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Abstract: In this study, the split window (SW) method was applied for land surface temperature
(LST) retrieval using Landsat 8 in two apple orchards (Glindow, Altlandsberg). Four images were
acquired during high demand of irrigation water from July to August 2018. After pre-processing
images, the normalized difference vegetation index (NDVI) and LST were calculated by red, NIR, and
thermal bands. The results were validated by interpolated infrared thermometer (IRT) measurements
using the inverse distance weighting (IDW) method. In the next step, the temperature vegetation
index (TVDI) was calculated based on the trapezoidal NDVI/LST space to determine the water status
of apple trees in the case studies. Results show good agreement between interpolated LST using
IRT measurements and remotely sensed LST calculation using SW in all satellite overpasses, where
the absolute mean error was between 0.08 to 4.00 K and root mean square error (RMSE) values
ranged between 0.71 and 4.23 K. The TVDI spatial distribution indicated that the trees suffered from
water stress on 7 and 23 July and 8 August 2018 in Glindow apple orchard with the mean value
of 0.69, 0.57, and 0.73, whereas in the Altlandsberg orchard on 17 August, the irrigation system
compensated the water deficit as indicated by the TVDI value of 0.34. Moreover, a negative correlation
between TVDI and vegetation water content (VWC) with correlation coefficient (r) of −0.81 was
observed. The corresponding r for LST and VWC was equal to −0.89, which shows the inverse relation
between water status and temperature-based indices. The results indicate that the LST and/or TVDI
calculation using the proposed methods can be effectively applied for monitoring tree water status
and support irrigation management in orchards using Landsat 8 satellite images without requiring
ground measurements.

Keywords: Landsat 8; Land Surface Temperature (LST); Temperature Vegetation Index (TVDI);
trapezoidal NDVI/LST space; tree water status

1. Introduction

Tree water status and the determination of appropriate irrigation measure can be supported by
digital plant data as suggested in the context of precision horticulture [1,2]. Established methods
for estimating water stress such as gravimetrically or electrically measured soil and plant water
contents are not only time consuming, but also produce discrete local data points, which may not
be representative of an entire field or orchard. To maximize water use efficiency, new irrigation
management strategies are needed [3–6]. Irrigation needs in the orchard are influenced by weather,
climate variables, soil, and plant response, which can be measured with thermal imaging [3,7–11].
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Furthermore, irrigation scheduling considering regulated deficit irrigation, is based on crop response
to water stress at different growth stages [12–15]. Increased leaf temperature and decreased vegetation
(leaf) water content (VWC) are signs of water stress monitored with thermal imaging [16] that can
be implemented in the orchard by crane, tractor, and unmanned aerial vehicle (UAV). However, one
of the key parameter in vegetation water balance studies is land surface temperature (LST). In the
past, the LST was measured by infrared thermometers which was costly and time-consuming. Since
the 1980s, the remote sensing (RS), particularly satellite imagery, methods have been used for LST
calculations [17–19]. From the satellite position, “surface” means whatever is seen from the atmosphere
on the surface of the earth, e.g., in an apple orchard, the tree canopy is considered as a surface, ergo the
LST equals predominantly to the leaf surface temperature. An early effort for calculating LST using RS
methods was made using the advanced very high resolution radiometer (AVHRR) on the NOAA 7
satellite, which acquires 1-km spatial resolution data, and applying the split window algorithm [20].
After analyzing the relevant sources of errors, the author showed that the split window method could
be adopted with an accuracy of 3 ◦C. Among numerous applications of LST retrieval calculations, its
application is still followed in estimating water status in the field [21]. In this regard, many studies
have been carried out for developing and improving the LST retrieval methods [22–26] to estimate
evapotranspiration. Moreover, the RS has been utilized for estimating vegetation indices (VI), such
as the normalized difference vegetation index (NDVI) [27]. The scatter plot of these remotely sensed
indices (NDVI and LST) resulted in a trapezoidal space, which has a physical concept i.e., the spatial
relation (trapezoidal space) between LST and NDVI is applied to monitor the water status of crops and
orchards using temperature vegetation dryness index (TVDI) [28,29]. However, the TVDI reflects a
mixed signal of the soil moisture under trees and leaf water content of trees.

Due to the relatively high resolutions and the free availability of all data by the U.S. Geological
Survey (USGS), the Landsat 8 launched on 11 February 2013, with 9 operational land imager (OLI)
and 2 thermal infrared sensor (TIRS) bands providing the prerequisites for calculating NDVI and LST.
Using the TIRS bands provided, the calculation of the LST can be performed using either two thermal
bands, e.g., split window (SW) algorithm, or one band such as single channel (SC) algorithm [30]. All
of the indicated algorithms are based on the radiative transfer theory (RTT) equation. The Landsat 8
data for LST retrieval calculation was approached in northwest of China [31]. The authors applied
SW algorithm and validated results with moderate resolution imaging spectroradiometer (MODIS)
LST products.

Although many further studies applying satellite imagery for water status estimation based on
land surface temperature (LST) were carried out in field crops, the application in orchards is still in its
infancy. The present study was aimed at proposing a method for TVDI estimation based on partly
mixed pixels in orchard conditions by means of (i) selecting an interpolation method for gaining spatial
distribution data of LST based on infrared thermometer (IRT) measurements and approaching the
SW method using Landsat 8 images. Subsequently, (ii) validate the results with ground reference
measurements, and (iii) estimating TVDI considering the VWC.

2. Materials and Methods

2.1. Study Area

In this study, two commercial apple orchards located in a fruit production area of Germany were
selected: The Glindow’s commercial apple orchard with longitude and latitude of the field center
being 52◦21′15.8” N 12◦51′53.8” E (path/row: 193/23 for Landsat 8 satellite images). The cultivar of the
apple (Malus × domestica Borkh.) is ‘Pinova’, which was harvested 24 September 2018 in the present
orchard. The Altlandberg’s commercial apple orchard located with longitude and latitude of the field
center is 52◦36′27.5” N 13◦49′3.07” E (path/row: 192/23 for Landsat 8 satellite images) with the cultivar
(Malus × domestica Borkh.) being ‘Gala’, was planted in 3.5 × 1.0 m distance. The common irrigation
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system in this area is drip irrigation. Both sites have semi-humid climate and are geographically
surrounded by fruit orchards (Figure 1).
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Figure 1. The study areas; left panel: Glindow apple orchard with center point of (1) and right panel:
Altlandsberg apple orchards with center point of (2).

Daily meteorological data were recorded with weather stations (IMT280, Pessl, Austria) including
air temperature, soil temperature in 5 depth, and relative humidity (RH).

2.2. Field Measurements

The LST and VWC were measured in 10 points during the Landsat 8 satellite overpasses on 7 and
23 July and 8 August 2018 between 11:00 to 12:00 in Glindow and 17 August 2018 in Altlandsberg. At
each point, 20 representative leaves were sampled (n = 200) and canopy temperature was measured
20 times for each canopy using digital IRT (OS91, Omega, Norwalk, CT, USA) from sun and shade
position of trees. The mean of these 20 values is considered as a representative of leaf temperature at
each point.

The leaf samples were sealed in individual plastic bags, placed in a cool and dark container to
avoid water losses on the return to the laboratory. Fresh weight (FW) of gathered samples was recorded
immediately, and subsequently samples were oven-dried at 105 ◦C for 24 h until constant dry weight
(DW) was reached. Finally, the VWC value was calculated for each sample (Equation (1)):

WC = (FW −DW/FW) × 100%. (1)

2.3. Landsat 8 Satellite Image Acquisition and Data Preprocessing

Landsat 8 has 9 operational land imager (OLI) spectral bands in the range 0.45 µm (blue/visible)
to 2.29 µm (infrared/nonvisible) and 2 thermal infrared sensor (TIRS) bands in the high infrared range
(10.0–12.5 µm). Due to the relatively high horizontal resolution of the OLI bands (30 m), the frequent
sweep of the satellite over the same corridor at the earth’s surface appeared in intervals of 16 days,
which were free availability by the USGS (http://earthexplorer.usgs.gov). Four Landsat images were
acquired during the high water demand months (July and August) of apple trees (Table 1).

In order to preprocess the satellite images, the digital numbers (DN) of TIRS and OLI bands were
converted to spectral radiance and top of atmosphere (TOA) planetary reflectance. To convert DNs to
radiance the formula below was used [32]:

Lλ = ML ∗Qcal + AL, (2)

http://earthexplorer.usgs.gov
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where Lλ is spectral radiance (W/(m2 sr µm)), ML is radiance multiplicative scaling factor, Qcal is DN
value of each pixel, and AL is radiance additive scaling factor. TIRS data were converted from spectral
radiance to brightness temperature [32]:

BTi =
K2

ln (K1
Lλ

+ 1)
, (3)

where BTi is top of atmosphere (TOA) brightness temperature for TIRS band i (= 10, 11) in Kelvin. The
K coefficients are thermal conversion constants for Landsat 8 TIRS bands (Table 2).

Table 1. Landsat 8 overpass over the orchards.

Path Row Date Time * Region

193 23 07 July 2018 12:01′:39” Glindow
193 23 23 July 2018 12:01′:46” Glindow
193 23 08 August 2018 12:01′:55” Glindow
192 23 17 August 2018 11:55′:49” Altlandsberg

* local time (Central European Summer Time = GMT+2).

Table 2. Thermal conversion constants.

Parameter i K1 K2

Band 10 774.8853 1321.0789
Band 11 480.8883 1201.1442

The NDVI is computed by TOA planetary spectral reflectance, with solar angle correction. The
DNs are converted to TOA planetary reflectance by the below equation [32]:

ρλ = ρ́λ/ sinθ = (Mp ∗Qcal + Ap)/ sinθ, (4)

where ρλ and ρ́λ are TOA planetary spectral reflectance with and without solar angle correction
(unitless), Mp is reflectance multiplicative scaling factor, Ap is reflectance additive scaling factor, and θ
is solar elevation angle. ML, AL, Mp, Ap, and θ parameters in Equations (2) and (4) are extracted from
the metadata file, which is downloaded with satellite images from the USGS EarthExplorer.

2.4. NDVI Calculation Using Landsat 8

After conversion of the DN to reflectance, the normalized difference vegetation index (NDVI) for
the red and near infrared (NIR) bands was calculated by the following equation [33]:

NDVI = ρNIR − ρRed/ρNIR + ρRed. (5)

The value range of NDVI is −1 to 1, negative values of NDVI may point to water bodies and snow
cover, while values greater than 0.5 indicate dense vegetation cover [34].

2.5. Radiative Transfer Theory (RTT) Equation and Split-Window (SW) Algorithm

A simplified radiative transfer equation expresses the apparent radiance received by a sensor [35,36]:

Bi(BTi) = τi(θ)
[
εiBi(LST) + (1− εi)I

↓

i

]
+ I↑i , (6)

where Bi(BTi) radiance received by channel i(=10, 11) of the sensor with brightness temperature BTi;
Bi(Ts) is the ground radiance; τi(θ) is atmospheric transmittance for channel i when viewing zenith
angle is θ. The Landsat-8 TIRS is at an altitude of 705 km with a swath of 185 km. Therefore, TIRS
is treated as nadir viewing, since the maximum zenith viewing angle is not more than 7.5◦, so the
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θ could be ignored i.e., on that angle, the effect on the atmospheric transmittance in TIRS band is
negligible [37–39]. εi is land surface emissivity (LSE); I↓i and I↑i are down-welling and up-welling path
radiance, respectively. Regarding the Plank’s law, Bi(T) is calculated by:

Bi(T) =
2hc2

λ5
i

(
exp

(
hc

λi k T

)
− 1

) =
C1

λ5
i

(
exp

( C2
λi T

)
− 1

) , (7)

where c is light speed (2.9979 × 108 m/s), h is Plank constant (6.6261 × 10−34 J·s); k is the Boltzmann
constant (1.3806 × 10−23 J/K); and λi is the effective center wavelength of band i which is equal to 10.9
and 12 µm for band 10 and 11 TIRS; C1 is 1.19104 × 108 Wµm4m−2sr−1 and C2 is 14387.7 µmK. By
solving Equations (6) and (7), the LST could be estimated in Kelvin (K) for Landsat thermal bands
(Equation (8)):

LST =
C1

λi ln
(

C2

λ5
i

(
Bi(BTi)−I↑i −τi(1−εi)I

↓

i /εiτi
) + 1

) , i = 10, 11. (8)

In order to retrieve LST from Landsat 8 TIRS bands by RTT equation, τi, I↓i , and I↑i could be
analyzed by simultaneous measurements of radio sounding data during the time period of Landsat
overpass. In automated applications, these types of data are not available, thus [40] simplified the
RTT equation and proposed an algorithm for spilt window method by solving Equation (6) for the
advanced very high resolution radiometer (AVHRR) data. Their proposed SW algorithm (Figure 2)
was applied in the present study (Equation (9)):

LST = A0 + A1 ∗ BT10 + A2 ∗ BT11, (9)

where A0, A1 and A2 are calculated by:

A0 =
[a10D11(1−C10 −D10) − a11D10(1−C11 −D11)]

(D11C10 −D10C11)
, (10)

A1 = 1 +
[D10 + b10D11(1−C10 −D10)]

(D11C10 −D10C11)
, (11)

A2 =
D10[1 + b11(1−C11 −D11)]

(D11C10 −D10C11)
. (12)

C and D are middle term variables that could be estimated as following:

Ci = ετi, (13)

Di = [1− τi][1 + (1− ε)τi], (14)

a and b coefficients are determined by linear regression between intermediate parameter (Li) and BTi.
Li is the derivative of the Plank’s law function for band i(=10, 11) at brightness temperature [31]:

Li =
Bi(BTi)[
∂Bi(BTi)
∂BTi

] =

λi × (BTi)
2

C2

(1− eC2/λi×BTi) = ai + bi ∗ BTi i = 10, 11. (15)

As shown in the above equations, the A coefficients depend on LSE (εi) and atmospheric
transmittance (τi).

The LSE is the ratio of radiated thermal energy by surface and a blackbody in the same
temperature [41]. It can be estimated by NDVI-based emissivity method (NBEM), which was



Sustainability 2020, 12, 70 6 of 19

already applied for various analyses of satellite images. NBEM uses empirical NDVI thresholds to
estimate LSE from Landsat 8 [36,42]:

εi =


m + nρRed NDVI < NDVIs

εvPv + εs(1− Pv) + Ci NDVIs ≤ NDVI ≤ NDVIv

εv + Ci NDVI > NDVIv

, (16)

where m and n are constant coefficients. For Landsat TIRS band 10, m, and n are 0.973 and 0.047,
respectively; NDVIs = 0.2 and NDVIv = 0.5 are the thresholds of soil and full vegetation pixels [43];
εs = 0.966 and εv = 0.973 are soil and vegetation emissivity values [44]; Pv is proportion of vegetation
in mixed pixels (Equation (17)):

Pv =


0 NDVI < NDVIs

[ NDVI−NDVIs
NDVIv−NDVIs

]
2

NDVIs ≤ NDVI ≤ NDVIv

1 NDVI > NDVIv

. (17)

Ci is cavity effect due to the surface roughness. It is considered zero for flat surface, otherwise the
value needs to be estimated [22]:

Ci = (1− εs)εv F′ (1− Pv), (18)

where F′ is geometrical factor which spans the range 0 to 1, frequently set as 0.55 [45].
Since surface spectral reflections are absorbed by the atmosphere and the predominant reflector

absorption is determined by the water vapor content (w) which is estimated by:

w = 0.0981 ∗
{

10 ∗ 0.6108 ∗ exp
(

17.27(T0 − 273.15)
237.3 + (T0 − 273.15)

)
∗RH

}
+ 0.1697, (19)

where T0 is the temperature near the surface of the earth. [46] showed that the atmospheric transmittance
(τi) mainly depends on w for mid-latitude summer atmospheric profile. The relation between w and τi
is shown in Table 3.
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Table 3. Relation between atmospheric transmittance factor (τi, i = 10, 11) and water vapor content (w)
for mid-latitude summer atmospheric profile.

Range of w (g/cm2) Equation [46]

0.2–3.0
τ10 = −0.0164w2

− 0.04203w + 0.9715
τ11 = −0.01218w2

− 0.07735w + 0.9603

3.0–6.0
τ10 = −0.00168w2

− 0.1329w + 1.127
τ11 = 0.009186w2

− 0.2137w + 1.181

2.6. Validation of LST Retrieval

For calculating LST several parameters, namely LSE, NDVI, brightness temperature (BT) and
atmospheric transmittance (τi) need to be estimated. The validation was carried out with ground
measurements during the time period of satellite overpass. In this regard, leaf surface temperature
was measured in 10 points during the overpass to validate the LST product of Landsat 8 which
is a continuous raster file, whereas the measured points are discrete value. For selecting the best
interpolation method for interpolating the raster surface, nearest neighbor (nn), inverse distance
weighting (IDW), spline, and kriging models were tested. Ten observed data were divided into a
calibrating set of 7 points and validation data set of 3 points. In this regard, interpolation methods were
evaluated by the coefficient of determination (R2) and the root mean square error (RMSE) Equations (20)
and (21):

R2 = 1−

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − y)2 , (20)

RMSE =
√∑

(yi − ŷi)
2/n, (21)

where yi, y, and ŷi are observed, average of observed and interpolated temperature at point i,
respectively. Moreover, the algorithm is developed for different locations (2 orchards) and time
(4 individual dates).

2.7. LST-NDVI Space and TVDI Calculation

The scatter plot of LST and NDVI results in a trapezoidal space [29,47,48]. As Figure 3 shows,
each part of this space shows information about canopy water status and soil moisture i.e., the dry and
wet edges can be applied to obtain information about water status of the orchard. In the dry edge, a
strong negative correlation can be seen between NDVI and LST which shows the water stress condition
has been taken place, whereas in the wet edge, the tree is not under stress condition. The TVDI [0;1] is
defined by:

TVDIi =
LSTi − LSTmin

(a1 + b1NDVI) − (a2 + b2NDVI)
=

LSTi − LSTmin
LSTmax − LSTmin

, (22)

where a1 and b1 are the intercept and slope of dry edge line (Figure 3), i is the pixel number.
As Figure 3 shows, for TVDI calculation, the NDVI spans from 0 to 1, whereas the range in an

apple orchard is limited between 0.2 and 0.7 (Figure 4). Moreover, each point in the trapezoidal space
is related to one pixel capturing an area of 900 m2, thus an orchard with area less than 10 ha is not big
enough to make a trapezoidal space. In this regard, the calculations were done for the whole area of a
Landsat 8 satellite image and subsequently, the orchard was extracted.

To calculate the dry and wet edges, the NDVI values were divided into 10 equidistant classes. For
each class, the mean value of NDVI is considered as an independent variable of the linear regression,
whereas the maximum and minimum values of LST for each class are considered as depended variable
for dry and wet regression lines, respectively.
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3. Results and Discussion

3.1. Interpolation Methods to Generate LST Spatial Distribution Using IRT Ground Measurements

In order to create spatially continuous surfaces data for the LST layer using IRTs measurements,
spatial interpolations were conducted. The interpolation exercise according to (a) ordinary kriging,
(b) spline (Theissen and regularized method), (c) inverse distance weighting (IDW), and (d) nearest
neighbor (nn) pointed out the highest accuracy of the IDW method compared to remaining interpolation
methods (Table 4) with RMSE 0.21 K and 0.35 K with R2 of 0.98 and 0.91 for calibration and cross
validation on 7 July 2018 Landsat overpass, respectively. The methods were tested for Glindow and
the best method—the IDW—was applied to the Altlandsberg data, as well (Figure 5).

Table 4. Evaluation of interpolation models built on the data set of Glindow apple orchard in 2018
using 7 observed data for calibration and 3 data sets for cross validation. (The red ones are related to
selected method).

Date Index
Calibration Validation

Kriging Spline IDW nn Kriging Spline IDW nn

7 July RMSE 0.25 0.27 0.21 0.29 0.44 0.40 0.35 0.49
R2 0.98 0.96 0.98 0.98 0.87 0.87 0.91 0.84

23 July RMSE 1.02 0.54 0.34 0.38 1.09 1.18 0.61 0.80
R2 NaN 1 0.81 0.92 0.97 0.00 0.21 0.77 0.54

8 August RMSE 0.82 0.31 0.34 0.27 1.24 0.82 0.59 0.91
R2 NaN 1 0.86 0.89 0.95 NaN 1 0.47 0.88 0.37

1 Not a Number.

Sustainability 2020, 11, x FOR PEER REVIEW 11 of 22 

  
(a) (b) 

  
(c) (d) 

Figure 5. Cont.



Sustainability 2020, 12, 70 10 of 19

Sustainability 2020, 11, x FOR PEER REVIEW 11 of 22 

  
(a) (b) 

  
(c) (d) 

Figure 5. Measuring points of manual reference readings with infrared thermometer (IRT) and the spatial
distribution of observed land surface temperature (LST) in Kelvin (K) using inverse distance weighting
(IDW) interpolation method. (a) 7 July 2018, Glindow; (b) 23 July 2018, Glindow; (c) 8 August 2018,
Glindow; (d) 17 August 2018, Altlandsberg.

3.2. Split Window (SW) Algorithm to Calculate the LST Spatial Distribution Using Landsat 8 Satellite Images

In order to calculate the satellite-based LST using split window method, the atmospheric
transmittance (τi) for bands 10 and 11of Landsat 8 was calculated (Table 5). It was found that the water
vapor content (w) appeared in the range of 0.2–3.0 (g/cm2) in all overpasses. As expected by increasing
w, the τi values are decreased which shows the impact of water particles on the absorption of infrared
radiances measured at the thermal bands of Landsat 8 images.

Table 5. Atmospheric transmittance factor (τi) for bands 10, 11 of Landsat 8 using water vapor content,
w (g/cm2) data.

Date Location w (g/cm2) τ10 τ11

07-July-18 Glindow 1.5225 0.8695 0.8202
23-July-18 Glindow 1.0232 0.9113 0.8723

08-August-18 Glindow 1.1316 0.9029 0.8615
17-August-18 Altlandsberg 2.1358 0.8069 0.7478

The NDVI was used for estimation of proportion of vegetation (Pv) and LSE. The mean value
of Pv for all overpasses was less than 1 (Pv � 0.5) which marks that the orchards were not fully
covered by trees canopies, thus, the LSE data should be between a percentage of LSE for bare soil
and a complementary percentage of tree canopy. The value of NDVI on 7 and 23 July in Glindow is
unchanged but a reduction can be seen on 8 August, whereas, no huge difference appeared between
vegetation cover in these 3 dates (Figure 4). Consequently, it was expected that the NDVI values would
be enhanced or similar to the values on 23 July because the leaf area of tree remains unchanged during
this short time interval (23 July to 8 August), while the leaf surface and angle is assumed to change due
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to the water deficit. Consequently, the high temperature (Tmax = 49.5 ◦C) and low RH caused reduced
NDVI values.

The LSE is one of indispensable inputs for LST estimation models. In the present study, the
NBEM method was applied for LSE estimation, which is based on NDVI thresholds for bare soil
(NDVI = 0.2) and dense vegetation cover (NDVI = 0.5). The mean value for surface emissivity was
0.98 in all overpasses (Table 6), which means for equal LST, the radiance emitted from orchard surface
is 0.02 less than black body surface which is similar to the results of [49].

Table 6. Calculated land surface emissivity (LSE) for all Landsat 8 overpasses.

Date Location LSEmin LSEmean LSEmax

07-July-18 Glindow 0.9730 0.9775 0.9904
23-July-18 Glindow 0.9730 0.9774 0.9898

08-August-18 Glindow 0.9790 0.9882 0.9912
17-August-18 Altlandsberg 0.9730 0.9731 0.9779

ai and bi in Equation (15) can be estimated by linear regression between Li and BTi. As Figure 6
and Table 7 show, the ai coefficients are between −64.37 and −61.74 for bands 10 and 11, respectively
whereas, the bi coefficients are about 0.45 for both thermal bands. The data were perfectly fitted to the
regression line (Figure 6) in all overpasses (R2 = 1).
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Figure 6. The linear regression equations between intermediate parameter (Li) and top of atmosphere
brightness temperature (BTi), i = 10, 11 for Landsat 8 thermal bands on 7 July 2018, Glindow to
determine ai and bi coefficients.

Table 7. Linear regression equations between intermediate parameter (Li) and top of atmosphere
brightness temperature (BTi), i = 10, 11 to determine ai and bi coefficients for thermal bands of Landsat
8 satellite.

Date Location L10=a10+b10∗BT10 L11=a11+b11∗BT11

07-July-18 Glindow L10 = −62.96 + 0.43 ∗ BT10 L11 = −66.41 + 0.47 ∗ BT11
23-July-18 Glindow L10 = −63.88 + 0.44 ∗ BT10 L11 = −67.35 + 0.47 ∗ BT11

08-August-18 Glindow L10 = −61.74 + 0.43 ∗ BT10 L11 = −64.75 + 0.46 ∗ BT11
17-August-18 Altlandsberg L10 = −64.37 + 0.44 ∗ BT10 L11 = −67.55 + 0.47 ∗ BT11
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By calculating all required parameters and coefficients, the spatial distribution of LST was
estimated by SW method. As Figure 7 shows, the lower temperatures are assigned to the pixels with
enhanced NDVI.
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Figure 7. The spatial distribution of calculated land surface temperature (LST) using split window
(SW) method using Landsat 8 satellite images. (a) 7 July 2018, Glindow; (b) 23 July 2018, Glindow;
(c) 8 August 2018, Glindow; (d) 17 August 2018, Altlandsberg.
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To validate SW Landsat 8 LST retrieval, IRT observations were applied. As Figure 8 and Table 8
show, the absolute mean error of the SW method was below 4 K in all overpasses to the extent that
the maximum RMSE was found on 7 July with the value of 4.23 K and absolute mean error of 3.94 K.
On the other hand, the RMSE value on the 17 August overpass in Altlandsberg was only 0.71 K with
absolute mean error of 0.12 K.
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Table 8. The mean errors and root mean square error (RMSE) for comparison between measured land
surface temperature (LST) using infrared thermometers(IRT) and split window (SW) satellite-based
LST in Kelvin (K).

Date Location Mean Error (K) RMSE (K)

07-July-18 Glindow −3.94 4.23
23-July-18 Glindow 0.08 1.55

08-August-18 Glindow 1.68 1.93
17-August-18 Altlandsberg −0.12 0.71

The reason for errors can be related to the very dynamic nature of LST e.g., the variation of 10 K
has been reported in few centimeters or 1 K change were taken place in 1 min [50]. As indicated in
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pervious parts, the ground measurements were done during the satellite transit time over the orchards
to minimize these variations. All above shows that estimating the LST with 0.08–4 K error using open
access satellite images is accurate enough for water status studies. It is important to note that the
IDW interpolation method as well as the SW model were developed for Glindow orchard on 7 July
2018, and then applied for different dates in Glindow and Altlandsberg, as well. i.e., the application of
models was validated temporally and spatially. The results proved that both models (IDW and SW)
can be used for different time and location.

3.3. LST-NDVI Trapezoidal Space for TVDI Calculation

In the next step, the equations of dry and wet edges of trapezoidal space between LST and NDVI
were determined by linear regression model. The maximum and minimum values of LST for NDVI
value can be used for dry and wet lines’ equation using linear regression (Figure 9). By using these
equations, the TVDI can be estimated. The effects of land surface emissivity (LSE) and proportion of
vegetation (Pv) on LST calculation can be clearly seen in Figure 9 where data went up at NDVI = 0.2
(NDVI value for bare soil).
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Figure 9. Trapezoidal space of land surface temperature (LST)/NDVI using Landsat 8 satellite images
to calculate temperature vegetation dryness index (TVDI [0;1]). The wet edge (blue line) is the area
where TVDI = 0 and the dry edge (red line) is the area with TVDI = 1.

As indicated in the material and methods part, in the TVDI calculations, two visible bands (NIR
and red) and TIRS bands of Landsat 8 are applied. In this regard, the dry and wet edges of LST/NDVI
space were defined by using Equation (22), the spatial distribution of TVDI were generated (Figure 10).
The mean values of TVDI on 7 and 23 July in Glindow are 0.69 and 0.57 which show the trees are
under moderate water stress and the irrigation system should start to work soon but on 8 August—as
expected—the trees are under severe water stress where the mean TVDI is 0.73; therefore, the irrigation
system was not working at the appropriate time and needs to start irrigation immediately. On the other
hand, the drip irrigation in the Altlandsberg orchard already started to work during the measurements
as well the satellite overpass, and it can be seen the TVDI is less than 0.5 (averagely 0.34), so the tree
water status is in normal condition without water stress.
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Figure 10. Temperature vegetation dryness index (TVDI [0;1]) spatial distribution for apple orchards.
(a) 7 July 2018, Glindow; (b) 23 July 2018, Glindow; (c) 8 August 2018, Glindow; (d) 17 August
2018, Altlandsberg.

As spatial distribution of TVDI pointed to low values in the center of the orchard and maximum
values near the sides of the field on 7, 23 July 2018 in Glindow and 17 August 2018 in Altlandsberg.
Here the effects of non-vegetated areas like roads and bare soils in side pixels became visible. Although
the minimum values of TVDI on 8 August took place in the central pixel as well, the spatial distribution
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did not follow a trend like others which can be related to the high weather temperature and low relative
humidity that cause an intensive dryness in the whole area without considering the land cover. The
minimum value of TVDI is already equal to 0.7 which shows severe dryness.

The results illustrated that, the LST and TVDI can be applied as indicators for vegetation water
content (VWC), thus the correlation between latter parameters was investigated. In order to find the
relation between VWC and TVDI (and/or LST), and more importantly to validate the satellite based
index, a linear regression model was developed between two parameters. As Figure 11 shows, the
empirical relationship between values of measured VWC and TVDI/LST has a relatively high negative
correlation coefficient. Relationships between VWC and temperature-based indices for different trees
at different locations would enable irrigation planners to estimate VWC.
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The accuracy of the SW satellite-based algorithm was evaluated in studies published in the
literature (e.g., [22]) which is one of main goals of the present study as well; however, it is notable
to say in the case of this study, the data evaluated by ground measured data in the same time of the
Landsat 8 overpass. Moreover, many studies applying satellite imagery for water status estimation
based on land surface temperature (LST) were carried out in relatively large field crops (e.g., [47]),
whereas, the application in apple orchards were investigated in this study. It is important to note the
code of the TVDI calculation using Landsat 8 images is available on GitHub [51], the strong point of
the provided algorithm is by introducing the satellite images as input to the code, several outputs
including NDVI, LST, and TVDI spatial distribution maps can be obtained by the user.

4. Conclusions

In this study, progress has been made in combining the advantage of available open access Landsat
8 satellite images with scientific advances to estimate tree water status in apple orchards. In this regard,
the TDVI was derived from land surface temperature and NDVI outlining the spatial distribution of
tree water status illustrating that the satellite-based data can provide an alternative to the manual
temperature readings and vegetation water content with values of absolute mean error ranging from
0.08 to 3.94 K and RMSE of 0.71 to 4.23 K between satellite-based estimated LST and measured canopy
temperature for all overpasses. Moreover, the relationship between vegetation water content and TVDI
(and LST) with r = −0.81 (and −0.89). It is concluded that the satellite-based methods for determining
the LST, and subsequently TVDI provides advantages over ground measurements methods, because
the ground observed LST are point data whereas the spatial and temporal LST changes are very
dynamic. Therefore, it can be assumed that calculating the spatial distribution of LST pixel by pixel is
more reliable than using interpolation methods from limited discrete point measurement. In addition,
the vegetation water content can be revealed by estimated LST and TVDI, derived from thermal images
for water stress detection. The remote sensing method outperforms time-consuming sampling of a
large number of IRT measurements in the field. Consequently, the TVDI index using thermal bands of
Landsat 8 has the potential to replace direct vegetation water content measurements and to provide a
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more robust measure of the tree water status and its spatial patterns of the apple production. Moreover,
it can be an efficient parameter for land use change detection in mesoscale studies as well as irrigation
water management planning projects.
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