38 research outputs found

    Implementation and evaluation of Open Source LTE-EPC Software

    Get PDF
    SDR, Software Defined Radio. In general, SDR is based on a common hardware platform to use software to implement various communication modules. There are two keywords in the concept, "universal hardware platform" and "software." The "universal hardware platform" means that we can implement a variety of communication functions based on this hardware platform, not that a hardware platform can only implement one kind of communication function. "Software" to implement the communication module is relative to the traditional radio technology. Since the SDR is more and more popular in the scientific research field, lots of different Open Source SDR Software can be used. In this thesis, I used two different open source LTE-EPC software to run the same setup in order to implement and evaluate the advantages and disadvantages of these softwares

    LEVERAGING OPENAIRINTERFACE AND SOFTWARE DEFINED RADIO TO ESTABLISH A LOW-COST 5G NON-STANDALONE ARCHITECTURE

    Get PDF
    Includes Supplementary MaterialCommercial cellular service providers are at the forefront of the paradigm shift from 4G Long Term Evolution (LTE) to 5G New Radio (NR). The increase in throughput, provisioning of ultra-low latency, and greater reliability of 5G enable potential uses that no other wireless communication could support. The Department of Defense (DOD) is interested in 5G NR technologies, but the implementation of the architecture can be lengthy and costly. This capstone configured a 4G LTE network and a 5G non-standalone network using OpenAirInterface and software defined radios (SDRs). Universal Subscriber Identity Module (USIM) cards were configured and introduced to user equipment and attached to the 4G LTE network. A gNodeB (gNB) was added to the 4G LTE network to establish the 5G non-standalone (NSA) network architecture (3GPP Option 3). The testbed developed in this research was able to connect the core to a commercial internet service provider and browse the internet using third-party applications. Our analysis educates future researchers on the challenges and lessons learned when implementing the OpenAirInterface 4G LTE and 5G NSA networks. This work also provides a better understanding of 4G LTE and 5G NSA OpenAirInterface software usability, flexibility, and scalability for potential use cases for the DOD.Chief Petty Officer, United States NavyApproved for public release. Distribution is unlimited

    5G network end-to-end delay measurements for live video streaming

    Get PDF
    Abstract. Focus of this thesis is in the data transmission delay comparison between Edge server and Cloud server when utilizing either 4G or 5G connectivity. In previous mobile phone network generations for example a multimedia server had to be installed on a Cloud server in the internet. 5G mobile phone network introduces a new concept called Edge server. Edge server is located close to the base station and therefore it is assumed to shorten the data transmission delay between the 5G mobile/client and a server application. Edge server can be used both in 4G and 5G networks. In this thesis first the 5G network and the essential new 5G architecture main design principles are gone through. Next the 5G Test Network that is used as a test environment is described and 5G main modules like Multi-access Edge Computing are introduced. 5G performance is clarified and compared against 4G. Delay testing is done in the 5G Test Network using Hospital Use Case demo. There operating room personnel like doctors and nurses is wearing Augmented Reality glasses and they are streaming their view together with patient status related information to multimedia server residing in 5G Test Network Edge server or in internet cloud. From the multimedia server the video is streamed by for example students, medical experts or consultants in a remote location. As part of the thesis the test system is defined and built based on the Hospital Use Case demo. Test specification is created, and tests are executed according to it. Results are recorded and analysed. Data transmission delays between the video stream originator and multimedia server are measured using Qosium measurement system. Also delay between the multimedia server and the streaming client is measured. Measurements are done for configurations where multimedia server is located at the Edge server and the internet cloud server. Both 4G and 5G connectivity is used for both server locations. When delay measurement results were compared it became clear that Edge server has much shorter data transmission delays compared to the internet cloud server. With 5G connectivity the delay was measured to be around 10 milliseconds for both uplink and downlink. With internet cloud the delays varied between 31 and 45 milliseconds with 5G connection. It can be concluded that from today’s mobile phone networks, 5G network does offer the fastest connection to a server environment by utilizing Edge server.5G verkon viiveen mittaaminen videostriimille. Tiivistelmä. Tämä diplomityö keskittyy vertaamaan datatiedonsiirron eroja reunapalvelimen ja internetin pilvipalvelimen välillä 4G ja 5G matkapuhelinverkossa. Aiempien sukupolvien matkapuhelinverkoissa esimerkiksi multimediapalvelin oli asennettava internetin pilvipalvelimelle. Viidennen sukupolven matkapuhelinverkossa otetaan käyttöön reunapalvelin. Reunapalvelin sijaitsee tukiaseman läheisyydessä ja täten sen oletetaan lyhentävän 5G-päätelaitteen ja palvelimen sovelluksen välistä tiedonsiirtoviivettä. Reunapalvelinta voidaan käyttää sekä neljännen että viidennen sukupolven matkapuhelinverkoissa. Tässä diplomityössä käydään ensin läpi 5G-matkapuhelinverkko ja sen arkkitehtuurin pääsuunnittelukriteerit. Seuraavaksi kuvataan testaamisessa käytettävä 5G-testiverkko ja 5G-verkon tärkeimmät moduulit kuten Multi-access Edge Computing. 5G-verkon suorituskyky selitetään ja sitä verrataan edelliseen 4. sukupolven verkkoon. Viivemittaukset tehdään 5G testiverkossa käyttäen 5G lääketieteen käyttötapauksen demoympäristöä. Siinä operointihuoneen henkilöstöllä, kuten lääkäreillä ja hoitajilla, on yllään lisätyn todellisuuden lasit. Lasit lähettävät henkilön näkymän ja potilaaseen liittyvää tietoa 5G-testiverkon reunapalvelimella tai internetin pilvipalvelimella sijaitsevalle multimediapalvelimelle. Multimediapalvelimelta video striimataan esimerkiksi lääketieteen opiskelijoille, asiantuntijoille tai konsulteille, jotka ovat etäällä lähetyspaikasta. Osana diplomityötä määritellään ja rakennetaan lääketieteen käyttötapauksen demon perustuva testausjärjestelmä. Testispesifikaatio luodaan, testit suoritetaan sen perusteella. Testitulokset tallennetaan ja analysoidaan. Tiedonsiirtoviiveet videolähteen ja multimediapalvelimen välillä mitataan käyttäen Qosium mittausjärjestelmää. Myös multimediapalvelimen ja videostriimin vastaanottajan väliset viiveet mitataan. Mittaukset tehdään konfiguraatiolle, jossa multimediapalvelin on sijoitettu reunapalvelimelle ja konfiguraatiolle, jossa se on sijoitettu internetin pilvipalvelimelle. Sekä 4G että 5G-yhteyttä käytetään molemmille konfiguraatiolle. Kun mittaustuloksia verrataan, käy selväksi, että reunapalvelimella on huomattavasti lyhyempi tiedonsiirtoviive kuin internetin pilvipalvelimella. 5G-yhteydellä mitattu viive oli noin 10 ms sekä ylössyöttö- että alassyöttösuuntaan. Internetin pilvipalvelimella viiveet vaihtelivat 31 ja 45 millisekunnin välillä 5G-yhteydellä. Voidaankin todeta, että nykyisistä matkapuhelinverkoista 5G-verkko tarjoaa nopeimman yhteyden palvelinympäristöön reunapalvelimen avulla

    Implementation of a non-rt ric for automation service deployment over 4g small cells based on openairinterface technology

    Get PDF
    With the continuous evolution of the mobile communications networks, it is important to have virtualized open-source ecosystems such as OpenAirInterface, that can provide low cost networks to the different operators. In this project we aim to develop a centralised radio controller for the management of 4G small cells based on OpenAirInterface technology. This radio controller interacts with the specific solution equivalent to OAI's RT RIC called FlexRAN. The objective of the radio controller is to achieve an automated deployment of 4G services over OAI technology cells, where each service is assigned several dedicated radio resources (RAN slice). Specifically, the aim is to manage the radio resources assigned to the different services dynamically and according to the requirements of the service (QoS, latency, etc.)

    Software defined wireless network (sdwn) for industrial environment: case of underground mine

    Get PDF
    Avec le développement continu des industries minières canadiennes, l’établissement des réseaux de communications souterrains avancés et sans fil est devenu un élément essentiel du processus industriel minier et ceci pour améliorer la productivité et assurer la communication entre les mineurs. Cette étude vise à proposer un système de communication minier en procurant une architecture SDWN (Software Defined Wireless Network) basée sur la technologie de communication LTE. Dans cette étude, les plateformes les plus importantes de réseau mobile 4G ont été étudiées, configurées et testées dans deux zones différentes : un tunnel de mine souterrain et un couloir intérieur étroit. Également, une architecture mobile combinant SDWN et NFV (Network Functions Virtualization) a été réalisée

    Radio Resource Management for Uplink Grant-Free Ultra-Reliable Low-Latency Communications

    Get PDF

    Design and analysis of LTE and wi-fi schemes for communications of massive machine devices

    Get PDF
    Existing communication technologies are designed with speciÿc use cases in mind, however, ex-tending these use cases usually throw up interesting challenges. For example, extending the use of existing cellular networks to emerging applications such as Internet of Things (IoT) devices throws up the challenge of handling massive number of devices. In this thesis, we are motivated to investigate existing schemes used in LTE and Wi-Fi for supporting massive machine devices and improve on observed performance gaps by designing new ones that outperform the former. This thesis investigates the existing random access protocol in LTE and proposes three schemes to combat massive device access challenge. The ÿrst is a root index reuse and allocation scheme which uses link budget calculations in extracting a safe distance for preamble reuse under vari-able cell size and also proposes an index allocation algorithm. Secondly, a dynamic subframe optimization scheme that combats the challenge from an optimisation solution perspective. Thirdly, the use of small cells for random access. Simulation and numerical analysis shows performance improvements against existing schemes in terms of throughput, access delay and probability of collision. In some cases, over 20% increase in performance was observed. The proposed schemes provide quicker and more guaranteed opportunities for machine devices to communicate. Also, in Wi-Fi networks, adaptation of the transmission rates to the dynamic channel condi-tions is a major challenge. Two algorithms were proposed to combat this. The ÿrst makes use of contextual information to determine the network state and respond appropriately whilst the second samples candidate transmission modes and uses the e˛ective throughput to make a deci-sion. The proposed algorithms were compared to several existing rate adaptation algorithms by simulations and under various system and channel conÿgurations. They show signiÿcant per-formance improvements, in terms of throughput, thus, conÿrming their suitability for dynamic channel conditions

    Design, implementation and experimental evaluation of a network-slicing aware mobile protocol stack

    Get PDF
    Mención Internacional en el título de doctorWith the arrival of new generation mobile networks, we currently observe a paradigm shift, where monolithic network functions running on dedicated hardware are now implemented as software pieces that can be virtualized on general purpose hardware platforms. This paradigm shift stands on the softwarization of network functions and the adoption of virtualization techniques. Network Function Virtualization (NFV) comprises softwarization of network elements and virtualization of these components. It brings multiple advantages: (i) Flexibility, allowing an easy management of the virtual network functions (VNFs) (deploy, start, stop or update); (ii) efficiency, resources can be adequately consumed due to the increased flexibility of the network infrastructure; and (iii) reduced costs, due to the ability of sharing hardware resources. To this end, multiple challenges must be addressed to effectively leverage of all these benefits. Network Function Virtualization envisioned the concept of virtual network, resulting in a key enabler of 5G networks flexibility, Network Slicing. This new paradigm represents a new way to operate mobile networks where the underlying infrastructure is "sliced" into logically separated networks that can be customized to the specific needs of the tenant. This approach also enables the ability of instantiate VNFs at different locations of the infrastructure, choosing their optimal placement based on parameters such as the requirements of the service traversing the slice or the available resources. This decision process is called orchestration and involves all the VNFs withing the same network slice. The orchestrator is the entity in charge of managing network slices. Hands-on experiments on network slicing are essential to understand its benefits and limits, and to validate the design and deployment choices. While some network slicing prototypes have been built for Radio Access Networks (RANs), leveraging on the wide availability of radio hardware and open-source software, there is no currently open-source suite for end-to-end network slicing available to the research community. Similarly, orchestration mechanisms must be evaluated as well to properly validate theoretical solutions addressing diverse aspects such as resource assignment or service composition. This thesis contributes on the study of the mobile networks evolution regarding its softwarization and cloudification. We identify software patterns for network function virtualization, including the definition of a novel mobile architecture that squeezes the virtualization architecture by splitting functionality in atomic functions. Then, we effectively design, implement and evaluate of an open-source network slicing implementation. Our results show a per-slice customization without paying the price in terms of performance, also providing a slicing implementation to the research community. Moreover, we propose a framework to flexibly re-orchestrate a virtualized network, allowing on-the-fly re-orchestration without disrupting ongoing services. This framework can greatly improve performance under changing conditions. We evaluate the resulting performance in a realistic network slicing setup, showing the feasibility and advantages of flexible re-orchestration. Lastly and following the required re-design of network functions envisioned during the study of the evolution of mobile networks, we present a novel pipeline architecture specifically engineered for 4G/5G Physical Layers virtualized over clouds. The proposed design follows two objectives, resiliency upon unpredictable computing and parallelization to increase efficiency in multi-core clouds. To this end, we employ techniques such as tight deadline control, jitter-absorbing buffers, predictive Hybrid Automatic Repeat Request, and congestion control. Our experimental results show that our cloud-native approach attains > 95% of the theoretical spectrum efficiency in hostile environments where stateof- the-art architectures collapse.This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Francisco Valera Pintor.- Secretario: Vincenzo Sciancalepore.- Vocal: Xenofon Fouka

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research
    corecore