217 research outputs found

    Evaluating XMPP Communication in IEC 61499-based Distributed Energy Applications

    Full text link
    The IEC 61499 reference model provides an international standard developed specifically for supporting the creation of distributed event-based automation systems. Functionality is abstracted into function blocks which can be coded graphically as well as via a text-based method. As one of the design goals was the ability to support distributed control applications, communication plays a central role in the IEC 61499 specification. In order to enable the deployment of functionality to distributed platforms, these platforms need to exchange data in a variety of protocols. IEC 61499 realizes the support of these protocols via "Service Interface Function Blocks" (SIFBs). In the context of smart grids and energy applications, IEC 61499 could play an important role, as these applications require coordinating several distributed control logics. Yet, the support of grid-related protocols is a pre-condition for a wide-spread utilization of IEC 61499. The eXtensible Messaging and Presence Protocol (XMPP) on the other hand is a well-established protocol for messaging, which has recently been adopted for smart grid communication. Thus, SIFBs for XMPP facilitate distributed control applications, which use XMPP for exchanging all control relevant data, being realized with the help of IEC 61499. This paper introduces the idea of integrating XMPP into SIFBs, demonstrates the prototypical implementation in an open source IEC 61499 platform and provides an evaluation of the feasibility of the result.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA

    RTLabOS Dissemination Activities:RTLabOS D4.2

    Get PDF

    Fully-deterministic execution of IEC-61499 models for Distributed Avionics Applications

    Get PDF
    © 2018 by the authors. The development of time-critical Distributed Avionics Applications (DAAs) pushes beyond the limit of existing modeling methodologies to design dependable systems. Aerospace and industrial automation entail high-integrity applications where execution time is essential for dependability. This tempts us to use modeling technologies from one domain in another. The challenge is to demonstrate that they can be effectively used across domains whilst assuring temporally dependable applications. This paper shows that an IEC61499-modeled DAA can satisfy temporal dependability requirements as to end-to-end flow latency when it is properly scheduled and realized in a fully deterministic avionics platform that entails Integrated Modular Avionics (IMA) computation along with Time-Triggered Protocol (TTP) communication. Outcomes from the execution design of an IEC61499-based DAA model for an IMA-TTP platform are used to check runtime correctness through DAA control stability. IEC 61499 is a modeling standard for industrial automation, and it is meant to facilitate distribution and reconfiguration of applications. The DAA case study is a Distributed Fluid Control System (DFCS) for the Airbus-A380 fuel system. Latency analysis results from timing metrics as well as closed-loop control simulation results are presented. Experimental outcomes suggest that an IEC61499-based DFCS model can achieve desired runtime latency for temporal dependability when executed in an IMA-TTP platform. Concluding remarks and future research direction are also discussed

    Homogenous and interoperable signaling computer interlocking through IEC 61499 standard

    Get PDF
    The technological evolution of signaling systems has created a dependency from infrastructure managers to suppliers and industrials dominating the market. Indeed, for each deployed computer interlocking, the modification of field equipment is required to allow an adaptation with the new interlocking in terms of communication protocols and logical interface. In addition, to ensure safe traffic of trains, the communication of railway signaling data is necessary between interlockings. However, delayed deployments from one station to another make the establishment of communication channels costly and difficult, or even impossible, since each supplier keeps confidential its communication protocols and usually opts for interfacing based on wired logic. This paper presents our approach to a homogeneous architecture of interlocking meeting modularity requirements, interoperability, and logical interfacing between interlockings. This approach relies on a classification of internal functions of the computer interlocking, a distribution of the execution of those functions and making useful information available for interfaces between adjacent interlockings through the IEC 61499 standard coupled with service-oriented architecture (SOA)

    Internet of Things Software Modules Marketplace

    Get PDF
    The project developed is a centralised repository of software packages to be used in cyber-physical systems. It is composed by a central database, an http api, an ftp client to serve files and a web application to manage the repository. The system also communicates via OPCUA protocol with the embed-system for real time monitoring.The advent of the Cyber-Physical Systems (CPS), a physical system representation through a vir-tual model, usually used to control a system or a process comes from the growing democratizationof the computational power. Nowadays, virtually anything can be equipped with some kind ofembedded processor to automate tasks, generate or consume some kind of data. In addition, thecontinuous development and improvement of the communication networks has helped leveragethe concept of the Internet of Things (IoT) in which things are now, themselves, connected to theInternet, exchanging data with each other and with people.In the industrial sector, CPS, also called Cyber-Physical Production Systems (CPPS) and theIoT are the main technological advances that lead to the industry fourth revolution, common des-ignated as Industry 4.0 in which the factory floor is no longer a centralized model where all thecomputation is done centrally but is now a decentralized model where industrial equipment haveembedded devices to control, automate tasks and react in a dynamic and intelligent manner to thesensed physical environment.Thereby, one of the keywords around the CPPSs is software. Software is no longer centralizedand is now distributed through several devices that comprises the system. This new approachcomes with significant changes and one of them is the reuse and distribution of the software. Itis not viable to manual deploy and install software in hundreds or thousands of devices and nothaving a way of reusing the existing software. If, on the one hand, the desire is to develop a moreintelligent process control system, on the other, flexibility, adaptability and simplicity are alsoconvenient capabilities or else intelligent manufacturing process control systems are built upon alot of resources debt. Hence, the solution is to build standards, tools and frameworks that allowthe reuse of software and its rapid deployment in the distributed devices.One option, in the Industry 4.0 field, to cope with the software reuse issue in this kind of sys-tems is the encapsulation of software in functional blocks, the Function Blocks (FBs) and their usein the function block programming paradigm, described in IEC 61499 standard. The functionalityis abstracted away in the FBs and can be reused by just deploying the them to the devices. Thisway, it is easier to manage a network by dragging and dropping these blocks, building complexapplications centrally and deploy everything to the distributed embedded devices. However, theimplementation of this standard to address the aforementioned problem brings, itself, other neces-sities such as managing the FBs, monitoring them and their previous download by the embeddeddevices.This dissertation main goal is the development of a marketplace to manage and monitor of FBs in a IEC 61499 network envisioning the filling of the previous mentioned gaps in this kindof networks. The marketplace, integrated in a IEC 61499 global solution will not only enable thedistribution of FBs among the embedded devices in a IEC 61499 compliant CPPS but also manageFBs versions, functioning as a central repository of software components, having also monitoringand statistical features, allowing the detection of flaws or malfunctions and collect statistical datai iiabout FBs usage

    Low-cost Industrial controller based on the Raspberry Pi platform

    Get PDF
    Mestrado de dupla diplomação com o Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJThe low-cost automation field exhibits the need of innovation both in terms of hardware and software. There is a lack of devices that allow the development of control logic that is free from restrictions of domain-specific communication platforms and at the same time able to provide the capabilities aligned to the Industry 4.0 requirements. The objective of this work is to develop an inexpensive, small Industrial Controller that supports the execution of programs in different industrial programming languages. So, it is intended to develop, manufacture and control a low-cost but powerful Industrial Controller based on the use of the single-board computer Raspberry Pi. The study described in this document was carried out on the creation of a hardware platform that is capable of integrating with software frameworks compatible with standards updated and widely used in the industrial automation field. IEC 61131-3 is employed displaying the ease of use and implementation alongside multiple well established programming languages for automation through the OpenPLC platform while IEC 61449 is employed through the 4DIAC framework that has a clear and objective environment capable of providing the appropriate tools for implementation of a distributed control. It is employed the single-board computer Raspberry Pi, a robust device with adequate processing power and communication capability for the elaboration of a platform in the low-cost automation scope. The elaboration of the Industrial Shields, responsible for providing the controller I/O interface took into consideration maintenance concerns of controller integrity through the application of galvanic isolation in the automaton input and output sections. The proposed platform was successfully tested in an automation system prototype comprising Fischertechnik’s Punching Machine being possible to develop the control logic using IEC 61131-3 and IEC 61499.O campo de automação de baixo custo demonstra a necessidade de inovação em termos de hardware e software. Há uma falta de dispositivos que permitem o desenvolvimento de lógica de controle livre de restrições de plataformas de comunicação específicas de domínio e, ao mesmo tempo, capazes de fornecer os recursos alinhados aos requisitos da Indústria 4.0. O objetivo deste trabalho é desenvolver um pequeno Controlador Industrial de baixo custo que suporte a execução de programas em diferentes linguagens de programação industrial. Assim, pretende-se desenvolver, fabricar e controlar um Controlador Industrial de baixo custo, mas poderoso, baseado no uso do computador de placa única Raspberry Pi. O estudo descrito neste documento foi realizado na criação de uma plataforma de hardware que é capaz de se integrar com frameworks de software compatíveis com padrões atualizados e amplamente utilizados na área de automação industrial. A IEC 61131-3 é empregada exibindo a facilidade de uso e implementação juntamente com várias linguagens de programação bem estabelecidas para automação através da plataforma OpenPLC enquanto a IEC 61449 é empregada através da estrutura 4DIAC que possui um ambiente claro e objetivo capaz de fornecer as ferramentas apropriadas para implementação de um controle distribuído. É empregado o computador de placa única Raspberry Pi, um dispositivo robusto com capacidade de processamento e capacidade de comunicação adequados para a elaboração de uma plataforma no escopo de automação de baixo custo. A elaboração dos industrial shields, responsáveis por fornecer a interface de I/O do controlador levou em consideração as preocupações de manutenção da integridade do controlador através da aplicação de isolação galvânica nas seções de entrada e saída do autômato. A plataforma proposta foi testada com sucesso em um protótipo de sistema de automação compreendendo a Punching Machine da Fischertechnik sendo possível desenvolver a lógica de controle usando IEC 61131-3 e IEC 61499

    Towards a new methodology for design, modelling, and verification of reconfigurable distributed control systems based on a new extension to the IEC 61499 standard

    Get PDF
    In order to meet user requirements and system environment changes, reconfigurable control systems must dynamically adapt their structure and behaviour without disrupting system operation. IEC 61499 standard provides limited support for the design and verification of such systems. In fact, handling different reconfiguration scenarios at runtime is difficult since function blocks in IEC 61499 cannot be changed at run-time. Hence, this thesis promotes an IEC 61499 extension called reconfigurable function block (RFB) that increases design readability and smoothly switches to the most appropriate behaviour when a reconfiguration event occurs. To ensure system feasibility after reconfiguration, in addition to the qualitative verification, quantitative verification based on probabilistic model checking is addressed in a new RFBA approach. The latter aims to transform the designed RFB model automatically into a generalised reconfigurable timed net condition/event system model (GRTNCES) using a newly developed environment called RFBTool. The GR-TNCES fits well with RFB and preserves its semantic. Using the probabilistic model checker PRISM, the generated GR-TNCES model is checked using defined properties specified in computation tree logic. As a result, an evaluation of system performance and an estimation of reconfiguration risks are obtained. The RFBA methodology is applied on a distributed power system case study.Dynamische Anforderungen und Umgebungen erfordern rekonfigurierbare Anlagen und Steuerungssysteme. Rekonfiguration ermöglicht es einem System, seine Struktur und sein Verhalten an interne oder externe Änderungen anzupassen. Die Norm IEC 61499 wurde entwickelt, um (verteilte) Steuerungssysteme auf Basis von Funktionsbausteinen zu entwickeln. Sie bietet jedoch wenig Unterstützung für Entwurf und Verifikation. Die Tatsache, dass eine Rekonfiguration das System-Ausführungsmodell verändert, erschwert die Entwicklung in IEC 61499 zusätzlich. Daher schlägt diese Dissertation rekonfigurierbare Funktionsbausteine (RFBs) als Erweiterung der Norm vor. Ein RFB verarbeitet über einen Master-Slave-Automaten Rekonfigurationsereignisse und löst das entsprechende Verhalten aus. Diese Hierarchie trennt das Rekonfigurationsmodell vom Steuerungsmodell und vereinfacht so den Entwurf. Die Funktionalität des Entwurfs muss verifiziert werden, damit die Ausführbarkeit des Systems nach einer Rekonfiguration gewährleistet ist. Hierzu wird das entworfene RFB-Modell automatisch in ein generalised reconfigurable timed net condition/event system übersetzt. Dieses wird mit dem Model-Checker PRISM auf qualitative und quantitative Eigenschaften überprüft. Somit wird eine Bewertung der Systemperformanz und eine Einschätzung der Rekonfigurationsrisiken erreicht. Die RFB-Methodik wurde in einem Softwarewerkzeug umgesetzt und in einer Fallstudie auf ein dezentrales Stromnetz angewendet

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic
    corecore