42,402 research outputs found

    Parameter estimation for stochastic hybrid model applied to urban traffic flow estimation

    Get PDF
    This study proposes a novel data-based approach for estimating the parameters of a stochastic hybrid model describing the traffic flow in an urban traffic network with signalized intersections. The model represents the evolution of the traffic flow rate, measuring the number of vehicles passing a given location per time unit. This traffic flow rate is described using a mode-dependent first-order autoregressive (AR) stochastic process. The parameters of the AR process take different values depending on the mode of traffic operation – free flowing, congested or faulty – making this a hybrid stochastic process. Mode switching occurs according to a first-order Markov chain. This study proposes an expectation-maximization (EM) technique for estimating the transition matrix of this Markovian mode process and the parameters of the AR models for each mode. The technique is applied to actual traffic flow data from the city of Jakarta, Indonesia. The model thus obtained is validated by using the smoothed inference algorithms and an online particle filter. The authors also develop an EM parameter estimation that, in combination with a time-window shift technique, can be useful and practical for periodically updating the parameters of hybrid model leading to an adaptive traffic flow state estimator

    Traffic measurement and analysis

    Get PDF
    Measurement and analysis of real traffic is important to gain knowledge about the characteristics of the traffic. Without measurement, it is impossible to build realistic traffic models. It is recent that data traffic was found to have self-similar properties. In this thesis work traffic captured on the network at SICS and on the Supernet, is shown to have this fractal-like behaviour. The traffic is also examined with respect to which protocols and packet sizes are present and in what proportions. In the SICS trace most packets are small, TCP is shown to be the predominant transport protocol and NNTP the most common application. In contrast to this, large UDP packets sent between not well-known ports dominates the Supernet traffic. Finally, characteristics of the client side of the WWW traffic are examined more closely. In order to extract useful information from the packet trace, web browsers use of TCP and HTTP is investigated including new features in HTTP/1.1 such as persistent connections and pipelining. Empirical probability distributions are derived describing session lengths, time between user clicks and the amount of data transferred due to a single user click. These probability distributions make up a simple model of WWW-sessions

    The pseudo-self-similar traffic model: application and validation

    Get PDF
    Since the early 1990¿s, a variety of studies has shown that network traffic, both for local- and wide-area networks, has self-similar properties. This led to new approaches in network traffic modelling because most traditional traffic approaches result in the underestimation of performance measures of interest. Instead of developing completely new traffic models, a number of researchers have proposed to adapt traditional traffic modelling approaches to incorporate aspects of self-similarity. The motivation for doing so is the hope to be able to reuse techniques and tools that have been developed in the past and with which experience has been gained. One such approach for a traffic model that incorporates aspects of self-similarity is the so-called pseudo self-similar traffic model. This model is appealing, as it is easy to understand and easily embedded in Markovian performance evaluation studies. In applying this model in a number of cases, we have perceived various problems which we initially thought were particular to these specific cases. However, we recently have been able to show that these problems are fundamental to the pseudo self-similar traffic model. In this paper we review the pseudo self-similar traffic model and discuss its fundamental shortcomings. As far as we know, this is the first paper that discusses these shortcomings formally. We also report on ongoing work to overcome some of these problems

    Constrained dynamic control of traffic junctions

    Get PDF
    Excessive traffic in our urban environments has detrimental effects on our health, economy and standard of living. To mitigate this problem, an adaptive traffic lights signalling scheme is developed and tested in this paper. This scheme is based on a state space representation of traffic dynamics, controlled via a dynamic programme. To minimise implementation costs, only one loop detector is assumed at each link. The comparative advantages of the proposed system over optimal fixed time control are highlighted through an example. Results will demonstrate the flexibility of the system when applied to different junctions. Monte Carlo runs of the developed scheme highlight the consistency and repeatability of these results.peer-reviewe

    Scheduling Policies in Time and Frequency Domains for LTE Downlink Channel: A Performance Comparison

    Get PDF
    A key feature of the Long-Term Evolution (LTE) system is that the packet scheduler can make use of the channel quality information (CQI), which is periodically reported by user equipment either in an aggregate form for the whole downlink channel or distinguished for each available subchannel. This mechanism allows for wide discretion in resource allocation, thus promoting the flourishing of several scheduling algorithms, with different purposes. It is therefore of great interest to compare the performance of such algorithms under different scenarios. Here, we carry out a thorough performance analysis of different scheduling algorithms for saturated User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) traffic sources, as well as consider both the time- and frequency-domain versions of the schedulers and for both flat and frequency-selective channels. The analysis makes it possible to appreciate the difference among the scheduling algorithms and to assess the performance gain, in terms of cell capacity, users' fairness, and packet service time, obtained by exploiting the richer, but heavier, information carried by subchannel CQI. An important part of this analysis is a throughput guarantee scheduler, which we propose in this paper. The analysis reveals that the proposed scheduler provides a good tradeoff between cell capacity and fairness both for TCP and UDP traffic sources
    corecore