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1. Introduction 

Recently, many designers are actively focused on the low power improvements in VLSI technology. Linear feedback 

shift registers (LFSRs) are the most frequently used method for generating the test patterns. Conventional test pattern 

generators (TPGs) have high switching power due to an increase in the transition delay, which is not suitable for many 

types of applications, especially battery-operated devices. Hence, an LFSR is favorable because it can generate random 

test patterns with a small percentage of switching power [1]. Other factors such as low power consumption, performance, 

and the silicon area consumption of a random test pattern generator are also important. An LFSR is used to generate 

pseudo-random test patterns since it has excellent properties, such as a lower silicon area overhead in the chip [2]. In 

general, an LFSR consists of a series of flip-flops to perform the shift register function. A bit pattern enables the feedback 

of the shift registers. The shift register rotates the series of input message bits by shifting to the left or the right, and the 

shifted bits are fed back into the shift register using an exclusive OR operation [3]. The original value of the shift register 

is said to be the initial value. Depending on this initial value, the shift register generates test patterns [4].  

Abstract: A linear feedback shift register (LFSR) has been frequently used in the Built-in Self-Test (BIST) designs 

for the pseudo-random test pattern generation. The higher volume of the test patterns and the lower test power 

consumption are the key features in the large complex designs. The motivation of this study is to generate efficient 

pseudo-random test patterns by the proposed LFSR and to be applied in the BIST designs. For the BIST designs, the 

proposed LFSR satisfied with the main strategies such as re-seeding and lesser test power consumption. However, 

the reseeding approach was utilized by the maximum-length pseudo-random test patterns. The objective of this paper 

is to propose a new LFSR circuit based on the proposed Reed-Solomon (RS) algorithm. The RS algorithm is created 

by considering the factors of the maximum length test patterns with a minimum distance over the time t. Also, it has 

been achieved an effective generation of test patterns over a stage of complexity order O (m log2 m), where m denotes 

the total number of message bits. We analysed our RS LFSR mathematically using the feedback polynomial function 

to decrease the area overhead occupied in the designs. The simulation works of the proposed RS LFSR bit-wise 

stages are simulated using the TSMC 130 nm on the Mentor Graphics IC design platform. Experimental results 

showed that the proposed LFSR achieved the effective pseudo-random test patterns with a lower test power 

consumption of 25.13 µW and 49.9 µs. In addition, proposed LFSR along with existing authors’ LFSR are applied 

in the BIST design to examine their power consumption. Ultimately, overall simulations operated with the highest 

operating frequency environment as 1.9 GHz. 
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A TPG is used in many applications such as circuit design, cryptography, and Monte Carlo methods, the latter of 

which require high quality and efficient test patterns [5]. To obtain an efficient implementation of the test pattern, it 

satisfies some properties. Firstly, the test patterns should be reproducible; secondly, the more extended length test patterns 

should be generated over a long period; and finally, the storage for random test patterns should be used efficiently in a 

circuit. Computational researchers need to be careful while selecting a TPG algorithm since it may fail for randomness 

[6].  

An LFSR can be implemented using the Reed-Solomon (RS) codes for the generation of test patterns. The RS code 

is a type of error-correcting code initially proposed by Irving S. Reed and Gustave Solomon in 1960 and was later 

modified by other authors for their specific needs. These codes can detect and correct multiple-bit errors in transmitted 

output test patterns [7]. Moreover, an RS code is a type of cyclic code, meaning that the binary symbols' 1' and '0' can be 

complemented along the transmission line. During the transmission of data bits, the RS codes are synchronized in terms 

of false recognition. An analytical notation has been developed for the message bits to reduce false recognition in the RS 

codes [8]. In modern systems, the input seeds are encoded and distributed along the transmission line. If the failure occurs 

at a node, it should be replaced efficiently using the remaining functional nodes [9].  

The RS codes have been mathematically analyzed using the Galois field. The Galois field used the finite field 

arithmetic, named by French algebraist Galois [10]. These fields are constructed using finite numbers, especially prime 

numbers, and are represented using an algebraic notation [11]. The RS codes are effectively used in cryptographic 

applications for error detection and correction [12]. The Galois-field-based RS codes can be calculated using either of 

two methods: the first uses a software programming algorithm, and the second uses a hardware design [13]. RS codes are 

also called the regenerating and forward error-correcting codes. It means that the RS codes can identify the faulty nodes 

and recover them. It is used in many storage system applications such as CDs, DVDs, etc. Besides, it is widely used in 

bar codes, QR codes, digital video broadcasting, and wireless satellite communications [6], [14]. 

In this paper, the proposed LFSR circuit and its auxiliary circuits are designed and simulated using a Mentor Graphics 

TSMC 130 nm tool. Related literature works of the LFSR design are discussed in Section 2. Section 3 briefed the modified 

algebraic design of RS codes. It achieved the maximum length patterns within the minimum distances. Also, the 

mathematical analysis of the proposed RS LFSR was calculated in terms of the feedback polynomial function. In Section 

4, the RS algorithm and the RS LFSR circuit are proposed. Finally, the proposed LFSR was designed using the CMOS 

logic technique, and the design has been verified in the IC station. Section 5 discussed the results obtained for the 

proposed circuit and its auxiliary components. The proposed LFSR circuit was compared with the existing designs of 

LFSRs and tabulated. Additionally, the proposed LFSR is applied in the BIST design to identify its less power 

consumption with the existing authors' LFSR.  

 

2. Related Works of the LFSR 

Sian et al. [15] proposed using RS codes as an iterative structure and presented an algebraic notation for the input 

seeds. According to Swastik et al. [16], the RS codes can be defined using two fields: GF(q) and GF(qm); however, in 

this paper, GF(qm) was chosen to give a better transmission. For example, the RS codes can transmit 128 random bits for 

a seven-bit input message sequence in the finite field 'F'. According to Amin et al. [17], the distance of the message bits 

transmitted is denoted by the factor d, which is the divisor of any multiplicative group in the Galois field. Han et al. [18] 

show that the RS codes are linear error-correcting codes that play a vital role in many applications. The message bits are 

transmitted with the minimum distance. If we suppose that the received random test pattern is dissimilar from the expected 

pattern, it is identified as a fault, also known as an erasure. Erasures need to be detected and corrected by the parity bits 

to enable better transmission. In this paper, the XOR gates are used for a parity checker. Oscar et al. [19] presented an 

LFSR circuit that contains a series of flip-flops and the XOR gate as a switch. As per [20], the length of LFSR is assumed 

as L in this paper; the initial stage of the LFSR is referred to as a seed. 

Meanwhile, the positions of the bit change in successive stages are referred to as tapping. Depending on the tap 

value, the values of the output polynomial sequences change. According to Jia-Min et al. [21], the LFSR should generate 

pseudo-random test patterns parallel for all the k subsequent stages simultaneously over various input seeds.  

Perenzoni et al. [22] proposed the TPG for the image sensor, which is being used in a spacecraft. It is also implemented 

on a digital silicon-on-chip with higher power consumption. Niclass et al. [23] designed the linear arrays of the LFSR 

counter. A five-stage pipelined structure in the counter is designed and implemented in a 180 nm CMOS design. The 

performance values need improvement for these proposed designs. Bronzi et al. [24] designed an array of the counter 

using a 9-bit LFSR. Rather, the reduced delay in the circuit can be improved with low noise levels. The author mentioned 

as an extension of the proposed design can be applied in molecular imaging. Pavia et al. [25] proposed the LFSR design 

as a counter used in the SRAM memory. Since the LFSR design is designed based on the CMOS differential buffer 

structure and the same clock distribution, the propagation delay in the designs gets increased. Daniel et al. [26] used the 

LFSR circuit as a counter to reduce the decoding logic in large-scale array applications. The authors' decoding logic of 

the LFSR can also be implemented algorithmically to motivate high-end security. Considering the existing LFSR designs, 

the proposed method of LFSR should be achieved with less power consumption and maximum length patterns.  
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3.   Mathematical Analysis and Design of the Proposed RS LFSR 

The RS code for (L, m) is used for transmission, where L is the block length of the LFSR, m is the input message bit or 

initial seed value. The parity bits (2t) to be added to correct the faulty bits during the transmission [27]. We choose the block 

length of the message bits as L= pm −1, where p is a prime number for the RS codes. The field properties of the RS codes 

are studied in terms of the Galois field. A group of the Galois field is defined as (F, + (or) *, 1), where F denotes a set of 

elements in the field, '+' denoted an adder operation, '*' denoted a multiplier operation, and 1∈ F is identity [6]. 

 

3.1 Modified RS Algebraic Design  

Consider a series of input message bits m0, m1,…, mk-1 that is mapped to the polynomial for the Galois field GF(pm), 

where p is a prime number and there exist k polynomial estimations such that m(x0) = z0, m(x1) = z1,…, m(xk-1) = zk-1. 

Using the Lagrange method [6], the message bits polynomial can be written as in equation (1), 

 

𝑚(𝑥) = ∑ 𝑧𝑎
𝑚−1
𝑖=0 ∏

𝑥−𝑥𝑗 

𝑥𝑖−𝑥𝑗

𝑚−1
𝑗=0                                                                         (1) 

 

Each error code for the random test pattern needs to be corrected with the parity bits. It is, therefore, necessary to consider 

a polynomial function for the parity bits. Let 2t be the number of parity bits for the message m(x), for k coefficients and 

2t distinct non-zero points x0, x1,…, x2t-1. The symbol for the parity polynomial is assumed to be P, i.e. P= 2t, which is 

expanded in equation (2) as, 

 

m0 + m1 . x0 +………….. + mk-1 . x0
k-1 = P0 

m0 + m1 . x1 +………….. + mk-1 . x1
k-1 = P1 

. 

. 

m0 + m1 . xk-1 +………….. + mk-1 . xk-1
k-1 = Pk-1                                                       (2) 

 

Since the RS codes are cyclic, the coefficients of the message bits m(x) exist only in a finite field GF(pm). The generator 

polynomial g(x) for the finite field is shown in equation (3) as,  

 

𝑔(𝑥) = ∏ (𝑥 − 𝛼𝑗)𝐿−𝑚
𝑗=1                                                                            (3) 

 

For example, the generator polynomial for the four-bit test patterns can be written as, 

 

g(x) = x4 - 𝛼3 x3 + x2 -  𝛼 x + 𝛼3                                                                   (4) 

 

The above equation (4), relates the individual test pattern bits to the generator polynomial coefficients in terms of x, and 

𝛼1, 𝛼2,…..., 𝛼2𝑡−1  , which are the distinct non-zero message bits in the Galois field F. 

The generator polynomial g(x) can also be defined for the true case as p(X) = g(x).q(x) ≡ 0 (mod  xL -1), where p(X) is 

the remainder and q(x) is the quotient for the modulo-2 operation. The modulo-2 operation can be carried out using the 

XOR operation.  

 

∑ 𝑈𝑖𝛼𝑖𝑗𝑋𝑖𝑗
𝑘−1
𝑖=0 = 0         where 𝑖, 𝑗 = 1,2, … ,𝑚                                                       (5) 

 

The outputs of classical RS codes are assumed to be U(x) = (px(a1) ... px (an)), where px represents the parity bits for the 

correction. U is a fixed integer that lies between zero and k. The final RS codes output are then represented by equation 

(5), as the product of the RS codes output function and the input message bits.  

 

                                                                                                    

3.2 Minimum Distances Achieved for the Maximum Length Pseudo-Random Test Patterns 

The outputs could be generated the maximum length in the pseudo-random patterns by considering the modified RS 

codes. The maximum length pseudo-random patterns with the minimum distances are examined using the concepts of 

multiplicity in the codes. The multiplicity structure in the codes should be identified using the multivariant low-degree 

polynomial and the restriction of the univariant low-degree polynomial [16]. Therefore, the polynomial for the LFSR is 

fixed as low-degree multivariant bits. Since the RS codes are linear, the minimum distance is assumed as d ≥ (L−m+1). 

It can be minimized further, and the distance can be rewritten in d+1 [7]. It can be seen that the binary code parameters 

are in the set of {L=pm, d+1}. Here, p is the number of prime values, m is the message bit, and d+1 is the minimum 

distance. For example, a sequence code for the message bits of 15,11,7,5,1, (for p=16), the minimum distances achieved 
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are 2,4,6,8,16, respectively. Consequently, the minimum distances as d+1,  the maximum length as m, pseudo-random 

bit patterns as p, with the total block length as L are identified in Table-1.  

 

Table 1 - The RS LFSR achieved with minimum distance for various message bits 

L=pm 

p=2 p=4 p=8 p=16 p=32 p=64 

m d+1 m d+1 m d+1 m d+1 m d+1 m d+1 

1 2 3 

1 

2 

4 

7 

4 

1 

2 

4 

8 

15 

11 

7 

5 

1 

2 

4 

6 

8 

16 

31 

26 

21 

16 

11 

6 

1 

2 

4 

6 

8 

12 

16 

32 

63 

57 

51 

45 

39 

36 

30 

24 

18 

16 

10 

7 

1 

2 

4 

6 

8 

10 

12 

14 

16 

22 

24 

28 

32 

64 

 

 

3.3  Analysis of the Proposed RS LFSR Test Patterns using the Feedback Polynomial Function   

The proposed RS LFSR consists of m-bit shift registers; the XOR gate and the multiplexers act as the Galois adder 

and multiplier. The concepts of the Galois adder and the multiplier are introduced to re-seed the maximum length test 

patterns. The feedback polynomial expressions are prescribed for the area-sensitive designs. 

In general [5], the LFSR feedback polynomial of degree m is given by, 

 

Fm(X) = 𝛼0𝑋0+𝛼1𝑋1+…………+𝛼𝑚𝑋𝑚                                                            (6) 

 

Equation (5) is the feedback polynomial function, which needs to satisfy certain properties such as, 𝛼0 = 𝛼𝑚 = 1, 𝛼𝑖 =
{0,1} , and 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑘−1 = 0, where α is the message bits. The polynomial chosen should exhibit two specific 

conditions for the maximum length of the pseudo-random test patterns: firstly, it should be a primitive polynomial; and 

secondly, for any smaller values of k = 2m−1, the subjective polynomial can be divided by the polynomial 1+𝑋𝑘, where 

k is any number between zero and m. Hence, the feedback polynomial for the proposed RS LFSR m-bit can be written in 

equation (7) as,  

 

Fm(X) = 1+𝛼0𝑋0+𝛼1𝑋1+𝛼2𝑋2+…+𝛼𝑚𝑋𝑚                                                           (7) 

 

The proposed test patterns are mapped in the vector notation. The initial stage of the feedback is represented as 𝑌(0)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗  in 

equation (8), 

𝑌(0)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝑦1
(0)

   𝑦2
(0)

 ……….𝑦𝑚
(0)

 ] T                                                                                             (8) 

 

Hence, the prediction of the successive stages are characterized as, 𝑌(1)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗= I ⊕ 𝑌(0)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗. Finally, the kth stage of the LFSR 

output can be calculated according to the expression below. 

 

𝑌(𝐾)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   = Ik ⊕ 𝑌(0)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗,      where Ik = I ⊕ Ik-1                                                       (9) 

where, 𝐼 =

[
 
 
 
 
0 0 ⋯ 0 𝛼0

1 0 ⋯ 0 𝛼1

0 1 ⋯ 0 𝛼2

⋮ ⋮ ⋮
0 0 ⋯ 1 𝛼𝑚]

 
 
 
 

 

By using equation (6), the four-bit stage of the proposed RS LFSR can be briefed as, 

 

F4(X) = 1 + 𝛼0𝑋
0+𝛼1𝑋

1 +𝛼2𝑋
2+𝛼3𝑋

3                                                           (10) 
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In the above equation (10), F4(X) is denoted as the feedback polynomial function for a four-bit stage. Hence, the initial 

feedback of the proposed LFSR can be mapped in vector notation as below.  

𝑌(0)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝑦1
(0)

   𝑦2
(0)

   𝑦3
(0)

  𝑦4
(0)

 ] T                                                                (11) 

Using equation (8), the subsequent two feedback stages of the proposed LFSR written below. 

 

𝑌(1)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗  = I ⊕ 𝑌(0)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

]⊕ 

[
 
 
 
 
 𝑦1

(0)

𝑦2
(0)

𝑦3
(0)

𝑦4
(0)

]
 
 
 
 
 

 =

[
 
 
 
 
 𝑦4

(0)

𝑦1
(0)

𝑦2
(0)

𝑦3
(0)

]
 
 
 
 
 

 = 

[
 
 
 
 
 𝑦1

(1)

𝑦2
(1)

𝑦3
(1)

𝑦4
(1)

]
 
 
 
 
 

                                       (12) 

𝑌(2)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗= I2 ⊕ 𝑌(0)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

]

2

⊕ 

[
 
 
 
 
 𝑦1

(0)

𝑦2
(0)

𝑦3
(0)

𝑦4
(0)

]
 
 
 
 
 

 = 

[
 
 
 
 
 𝑦3

(0)

𝑦4
(0)

𝑦1
(0)

𝑦2
(0)

]
 
 
 
 
 

 

=

[
 
 
 
 
 𝑦1

(2)

𝑦2
(2)

𝑦3
(2)

𝑦4
(2)

]
 
 
 
 
 

                                       (13)          

Based on equations (10), (11), and (12), the four-bit stage of the proposed LFSR test patterns generated as 1100, 0110, 

0011, 1001. The successive patterns of the LFSR are generated simultaneously by using the bit-wise XOR operator. 

 

 𝑌(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [1    1    0    0] T                                                                      (14) 

𝑌(1)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗= [0    1    1    0] T                                                                      (15) 

𝑌(2)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗= [0    0    1    1] T                                                                      (16) 

 𝑌(3)⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗= [1    0    0    1] T                                                                      (17) 

       

The RS LFSR should be executed parallel for all k stages with the minimum distance as L + i.k ≥ dmin. Here, L is the 

block length or the size of the LFSR, i is the number of successive stages of a shift register, and dmin = d+1 as the minimum 

distance achieved. 

 

4. Proposed RS Algorithm and RS LFSR Circuit 

The initial seed value of the RS LFSR is represented in terms of the message bits m in algorithm 1. The transmission 

of the message bits mapped onto a polynomial bit sequence px is ready for transmission into the shift registers. 

Simultaneously, the Galois field addition and multiplication operations are carried out to generate the multi-valued logic. 

The multi-valued logic is used for re-seeding the test patterns if required. Since the parity bits are added to the output for 

correction, it is calculated by the modulo operation. Followed by the successive iterations of the algorithmic steps, the 

RS LFSR output can be written as 1 + p(X) + XL-m α (x), where "1" is denoted as a primitive polynomial bit. The primitive 

bit was added to the initial polynomial for the proposed LFSR. 

 

Algorithm 1: RS LFSR 

Step 1:  Input seed bits m 

Step 2:  Assign  

                  m belongs to GF (2m) 

                  Map m bits to polynomial, px (α i) = xi, i ∈ {1, 2, …. α} 

                  Block length L= 2m –1 ∀ m>0; 

                  Parity bits 2t= (L−m) 

                  Generate polynomial bits g(X) = X L + 1 

Step 3:  Procedure for x= 0 to L, do generate RS (L, m) ∃  

                    X L-m α (x) is [(q(x). g(x)) ⊕ p(X)] 

                    p(X) is [X L-m m (x) % g(x)] 

Step 4:  Output of the RS LFSR as pseudorandom test patterns, 

                 Y(X) =1 + p(X) + XL-m α (x) 

Step 5: end 
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Fig. 1 - Block diagram of the proposed n-bit RS LFSR 

 

Table 2 - Comparison table of proposed LFSR with the conventional LFSR 

Method Feedback polynomial function #Test patterns 

Conventional 

LFSR 

Proposed LFSR Conventional 

LFSR  

Proposed 

LFSR 

4-bit X4+X+1 1+α0X0+α1X1+…+ α15X15 4 15 

8-bit X8+X6+X5+X+1 1+α0X0+α1X1+…+ α255X225 8 225 

16-bit X16+X5+X3+X2+1 1+α0X0+…+ α65535X65535 16 65535 

m-bit Xm+X+1 1+α0X0+…+ α2𝑚−1 X2𝑚−1 m 2𝑚−1  

 

The proposed RS LFSR test patterns and their feedback functions are listed with the conventional LFSR in Table 2. 

It identified as the proposed method could generate the maximum length patterns using their operation of the Galois field. 

The Galois operation for the adder and multiplier in the LFSR enlarged into the maximum length pseudo-random patterns 

in the LFSR by the concepts of subsets in their calculation. The subsets of the initial seed bits could be written as  𝛼0𝑋
0, 

𝛼1𝑋
1, 𝛼2𝑋

2, …, 𝛼𝑛𝑋𝑛. In the proposed method, the last-bit of the feedback polynomial is defined as α2𝑚−1 X2𝑚−1. 

Hence, the Galois field extended to the factor 2𝑚−1 in the initial seeds, which generates the additional bits in LFSR than 

the conventional method. 

An algorithm-based RS LFSR block is implemented in Fig.1 block diagram. In this block diagram, an XOR gate is 

used as a switch to enable (EN) the LFSR circuit. The LFSR continuously generates pseudo-random test patterns as long 

as the EN input is high. The series of the D flip-flops are used as shift registers to rotate the pseudo-random test patterns. 

The Galois adder is assumed to be the XOR gates and the Galois multiplier as a multiplier for their convenient circuit 

design. The primitive polynomial bit is used to generate the maximum length pseudo-random patterns [4]. Hence, the 

primitive polynomial bit for the RS LFSR is identified as one of the Galois multipliers fed back into the shift registers. 

The Galois adder and multiplier are designed up to "m" stages for generating the multi-valued logic. The multi-valued 

logic is used for re-seeding the pseudo-random test patterns to the n-bit values in the BIST designs. The multi-valued 

logic is also much beneficial in large-scale array applications.  

It shows that the proposed RS LFSR can generate the maximum length of the test patterns. Although in the worst-

case scenario, the proposed LFSR can generate the patterns until 2
𝑚

2
−1

 which is greater than the conventional LFSR. The 

conventional LFSR has the selected roots for pattern generation. Whereas in the proposed LFSR, the roots of the 

polynomial can be selected at any tapping value. Consequently, for the proposed m-bit multistage LFSR, the test patterns 

are constant. The stage that is needed for the proposed LFSR is m log2 m. Thus, the size of the proposed LFSR should be 

scaled proportionally to m log2 m (or) 
𝑚

2
− 1 log2 m. The remaining stages of the proposed LFSR can be designed using 

the conventional CMOS logic techniques in the range of 2 ≤ m ≤ 10. 

As per the block diagram, the proposed LFSR simulated and verified for the four-stage random patterns. Fig. 2 shows 

a schematic diagram of an XOR gate, a multiplexer, and a D flip-flop constructed using the CMOS design style. These 

auxiliary circuits are used to design the bit-wise stage of the proposed LFSR. The XOR gate (a) transistors are sized in 

terms of the lesser critical path, giving lower power consumption. In the NAND based D flip-flop design (b), the inputs 

feed through the A and B and also by feed through factor Q and �̅� respectively due to its cross-coupled design. The 
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logical effort of the NAND flash rising edge D flip-flop produces the output as a logical 'high' pattern. The design of the 

2:1 multiplexer (c) in the schematic used the transmission gate (push-pull method) due to reducing the bit transition delay. 

The transmission gates are equally sized for PMOS and NMOS to maintain the restoring logic. In the XOR gate circuit, 

the logical level swing restoration is achieved using M1, M2, M3, and M4 transistors. The swing restoration in the D flip-

flop and multiplexer is achieved by using M1 and M2 transistors.  

 

        
                        (a)                                                                       (b)                                                    (c) 

 

Fig. 2 - Transistor-level schematic of an (a) XOR gate; (b) D flip-flop; (c) multiplexer  

                 
 

 
 

Fig. 3 - Transistor-level schematic of the proposed RS LFSR bit-wise scheme 

 

Fig. 3 represents the schematic of the proposed LFSR circuit constructed using the auxiliary circuits. Most existing 

methods for the LFSR arrangement shown in the literature [1]–[3], [5] are the software (coded) model. In this paper, the 

hardware model of the LFSR arrangement is proposed. The proposed LFSR circuit used the multiplexer for bit-wise 

pattern selection. A1, A2, A3, A4 indicates the input seeds of the LFSR, and multiplexer select bits are assigned according 

to the enable input. Whereas X1, X2, X3, X4 are the generator polynomial bits assigned by the algorithmic values. The 

CMOS XOR gate is designed by an enhancement PMOS and NMOS transistor, which gives an equal bit transition in the 

output. As per the XOR operation, either of the one input is enabled, the output would be logically 'high,' which denotes 
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the primitive bit. The primitive bit of LFSR feeds into a D flip-flop which makes one consecutive delay per bit. Normally 

XOR gates are used as a parity checker, which checks the input bit pattern that is enabled as either logical '1' (or) not. If 

no bit sequences are enabled, then the logic of the sequential patterns will not be recognized. Hence the D flip-flop 

consecutive delay and XOR checker must be an important factor for the regular bit-wise pattern. The stages of the 

multiplexer circuit used for bit-wise selection. The proposed four-bit stage LFSR is designed based on the dynamic logic 

technique. The cascaded auxiliary circuit restores the logical level at the output Y using the CMOS inverters. The different 

W/L factor sizing of the transistors maintained the effective resistance values while there is a significant increase in the 

parasitic capacitances.  

 

5. Simulation Results and Discussions 

The proposed RS LFSR circuit, simulated and verified using the Mentor Graphics IC design tool. The CMOS design 

of all the circuits is analyzed for the low power dissipation in the TSMC 130nm tool. The simulation results for the power 

and the current values over the different voltages for the auxiliary circuits are plotted in Fig. 4.  

The CMOS XOR design used six pMOS and nMOS transistors. It dissipated the power as 1.4 nW. Due to the regular 

arrangement factors of the transistors, there is a minimized critical path with lesser power dissipation. The D flip-flop in 

the design consumes only 3 nW power, which is very small, and this is due to the standard logical effort of the cell. The 

multiplexer circuit has been designed using the transmission gates, which is nullifying the critical path. The outcome of 

the above-mentioned method dissipates the power of 0.1 nW and the delay of 0.14 ns. As shown in the block diagram of 

Fig. 2, all the auxiliary circuits are arranged regularly for the proposed LFSR circuit. It reduced the critical path and 

circuit delay. Overall, the LFSR circuit consumed the power as 25.13 μW and the delay as 49.9 ns. A standard voltage 

of 1.2 V is used for the critical analysis, and it operated at a frequency of 1.9 GHz. The overall performance values are 

shown in Table 3. 

 
 

(a)                                                                                                     (b) 

Fig. 4 - Plots of Power consumption vs. Voltage and Voltage vs. Current for the auxiliary circuits 

 

Table 3 - Performance factors of the proposed circuit and its auxiliary circuits 

Performance Feature 

size 

(nm) 

Voltage 

(V) 

Power (nW) Delay (μs) Frequ

ency 

(GHz) 

Area 

(μm2) Pre-

simulation 

Post-

simulation 

Pre-

simulation 

Post-

simulation 

XOR 130 1.2 0.0014 0.0029 0.72 0.9 1.9 13 x 11 

D flipflop 130 1.2 0.003 0.0045 1.13 1.25 1.9 21 x 15 

Mux 130 1.2 0.0001 0.00013 0.14 0.16 1.9 7 x 9 

LFSR 130 1.2 25.13 34.8 49.9 56.7 1.9 133 x 30 

 

The performance factors of the proposed LFSR with its auxiliary circuits are listed in Table 3. The pre-simulation 

and the post-simulation values of power and delay ate measured separately to identify its efficiency in the IC designs. 

The overall circuits could be operated in the 1.9 GHz frequencies with the less supply voltage of 1.2 V, which is well 

suited in the BIST operations. Also, the area occupied are measured using layout measurement of the particular drawn 

designs. The total circuit designs are enveloped with the low-level leakage transistors and the less transitions XOR gates. 

The lesser power consumption is achieved in the designs using eliminating the power leakage between the transistors. It 

could be accomplished by the principle of the dynamic-mode rather than the static-mode of operation. 
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The transient response experimented for the proposed LFSR, where the synchronous clock distribution for the D 

flip-flops is maintained logically high. The multiplexer transition stages are considered as a logical toggle for the output 

values. During the cascaded switching transitions of the multiplexer from logical low (tpLH) to high (tpHL), the output leads 

to numerous impulses highlighted in Fig 5. Moreover, the input pulse bits are assigned as the successive three pulse width 

delay values of 100 ns, 50 ns, and 25 ns to maintain high output V(Y). More signal impulses are eliminated in the 

responses using the weak transistors as an inverter in the circuits. Additionally, used fewer aspect ratio-ed transistors for 

the overall design to reduce the area overhead in the IC design.  

 

 
Fig. 5 - Transient response analysis of  proposed RS LFSR scheme  

 
 

Fig. 6 - Schematic-Layout of the proposed bit-wise RS LFSR circuit design 
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                                             (a)                                                                                    (b) 

 

Fig. 7 - Pre-simulation and Post-simulation results of the proposed LFSR in the IC station. (a)Total chip power 

dissipation vs. Voltage; (b) Current vs. Voltage 

 

Table 4 - Comparison of the performance of the proposed RS LFSR scheme with other simulation work by 

various authors  

Author Feat

ure 

size 

(nm) 

Tran

sistor 

count 

Volt

age 

(V) 

Power 

consumpt

ion 

% 

Impr

ovem

ent 

Delay 

(µs) 

% 

Impr

ovem

ent 

Frequ

ency 

(GHz) 

Area           

(μ m2) 

Power-

delay 

product

(µm2-

µs) 

Area-

delay 

product 

(fJ) 

Perenzoni 

et al. [22] 

130 148 1.2 47.7 mW 49.81 104 52.95 1.78 36001.4 496080 3744145.6 

Niclass et 

al. [23] 

130 152 1.2 530 mW 23.78 146.5 27.54 1.8 19362.5 776451 2836606.2 

Bronzi et 

al. [24] 

130 166 1.2 50 mW 51.20 124.6 52.84 1.814 7885.2 623055 982495.9 

Pavia 

et.al. [25] 

130 148 1.2 52 µW 89.62 79.9 64.25 1.25 4600.03 4154.8 367542.3 

Daniel et 

al. [26] 

130 136 1.2 157.5 µW 84.04 147.9 66.26 0.6 6446.1 23294.2 953378.1 

Proposed 

RS LFSR 

130 144 1.2 25.13 µW -- 49.9 -- 1.9 3990 1253.9 199101 

 

The layout of the proposed LFSR is drawn in Fig. 6. The layout is drawn at the schematic transistor level, and each 

transistor block is segmented based on the auxiliary circuits. The total area of the layout is measured as length x width of 

the drawn design occupied in the IC design station. The layout used substantial stray capacitance, wire capacitance, 

junction capacitance, and input-output long metal wire connections. The redundancy of the metal wires and the area can 

be constrained furthermore. For an area-sensitive design strategy, the proposed RS LFSR can be designed using the 

feedback polynomial function discussed mathematically in Section 3.3. However, the bit-slice methodology of the 

proposed LFSR is used to generate the TPG with the bit-wise test patterns. The bit-wise test patterns can be isolated from 

the output of the respective flip-flops. Moreover, it performed clearer results in terms of power consumption, delay, and 

others. 

Figure 7 shows the graph of pre-simulation and post-simulation results of the proposed LFSR in terms of total chip 

power dissipation versus Voltage and current versus Voltage. The pre-simulation total power dissipation is decreased 

compared to the post-simulation total power dissipation due to the parasitic values and wires. According to the dynamic 

power dissipation equation (Pd = CL 𝑉𝑑𝑑
2  f), when the supply voltage is increased, then the power dissipation also gets 

increased. According to the Ohms law, the current is increased because the parasitic values are suppressed. 

The results of the proposed LFSR circuit simulation are shown in Table 4, and the results are compared to the existing 

LFSR circuits as in the literature. Although there are different feature sizes and transistors in the existing LFSR circuits, 



Vishnupriya Shivakumar et al., International Journal of Integrated Engineering Vol. 13 No. 6 (2021) p. 220-232 

230 

 

the performance of the proposed circuit has shown a better power consumption result. In [22], the author used a TPG 

with an LFSR counter for the spacecraft designs. The power consumption of the circuit is 47.7 mW, which the clock's 

distribution can determine. Hence, in the proposed LFSR, one clock distribution is designed for all the sequential circuits. 

When the proposed circuit is compared to the circuit designed in [22], our proposed circuit has a 49.81 % 

improvement in power dissipation, 52.95 % in the propagation delay, and 6.3 % in the operating frequency. The proposed 

circuit has fewer transistors than the circuit in [22] since the proposed circuit transistors are arranged with the reduced 

critical path.  

Niclass et al. [23] designed an array of LFSR counters in which each LFSR counter consumed power of 530 mW. 

Indeed, the reliability of the circuits was evaluated based on the reduced delays in the proposed design. Hence, the area 

and delay measured are high. Further in this paper, the low power LFSR with effective performance can be achieved 

compared to [23]. Due to the critical path reduction and lesser transistors, the proposed LFSR circuit achieves a 23.78% 

improvement in power dissipation, 27.54% in the propagation delay, and 5.26% in the speed of the circuit designed in 

[23]. In [24], the array of the counters implemented using the 9-bit counters. The circuit designed in [24] achieved a 

power dissipation of 50 mW and a reduced delay of 52.84 ns with low noise values. Although the proposed LFSR is 

implemented for 4-bit, it achieved power dissipation at micro-levels. The design in [24] used many stages of the counter 

for the testing pattern methodology, whereas our proposed circuit used only four stages to achieve the same results. Our 

proposed LFSR circuit achieved a 51.20% improvement in power dissipation, 52.84% in the propagation delay, and 

3.15% in speed than the design in [24].  

Pavia et al. [25] designed the LFSR circuit as a TPG for the SRAM memory. The design is based on the differential 

buffer structural design and executed in a 130 nm CMOS H-spice platform. The propagation delay can be adjusted by 

using the clock distribution technique. It used a different platform to design a circuit and used for the SRAM memory 

circuit. The Mentor Graphics IC design tool is used to design the proposed LFSR circuit, and it can achieve 89.62% 

improvement in the power dissipation, 64.25% in the propagation delay, and 34.21% in the speed as compared to the 

design in [25]. Daniel et al. [26] used the LFSR counter for large-scale array decoding logic and implemented using the 

H-spice 130 nm CMOS technology. The authors' design consumed power of 157.5 μW, which is quite high as compared 

to the proposed LFSR.  

 

 
Fig. 8 - Plots of the BIST ref. [28] performance in terms of Power consumption vs. Voltage with the use of 

proposed LFSR and ref. [22]–[26] LFSR 

 

The proposed work achieved better results for the power and the delay due to the reduced critical path in the transistor 

and the reduced logical transition in the bit-wise pattern. The proposed algorithm has reduced the critical path between 

the input and the output, and it gives a new way of design in the LFSR circuit. Moreover, the current density of the N-

type transistor is reduced because of the fair sharing of the electron at the output node. Thus, power consumption is 

reduced in the design of the cell. The power consumption achieved by the proposed LFSR is 25.13 µW and the delay 

calculated is 49.9 µs. Fig. 8, plotted for the power consumption values for the Elham et al. [28] BIST with the proposed 

LFSR and the existing authors'. The LFSR is used for the test pattern generation in the BIST designs. It is clearly shown 

that the proposed LFSR consumed lesser power during the BIST operation mode. Whereas, Perenzoni et al. [22] LFSR 

in the BIST ref. [28], consumed higher power of 599.05 µW at the applied Voltage of 2 V compared with the other 

existing LFSRs'. At the same Voltage of 2V, the proposed LFSR in the BIST achieved the power consumption of 194.52 

µW, far better than the Perenzoni et al. [22] LFSR. 

 



Vishnupriya Shivakumar et al., International Journal of Integrated Engineering Vol. 13 No. 6 (2021) p. 220-232 

 

231 
 

Conclusion 

The paper presented the new LFSR circuit based on the proposed RS algorithm. The practical implementation of the 

RS algorithm into an LFSR circuit is designed, verified, and analyzed in the BIST design. The overall circuit designs are 

implemented by CMOS TTL configuration, and the results are analyzed in terms of the area, the power, the delay, and 

the frequency. The proposed LFSR achieved the maximum length TPGs with re-seeding pattern generation in the BIST 

design and consumed lower power, lesser delay in the circuits. The power consumption of the pre-simulation as 25.13 

µW is measured along with the post-simulation as 34.8 µW at the operating frequency of 1.9 GHz, which could be 

achieved better performance in the IC designs. Furthermore, the circuit's power consumption could be decreased using 

the reduced transistors with the low power asynchronous clocks. However, more transistors are included to avoid the 

swing restoration and signal degradation in the circuits. The paperwork would be designed in applications of BISTs such 

as spacecraft, musical, and medical instruments for their precise randomness.  
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