown that the maximum resolution to which failure diagnosis can

be performed using only the halting sequence of IFIS system outputs is limited to that

of a single IFIS cell. This level of resolution may be further restricted if insufficient

observation points are provided.

As increasingly complex systems emerge, the requirement to perform on-line testing

may dominate over complexity issues. The inherent error management coupled with

high levels of error coverage, low performance impact and simple failure diagnosis

makes IFIS an attractive option.

8.4 MEASURES OF SUCCESS

The literature review presented in Chapter 2 showed that design techniques supporting

on-line testing for protecting computation and for protecting communication have

been individually developed. Coding techniques normally associated with

asynchronous designs were identified as possessing characteristics that could be

suitable for protecting communications between computation elements while also

being suitable to system design.

133

CHAPTER EIGHT CONCLUSIONS

The investigations were chosen to provide an understanding of the implications of

adopting such a technique to provide on-line testing. The investigations have resulted

in the following:

• A quantitative assessment of the restrictions on performance, behaviour and

test coverage imposed by different dual-rail codes and protocols that cause

halting after error detection.

• An assessment of the effects of using different techniques to design IFIS cells

that support the chosen IFIS protocol. The characteristics of test coverage,

complexity and performance were quantified for each technique.

• The characterisation of a demonstration IFIS system that incorporates multiple

computation elements that are interconnected such that the IFIS protocol is

enforced.

• A quantitative assessment of the diagnostic resolution attainable by examining

only the halting sequence ofIFIS system outputs following error detection.

This research can be used by system designers to assess the feasibility of

implementing an IFIS version of any specific synchronous digital system. This work

is of particular value because both qualitative and a quantitative approaches have been

adopted to describe the advantages of the presented techniques. This thesis has

provided detailed information while also placing it in the context of system design.

Furthermore, it has demonstrated the developed design techniques by applying them

to a hardware implementation of a complex and representative system.

8.5 LIMITATIONS

The following limitations apply to this research:

The UART design while complex for a small design team with strict time limitations

is relatively small in comparison with the large designs appearing in the IC industry.

134

CHAPTER EIGHT CONCLUSIONS

This effects not only the degree to which the UART can be considered representative,

but also the complexity of the experimental vehicle used for failure diagnosis.

It was decided to use IFIS cell design techniques that support generic function

generation, as opposed to arithmetic, iterative or Boolean calculation because of the

associated simplification in design-flow. If less generic approaches had been

implemented and their characteristics empirically quantified, the test coverage

limitations imposed by them could have been more accurately assessed. This would

have provided additional information allowing an assessment of the benefits and costs

associated with using a non-generic approach.

Due to the limited number of available IFIS designs, the quantity of data representing

IFIS systems does not allow predictions to be made regarding the typical maximum

resolution that can be expected from fault diagnosis performed on IFIS designs.

No formal investigation to identify specific IFIS design rules that maximise the ability

to diagnose failure was performed. A discussion was presented in Chapter 7 that

describes the architectural influence on diagnostic resolution, however this was not

developed into an algorithm that could be applied to analyse IFIS designs.

While performance characteristics were obtained by simulation, the hardware could

not be stimulated at this speed. Furthermore, the characteristics of FPGAs are not

necessarily representative of ASICs.

The diagnosis algorithms presented in this thesis do not consider the effects of

multiple fault sources.

The complexity measurements do not take account of the additional routing imposed

by the IFIS methodology.

135

CHAPTER EIGHT CONCLUSIONS

8.6 FURTHER WORK

This section presents further work that has been identified as a potentially useful

extension to the current work. Furthermore, additional investigations are proposed that

exhibit a strong relationship to the work described within this thesis.

8.6.1 Extension of Current Work

. Logic duplication was selected to generate independent data and reference information

within IFIS cells. Investigations should be undertaken to explore the possibility of

fmding and characterising new methods for generating reference information that

exploit the CMOS technology.

The maximum diagnostic resolution achieved using halting sequence is to the IFIS

cell level. This can only be achieved when the IFrS architecture is constrained.

Currently, IFIS designs are only confirmed as being diagnosable to this level of

resolution following dictionary generation. An investigation of ways of checking and

changing IFIS systems to ensure that they are diagnosable to this resolution should be

undertaken.

While diagnostic resolution to the cell level is advantageous for identifying faulty rcs

within an IFIS system or identifying a specific rFIS cell within an IC, higher levels of

resolution are required by IC manufacturers. Therefore, further effort should be

directed at investigating ways of improving the efficiency of diagnosis to the current

level of resolution and exploring ways of increasing the diagnostic resolution.

Resolution might be efficiently increased by combining the information available in

the halting sequence with a conventional approach that circumvents the IFIS protocol.

8.6.2 New Investigations

A disadvantage associated with IFIS is the complexity of resultant systems. The

complexity associated with computational elements has been quantified and is

136

CHAPTER EIGHT CONCLUSIONS

comparable with DWC. However, the area complexity associated with routing has not

been quantified. Clearly, an increase in area associated with routing may increase the

chances of failure. An assessment of the probability of failure associated with routing

in IFIS systems would facilitate the choice of a protection scheme offering the

minimum level of required protection. The implications of choosing an alternative

scheme to dual-rail coding on checker complexity and ease of implementation require

investigation.

In IFIS systems, hand shaking provides a mechanism to control data flow following

computation completion. In this thesis, coding was used to provide handshaking. In

CMOS designs, current sensing offers an alternative to the examination of code

sequence for providing completion detection. The application of this kind of

completion detection to IFIS would remove the requirement to use communication

code sequences based on monotonic transitions and may therefore permit less

expensive codes to be used. The implications of using a different coding scheme

would therefore require investigation.

8.7 SUMMARY

This chapter has presented the main conclusions that were reached as a result of the

investigations described in this thesis. This serves the function of relating the

intermediate conclusions to form an overall impression of what has been achieved.

In addition to combining the results from the investigations, this chapter has also

assessed the degree to which the investigations have addressed the aims and

objectives set out in Chapter 1 and Chapter 3. The limitations imposed by time and

facilities were set out thus enabling the scope of the conclusions to be determined.

Finally, this chapter has presented a summary of the. contributions made by this

research concluding with suggestions for work in important related areas that would

benefit from future research investment.

137

REFERENCES

[Abromov80] M.Abromovici, M.Breuer, 'Multiple Fault Diagnosis In.
Combinational Circuits Based On An Effect-Cause Analysis',
IEEE Transactions On Computers, Vol. C-29 (6), June 1980, pp.
451-460.

[Aitken91] RC.Aitken, 'Fault location with current monitoring', Proc. ITC-91
Nashville October 1991 , pp. 623 - 632.

[Aitken92] RC.Aitken, 'Diagnosis of leakage faults with Iddq', Journal of
electronic testing: Theory and applications (1992) vol. 3, pp. 367 -
375.

[Aitken95] RAitken, P.Maxwell, 'Better Models or Better Algorithms ?
Techniques to Improve Fault Diagnosis', Hewlett Packard Journal,
Feb 1995, pp. 110 -115.

[Almaini89] A.E.A.Almaini, 'Electronic Logic Systems', Second Edition,
Prentice-Hall, 1989, pp. 253-312.

[AI-Saad96] H.AI-Asaad, J.Hayes, 'Design Of Scaleable Hardware Test
Generators for On-line BIST', Proc. 2nd IEEE International On­
Line Testing Workshop, Biarritz, 8-10 July 1996, 164-167.

[AI-Bassam94] S.AI-Bassam, B.Bose, 'Design of Efficient Balanced Codes', IEEE
Transactions on Computers, voI.43(5), March 1994, pp. 362-365.

[Anderson73] D.Anderson, G.Metze, 'Design Of Totally Self-Checking Check
Circuits for M-out-of-N Codes', IEEE Transactions on Computers.
vol. 22(3), March 1973, pp.263-269.

[Ashjaee77] M.J.Ashjaee, S.M.Reddy, 'On Totally Self-Checking Checkers For
Separable Codes', IEEE Transactions On Computers, vol.. C-26(8),
August 1977, pp.737-744.

[Avizienis71a] A.Avizienis, 'The STAR (Self Testing And Repairing) Computer:
An Investigation Of The Theory And Practice Of Fault Tolerant
Computer Design', IEEE Transactions on Computers vol. C-20(11)
Nov. 1971, pp. 1312-1321.

[Avizienis7Ib] A.Avizienis, 'Arithmetic Error. Codes: Cost and Effectiveness
Studies For Application In System Design', IEEE Transactions on
Computers vol. C-20(11) Nov. 1971, pp. 1322-1331.

[Audet96] D.Audet, N. Gagnon, Y.Savaria 'Quantative Comparisons ofTMR
Implementations in a Multiprocessor System', Proc. 2nd IEEE

138

International On-Line Testing Workshop, Biarritz, 8-10 July 1996,
196-199.

[Bahram92] N. Bahram, D. Chakravarty, 'ASIC Design Methodology Trends',
Electro/92, voll, May 1992, pp.165-169.

[Bartlett92] J.Bartlett et aI., 'Fault tolerance in Tandem Computer Systems', pp.
586 - 648 in 'Reliable Computer Systems, 2nd Edn.', Digital Press,
ISBNI-55558-075-0, 1992.

[Berger61] J.Berger, 'A Note On Error Detecting Codes For Asymmetric
Channels', Information and Control, Vol. 4, 1961, pp. 68-73.

[Bernard94] J.P.Bernard, D.Durocher, 'An Expert System For Fault Diagnosis
Integrated in Existing SCADA Systems', IEEE Transactions on
Power Systems', VoI.9(1), Feb. 1994, pp. 548-554.

[Blaum88] M.B1aum, 'Systematic Unidirectional Burst Detecting Codes',
IEEE Transactions on Computers, voI.37(4), April 1988, pp. 453-
457.

[Bo\Chini95] C.Bo\Chini, RMontadon, F.Salice, D.Scuito, 'Se1f-cheking FSMs
Based on a Constant Distance State Encoding', IEEE International
Workshop on Defect and Fault Tolerance in VLSI Systems. Nov.
13-15,1995, pp.269·277.

[Borden82] J.M.Borden, 'Optimal Asymmetric Error Detecting Codes',
Information and Control, Vo1.53, 1982, pp. 66·73.

[Bose85] B.Bose, D.Lin, 'Systematic Unidirectional Error Detecting Codes',
IEEE Transactions on Computers, vol. C·34(11), Nov. 1985. pp.
1026·1032.

[Bose86] B.Bose, 'Burst Unidirectional Error Detecting Codes', IEEE
Transactions on Computers C35(4), April 1986, pp. 350·353.

[Brassington95] M. Brassington, 'Semi·Custom ASIC Technology Trends', Procs.

[Brown60]

[Brugnoni93]

Custom Integrated Circuits Conference 1995.

D.Brown, 'Error Detecting and Correcting Binary Codes for
Arithmetic Operations', IRE Transactions On Electronic
Computers, March 1960, pp. 333·337.

S.Brugnoni, G.Bruno et ai, 'An Expert System For The Real Time
Fault Diagnosis Of The Italian Telecommunications Network',
Integrated Network Management III C·12, pp. 617-628.

139

[Burns92]

[Chakra94]

[Champac91]

[Chang65]

[Chang70]

[Chang96]

[Cox88]

[David92]

[Dean91]

[Dislis95]

[Dong84]

[Favila91]

S.W Burns, N.K.Jha, 'A Totally Self-Checking Checker For A
Parallel Unordered Coding Scheme'. VLSI Test Symposium 1992,
pp. 165-170.

S.Chakravarty and S.Suresh, 'Iddq measurement based diagnosis
of bridging faults in full scan circuits', 7th International
Conference on VLSI design - January 1994, pp. 179 - 182.

V.Champac, R.Rodrigez-Montanes, J.ASegura, J.Figueras and
J.A.Rubio, 'Fault Modelling of gate oxide short, floating gate and
bridging failures in CMOS Circuits', European Test Conference,
Apri191, pp. 143 - 156.

H.Y.Chang, 'An Algorithm for Selecting An Optimum Set Of
Diagnostic Tests', IEEE Transactions On Electronic Computers,
Oct. 1965. Vo!. 14(5), pp706 -711.

H.Y.Chang, E.Manning and G.Metze, 'Fault Diagnosis of digital
systems', Wiley-International, 1970.

W.F.Chang, C.W.Wu, 'A TSC Berger-Code Checker for 2r-l Bit
Information', Proc. 2nd IEEE International On-Line Testing
Workshop, Biarritz, 8-10 July 1996, 158-161.

H.Cox and J.Rajski, 'A method of fault analysis for test generation
and fault diagnosis', IEEE transactions on computer aided design
vo!. 7(7) July 1988, pp. 813 - 833.

LDavid, R.Ginosaur, M.Yoeli, 'Implementing Sequential Machines
as Self-Timed Circuits', IEEE Transactions On Computers, Vo!.
41, No. I, January 1992, pp.12-17.

M.Dean, T.Williams, D.Dill, 'Efficient Self-timing with Level­
Encoded 2-phase. Dual-Rail (LEDR)" MIT Conference on
Advanced Research in VLSI, March 1991: pp. 55-70.

C.Dislis, J.H.Dick, LDear, AP.Ambler, 'Test Economics and
Design For Testability for Electronic Circuits and Systems', Ellis­
Horwood, ISBN 0-13 108994-3,1995, pp.1-16.

H.Dong, 'Modified Berger Codes For Detection Of Unidirectional
Errors', IEEE Transactions On Computers, Vo!. C-33(6), June
1984,pp.572-575.

B.Rogel-Favila, AWake1ing, P.Y.K.Cheung, 'Model Based Fault
Diagnosis of Sequential Circuits and it's Acceleration', EDAC '91
(IEEE) Amsterdam 22 - 28 Feb. 1991, pp. 224 - 229

140

[Ferguson91] J.Ferguson, T.Larrabee, 'Test pattern generation for realistic Bridge
faults in CMOS IC's', Procs. International Test Conference 1991,
pp. 492-499.

[Frieman62] C.V.Frieman, 'Optimal Error Detecting Codes For Completely
Asymmetric Binary Channels', Information and Control, Vol. 5,
1962, pp. 64-71.

[Fujiwara84] E.Fujiwara, N.Mutoh, K.Matsuoka, 'A Self Testing Group Parity
Prediction Checker And Its Use For Built In Testing', IEEE
Transactions on Computers C33(6) 1984, pp. 578-583.

[Fujiwara90] E.Fujiwara, D.K.Pradhan, 'Error-Control Coding in Computers',
IEEE Computer, July 1990, pp. 63-72.

[Garner59] H.Garner, 'The Residue Number System', IRE Transactions on
Electronic Computers, June 1959, pp.140-147.

[Genesereth84] M.Genesereth, 'The Use Of Design Descriptions In Automated
Diagnosis' , Artificial Intelligence, vol.24, 1984, pp. 411-436.

[Girard95] P.Girard, C.Landrault, S.Pravossoudovitch, B.Rodriguez, 'Delay
Fault Diagnosis In Sequential Circuits Based On Path Tracing',
Integration, The VLSI Journal, vo1.19(3), July 1995, pp. 199-218.

[Goesse193] M.Goessel, S.Graf, 'Error Detection Circuits', ISBN 0-07-707438-
6, McGraw-Hill, 1993, pp. 16-20.

[Grant89] P.M.Grant, C.F.N.Cowan, B.Mulgrew, J.H.Dripps, 'Analogue and
Digital Signal Processing and Coding', Chartwell-Bratt, ISBN 0-
86238-206-8, 1989, pp. 217-232.

[Gupta96] S.K.Gupta, D.K.Pradhan, 'Utilization of On-line (Concurrent)
Checkers during Built-in Self-Test and Vice Versa', IEEE
Transactions on Computers C45(l), Jan 1996, pp.63-72.

[Hamming50] R.W.Hamming, 'Error Detecting and Error Correcting Codes', The
Bell System Technical Journal, vol. 26(2), April 1950, pp.147-160.

[Hana86] H.H.Hana, B.W.Johnson, 'Concurrent Error Detection In VLSI
Circuits Using Time Redundancy', Procs. Of the IEEE
SouthEastern '86 Regional Conference 1986, pp. 208-212.

[Hulgaard94] H.Hulgaard, S.M.Bums, G.Borriello, 'Testing Asynchronous
circuits: A survey', University of Washington internal technical
report 94-03-06 March 6th 1994.

141

[Jha87]

[Johnson88]

[Jones91]

[Kautz68]

[Khakbaz84]

[K078]

[Kundu96]

[Laha83]

[Linder96]

[Li92]

[L093]

[Maly91]

N.K.Jha and B Vora, 'A Systematic Code for Detecting T­
Unidirectional Errors', 17th International FTC Symposium,
Pittsburg, P A, July 6-8, 1987, pp 96-101

B.WJohnson, J.H.Aylor, H.H.Hanah, 'Efficient Use Of Time And
Hardware Redundancy For Concurrent Error Detection In A 32 Bit
VLSI Adder', Journal Of Solid State Circuits, vol. 23(1), Feb.
1988, pp. 208-214.

S.RJones and D.W.Lloyd, 'Digital Circuits', UK Patent
application. 9225327.8, 5 December 1991.

W.Kautz, 'Fault Testing and Diagnosis in Combinational Digital
Circuits', IEEE Transactions on Computers, V01.17, April 68, pp.
352-365.

J.Khakbaz, E McCluskey, 'Self-Testing Embedded Parity
Checkers', IEEE Transactions on Computers, C33(8) August 1984,
pp. 753 - 756.

D.G.Ko, M.Breuer, 'Self Checking Of Multi-Output
Combinational Circuits Using Extended Parity Technique', Journal
Of Design Automata & Fault Tolerant Computing, Vo1.2, Jan
1978, pp. 29-62.

S.Kundu, E.S.Sogomonyan, M.Goessel, S.Tamick, 'Self Checking
Comparator with One Periodic Output', IEEE Transactions on
Computers, Vol. 45, March 96, pp. 379-380.

S.Laha, J.H.Patei, 'Error Correction in Arithmetic Operations
Using Time Redundancy', Proc. 13th Fault Tolerant Computing
Symposium, 1983, pp. 298 - 305.

D.Linder, 'Phased Logic: Supporting the Synchronous Design
Paradigm with Delay-Insensitive Circuitry', IEEE Transactions on
Computers, vol. 45(9), September1996, pp. 1031-1043.

lLi, E.Swarzlander, 'Concurrent Error Detection In ALUs By
Recomputing With Rotated Operands', IEEE International
Workshop Defect and Fault Tolerance In VLSI Systems, 1992, pp.
109 -116.

J.C.Lo, 'A Novel Area-Time Efficient Static CMOS Totally Self­
Checking Comparator', IEEE Journal of Solid State Circuits, Vol.
28(2), Feb 1993, pp. 165 - 168.

W.Maly, S.Naik, 'Defect and Design Error Diagnosability
Measure', Proc. ETC-91 (Apr. 1991), pp. 83 - 90

142

[Ma090]

[Mead80]

[Meindl87]

[Metra96]

[Metra97]

[Millman91]

[Millman94]

[Nigh90]

[Parekhji91]

[Patel82]

[Patel83]

[Piestrak95]

[Piestrak96a]

W.Mao R.K.Gulati, D.K.Goel and M.D. Ciletti, 'QUIETEST: a
quiescent current testing methodology for detecting leakage faults',
Proc. ICCAD-90 (November 1990), pp. 280 - 283.

C.Mead, L.Conway, 'Introduction to VLSI Systems', Addison­
Wesley, Reading, Ma ,1980, pp. 218 - 262.

J.D.Meindl, 'Opportunities for Gigascale Integration', Solid state
Technology, December 1987, pp 85 - 89.

C.Metra, J.Lo, 'Compact and High Speed Berger Code Checker',
Proc. 2nd IEEE International On-Line Testing Workshop, Biarritz,
8-10 July 1996, 144-149.

C.Metra, M.Favalli, B.Ricco, 'Highly Testable and Compact Single
Output Comparator', Proc. 15th IEEE VLSI Test Symposium, April
1997,210-215.

S.D.Millman, E.J.McCluskey, J.M.Acken, 'Diagnosing CMOS
bridging faults with stuck-at fault dictionaries', IEEE International
Testing Conference 1990, pp. 860-870.

S.D.Millman, J.M.Acken, 'Diagnosing CMOS bridging faults with
stuck-at, Iddq, and voting model fault dictionaries', IEEE Custom
Integrated Circuits Conference 1994, pp. 409-412.

P.Nigh, W.Maly, 'Test generation for Current Sensing' IEEE
Design and Test, Feb. 1990, pp. 26 - 38.

R.A.Parekhji, G.Venkatesh, S.D.Sherlekar, 'A Methodology for
Designing Optimal Self-Checking Sequential Circuits',
International Test Conference, 1991, pp. 283 - 291.

J.H.Patel, L.Y.Fung, 'Concurrent Error Detection in ALUs by
Recomputing With Shifted Operands', IEEE Transactions on
Computers, C31(7) July1982, pp. 589 - 595.

J.H.Patel, L.Y.Fung, 'Concurrent Error Detection in Multiply and
Divide Arrays', IEEE Transactions on Computers, C32(4) April
1983, pp. 417 - 422.

SJ.Piestrak, 'Design of self-testing checkers for unidirectional
error detecting codes', ISSN 0324-9786, Oficyna Wydawnicza
Po1itechniki Wroclawskeij, Wroclaw 1995.

S.Piestrak, 'Design of Self-Testing Checkers for Borden Codes',
IEEE Transactions on Computers C45(4) , April 1996, pp.461-469.

143

[Piestrak96b] S.Piestrak, 'Design of Minimal-Level PLA Self-Testing Checkers
for m-out-of-n Codes', IEEE Transactions on Very Large Scale
Integration (VLSI) Systems Vo!.4(2) , Jun 1996, pp.264-272.

[Pradhan80a] D.Pradhan, J.Stiffler, 'Error Correcting Codes and Self-Checking
Circuits', IEEE Computer, March 1980, pp. 27-35.

[Pradhan80b] D.Pradhan, 'A New Class Of Error CorrectinglDetecting Codes for
Fault-Tolerant Computer Applications ',IEEE Transactions on
Computers, Vo!. C-29(6), Jun 1980. pp. 471-481.

[purce1l88] E.Purcell, ' Fault Diagnosis Assistant', Circuits and Devices, Vo!.
4(1), Jan 1988, pp 47-58.

[Reynolds78] D.Reynolds, G.Metze, 'Fault Detection Abilities Of Alternating
Logic', IEEE Transactions on Computers, vo!. C-27(12). Dec.
1978,pp.l093-1098.

[Russe1l89] G.Russell, and I.Sayers, 'Advanced Simulation and Test
Methodologies for VLSI Design', Van Nostrand Reinhold
(International), ISBN 0-7476-0001-5,1989, pp. 214-198.

[Sayers85] I.L.Sayers, D.J.Kinniment, 'Low-cost residue codes and their
application to self-checking VLSI systems', lEE Proceedings, vo!.
132 (4), Pt. E, July 1985, pp.197 - 202.

[Sayers86] I.L.Sayers, D.J.Kinniment, E.G.Chester 'Design of a reliable and
self-testing VLSI datapath using residue coding techniques', lEE
Proceedings, vo!. 133 (3), Pt. E, May 1986, pp.169 - 178.

[Siewiorek92] D.Siewiorek, RSwarz, 'Reliable Computer Systems, Design and
Evaluation', Digital Press, ISBN 1-55558-075-0, 1992.

[Sherwani95] N.Sherwani, S.Bhingarde, A.Panyam, 'Routing in the Third
Dimension from VLSI chips to MCMs', IEEE Press, ISBN 0-7803-
1089-6,1995, pp. 1-26.

[Shedletsky78] lShedletsky, 'Error Correction by Alternate Data Retry', IEEE
Transactions on Computers, vo!. 27(2), Feb. 1978, pp.106 - 112.

[Srnith78] lE.Smith, G.Metze, 'Strongly Fault Secure Logic Networks', IEEE
Transactions on Computers', Vo!. C-27(6), June 1978, pp.491-499.

[Smith84] J.E.Smith, 'On Separable Unordered Codes', IEEE Transactions on
Computers', Vo!. C-33(8), Aug. 1984, pp.741-743.

144

[Somayajula93] S.S.Somayajula, 'A neural network approach to hierarchical
analogue fault diagnosis', IEEE Autotestcon 1993 pp. 699 - 706.

[Sutherland89] LE. Sutherland, 'Micropiplines', Communications ACM, June
1989,32, (6), pp. 720 -738.

[Thompson96] K.Thompson, 'Intel and the Myths of Test', Design and Test,
VoI.13(1), Spring. 1996.

[Varshavsky86] V.Varshavsky, 'Self-timed Control of Concurrent Processes',
Kluwer Academic, 1986, pp. 309-328 .

. [Waicuk89] J.A.Waicukauski and E.Lindbloom, 'Failure diagnostics of
structured VLSI', IEEE Design and Test (August 1989) vol. 6, pp.
49 - 60.

[Wakerly75] J.F.Wakerly, 'Detection of Unidirectional Multiple Errors Using
Low-Cost Arithmetic Codes', IEEE Transactions On Computers,
Vol. C-24(2), Feb. 1975, pp. 210-212.

[Weste85] N.Weste, K.Eshraghian, 'Principles of CMOS VLSI Design',
Addison-wesley, 1985, pp. 159-230.

145

PUBLICATIONS

M.Saeed, D.Thulborn, J.Yeandel and S.Jones, 'IFIS - An On-Line Testing

Methodology Using Dual-Rail Data Coding', Proc. 2nd IEEE International On-Line

Testing Workshop, Biarritz, 8-10 July 1996, pp.68-71.

J.Yeande1, D.ThuIborn, M.Saeed, SJones, 'Fault Localisation For On-Line Testable

! Designs Realised Using Dual-Rail Design Methodology', Proc. 2nd IEEE

International On-Line Testing Workshop, Biarritz, 8-10 July 1996, pp.221-222.

J.Yeandel, D.Thulborn, SJones, 'An On-line Testable UART Implemented Using

IFIS', Proc. 15th IEEE VLSI Test Symposium, California, IEEE Computer Society

Press ISBN 0-81867810-0, April 27 - May 1 1997, pp. 344-349.

J.Yeandel, D.Thulborn, SJones, 'IFIS: An On-line Test Methodology', lEE Circuits,

Devices and Systems, in press.

J.Yeandel, D.Thu1born, SJones, 'The Design and Implementation of an On-line

Testable UART', Journal of Electronic Testing: Theory and Applications (JETTA),

accepted for publication, subject to minor revision.

146

r-- -- -- --

