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Abstract 

This paper proposes a novel data-based approach for estimating the parameters of  

a stochastic hybrid model describing the traffic flow in an urban traffic network 

with signalized intersections. The model represents the evolution of the traffic 

flow rate, measuring the number of vehicles passing a given location per time 

unit. This traffic flow rate is described in this paper using a mode-dependent first 

order autoregressive (AR) stochastic process. The parameters of the AR-process 

take different values depending on the mode of traffic operation - free flowing, 

congested, or faulty – making this a hybrid stochastic process. Mode switching 

occurs according to a first-order Markov chain, and hence we call this hybrid 

process a jump Markov process. This paper proposes an expectation-

maximization (EM) technique for estimating the transition matrix of this 

Markovian mode process and the parameters of the AR models for each mode. 

The technique is applied in this paper to actual traffic flow data from the city of 

Jakarta, Indonesia. The model thus obtained is validated by using the smoothed 

inferences algorithms and an online particle filter (PF). We also develop an EM 

parameter estimation that, in combination with a time window shift technique, 

can be useful and practical for periodically updating the parameters of hybrid 

model leading to an adaptive traffic flow state estimator. The proposed parameter 

estimation technique can thus be used as part of an adaptive model-based filter 

for feedback control of traffic lights. 

Keywords:  Hybrid system, parameter estimation, particle filter, stochastic 

system, fault detection, urban traffic networks. 
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1. Introduction 

 Urban traffic congestion is a problem that significantly affects many aspects of the 

quality of life. A more efficient use of the existing road infrastructure, using advanced traffic 

control strategies, can lead to reduced congestion, reduced emissions, reduced fuel 

consumption, and improved safety. The model based control strategies that are needed in order 

to achieve such an improvement depend strongly on the quality and the accuracy of the dynamic 

model of the system, on the availability of reliable online data and also on the ease of 

implementation of the control strategy. The model must describe the variability over time of the 

traffic flow, allowing model based estimation of the current state, fusing noisy traffic data from 

various traffic sensors. This estimation together with the model in turn allows probabilistic 

prediction of future traffic flows, so that control actions – selecting switching times of traffic 

lights in the application we have in mind – can properly anticipate future traffic flow. In this 

paper we use a stochastic hybrid model to effectively describe the evolution over time of the 

arrival and flow rates of vehicles in an urban traffic network as stochastic processes. We define 

the flow rate as the number of vehicles that pass a location per red/green cycle, divided by the 

length of this cycle (veh./sec). The random value of the continuous variables defining the flow 

rates evolve according to an autoregressive model (AR) with time varying parameters, while 

some other events like changes in the environment, the inflow from outside the area under 

consideration, or the occurrence of unexpected incidents, influence the parameters of the AR-

flow rate model. This stochastic hybrid models represents uncertainties in the evolution of the 

traffic flow in probabilistic form, for time scales of the order several red/green cycles of the 

traffic light. This corresponds to the prediction horizon that should be taken into account for a 

real-time model-prediction based feedback controller of the traffic lights in an urban network.  

A great deal of recent work has considered traffic flow state estimation for freeway 

traffic and for arterial roads [1,2,3,4]. Our focus on urban networks requires different models 

and different estimation procedures, due to the stop and go phenomenon  resulting from the 

green/red switching. The traffic flow state estimation algorithms typically rely on the 

knowledge of a stochastic dynamic model that describes the evolution of the traffic flow 

variables. This model depends on the noise characteristics in between mode changes, as well as 

on the transition probabilities from one discrete mode of operation to another mode. We identify 

or estimate the parameters of this hybrid system model from data observed during the normal 

operation of the plant. Since the discrete event and discrete time dynamics of such models are 

coupled, partially observable and stochastic, this is a very challenging problem in the field of 

data driven estimation and control. 

Previous work of the authors [5] uses a single ARX model and applies a particle filter 

and kernel smoothing method to estimate the parameters of the ARX model. However, the 

disadvantage of this model is that it fails to accurately classify the mode-dependent variance of 

the data which deteriorates the performance of the estimator. The disadvantage is due to the fact 

that the model consists of only one single ARX model, keeping the variance for the whole given 

measurement data set constant. Off course this assumption is quite unrealistic due to that the 

variance of the video-type sensor usually depends on the intensity of traffic flow, and to the 

influence of external factors on the traffic flow evolution. This is the another reason for 

developing the stochastic hybrid model which basically consists of a multiple model. It has also 

been shown in [6] that using mode-dependent models and identifying these modes leads to 

better estimation and prediction results for the traffic flow. By using different models in 

different modes of traffic behavior, we significantly improve the performance of the estimator 

in terms of the accuracy both in free-flow and congested flow regime. 

The stochastic hybrid models for which we estimate the parameters can be used for 

estimating and predicting traffic flow rates, and thus also for predicting queue lengths at 

signalized intersections. The variability of the traffic flow during successive cycles of the traffic 

light must be estimated with sufficient accuracy in order to predict the expected queue-length 

resulting from control decisions. Therefore estimating parameters of the traffic flow model, the 
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topic of this paper, is a prerequisite for implementing a good real-time controllers of the traffic 

lights in an urban environment.  

In traffic measurement data we have to deal with many types of noise and uncertainty. 

In the case study in section 5 we use traffic data obtained from a video-type sensor that detects 

vehicles passing several locations near two neighboring intersections in the capital city of 

Indonesia, Jakarta. Our past experience with this type of video data has indicated that there are a 

lot of missed detections (due to lack of detail in the image, or due to one vehicle obscuring 

another) as well as false detections (due to reflections, or other errors in the image processing). 

A model based state estimator is therefore necessary in order to filter the noise from the useful 

data, and to obtain a sufficiently accurate estimate of the flow rates at the different locations. 

Our stochastic hybrid model must also take into account errors due to incidents (like accidents) 

that may occur in the measured lanes. An incident may block traffic flow causing a traffic jam. 

In order to build a highly accurate estimate, a reliable fault detection system, and a good real-

time description all of these phenomena should be considered in the dynamic models.  

In this paper, we present a novel approach to parameter estimation for a stochastic 

hybrid model of traffic flow. Traffic flow is described by a continuous random variable )(t

which expresses that the number of vehicles passing a given location in the urban network 

during the time interval ),[ dttt  is dtt .)(  (in order to avoid working with large integers we 

fluidize our traffic variables, approximating integer numbers of vehicles by real number, see 

[7]). We observe the traffic flow )( kk t   at an increasing sequence of discrete time kt  (the 

easiest case is tktk  . , but in our application these kt ’s are successive switching times of 

traffic lights that may not operate with a fixed cycle). So we define as traffic flow the ratio 

)( 1 kk

k
k tt

N





  where kN  counts the number of vehicles that pass the given location in 

the interval ).,[ 1kk tt  The fluid flow approximation implicitly assumes that the traffic flow 

remains constant during the interval ),[ 1kk tt , i.e. )(tk    for ).,[ 1 kk ttt  Of course this 

assumption that vehicles travel approximately at equal distances during the interval ),[ 1kk tt  is 

an approximation that is only acceptable for sufficiently small values of the time increments 

tk+1-tk, but it reduces the computational complexity of our algorithms a lot since we do not have 

to consider individual vehicles. Moreover in our application we look at flow rates averaged over 

a typical red or green cycle period of the traffic light, and traffic flow is fairly regular during 

such a period. 

As long as the mode of operation of the traffic remains unchanged we make the very 

reasonable assumption that k evolves as a first order autoregressive (AR) process. The 

parameters of this AR-process however can take different values depending on the mode of 

traffic operation - free flowing, congested or faulty. Mode switching can be seen as a discrete 

event and we assume that these events occur after geometrically distributed random times, so 

that the modes are described by a first-order Markov chain. This hybrid stochastic process is 

called a jump Markov model. The transition probability matrix   of the mode switching system 

must also be estimated using the online data available from the video cameras. 

The problem considered in this paper thus is this following : 

Determine those parameters that maximize the likelihood of the 

proposed stochastic hybrid model, best describing the stochastic 

dynamic model of the traffic flow rates at the given location, using a 

sufficiently long sequence of data Kkk ...,,2,1,  of traffic flow 

measurements, observed at a that location and use the model thus 

obtained for estimating and predicting the traffic flow. 

Note that these hybrid model parameters include both the parameters of the AR-process 

(including the noise variance) and the entries of the transition matrix . In this paper, the 

parameter estimation is performed as an offline technique using a given batch of observations, a 
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window of time during which the model is valid. Based on those parameters, we apply the 

model to be used in estimating/ predicting the traffic flow for the next time-window. This time 

window shift technique can be useful and practical for periodically updating the parameters of 

hybrid model leading to an adaptive traffic flow state estimator.  

The remainder of this paper is organized as follows. Section 2 explains the motivation 

for the stochastic hybrid model used in this paper. This jump Markov model representing the 

traffic flow rates via an autoregressive equation with mode dependent parameters is explained in 

detail in section 3.  Section 4 describes the expectation maximization (EM) technique as a tool 

for estimating the parameters of this model while section 5 presents the experimental lay-out for 

the data used in our validation of the EM technique. Model validation is described in section 6. 

Finally, section 7 summarizes the findings of this paper and draws some conclusions on its 

practical usefulness. 

 

2. Problem formulation 

 In this section, we concentrate on stochastic hybrid modelling of traffic flow along one 

particular approach route to a signalized intersection, and indicate how this model is useful in 

controlling the operation of a signalized intersection. This explains how the parameter 

estimation problem treated in this paper fits into the overall traffic control problem. We validate 

our traffic flow model, and the parameter estimation algorithm based on this model, using data 

collected at 2 neighboring intersections, called 313 and 314, in the traffic network of Jakarta, 

Indonesia as shown in Fig.1. At each of the location indicated in Figure 1 by a bar, identified by 

their names D_F_ij, a video camera tries to detect all passing vehicles using a computer based 

counting algorithm. While false detections and missed vehicles cause significant errors in the 

data, the output )(ty of the sensors approximately counts the number of vehicles that cross an 

entrance location D_F_ij during one cycle of the traffic light.  

The data set also lists the number of vehicles that cross a location per cycle of the local 

traffic light, as well as the duration of each cycle (between 120-200 seconds). This provides us 

with a data set of traffic flow rates averaged per cycle. By using measurement data obtained 

from video cameras at the locations at the intersections described above we build a model 

describing the dynamics of the traffic flow (t), use the EM-parameter estimation technique to 

estimate the model parameters, and validate the model thus obtained by using smoothed 

inference for predicting future values of (t). A good model should have the capability to cope 

with variation of urban traffic flow enabling queue length based traffic control. Indeed the 

evolution of the queue-length at approach route ℓ is given by 

 
t

t
dtQtQ

0

))()(()()( 0                                                     (1) 

where ))(()( tt   is the traffic flow rate (generically called (t) earlier) of the arrival stream 

of vehicles (resp. the departure stream of vehicles) for a location along approach route ℓ, both 

flow rates measured in veh/sec, averaged over one measurement cycle corresponding usually to 

one cycle of the traffic lights. As mentioned above we use the fluid-flow approach, aggregating 

the number of vehicles during a cycle period, implicitly assuming that during the k -th cycle, 

between kt  and 1kt , the flow rate remains constant, equal to k , resp. k . Using our hybrid 

model equation (1) therefore also allows us to obtain probabilistic predictions for the queue 

lengths. 

 Figure 1 shows that intersection I-313 has arrival flow 11L which is determined by 

summing the number of passing vehicles detected at sensor location 9,6,7 and 12 divided by the 

cycle length of the intersection I-314. The value of this the arrival flow rate as measured during 

the k-th cycle of the traffic lights is further on called λk. The departure rate for intersection 314, 

called 11L , is defined by counting the vehicles that pass the sensor location 8,9,10 at 

downstream intersection I-313, divided by the green period of lane L11 at intersection I-313 (the 

time delay corresponding to the travel time between intersection 313 and 314 must of course be 

taken into account when using the flow rate L11 as inflow rate at the downstream intersection I-
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313). The value of this departure flow rate as measured during the k-th green period is further 

on denoted μk. Of course this is under the assumption that drivers of vehicles that pass the 

sensor locations 9,6,7 and 12 follow the traffic rules. 

For each intersection the traffic cycle is divided into 2 separate periods, called the red 

and the green period. In each of these periods only some traffic flows are allowed to cross the 

intersection, so that the departure rate 0)(11 tL whenever traffic in the North-South 

direction sees red at intersection 313. As shown in Figure 2 there are, for each intersection and 

for each cycle, two decision variables: kkg ttT 212    (the green period) representing the time 

duration between switching times kt2  and 12 kt , and  1222   kkr ttT  (the red period between 

12 kt  and 22 kt ). The traffic signal control problem determines for each cycle, a good value for 

these two decision variables, minimizing some cost function, typically depending on the 

expected evolution of the queue-length. 

The design of a good traffic controller therefore requires that a good model is available 

describing the evolution of the arrival and departure traffic flows, k  (a non-negative random 

process defined such that k.(t2.k+2 – t2.k) vehicles enter the intersection during the k-th cycle, 

from t2k to t2(k+1) ) and k (a non-negative random process such that k.(t2k+1 – t2k) vehicles cross 

the intersection during the k-th green period from t2k till t2k+1). Note that the departure flow rate 

takes the value 0 whenever the traffic light is red for the corresponding direction. The purpose 

of this paper is to identify the parameters of the stochastic hybrid model describing the 

evolution of k and of k, k = 1,2,.... Our parameter estimation algorithm uses real data from 

sensors at the location where the model is to be applied. 
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Figure.1 Configuration of area under investigation 
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Figure 2. Signal Traffic Sequence 

 

Consider 4 queues ℓ= 1,…,4 at 4 approach roads to an intersection (like I-313 or I-314 in 

fig. 1), and assume that the evolution of arrival rate ℓ,k and departure rate ℓ,k is well defined by 

the parameters of the stochastic hybrid model identified with sufficient accuracy by the methods 

proposed in section 4. Further on we consider only one queue at a time, and hence we drop the 

subscript ℓ to simplify the notation. Define a ‘clock’ state variable ])(,)([)( 21 tztztzi  , 

associated with the GREEN light cycle for queues }3,1{ and for }4,2{  respectively; )(1 tz  

measures the time since the last switch from RED to GREEN of the traffic light for queues 

}3,1{ . It is reset to 0 as soon as the GREEN cycle length 
1  is reached and remains at this 

value while the light is GREEN for queues }4,2{ ; as soon as the cycle ends, i.e., 
22 )( tz , 

then )(1 tz


 is reset to 1 and the process repeats. The same applies to z2(t), but for determining 

the evolution of queues }4,2{ . This provides the control designer with a complete model for 

predicting the queue sizes )(tx j  for the j-th queue : 
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The operation of the intersection can be modelled as a stochastic hybrid system as shown in 

Fig.3 with the time-driven dynamics described by equation (2) and event-driven dynamics 

dictated by GREEN-RED light switches and by events causing some )(tx j to switch from 

positive to zero or vice versa. We can describe the evolution of queue-length xj(t) for example 

by a Stochastic Hybrid Automaton as shown in Figure 3, equivalent to equation (2). The event 

set that affects the evolution of queue xj(t) is },,,,{ 54321 eeeeeE  (dropping again subscripts j 

in order not to overload the notation), where : (a) 1e  corresponds to the value of )()( tt jj    

becoming strictly positive (after a period where it was non-positive), ( b) 2e  corresponds to a 

switch of )(tj  from 0 to strictly positive, (c) 
3e corresponds to the queue-length becoming 

empty, i.e., 0jx , (d) 4e switches a traffic light from RED to GREEN,  (e) 
5e switches a 

traffic light from GREEN to RED. 
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Figure 3. Stochastic Hybrid Automata 

 

3.  Jump Markov Model Structure 

In this section we describe in detail the stochastic hybrid model, also called further on 

the jump Markov model (JMM), for a generic traffic flow rate k (which could represent the 

arrival flow rate k or the departure flow rate k ). During a period of time when the traffic 

conditions, also called the mode s of operation of the traffic, remains unchanged, this variable 

k is modelled by a first-order autoregressive (AR) model: 

kkk wss   )()(1                                                                           (3) 

(where )(s  and )(s  are mode-dependent parameters to be identified, and ....,2,1, kwk is 

an independently identically distributed sequence of zero mean random variables with variance 

)(2 s , with )(2 s  also a mode dependent parameter to be identified). The fluid flow 

assumption of this paper implies that the traffic flow is constant during each interval [tk,tk+1): 

(t) = k for ).,[ 1 kk ttt  The traffic flow implication is that during any interval [θ, r)  

)[ )1(22  kk ttt  the number of vehicles that cross the location where this model is valid is on 

the average ).(  rk , and that these vehicles are approximately uniformly distributed over 

this interval. 

 From time to time the mode s(t) of operation will change, due to external changes of the 

inflow rate, due to incidents that make the operation more or less efficient, or due to 

randomness. The mode variable s used above therefore should also be considered as a time 

varying random process. We assume that the mode changes only occur at times kt when the 

value of the traffic flow rate k is updated by the AR equations. Therefore, we denote the mode 

as ks in the interval ).,[ 1kk tt  In the traffic model we consider 3 different values for the mode 

of operation  3,2,1ks : 

 1ks  denotes the desirable mode of operation where traffic is flowing normally 

without too much interference between successive vehicle; 

 2ks  denotes the congested mode where vehicles hinder each other significantly, and 

the system operates inefficiently; 

 3ks  corresponds to a faulty state, describing outliers in the behaviour that may be 

due to incidents (like accidents, bad weather conditions). 

We assume that the mode process ks  can be modelled by a Markov chain, i.e. at each time kt  

the mode variable isk 1  changes randomly to the value jsk   with a probability ij
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Prob ...),,,|( 321   kkkk ssisjs  which only depends on the most recent mode (or Markov 

state) 1ks , not on states further in the past. 

Equation (3) with its interpretation kt  )(  for ),[ 1 kk ttt , together with the 

Markov chain model for the mode ks  provides us with a complete mathematical model of 

traffic flow. The parameters of this model will be estimated in the next section according to the 

EM method. In total there are 15 parameters to be estimated.: 

 For each mode  3,2,1s  the AR model (3) has 3 parameters, )(s , )(s

and )(2 s  

 The transition matrix )( ij of the Markov chain describing the mode 

process has 3 rows of 3 elements, satisfying the normalization condition 





3,2,1

,1
j

ij i   

The observations, providing the data used in the parameter estimation described in 

section 5 and section 6, which are also the data that an online traffic controller could use, are 

obtained by counting the number of vehicles ky  passing the location to which the model is 

applied during the interval ).,[ 1 kk ttt  This output variables ky is defined as : 

kkkkk ntty   ).( 1  

where kn , ...,2,1k is a sequence of independent zero mean random variables with known 

distribution (describing the probabilities of missed vehicles and false detections in the video 

cameras). Note that the output ky  only becomes available at time )1(2 kt . This is not a problem 

for our offline parameter estimation algorithm, but it should be taken into account for an online 

control algorithm. 

  

4. Parameter estimation: EM approach 

Estimation of the parameters ( )3,2,1),(),(),(( 2 ssss  of the AR-models, and of 

the transition probabilities ( 3,2,1,, jiij ) of the JMM can be performed using an iterative 

two-step EM procedure. Therefore the EM algorithm allows us to completely identify the JMM 

stochastic hybrid model proposed in the previous sections as a model for traffic flow. In this 

section, we develop the application of the EM approach, originally proposed by [8] and further 

extended in [9,10], to switching systems as our JMM, based on forward-backward recursion or 

’smoothing’. A good introduction and survey paper on EM can be found in [11].  This EM 

approach is formulated in batch or offline form, i.e. it uses a given number of observations 

obtained over a time interval [0,T) to iteratively find better and better estimates of the unknown 

parameters of a model that is valid over the period [0,T). This offline approach needs significant 

memory requirements and processing power for storing and processing large datasets, but this 

approach is shown to be useful and applicable further on in this paper. 

In this paper we do reformulate the EM approach proposed by [9] in order to get a 

simpler and easier algorithm, changing the cost-function in the M-step by adding a weighted 

term with corresponding smoothed inferences about the currently active mode. The smoothed 

inferences are the probabilities  ;)( 1

1

 titSP y  that the t -th observation comes from mode i 

given all the information y1
t-1

 available at time t , where we use the notation 

 121

1

1 ,,, 

  t

t yyy y . The reason for this modification is that each observation )(ty  belongs 

to the i -th mode with probability  );()( tyitSP  . By using these smoothed inferences we 

find a better maximum likelihood estimate. If we transform our AR model to state-space (SS) 

form then we notice that the SS model can be classified as an observable canonical form (it can 
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be seen as an output feedback form) and the assumption  that the mode  )(tS  depends on past 

observation 
1

1

t
y  only through the value of )1( tS , implies that the calculation of the 

distribution  ;)( 1

1

 titSP y  is a problem of hidden state estimation of hybrid systems, where  

  ,,,,....,,, 22

000 iii  . The key idea of this calculation is to perform a forward-

backward or ‘smoothing’ filter recursion for each possible mode sequence.  

The algorithm starts with an arbitrarily chosen vector of 15 independent parameters (see 

section 3), chosen randomly but using prior information in order to speed up convergence of the 

algorithm and to increase the probability of converging to the global maximum. The EM 

technique for hybrid systems requires a method for recursively approximating the conditional 

probability  ;)( 1

1

 titSP y , for each index m counting the number of EM iterations. 

Moreover an algorithm for finding the parameter values that achieves the maximum likelihood 

must be available. This differs from the approach proposed in [12] for a general non-linear 

system, where the objective is to find the best estimate of the conditional density  ttyp 1|)( y . 

In the case of hybrid systems, as in this paper, the E-step, indirectly infers about the modes. 

Since the mode )(tS , is unobservable, only the expected values of the modes  at successive time 

t, given the observation vector, can be calculated.  

Since each measurement )(ty  evolves according to the i-th mode with probability

 ;)( 1

titSP y  (given all the data )(ty , t = 1, 2…., T ), it is reasonable if each component on 

the right-hand side of equation (4) below has to be weighted with the corresponding smoothed 

inferences (see Appendix for further details). Therefore, the weighted log-likelihood function is 

given by (assuming that the noise terms nk have a normal distribution; similar formulae can be 

written down for other noise distributions):  

  



T

t

mt

iii yitSPL
2

1 );|)((),,,(log)(log  
 

*
   








  

2

2

1

2

2ln

i

tiiti yy




        (4) 

 

A detailed explanation of the EM-algorithm is given below: 

The E-Step 

The E-step consists of forward filtering and backward filtering/smoothing and this step 

aims to calculate the conditional probabilities  mtyitSP );()(  . Assume that  
m  is the 

parameter vector calculated in the M-step during the m-th iteration and    iSPi  )1(0 . The 

algorithm starts with an arbitrarily (but sensibly, as explained above) chosen vector of initial 

parameters 
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i)  Step E-1: Forward Filtering : for t  = 1,2…., T   iterate: 

 
   
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



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y       (5)                

where  t

t yyy ,,, 211 y  is the vector of traffic flow measurements available at time t and  

 mt

i tStyg ;);(|)( 1

1


y  is the conditional probability density function at of  y(t) time t  

assuming that the mode i is active at time t: 

   






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
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
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1
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)1()(
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;);(|)(
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tStyg


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 and  

   mt

j

m

ji

mt itSPitSP  ;)(;)1( 1

3

11 yy   
 

until  mTyiTSP );()(   is calculated.  

The starting point for the iteration is chosen as :   m

i

myiSP   );1()1(  where 
m

i  is the 

likelihood of being in mode i obtained in the previous iteration m 

 

The Proof of Step E-1 is straightforward using Bayes’ Rules. 

 

ii)  Step E-2: Backward filtering : for t  = 1T , 2T ,..., 1 iterate on 

 
   

 
 




3

1 1

1

;|)1(

);(|)1(;|)(
);()(

j
mt

m

ij

mmt

m

jtSP

TyjtSPitSP
TyitSP






y

y
            (6) 

 

See [9] for the proof (taking into account that the structure and terminology used there is 

completely different from what is used in this paper). 

 

The M-Step 

In the M-step of the EM algorithm, new and more exact maximum likelihood estimates 
1m  

for all model parameters are calculated. As mentioned previously each component of the log-

likelihood function has to be weighted with the corresponding smoothed inference. In particular, 

for the model defined by equation (3) explicit formulas for the estimates can be derived by 

setting the partial derivatives of the log-likelihood function to zero and solving the resulting 

system of non-linear equations by a substitution technique: 

  

 












T

t

m

T

t

i

m

i

TyitSP

tytyTyitSP

2

2

),(|)(

)1()(),(|)(






                                              (7) 

   

 

 



 






T

t

m

T

t

T

t

m

i

m

i

tyTyitSP

tyTyitSPtytyTyitSP

2

2

2 2

)1(),(|)(

)]1(),(|)([)]1()(),(|)([





           (8) 

  

 












T

t

m

T

t

ii

m

i

TyitSP

tytyTyitSP

2

2

2

2

),(|)(

])1()(),(|)([





                                                 (9) 

Because equations (7-8-9) are nonlinear, it is not possible to solve analytically for 
m  as a 

function of {y1,y2,..,yT}. However, these equations do suggest an appealing iterative gradient 

ascent algorithm for finding the maximum likelihood estimate (or in practice a gradient descent 

for the loglikelihood since the relation between likelihood and log-likelihood is monotonely 

decreasing). 

 

Iterating back from T to 1 we obtain  m

T

m

i iSP  ;)1(1
y  and the transition probabilities 

are estimated by using equation (10) (for a proof see [8]).The transition probabilities are 

restricted only by the condition that 0ij and 3,2,1,1)( 321  iiii  : 
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







y

y

                               (10) 

 

where m

ij  is the transition probability obtained during the m-th iteration.  

All values obtained in the M-step are then used as a new parameter vector 

 112)1(11 ,,,   mm

i

m

i

m

i

m    and 
1m

i , 3,2,1i  in the next iteration of the E-step. 

The algorithm is terminated when   1mm for some preset accuracy. It means that one 

continues iterating in this fashion until the change between 
m  and 

1m  is smaller than some 

specified convergence criterion. In the algorithm that we implemented we used the
2L norm, but 

other norms could also be used.  

The EM-algorithm can be implemented in 2 different forms, EM and GEM 

(Generalized EM) [8]. The EM algorithm maximizes the conditional expectation at every 

iteration, while the GEM only ensures that the likelihood increases at each step. Our  

implementation follows the GEM form. We avoid oscillations between different modes with 

identical likelihoods by updating the model only when the likelihood increases. The algorithm 

implementing this Generalized (G) EM-iteration procedure is shown in Table 1 by referring 

equations in both E-step and M-step above. 

Table.1 : GEM Algorithm 

1). Initialization Set m=1. Select ε ϵ R arbitrarily small  

Initialize 
1  to initial guess 

2). Expectation (E) Step  Set  m = m+1 

Given 
m calculate  mL   using equation (4), (5) and (6) 

3).Maximization (M) Step  Set 
1m  to value of   by using equation (7), (8), (9) and 

(10) that maximize  1mL   

4). Convergence check Evaluate  1mL  . If  |  1mL  -  mL  |<  ε, , stop.  

Otherwise go to 2. 

 

Related to the algorithm, the two main problems with the its implementation are:  

(1) the conditional expectation is difficult to compute, and therefore we replace it by 

smoothed inferences. Thus we use  the whole data (batch) obtaining more accurate results, 

especially for the estimate of the mode of operation at each time t. This the reason why in E-step 

we need the backward filtering as shown in equation (6). 

(2) since the convergence may be to a local maximum that is not the global maximum, a 

good choice of initial conditions is necessary. In our traffic case, we simply choose the initial 

conditions based on intuitive guesses corresponding to similar historical real measurement data. 

Since we use a stochastic model with Gaussian noise, the likelihood functions are 

bounded and the Hessian is always negative definite [20]. Therefore, the sequence converges to 

a local maximum (of the likelihood, a local minimum of the log-likelihood), proving 

convergence of our parameter estimation, assuming identifiability of the model (see [19,20]). In 

practice we found that the urban traffic model propose in this paper always leads to an 

identifiable system.  

 

5. Experimental layout 

This section focuses on modeling urban traffic flow, estimating parameter values based 

on the GEM-algorithm of section 4, using the data over a time window [0,T] for the experiment 
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layout shown in Figure 1. The time-window size is important to define the model that will be 

used for estimating traffic flow for the next time-window.  

In this section, we consider as an example the arrival flow and departure flow 11L  and 

11L  at the intersection I-313, and apply of it the parameter estimation techniques of section 4, 

using the data obtained during one single day by the video cameras that are part of a currently 

implemented SCATS traffic control system. The data obtained from the sensors of the SCATS 

system include measurements of the traffic flow as well as the period of each cycle of each 

intersection. Let Nk
s
 be the number of vehicles passing sensor location s (s=8,9,10 at 

intersection n=313) during the time intervals [tk
n
,tk

n+1
), n=313,  then  L11

k 
= (N7,314

k
 + N8,314

k
 + 

N9,314
k
 + N12,314

k
)/(tk+1

314
 - tk

314
), while L11

k
 = (N8,313

k
 + N9,313

k
 + N10,313

k
)/(tk+1

313
 - tk

313
). Note that 

the k-th sample for arrival and for departure flows does not in general correspond to the same 

physical time t. Due to this limitation in our experimental setup, for the time being, we will only 

focus on the study of the development and validation of a model of traffic flow (not a queue-

length) as a hybrid system. Online control applications will be treated in a future paper. 

 Aim of the current experiment is to check the practical implementability of our 

algorithm by identifying the parameters   ,,,,,,,,, 2

333

2

222

2

111  of the 

JMM model for arrival and departure traffic flows. For this purposes we use as input for the 

EM-algorithm described above data for one-day (0 pm – 24 am) obtained on September 1, 2012, 

from the video cameras installed for the operation of the SCATS traffic control system.. The 

data is taken from the area of Thamrin Street (data courtesy of the Newtel Pte Ltd ). Table 2 

shows the 18 parameters of the model for traffic flow thus obtained. It turns out to be feasible to 

identify all possible modes: free flow mode, congested mode and faulty mode. By using these 

parameters we can characterize the AR model of the traffic flow in each of the 3 modes, and the 

transition probability matrix  = (ij, I,j = 1,2,3) describing the Markovian mode transition 

process. Since for all estimated values we find that 1i , the stationary value  )(tyEi  can 

be defined  
i

i
i tyE








1
)( , where i 1, 2 and 3. The values of stationary value  )(tyEi  

can be found in Table.2. 

It is clear from the results of parameter estimation in Table 2, that the EM technique is 

able to identify the modes. In the case of traffic flow 11L , the first and third modes have an 

average value  )(tyEi  that is almost the same but with very different values of the variance. 

This might make the results sensitive to how outliers –unlikely or abnormal events or 

observations - in the data set are treated. In estimation techniques, a standard approach to deal 

with this outlier issue is to reject any measurement that is at least three standard deviations away 

from ‘the normal’ measurement. This means that the definition of outlier depends on what we 

consider the normal variation. A value for the variance that is almost tripled,  is a strong 

indication that the third mode is an outlier mode. This is also obvious from Figure 4 when 

considering the results for the estimated probabilities for those measurement data )(ty  marked 

with a circle, indicating that they belong to the third mode. These points in time correspond to 

events like traffic incidents, persistent counting errors, night counting error.  It is important to 

know the system dynamics at each time, including at these rare events, and to detect when a 

change in the AR model parameters occurs.  
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Figure 4. One-day (0 pm – 24 am) measurement data of 11L  (top graph), JMM based estimated 

probability of mode s = 1,2,3 (second, third and bottom graph) 

 

Table 2. Parameter estimation results 

Traffic flow  11L  Traffic flow 11L  

nS =1 nS =2 nS =3 nS =1 nS =2 nS =3 

1 = 

0.6130 

2 = 

0.9205 

3 = 

0.4579 

1 = 

0.6123 

2 = 

0.8163 

3 = 

0.5033 

1  

0.0950 

2  

0.0330 

3  

0.1459 

1  

0.0608 

2  

0.0180 

3  

0.0373 

2

1 = 

0.0070 

2

2 = 

0.0078 

2

3 = 

0.0222 

2

1 = 

0.0068 

2

2 = 

0.0292 

2

3 = 

0.0045 

 tyE1
 

0.245 

 tyE2
 

0.415 

 tyE3
 

0.269 

 tyE1
 

0.157 

 tyE2
 

0.098 

 tyE3
 

0.075 

Transition Probabilities 



















0.80710.01420.1788

0.00210.99790

0.116400.8836

  

Transition Probabilities 



















0.987800.0122

00.99460.0054

0.00860.00710.9843

  

 

Figure 4 shows both forward and backward filtering results and it seems that both 

approaches give similar results in terms of predicting the outliers. Overall, the EM algorithm is 

able to correctly identify clusters of mode-1, mode-2 or mode-3 operation, meaning that the EM 

technique is applicable for modelling free flow and the congested modes as well as the 

faulty/outlier modes.  
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Analysis of Figure.4 and Table 2 shows that the transition probability to the outlier 

mode for traffic flow 11L  is very high. By analyzing the green duration data (not shown here) 

at times when the probability of an outlier is high, it becomes clear that this is due to the fact 

that when the traffic volume increases, the green duration is decreasing compared to the 

previous one. This is an undesirable effect of the control system that can be classified as an 

error in the timing of the green switches. This implies that traffic flow at those times increases 

drastically, as shown in fig. 4 with a circle marking. In the case of traffic flow 11L , the EM 

parameter estimation is also able to identify the modes as shown in Table 2.  

The performance of this EM algorithm against the weighted log-likelihood function 

 mL   can be evaluated and does provide insight in how close the convergence to the true 

maximum likelihood is feasible. We first analyse the convergence of the algorithm in terms of  

the evaluation of  mL  . Figure 5.d shows that, after a short transient period (< 40 iterations) , 

the EM-algorithm decreases the value of the weighted log-likelihood function  mL   - thus 

also increases the likelihood - as the iterations of the parameter estimation proceed, indicating 

convergence of the estimated parameters (assuming identifiability). 

   

 

Figure.5 Convergence  kL   of the EM algorithm for 11L  : (a)  kL   of mode 1 (b)  kL   

of mode 2 (c)  kL   of mode 3  (d)   kL     

6. Model Validation and Estimation 

In the previous section we analysed the convergence of the log-likelihood parameter 

estimation to an equilibrium. To validate whether this equilibrium is useful for model based 

state estimation and for online control we compare in this section the evolution of   

measurement )(ty  and the estimated values )(
^

ty , based on a simulation that implements the 

JMM model of equation (3), with parameter values shown in table 2, identified by EM-

algorithm. In other word, model validation is performed by using the model based estimator 

using the identified model (obtained via EM parameter estimation) and checking how accurately 

this estimator predicts the traffic flow. As mentioned in the previous section, modes are not 

directly observable and hence, ‘the smoothed inferences’ about the mode state process are used.  

There are two different ways in which the smoothed inferences can be used for the 

model based prediction: 

 (a) equally weighted empirical distributed function (ewedf) ,  

 (b) weighted empirical distribution function (wedf).  
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Below we compare the performance of the ewedf and the wedf approach as part of the 

algorithm for the prediction of the traffic flow rates. For the ewedf approach, we use the natural 

choice of relating each observation with the most probable mode by letting itS )(  if  

  5.0;)( 1

1   titSP y . The evolution of the modes is shown in Figure 6. The mode 

classification using ewedf  does not always work well, especially for cycle-indices around 300 

(around 10 am, marked by a red oval). Around this time the probabilities of mode-1, mode-2 

and mode-3 are all less than 0.5. The probabilities for all modes can be found in Figure 4. This 

implies that during this period around 10 a.m., observations cannot be unambiguously classified 

to one of the modes. The first graph of Figure 7, which shows more detailed results around the 

cycle time 300, shows that, during this period (again marked by a red oval and represented as 

‘mode-0’)  the simulation results also show a big difference with the measurement data. In order 

to overcome this problem we developed the wedf approach where we define weights 

 ;)( 1

1

 t

i itSPwf y , and based on these weights, we predict the measurement by 

multiplying the weights wfi and the right-side of equation (3): )()1( twtyii   and then 

summing the 3 products (as symbolized by ∑ ) which amounts to averaging over modes: 

 



3

1

^

))()1(()(
i

iii twtywfty  ,  

The 2
nd

 graph of  Figure 7 shows that wedf gives better predictions results than ewedf, especially 

during those periods when observations cannot be classified unambiguously to one of the 

modes.  

It should be emphasized that both approaches ewedf and wedf  use the smoothed 

inference that was generated by the iterated EM algorithm. These approaches are not easily 

implementable in real time due to the need for a bigger memory to save the whole available 

information  ;)( 1

1

 titSP y , but the approach is quite useful for validating the model.  

To overcome the limitation of the offline approach, we developed a method that can be 

used both for validating the model and for estimating traffic flow in an online algorithm. For the 

online method, we only use the parameter   of the JMM in order to estimate the traffic flow for 

the next time-window. In this paper we use a type of particle filter technique called observation 

and transition-based most likely modes tracking particle filter (OTPF) technique for hybrid 

systems as developed by [14]. We will not discuss in detail the OTPF algorithm that has been 

implemented in this experiment with N=500. 

We will use a simulation scenario with different time-window shift  in order to study 

the performance of the JMM based prediction : 

Simulation is tested in the period of index 350-450 with a hybrid model, which is obtained from 

the EM-estimated parameters using measurement data from the period with  index 1: 350 

(corresponding in real time to midnight till approximately 10.30 am). 

 

Figure.8 shows the simulation of JMM based prediction w.r.t the scenario above. Simulation 

with different simulation scenario shows a similar performance (not shown here). 
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Figure.6 Mode-evolution 

 

 

 
Figure.7  Measurement data vs model based simulation : ewedf  approach ( first graph) and 

wedf (second graph) 
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Figure.8 the simulation of JMM based prediction  

 

The results of the scenario above shows that: 

(1) EM offline parameter estimation along with a time-window shift technique can be useful 

and practical for updating the parameters of the JMM hybrid model. In the future we will 

investigate what choice of window size W is best for estimating and for prediction in the sense 

that it leads to the most useful results for online traffic light control. One approach to consider is 

a sliding window method, where the JMM model parameters are updated at times m.W, using 

measured data yk over the interval k  [(m - n).W, m.W-1] to identify the model parameters, 

and these model parameters are then used over the interval [m.W, (m+1).W) for predicting the 

traffic flow rate.  

(2) Based on the update of JMM hybrid model, online PF estimator for the next time-window 

can be applied and may be a good candidate as a traffic flow state estimator for coordinating 

traffic light control in small network. This may of course be combined with the sliding window 

approach.  

The results above confirm that a good model is pre-requisite for predicting traffic flow. In the 

context of designing feedback control at a signalized intersection, the prediction is an important 

factor to anticipate the variability of traffic flow coming from neighbouring intersections.  This 

variability should be anticipated by traffic control in terms of green/red switching in order to 

reduce the congestion and to reduce the delay time. Many works in traffic engineering consider 

the prediction of traffic flow in designing traffic light control. Interested readers may refer to 

paper [15,16]. The data-driven modeling approach of this paper fits into the currently very 

active research domain trying to take full advantage of the huge amounts of available process 

data [17,18]. 

However, this EM offline parameter estimation along with the time-window shift technique has 

a disadvantage that the performance of state estimator strongly depends on the length of the 

time window shift. Certainly, the optimal choice of W is a compromise. EM algorithm will 

estimate the parameters more accurately if the time-window W is long enough. This is 

reasonable since the EM algorithm needs a certain amount of measurement data for accurate 
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parameter identification. But of course this will affect  the ability of adaptive filters to detect a 

change of the  model parameters sufficiently quickly. In the context of the coordinated control, 

the online parameter estimation approach is a critical part of an adaptive filter and finding the 

best window size W becomes an interesting research topic for further research. 

7. Conclusions 

This paper proposes a hybrid dynamic system model as a powerful approach for 

capturing the complicated dynamics of urban traffic flow, including many sources of 

uncertainty. The model is appealing as traffic flow conditions can be classified into three-modes 

and the switch between these 3 modes is controlled by a first-order Markov chain. The model is 

characterized by a set of parameters to be estimated using measured data (e.g. from a video 

camera overlooking traffic) and it is shown that a time-window shift technique may lead to a 

useful real time state estimation algorithm, that can be part of a feedback control loop. 

The study reported in this paper investigated the proposed approach by using actual 

traffic flow data and confirmed its validity by showing that the smoothed inferences technique 

and a particle filter based on the identified model provide satisfactory state estimation and 

correctly capture the random variation of the traffic flow. The proposed hybrid model along 

with the particle filter estimator will be applied in a paper in preparation for queue length 

estimators as crucial part for the synthesis of traffic light control.  
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