219 research outputs found

    Estimación De La Temperatura De La Superficie Terrestre De La Ciudad De Srinagar, India Utilizando Datos De Landsat 8

    Get PDF
    Land surface tempreature (LST) is a critical parameter for the study of biosphere, cryosphere and climate change.. Thermal infrared remote sensing data can be used to measure Land Surface Temperature (LST). It will measure the energy exiting the Earth's surface and record the apparent temperature of the surface. It is now possible to measure LST due to the advent of satellite imagery and digital image processing applications. The LST for Srinagar city was calculated using the Split Window algorithm (SW) and Landsat-8 (Path-149 and Row-36) Thermal Infrared Sensor (TIRS) data with a resolution of 100m. . Emissivity was calculated using the Normalized Differential Vegetation Index (NDVI) proportion of vegetation methodology, with bands 4 and 5 (30 m resolution) from the Operational Land Imager (OLI). Surface temperatures were found to be higher in central  regions and lower in heavily vegetated areas. The LST derived using the SW algorithm was more efficient and precise since it used both OLI and TIRS bandsLa temperatura de la superficie terrestre (LST) es un parámetro crítico para el estudio de la biosfera, la criosfera y el cambio climático. Los datos de teledetección infrarroja térmica se pueden utilizar para medir la temperatura de la superficie terrestre (LST). Medirá la energía que sale de la superficie de la Tierra y registrará la temperatura aparente de la superficie. Ahora es posible medir LST debido a la llegada de imágenes de satélite y aplicaciones de procesamiento de imágenes digitales. El LST para la ciudad de Srinagar se calculó utilizando el algoritmo de ventana dividida (SW) y los datos del sensor infrarrojo térmico (TIRS) Landsat-8 (Path-149 y Row-36) con una resolución de 100 m. . La emisividad se calculó utilizando la metodología de proporción de vegetación del NDVI, con las bandas 4 y 5 (resolución de 30 m) del Operational Land Imager (OLI). Se encontró que las temperaturas de la superficie eran más altas en las regiones centrales y más bajas en las áreas densamente vegetadas. El LST derivado usando el algoritmo SW fue más eficiente y preciso ya que usó bandas OLI y TIRS

    Derivation and Validation of the Stray Light Correction Algorithm for the Thermal Infrared Sensor Onboard Landsat 8

    Get PDF
    It has been known and documented that the Thermal Infrared Sensor (TIRS) on-board Landsat 8 suffers from a significant stray light problem (Reuter et al., 2015; Montanaro et al., 2014a). The issue appears both as a non-uniform banding artifact across Earth scenes and as a varying absolute radiometric calibration error. A correction algorithm proposed by Montanaro et al. (2015) demonstrated great potential towards removing most of the stray light effects from TIRS image data. It has since been refined and will be implemented operationally into the Landsat Product Generation System in early 2017. The algorithm is trained using near-coincident thermal data (i.e., Terra/MODIS) to develop per-detector functional relationships between incident out-of-field radiance and additional (stray light) signal on the TIRS detectors. Once trained, the functional relationships are used to estimate and remove the stray light signal on a per-detector basis from a scene of interest. The details of the operational stray light correction algorithm are presented here along with validation studies that demonstrate the effectiveness of the algorithm in removing the stray light artifacts over a stressing range of Landsat/TIRS scene conditions. Results show that the magnitude of the banding artifact is reduced by half on average over the current (uncorrected) product and that the absolute radiometric error is reduced to approximately 0.5% in both spectral bands on average (well below the 2% requirement). All studies presented here indicate that the implementation of the stray light algorithm will lead to greatly improved performance of the TIRS instrument, for both spectral bands

    Tree Water Status in Apple Orchards Measured by Means of Land Surface Temperature and Vegetation Index (LST–NDVI) Trapezoidal Space Derived from Landsat 8 Satellite Images

    Get PDF
    In this study, the split window (SW) method was applied for land surface temperature (LST) retrieval using Landsat 8 in two apple orchards (Glindow, Altlandsberg). Four images were acquired during high demand of irrigation water from July to August 2018. After pre-processing images, the normalized difference vegetation index (NDVI) and LST were calculated by red, NIR, and thermal bands. The results were validated by interpolated infrared thermometer (IRT) measurements using the inverse distance weighting (IDW) method. In the next step, the temperature vegetation index (TVDI) was calculated based on the trapezoidal NDVI/LST space to determine the water status of apple trees in the case studies. Results show good agreement between interpolated LST using IRT measurements and remotely sensed LST calculation using SW in all satellite overpasses, where the absolute mean error was between 0.08 to 4.00 K and root mean square error (RMSE) values ranged between 0.71 and 4.23 K. The TVDI spatial distribution indicated that the trees suffered from water stress on 7 and 23 July and 8 August 2018 in Glindow apple orchard with the mean value of 0.69, 0.57, and 0.73, whereas in the Altlandsberg orchard on 17 August, the irrigation system compensated the water deficit as indicated by the TVDI value of 0.34. Moreover, a negative correlation between TVDI and vegetation water content (VWC) with correlation coefficient (r) of −0.81 was observed. The corresponding r for LST and VWC was equal to −0.89, which shows the inverse relation between water status and temperature-based indices. The results indicate that the LST and/or TVDI calculation using the proposed methods can be effectively applied for monitoring tree water status and support irrigation management in orchards using Landsat 8 satellite images without requiring ground measurements

    An algorithm to retrieve Land Surface Temperature using Landsat-8 Dataset

    Get PDF
    Soil moisture, surface temperature, and vegetation are variables that play an important role in our environment which in turn increases the demand for accurate estimation of certain geophysical parameters such as weather, flooding, and land classification. However, for accurate Land Surface Temperature (LST) estimation, remotely sensed data of key environmental forms were considered and applied in this research. The goal of this study was to apply a suitable algorithm for LST estimation from the Landsat-8 dataset that gives a great accuracy when compared with in-situ observations.Spatial and temporal Landsat-8 data were acquired which provided the analytical structure for linking specific data successfully due to fine resolutions. The data were then applied to determine brightness temperatures, vegetation cover, and surface emissivity which demonstrated the effectiveness of the Split-Window Algorithm as an optimum method for LST retrieval from satellite.The results show temperature variation over a long period of time can be used in observing varying temperature values based on terrain i.e. High temperatures in fully built up areas and low temperatures in the well-vegetated regions. Finally, accurate LST estimation is important for land classification, energy budget estimations as well as agricultural production.Keywords: Emissivity, Landsat, Land Surface Temperature, Split-Window, Vegetatio

    Retrieval of Land Surface Temperature of Lahore Through Landsat-8 TIRS Data

    Get PDF
    Land surface temperature (LST) is an important parameter in global climate change and urban thermalenvironmental studies. The significance of land surface temperature is being acknowledged gradually and interest isincreasing in developing methodologies for the retrieval of LST from Satellite Remote Sensing (SRS) data. ThermalInfrared Sensor (TIRS) of Landsat-8 is the newest TIR sensor for the Landsat Data Continuity Mission (LDCM),offering two adjacent thermal infrared bands (10, 11), having significant beneficiary for the land surface temperatureinversion. The spectral radiance can be estimated through TIR bands 10 and 11 of Landsat-8 OLI_TIRS satellite image.In the present study, the radiative transfer equation-based method has been employed in estimating LST of Lahore andthe analysis demonstrated that estimated LST has the highest accuracy from the radiative transfer method through band10. Land Surface Emissivity (LSE) was derived with the aid of the NDVI’s threshold technique. The present studyresults show that as the built-up area increases and vegetation cover decreases in urban surface, they are linked toincrease in urban land surface temperature and conversely larger vegetation cover associated with lower urbantemperature. The output exposed that LST was high in built-up and barren land, whereas it was low in the area wherethere were more vegetation cover and water

    Remote Sensing Monitoring of Land Surface Temperature (LST)

    Get PDF
    This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research

    Evapotranspiration Retrieval Using S-SEBI Model with Landsat-8 Split-Window Land Surface Temperature Products over Two European Agricultural Crops

    Get PDF
    Crop evapotranspiration (ET) is a key variable within the global hydrological cycle to account for the irrigation scheduling, water budgeting, and planning of the water resources associated with irrigation in croplands. Remote sensing techniques provide geophysical information at a large spatial scale and over a relatively long time series, and even make possible the retrieval of ET at high spatiotemporal resolutions. The present short study analyzed the daily ET maps generated with the S-SEBI model, adapted to Landsat-8 retrieved land surface temperatures and broadband albedos, at two different crop sites for two consecutive years (2017-2018). Maps of land surface temperatures were determined using Landsat-8 Collection 2 data, after applying the split-window (SW) algorithm proposed for the operational SW product, which will be implemented in the future Collection 3. Preliminary results showed a good agreement with ground reference data for the main surface energy balance fluxes Rn and LE, and for daily ET values, with RMSEs around 50 W/m2 and 0.9 mm/d, respectively, and high correlation coefficient (R2 = 0.72-0.91). The acceptable uncertainties observed when comparing with local ground data were reaffirmed after the regional (spatial resolution of 9 km) comparison with reanalysis data obtained from ERA5-Land model, showing a StDev of 0.9 mm/d, RMSE = 1.1 mm/d, MAE = 0.9 mm/d, and MBE = −0.3 mm/d. This short communication tries to show some preliminary findings in the framework of the ongoing Tool4Extreme research project, in which one of the main objectives is the understanding and characterization of the hydrological cycle in the Mediterranean region, since it is key to improve the management of water resources in the context of climate change effects

    IDENTIFICATION OF LAND SURFACE TEMPERATURE DISTRIBUTION OF GEOTHERMAL AREA IN UNGARAN MOUNT BY USING LANDSAT 8 IMAGERY

    Get PDF
    Indonesia located at the confluence of Eurasian tectonic plate, Australian tectonic plate and the Pacific tectonic plate. Therefore, Indonesia has big geothermal potential. One of the areas that has geothermal potential is Ungaran Mount. Remote sensing technology can have a role in geothermal exploration activity to map the distribution of land surface temperatures associated with geothermal manifestations. The advantages of remote sensing are able to get information without having to go directly to the field with a large area, and it takes quick, so that the information can be used as an initial reference exploration activities. This study aimed to obtain the distribution of land surface temperature as a regional analysis of geothermal potential. The method of this research was a correlation of brightness temperature (BT) Landsat 8 with land surface temperature (LST) MODIS. The results of correlation analysis showed the R2 value was equal to 0.87, it shows that between BT Landsat 8 and LST MODIS has a very high correlation. Based on Landsat 8 LST imagery correction, the average of fumarole temperature and hot spring is 240C. Fumarole and hot spring are located in dense vegetation land which has average temperature around 26.90C. Land surface temperature Landsat 8 can not be directly used to identify geothermal potential, especially in the dense vegetation area, due to the existence of dense vegetation which can absorb heat energy released by geothermal surface feature

    Spatial and Multi-Temporal Analysis of Land Surface Temperature through Landsat 8 Images: Comparison of Algorithms in a Highly Polluted City (Granada)

    Get PDF
    Over the past decade, satellite imaging has become a habitual way to determine the land surface temperature (LST). One means entails the use of Landsat 8 images, for which mono window (MW), single channel (SC) and split window (SW) algorithms are needed. Knowing the precision and seasonal variability of the LST can improve urban climate alteration studies, which ultimately help make sustainable decisions in terms of the greater resilience of cities. In this study we determine the LST of a mid-sized city, Granada (Spain), applying six Landsat 8 algorithms that are validated using ambient temperatures. In addition to having a unique geographical location, this city has high pollution and high daily temperature variations, so that it is a very appropriate site for study. Altogether, 11 images with very low cloudiness were taken into account, distributed between November 2019 and October 2020. After data validation by means of R2 statistical analysis, the root mean square error (RMSE), mean bias error (MBE) and standard deviation (SD) were determined to obtain the coefficients of correlation. Panel data analysis is presented as a novel element with respect to the methods usually used. Results reveal that the SC algorithms prove more effective and reliable in determining the LST of the city studied here.ERDF (European Rural Development Fund)Ministry of Science and Innovation (State Research Agency) EQC2018-004702-
    corecore