
Design, Implementation and Experimental Evaluation of
a Network-Slicing aware Mobile Protocol Stack

by

Ginés García Avilés

A dissertation submitted by in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

Telematic Engineering

Universidad Carlos III de Madrid

Advisor: Pablo Serrano Yáñez-Mingot
Co-Advisor: Marco Gramaglia

June 2021

iii

Design, Implementation and Experimental Evaluation of a Network-Slicing aware
Mobile Protocol Stack

Prepared by:
Ginés García Avilés, Universidad Carlos III de Madrid
contact: gines.garcia2@gmail.com

Under the advice of:
Pablo Serrano Yáñez-Mingot, University Carlos III of Madrid
Marco Gramaglia, University Carlos III of Madrid
Telematic Engineering Department, Universidad Carlos III de Madrid

This work has been supported by:

Unless otherwise indicated, the content of is thesis is distributed under a
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA).

“Talk is cheap. Show me the code.”
Linus Torvalds

“Hmm...it was working for sure”
Software Developers

“I did not change anything”
Software Developers

Acknowledgements

The typical phrases are those that always state what you need in a way that the
majority of people will understand it, so here is mine: "I was never a brilliant student,
but with effort and dedication I was able to achieve what I set out to do." As I said, a
mere cliché. The truth is that this process has not been easy, not difficult, funny, but not
always. What I can say is that I am not the same person who started a PhD., not only
because of I am four years older but for the intensity I was living each one of them.

This story starts with an internship at IMDEA Network Institute at the Software
department, whose main head was Rebeca De Miguel. There, together with Diego Lucero,
Diego Sierra and Patricia Callejo I became part of the "Rebecarios" team lead by one of
the best software engineers I have ever met, Christian Sanchez. I would like to say thank
you to all of them for all the hard work and all the funny moments we shared.

After the internship, I started the PhD program at IMDEA Networks Institute, where
the last years have passed away too fast. I would like to start giving all my sincere
appreciation to my supervisors Pablo Serrano and Marco Gramaglia because they guided
me though this jungle called research to achieve the main goals of the program. These
years working with Pablo have been amazing. I have been able to overcome all the
different challenges, having always his support. Thanks for your help not only in the
pure research field but at personal level to properly overcome the difficulties found during
these years. Marco has been fundamental during this PhD. Thanks to his advice, I have
been able to learn, evolve and effectively get the best out from every situation. Thanks a
lot for everything Marco.

Over these years, I have met a lot of amazing people and I would like to thank all of
them the time we have spend together: coffee breaks, football matches at the university
dreaming with the idea of winning the tournament or discussing about cryptocurrencies
during lunch time: UC3M 1st floor: Patri, Donato, Sergio Gonzalez, Tamurejo, Nuria,
Cris, Kiril, Milan, Stefano, Winnie, Pedro; UC3M pro lab: Borja, Victor, Antonio, Jose
and Jorge. IMDEA: Joan, Pablo, Moha. Thanks guys, It was an amazing experience to
share these years with you.

vii

viii

Moreover, I would like to mention the people who have accompanied me during all
my walks, with their unconditional support and always showing a smile regardless of
anything else. My parents and my brothers. To my father, for always listening to me and
for trying to bring me peace when I need it most. To my mother, for making everything
always easier, listening and understanding everything regardless of the situation. To my
brother Adrián, for listening to my thousand crazy stories and always remind me what
is important when I need it most. To my brother Álvaro, for always having a moment
to share with me and for sometimes showing me points of view that I didn’t know they
exist.

Finally, I would like to thank the person with whom I have shared all this path and
I hope to be able to share many more, Noelia, who helped me to believe in myself and,
above all, she believed in me before I did. Thanks for your touch, love, kisses and crazy
Fridays with "il nonno" pizza.

Published Content

Published Content

This thesis is based on the following published papers:

[1] Gines Garcia-Aviles, Carlos Donato, Marco Gramaglia, Pablo Serrano, Albert
Banchs. ACHO: A framework for flexible re-orchestration of virtual network functions.
Computer Networks Journal, volume 180, October 24, 2020.
Link: https://doi.org/10.1016/j.comnet.2020.107382

- This work is part of this thesis and its content reported in Sections 6.3 and 7.3.

- The role of the author of the thesis in this work is the design, implementation and
experimental evaluation of the framework for flexible orchestration proposed at this
work.

[2] Marco Gramaglia, Pablo Serrano, Albert Banchs, Gines Garcia-Aviles, Andres
Garcia-Saavedra, Ramon Perez. The case for serverless mobile networking. The
International Federation of Information Processing (IFIP) Networing Conference, June
22-25, 2020.
Link: https://ieeexplore.ieee.org/abstract/document/9142747

- This work is part of this thesis and its content reported in Section 4.2.

- The role of the author of the thesis in this work is focused on contributing to the
main concepts, as well as contributions in the design of the proposed approach.

[3] Gines Garcia-Aviles, Marco Gramaglia, Pablo Serrano, Francesco Gringoli, Sergio
Fuente-Pascual, Ignacio Labrador Pavon. Experimenting with open source tools to deploy
a multi-service and multi-slice mobile network. Computer Communications Journal,
volume 150, January 15, 2020.
Link: https://doi.org/10.1016/j.comcom.2019.11.003

- This work is part of this thesis and its content reported in Sections 6.2 and 7.2.

- The role of the author of the thesis in this work is focused on the design,
implementation and experimentation with regarding of the concepts proposed in the

ix

https://doi.org/10.1016/j.comnet.2020.107382
https://ieeexplore.ieee.org/abstract/document/9142747
https://doi.org/10.1016/j.comcom.2019.11.003

x

paper excluding the local breakout, designed and implemented by one of the authors
of the paper.

[4] Gines Garcia-Aviles, Marco Gramaglia, Pablo Serrano, Albert Banchs. POSENS:
A Practical Open Source Solution for End-to-End Network Slicing. Published at IEEE
Wireless Communications, volume 25, October, 2018.
Link: https://doi.org/10.1109/MWC.2018.1800050

- This work is part of this thesis and its content reported in Sections 6.1 and 7.1.

- The role of the author of the thesis in this work is focused on the design,
implementation and experimentation of an end-to-end network slicing solution based
on Open Source sorftware solutions.

Additional Research Merits

This section provides information about additional research works I have (co)authored,
being all of them related with this thesis.

[5] Gines Garcia-Aviles, Marco Gramaglia, Pablo Serrano, Marc Portoles, Albert
Banchs & Fabio Maino. SEMPER: A Stateless Traffic Engineering Solution for WAN
Based on MP-TCP. IEEE International Conference on Communications, Kansas City
(MO, USA) October 20-24, 2018.
Link: https://doi.org/10.1109/ICC.2018.8422991

- The role of the author of the thesis in this work is focused on the design,
implementation and experimentation of a traffic engineering solution based on
Multipath TCP.

[6] Sébastien Henri, Gines Garcia-Aviles, Pablo Serrano, Albert Banchs & Patrick
Thiran. Protecting against Website Fingerprinting with Multihoming. Proceedings on
Privacy Enhancing Technologies Journal, volume 2020 issue 2, 01 April, 2020.
Link: https://doi.org/10.2478/popets-2020-0019

- The role of the author of the thesis in this work is focused on the implementation
and experimentation of a Multipath TCP scheduler whose main concern is to prevent
traffic fingerprinting by exploiting path diversity.

[7] Marco Gramaglia, Ignacio Labrador Pavon, Francesco Gringoli, Gines Garcia-
Aviles, Pablo Serrano. Design and Validation of a Multi-service 5G Network with
QoE-aware Orchestration. Proceedings of the 12th International Workshop on Wireless
Network Testbeds, Experimental Evaluation & Characterization (ACMWINTECH 2018),

https://doi.org/10.1109/MWC.2018.1800050
https://doi.org/10.1109/ICC.2018.8422991
https://doi.org/10.2478/popets-2020-0019

xi

2 November 2018, New Delhi, India
Link: https://doi.org/10.1145/3267204.3267216

- The role of the author of the thesis in this work is focused on the design,
implementation and experimentation with regarding of the concepts proposed in the
paper.

[8] Pablo Serrano, Marco Gramaglia, Dario Bega, David Gutierrez-Estevez, Gines
Garcia-Aviles & Albert Banchs. The path toward a cloud-aware mobile network protocol
stack. Transactions on Emerging Telecommunications Technologies Journal, volume 29,
19 April, 2018.
Link: https://doi.org/10.1002/ett.3312

- The role of the author of the thesis in this work is focused on contributing to the
main concepts proposed in the paper.

[9] Winnie Nakimuli, and Giada Landi, and Ramon Perez, and Matteo Pergolesi,
and Marc Molla, and Christos Ntogkas, and Gines Garcia-Aviles, and Jaime Garcia-
Reinoso, and Mauro Femminella, and Pablo Serrano, and others. Automatic deployment,
execution and analysis of 5G experiments using the 5G EVE platform. IEEE 3rd 5G
World Forum (5GWF), pages 372-377, 12 September, 2020.
Link: https://doi.org/10.1109/5GWF49715.2020.9221060

- The role of the author of the thesis in this work is focused on the
design, implementation and evaluation of different components of the proposed
experimentation platform.

- [-] Gines Garcia-Aviles, et all Cloud-native Radio Access Networks.

- The role of the author of the thesis in this work is focused on the design, implementation
and experimentation of a cloud-native RAN.

https://doi.org/10.1145/3267204.3267216
https://doi.org/10.1002/ett.3312
https://doi.org/10.1109/5GWF49715.2020.9221060

Abstract

With the arrival of new generation mobile networks, we currently observe a paradigm
shift, where monolithic network functions running on dedicated hardware are now
implemented as software pieces that can be virtualized on general purpose hardware
platforms. This paradigm shift stands on the softwarization of network functions and
the adoption of virtualization techniques. Network Function Virtualization (NFV)
comprises softwarization of network elements and virtualization of these components.
It brings multiple advantages: (i) Flexibility, allowing an easy management of the virtual
network functions (VNFs) (deploy, start, stop or update); (ii) efficiency, resources can be
adequately consumed due to the increased flexibility of the network infrastructure; and
(iii) reduced costs, due to the ability of sharing hardware resources. To this end, multiple
challenges must be addressed to effectively leverage of all these benefits.

Network Function Virtualization envisioned the concept of virtual network, resulting in
a key enabler of 5G networks flexibility, Network Slicing. This new paradigm represents
a new way to operate mobile networks where the underlying infrastructure is "sliced"
into logically separated networks that can be customized to the specific needs of the
tenant. This approach also enables the ability of instantiate VNFs at different locations
of the infrastructure, choosing their optimal placement based on parameters such as the
requirements of the service traversing the slice or the available resources. This decision
process is called orchestration and involves all the VNFs withing the same network slice.
The orchestrator is the entity in charge of managing network slices. Hands-on experiments
on network slicing are essential to understand its benefits and limits, and to validate the
design and deployment choices. While some network slicing prototypes have been built
for Radio Access Networks (RANs), leveraging on the wide availability of radio hardware
and open-source software, there is no currently open-source suite for end-to-end network
slicing available to the research community. Similarly, orchestration mechanisms must
be evaluated as well to properly validate theoretical solutions addressing diverse aspects
such as resource assignment or service composition.

This thesis contributes on the study of the mobile networks evolution regarding its
softwarization and cloudification. We identify software patterns for network function
virtualization, including the definition of a novel mobile architecture that squeezes the

xiii

xiv

virtualization architecture by splitting functionality in atomic functions.
Then, we effectively design, implement and evaluate of an open-source network

slicing implementation. Our results show a per-slice customization without paying the
price in terms of performance, also providing a slicing implementation to the research
community. Moreover, we propose a framework to flexibly re-orchestrate a virtualized
network, allowing on-the-fly re-orchestration without disrupting ongoing services. This
framework can greatly improve performance under changing conditions. We evaluate
the resulting performance in a realistic network slicing setup, showing the feasibility and
advantages of flexible re-orchestration.

Lastly and following the required re-design of network functions envisioned during
the study of the evolution of mobile networks, we present a novel pipeline architecture
specifically engineered for 4G/5G Physical Layers virtualized over clouds. The proposed
design follows two objectives, resiliency upon unpredictable computing and parallelization
to increase efficiency in multi-core clouds. To this end, we employ techniques such as tight
deadline control, jitter-absorbing buffers, predictive Hybrid Automatic Repeat Request,
and congestion control. Our experimental results show that our cloud-native approach
attains > 95% of the theoretical spectrum efficiency in hostile environments where state-
of-the-art architectures collapse.

Table of Contents

Acknowledgements VII

Published Content IX

Abstract XIII

Table of Contents XV

List of Tables XIX

List of Figures XXI

List of Acronyms XXV

I Introduction, motivation and challenges 1

1. Introduction 3
1.1. Motivation . 3
1.2. Challenges and Contributions . 4
1.3. Thesis overview . 5

2. Background 7
2.1. Mobile Networks . 7

2.1.1. The 4th Generation of mobile networks 8
2.1.2. The 5th Generation of mobile networks 9

2.2. Network slicing . 11
2.2.1. Properties and challenges . 11

2.3. Virtualization of Network functions . 13
2.3.1. Properties and challenges . 13

2.4. Software Defined Networking . 14

xv

xvi TABLE OF CONTENTS

3. Open Source Virtual Network Functions 17
3.1. Radio Access Networks . 17
3.2. Core Network . 18
3.3. Management and Orchestration . 18
3.4. Network Slicing . 19

4. Software patterns for NFV 21
4.1. Towards a cloud-aware mobile network protocol 23

4.1.1. The quest for cloudification . 24
4.1.2. Re-designing VNFs internals . 26
4.1.3. The need for performance indicators 28

4.2. The case for Serverless mobile networking 29
4.2.1. Serverless Mobile Architectures . 32
4.2.2. Challenges to Address . 35

4.3. Flexible re-orchestration of VNFs . 39
4.3.1. Advantages of a fine-grained re-orchestration 41
4.3.2. State of the art solutions . 41

5. Summary Part I 45

II Bringing Network Slicing to softwarized mobile networks 47

6. Design and Implementation 49
6.1. POSENS, a Practical Open Source Solution for end-to-end Network Slicing 49

6.1.1. Design of POSENS . 52
6.2. Experimenting with open source tools to deploy a multi-service and multi-

slice mobile network . 55
6.2.1. Novel services considered . 55
6.2.2. Access Network . 57
6.2.3. Local breakout . 59
6.2.4. Core Network . 62
6.2.5. Management and Orchestration . 64
6.2.6. Functions beyond 3GPP . 67

6.3. ACHO: A framework for flexible re-orchestration of virtual network functions 70
6.3.1. ACHO: A suite for flexible 5G networking 71
6.3.2. Re-configuration of VNFs, a context-based approach 71
6.3.3. Baseline 5G implementation . 73
6.3.4. New MANO functionality . 75
6.3.5. Re-orchestrable VNFs . 76
6.3.6. ACHO adoption strategies . 78

TABLE OF CONTENTS xvii

7. Experimental evaluation 81
7.1. End-to-end Network Slicing implementation 81

7.1.1. Testbed Description . 81
7.1.2. Independence between slices . 82
7.1.3. Throughput performance . 83
7.1.4. Slice customization and orchestration 84
7.1.5. Compatibility with commercial equipment 84

7.2. Multi-service and multi-slice deployment evaluation 85
7.2.1. Testbed Description . 85
7.2.2. Slicing-aware MAC Scheduling . 86
7.2.3. Service Creation Time . 86
7.2.4. VNF re-location . 88
7.2.5. Low latency through LB . 89

7.3. Flexible orchestration with ACHO . 90
7.3.1. Testbed description . 90
7.3.2. VNF relocation delay . 91
7.3.3. Performance under re-orchestration 93

8. Summary Part II 97

III Bringing cloud nativeness to softwarized mobile networks 99

9. Designing a Cloud-native Radio Access Networks 101
9.1. Fundamentals of 4G and 5G . 106
9.2. LTE and NR pipeline diagnosis . 109
9.3. Cloud-native RAN . 112

9.3.1. DSP forethread . 114
9.3.2. Data workers . 115
9.3.3. Early HARQ . 117
9.3.4. Congestion control . 119

10.Experimental evaluation 121
10.1. Testbed description . 122
10.2. Downlink . 122
10.3. Uplink (Early HARQ) . 123
10.4. Capacity region . 124
10.5. Multiple vDUs . 126

11.Summary Part III 127

xviii TABLE OF CONTENTS

12.Conclusions and future work 129
12.1. Conclusions . 129
12.2. Future Work . 130

References 131

List of Tables

3.1. Recent software contributions for network slicing. 19

7.1. Service Creation Time KPI . 87
7.2. VNF relocation delays obtained by ACHO and by OpenStack. 92

9.1. LTE & NR Channels . 107

10.1. Cloud-native Parametrization . 121

xix

List of Figures

2.1. Simplified 4G architecture overview . 8
2.2. Simplified 5G architecture overview . 9
2.3. Network slicing definition . 12
2.4. Software Defined Network controller architecture. 14

4.1. Different approaches to softwarization, from monolithic elements (top) to
a completely cloudified network (bottom). 22

4.2. The transition from a traditional to a pipelined network protocol stack.
Same subscript means that the same functionality is fulfilled. 26

4.3. Performance degradation achieved by elastic computation: performance is
not degraded by the same relative amount as resources are reduced. . . . 28

4.4. Major transitions in the adoption of softwarization. 30
4.5. Mobile network architecture evolution. 32
4.6. The liquid scalability (top) and an empirical evaluation (bottom) 34
4.7. The simplified threading architecture of the srsLTE software (left) and a

possible serverless design of the software stack (right). 36
4.8. eBPF-enhanced data path vs the traditional iptables-based approach. . . 37
4.9. Full VNF relocation . 43

6.1. Different RAN slicing options. 50
6.2. Design of POSENS: changes introduced at the UE and the eNodeB. 53
6.3. General scenario showing a legacy GTP tunnel (top, red dotted/solid lines)

and a GTP with LB (bottom blue line). The LB introduces additional
interface IF for routing traffic locally. 60

6.4. TEID table maintained by the LB threads: it associates TEID numbers to
the IP address of each UE. It is used for crafting GTP tunnel return packets. 61

6.5. Sketched view of the 5G Core, as in [10] 62
6.6. The OSM architecture (Adapted from [11]) 64
6.7. The relations between our implemented architecture and the ETSI - 3GPP

domains . 65
6.8. NS Descriptor snippet. 66

xxi

xxii LIST OF FIGURES

6.9. VNF Descriptor snippet. 67
6.10. The Orchestration architecture . 68
6.11. the context relocation performed with ACHO 72
6.12. Representation of the SMF context . 74
6.13. Representation of the MAC context . 74
6.14. MANO Implementation and new Interfaces. ACHO creates new interfaces

in the reference points defined by ETSI and acts on the underlying virtual
or physical NFs (both c-plane and u-plane) to provide a fast re-location. . 74

7.1. A multi-slice network architecture. 82
7.2. Independence between slices . 83
7.3. Total and per-slice throughput performance 84
7.4. Independent Service Function Chaining 85
7.5. (a) Obtained throughput with variable resources shares vs share 86
7.6. (b) Obtained throughput with variable resources shares vs time 86
7.7. Latency evaluated for the URLLC scenario. 89
7.8. The Physical testbed setup. 91
7.9. The Network Slice setup employed in the experimental evaluation,

consisting of 3 slices. 92
7.10. SFC amendment. Flow A (top), B (middle) and C (bottom). 94
7.11. Relocation of the IoT gateway across edge clouds. 94
7.12. UPF migration from the central cloud to the edge cloud, under different

configurations. 95
7.13. On-demand Radio resources assignment 96

9.1. Virtualized Radio Access Network (RAN) architecture [12] 102
9.2. Baseline digital signal processor (DSP) pipeline parallelization. One

subframe every transmission time interval (TTI, 1 ms) 103
9.3. Decoding time of one transport block in a CPU core. 104
9.4. Two Virtualized Distributed Units (vDUs) competing for computing

resources. The Uplink (UL)/Downlink (DL) data load of vDU 1 is the
highest possible while vDU 2’s is variable. 104

9.5. Dedicated workers for UL/DL data processing tasks. Forethread
coordinates subframe processing. 105

9.6. Computing allowance, split into two phases, impose a hard deadline on
UL/DL data workers. 105

9.7. Early HARQ predicts the decodability of unfinished UL data tasks. 106
9.8. Congestion controller adapts the generation of data tasks to the available

computing capacity. 106
9.9. Subframes and PHY radio channels (FDD). 107

LIST OF FIGURES xxiii

9.10. LTE and NR PHY pipeline: DSP job n 108
9.11. vPhysical Layer (PHY) pipeline parallelization for M = 4 and four DSP

workers in a worker-time grid. Colored cells represent the computing
budget of a worker to process a DSP job. Because each job must be
completed within 3 ms (M = 4), worker 1 must be available to process
job n+ 3, which makes worker 4 always idle (dashed cells) and it is hence
redundant. Therefore, the maximum pipeline depth is 3, i.e,. 3 parallel
workers. 110

9.12. Throughput performance for both uplink and downlink (top). Central
Processing Unit (CPU) time required by different PHY layer functions
(bottom). Different uplink/downlink load (relative to the maximum) and
channel conditions (Signal-to-noise ratio (SNR)). 111

9.13. A 4G/5G PHY pipeline for cloud environments. 113
9.14. DL-Data worker operation. 116
9.15. UL-Data worker operation . 117
9.16. Mean extrinsic magnitude for each iteration of a turbodecoder. Dot/line

indicate the average value across multiple PUSCH TBs with different MCS,
TBS and SNR. Error bars indicate the standard deviation. 119

10.1. Downlink throughput (left) and vPHY buffering (right) with saturating
DL load. Comparison between the baseline and cloud-native approach
with different λ settings under different computing capacities. 122

10.2. Early Hybrid Automatic Repeat Request (E-HARQ) accuracy and false
positive rate for different γ settings, and for different combinations of
Modulation and Coding Scheme (MCS), Transport Block (TB) size, SNR,
and computing capacity. 123

10.3. Maximum computing latency supported by cloud-native’s E-HARQ given
a target accuracy. 124

10.4. Capacity region of the cloud-native solution and our baseline. Different
computing capacity settings equal to k · c0, where c0 is the nominal
encoding/decoding capacity of a dedicated Intel Xeon core @ 1.9GHz. . . 125

10.5. Network capacity for a variable number of vDUs contending for computing
resources. 126

List of Acronyms
3GPP 3rd Generation Partnership Project

ACHO Adaptive slice re-Configuration using Hierarchical Orchestration

ACK Acknowledgement

AIMD Additive-Increase/Multiplicative-Decrease

AMF Access Management Function

API Application Programming Interface

AR Augmented Reality

ARQ Automatic Repeat Request

ASIC Application-Specific Integrated Circuit

AUSF Authentication Server Function

BBU Baseband Unit

BPF Berkeley Packet Filter

BS Base Station

C-RAN Cloud-RAN

CB Code Block

CN Core Network

CNF Cloud-Native Network Function

c/e Context/Execution

CP Cyclic Prefix

CPRI Common Public Radio Interface

CPU Central Processing Unit

CQI Channel Quality Indicator

CRC Cyclic Redundancy Check

CU Central Unit

DCI Downlink Control Information

DL-SCH Downlink Shared Channel

xxv

xxvi LIST OF ACRONYMS

DL Downlink

DPDK Data Plane Development Kit

DSP digital signal processor

DU Distributed Unit

E-HARQ Early Hybrid Automatic Repeat Request

eBPF enhanced Berkeley Packet Filter

eDECOR Enhanced Dedicated Core Network

eMBB Enhanced Mobile Broadband

eNB Evolved Node B

EPC Evolved Packet Core

FaaS Function as a Service

FDD Frequency Division Duplex

FEC Forward Error Correction

FFT Fast Fourier Transformation

FG Forwarding Graph

gNB 5G Next Generation NodeB

GTP GPRS Tunneling Protocol

GUI Graphical User Interface

GW Gateway

HARQ Hybrid Automatic Repeat Request

HSS Home Subscriber Server

HTTP Hypertext Transfer Protocol

IFFT Inverse Fast Fourier Transformation

IoT Internet of Things

KPI Key Performance Indicator

KVM Kernel-Based Virtual Machine

LB Local Breakout

LCM Life Cycle Management

LDPC Low Density Parity Check

LLR Log-Likelihood Ratio

LTE Long Term Evolution

LIST OF ACRONYMS xxvii

LXC LinuX Containers

MAC Medium Access Control Layer

MANO Management and Network Orchestration

MCS Modulation and Coding Scheme

MEC Mobile Edge Computing

MIB Master Information Block

MIMO Multiple-Input Multiple-Output

MME Mobility Management Entity

mMTC Massive Machine-type Communications

MVSF Minimal Viable Subframe

NACK Negative Acknowledgement

NAS Non-access stratum

NEF Network Exposure Function

NEST Network Slice Template

gNB Next generation Node B

NF Network Function

NFV Network Function Virtualization

NFVI Network Function Virtualisation Infrastructure

NFVO NFV Orchestrator

NGMN Next Generation Mobile Networks Alliance

NIC Network Interface Card

NR New Radio

NRF Network Repository Function

NS Network Service

NSaaS Network Slice as a Service

NSD Network Slice Descriptor

NWDAF Network Data Analytic Function

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiplexing Access

ONAP Open Networking Automation Platform

OSM Open Source MANO

xxviii LIST OF ACRONYMS

P-GW Packet data network Gateway

PBCH Physical Broadcast Channel

PCFICH Physical Control Format Indicator Channel

PDCCH Physical Downlink Control Channel

PDCP Packet Data Convergence Protocol

PDN Packet Data Network

PDSCH Physical Downlink Shared Channel

PHY Physical Layer

PNF Physical Network Function

PRACH Physical Random Access Channel

PRB Physical Resource Blocks

PSS Primary Synchronisation Signal

PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared Channel

QoS Quality of Service

QR Quick Response

RA Random-Access procedure

RAM Random-access memory

RAN Radio Access Network

RB Resource Block

RBG Resource Block Group

REST Representational state transfer

RLC Radio Link Control

RRC Radio Resource Control

RRH Remote Radio Head

RTT Round-Trip Time

RU Radio Unit

S-GW Serving Gateway

S1AP S1 Application Protocol

SaaS Software as a Service

SBA service based architecture

LIST OF ACRONYMS xxix

SC-FDMA single-carrier FDMA

SDN Software Defined Networking

SDR Software Defined-Radio

SF Subframe

SFC Service Function Chain

SIB0 System Information Block Type 0

SIB1 System Information Block Type 1

SIB2 System Information Block Type 2

SMF Session Management Function

SNR Signal-to-noise ratio

SR-IOV Single Root I/O Virtualization

SSS Secondary Synchronisation Signal

TB Transport Block

TEID Tunnel endpoint identifier

TTI Transmission Time Interval

UCI Uplink Control Information

UDM User Data Management

UDP User Datagram Protocol

UE User Equipment

UL Uplink

UPF User Plane Function

URLLC Ultra-Reliable Low Latency Communications

vDU Virtualized Distributed Unit

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

VNFD Virtual Network Function Descriptor

VNFM Virtual Network Function Manager

VPN Virtual Private Network

VR Virtual Reality

vRAN Virtualized RAN

Part I

Introduction, motivation and
challenges

1

2

1 Introduction

Technologies have drastically changed our world, becoming a fundamental part in our
society. within this digital change, telecommunications networks are becoming more and
more important due to their intrinsic ability of providing access to digital services from all
over the world. Currently, millions of people are producing and/or consuming substantial
amounts of load in the providers’ infrastructure using network-enabled services.

The 5th generation of mobile telecommunications networks are expected to change the
way users see and approach mobile networks, evolving from a simple enabler to a complete
manageable service inside a complex service-oriented ecosystem where service providers,
telecommunications operators and users coexist.

This evolution is subject to technical, service and operational requirements, which
means that there will be a large variety of requirements that must be correctly managed
by the network. Having multiple individual deployments is not an option, because new
generation networks are also expected to be energy efficient and cost effective. This
situation motivates the need for flexible and scalable network, to properly ensure that the
mobile network will be adapted to specific use cases (in terms of bandwidth, latency, ...).

1.1. Motivation

While specification and documentation activities regarding the 5th generation mobile
systems (5G) have progressed at a rapid speed, practical experiments have evolved
at a slower pace. Apart from the obvious reasons (the relatively high development
costs), another (and partly related) issue that precluded the prototype of mobile system
is the unavailability of resources: mobile equipment is typically expensive, and the
frequency bands are licensed. Because of this, operators were the only groups performing
experimentation with cellular systems, while the academia was restricted to technologies
based on the ISM band (see e.g. [13] for a recent survey on experimentation with 802.11).
One technology that helped this ISM-based experimentation is Software Defined-Radio
(SDR), which enables researchers to implement all layers of a wireless protocol stack.

3

4 Introduction

The use of SDR has enabled the implementation of novel access schemes and
communication paradigms (such as e.g. cognitive radio, full-duplex), but prototypes
have been limited to the lower layers of the protocol stack (i.e., the MAC layer), the main
reason being the lack of interest on developing complete systems over these prototype
boards, given the high development costs. These costs are further exacerbated for the
case of mobile systems, as these are characterized by relatively complex protocol stacks (in
contrast to e.g. TCP/IP). The situation, though, has recently changed with the emergence
of software platforms based on SDR that enable instantiating a complete mobile network,
with Eurecom’s OpenAirInterface (OAI) [14] and srsLTE [15] among the most popular
initiatives.

The availability of these open projects has leveled up the playground, with now more
players (academics, SMEs) being able to develop novel enhancements for cellular systems.
This helps accelerating the development of solutions for 5G networking, which will boost
the running of field trials under realistic conditions and bring better understanding about
the performance of future mobile systems.

Despite the above, the gap between theory and practice for 5G networking is still
large. In particular, while network slicing has been acknowledged as a key technology
to efficiently support services with very diverse requirements [16] or Softwarization of
networks trend is becoming reality, there are little experimental “hands on” reports on
the use of this technologies in practice.

1.2. Challenges and Contributions

As described above, 5th generation of networks prototypes progress at a slower pace
than specification activities currently does. In this thesis we will focus on study the
required mechanisms for bringing network slicing and flexibility to 5G networks from an
experimental point of view. During this process, we will tackle the main challenges
associated with these novel technologies and propose novel solutions to effectively
overcome the issues we found. Hence, with this work we aim to contribute filling the
gap by effectively design and implement a fully virtualized network-slicing aware mobile
protocol stack.

This thesis focus on investigating the benefits of a network slicing-aware protocol
stack and the design of a novel cloud-native Radio Access Network (RAN). This thesis
summarizes in 4 publications, 1 published in IEEE Wireless communications, 1 published
on Computer Communications Journal, 1 published on Computer Networks Journal and
1 published on The International Federation of Information Processing (IFIP) Networing
Conference.

Other 6 works have been published on different conference/journals such as

1.3 Thesis overview 5

Proceedings on Privacy Enhancing Technologies Journal, IEEE International Conference
on Communications or ACM WINTECH. In detail,

Network slicing implementation: A real implementation of network slicing
inside a 4G LTE protocol stack. The implementation attacks all the challenges
of network slicing from the design and implementation point of view, finally
accomplishing the expected requirements.

Novel Orchestration mechanism: Placement and orchestration mechanisms
have been widely studied theoretically, but here we provide an experimental
evaluation of the living approaches and propose a novel context-based orchestration
to efficiently achieve the required network flexibility on 5G networks.

Cloud-native RAN: Design of a cloud-native RAN which is designed work
on shared cloud environments. The proposed design outperforms the baseline
approach and increases reliability and resiliency when computing fluctuations
appear.

Experimental outcomes: During this work, we have been producing
experimental results as well as software components to enrich and speed up research
in a more experimental field.

1.3. Thesis overview

This thesis is organized as follows:

Part I we first introduce the main technologies we used during this thesis in
Chapter 2. Then, in Chapter 3 we present the main open source solutions
available for 5G prototyping. Lastly, Chapter 4 is dedicated to the study of the
mobile networks evolution, resulting in novel approaches and concepts to properly
overcome the future network requirements.

Part II is dedicated to perform the design and implementation of a complete end-
to-end network slicing network architecture, a 5G network prototype and the design
and implementation of a framework for flexible orchestration (Chapter 6). Then,
we perform an experimental evaluation of the proposed approaches (Chapter 7).

Part III, where we present a novel cloud-native RAN whose design is able to
effectively deal with non-stable cloud environments. In Chapter 9, we design
the novel pipeline architecture, while Chapter 10 is dedicated to the performance
evaluation.

2 Background

the 5th Generation (5G) of mobile networks magnifies how important
telecommunications are within our society. This change is seen as the transition
from a simple enabler for communications to a complex ecosystem of service providers,
operators and users managing limited instances of the network. This novel vision of the
network requires a drastic re-design of the network, whose main objective is to properly
accommodate services with many diverse requirements.

In this section, we introduce the main concepts of mobile networks, 4th and 5th

generation of mobile networks as well as the main novelties of the latter.

2.1. Mobile Networks

Mobile networks or cellular networks are communications infrastructures providing
wireless connectivity to end nodes (i.e. mobile phones). These infrastructures consist on
multiple transceivers (also known as Base Station (BS)) providing "cells", name that
represents a coverage area of a specific BS. Those coverage areas can be used for
transmitting/receiving content from the network and neighbouring cells usually uses
different frequency sets to avoid interfering each other. The main features of mobile
networks are:

Increased capacity compared with single large transmitter, because the same
frequency can be used in different cells.

Extended coverage, because we can continue adding BS to extend coverage without
being limited by the horizon.

End devices consume less power, because BS are closer.

In the following sections, we will take a look at the main characteristics and
components regarding the 4th and 5th generation of mobile networks (Sections 2.1.1 and
2.1.2 respectively)

7

8 Background

Access Core Network / Transport

4G eNB

4G eNB

MME HSS

SGW PGW

IP Networks

Internet

Apps

Services

Devices

Figure 2.1: Simplified 4G architecture overview

2.1.1. The 4th Generation of mobile networks

4G stands for fourth generation of mobile networks. The most important challenge
addressed by 4G was the integration, providing an IP based mobile broadband that
allowed users to access streaming services, gaming or voice over IP calls. Next, we will
take a look at the main components of the 4G infrastructure.

4G Access:
In mobile networks, the radio access is one of the most important parts of the

infrastructure. This part is in charge of providing the air interface at which the devices
(User Equipment (UE)) will be connected to. Traditional Radio Access Network (RAN)
consists on two components: the Baseband Unit (BBU), which comprises all the computer
intensive functions to properly perform signal processing; the Remote Radio Head (RRH)
, for digital to signal (and vice-versa) conversion, ensuring that signals are correctly
transmitted (frequency, power gain, etc.). A BBU and up to three RRHs conforms what
we call Evolved Node B (eNB), being the standard Common Public Radio Interface
(CPRI) the optical interface connecting these components. UEs and eNBs are depicted
in green left part of Figure 2.1.

4G Core Network:
The Evolved Packet Core (EPC) is the anchor point for the traffic coming from the

users connected to the eNB and whose main purpose is to reach services at the network.
The EPC was designed with a "flat architecture", where few nodes are handling traffic and
there is a split between user data (user plane) and signalling (control plane) to facilitate
operator the dimension of each part independently. Figure 2.1 shows at the red section
the a basic architecture of an EPC. At the upper part we have the modules in charge of
managing the control plane, while in the lower part the user plane will be handled. Let’s

2.1 Mobile Networks 9

Access Core Network / Transport IP Networks

Internet

Apps

Services

Devices

CUDURU

AMF AUSF UDM

UPF

SMF

c-plane

u-plane

N3

N4

N2

N1

5G gNB

Figure 2.2: Simplified 5G architecture overview

now check each component separately:

Home Subscriber Server (HSS): This component is essentially a database
where all the information required for user authentication is stored.

Mobility Management Entity (MME): This component is in charge of
handling all the control plane messages coming from eNBs (i.e. S1 Application
Protocol (S1AP)).

Serving Gateway (S-GW): The S-GW is the first in charge of handling traffic
between the UE and the external network, connecting the eNB to the EPC.

Packet data network Gateway (P-GW): This component interconnects the
EPC with external IP networks. It also performs the IP address allocation for
UEs.

2.1.2. The 5th Generation of mobile networks

5G Networks will change the way in which cellular connectivity is provided. High
data rates (500+ Mbps), extensive coverage (10+ Tbps/Km2) low latencies (<5 ms) and
high network flexibility are just few of the target Key Performance Indicators (KPIs)
to be fulfilled by the next generation mobile networks [17]. However, this results in
major changes, some of them related to how networks are implemented and deployed to
make them "cloud enabled". To clearly identify the novelties introduced by 5G, we next
introduce the main building blocks of the architecture.

5G Access:
Although the main purpose of the radio access will remain, the arrival of 5G has

changed the functionality and how the RAN components are split within the Next
generation Node B (gNB) (Figure 9.1), which is the main component in the access network.

10 Background

This component is the evolution of the eNB in 4G, but in this case its functionality has
been split into three blocks: (i) Radio Unit (RU), which manages the digital front end
and implements parts of the Physical Layer (PHY) layer (also called low PHY); (ii)
Distributed Unit (DU), placed close to the RU and implements high PHY, Radio Link
Control (RLC) and Medium Access Control Layer (MAC); (iii) Central Unit (CU), in
charge of implementing Radio Resource Control (RRC) and Packet Data Convergence
Protocol (PDCP) layers.

Regarding the Interfaces, N2 and N3 are the control and user plane interfaces
respectively. The gNB uses this interfaces to correctly communicate with the 5G Core
Network (CN). Moreover, the N1 interface is a transparent interface created by the gNB
to allow UEs to transmit non radio signalling to the 5G CN.

5G Core network:
The 5G core network is an evolution of the previous 4G core network architectures.

In this case, The 5G CN relies on an service based architecture (SBA), which means
that the 5G CN will be a set of interconnected Network Functions (NFs) offering and
consuming services from each other. This approach opened the adoption of cloud-based
architectures such as softwarization and virtualization, automatic deployment and scaling,
etc. Moreover it also includes design enhancements for natively support network slicing
(see Section 2.2). Next, we will introduce the 5G CN components depicted in Figure 9.1:

Access Management Function (AMF): manages authentication and mobility
between device and network. Using the N1 interface, the UE sends to this
component connection and session related information.

Authentication Server Function (AUSF): Performs part of the authentication
(together with AMF and User Data Management (UDM)).

UDM: Similarly to AUSF, it performs pars of the authentication process in
collaboration with AUSF and AMF

Session Management Function (SMF): Manages sessions, IP allocation and
control policies.

User Plane Function (UPF): This component basically manages routing and
packet forwarding, as well as Quality of Service (QoS) policies application.

2.2 Network slicing 11

Management and Orchestration
As previously revealed, 5G network architectures softwarization will bring a huge

amount of services with stringent requirements that must be accurately guided to satisfy
their requirements. Management and orchestration will deal with the challenges coupled
with high variety of requirements scenarios. Complex challenges such as deployment
across multiple domains, efficient resources provisioning when using shared infrastructures
or optimal usage of the allocated resources as well as simple ones such as service
deployment will be tackled by the management and orchestration system.

2.2. Network slicing

Albeit 5G entails a huge step froward due to the addition of novel technologies, the
undeniable revolution comes with the flexibility and programmability of the network.
Flexibility requires being hardware-independent, and here is when virtualization of
network functions and network slicing [18] come into play.

Network slicing is a network architecture that enables multiplexing of virtualized and
independent logical networks on the same shared physical infrastructure (Figure 2.3). A
network slice consists of a set of resources assigned to a tenant to provide a specific service.
Those resources are both network resources (e.g., spectrum, link capacities), and cloud
resources (i.e., the infrastructure required to run the Virtual Network Functions (VNFs).
Tenants could be mobile network operators providing Enhanced Mobile Broadband
(eMBB), or third party verticals [19] that use a slice specifically tailored to their needs
(e.g., Ultra-Reliable Low Latency Communications (URLLC)). To satisfy the service
requirements of each tenant, a different network slice will be instantiated to provide the
corresponding service. This ability to provide highly customizable services over the same
shared infrastructure will increase the revenue opportunities, and drastically reduce the
costs of 5G networking, due to the improvements in efficiency.

2.2.1. Properties and challenges

The advantages of network slicing are clear [16], and there is a wide consensus among
the industrial and standardization communities on the need to adopt this technology. The
main properties of network slicing can be summarized as follows:

Isolation: Network slices have must have their own resources. Moreover, the
connectivity within a slice must be managed from inside while connectivity between
slices must be granted/removed from outside of the network slices.

Assurance: Network slices must assure a specific performance with a specific level
of trust, being the latter how trusted the ability of the network slice to provide a
certain quality of service.

12 Background

Figure 2.3: Network slicing definition

Scalability: Network slices must be able to automatically being
reconfigured/scaled at minimal effort.

The idea of creating logical networks on top of common infrastructures lead to
multiple challenges, going from security and privacy to physical limitations due to
different regulations because of the geographical location of the infrastructure. The design
Challenges of network slicing can be grouped as follows:

Resource sharing: The resources sharing is one of the key issues of network slicing.
Sharing can be a simple static partitioning or an elastic dynamic sharing of the
resources. The last option is more efficient due to the dynamic nature of the load
but it requires advanced techniques to correctly manage these resources.

Dynamic management of slices: Management of slices, including service function
chain amendments, is another challenging procedure that, in this case
orchestrators, must take care of. The challenge here is to efficiently accommodate
multiple slices while keeping isolation both in terms of connectivity and performace.

Partial/complete slice isolation: keeping isolation between slices is vital in sliced
environment. Isolation could be achieved by isolating control and data plane of
different slices. Nonetheless, part of the control plane could be shared among slices
without breaking the isolation policy.

2.3 Virtualization of Network functions 13

However, we lack a thorough experimental validation of its effectiveness, e.g., on
the gains when using different mechanisms for orchestrations, or under different traffic
scenarios. While there are implementations for some of the the enablers for network
slicing, to the best of our knowledge there is no solution that implements end-to-end
network slicing. More specifically, virtualization is a mature technology that has been
extensively used for the wired elements, with technologies such as e.g. OpenStack1 and
Kubernetes2 for virtual machine and containers management, respectively. However, the
situation is less mature for the wireless access part, Orion [20] being among the few
proposals to implement slicing at the RAN that have been tested in practice.

The inclusion of network slicing impacted both functional splits (see Section 2.2) and
management and orchestration adding a new level of complexity. In Section 6.1 we will
provide a detailed explanation about the impact of network slicing on RAN functional
splits and in Section 6.3 we will cover the management and orchestration challenges of
network slicing.

2.3. Virtualization of Network functions

Network Function Virtualization (NFV) is the natural step following the softwarization
of network functions trend, where former physical boxes will now evolve to software
components virtualized on shared physical infrastructures. This new operational approach
will allow operators to easily update or modify network capabilities on demand while
reducing costs.

2.3.1. Properties and challenges

NFV relies on virtualization mechanisms to run network functions, breking
dependencies of network services from proprietary hardware. The usage of shared
infrastructures results in a more efficient usage of the data center resources. Cloud
technologies such as virtual machines or containers can effectively host network functions.
NFV has the following advantages:

Of-the-shelf hardware: The usage of virtual networ instances allows service
providers to run network functions on commodity instead of dedicated hardware.

Efficiency: a virtualization infrastructure can start/stop NFVs on-demand
following the workload, which results in an efficient power consumption.

Flexibility: Having the ability to start/stop/modify virtual instances as well
as the service function chain that they conform, increases the flexibility of the
deployment.

1https://www.openstack.org
2https://kubernetes.io

https://www.openstack.org
https://kubernetes.io

14 Background

Northbound Interface

Southbound Interface

Core

Application Application Application

SDN Controller

Westbound
interface

Eastbound
interface

OpenFlow

Figure 2.4: Software Defined Network controller architecture.

One key aspect of NFV is the softwarization of the network functions, which essentially
brings the advantages of software components to network elements that were monolithic
and difficult to modify. Moreover, is one of the enablers of network slicing (Section 2.2),
where virtual network are created on top of physical shared infrastructures.

The challenges of NFV are not directly related to the concept itself, but with the
integration and coordination of the different actors, together with the performance of
certain network functions that have to deal with tons of packets per second. When applied
to cloud environments, NFV brings as well scalability, resiliency and fault-tolerance to
virtual network environments. As we will discuss in Part II and Part III, virtualization
of network functions lead to different challenges that we will tackle along this thesis.

2.4. Software Defined Networking

Software Defined Networking (SDN) is a networking architectural approach to improve
network management and flexibility. SDN implements a network abstraction to effectively
separate control from data forwarding functions. The network control functions will
now be centrally implemented in software applications called SDN "controllers" (see
Figure 2.4), enabling the programming of network behaviours.

Looking at Figure 2.4, an SDN controller can be split in, at least, three main
components. First, the north interface which is used for the communication between the
SDN controller and the services an applications running on the network. This interface
exposes functionality usually via Representational state transfer (REST) Application
Programming Interface (API). Then we have the core of the controller is the framework
where all the networking functionality is implemented (i.e. protocols, libraries, etc.).
Finally, we have the south interface, which allows the communication with the SDN
switches. OpenFlow [21] is an example of southbound interface and it defines how SDN
controllers should interact with the network elements to properly make adjustments in the

2.4 Software Defined Networking 15

network. Optionally, we could find the west/east interfaces that usually enables horizontal
communication with other SDN controllers (usually for coordination purposes).

When SDN is combined with an NFV infrastructure, NFV enables the creation of
virtual network instances (i.e. virtual switches) while SDN is in charge of configuring and
controlling their behaviour. We can usually find virtualized SDN controllers managing
virtualized network switches.

16 Background

3 Open Source Virtual Network
Functions

There are several recent initiatives to prototype mobile networks in software but in this
work, we focus on open-source solutions. There exist different open-source components
for each architectural block we want to build (see Section 2.1). At the RAN side,
most of them are built on the GNU Radio development suite and the Ettus Research
USRP Software Defined-Radio (SDR) platforms, and running on standard Linux-based
computing equipment (Intel x86 PC architectures)1. We next provide a short review of
the current open-source solutions ecosystem.

3.1. Radio Access Networks

Concerning the RAN part, three of the most popular software solutions to run LTE
over SDR are Eurecom’s OpenAirInterface (OAI),2 openLTE,3 and srsLTE.4 OAI [22]
provides an implementation of a subset of LTE Release 10 elements, including the UE
and the eNB. Its performance is considered relatively good, although is also acknowledged
that the code structure is complex and difficult to customize. It is also worth mentioning
that the eNB and UE RAN are licensed under a specific OAI Public License.

openLTE is an open-source project providing an implementation of LTE specifications,
which includes a C library, Octave code for testing downlink and uplink Physical
Random Access Channel (PRACH) functionalities, GNU Radio applications for
downlink functionalities, both simulated and using hardware platforms, and a simple
implementation of an eNB using USRP. While its code is considered as relatively well
organized, documented and would result easier to modify, it does not provide an UE, and
many features are still unstable or under development.

1We note that there are complete commercial products such as the Amari LTE 100 (a fully software-
based Long Term Evolution (LTE) BS solution), its closed license makes it unsuitable for research
activities.

2http://www.openairinterface.org/
3http://openlte.sourceforge.net/
4https://github.com/srsLTE/srsLTE

17

http://www.openairinterface.org/
http://openlte.sourceforge.net/
https://github.com/srsLTE/srsLTE

18 Open Source Virtual Network Functions

Finally, the srsLTE [15] open-source project provides a platform for LTE Release 8
experimentation, designed for maximum modularity. The RAN part provides a complete
UE application and a complete eNB application. The project is more recent than OAI,
and in general the source code is considered easy to customize, although it also consumes
more CPU resources than the other alternatives. The code is provided under an AGPL
v3.0 license.

Given that our aim is to implement and evaluate novel solutions and not an efficient
software to put in production, code modularity and re-usability are determinant factors
when selecting a platform, and therefore we decided to design our solutions as extensions
of the srsUE and the srsENB (the applications for the UE and eNB, respectively).

3.2. Core Network

Concerning the core network, apart from commercial solutions such as
OpenEPC(also supporting shared source code licensing), two of the most relevant
solutions are the ones associated with the same initiatives mentioned above. Firstly,
srsLTE has very recently released srsEPC, a light-weight CN implementation, including
the MME, HSS, P-GW and S-GW, under the same license. Secondly, OAI also provides
the same elements for a basic EPC solution, in this case released under a standard Apache
v2.0 license. Given that when we started our work only the latter was available, we used
OAI CN as the software solution for the CN.

One additional advantage of our POSENS, which contrasts Enhanced Dedicated Core
Network (eDECOR) is interoperability: our solution works with any implementation
supporting the S1AP protocol (we confirmed that POSENS is compatible with different
different commercial EPCs, whose names we cannot disclosure due to confidentiality
agreements).

3.3. Management and Orchestration

Finally, concerning MANO, it has received a lot of attention from both the open-
source community and the enterprises [23]. There is a wide range of fully-fledged
Management and Network Orchestration (MANO) tools such as Open Baton,5 OSM,6

that provide the required functionalities related to the VNF life-cycle management,
including their scaling on a virtual infrastructure. They rely on a Virtual Infrastructure
Manager (VIM), a software that is more mature, as it has been already employed in
production cloud computing environments since many years. Among VIMs, we can list

5https://openbaton.github.io/
6https://osm.etsi.org/

https://openbaton.github.io/
https://osm.etsi.org/

3.4 Network Slicing 19

Table 3.1: Recent software contributions for network slicing.

Work Base Purpose Main Feature Limitations Open

[24] srsLTE RAN Slicing Multiple, per tenant,
eNB virtualization

Implementation only
up to MAC layer. No

[25] OAI RAN Slicing Thorough evaluation
of slices utilization RAN Slicing only. No

[26] OAI RAN Slicing SDN-based
RAN slicing CN not included. Upon

request

[20] OAI E2E slicing
Core Network
handling multiple
slices

Single Slice UE only. No

POSENS srsLTE E2E slicing Slice aware
shared RAN.

One RAN split
available. Yes

solutions such as OpenStack7 or OPNFV.8 However, as key required features such as
per-tenant orchestration are not available with existing open-source solutions, we decided
to implement POSENS MANO using a dedicated software that directly leverages on the
VIM APIs.

3.4. Network Slicing

We finish this section by reviewing state-of-the-art solutions on Network Slicing
that have recently appeared, which we list in Table 3.1. Available solutions are either
considering the RAN only [24–26] or neglecting the UE role [20] at their implementations.

While each of these solutions provides specific elements to implement a 5G mobile
network, only recently researchers started putting pieces together to implement end-to-end
network slicing [4,20,27]. Among very recent efforts available in the literature that target
an objective similar to ours we have the one in [28,29], which base their implementation on
OAI instead of SRSLTE, as we do. Finally, mention some ongoing initiative such as [30,31],
that aim at providing a living lab for wireless network researchers. In this work, we limit
our research to small scale, locally hosted, deployments.

7https://www.openstack.org
8https://www.opnfv.org/

https://www.openstack.org
https://www.opnfv.org/

4 Software patterns for NFV

5G mobile networks will be characterized by a variety of services imposing a diversity
of requirements1. To efficiently support this diversity, we need a change of paradigm in
the provisioning of Network Functions (NFs), moving from the traditional vision where
Physical Network Functions (PNFs) are tightly coupled with the hardware substrate
running them, to the new vision where Virtual Network Functions (VNFs) run over
instantiations of a general-purpose infrastructure. It is envisioned that this transition
will introduce a tremendous improvement in flexibility, adaptability and reconfigurability,
similar to the one that happened when transitioning from circuit-based to packet-based
networking.

By softwarizing the operation of the network, VNFs (e.g., schedulers, databases,
gateways) run as software components over a set of shared resources (antennas, links,
servers, etc.), and can be dynamically provisioned as needed. As illustrated in Figure 4.1,
a possible transition from the traditional vision to a fully softwarized network is
the “Softwarization of Elements.” That is, legacy PNFs are ported to a software
implementation running in virtual containers.

This approach indeed improves the flexibility of the network: these monolithic
programs run over shared computational resources, allowing, e.g., their re-instantiation
on-demand, the reduction of development cycles and easier reconfiguration in general.
Still, softwarization poses a number of challenges such as the efficient resource assignment
to VNFs. This problem has traditionally been investigated from the network management
perspective [35], but a very little effort has been done from the VNF design point of view.
As VNFs are not designed to run over shared resources (that is, with virtualization
in mind), there is the risk that any variation in these resources would cause service
disruption: this potential sensitivity of VNFs to e.g. resource shortages, updates
in the infrastructure, or container migrations, may preclude their wide use in future

1This has been repeatedly argued by now, in a number of position papers such as, e.g., [32], in SDOs
such as 3rd Generation Partnership Project (3GPP) [33], and in industry fora such as Next Generation
Mobile Networks Alliance (NGMN) [34]

21

22 Software patterns for NFV

PHY

eNodeB

eNodeB

S-GW S-GW

eNodeB S-GW P-GW

Edge clouds

MAC

PHY

Upper
RAN

S-GW P-GW

Network of Entities

Softwarization of elements

Softwarization of functions

Central cloud

Mobile
Devices

Figure 4.1: Different approaches to softwarization, from monolithic elements (top) to a
completely cloudified network (bottom).

networks. Furthermore, given the indivisibility of these pieces of software, the assignment
of programs to execution nodes (known as network embedding [36]) has been usually
performed with a relatively coarse level of granularity, which hinders an efficient use of
the resources.

A different approach to softwarization, which addresses this last issue, is depicted
in Figure 4.1 as “Softwarization of Functions”: monolithic VNFs are decomposed into
smaller functions that can be instantiated and chained as required. This approach
provides a finer granularity to the mobile network operation, allowing thus a better
flexibility and therefore a more efficient use of resources. This transition from a network
of elements to a network of functions further complicates network management, as the
minimum requirements (e.g., in terms of delay and bandwidth) on the function chaining
are increasingly heterogeneous. However, there is little when none research effort on
reducing and simplifying these requirements (especially in terms of delay) by modifying
the interactions between different functions.

As discussed above, softwarization has brought a notable amount of novelties that
have an unprecedented impact on the way network management has to be performed.
However, the current protocol stack and its composing blocks can be considered “legacies”
of the past: the way in which physical network functions are designed has not changed
much since early 3GPP Releases. Indeed, the network functions addressed by current
softwarization efforts — e.g., Serving Gateway (S-GW), Packet data network Gateway

4.1 Towards a cloud-aware mobile network protocol 23

(P-GW), or Radio Access Network (RAN) upper layers — have a practically direct
mapping with the ones defined in 3GPP Release 8 [37], which was published almost
ten years ago.

For these reasons, we need a change of paradigm in the design of the network functions,
to efficiently support all the novel features that network softwarization and cloudification
bring. In other words, the time is ripe for a new class of cloud-aware protocol stacks,
which embrace softwarization as the fundamental design criteria.

4.1. Towards a cloud-aware mobile network protocol

Recent trends in network softwarization have indeed considered the transition steps
described in Fig 4.1. However, although the landscape of software implementations
of networking stack has grown in the recent years on both OpenSource [14, 15] and
Commercial [38] sides, all of them (especially RAN) are, to the best of our knowledge, a
“standard” porting of the legacy functionality that allow its execution on general purpose
hardware. Engineers and researchers working on these projects have indeed cared about
the overall performance of the system, striving to reduce the resource usage footprint
(mostly in terms of CPU and memory). Still they did not make any further consideration
on improving the protocol stack to favor its execution as pure software. And while we
only consider above current RAN softwarization efforts coming from the open source
community or from small enterprise solutions, also the available products in the most
important network equipment vendors do not consider the opportunities we are discussing.

As a matter of fact, not considering a cloud-aware approach for the design of
VNFs has direct implications on the proper dimensioning of the cloud. Most of the
OpenSource solutions, for instance, require low latency kernels to correctly perform
baseband processing, and rely on resource over-provisioning to avoid timing constraint
violations that, in turn, result into frames dropped, poor user quality of experience, and
even disconnections. Over-provisioning may be effective when dealing with laboratory
deployments, but it results practically infeasible and extremely inefficient when real
scenarios come into play.

Our Vision

We propose to follow a new research line for the design of software mobile network
architectures that aims way beyond the existing strategies such as the functional splits
already proposed in different fora (e.g., by 3GPP [39] and the Small Cell Forum [40]). We
believe that making the protocol stack cloud-aware, as we will describe in Section 4.1.1,
requires significant changes to the existing functions or even the design of new ones.

We thus advocate for a complete re-design of the mobile network protocol stack with
the goal of achieving a cloud-aware protocol stack. We identify two possible research

24 Software patterns for NFV

lines that can follow this approach, detailing examples of how they can be applied in the
context of a cloudified network.

4.1.1. The quest for cloudification

The advantages brought by a cloud-driven VNFs design will fuel the research
community. In fact, while researchers have devoted so far just a little attention to solve
the problems involved by this approach, we believe that the relative maturity of current
software initiatives (and the recent increase in the pace of their updates) provides the
means for research in this area to bloom.

In this thesis, we argue that future, fully softwarized and cloudified mobile networks
will necessarily build on cloud-aware protocol stacks. We believe that both network
management and the resulting overall performance will benefit from making VNFs aware
of being executed in environments such as virtual machines or containers, running on
shared resources. In Chapter 9 and 10 we design, implement and experimentally evaluate
a cloud-native RAN solution. In this section, we discuss the main challenges to achieve
this vision, while in the next section we describe three implementations of functionality
that builds on this cloud-awareness, assessing how they will improve performance in a
softwarized network both qualitative and quantitatively.

This approach entails two main challenges, namely (i) redefining the interactions
between VNFs, relaxing as much as possible their temporal and logical connections, and
(ii) support an elastic operation, to efficiently cope with changing input loads while
running in an infrastructure of resources that is not over-provisioned. We detail the
functional requirements of these novel design strategies in what follows, before discussing
why they will also require the formal definition of novel Key Performance Indicators.

Given the high flexibility provided by the Network Function Virtualization (NFV)
approach, the deployment of such cloud-aware protocol stack does not have a direct
implication on the provided telecommunication service per se. The re-definition of the
interactions among VNFs allows for a more flexible service orchestration, while the re-
design of VNF internals may be easily provided by a code refactoring in a much faster way
than the current tightly coupled HW-SW PNF approach. While having a cloud-aware
protocol stack will benefit any kind of telecommunication service, this may be particularly
relevant for the extreme ones. For example, a mission critical VNF can be optimized to
reduce its memory footprint, while low latency services may exploit especially tailored
orchestration patterns involving edge computing facilities, as we describe in the following
section.

4.1 Towards a cloud-aware mobile network protocol 25

Re-thinking network interactions

Future network architectures will heavily rely on the flexible function decomposition
and allocation [41]. That is, the former monolithic PNFs are split into interconnected
modules that, concatenated, provide the same functionality: e.g., a physical Evolved
Node B (eNB) is split into Physical Layer (PHY), MAC, Radio Link Control (RLC) and
Packet Data Convergence Protocol (PDCP) software implementations running in different
execution containers, which can be located in different nodes of the cloudified network.

This approach (depicted in the bottom part of Figure 4.1) provides several advantages,
as it allows heterogeneous deployments for different services (i.e., massive machine
type communication, enhanced mobile broadband), which are tailored to their specific
requirements. For example, depending on the latency, bandwidth, and/or computational
requirements of the service, it may be better to locate certain VNFs towards the edge
of the cloud rather than in a central location. How to place VNFs across the cloud is a
network orchestration problem, which is constrained by the split into modules described
above. However, this typical NF decomposition for the RAN protocol stack was not
designed for its cloudification, and therefore the potential gains are limited. We next
discuss this issue in more detail.

One key assumption of network stack designs is that certain functions are implemented
in the same physical space (maybe on a different chip, but surely on the same hardware).
So, non-ideal links with non-negligible delays are a problem for physical network elements
that need to be decomposed into several network functions. Interfaces among them, thus,
were designed considering communication links spanning some microns of silicon, and not
several miles of fiber as in the case of, e.g., Cloud-RAN (C-RAN) [42].

In this way, the possible inter-dependencies between these functions are overlooked, as
the delivery of information between them is practically immediate. However, as we have
argued above, to fully benefit from a network-wide orchestration of a cloudified stack,
VNFs should support their execution on different nodes. But the design of traditional
protocol stacks do not support such flexible placement of VNFs, as those with heavy inter-
dependencies may introduce very high coordination overheads, or may not be even possible
due to infeasible network requirements. These limitations severely constrain network
orchestration, which compromises the overall gains obtained from the flexible function
allocation. This is flagrant for e.g., the introduction of centralized RAN functions, where
long delays in the information exchange between radio access points and the central cloud
result in serious performance deterioration.

Because of the above, the full protocol stack (and, in particular, the RAN) has to be
re-designed with the goal of leveraging the benefits of the flexible function decomposition
and allocation, so as to cope with non- ideal communication (i.e., non-zero and varying
delay, limited throughput) between the nodes in the cloud. Specifically, a cloud-aware
protocol stack should relax as much as possible, or even completely remove, the logical

26 Software patterns for NFV

𝑁𝐹𝐷

𝑁𝐹𝑐

𝑁𝐹𝐵

𝑁𝐹𝐴

𝑝𝑉𝑁𝐹𝐷

𝑝
𝑉
𝑁
𝐹 𝐶

𝑝𝑉𝑁𝐹𝐴

Traditional Stack Pipelined Stack

𝑝
𝑉
𝑁
𝐹 𝐵

Strict latency requirements
Loose latency requirements

Figure 4.2: The transition from a traditional to a pipelined network protocol stack. Same
subscript means that the same functionality is fulfilled.

and temporal dependencies between VNFs, to enable their parallel execution and provide
a higher flexibility in their placement. We refer to this approach as pipelined network
stack, which is illustrated in Figure 4.2 (right), showing its differences as compared to the
traditional stack (left): the challenge is to define new pipelined and virtual versions of
the traditional NFs (marked as pipelined VNF, pVNF).

4.1.2. Re-designing VNFs internals

One of the most immediate and appealing advantages of a cloudified network is the
possibility of reducing costs, by adapting and re-distributing resources following (and even
anticipating) temporal and spatial traffic variations. However, it is also likely that in
certain occasions the resource assignment across the cloud cannot cope with the existing
traffic due to some peaks of resource demands. This is particularly true for C-RAN
deployments, that have to deal with demand loads known to be highly variable [43]. In
this scenario, allocating resources based on peak requirements would be highly inefficient,
as this design jeopardizes multiplexing gains in particular when cloud resources may be
scarce (e.g., a “flash crowd” at an edge cloud): here any temporal shortage might result in
a system failure. VNFs, instead, shall efficiently use the resources they are assigned with.
Thus, they have to become elastic, i.e., adapt their operation when temporal changes in
the resources available occur, in the same way they have a long-established manner of
dealing with outages such e.g. channel errors. Therefore, to fully exploit the benefits of
softwarizing the network operation, the network function design has to take the potential
scarcity into account, and be prepared to react accordingly. This challenge is addressed

4.1 Towards a cloud-aware mobile network protocol 27

in Chapter 9 and 10, where we propose a cloud-native RAN design that effectively adapts
to temporal changes in cloud environments.

In the context of wireless communications, the concept of elasticity usually refers to
a graceful performance degradation when the spectrum becomes insufficient to serve all
users. However, in the framework of a cloudified operation of mobile networks that has
to deal with elasticity under resource shortages, we also need to consider other kinds
of resources that are native to the cloud environment such as computational, memory,
and storage assets available to the containers the VNFs are bound to. This has hardly
been a problem for traditional network functions, that were designed to run over a given
hardware substrate with exclusive access to the resources, and requires the definition of
novel interfaces that will provide the amount and type of available cloud resources at
a given point in time, just like, e.g., the accessible spectrum is a parameter for a RAN
function.

Elasticity has also been considered by non-VNFs cloud operators, but our concept
deviates very much from theirs: the time scales involved in RAN functions are significantly
more stringent than the ones required by e.g., a Big Data platform or a web server back-
end. Another key difference is that resources are way more scattered in our scenario (e.g.
they are distributed across the “edge clouds”), which reduces the possibility of damping
peaks by aggregating resources.

To better illustrate the benefits of elasticity in the cloudified mobile network operation
context, we first consider the notion of “computational outage” [44], i.e., the unavailability
of the required resources to perform the expected operation. In a traditional, non-elastic
operation, there is a 1-to-1 mapping between outages and performance loss, as Figure 4.3
illustrates: if the resources are not available 20% of the time, there is a 20% performance
degradation, as the function is unable to operate under any shortage. In contrast, an
elastic design supports what we refer hereafter as graceful performance degradation, which
causes that the VNF still functions under a resource shortage, this resulting in the “gains”
illustrated in the Figure. Making a protocol stack cloud-aware through elastic VNFs
requires hence a paradigm shift in their design, moving away from the tight hardware-
software co-design that we discussed before, to a flexible operation in which the amount
of available resources is an additional parameter.

To fully take advantage of elastic VNFs, a detailed analysis of their operation is
required: first, a thorough assessment of the resources consumed during execution,
including statistics about temporal variations over time; second, a characterization of the
correlations between VNFs operations, to serve as input for the orchestration algorithm,
so it could e.g. dynamically assign resources to resilient VNFs and quickly “rescue” them
when outages happen.2

2Indeed, the quest for cloudification will end up with novel orchestration algorithms.

28 Software patterns for NFV

0 25 50 75 100
Computational Outage probability [%]

0

25

50

75

100
Pe

rfo
rm

an
ce

D
eg

ra
da

tio
n

[%
]

Elastic Gains

M
in

im
um

Fo
ot

pr
in

t

Elastic Approach
Standard Approach

Figure 4.3: Performance degradation achieved by elastic computation: performance is not
degraded by the same relative amount as resources are reduced.

4.1.3. The need for performance indicators

Another consequence of a cloud-aware network stack is the need for a new framework to
(i) quantify its behavior, (ii) assess its design and (iii) serve as input for the orchestration
algorithm, which would decide where to place the VNFs depending on their elasticity. In
this section we discuss about how to evaluate the benefits of the two strategies proposed
above, especially focusing on the elastic VNF design, as it has more cross-fertilization
opportunities.

The cloud computing community has indeed long worked on the definition of elasticity,
this generally being defined as the ability to provision and de-provision resources to match
the demand at each time instant as closely and efficiently as possible [45, 46].3 Building
on this definition, it is possible to assess the degree of elasticity of e.g. a certain system,
quantifying thus its ability to match the demand. However, as discussed before, the
relatively coarse times scales of the traditional cloud operation prevents a direct mapping
to our vision, where VNFs operate on much shorter ones. In the following, we provide
some considerations on the required space of metrics to quantitatively characterize these
new VNFs.

In general, the resources supporting the execution of a VNF are a heterogeneous
set (e.g., Central Processing Unit (CPU), Random-access memory (RAM), spectrum,
transport bandwidth), thus care should be taken when measuring them or varying their

3Elasticity is a also related to resiliency, scalability, and efficiency, but with key differences: resiliency
is the ability to recover from failures or to adjust easily to them, but it does not deal with efficiency;
scalability is the ability to meet a larger load demand by adding a proportional amount of resources, but
it does not consider temporal aspects of how fast and how often scaling actions can be performed. Finally,
although a better elasticity should result in a higher efficiency, the opposite is not necessarily true.

4.2 The case for Serverless mobile networking 29

availability performing experiments, to perform fair comparisons. A VNF should be
characterized by its minimum footprint, defined as the minimum combination of resources
needed to provide any output. During its regular operation, the footprint is the set of
percentages of time the resources are occupied because of the execution of a function.

Under ideal circumstances, i.e., no shortage or variation of the resources available, a
cloud-aware VNF has to operate as reliably as a traditional network function. With this
being the benchmark, we can define reliability as the % of time that a VNF is providing
the expected output. However, while in the traditional approach this reliability referred
to the availability of a communication resource (e.g. “five nines reliability”), in our vision
there are more categories of resources that impact performance apart from congestion or
link degradation.

Arguably, the most distinct feature of an elastic VNF is how it relates the above two
points, i.e., the shape of the function that maps the available resources to the obtained
outputs. This degradation function characterizes the way in which performance degrades
as resources lack, and depending on its actual shape we could characterize different
quantitative behaviours: e.g., a graceful degradation might be defined by a % decrement
of resources causing the same or a smaller % of reduction in performance.

Additional aid in achieving resiliency can be obtained via orchestration mechanisms,
that horizontally (up/down) or vertically (in/out) scale the containers executing the
VNFs, but usually require a relatively long time scale to operate. For that reason, not all
VNFs could easily “be rescued” in cases of low resource availability. The rescuability of a
VNFs is hence its capability of overcoming an outage by providing a limited degradation,
until new resources are available.

4.2. The case for Serverless mobile networking

As discussed in the previous section, there is a wide consensus among the research
and industrial communities that future mobile networks will be software networks, due
to flexibility and cost reasons (in fact, some functionality such as the Evolved Packet
Core is already provided in specialized software running over general-purpose hardware).
However, we still lack the ability to match the network demand at any point in time, i.e.,
a technology that is i) re-configurable over very fast periods, and ii) very granular, to
reduce the cost of inaccuracies in the re-configurations in e.g. the access network [47].

A similar problem has already been tackled by the cloud computing community,
which has continuously provided faster and more scalable solutions over the last decade.
Additionally, these solutions have also made the system more flexible and open, enabling
the appearance of new business models. In what follows, we will provide a quick overview
of the evolution of cloud computing technologies and a review of the current status of
network functions softwarization.

30 Software patterns for NFV

Architecture

Re-Configuration
Re-Orchestration

Frequency

Orchestration
Complexity

Single Server
PNF

Years

Low

Multi-tier
VNF

Months

Moderate

Microservices
Highly Modular VNFs

100x times per day

Very High

VM / NFV Cloud

Native

Serverless

Continuous

Lambda

Extreme

A B C

Cloud computing

Mobile Networking

Figure 4.4: Major transitions in the adoption of softwarization.

Evolution of Cloud Computing

One major achievement in cloud computing took place in the early 2000s, with
the appearance of new virtualization solutions such as Xen, VMWare or Kernel-
Based Virtual Machine (KVM). With these technologies, that efficiently exploited the
novel virtualization extensions supported by the hardware, a new way of providing
services “conquered” the cloud computing environment. It consisted of a more modular
architecture that supported a higher re-configuration frequency but also required a higher
management complexity. This achievement is marked with an ‘A’ in Fig. 4.4, where we
illustrate the different transitions that we considered along three dimensions: architecture,
re-configuration frequency, and complexity. For this first transition, the figure illustrates
how the architecture evolved from monolithic functions to modular ones, supporting a
change of operational timescales from years to months, but also increased complexity in
the operation.

The second transition that we identify is marked with a ‘B’ in Fig. 4.4 and happened in
the early 2010s. It was caused by the arrival of the so-called microservices paradigm [48],
introduced by software architects to support a much finer granularity. This paradigm
supports, for instance, that a database server can be split into many tailored microservices,
each one fulfilling a specific functionality such as e.g., an account manager or the
data storage system. This transition is driven by the availability of new virtualization
technologies, such as Docker and LinuX Containers (LXC), which allow the deployment
and scaling of small virtual applications in a much more lightweight fashion, enabling also
new coding practices such as DevOps [48].

Finally, the last transition that we can identify is the one marked with a ‘C’ in Fig. 4.4,
namely, serverless architectures [49]. This recent paradigm, also known as Function as a
Service (FaaS), is an extremely liquid approach to scalability and resource usage. With
this approach, a tenant creates calls to functions, i.e., the minimum building block of
a software component, which are served by the infrastructure provider. In this way,

4.2 The case for Serverless mobile networking 31

the software component becomes both platform- and server-independent, as the different
functions of the same program could be served by different providers.

Evolution of Mobile Networking

There is currently a huge research effort on the softwarization of the mobile
network. Among other efforts, 5G mobile communications are working towards the
introduction of a fully softwarized architecture [50]. However, as compared to the
cloud evolution, the telecommunications world is still half-way in this transition, despite
the adoption of technologies such as Software Defined Networking (SDN) and Network
Function Virtualization (NFV) which have helped towards the “softwarization” of network
architectures, and the architectural trend towards their “modularization,” with a clean
separation between the control and the user planes. That is, the trend is to split, already at
the architectural level, the formerly monolithic nodes into several smaller logical entities.
Thus, the Next generation Node B (gNB) can be split into centralized and distributed
units, denoted as gNB-CU and gNB-DU, respectively [51], while core network components
grow both in number and in functionality.

As depicted in Fig. 4.4, the telco world is lagging in the adoption of novel software
paradigms. We are approx. at mark ‘B’ of cloud computing, with achievements such as:

The standardization of 3GPP Release 15 [52], which specifies the service based
architecture (SBA). This represents a new paradigm for the 5G Core Network
and is driven by the trend towards the modularization of the network. With this
approach, the formerly static interface between different elements has evolved into
a flexible bus, which hosts HTTP REST primitives between modules.

The concept of Cloud-Native Network Function (CNF), which is making its way
into the current technology. In fact, there are already proposals for the design
of cloud-native Virtual Network Functions (VNFs). However, they are in a very
early stage and mostly involve Core Network VNFs only. We believe that the
softwarization paradigm change shall involve all domains, including the most
challenging one such as the Radio Access Network (RAN) (as exemplified in
Section 4.2.2).

Despite these achievements, we are still in the middle of this transition as the cloud-
native paradigm has not been fully adopted into operational networks. This is caused
by the poor agility of the current state-of-the-art solutions, and the fact that current
VNFs are not truly agnostic to the underlying NFV infrastructure. While dynamic cloud
resources orchestration algorithms are currently under study [53], the VNFs that will be
running on such resources are still not optimized for this type of operation.

So even if the efforts towards the cloud-native transition of the NFV are still ongoing,
the research community shall prepare for the next transition. This will introduce a

32 Software patterns for NFV

Application

Core

Access

Terminal

Distributed Access

(u-plane)

Centralized Access

(c-plane)

PHY

Decoding

MAC

Flow

Control

Scheduler

decode_64_QAM()

decode_16_QAM()

decode_4_QAM()

decode_64_QAM()

decode_16_QAM()

decode_4_QAM()

decode_pusch()

encode_pdsch()

decode_prach()

Monolithic Modular Microservices Serverless

Figure 4.5: Mobile network architecture evolution.

complete re-design of the whole mobile protocol stack, which will certainly facilitate a
dynamic resource orchestration and assignment, allowing hence higher efficiency.

We then advocate for a mobile protocol stack that is (i) more efficient in terms of
both resource and time granularity scalability, and (ii) capable to elastically adapt to
the instantaneous demand. We claim that with such a protocol stack, the deployment
and operational costs of the network will be reduced to their minimum. Given that this
flexible and on-demand operation of the network closely resembles the current operation
of cloud computing platforms, it should also follow similar principles, hence the name
Serverless Mobile Architectures. We next formally introduce this concept and its potential
advantages.

4.2.1. Serverless Mobile Architectures

We start by describing what we mean by serverless mobile network architectures.
To this aim, we illustrate in Fig. 4.5 the evolution of the different architectures to
support a mobile service. Note that throughout this section, we use RAN functions as
examples, as they provide the most difficult scenario for serverless architecture given their
tight execution constraints. The leftmost subfigure depicts the traditional monolithic
paradigm (e.g., 4G networks), where functions are implemented in specialized pieces
of equipment. In this case, software and hardware are tightly coupled, and it is not
uncommon that different functions are indissolubility associated to the same piece of
equipment, e.g., the Serving Gateway (S-GW) and Packet data network Gateway (P-GW).

The next subfigure illustrates a modular network architecture, represented by the
Cloud-RAN (C-RAN) paradigm, where some control functionality traditionally associated
with the antenna (i.e., the scheduling algorithm) is re-located to a central server. This
change constitutes a shift from the monolithic approach, with some functions “freed”
from their traditional association to monolithic pieces of hardware. These functions are
now logically different pieces of software, whose execution can be placed in different parts
of the network. As discussed before, this approach is also tackled by the architectural

4.2 The case for Serverless mobile networking 33

work, with the definition of standard interfaces among well-defined elements (e.g., the F1
interface between the gNB-CU and gNB-CUs).

The microservices architecture pushes the modular paradigm further, by
decomposing the building blocks into sub-modules. Note that this is a logical division and
that the actual implementation of the architecture needs to accommodate e.g. specific
use-case requirements, this eventually resulting in fewer or more pieces of software.

For the case of the RAN, this results in the protocol stack now being logically divided
into physical layer processing, decoding, encoding, MAC, flow control, etc., each of them
running in an independent execution environment and connected through synchronization
APIs. This allows an easier scaling over a finer resource assignment strategy, which
eventually leads to better resource utilization. Furthermore, some very recent proposals
are pushing for microservice-based core network functions [54], showing that this increased
modularity in the VNF design is catching momentum.

Given that said, we advocate for a serverless mobile architecture composed by
atomic functions that can run independently on a cloud infrastructure. This independence
contrasts with the tight coupling across functions in the other architectures, with strict
timing considerations between modules. In a serverless approach, functions are dis-
aggregated from the main scheduling logic and executed in the most appropriate server
available. As Fig. 4.5 illustrates, for the case of User Plane Functions we envision, for
instance, that the decoding of different Modulation and Coding Scheme could be made
by different functions that could run in different executors, provided that some “loose
synchronization” is guaranteed.

4.2.1.1. Advantages

Introducing the serverless operation as explained above brings several advantages to
the network operation. Next, we build and extend the reasoning introduced in [49] to
motivate the advantages of serverless mobile networking.

No server management: in the serverless paradigm, the functionality carried out by
a VNF is broken into very fine execution environments (i.e., functions) that do not need
to directly undergo into the classic lifecycle management (instantiation, run-time and
decommissioning), but rather be scaled according to the real load and with a very fast pace
in a “message broker” fashion. By moving this complexity to the network orchestration,
this allows increasing the commodification of the network with a clear separation between
the infrastructure and the services orchestrated therein.

No idling: operators usually provision the network based on the peak load. This is
very inefficient at all network layers: at the access level, needless to say, but also at more
centralized levels in which VMs or containers may be underused or even idling in trough

34 Software patterns for NFV

Demand

Co
st Monolithic

VNF
Modular VNF
Serverless

1 Mbps

100 Mbps

200 Mbps

500 Mbps
1 Gbps

Load

0

50

100

CP
U

[%
]

Mean
5 to 95 percentile

0

50

100

Lo
ad

 [%
]

Figure 4.6: The liquid scalability (top) and an empirical evaluation (bottom)

loads. With the serverless paradigm, execution engines are spawned and operated just
when and where they are needed. This is key for minimizing resource wastage in the
network operation.

Liquid scalability: this is achieved by providing the highest modularization level. That
is, specific functions of a VNF can be scaled according to the real demand, avoiding the
scaling of the full VNF instead, and achieving the liquid scalability depicted in Figure 4.6
(top). We believe that this will be one of the fundamental pillars for the sustainable
operation of the next-generation networks. In [47], the authors quantified the cost in
terms of resource overhead of deploying and operating the infrastructure needed to support
multi-service networks. This study showed that the efficiency (i.e., the number of resources
used by a not multi-tenant network compared to a multi-tenant one) is very low, and just
with a very dynamic network reconfiguration (such as the ones envisioned here) it is
possible to improve these figures.

Figure 4.6 (bottom) depicts an empirical evaluation of the liquid scalability concept,
by evaluating the Central Processing Unit (CPU) footprint of a state-of-the-art VNF
(OpenVSwitch [55]), running inside a KVM Virtual Machine in Linux. This setup
summarizes the “VNF” approach sketched in the upper part of Figure 4.6 as it can be

4.2 The case for Serverless mobile networking 35

scaled on a VM-basis (new Virtual Machines (VMs) can be added or removed according
to the load), this being the only way of scaling up or down according to the load. We
can observe that this way of softwarizing clearly falls short when the objective is finer
scalability. We can observe that while growing the offered load (in our experiments we
span 4 orders of magnitude, from 100 Kbps to 1 Gbps) the resource footprint utilization
has a clear “on-off” behavior. Indeed, the CPU utilization shortly hits close to 100 %
utilization with offered loads that barely reach the 10% of the total. This means that
there is still a lot of room for improvement in the software design of VNF with respect to
IT resources consumption.

Pay-per-use network: although the pricing model behind the network slicing paradigm
is not clear yet, it is to be expected that, at least for the software part, it will follow a classic
approach in which tenants are charged on the number of CPUs, the amount of memory
and bandwidth used. With a serverless approach, instead, tenants can be charged on a
specific usage basis (i.e., number of times and duration of each function), allowing for a
richer pricing model.

Customization: current mobile network technology provides only limited customization.
For example, the currently envisioned resource models in 3GPP [56] target the Network
Slice as a Service (NSaaS) paradigm, which is the telecommunication counterpart of the
well-known Software as a Service (SaaS) paradigm employed in the cloud computing
world. Under this model, service providers (or tenants) are allowed to select from an
operator Network Slice portfolio one of the available templates (e.g., Enhanced Mobile
Broadband). However, this provides limited customizability to tenants: the network
provider still handles most of the management part.

4.2.2. Challenges to Address

To achieve the above advantages, the serverless paradigm needs to provide: (i) new
VNFs that allow for the wire speed execution VNFs while minimizing the number of
resources needed for their operation, (ii) a new environment for the execution of such
challenging VNFs, with minimal overhead, and (iii) a newManagement and Orchestration
framework that is capable to manage the rocketed complexity of the paradigm.

Challenge #1: New VNFs

The current way of implementing VNFs is still very bound to the traditional way
of implementing network functions. Current solutions do not embrace modularization:
many commercial products are softwarized but very bounded to the hardware platform,
while open source initiatives are practically mere translations of hardware functionality

36 Software patterns for NFV

ADC / DAC

RX

D
SP

W

o
rk

er
 #

0

D
SP

W

o
rk

er
 #

1

D
SP

W

o
rk

er
 #

N

MAC MUX / DEMUX

S1-U

L2
 –

L3
H

W
L1

ADC / DAC

RX

c-
p

la
n

e
w

o
rk

er

u
-p

la
n

e
W

o
rk

er
 #

0

u
-p

la
n

e
W

o
rk

er

#N

MAC MUX / DEMUX

R
LC

P
D

C
P

S1
-U

S1-U procedures

PDCP Procedures

RLC ProceduresRLC

PDCP

Figure 4.7: The simplified threading architecture of the srsLTE software (left) and a
possible serverless design of the software stack (right).

into software modules. To adopt the serverless approach, we need to change how VNFs are
designed. To illustrate our point, in the previous section we focus on the user plane part
of the RAN, but the same paradigm could be easily applied to other network functions.
Our motivation is that, as the radio functions are the most resource-consuming ones
(considering resources of all kinds: spectrum, transport network, and computational
resources [57]), we expect that the transition towards high modularity will be especially
beneficial for such functions.

We take as exemplary case study a well-known open source implementation of a 4G-
LTE RAN stack, namely, srsLTE [15].4 We illustrate on the left part of Fig. 4.7 its
threading architecture [58], which follows a classical layered architecture for a great
extent and has remarkable modularity, in particular considering that the software has
been designed for stand-alone operation. Still, the division is quite coarse, and there
are additional issues that would prevent the use of a serverless approach, e.g., the
physical layer does not distinguish between control and data channels, which are processed
sequentially.

In this way, while the srsLTE design is perfectly valid for the working conditions
initially considered by its developers, the architecture would benefit from a different design
such as the one suggested in the right-hand part of Fig. 4.7. Here, the control and data
plane processing are placed in different modules: while the control plane functionality on
the L1 is “fixed” and has to be performed independently of the load, the user plane could
be placed and executed in different threads (or even containers) to scale them according

4https://github.com/srsLTE/srsLTE

https://github.com/srsLTE/srsLTE

4.2 The case for Serverless mobile networking 37

μVNF
Function

(Tenant B)

μVNF
(Tenant
Shared)

μVNF
function

(Tenant A)

TCP/IP Protocol Stack

NIC NIC

eBPF eBPF

eBPF eBPF

eBPF

eBPF
KERNEL

eBPF fast path

Traditional path

Figure 4.8: eBPF-enhanced data path vs the traditional iptables-based approach.

to the load. Alternatively, the software can be modified to support intelligent resource
assignment schemes [58].

However, the current state of the art of networking (i.e., the Linux kernel) can
hardly support this approach, as it is heavily API-based and requires fast inter-process
communications. Moreover, current network functions (especially RAN functions) exhibit
two fundamental characteristics that make them different when compared to other cloud
computing applications: i) they impose very high load on the CPU (i.e., encoding and
decoding of wireless frames) and ii) they have very stringent timing requirements as
usually communication protocols are time-partitioned and need time synchronization.
While there are CPU intensive services running in the cloud (e.g., Netflix video
transcoding) these are not real-time. These timing constraints were barely a problem
in the (now old) Physical Network Function (PNF) paradigm, but it is a challenge to
address since the arrival of novel technologies such as C-RAN.

Making tasks aware of their execution time is usually not conceived as a problem in
general cloud computing systems, which barely have to provide near to real-time outputs.
The Linux kernel system provides tools to address this problem, but real-time software
usually runs in rugged embedded devices for industrial purposes (e.g. robotics) or in
dedicated data centers for fast pace trading in stock exchanges, not in the cloud. So,
VNFs shall be re-designed to also take advantage of e.g., the real-time kernel primitives
or used jointly with the elastic network function design as investigated in [57]. In Part II
we re-define multiple network services as well as in Part III, a complete re-design of the
RAN is performed to properly fit the ideas introduced in Sections 4.1.2 and 4.1.1.

38 Software patterns for NFV

Challenge #2: Scalable interconnections

One key requirement for novel deployments, given the trends of mobile data
consumption, is the ability to operate at wire speed. Being extremely fast on the data
plane has been one of the main goals of research in wireless communications. However, the
original virtualization platforms were not designed with this goal in mind. To address this
issue, the most common approach to achieve high performance has been kernel bypassing,
through technologies such as Data Plane Development Kit (DPDK) and Single Root I/O
Virtualization (SR-IOV). These solutions skip the traditional Linux kernel networking
stack based on iptables and enable a fast data path between the hardware and the
application logic residing in the user-space. However, while this approach indeed increases
the speed of the data processing, this hard link between the network card (i.e. the
hardware layer) and the user-space reverts this approach to the traditional monolithic
one, that leveraged on a tight hardware-software link. This hinders programmability as
all the data traffic is offloaded from the kernel to the user-space, creating a vendor-specific
link between hardware and software.

The above approach makes the management of the VNF very machine-dependent, so it
is only valid for scenarios with a relatively small number of VNFs. Furthermore, it also has
several drawbacks that make it difficult to integrate into a highly-dynamic scenario with
a much larger number of software components (for each tenant, slice, and service, there
might be multiple software functions). This would drastically increase the complexity
of this kernel bypassing approaches, eventually resulting in two hardware infrastructure
layers, namely, the kernel and the networking bypass, to manage the computing resources
and the network platform, respectively.

We propose instead to integrate the data path back into the kernel. To this aim, i.e.,
to avoid the limitations from building on iptables, we propose to extend the Linux kernel
networking stack with the adoption of enhanced Berkeley Packet Filter (eBPF) [59]. These
are pieces of code that can be dynamically injected into the kernel at run-time through
a programmable interface. This approach allows managing the VNFs running on top of
the kernel holistically, controlling all the aspects such as their CPU, memory, etc. in
a unified way. eBPFs fit with a lightweight container-based approach, enabling strong
security policies among them.

We illustrate our proposal in Fig. 4.8, where the bottleneck caused by the slow
iptables-based design of the TCP-IP stack is removed thanks to the use of eBPFs.
With these, a fast mesh of interconnected elements is created, providing an extremely
scalable network infrastructure within the same host. Moreover, as Berkeley Packet
Filters (BPFs) are (i) executed in native code (e.g., x64), (ii) if needed, placed close to the
Network Interface Card (NIC) to ensure fast reaction times, and (iii) programmed with
fast memory mapping to the VNFs, the highest possible speed is achieved, comparable
to DPDK according to recent studies [60].

4.3 Flexible re-orchestration of VNFs 39

Challenge #3: Precise orchestration algorithms

The serverless paradigm aims at the most efficient service provisioning, by accurately
adjusting the resources deployed at any point in time to the actual demand. To benefit
from this paradigm, it is essential to accurately estimate the demand required by a service
and to forecast its envisioned resource consumption, to boost the multiplexing gains. To
support this type of management, two main building blocks are required: (i) technical
solutions to support flexible and fast resource re-orchestration at the finest granularity,
and (ii) Big Data techniques that operate on historical data and anticipate future trends.
The former should be achieved with the first two challenges (i.e., the use of functions
instead of VMs and the integration of eBPFs into the kernel), while the latter requires
the design of new techniques, as we discuss next.

We propose to use data-driven techniques to accurately characterize the future demand
trends for a given service, this supporting a proactive and fine-grained orchestration
of the network. This proactive management contrasts the current state of the art of
resource orchestration, which is usually a reactive process based on load thresholds to
trigger the scaling of VMs, and typical prediction algorithms that operate on very coarse
and aggregated data. Moreover, the main goal of existing orchestration algorithms is
usually fault-tolerance or self-healing, and not a higher efficiency. An efficiency-driven
orchestration framework would provide an accurate forecast of demand, both in time
and across resources (e.g., antennae, edge data centers, core clouds), to enable efficient
provisioning of network services. Given the complexity of this type of operation, we believe
that such orchestration is only possible if empowered with deep learning solutions [61].

The orchestration would work as follows. By starting from the historical demand of a
given tenant/service, a deep learning architecture would provides the intelligent back-end
for the Management and Orchestration of the network. By employing a deep learning
technique, orchestration decisions are applied to the underlying NFV infrastructure that
is used to host the VNF. This approach is currently being investigated by ETSI ENI [62]
from the architectural point of view. In Section 4.3, we study the advantages of flexible
orchestration of VNFs, the challenges to be tackle and how the available solutions deal
with the identified challenges.

4.3. Flexible re-orchestration of VNFs

Network orchestration [63,64] can be defined as the coordination between the hardware
elements of a given deployment and the software modules running on top of them.
Current orchestration solutions only support a static and coarse-grained operation: once
instantiated, it is hard to modify the resources associated to a specific network slice (e.g.,
re-locate a Virtual Network Function (VNF) to the edge), or to support a fine-grained
re-configuration (e.g., scale-up just the flows belonging to a specific network slice). We

40 Software patterns for NFV

define a flexible network orchestration as the one supporting a dynamic and fine
grained operation. These characteristics would enable the so-called elastic orchestration
of network slices [65] which, in turn, would improve the resource utilisation in the network.

As defined above, a re-orchestration solution is flexible only if it is both dynamic and
fine-grained, features which are currently unavailable with existing orchestration solutions
(we discuss these solutions in Section 4.3.2).

Some of these advantages obtained with a dynamic re-orchestration are:

Adapting to user mobility. Low-latency services such as tactile or vehicular
communications require that VNFs affecting latency are as close as possible to the user,
to minimize the delay between these functions and the user. When a user moves to a
new location, VNFs should move as well to keep close to the user’s new location. This
requires the ability to relocate those functions without disrupting the ongoing service.

Service enhancements in run-time. Flexible re-location also gives the ability to re-
compose a service provided by a given slice, to add, substitute, remove, or relocate VNFs
in the chain. This enables introducing a variety of features during run-time operation,
such as, e.g., adding or relocating a firewall, or replacing a more efficient (but slower)
video encoder by a quicker but less efficient one to adapt to changes in the measured
delay while keeping quality of experience.

Improved de/scaling. Resource scaling refers to the ability to assign resources as
needed. While the traditional vertical and horizontal scaling could provide this feature
to some extent, the use of relocatable VNFs introduces an additional level of flexibility
without disrupting the service: when a VNF runs out of resources, it can be relocated
to a different location with more resources. When few functions are running in different
locations, this allows to relocate them in a single resource and deactivate the unused
nodes, saving resources by implementing infrastructure on-demand schemes [66].

Resilient operation. The ability to relocate VNFs in real-time enables novel methods
to provide resiliency. In case of service disruption due to, e.g., the congestion of a node,
or a hardware failure, it would be possible to relocate the required functions seamlessly
trigger their “activation”, thus providing resilience against impairments of various kinds.

4.3 Flexible re-orchestration of VNFs 41

4.3.1. Advantages of a fine-grained re-orchestration

The transition to a more modular and software-based architecture such as the one
in the 3GPP Release 15 [67] opens the door for a more precise resource management.
Also, the Application Programming Interface (API)-based control of the core network
function (the so-called service based architecture (SBA) architecture) allows for an easier
way of re-configuring functions, following the slice needs. Among the features that such
fine-grained re-orchestration capabilities would enable, we have:

Per-slice re-configuration. Network slices (or Sub Network Slices [68]) are the “least
common multiple” when it comes to service management. As VNFs can be shared among
slices [68], they should expose APIs that enable the per-slice configuration. Besides
the per-slice parameter re-configuration, the orchestration framework shall also support
operations such as join and split, i.e., grouping into the same virtual instance (a Virtual
Machine or a container) a group of VNFs belonging to different slices, and vice-versa.

Joint parameters and resource configuration. Modifying a parameter of a given
VNFs may have an impact on its resource footprint, and also on the one from other VNFs,
both from the network resources perspective (i.e., more or different frequency bands)
and the computational (i.e., more Central Processing Unit (CPU)). An orchestration
algorithm shall be able to assess the impact of a change of parameters on the underlying
infrastructure and act accordingly.

Access network re-configuration. While the core network functions already have
incorporated softwarization principles since the standardization, access network functions
are more “grounded” in a less flexible architecture, which is partly also due to their need
to comply with stringent timing requirements. Just very recently, industrial fora such as
Open RAN [69] started to advocate for a finer programmable management of the radio
access. Such concepts shall be incorporated in the orchestration framework.

4.3.2. State of the art solutions

Despite the advantages discussed above, the technology currently available does not
support a flexible re-orchestration of VNFs. In the following, we review the state of the
art, highlighting the most relevant initiatives and contributions.

General VNF placement and orchestration problems

There is a bulk of literature available on the problems of VNF placement and
orchestration, summarized by a number of surveys, e.g., [70–72]. In general, the different
proposals can be classified depending on various axes: (i) the variables to be optimized,

42 Software patterns for NFV

e.g., power, cost, latency; (ii) if the optimization is mono- or multi-objective; and
(iii) whether the matching of physical and virtual resources is carried out in an offline
manner (gathering inputs, requirements, etc.) or in an online manner, following, e.g., the
crossing of a threshold, or a periodic trigger. It should be noted, though, that even if
the approaches falling into this latter category are referred to as “dynamic” in [71], these
solutions are not tested in scenarios considering quick variations over time (see e.g. [73]).

In fact, despite this remarkable amount of previous work, actually few proposals deal
with the implementation of such algorithms on real Virtual Infrastructure Managers
(VIMs), with the use of real-life traces being among the most common approaches for
the performance evaluation. Furthermore, for those proposals performing a real-life
evaluation, they typically rely on existing orchestration technologies that, as discussed
in the next section, lack both the dynamism and granularity required for what we refer
to as a flexible re-orchestation (i.e., dynamic and fine-grained).

Genaral-purpose orchestration technologies

Existing Network Function Virtualization (NFV) Management and Network
Orchestration (MANO) software solutions such as, e.g., Open Source MANO (OSM)
[74] or the Open Networking Automation Platform (ONAP) [75], are continuously
evolving solutions used in many fields to manage the VNF lifecycle (design, configuration,
termination, etc.). Their interactions with the underlying infrastructure (to instantiate,
connect, and terminate virtual resources) are done through a VIMs, a software element
that abstracts the complexity of the cloud. To enable the discussed advantages of a
flexible orchestration of network slices, this VIM has to support (i) flexible relocation of
virtual resources, and (ii) their fine-grained re-configuration.

On the one hand, a fine-grained orchestration is tough: state-of-the-art orchestration
platforms only allow to re-configure very basic parameters such as the IP address of the
VNF, while other fine-grained parameters (such as the ones described in the Information
Model [76]) are left to the implementation of each VNF.

On the other hand, VNF re-location technologies are also lacking in terms of
dynamism. Although existing VIMs can relocate a Virtual Machine (VM) from one
compute node to another, this operation has notable limitations:

They especially target limited parts of a VM such as its memory. These
techniques use an iterative process [77] that starts from the memory pages that
were the least frequently accessed, keep updating them until the ones that are the
most used are moved. While relocating memory, usually a significant part of the
VM has to be kept in a fixed location (e.g., a NAS hosting the disks). As a result,
the relocation capability is limited.

4.3 Flexible re-orchestration of VNFs 43

Virtualization Layer

Virtual environment

VNF

Context

Execution

Virtualization Layer

Virtual environment

VNF

Context

Execution

Old Infrastructure New Infrastructure

VNF Relocation

Figure 4.9: Full VNF relocation

The relocation of a VM is limited within the boundaries of a single datacenter
of a single VIM. These limitations are acceptable for cloud computing environments,
which typically focus on very high reliability and therefore VMs are only relocated
in case of, e.g., disk failures or programmed maintenance, but are inadequate for
dynamic scenarios such as the use cases discussed above, involving the movement
of VNFs across the network to reduce latency or to improve efficiency across
datacenters. As a matter of fact, the topic of migration over WAN links (which
is a relevant scenario for networking purposes, e.g., migration to edge cloud) is
currently overlooked by the bulk of available literature, as also confirmed by the
authors of [78]. Among the more than 200 works reviewed there, just a handful deal
with migration over long distances and none of them provide experimental results.

As discussed, state of the art orchestration platforms provide some methods to relocate
VMs. For instance, OpenStack provides live-migration tools [79]; however, their use
precludes fast VNF re-location. Their operation is sketched in Figure 4.9: the full Virtual
Machine has to be copied to the targeted destination. This includes common data such
as the guest kernel, libraries, and the file system structure [77]. Furthermore, as these
techniques are very expensive in terms of exchanged data, they are only available between
the same NFV infrastructure point of presence (i.e., the infrastructure controlled by the
same VIM instance), excluding thus the migration among VIMs.

Moreover, commercial products such as VMWare implement sophisticated techniques
that can perform live migrations in very short times, by incrementally copying the memory
of running virtual instances. However, these methods require very high bandwidth and a
very short latency between the endpoints, as well as a shared disk image. The technical
report from VMWare [80] declares migration times in the order of tenths of seconds over

44 Software patterns for NFV

a 10 Gbps Ethernet connection. All these requirements preclude their use in our target
scenario, which should support re-locations between endpoints relatively “far away” (e.g.,
different datacenters). Similar techniques are also employed in the context of containers,
e.g., Voyager [81]. Besides being substantially lighter than a VM, this technique however
still has to copy all the memory and the disk used by the container, making it unsuitable
for far re-locations.

Similar considerations apply for other virtualization platforms that are particularly
optimized for the VNF migration. For instance, unikernels can perform live migration
within few milliseconds [82], but they are currently not part of any large scale NFV
infrastructure deployment and therefore they are not integrated into commonly used
MANO platforms such as ONAP or OSM. Because of this, they lack the required
infrastructure management capabilities, and therefore they are unsuited accommodate
basic features such as i.e., re-orchestration triggers in a seamless way.

Ad hoc solutions

Enabling flexible re-orchestration in softwarized network deployment received
attention by the research community in the last few years. The work most closely
related to ours is SENATUS [83], a framework that internally leverages on state of the
art VIMs; because of this, this framework yields to very poor performance, in particular
in challenging (i.e., very dynamic) scenarios, as we quantify in Section 7.3.

Finally, if we consider more targeted solutions that also specifically include the access
network, the available material is even less. The most remarkable solution is Orion [20],
which allows for a per-slice re-configuration of radio resources but the software is not
freely available.

5 Summary Part I

In this part, we have introduced 4th and 5th generation of mobile networks with their
main features and building blocks. Then, we moved to the key enablers that provide
the required flexibility to 5G network infrastructures. Network Function Virtualization
(NFV) is a network architecture concept that uses virtualization mechanisms to decouple
network functions from dedicated hardware components. Then, we talked about network
slicing, which defines a network architecture that enables the ability of running multiple
logical virtual networks on the same physical infrastructure, keeping characteristics such
as isolation. Lastly Software Defined Networking (SDN), which propose a network
architecture approach where management and flexibility are improved by splitting control
and data plane.

Next, we have identified the cloudification and softwarization trends that mobile
networks will follow during their evolution, clearly identifying a parallelism between
cloud and mobile networks evolution. Moreover, we have proposed the serverless mobile
architectures, where we propose going one step further on networks cloudification by
composing a mobile architecture with atomic functions that can run independently on a
cloud infrastructure, removing the tight coupling in other architectures.

We have identified mainly three challenges: (i) Softwarization of network functions;
(ii) the need for flexible orchestration; and (iii) cloud-aware virtual Radio Access Network
(RAN). In Part II we will go through softwarization of network functions and flexible
orchestration, going one step forward to solve this challenge. Then, in Part III, we will
face the design of a cloudified RAN, going again one step further in the resolution of this
challenge.

45

Part II

Bringing Network Slicing to
softwarized mobile networks

47

48

6 Design and Implementation

Given the current network softwarization trends (see Chapter 2), the benefits of
network slicing and cloud-aware architectures are clear, and there is a wide consensus
among the industrial and standardization communities on the need to adopt this
technologies. However, we lack of experimental validations on its effectiveness e.g., on the
gains when using different orchestration mechanisms, or under different traffic scenarios
or different virtualization infrastructures.

While there are implementations for some of the enables such as network slicing, to the
best of our knowledge, there is no open source solution that comprises neither end-to-end
network slicing nor cloud-native architectural approach. More specifically, virtualization is
a mature technology that has been extensively used for wired elements, with technologies
such as e.g. OpenStack and Kubernetes for virtual machine and containers management,
respectively. However, the situation is less mature for the wireless access part, being
Orion [20] among the few proposals to implement slicing at the Radio Access Network
(RAN) that have been tested in practice, without any alternative when talking about
cloud-native Radio Access Network (RAN) approaches.

In the following sections, we fill this gap with the design, implementation and
experimental evaluation of an end-to-end network slicing solution together with a complete
framework to provide flexible orchestration, following the path towards a cloud-aware
mobile protocol stack (see Section 4.1)

6.1. POSENS, a Practical Open Source Solution for end-
to-end Network Slicing

The architectural design of network slicing has been widely studied in the literature
and standardisation institutions. These works precisely expose how network slicing must
be implemented to effectively provide the benefits it was thought for. In the literature,
there are mainly three architectural options that have been proposed for RAN Network

49

50 Design and Implementation

Common Air Interface

Common Baseband
Processing

RLC

PDCP

RLC

PDCP

RRC RRC

NAS NAS

Slice 1 Slice 2
Core

RAN

MUX

MAC

RLC

PDCP

MAC

RLC

PDCP

RRC RRC

NAS NAS

Slice 1 Slice 2

Option 3Option 2

MUX
Common eNB

RRC RRC

NAS NAS

Slice 1 Slice 2

Option 1

MUX

Resource Isolation

Sharing efficiency

Figure 6.1: Different RAN slicing options.

slicing. These options are presented in order of “increasing depth” in Fig. 6.1, where the
deeper the slicing (the “MUX” block represents this depth), the less functions are shared
by different tenants.

The leftmost option (“Option 1”) is the so-called slice-aware shared RAN, which
basically consists in sharing the complete RAN, and then each tenant is responsible for its
Core Network (CN). With this option, the same User Equipment (UE) can use different
slices, and therefore connect to different CNs. This solution, which can be considered as
the “basic” solution to support network slicing, provides relatively little isolation across
tenants, but also leads to the highest potential gains in terms of efficiency. This solution
can be related with some current proposals such as 3rd Generation Partnership Project
(3GPP) Long Term Evolution (LTE) Enhanced Dedicated Core Network (eDECOR) [84],
introduced to support the instantiation of dedicated CNs. However, eDECOR requires
introducing changes to the CN and new signalling messages for the connection setup
(something that , as we will explain in the following sections, POSENS does not). We also
remark that 3GPP RAN3 Working Group [85] is considering a functional split performed
at this level. This approach nicely fits with the shared RAN slicing option, in which
multiple network slices are handled by a centralized unit.

While with this option the RAN is shared to a large extent by different slices, the core
instances are completely independent among tenants, allowing per-tenant configuration,
orchestration and (cloud) resource assignment.

6.1 POSENS, a Practical Open Source Solution for end-to-end Network
Slicing 51

The central option in the figure (“Option 2”) is the slice-specific Radio Bearer
configuration. With this option, the slicing goes deeper in the network stack, and basically
only cell-specific functionality are shared, i.e., the Physical Layer (PHY) and Medium
Access Control Layer (MAC) layers in the user plane, and the Radio Resource Control
(RRC) in the control plane. This configuration increases the resource isolation between
tenants, at the price of a higher complexity at the MAC layer (for instance, to fully exploit
this resource isolation, slice-aware scheduling algorithms are required).

Finally, the last option (“Option 3”) is the so-called slice-specific RAN. In
this case, only the air interface is shared among network slices, while all the other
functionality is instantiated specifically for each tenant. This configuration provides the
maximum degree of freedom, given that each network slice can be customized down to
the physical layer. However, this option also requires a tight synchronization between
the multi-tenancy policies implemented by a common part, and the per-slice (dedicated)
implementation.

This option could be particularly useful in scenarios where different radio access
technologies coexist within the same shared spectrum, e.g., 4G and 5G. Since it may be
very challenging to dynamically reallocate spectrum resources at a fine time granularity,
this option may potentially harm resource utilization and limit the potential multiplexing
gains.

The above options can be regarded as a “roadmap” to enable a fully configurable
protocol stack to support any network slicing option, where each option presents a
different trade-off between efficiency, isolation and complexity. For the first release of
POSENS, we decided to implement “Option 1,” which can bring the maximum efficiency
gains and provides end-to-end slicing, in this way providing researchers with a tool to
experiment with different algorithms and mechanisms. Although options 2 and 3 provide
a higher degree of isolation between slices, “Option 1” already enables key features without
requiring the complexity of more advanced RAN schema.1

More specifically, this option readily supports experimentation on fundamental
research items in 5G, such as (i) per-tenant Service Function Chain (SFC) creation and
management, as the network slices flows go through chains that contains instantiations of
different Virtual Network Functions (VNFs), or (ii) per-tenant orchestration, as different
tenants can implement their own Management and Network Orchestration (MANO) using
their preferred software on their cloud, enforcing thus service specific management and
orchestration policies regardless of other tenants’ ones.

1While Options 2 and 3 require very tight synchronization among slices, this is not an issue for Option
1 since it employs a conventional RAN stack that already provides the required synchronization.

52 Design and Implementation

6.1.1. Design of POSENS

After studying the available state of the art alternatives (Section 3), we now dive into
the design decisions and details towards the proposed network slicing solution. POSENS

provides an implementation of all the modules needed for an end-to-end network slicing-
aware mobile network. This includes elements belonging to all the realms of a mobile
network (UE, RAN and CN), plus an orchestration framework. Still, the most important
enabler of an end-to-end network slicing setup is RAN slicing.

In the following, we describe the design of our solution to support RAN slicing. This
solution consists on introducing a number of changes and new modules to the srsLTE
UE and Evolved Node B (eNB) implementations. The resulting software architecture,
for the case of two slices, is illustrated in Fig. 6.2, where each slice is depicted with a
different color (we consider the case of two slices for simplicity, but the software can be
easily extended to support more slices). We will also assume for simplicity that each slice
is associated with a different tenant.

As previously discussed, we decided to implement in our first release of POSENS

the “Option 1” for RAN slicing, where slices are multiplexed and demultiplexed at
the Packet Data Convergence Protocol (PDCP) layer. This option has the additional
advantage of requiring less changes in the eNB software implementation, which is the main
cause of instabilities in a Software Defined-Radio (SDR)-based testbeds. The cornerstones
of the solution are the “slice coalescer” modules, located at the PDCP layer and above.
These modules forwarding the control and data layer information for each slice over the
common communication channel. Another key feature of our implementation is that
each slice at the UE has its own RRC module, and does not require any additional
functionality inside the CN. Conversely, at the eNB there is only one RRC module,
as with its default behaviour is capable of managing multiple Non-access stratum (NAS)
from various users simultaneously. In what follows, we provide a more detailed description
of the enhancements required by our solution, by describing the behaviour of the UE and
the eNB.

User Equipment

The UE plays a fundamental role in the network slice selection procedure. As depicted
in Fig. 6.2, one slice performs a full radio configuration of all the RAN layers (including
PHY and MAC), while the other one relies on the RRC configuration parameters set by
the first slice and prepares the PDCP entities and the Radio Link Control (RLC) channel
managers (Acknowledged mode for the u-plane and Transparent mode for signaling
messages).

Once the UE has been powered on, the (unmodified) PHY performs the usual cell
search (following the configuration provided within the Master Information Block (MIB),

6.1 POSENS, a Practical Open Source Solution for end-to-end Network
Slicing 53

PHY

MAC

RLC

PDCPRR
C

MUX

SRB DRB

Slice Coalescer

N
A

S

US
IM

DATA

N
A

S

US
IM

DATA

RR
C

S1AP S1AP
GTPU

RRC
Slice Coalescer

GTPU

Slice 1
Slice 2

u-plane
c-plane

Shared
Slice-enabling functions

PHY

MAC

RLC

PDCP

MUX

SRB

Slice Coalescer

DRBDRBDRB

U
E

eN
B

Figure 6.2: Design of POSENS: changes introduced at the UE and the eNodeB.

System Information Block Type 0 (SIB0), System Information Block Type 1 (SIB1) and
System Information Block Type 2 (SIB2) messages) and synchronization. Then, the
RRC module corresponding to the first slice sets up the initial connection with the eNB
by performing the Random-Access procedure (RA) to get an initial Uplink (UL) grant,
i.e., a valid configuration for PDCP, RLC, MAC and PHY. This configuration is shared
across slices, and therefore subsequent RRC modules (corresponding to other slices) will
not request it. This motivates that the RRCConnectionSetup message that arrives during
the RA process has to be stored within the PDCP module, for subsequent slices to be
able to establish their session with the CN.

Following the initial UL grant, the NAS protocol of the first slice establishes a session
with the CN, generating a RRCConnectionSetupComplete message nesting the initial
NAS messages in the same packet. The selection of different slices happens in a sequential
fashion, after the first slice RRC has configured the wireless link, the subsequent slices are
configured using the reception of a RRCConnectionSetupComplete as triggering event.

That is, upon a RRCConnectionSetupComplete the PDCP sends to the next slice
a previously stored RRCConnectionSetup message, containing the details of the RRC
channel. This, in turn, triggers the NAS authentication procedure in the new slice. Each
time a slice finishes its NAS configuration, the RRC calls a slice_configured function
within the PDCP, including the (slice_id, IP address) tuple of the slice, which will
support the proper forwarding of information within the module (this is only needed for
receiving information).

Besides coordinating the c-plane, the slice coalescer in the UE also has to multiplex
and demultiplex the u-plane. This is achieved by exploiting the data multiplexer available
at the MAC for the UL:

This function demultiplexes the data coming from the lower layers and forwards to
the appropriate slice instance at the PDCP on a per-destination IP prefix basis.

54 Design and Implementation

eNodeB

The changes in the eNB are the counterpart of the ones introduced in the UE. That is,
the slice coalescer handles the multiplexing and demultiplexing of the c- and u-plane. The
multi-slice updates in the eNB are less elaborated than the ones in the UE, as the eNB
is already capable of handling parallel authentications coming from different UEs. We
remark that multiple authentications coming from the same multi-slice UE (such as the
one described in Section 6.1.1) can be considered as atomic operations, as they happen
sequentially.

This simplifies the required enhancements at the eNB, as there are no concurrent
NAS procedures for the same UE running simultaneously, and therefore each one can
use the same inner data structure available at the RRC. In this way, we use a flag to
mark the slice under configuration, which enables forwarding the control traffic to the
corresponding CN via the appropriate S1 Application Protocol (S1AP) interface.

Like with the UE implementation, the u-plane multiplexing happens in the PDCP,
following an IP-prefix matching approach, i.e., data traffic is forwarded to the right CN
by considering the source address of IP packets.

Core and MANO

The main enabler of our slicing solution is the RAN slicing. Therefore, to allow an
easier experimentation with unmodified software solutions, we did not tackle CN VNFs,
leveraging on a vanilla implementation such as the one provided in the OpenAirInterface
suite. Similar considerations hold for the MANO part: one of our objectives is to allow
the open experimentation of MANO algorithms on top of the POSENS stack.

The MANO of VNFs, a fundamental part of the future 5G Networks, is being
standardized by the 3GPP SA5 and will leverage on the already consolidated elements of
the ETSI Network Function Virtualization (NFV) MANO architecture [86]. We include
in POSENS a baseline implementation of this MANO functionality, which builds on top
of a open source Virtual Infrastructure Manager (VIM) (OpenStack), and provides a
per-slice orchestration (which is the functional role played by the VNF Manager and
the NFV Orchestrator in the ETSI architecture) through an ad-hoc Java software. This
implementation leverages directly on the Nova and Neutron Application Programming
Interfaces (APIs) to provide a lightweight version of the VNFM-Vi and Or-Vi reference
points defined by ETSI.

6.2 Experimenting with open source tools to deploy a multi-service and
multi-slice mobile network 55

6.2. Experimenting with open source tools to deploy a
multi-service and multi-slice mobile network

As we exposed at the beginning of this chapter, while network slicing has been
acknowledged as a key technology to efficiently support services with very diverse
requirements [16], there are few open solutions implementing it and, consequently, little
experimental “hands on” reports on the use of this technology in practice.

In this section, we contribute to filling this gap by reporting on the development and
validation of a multi-slice 5G network prototype, each slice serving a different application,
and by showcasing several features such as the reallocation of virtual network features or
the use of Local Breakout (LB) to minimize delays [87]. We describe the hardware used,
the software installed, and how the different building blocks are connected, providing
in this way researchers and practitioners with a “how to” guide while reporting on our
experiences and best practices for prototyping. We believe our results provide valuable
information to boost the development of further 5G prototype initiatives.

6.2.1. Novel services considered

The deployed network provides two services over two network slices, with a focus
on aspects like QoS/QoE-aware control, Network Function Virtualizations (NFVs) and
orchestration. The motivation is to feature two different network slices on the cloud
infrastructure: one with a reduced latency service and another one with a mobile
broadband service. We show how an ETSI NFV Management and Network Orchestration
(MANO) platform can be used to deploy, manage and orchestrate different services
on different network slices, this including the dynamic re-orchestration of a particular
Network Service (NS) forwarding graph, and the placement of certain Virtual Network
Functions (VNFs) in the appropriate host. In both cases, QoS/QoE aspects trigger the
re-orchestration function. The software produced for this work is partially based on [4]
and it is mostly available on GitHub 2 3.

The two network slices are: (i) a Reduced Latency slice (i.e., Ultra-Reliable Low
Latency Communications (URLLC)), used to read real-time physical measurements
triggered by Quick Response (QR) labels, and (ii) an Enhanced Mobile Broadband
(eMBB) slice, which serves contextual captions to streaming media, according to the
user profile and surrounding context. Both slices are deployed on the same Evolved Node
B (eNB) and share the same spectrum. For the Core Network (CN) part, each tenant (i.e.,
a service) runs its own instance of the protocol stack (i.e., mobility management, gateways
and the upper layers), performing the QoE/QoS policies needed by each scenario. 4

2https://github.com/wnlUc3m
3https://github.com/bsnet
4Although we deploy a multi-tenancy case where each service belongs to a different tenant, other

https://github.com/wnlUc3m
https://github.com/bsnet

56 Design and Implementation

Service 1: Video Streaming through the eMBB slice

The first service is hosted by an eMBB slice that has been designed to provide a service
consisting of enriching a video streaming signal with context-based add-ons (e.g., subtitles
or other graphical elements) depending on the user preferences (i.e., color, language),
other conditions (e.g., hearing impairments) and surroundings (e.g., ambient noise). These
profiles or environmental conditions can be understood here as QoS/QoE influence factors:
a final user, for instance, can generate a trigger to explicitly request the service according
to its preferences; or certain QoS metrics could automatically activate the service without
an explicit user request.

The additional video features are activated by means of MANO procedures that
dynamically add the necessary VNFs to the forwarding graph without interrupting the
video streaming. Besides the possible real-life applications of this service, our goal is to
demonstrate three different orchestration-related functionalities:
(i) On-boarding of the network service itself, i.e., the deployment of the necessary
VNFs driven by service descriptors where the operational layout and requirements are
defined; (ii) Dynamic update of the NS Forwarding Graph (FG) depending on
QoS/QoE measurements (QoS/QoE-awareness); (iii) Placement of VNFs to specific
compute nodes, to simulate the placement of Network Functions (NFs) in the edge or
core cloud depending on the service requirements.

Service 2: Augmented Reality through an URLLC slice

The Reduced Latency use case consists of an Android application that performs
Augmented Reality (AR) using QR codes. In a real environment, those codes may be
distributed in an industrial area close to the equipment where measurements of interest
are obtained (e.g., pipes flow or pressure, electric measurements, tank levels, etc.). On
each QR code decoding, the mobile terminal requests the corresponding information that
it displays to the user on top of the captured image.

To keep delays between the User Equipment (UE) and the information server low, the
latter shall be located close to the user, e.g. in the same element hosting the eNB, or in an
edge cloud. To this end we deploy within this application a local breakout component that
can route selected traffic directly towards an edge cloud. With this feature, information
flows are processed locally and incur into smaller delays.

multi-tenancy scenarios can be supported with our solution.

6.2 Experimenting with open source tools to deploy a multi-service and
multi-slice mobile network 57

6.2.2. Access Network

The mobile network architecture employed in our deployment relies on a well-known
open-source software implementations of the LTE Stack: srsLTE [15] an open source
implementation of a UE and the eNB. In the following Sections we describe how we
extended the software architecture to support the two key features of our solution,
namely, (i) support for multi-slice in the radio part, providing isolation and resource
differentiation across services, and (ii) support for local breakout, which enables a more
efficient implementation of latency-critical services.

While the functions in the Core Network run as VNFs (as we will describe below),
the network functions for the radio part run as Physical Network Functions (PNFs).
That is, the cloudification of RAN function is currently a very hot research topic [88].
Still, the porting to real systems of real cloud RAN software is in its early stages. Our
implementation of the slice-aware RAN is based on srsLTE [15],

Although it is a full software implementation of a 3GPP Radio Access Network (RAN)
suite, also srsLTE has a limited integration in the state of the art virtualization technologies
such as Virtual Machines and Containers. Similar considerations apply for the other major
open source RAN platform: OAI [22].

The srsLTE suite used for this implementation defines different classes for the different
tasks that have to be fulfilled in the RAN: (i) a common library that performs the
encoding/decoding operations, up to the MAC; (ii) the Radio Link Control (RLC), Radio
Resource Control (RRC) and the Packet Data Convergence Protocol (PDCP) layers; and
(iii) specific modules for the UE (the UE module for the data plane of the UE) and the
eNB (S1 Application Protocol (S1AP), that manages the connectivity for the core control
plane, and Gateway (GW) for the GW connectivity).

We provide two alternative approaches for the RAN slicing solutions. The first option
is POSENS (see Section 6.1), an end-to-end network slicing solution based on srsLTE
described in Section 6.2.2.1. Then, we provide an alternative solution based on traffic
differentiation described in Section 6.2.2.2.

6.2.2.1. RAN slicing implementation

To cover the network slicing RAN requirement for our prototype, one of the
alternatives is the usage of POSENS (see Section 6.1). POSENS implements the so-called
“Slice-aware shared RAN” scheme as it is defined in [16] and represented in Figure 6.1
(Option 1), which basically covers the requirements for this mobile network prototype.

Summarising, POSENS modifies the higher layers of the network protocol stack (i.e.,
PDCP and RRC) on both the eNB and UE. Namely, POSENS provides per slice
differentiation for common c-plane and u-plane procedures as follows: for the c-plane,
it allows two registrations against two different Non-access stratum (NAS) instances, so

58 Design and Implementation

it duplicates (i.e. an instance for each slice) the UE module and the RRC layer, which
triggered two NAS connectivity requests. On the other hand, it multiplexes and de-
multiplexes at PDCP module, according to the final destination address of the traffic.
That is, by triggering two NAS registration procedures, the UE obtains two valid IP
addresses from each slice Serving Gateway (S-GW) and creates two virtual network "TUN"
interfaces (one per slice). Therefore, the UE can connect to two different slices at the
same time.

A sketch of the proposed implementation is depicted in Figure 6.2. The network
slicing enabling modules, marked in green, provide the (de)multiplexing functionality
described above, discriminating the traffic (both control and user plane) belonging to
each slice between the slice specific modules (among them the NAS, which is part of
the core functionality explained in Section 6.2.4) and the shared ones. This allows for a
differentiation of different flows in the core part, while keeping the radio shared, enabling
enhanced orchestration capabilities such as the one described in Section 6.2.5.

6.2.2.2. An alternative implementation for RAN slicing

Differentiating traffic at the MAC layer is a problem that has received a broad
attention in the literature in the past [89]. However, the introduction of network slicing
into Medium Access Control Layer (MAC) schedulers requires modifications that go
beyond the metrics that are usually controlled by state of the art solutions such as the
delay budget or the minimum throughput.

As already discussed by [20], network slicing aware solutions need also to take into
account other factors such as the amount of resources allotted to each slice, which are
usually not considered.

In order to differentiate the resources given to each slice, for simplicity we decided
to introduce modifications to the Scheduler that is in charge of assigning resources to
the different UEs attached (in the following, we assume that different UE are assigned to
different slices). Our motivation is to demonstrate the feasibility of a slice-aware scheduler,
by enforcing different resource assignment to tenants according to, e.g., some pre-defined
requirements (the means to convey these requirements are out of our scope). For instance,
if on a 5G radio access point two tenants are assigned with concurrent slices, but one has
more stringent requirements than the other, it shall be granted a larger share of resources
to fulfil them.

The scheduler is in charge of the allocation for shared time-frequency resources among
users at every time instant. In srsLTE, this module is located in the eNB part and
assigns Uplink (UL) and Downlink (DL) resources according to the scheduling policy.
Thus, it determines to which user the shared resources (time and frequencies) for each
Transmission Time Interval (TTI) (in our case, 1 ms) should be allocated for reception
of Downlink Shared Channel (DL-SCH) transmissions (We refer the reader to [15] for a

6.2 Experimenting with open source tools to deploy a multi-service and
multi-slice mobile network 59

thorough description of the srsLTE platform)
By default, srsLTE implements a Round Robin scheduler: commonly used in LTE

networks, UEs are given resources sequentially. When all the UE have been assigned with
Resource Block (RB) at least once, it starts over. In this way, this scheduling results very
simple and does not take into account e.g. the Channel Quality Indicator (CQI) reported
by UEs. While this has some disadvantages in terms of spectral efficiency (as UEs with
instantaneous poor channel conditions are scheduled), it is easy to be implemented and
provides good fairness in the terms of RBs allocation.

We decided to modify the Round Robin scheduler to implement a weighted Round
Robin, where the assignment is performed by weighting the time slot assignment following
the priority assigned to each slice. For this purpose, we define a vector of weights W =
[w1, w2, . . . , wn], where wi represents the relative weight of slice i among the n slices served
by the RAN.

For instance, W = [1, 1, 1] means that the system is serving n = 3 slices with equal
weight, while W = [2, 1] represents a system with n = 2 slices, with the first one obtaining
twice the resources than the second.

If we let l = ∑n
1 wi and Ŵ be an array that holds the cumulative sum of W, we

assign RBs in the following way. Being ti the incremental TTI number we compute t as
its modulo base l. Finally the scheduled slice i is i = arg mini ŵi − t. In this way we
assure that upon every cycle of l TTIs, we assign resources to slices according to their
relative weight W. In Section 7.2 we evaluate the behaviour of the proposed solution.

6.2.3. Local breakout

Enforcing network slicing at the RAN level (as discussed in Section 6.2.2) allows
to implement different per-slice data traffic management policies as early as the traffic
flows leaves the Radio. This is of particular importance when the considered slices have
stringent latency requirements and their data flows shall be handled at the edge. One
promising solution to this problem is Local Breakout (LB).

The local breakout functionality could be deployed in different manners: for
instance by directly modifying the network configuration to support different Packet Data
Networks (PDNs) on the UE. However, deploying it as an independent VNF results a
more flexible solution, for at least two reasons: (i) it can be maintained and upgraded
separately, and (ii) it would work (in principle) with any eNB, as it does not require any
NF-specific Application Programming Interface (API). This point makes the life-cycle
management of the LB software much easier, allowing to deploy it on demand and at
run-time. We next present the main characteristics of our LB implementation.

60 Design and Implementation

Uplink Downlink

UE1

UE2

USRP
MME HSS

S/P-GW

Compute
Node #1

Compute
Node #2

Controller
NodeInternet

LB

Δ𝑇𝑎𝑖𝑟 Δ𝑇𝑡𝑢𝑛
Δ𝑇𝐿𝐵

GTP Tunnels

eNB

IF

Figure 6.3: General scenario showing a legacy GTP tunnel (top, red dotted/solid lines)
and a GTP with LB (bottom blue line). The LB introduces additional interface IF for
routing traffic locally.

GTP-tunnel and LB

Differently than in a Wireless Local Area Network, traffic generated by mobile users
is not routed at the device that terminates the air interface: it is, in fact, delivered
inside a GPRS Tunneling Protocol (GTP) tunnel to the remote Gateway controlled by
the user’s service provider (S-GW/Packet data network Gateway (P-GW) for Long Term
Evolution (LTE), User Plane Function (UPF) for 5G) where it starts its journey to the
destination (top tunnel in red/solid line in Figure 6.3). Return traffic is first received by
the gateway that tunnels it to the specific eNB at which the destination UE is connected.
This method facilitates accounting for roaming users but introduces inefficiencies at the
routing level.

To avoid these issues, a LB device can be set up to intercept GTP packets earlier
(bottom tunnel in blue/solid line). We report in the following the LB architecture focusing
on the mechanisms for transparently intercepting and conveniently routing selected traffic
locally.

6.2.3.1. LB implementation

As shown in Figure 6.3, the LB node has to (i) inspect tunneled packets to extract
those matching specific rules and forward them through the new interface IF;
and (ii) push packets received from IF into the tunnel.

As uplink users’ packets are embedded in User Datagram Protocol (UDP) datagrams,
the LB can easily access both the fixed length GTP header and the original IP packet.
The GTP header is 8 byte long and contains the Tunnel endpoint identifier (TEID),

6.2 Experimenting with open source tools to deploy a multi-service and
multi-slice mobile network 61

TEID UL S1AP ID……

TEID DL S1AP ID……

DL S1 packet

UL S1 packet

TEID UL TEID DL
Bearer IP
Address

S1AP ID

TEID Table

#1

#2

#3

Matching
S1AP ID

TEID UL ……

UL GTP packet

IP SRC IP DST …

GTP Header IP Packet

Matching
TEID UL

Figure 6.4: TEID table maintained by the LB threads: it associates TEID numbers to
the IP address of each UE. It is used for crafting GTP tunnel return packets.

a 32-bit value that identifies the bearer to which the inner IP packet is addressed and
that is generated by the eNB/Mobility Management Entity (MME) when the UE node
connects to the network (or when it requests a new service). We implemented the tasks
for intercepting and pushing packets into the tunnel and for determining the TEID values
as three main threads that refer to a common TEID table for storing/fetching TEID
values:

S1 sniffer thread. When a UE requests a new service, the eNB and the MME exchange
a couple of S1 packets that carry new TEID values: one in downlink with the TEID
decided by the MME; followed by one in uplink carrying the TEID chosen by the eNB.
The knowledge of the latter is fundamental to the LB for pushing downlink packets
received from the IF interface into the tunnel. We show in Figure 6.4 how the S1 thread
correlates the two S1 packets by using the common S1AP-ID field to create a new row
in the TEID table with the corresponding TEID values. Because of the complexity in
dissecting S1 traffic, the S1 thread forks a tshark process and uses a pipe for receiving
the TEID data from it. It is worth noting that at this stage the IP address of the UE is
not yet known: it will be discovered by the Uplink thread as we explain next.

Uplink thread. To inspect all GTP packets going to the S-GW/P-GW, the Uplink
thread installs a rule in the netfilter framework of the LB kernel that matches UDP
packets addressed to the remote gateway. Setting NFQUEUE 5 as target allows the
Uplink thread to receive all packets and decide which must be stopped, stripped by their
GTP header and injected through interface IF.

When a UE bearer transmits an uplink data packet for the first time, the thread adds

5https://www.netfilter.org/projects/libnetfilter_queue

https://www.netfilter.org/projects/libnetfilter_queue

62 Design and Implementation

UPF

AMF SMFAUSF UDM

NG RAN

UE
N3

N2N1

N4

Access Core

c-plane
u-plane

Figure 6.5: Sketched view of the 5G Core, as in [10]

the source IP address found in the packet inside the TEID table: to this end, it looks up
the corresponding row by searching the TEID UL value extracted from the GTP packet,
as shown at the bottom of Figure 6.4.

Downlink thread. This thread receives packets from the IF interface and pushes them
into the GTP tunnel. It first uses the destination IP address of the packet to look up
in the TEID table the value of the TEID DL field: it then crafts a new GTP packet by
copying the TEID DL value in the header and concatenating the IP packet in the GTP
payload. If no TEID DL value is found, the thread simply drops the packet.

6.2.4. Core Network

The transition towards 5G and the application of new concepts of network
softwarization has pushed the standardization efforts towards a cleaner designed of the
core network with respect to the 4G/LTE. More specifically (since Rel. 14, the last 4G
one), the main CN modules implement a split between the control plane and the user
plane, distinguishing between the Network Function devoted to c-plane functionality and
the one that handles u-plane.

Therefore, in our implementation, we decided to leverage on this new design paradigm,
to provide an implementation of some selected functionality of the 5G Core, which follows
the c-/u-plane split discussed above. Some of the code has been adapted from existing
open source projects, while other components which were not available as open source
have been implemented from scratch. Also this part is publicly available in our repository.

We next describe the baseline 5G Core architecture that we have developed that
includes: (i) the interface towards a multi-slice capable access network (both in the UE
and eNB, such as the one described in Section 6.2.2), to support end-to-end network
slicing, (ii) a modularized implementation of the CN, as mandated by recent 3GPP
standards, and (iii) their interfaces towards the MANO framework.

Although there are a number of initiatives providing CN functionality (e.g., the ones

6.2 Experimenting with open source tools to deploy a multi-service and
multi-slice mobile network 63

included in OAI and srsLTE, or NextEpc6), in our testbed we implemented most of our
solutions from scratch, to take full advantage of the novel architecture designed by 3GPP,
including the following features: (i) a clean control/user plane split and, (ii) a service
based architecture (SBA) for the c-plane function. Specifically, we have implemented all
the CN modules illustrated in Figure 6.5, including the c-plane interfaces for the SBA
(which are mandated by 3GPP).

The implementation of the SBA allows for a consumer / producer communication
that enables the modularization of the core network functions. The implementation of
the Access Management Function (AMF), Authentication Server Function (AUSF) and
User Data Management (UDM) functions is done in Python 3 and inspired by the highly-
modular design of srsLTE, as detailed next.

User Plane Function (UPF)

This function provides the encapsulation, decapsulation, and forwarding to the
Packet Data Network. Its context consists on the current rules applied to
encapsulate/decapsulate packets and to forward them. This function has already been
built to enable the standard OpenFlow protocol to deliver the c-plane rules (i.e., the
context) to the function, which simplifies the implementation of the context extraction
and installation primitives, as they are very similar to the existing OpenFlow primitives.
We have implemented the UPF module building on the Open Source, OpenFlow-capable
Lagopus switch.7

Session Management Function - SMF

This c-plane function controls and configures the UPF instances on the u-plane
through the N4 interface. Thus, the context here also consists of the rules to
encapsulate/decapsulate/forward packets, in this case for all the UPF functions controlled
by the Session Management Function (SMF). For the implementation of this module, we
leverage available SDN-capable implementations, enriching them with mobile network
functionality, and employing a Ryu Controller8 to implement the N4 interface between the
UPF and the SMF. One key feature of our implementation is that the context information
is stored in a separated object, thus facilitating its extraction and installation.

Other Core functions

In our testbed we also implemented other Core network functions that implement
some selected functionality for our setup. In order to provide the basic authentication

6http://nextepc.org/
7http://www.lagopus.org
8https://ryu-sdn.org/

http://nextepc.org/
http://www.lagopus.org
https://ryu-sdn.org/

64 Design and Implementation

Host

Common

UI

MON

SO

N2VC

VCA

RO

VIM Emulator

One Click
Installer

DevOps

Jenkins

Account
Manager Launchpad OSM ClientVNF Package

Generator
VNF/NS Catalog

Composer

User Interface

Service Orchestrator
API Service and Management Endpoint

Service Orchestration Engine
Configuration Data Store

Network Service Composition Engine
Catalog Manager

Resource Orchestration Plugin

Network Service to
VNF Communication

(N2VC)

Resource Orchestrator
Resource

Orchestration
Engine

API Service and
Utilities

OpenStack

Amazon AWS

OpenVIM

VMware vCD

VIM plugin
OpenDaylight

ONOS

Floodlight

SDN plugin

VNF Monitoring

VCA Engine
(Juju Adapter)

VNF Configuration
and Abstraction

OpenStack
(Aodh/Gnocchi)

AWS
CloudWatch

Vmware
vRealise

Monitoring plugin

Core

Monitoring

O
SM

 D
at

a
M

od
el

(IM
)

Design Time Component Run Time Component

Figure 6.6: The OSM architecture (Adapted from [11])

functions we developed a tailored Python prototype of the AUSF, which retrieves user
information from the UDM modules that holds all the basic user information such as the
private keys or the IMEI.

While the two modules above mostly deals with the authentication procedures, we
also had to implement a lightweight version of the AMF which deals with the selection
of the radio access from the core perspective. While this functionality is needed for the
overall behaviour of the network, in our scenario is trivially linking the srsLTE software
with the core modules to provide connectivity.

6.2.5. Management and Orchestration

The MANO Engine

In order to implement the features envisioned by the testbed architecture described
above, we rely on an orchestration architecture based on the Open Source MANO (OSM)
orchestrator and the OpenStack Virtual Infrastructure Manager (VIM). OSM is one of
the leading solutions for the implementation of a fully-fledged mobile network orchestrator
that includes several components for the automatic Life Cycle Management (LCM). Still,
to provide the enhanced functionality needed, substantial changes to the OSM code and
architecture are provided.

Figure 6.6 shows the OSM architecture, which is composed by several modules that
performing the different functionality needed by an orchestration solution. Next, we
describe the additional modules that are required for supporting the specific features

6.2 Experimenting with open source tools to deploy a multi-service and
multi-slice mobile network 65

CSMF

NSMF

NSSMF

NFVO

EM

VIM

NFVI

VNFS
PNF

3GPP

ETSI

ENI

VIM

VNFM

Os-Ma

Ve-vnfm-em

Ve-vnfm-vnf

Nf-Vi

Vi-vnfm Or-Vi

Or-Vnfm

Figure 6.7: The relations between our implemented architecture and the ETSI - 3GPP
domains

needed for our purposes:

Resource Orchestrator: This module provides the hooks towards different VIMs
supported by OSM. In the context of the testbed, we use OpenStack as the main
VIM, to manage the local Network Function Virtualisation Infrastructure (NFVI)
deployment. However, we could leverage also on other APIs: the Amazon AWS
EC2 one, to demonstrate the feasibility of a large-scale deployment over public
clouds and the Kubernetes one, to possibly include container-based VNFs.

Network Service to VNF communications: We extend this API (that is used
to configure the VNFs in a chain) to allow more specific configurations (such as the
ones needed by the radio ones, that are PNFs) and support the VNF relocation.

Orchestration module: the specific algorithms that trigger the network function
relocation or the local breakout reside on top of the Service Orchestration module,
to use the API specifically designed for that purpose.

ETSI NFV compliancy

The diagram represented in Figure 6.7 shows the framework of the testbed based on
the well-known ETSI NFV [90] and 3GPP MANO architectures [91] that are also building
our one. We populated the specific modules of the architecture with our algorithms, as
specified next.

The onboarding functionality encompasses all the baseline operation available in a
5G MANO system. The automatic onboarding of the two network slices is a seamless

66 Design and Implementation

Listing 1 Network Slice Descriptor snippet.
vld:
Networks for the VNFs
- id: management

name: management
short-name: management
type: ELAN
mgmt-network: "true"
vim-network-name: public
vnfd-connection-point-ref:

Specify the constituent VNFs
member-vnf-index-ref -
entry from constituent vnf
vnfd-id-ref - VNFD id
NGINX
- vnfd-id-ref: cirros_vnfd_sl1

member-vnf-index-ref: "1"
vnfd-connection-point-ref: vnf-mgmt1
ip-address: 192.168.200.185
245_UPPER_LAYERS

- vnfd-id-ref: cirros_vnfd_sl1
member-vnf-index-ref: "1"
vnfd-connection-point-ref: vnf-mgmt2
ip-address: 192.168.200.186
245_UPF

- vnfd-id-ref: cirros_vnfd_sl1
member-vnf-index-ref: "1"
vnfd-connection-point-ref: vnf-mgmt3
ip-address: 192.168.200.187

Figure 6.8: NS Descriptor snippet.

operation that allows (i) verticals to define the requirements associated with each slice
(in this case, high bandwidth for the eMBB and very low latency for the URLLC) and
(ii) the deployment of the VNF in the cloud to fulfil the set of requirements. This part
has specific elements of novelties for the blueprinting. Specifically, we implemented it by
using the YAML file descriptors that are used for the definition of VNFs in OSM. More
specifically, two kinds of descriptors have to be created: one for the virtual networks (i.e.,
the virtual links that span one or more Virtual Machine (VM) and connect VNFs among
them) called Network Slice Descriptor (NSD), see Figure 6.8) and one for the virtual
appliances that run on top of them, called Virtual Network Function Descriptor (VNFD),
see Figure 6.9).

6.2 Experimenting with open source tools to deploy a multi-service and
multi-slice mobile network 67

Listing 2 VNF Descriptor snippet.
- id: upf

name: upf
description: UPF
count: 1
Flavour of the VM to be instantiated for the VDU
vm-flavor:

vcpu-count: 1
memory-mb: 512
storage-gb: 5

Image including the full path
image: "ubuntu"
interface:

Specify the external interfaces
There can be multiple interfaces defined
- name: eth0-mgmt3

type: EXTERNAL
virtual-interface:

type: VIRTIO
external-connection-point-ref: vnf-mgmt3
position: 1

- name: eth1-in10_0_0_3
type: EXTERNAL
virtual-interface:

type: VIRTIO
external-connection-point-ref: in10_0_0_3
position: 2

Figure 6.9: VNF Descriptor snippet.

6.2.6. Functions beyond 3GPP

The network functions described in Section 6.2.4 provide eventually IP connectivity
towards the so-called PDN that is attached to the UPF. However, in order to provide novel
5G services (such as the ones described in Section 6.2.1), additional functions besides the
3GPP ones shall be instantiated and orchestrated by a MANO framework. For instance,
an eMBB slice may need a Content Distribution Network to be deployed or an URLLC
slice may need to leverage on Mobile Edge Computing capabilities.

Enriched video service

Specifically, the main feature of the eMBB network slice deployed in this work is
to provide a service that may add context-based add-ons on a live video streaming
signal, depending on the user profile, preferences, and certain environmental conditions.
These parameters are defined here as QoS/QoE influence factors, and serve as VNFs

68 Design and Implementation

Caption Server
Captions

DB

Sign Language
Video Server

Videos
DB

MANO

Streaming
Server

Users
DB

Video Mixer
(Snowmix)

GStreamer

Video Client

Main Videos
Server

Main Videos
Store

In
st

an
ti

at
io

n
 C

o
m

m
an

d
s

GStreamer

GStreamer

Re-orchestration
response (OK/KO)

Re-orchestration
request

QoS/QoE Trigger or User Request

Add-on video

Captions

1

2

3 4

5
UE
(laptop, TV, …)

Add-ons Server
Main Video Stream

A

B

C E

D

F

G

G

H

Controller
Node

Compute
Node A

Compute Node B

Compute
Node A

Compute
Node A

Figure 6.10: The Orchestration architecture

re-orchestration triggers.
The add-ons can be subtitles, generated depending on the subscriber preferences

(language, colour, size, position, etc.) or other support videos, with the sign language
translation (e.g., for people with a hearing impairment). These add-ons could be explicitly
requested by the user at any time during the video playback or triggered by environmental
conditions (e.g., excessive ambient noise), so a good synchronization between add-ons and
the main video signal is a must.

The MANO architecture and the orchestrated network functions to provide this service
are depicted in Figure 6.10. In the Figure, the red arrows labelled from 1 to 5 show the
initial interactions, where the user request the playback of a certain video from a client
(yellow box on the right). This is just a regular video service providing the requested video
to the user, where the Streaming Server block (bottom left) is acting just as a proxy for
the Main Videos Server (where the video files are actually stored). The video stream pass
through the Video Mixer block (orange box), which although it does not mix the video
with any other content, it helps to prevent disruptions when add-ons are inserted.

When add-ons are requested by the user (green arrows, labelled from A to H), the
Streaming Server communicates with the MANO block, which instantiates the Add-ons
Server (green box). This server is split into two internal blocks: the Sign Language Videos
Server (which is used to provide the sign language videos) and the Captions Server (for
providing subtitles). Once the appropriate Add-on Server is instantiated, the MANO
informs the Streaming Server block, which sends control commands towards the Add-ons
Server (dashed line). The selected add-on (video and/or subtitle) is injected into the
Video Mixer block which delivers the mixed video signal to the final user.

6.2 Experimenting with open source tools to deploy a multi-service and
multi-slice mobile network 69

The Video Mixer block is implemented using Snowmix, an open-Source and very-
flexible command line tool for dynamically mixing live audio and video feeds which
supports overlaying video, images, texts and graphic elements as well as mixing audio [92].
All these components have been embedded in a special-purpose VNF, deployed on one
of the compute nodes. The Add-ons Server is split in two VNFs, corresponding to the
two blocks in the Figure, i.e., the Captions Server and the Sign Language Videos Server.
Each VNF contains a database with the necessary caption and video files, and a service
running over TomCat [93]. The service exposes a Representational state transfer (REST)
API used by the Streaming Server block to execute the necessary control commands once
the VNF instances are up and running. The Caption Server communicates with the Video
Mixer block using a Snowmix-specific protocol which makes it possible to specify where
and how the add-ons are placed within the video. The Sign Language Videos Server uses
ffmpeg [94] to stream the add-on videos into the mixer.

The Main Videos Server is also an independent VNF, running over the same compute
node as previously mentioned. It contains a database with all the possible videos the final
user could access. The Streaming Server is an independent VNF which performs three
primary functions:

1. It works as a server for the end user. Specifically, it embeds an Hypertext Transfer
Protocol (HTTP) server to what the final user can access (using a general purpose
web browser) to request the video playbacks and the available add-ons.

2. It decodes the user’s HTTP requests, implementing the logic to trigger the
instantiation of the necessary add-on server (through a request to the MANO) and
sending the necessary control commands to these instances, and also, to the Main
Videos Server.

3. It maintains a good synchronization between the main video stream and the add-
ons. Add-ons can be requested at any time by the final user, so they must appear
properly synchronized with the main video and with a minor delay.

The MANO block (purple box in Figure 6.10) represents our implementation
of the MANO framework. Although not explicitly represented in Figure 6.10, it
also communicates with the underlying ETSI NFVI MANO components (i.e., NFV
Orchestrator (NFVO), Virtual Network Function Manager (VNFM) and VIM, embedded
in the OSM platform) to orchestrate and manage the virtual resources. This process is
executed on the Controller Node. Finally, regarding the End-User equipment (yellow box
in the Figure), it consist of two different elements, namely, the video player and a web
browser with a Graphical User Interface (GUI). The former is based on the ffplay video
player [94], while the later is developed for the end-user to control the service.

70 Design and Implementation

Latency-triggered re-orchestration

Both network slices are orchestrated with all their VNFs (namely the higher layers
of the RAN stack, the eNB) instantiated and running in the central cloud. The MANO
system continuously collects data about the network parameters of the virtual network
(i.e. latency, throughput, available and used radio resources). This is especially important
for the URLLC slice, which may have very stringent requirements on the E2E latency
between the UE and the server running in the cloud. For this reason, the delay is
constantly monitored to avoid operational glitches caused by a sudden delay increase due
to external factors, such as additional congestion in the radio and transport, or internal
ones, like a high number of UEs connected to the server. In these cases, the orchestration
framework triggers (i) a relocation of the NFs and Virtual Reality (VR) application to
the edge cloud, to benefit from the reduced latency or (ii) the offloading of some selected
flows through Local Breakout.

6.3. ACHO: A framework for flexible re-orchestration of
virtual network functions

Based on the analysis of the state of the art orchestration solutions (Section 4.3.2), we
conclude that there is no practical open source tool for flexible orchestration of Virtual
Network Functions (VNFs) in a mobile network architecture. This motivated the design
and implementation of Adaptive slice re-Configuration using Hierarchical Orchestration
(ACHO), a framework that provides the following novelties as compared vs. the state of
the art:

Firstly, ACHO targets mobile networking, a more heterogeneous scenario with very
diverse network functions with very different requirements (e.g., access network vs.
core network functions).

ACHO provides a clear methodology to adapt existing VNFs, which follows the
recent architectural trends of 5G networking, and is aligned with the ongoing
standardization efforts.

ACHO specifies two novel interfaces to support and dynamic and fine-grained
orchestration, which can be easily implemented with existing off-the-shelf
orchestrators.

ACHO also provides a fully-featured implementation of 5G VNFs and orchestration
elements, which can be easily downloaded, customized, and tested with off-the-shelf
hardware.

6.3 ACHO: A framework for flexible re-orchestration of virtual network
functions 71

Finally, we discuss different implementation strategies, also aligned with existing
standardization efforts, to maximize the practicality of ACHO.

6.3.1. ACHO: A suite for flexible 5G networking

We next present ACHO (Adaptive slice re-Configuration using Hierarchical
Orchestration), a software framework consisting of an implementation of 5G Functionality
(the most critical 3GPP Rel. 15 Core Network Functions, depicted in Fig. 6.5 and
marked with SBA in Fig. 6.14), the radio access network functions and the Management
and Network Orchestration (MANO) modules to handle them. ACHO provides a full
network-slicing aware solution that includes all the MANO modules to enable a flexible
re-orchestration of the mobile network. Some of the network components of ACHO have
been adapted from existing open source projects (e.g., srsLTE), while other components
that were not available as open source have been implemented from scratch. As a result,
the software codebase provided by ACHO is very complete and has no match in the
landscape of the open source mobile networking initiatives.

6.3.2. Re-configuration of VNFs, a context-based approach

As discussed in Section 4.3.2, a plethora of orchestration algorithms rely on
dynamically migrating a VNF on the fly. However, very few of them deal with the
actual implementation of the migration mechanism, with the work of [83] being among
the notable exceptions, but providing very poor performance. This motivates the design
of the ACHO framework.

The key enabler of ACHO is a clean split between the context of a network function
and its execution engine, which we refer to as the Context/Execution (c/e) split. The
context is defined by the current values of all the variables employed by the function,
while the engine is the part responsible for the actual execution of the function. In this
way, when relocating a network function, it is sufficient to move to the new location just
the context, which contains the “state” of the function. Therefore, we can instantiate
a new function engine in the new location and feed it with the data corresponding to
the context extracted from the previous location. The proposed strategy is depicted in
Fig. 6.11 and it can be compared with Fig 4.9, where a full VNF relocation is performed.

By moving the context of a VNF only, we reduce the amount of information that
has to be moved to the bare minimum, without incurring into large penalties as done by
VNF unaware solutions [77]. For instance, the tests performed in [95] show how the total
amount of data transferred is almost a linear function of the Virtual Machine (VM) size.

The idea of splitting the context of a function from its execution engine has also
been proposed by some works in the literature, most notably OpenNF [96] and Split
Merge [97]. These papers propose the fast relocation of VNFs by moving the least

72 Design and Implementation

Virtualization Layer

Virtual environment

VNF

Context

Execution

Virtualization Layer

Virtual environment

VNF

Context

Execution

Old Infrastructure New Infrastructure

Context Relocation

Figure 6.11: the context relocation performed with ACHO

amount of information between different virtualization environments. While these cases
are relatively similar to ours, these solutions lack two key features that preclude their
use in mobile networks: (i) the considered VNFs do not constitute part of the “3GPP
ecosystem,” and (ii) they lack an interface with a modern orchestrator, which is required
to enable must-have features of mobile networks e.g., network slicing.

A similar idea is also currently included in the 3GPP specification [98], to relocate
the information related to a specific User Equipment (UE) between different instances
of a network function, in particular for load balancing purposes or to keep providing
connectivity when a specific function is decommissioned. Still, this procedure is available
for the core functions only.

Next, we introduce the meaning of "context" inside the Network Function Virualization
paradigm and discuss in detail how the proposed VNF migration can take place.

6.3.2.1. The VNF context

As discussed above, by introducing the c/e split, ACHO trades flexibility (i.e., the
orchestration framework needs to know what kind of VNFs are running), with the
compactness of the exchanged data, which is the bare minimum data representing the
internal state of a VNF. The context is specific to each VNF but it is independent of the
execution environment: for instance, we implemented ACHO for a VM-based deployment,
but it can work with containers or unikernels. A context may comprise the specific
rules of a firewall, or the information of the authenticated UE for an Authentication
Server Function (AUSF). To support this, network functions need to be re-implemented
to enable a clear separation between the context and the engine, a re-implementation
that is specific to each function. Furthermore, these re-implemented VNF have to

6.3 ACHO: A framework for flexible re-orchestration of virtual network
functions 73

expose this new capability, which could be achieved by e.g. extending the Network
Exposure Function (NEF) to support c/e split through an Application Programming
Interface (API).

An example of the context extracted from the Session Management Function (SMF)
Network Function is depicted in Fig. 6.12. Given that the SMF is in charge of handling the
end user session, routing them from the base station to the User Plane Function (UPF),
the context of this function includes all the required information to re-install the relocated
flow into the new VNF. Fig. 6.12 provides a JSON representation of the context, but
binary formats such as e.g. Google PBF could also be used. The context does not
contain information about the resources utilized in the underlying infrastructure (i.e.,
number of Central Processing Units (CPUs), amount of RAM) that are left to the
MANO framework by using the standard technologies (e.g., the Virtual Network Function
Descriptors (VNFDs)). A full description of the implementation of such relocatable
functions is provided in Section 6.3.5.

Thus, according to operator-defined re-orchestration triggers (which can be computed
from QoS metrics), the MANO pulls the context from the source VNF and injects it
in the destination VNF (details on the specific interfaces are provided in Section 6.3.4).
Hence, in the SMF case discussed here, all the information related to the Next generation
Node B (gNB) and Gateway, including the tunnel id for each user is moved to the new
location. Hence, the target VNF can immediately start serving the UE traffic from the
new location.

Analogously, we depict in Fig. 6.13 the context used in our implementation of the MAC
scheduler, which can perform re-orchestration based on per-slice. We use it to enforce
isolation across UEs belonging to different slices, changing the Resource Blocks (RBs)
allocation according to the number of served slices. This allows for a very granular per-
slice (hence partial) re-orchestration, as all the parameters handled by ACHO are related
to specific slice instances, as we also show with our proof of concept results in Section 7.3.

Hence, along with the re-implementation of these functions, we also need the means
to transfer of the context from one location to another, i.e., instantiate the engine in
the new location, feed it with the context, and update the corresponding communication
paths. ACHO provides an open-source and practical implementation of this functionality,
demonstrating that it is indeed feasible to relocate VNFs without disrupting ongoing
services.

6.3.3. Baseline 5G implementation

To illustrate the benefits of the c/e split we need a working baseline implementation
of certain 5G functionality, neither supported by current versions of 3GPP (i.e., 4G/LTE)
nor existing open-source implementations. We next describe the baseline architecture that
we have developed, which includes: (i) a multi-slice capable access network (both in the

74 Design and Implementation

1 {
2 " enb_tun_ip_addr ": "192.168.10.12",
3 " gw_tun_ip_addr ": "192.168.10.10",
4 " enb_tun_hw_addr ": "xx:xx:xx:xx:xx:xx",
5 " gw_tun_hw_addr ": "yy:yy:yy:yy:yy:yy",
6 " external_src_mac ": "zz:zz:zz:zz:zz:zz",
7 " external_dst_mac ": "cc:cc:cc:cc:cc:cc",
8 " ue_ip_addr ": "172.16.0.30",
9 "teid": "1111111"

10 }

Figure 6.12: Representation of the SMF context

1 {
2 " nsl_id ": "1",
3 "rnti": ["1","2","3"],
4 " start_rb_id ": 1,
5 " stop_rb_id ": 20,
6 }

Figure 6.13: Representation of the MAC context

UE and Evolved Node B (eNB)), to support end-to-end network slicing, and (ii) amodular
implementation of the Core Network (CN), as mandated by recent 3GPP standards.

VNFMVNFMVNFM

NFVO

VIMVIMVIM

ET
SI

 N
FV

 M
A

N
O

N
FV

In

fr
as

tr
uc

tu
re

cVNF

uVNF

cVNF

N
SS

I-
3

Edge Cloud

cPNF

uPNF

N
SS

I-
4

Antenna
vCPU vRAM vDisk
Virtualization Layer
CPU RAM Disk

N
SS

I-
2

cVNF cVNF

uVNF uVNF

cVNF

N
SS

I-
1

Central Cloud

SBA

Transport
Network

or-nfv

NSMFCSMF 3GPP
Management
System

NSSMF

or-nfvor-nfv

or-mon

or-nfv

vCPU vRAM vDisk
Virtualization Layer
CPU RAM Disk

vCPU vRAM vDisk
Virtualization Layer
CPU RAM Disk

Figure 6.14: MANO Implementation and new Interfaces. ACHO creates new interfaces
in the reference points defined by ETSI and acts on the underlying virtual or physical
NFs (both c-plane and u-plane) to provide a fast re-location.

6.3 ACHO: A framework for flexible re-orchestration of virtual network
functions 75

Radio Access Network Our Radio Access Network (RAN) implementation is based on
the open source software suite srsLTE [15], which is extended to support multiple slices.
This Multi-slice RAN builds on a modified version of srsLTE to support multiple slices
on the same radio VNFs (the full implementation details of the baseline are available
inSection 6.1), that we have extended to support fine-grained reconfiguration of radio
resources (see Section 6.3.5).

Core Network ACHO employs an ad-hoc version of the CN functionality that has
been specifically implemented for this purpose, as VNFs shall implement the c/e split
paradigm. Moreover, our implementation is fully modular and follows the service based
architecture (SBA). More specifically, the implementation of the Access Management
Function (AMF), AUSF, User Data Management (UDM) and UPF functions is done in
Python 3, and is detailed in Section 6.3.5.

6.3.4. New MANO functionality

The adoption of the c/e split requires novel MANO functionality, to enable the
relocation of network functions, and new interfaces between the management and
orchestration layers and the VNFs, to extract and install the contexts.

Hierarchical management and orchestration
To implement the relocation of VNFs within a running slice, we design a system that

supports this functionality, following the recent efforts from the 3GPP [68] and ETSI [99].
Our design is illustrated in Fig. 6.14 and follows a hierarchical structure, with the following
two main components:

(i) A 3GPP management system (top of the figure, as defined by [68]), which
provides the entry point towards the business layers (i.e., the tenants that request
a specific communication service) and manages services in the underlying network.
We implemented these parts as Python modules, which includes the mapping of two
communication services (namely, Enhanced Mobile Broadband (eMBB) and Massive
Machine-type Communications (mMTC)) into two Network Function chains. In ACHO,
we implement a reduced subset of the ones already defined by 3GPP. Namely, we logically
select the VNFs that belong to each slice (including the sharing policies) and create their
logic topology.

(ii) An ETSI NFV MANO system (top right) in charge of the central part
of the network lifecycle management (i.e., instantiation, runtime, and termination).
To implement this part, we have developed a composite implementation of the ETSI
NFV MANO [99] stack. Specifically, we employ a base-line OpenStack as the Virtual

76 Design and Implementation

Infrastructure Manager (VIM), and then developed the other modules (i.e., Virtual
Network Function Manager (VNFM) and NFV Orchestrator (NFVO)) as ad-hoc modules,
in Python. Basically, we leverage OpenStack to trigger the instantiation of different
VMs in our infrastructure, by using its API. Also, the interfaces towards the VNFs are
implemented using Python.

New interfaces
We designed two new interfaces: one to extract and install the context, and another

one to estimate network conditions, which is needed to support decisions about VNFs re-
locations. We denote these interfaces as or-nfv and or-mon, respectively (see Fig. 6.14).
These interfaces can be considered as part of the already defined ETSI MANO reference
points or-vfnm, ve-vnfm-vnf and or-vi, although other extensions may be considered.
They are described next:

(i) or-nfv: This interface is used to extract and push the context of the VNFs. This
interface is used by the Orchestrator (the NFVO), which is in charge of all the operational
logic of a Network Slice. In particular, when deciding to relocate a function, the NFVO
first extracts the context of the network function and then re-orchestrates this function,
by pushing the context into the function available at the new location. This interface is
similar to the one already included in the 5G system between the management service
and the core network functions. This interface [100], connects the capabilities provided
by the NEF and Network Repository Function (NRF) to extract and set configuration
parameters from the network functions. In our implementation, following the current
trends in network softwarization, this interface is implemented through a Representational
state transfer (REST) API.

(ii) or-mon: This interface connects the VNFM with the VNFs through the SBA, and
serves to monitor the Cloud-Native Network Functions (CNFs), to trigger a relocation
when performance falls below a given target (although the VIM has some monitoring
capabilities, they typically circumscribe to the Virtual Machines and not the VNFs). This
interface is also similar to the one defined by 3GPP between the Network Data Analytic
Function (NWDAF) available in the core and the management system. However, in our
implementation (based on a REST API), we extend its focus by targeting different metrics
(e.g. latency, in addition to load) and also including access functions.

6.3.5. Re-orchestrable VNFs

The proposed c/e split can be applied to any VNF, provided it implements the
interfaces described above to extract and install the context. To show this, we
have implemented different VNFs following the c/e split and thus making them “re-
orchestrable.” We note that the c/e split nicely fits with the Software Defined Networking

6.3 ACHO: A framework for flexible re-orchestration of virtual network
functions 77

(SDN) approach, which is an easy way to extract and inject the context from and to a
VNF (i.e., in traditional SDN, the context of a switch are its forwarding rules). Thus, to
implement the VNFs, for simplicity we have selected the Open Source Lagopus switch9

as basis for our implementation (alternatives such as ONOS [101] may be used for larger
deployments). The diversity of the chosen functions shows the generality of our approach
and the ability to apply it to any network function:

UPF: This function provides the encapsulation, decapsulation, and forwarding to the
Packet Data Network. The implementation of this module follows the c/e split and
includes the corresponding interfaces with our MANO system to extract and install the
context. The context consists of the current rules applied to encapsulate/decapsulate
GTP packets and to forward them. We have implemented the UPF module building on
the Lagopus switch.

SMF: This c-plane function controls and configures the UPF instances on the u-plane
through the N4 [67] interface. Thus, the context here also consists of the rules to
encapsulate/decapsulate/forward packets, in this case for all the UPF functions controlled
by the SMF. For the implementation of this module, we leverage available SDN-capable
implementations, enriching them with mobile network functionality, and employing a Ryu

Controller10 to implement the N4 interface between the UPF and the SMF, as well as the
interface enabling the context management.

IoT broker: The Internet of Things (IoT) broker acts as middleware between the sensors
connected to a mobile network and a data sink that may be located in a central location.
We have implemented this module in Python from scratch, including specific libraries for
the handling of traffic flows from the sensors. Our lightweight and flexible implementation
allows to dynamically transfer the broker context to a new location, which is particularly
suitable for Mobile Edge Computing (MEC) deployments, as it allows moving the broker
functionality across different edge infrastructures.

Firewall: This network function forwards IP packets from an ingress to an egress port
following a set of firewall rules. The context of this network function thus consists of these
rules. We have implemented the u-plane part of this function as a Lagopus switch, and the
c-plane part as an extended Ryu controller. The latter gathers the rules, which are stored
as Python objects, and provides them to the MANO system through the corresponding
primitives.

9http://www.lagopus.org
10https://ryu-sdn.org/

http://www.lagopus.org
https://ryu-sdn.org/

78 Design and Implementation

MAC scheduler: One of the main functions of Medium Access Control Layer (MAC)
layer in LTE is the scheduling, which basically consist of assigning a given amount of
resources to different users. The context of this function is, therefore, the amount of
available resources, and the different users requesting them. Our implementation includes
an interface at MAC layer level to enable a dynamic resource management: each time a
user gets authenticated, the MAC layer notifies the orchestrator, which replies with the
amount of resources to be assigned to this user. We use ACHO just on selected events,
to allow enough stability on the radio link. Although the ACHO mechanism does not
impose any constraint on the frequency of re-orchestration, each re-orchestration imposes
a price in terms of resource re-allocation. Finally, by employing ACHO at the network
edge, allows for a better network slice isolation, as demonstrated in Section 7.3.

6.3.6. ACHO adoption strategies

The adoption of ACHO in the state of the art architecture requires fundamentally
two new features: (i) the introduction of new relocatable functions (Section 6.3.5) and
(ii) their interaction with the MANO (Section 6.3.4). Indeed, they require an important
re-structure of the current network implementation strategies, but we believe that the
advantages brought by our approach (i.e., the possibility of a fast re-orchestration of
network functions) will certainly be considered in the upcoming transition to novel
paradigms such as the cloud-native network functions [102].

Still, the changes from the architectural perspective are limited and, in some cases,
even already partially targeted by the current standardization work. Summarizing, the
new architectural interfaces shall be able to expose:

Network parameters: as discussed in Section 6.3.4, ACHO envisions a new
interface between the VNF and the MANO domains, that is used to perform
extraction and injection of the context to and from virtual appliances. This kind
of approach is totally aligned with current trends of network softwarization, which
propose a profound restructuring of interfaces with an API based approach.

Network resource models: the context of a VNF is tightly bound with its
internal state, which is represented by a set of parameters usually associated to
different granularity levels: per user (such as the bearer information), per user
group or slice (such as the IoT broker) or globally to the VNF (like the eNB
configuration). All these aspects are discussed in Section 6.3.5.

Having this in mind, we next propose two implementation strategies that are aligned
with the current efforts by SDOs.

Transparent mode: While the network functions shall provide an API to extract
and inject their context, its definition may be actually up to the vendor. Therefore,

6.3 ACHO: A framework for flexible re-orchestration of virtual network
functions 79

the data blob comprising the context of a network function at a certain point in
time can be transparently handled by the MANO through the or-nfv interface,
which simply transfers it to another location. Then the consistency is provided
internally by the VNF vendor. This is the strategy used in our implementation
discussed in Section 7.3.

Exposed mode: defining the parameters that are used by a VNF is a task
that has already been carried out by 3GPP SA5 for management purposes. For
instance, [103] defines such parameters list for every network function defined in
the 5G Core and Radio Access Network (RAN). Thus, context can be exposed
following a standardized approach, to enable inter-vendor migration and enhanced
management functionality at the MANO side (e.g., extract the context from one
VNF and split it into several virtual appliances).

80 Design and Implementation

7 Experimental evaluation

This chapter provides an extensive step-by-step experimental evaluation of the
mechanisms introduced in Chapter 6. The main objective is to properly characterize
each of the proposed mechanisms and their performance within a real deployment.

First, we start by evaluating the main enabler towards a slicing-aware protocol stack,
the end-to-end network slicing implementation in Section 7.1. Then, in Section 7.2
we show the results of evaluating a multi-service deployment based on POSENS and
implementing different mechanisms to properly accomplish low latency and flexibility.
Finally, after identify limitations at the evaluated mechanisms to provide flexibility, in
Section 7.3 we perform a complete evaluation of the mechanisms proposed in Section 6.3.

7.1. End-to-end Network Slicing implementation

We next evaluate POSENS by deploying the proposed implementation in a real
testbed to first, validate the correct behaviour of the implementation, being then able
to quantify the benefits of the proposed solution. More precisely, we evaluated the slices
independence, performance in terms of throughput, ability of slice customisation and
compatibility with commercial equipment.

7.1.1. Testbed Description

To properly evaluate POSENS (details in Section 6.1), we have deployed a testbed
consisting of one UE implementing two slices, and one eNB connected to two different
CN (one per slice). The testbed architecture is depicted in Figure 7.1.

The UE runs over an Ettus USRP B210 board connected to an HP OMEN laptop,
running Ubuntu Linux 16.04. The eNB runs over another B210 board, connected to a
Intel NUC running the same Linux distribution. The TX and RX ports of one B210 board
are connected to the RX and TX ports, respectively, of the other board, using coaxial
cables with SMC connectors to prevent any interference.

81

82 Experimental evaluation

Slice Specific Services Slice Specific Services

S/P-GW

MME HSS
S/P-GW

MME HSS
Core

Compute
Node #1

Compute
Node #2

Controller
Node

SG SG

u-plane
c-plane

Multi-Slice
eNB

Multi-Slice
UE

USRP B210
USRP B210

Slice
Specific

Client

Slice
Specific

Client
Management and

Orchestration

RAN

Slice 1
Slice 2

Figure 7.1: A multi-slice network architecture.

To implement the CN, we run two instances of the OpenAirInterface CN
implementation, which contains the Mobility Management Entity (MME), Home
Subscriber Server (HSS), Serving Gateway (S-GW), and Packet data network Gateway
(P-GW). The OAI-CN VNFs are packaged in Ubuntu 16.04 VM, running in an OpenStack
managed cloud composed of three compute nodes and one controller node.

Before performing the actual validation of POSENS, we first conduct an extensive
evaluation of the best RAN (i.e., srsLTE) parameters that lead to the most reliable and
stable configuration. To find a good trade-off between RAN performance (in terms of
throughput) and stability, we set the channel bandwidth to 10MHz and a RX gain of
60 dB for the UE and 60 dB for the eNB. We used the LTE channel 7 (centered around
2600 MHz).

7.1.2. Independence between slices

We first validate that the slices can run simultaneously and independently, in this way
supporting e.g., experimentation in scenarios with multiple slices, each one potentially
re-configured in real-time. To this aim, the experiment starts with two configured slices,
each one implementing a periodic request-response service between the UE and a server.
We emulate that these servers are relatively far away by introducing an extra delay of
100 ms via the tc command. Then, after 20 s, the server of the second slice is moved
to the eNB, simulating e.g. the use of a MEC-like solution. We represent the obtained
performance in terms of average Round-Trip Time (RTT) across 10 repetitions in Fig. 7.2.

As the figure illustrates, at the beginning of the experiment both slices experience
the same RTT of approx. 120 ms, with a few outliers across experiments. The re-
allocation of the server in the second slice has an obvious impact on performance, with
the RTTs immediately reduced to approx.20 ms, while the performance with the first

7.1 End-to-end Network Slicing implementation 83

0 10 20 30 40
Time [s]

0

50

100

150
D

el
ay

[m
s]

Slice 1
Slice 2

Figure 7.2: Independence between slices

slice remains unaltered. With this experiment, we thus confirm that researchers could
prototype scenarios where different services are provided with different slices, and each
service could be independently modified without altering the others.

7.1.3. Throughput performance

We next assess quantitatively the performance of our solution, to analyze if the overall
efficiency is degraded because of the use of slicing, and if the slices are fairly sharing the
available resources. To this aim, we start our experiment with both slices configured,
but only one (“Slice 1”) performing a TCP download from a server. Then, after 20 s,
another download is performed on the second slice (“Slice 2”), from a different server. We
illustrate the per-slice throughput and the total throughput (“Aggregated”) averaged over
windows of 1 s in Fig. 7.3. We also represent in the figure the throughput performance
when no slicing is done, i.e., both the UE and the eNB use the vanilla version of srsLTE
(“Single Slice”).

The figure illustrates two main results: first, there is practically no difference in total
throughput between our implementation and the use of the vanilla version of srsLTE,
which confirms the efficiency of the developed solution. Second, when both slices are
active, they fairly share the medium, each one obtaining approximately 50% of the total
throughput (we repeated the experiment several times and in all cases the performance
was very similar).

84 Experimental evaluation

0 10 20 30 40
Time [s]

0

5

10

15

Th
ro

ug
hp

ut
[M

bp
s]

Single Slice
Slice 1
Slice 2
Aggregate

Figure 7.3: Total and per-slice throughput performance

7.1.4. Slice customization and orchestration

We next show how our solution supports a per-slice orchestration and customization of
services, as well as the adjustment of the resources that a slice consumes. We demonstrate
this capability by modifying in real-time the chain of VNFs that build a service. In
particular, we insert two additional user plane functions into an operating slice: a traffic
shaper and a firewall. Our experiment works as follows. We start with two slices serving
downlink traffic to the UE, fairly sharing the channel as illustrated in Fig. 7.4. Then, after
20 s, we add into “Slice 2” a firewall function to block incoming connections and a traffic
shaper function to limit the bandwidth to 2 Mbps. As the figure illustrates, the effect is
immediate and “Slice 1” receives a higher throughput. We also confirmed that connections
were blocked immediately. This shows that, even though the our slicing solution cannot
allocate RAN resources directly, it can control the overall resource consumption (including
RAN) as long as terminals employ some congestion-aware sending mechanism.

7.1.5. Compatibility with commercial equipment

In this section, we confirm that our solution is compatible with commercial equipment.
To this aim, we perform a connectivity test using a Nexus-5 phone, equipped with
a Sysmocom programmable SIM card1. To support this test, we slightly modified
the hardware setup, attaching an antenna to the eNB Software Defined-Radio (SDR)
card, and using isolation hardware (Ramsey electronics shielded enclosures) to prevent
interference.

1http://shop.sysmocom.de/products/sysmousim-sjs1

http://shop.sysmocom.de/products/sysmousim-sjs1

7.2 Multi-service and multi-slice deployment evaluation 85

0 5 10 15 20 25 30 35 40
Time [s]

0

5

10

15
Th

ro
ug

hp
ut

[M
bp

s]

Aggregate
Slice 1
Slice 2

Figure 7.4: Independent Service Function Chaining

We confirmed that POSENS supports both modified UEs and commercial UEs, namely,
slice-aware and slice-unaware UEs. In this way, we support scenarios where several UEs
can be attached to the same slice (e.g., eMBB), and only a few UEs, in need of specific
services, require the instantiation of a different slice (e.g., an Ultra-Reliable Low Latency
Communications (URLLC) service). This further extends the applicability of our solution,
opening it to a very wide range of testing scenarios.

7.2. Multi-service and multi-slice deployment evaluation

Once we have validated the baseline network slicing approach, we move forward to
build a complete multi-service and multi-slice deployment where we conduct a complete
experimental evaluation of the services introduced in Section 6.2.

7.2.1. Testbed Description

To conduct the experimental evaluation, the scenario is similar to the one depicted in
Figure 7.1 but including the newly implemented mechanisms as well as the services to be
tested. As we mention in the previous section, the full bandwidth achievable with this
configuration is roughly 15 Mbps with good channel conditions.

86 Experimental evaluation

0 20 40 60 80 100
Resource Share [%]

0

5

10

15

Th
ro

ug
hp

ut
[M

bp
s]

Figure 7.5: (a) Obtained throughput with
variable resources shares vs share

0 15 30 45 60
Time [s]

0

5

10

15

Th
ro

ug
hp

ut
[M

bp
s] n = 2

n = 3
n = 4
n = 5

Figure 7.6: (b) Obtained throughput with
variable resources shares vs time

7.2.2. Slicing-aware MAC Scheduling

In this section we test the implementation introduced in Section 6.2.2.2. To correctly
evaluate the proposed scheduling scheme, we emulate the presence of other slices by
leaving the resource blocks originally assigned to them blank. We then run an Iperf in
Downlink (DL) direction with TCP traffic. Figures 7.5 and 7.6 show the correctness of
our software implementation in terms of throughput for different sharing options and over
time respectively.

In the first experiment we create 2 slices (i.e., n = 2) and assign an increasing share to
the first slice (the one that holds the User Equipment (UE)) by modifying the vector W.
The results, shown in Figure 7.5, demonstrate the effectiveness of our implementation in
correctly enforcing the amount of resources assigned to a slice. In the second experiment,
we generate a variable number of slices and assign to them the same amount of resources.
The results, depicted in Figure 7.6, show how our implementation can maintain the
throughput around the assigned level for all the duration of our tests (60s).

Although this implementation, available in our repository, is not meant to implement
a sophisticated scheduling policy with strong mathematical guarantees, it is indeed a
first step towards the open implementation of one of the RAN slicing options depicted in
Figure 6.1.

7.2.3. Service Creation Time

In this section we present the results achieved in our implementation with respect
to the service creation time, one of the most important parameters targeted by the
major stakeholders in the 5G environment such as 5GPP [104]. Therefore in Table 7.1
we summarize the timings that we measured in our setup. Intervals are obtained by
taking timings of the Open Source MANO (OSM) or OpenStack primitives that are used
to perform the different actions, grouped by the main lifecycle management primitives

7.2 Multi-service and multi-slice deployment evaluation 87

Table 7.1: Service Creation Time KPI

Phase 1. Onboarding
Time Components What Time
1.01 Network Slice Template (NEST) 7 minutes
1.02 Network Service Descriptor (NSD) 2 minutes
1.03 VNF package (VNFD) 5 minutes
Phase 2. Instantiation, Configuration and Activation
Time Components What Time
2.01 Instantiate Network Slice (NSI) 30 seconds
2.02 Instantiate & Activate Network Service (NS) 45 seconds
2.03 Instantiate & Configure VNFs in service chain (VNF) 10 seconds
2.04 Configure other NFVI elements 10 seconds
2.05 Configure SDN infrastructure 5 seconds
Phase 3. Modification
Time Components What Time
3.01 Modify Network Slice configuration 1.5 minutes
3.02 Modify Network Service configuration 2 minutes
3.03 Detect triggering condition <1 second
3.04 Modify VNF configuration in service chain <1 second

(onboarding, instantiation and modification).

Onboarding

Here we measure the times needed to actually create the service by uploading the
YAML descriptors detailed in Section 6.2.5. Under the Network Slice Template (NEST)
we group the two sub-timings devoted for the Network Slice Descriptor (NSD) and the
Virtual Network Function Descriptor (VNFD). In our setup, which is limited by the
available hardware capabilities, we can successfully create the two services in around 7
minutes. This is completely in line with the requirements set by e.g., 5G-PPP (“from 90
hours to 90 minutes”) [104].

Instantiation, Configuration and Activation

In this group we measure the timings needed for the activation of the single Virtual
Network Functions (VNFs) that build the service function chain providing the services.
Here (also due to the reduced size of the Virtual Machines involved), the timings are
reduced to seconds. Also, some time is needed to configure otherNetwork Function
Virtualisation Infrastructure (NFVI) infrastructure such as the transport network. We
remark that the timings obtained here are a subset of the Onboarding one. Onboarding
requires more time for internal sanity checks performed by OSM before considering the
operation completed.

88 Experimental evaluation

Modification

As discussed in Section 6.2.5, we implemented in the Network Orchestration
algorithms to perform e.g a VNF relocation. While the timings related to the detection
of the triggering conditions and the decision to enforce a new orchestration policy are
negligible (sub-seconds), the time needed to prepare the network for such re-orchestration
is around a couple of minutes: similarly to onboarding, in fact, this operation requires
the preparation of Virtual Machines (VMs) and additional sanity checks.

7.2.4. VNF re-location

One of the objectives of this multi-service deployment is to showcase advanced
orchestration functionality, like a service-aware adaptive allocation of functions to different
network nodes using VNF mobility concepts. Regarding this, we envisioned the possibility
of relocating the VNFs between different compute nodes, which are acting as edge and
central cloud nodes in a real 5G network.

For our particular case, we provide this feature by using the so-called “live-migration”
functionality offered by OpenStack (which is our default choice for the OSM Virtual
Infrastructure Manager (VIM)). Namely, we performed two different experiments, which
we detail next.

The first one, based on the so-called “block live-migration”, just needs a network
connection from the source node to the destination. Basically, the complete virtual
machine is transmitted without service interruption. In our specific case, VNF instances
can be quite big (tens of GBs once instantiated), so it would be necessary to have a
very high bandwidth and dedicated network connection to achieve fast migration times.
With a common network connection like the ones we have in our testbed the process
takes times in the range of minutes, as discussed before. Moreover, while very high
bandwidths may be achievable within the same datacenter, having them available in
different geographical locations may be questionable. Furthermore, this approach also
reduces the VM processing power during the migration time, so we considered this is not
an acceptable approach for a future 5G network.

The second possible approach is called “shared storage live migration”. As the name
states, it is based on using a shared storage which is accessible from both, source and
destination host. In this case, performance has been acceptable (in the range of few
milliseconds, see entry 3.04 in Table 7.1), without any service interruption.

Although the performance is quite good using the latter approach, this shared storage
node is a drawback in itself. This procedure has well-known inconveniences, among others:
(i) adding shared storage nodes requires to design the network topology according to this;
(ii) the shared storage node becomes single point of failure;
(iii) the network itself becomes a single point of failure;

7.2 Multi-service and multi-slice deployment evaluation 89

UE1-SPGW UE2-SPGW UE1-UE2 UE2-UE1

120
135
150
165
180
195
210
225
240
255

R
T

T
 (

m
s
)

Without LB

UE1-LB UE2-LB UE1-UE2 UE2-UE1

25

30

35

40

45

50

55

60

R
T

T
 (

m
s
)

With LB

Figure 7.7: Latency evaluated for the URLLC scenario.

(iv) the network security shall be improved as the shared storage should be placed in a
separate secured network, and
(v) even with the good performance results experienced in our demo case, the network
latency could impact performance, especially for certain scenarios which require very low
latency.

However, these problems may be solved in different ways. They range from reducing
the size of the VMs to be migrated to the usage of containers [105] or unikernels [82].
Another possibility is the improvement of the shared storage option to tackle the known
weaknesses, e.g., adding redundancy to the single points of failure and improving the
security.

7.2.5. Low latency through LB

Continuing with the evaluation, this section is intented for the Local Breakout (LB)
implementation introduced in Section 6.2.3. The experiments were performed by running
the corresponding VNF in the slice providing the low latency service. We attached to our
setup the multi-slice UE (UE1) presented in Section 7.1 and an additional single slice UE
(UE2) that connected to the low latency slice only.

In one scenario, we co-located the Augmented Reality (AR) server with the gateway,

90 Experimental evaluation

and compared it with another scenario where the AR server was placed together with the
LB VNF. An additional delay of 100 ms was added between the eNB and the gateway,
to emulate the distances between edge and central cloud.

The box and whiskers plot in Figure 7.7 shows the delay for a UE to server and UE
to UE communications. The latter is not related to the provided Ultra-Reliable Low
Latency Communications (URLLC) service, but it is useful to assess the performance of
e.g., machine to machine communications. As expected, the latency with the LB VNF
activated is much less than the normal case, with a median value of around 30 ms and
135 ms for the UE to Server case with or without LB respectively. The gap is even higher
for the UE to UE case, with median latency figures of 55 ms and 255 ms respectively.

7.3. Flexible orchestration with ACHO

After evaluating the available state-of-the-art strategies and tools for flexible
orchestration (see Section 7.2), we identified some limitations we overcome by means of
Adaptive slice re-Configuration using Hierarchical Orchestration (ACHO) (Section 6.3).
We now evaluate the novel mechanisms proposed by ACHO to properly validate and
quantify their performance.

We evaluate the performance obtained by ACHO under a set of different metrics:
(i) Virtual Network Function (VNF) relocation delays (Section 7.3.2), and (ii) the
re-orchestration of VNFs discussed (Section 7.3.3).

7.3.1. Testbed description

To evaluate the performance of ACHO, we have deployed a testbed consisting of
an access network and three datacenters, one acting as “central cloud” and two acting
as “edge clouds,” which run the components presented in the previous section. Over
this setup, three services (Enhanced Mobile Broadband (eMBB), Massive Machine-type
Communications (mMTC), and Ultra-Reliable Low Latency Communications (URLLC))
are provided as illustrated in Fig. 7.9. Arrows serve to indicate the four re-orchestrations
that we perform and are described in Section 7.3.3. We remark that, since the same
User Equipment (UE) may connect to the same attachment point for different slices, the
mobility management and authentication procedures can be shared across slices, and so
are the Access Management Function (AMF), Authentication Server Function (AUSF)
and User Data Management (UDM) functions (the “Shared Functions” in Fig. 7.9). This
relies on the network function sharing functionality, which is mandated by 3GPP [67].

The experimental setup is depicted in Figure 7.8 and is an evolution of the testbed
used in the previous section (Figure 7.1). This testbed is entirely composed of commodity
hardware, which shows that ACHO does not have any particular hardware requirement.
The access network consists of a physical UE and virtual UEs. The physical UE runs

7.3 Flexible orchestration with ACHO 91

Transport
Network

Compute
Controller

Edge 2

USRP B210

USRP B210

Antenna

UE

Controller

ComputeEdge 1 Central

Controller
and

Orchestrator

Compute

+ ACHO

Figure 7.8: The Physical testbed setup.

in a laptop with Ubuntu 16.04, and the radio link is implemented by two Ettus USRP
B210 Software Defined-Radio (SDR) cards cross-connected with RF cables. The multi-
slice Evolved Node B (eNB) software runs in an Intel NUC with an Ubuntu 18.04. The
same machine hosts the Virtual Radio Access Network (RAN) software for the mMTC
deployment.

The datacenters run OpenStack, with one controller node that manages the virtual
links connecting the VNFs. They are hosted in Ubuntu 16.04 servers, each server
equipped with two network cards: one acting as the provider network (i.e., carrying
the 3GPP Network traffic), and the other carrying the control and management traffic.
The transport network connecting the different datacenters consists of four Northbound
Networks Zodiac FX Openflow-enabled switches. To emulate long-distance links (i.e.,
between edge and cloud), we use the Linux traffic shaper tc.

7.3.2. VNF relocation delay

We start our evaluation by focusing on the delay to perform a relocation of a VNF,
which is defined as the time elapsed between the Management and Network Orchestration
(MANO) taking the relocation decision, and the moment in which the VNF is up and
running in the new location.2

We measure the relocation delay for three of the VNFs described in Section 6.3.5: the
UPF and the firewall (FW), each one running in a nano instance, and the IoT broker,
which runs in a small instance (these Virtual Machine (VM) flavors are inspired by
the Amazon EC2 service). For all the considered VNFs, we evaluate the relocation

2Note that we do not consider “live-migrations,” since available orchestrators such as OpenStack can
only perform this type of migration when disk or memory is shared across locations, something unfeasible
in the scenarios we consider (e.g., a VNF relocated to a different and possibly far node).

92 Experimental evaluation
m

M
TC

eM
B

B
U

R
LL

C

Antenna Edge 2

Central

Edge 1

Shared Functions
RAN

1
RAN

2
RAN

AR

UPF
UPF

UPF

IoT

AMF

AMF

SMF

SMF

SMF

UDM

UDM

AUSF

AUSF

FW

Experiment 2 Experiment 1

Experiment 3
Experiment 4

Figure 7.9: The Network Slice setup employed in the experimental evaluation, consisting
of 3 slices.

ACHO OpenStackVNF Run Pool Cached Non-C.
UPF 70 ms 28.3 s 1 m 11.2 s 2 m 29.3 s 74 m 40 s

IoT br. 72 ms 28.8 s 1 m 5.7 s 2 m 29.2 s 89 m 35 s
FW 71 ms 27.7 s 1 m 3.3 s 2 m 27.3 s 59 min 48 s

Table 7.2: VNF relocation delays obtained by ACHO and by OpenStack.

delay incurred when using two different orchestration platforms: (i) ACHO, with four
different configurations (discussed below), and (ii) the one obtained with OpenStack live
migration. We provide the resulting relocation delays, corresponding to the average of 5
repetitions, in Table 7.2. This comparison allows us to quantify what are the advantages of
a lightweight solution like ACHO with respect to a heavy migration technique such as the
one provided by OpenStack. This scenario, which reflects a typical central cloud to edge
cloud migration, cannot be properly handled directly through the Virtual Infrastructure
Manager (VIM).

That is, the results confirm that OpenStack results extremely slow as compared with
ACHO, for all the configurations. These configurations are: (i) already running (Run
in the table), where the engine is already bootstrapped, (ii) pool, where the engine is
already created in the new location, but not started; (iii) cached, where the target engine
has already been started in the destination machine in the past; and (iv) non-cached
(Non-C.), where the image of the engine is available at the new destination but has to be

7.3 Flexible orchestration with ACHO 93

created and bootstrapped for the first time.
OpenStack results order of magnitude slower than any of these configurations, as

moving a VNF requires moving a full copy of the engine (including memory and
disks). This is the main showstopper for the direct application of the live migration
in an environment such as the one depicted here, in which a flat Network Function
Virtualization (NFV) infrastructure may not be available. In contrast, delays are much
smaller with ACHO, which furthermore enables having an engine already running in the
destination node, thus making the relocation delay almost negligible (note that delays
could be further reduced by employing more lightweight engines, such as, e.g., Containers
or Unikernels). These results are also aligned with the ones provided in [106].

We finalize this section by analyzing the relocation delay of SENATUS [83], the
orchestration framework closest to our proposal (as we discussed in Section 4.3.2).
SENATUS leverages the native OpenStack Application Programming Interfaces (APIs) to
perform a full snapshot of the image running the VNF before moving it to the new
location, which requires the service to be stopped during the migration. Using similar
images to the ones reported in [83] 3, we obtained migration times of approx. 130 s, a
performance comparable to ACHO’s non-cached configuration (in both cases, the image
has to be created and bootstrapped for the first time). We note, however, that ACHO
supports a “make before break” paradigm, as it only needs to stop the VNF in the old
location when starting the context transfer, and not before. As a result, ACHO can
re-orchestrate VNFs without any perceptible service interruption (as we confirm next),
while SENATUS would incur in a service disruption during this 130 s interval.

7.3.3. Performance under re-orchestration

Next, we evaluate the impact of re-orchestration on performance. To this aim, we
have performed four experiments:

Experiment 1: Service function chain re-orchestration. One key feature of ACHO is the
ability to seamlessly modify the function chain of a service already running, i.e., adding
or removing a VNF. We tested this feature in the eMBB network slice by adding a new
firewall function to support a new requirement. Using the interface or-nfv described in
Section 6.3.4, injecting the state is an atomic operation decoupled from the execution
environment of the network function.

Our experiment starts with the eMBB slice serving three TCP flows, namely A, B,
and C. After 30 s, we enforce a new policy by adding a firewall function into the slice and
injecting the firewall rules (as context) through the or-nfv interface. These rules match
flow A, which is immediately interrupted without affecting the rest of the flows of this

3SENATUS is evaluated using CirrOS images, which by default do not have a context as they do not
run a proper VNFs. So we could not test ACHO’s mechanism against this setup.

94 Experimental evaluation

0 10 20 30 40 50 60 70 80 90
Time (s)

0

20

40

60

80

100

Re
la

tiv
e

Th
ro

ug
hp

ut
 (%

) Flow A
Flow B

Flow C
SFC Re-Orch

Figure 7.10: SFC amendment. Flow A (top), B (middle) and C (bottom).

0 20 40 60 80 100 120 140 160 180 200
Time (s)

0
50

100
150
200
250
300
350
400

De
la

y
(m

s)

RAN-1
RAN-2
Reloc-Start

Figure 7.11: Relocation of the IoT gateway across edge clouds.

slice. We plot the throughput obtained by each flow in Fig. 7.10, which illustrates that
re-orchestration does not disrupt the performance of the ongoing services.

Experiment 2: Follow-the-load VNF relocation. Next, we consider an mMTC service in
a scenario with two RANs and two edge clouds. Initially, all the UEs are connected to
RAN 1, which is closest to Edge 1 and therefore both the User Plane Function (UPF) and
the Internet of Things (IoT) Broker application are orchestrated there. This results in a
Round-Trip Time (RTT) for the application of approx. 100 ms, as Fig. 7.11 shows. Then,
at time t=50 s, half the UEs are moved to RAN 2, which is farther away from Edge 1, this
resulting in RTTs of approx. 370 ms. This performance degradation is detected by the
MANO via the or-mon interface, which reacts by instantiating new UPF and IoT Broker
in Edge 2 and, once these are available, relocating the context of those UEs that moved
into them. This whole process (i.e., creating a new VM with the VNF image and, once
ready, copy the context) takes approx. 30 s (which corresponds to the “pool” strategy in
Table 7.2) and the service is never disrupted, nor for the UEs that stay in RAN 1 nor for

7.3 Flexible orchestration with ACHO 95

Connectivity during relocation

0 20 40 60 80 100 120 140 160
Time (s)

0

100

200

De
la

y
[m

s]

Delay
Pool Cached Non-Cached Reloc-End

Figure 7.12: UPF migration from the central cloud to the edge cloud, under different
configurations.

those that move to RAN 2. These results show the ability of ACHO to flexibly relocate
only selected parts of a context.

Experiment 3: Bringing VNF closer to users. Next, we demonstrate the ability of
ACHO to relocate VNFs inside the same slice. To this aim, we consider the URLLC slice,
supporting a 600 kbps application that experiences a delay of approx. 150 ms. At some
point, the MANO marks this delay as excessive and triggers a re-orchestration of the slice.
This re-orchestration involves the relocation of the UPF and the low latency application
(i.e., augmented reality in this case, marked as AR in Fig. 7.9), bringing both of them
closer to the UE (i.e., from the central to the edge cloud). We analyze the resulting
performance using three of the ACHO strategies discussed in Section 7.3.2, namely, Pool,
Cached and Non-C. To this aim, we depict in Fig. 7.12 the performance since the MANO
triggered the re-allocation in terms of connectivity (i.e., frames received, top subplot),
and delay (bottom subplot).

The results confirm that (i) the re-orchestration is performed seamlessly towards the
application, which perceives no disruption (i.e., no frames are lost), (ii) performance in
terms of latency improves due to the relocation of the VNFs, (iii) migration delays (time
between t = 0 and the thick black ticks in the figure) are in line with those presented
in Section 7.3.2, with the “pool” strategy providing the smallest latency and the “non-
cached” the largest one.

Experiment 4: On-demand radio resources assignment. In this experiment, we consider
two users (UE1 and UE2) of a video streaming services. Each user requests at the
beginning of the experiment a low quality video, therefore the orchestrator assigns the
same amount of resources to each of them. At time t=30 s, UE1 requests a higher
quality video (720p) and the orchestrator reacts by assigning more resources to that flow.
Similarly, at time t=60 s UE2 requests a higher quality video, triggering a similar re-

96 Experimental evaluation

0 10 20 30 40 50 60 70 80 90
Time (s)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

Th
ro

ug
hp

ut
 (M

bp
s) UE1

UE2
Max. Achievable Throughput
R-Alloc

Figure 7.13: On-demand Radio resources assignment

configuration. We provide in Fig. 7.13, the resulting throughput obtained by each user.
The insights about the above reconfiguration are provided next. The eNB is configured

with a bandwidth of 10 MHz of bandwidth, which translates into 16 Resource Block
Groups (RBGs) of 3 Physical Resource Blocks (PRB), and 1 RBG of 2 PRBs. The initial
assignment is 4 RBGs per UE, which supports the transmission of a 480p video. Then, at
time t=30 s (t=60 s) the orchestrator assigns four more RBGs to UE1 (to UE2) to support
the transmission of a 720p video. As the Fig. 7.13 confirms, we can dynamically assign
resources to UE with strong guarantees on their isolation (i.e., increasing the bandwidth
for one UE does not affect the other).

8 Summary Part II

Part II contains the details for bringing network slicing to softwarized mobile networks
and it is split into two chapters. Chapter 6 is dedicated to the study of the design
alternatives for the required components as well as the implementation decisions with the
corresponding explanation. Then, Chapter 7 dedicated to experimentally validate the
proposed solutions as well as characterize their performance.

More specifically, Sections 6.1 and 7.1 are dedicated to introduce an end-to-end
network slicing implementation, the design decisions we made to implement it and a
complete validation and experimental evaluation respectively.

Then, in Sections 6.2 and 7.2, we moved to a complete deployment based on the
aforementioned slicing implementation, where we deployed multiple novel services with
diverse requirements that each network slice must satisfy. Moreover, we included an
orchestrator to add a basic flexibility to the multi-service and multi-slice deployment.

Lastly, after identifying the limitations on the current orchestration mechanisms,
in Sections 6.3 we propose a novel framework enable flexible orchestration based on a
context/execution split to correctly manage virtual network functions, performing its
evaluation in 7.3.

97

Part III

Bringing cloud nativeness to
softwarized mobile networks

99

100

9 Designing a Cloud-native Radio
Access Networks

As described is Section 4.2, network functions softwarization continues its path to
finally conquer the very last mile of the network, the Radio Access Network (RAN). The
virtualization of radio access networks (RANs), based hitherto on monolithic appliances
over Application-Specific Integrated Circuits (ASICs), will become the spearhead of next-
generation mobile systems beyond 5G [107,108].

Initiatives such as the carrier-led O-RAN alliance [69]1 or Rakuten’s greenfield
deployment in Japan [109] 2 have spurred the market—and so the research community—
to find novel solutions that import the flexibility and cost-efficiency of network function
virtualization (NFV) [110–114] into the very far edge of mobile networks [107,108].

Compared to purpose-built RAN hardware, Virtualized RANs (vRANs) pose several
advantages [108], such as:

1. Leverage off-the-shelf platforms, which are more cost-efficient over the long-term
due to economies of scale;

2. Harmonize the ecosystem, which helps reduce costs;

3. Leverage software development practices that shorten development cycles; and

4. Enable seamless integration of cloud technologies, which lowers barriers for
competition and innovation.

Fig. 9.1 shows the architecture of a vRAN, with Base Stations (BSs) split into a
Central Unit (CU), hosting the highest layers of the stack; a Distributed Unit (DU),
hosting the Physical Layer (PHY); and a Radio Unit (RU), hosting basic radio functions
such as amplification or sampling [115].

As depicted by the figure, vRANs shall rely on cloud platforms, comprised of pools
of shared computing resources (mostly Central Processing Units (CPUs), but also shared
hardware accelerators brokered by an abstraction layer3), to host virtualized functions

1https://www.o-ran.org/
2https://www.altiostar.com/5g_cloud_native/
3See, e.g., bbdev (https://doc.dpdk.org/guides/prog_guide/bbdev.html)

101

https://www.o-ran.org/
https://www.altiostar.com/5g_cloud_native/
https://doc.dpdk.org/guides/prog_guide/bbdev.html

102 Designing a Cloud-native Radio Access Networks

Edge
cloud
stack

Central
Unit
(CU)

Distributed Unit (DU)RU

ADC
DAC

HW

RX
TX

D
SP

w
orker

PHY
PROCSCreated by Kirby Wu

from the Noun Project

D
EM

U
X

Created by Kirby Wu
from the Noun Project M

U
X TIMERS

MAC

Radio
Bearers

RLC state
RLC

Abstraction Layer

Figure 9.1: Virtualized RAN architecture [12]

such as the PHY [12].
However, while CUs are amenable to virtualization in regional clouds, Virtualized

Distributed Units (vDUs)—namely, the vPHY therein—require fast and predictable
computation in edge clouds [12, 108, 109]. Clouds provide a harsh environment for
DUs because they trade off the predictability supplied by dedicated platforms for higher
flexibility and cost-efficiency [111,114].

Indeed, research has shown that resource contention in cloud infrastructure, even
when placing virtual functions on separate cores, may lead to up to 40% of performance
degradation compared to dedicated platforms [112, 114]—the so-called noisy neighbor
problem.

This is certainly an issue for traditional network functions such as virtual switches,
firewalls, Virtual Private Networks (VPNs), or even CUs, which only suffer a performance
degradation that is proportional to the computing fluctuations caused by resource
contention. For contemporary 4G/5G PHY pipelines, nevertheless, such fluctuations
are simply catastrophic, as we demonstrate next. Consequently, the main challenge
for DU virtualization is to design a virtual PHY processor that preserves carrier-grade
performance in cloud platforms at the edge.

The problem

Fig. 9.2 illustrates the operation of a digital signal processor (DSP) that is used
commonly to implement a 4G/5G PHY [15, 108, 116]. We focus on Frequency Division
Duplex (FDD) where Uplink (UL) and Downlink (DL) transmissions occur concurrently in
different frequency bands, which has been the most successful scenario in LTE. Moreover,
to simplify our design, we focus on 5G’s baseline numerology (µ = 0 in 3GPP TS 38.211),
which yields one Transmission Time Interval (TTI) per subframe. In this context, every
TTI , a worker initiates a job comprised of a pipeline of tasks: (i) processing an UL
subframe, (ii) scheduling UL and DL grants, and (iii) compiling a DL subframe.

103

Process
UL

data

Compute
UL/DL
grants

Process
DL

data

Process
UL

control

Process
DL

control

Wireless samples arrive

Deliver DL subframe n+k+1

Process
UL

data

Compute
UL/DL
grants

Process
DL

data

Process
UL

control

Process
DL

control

Variable
computing times
cause head-of-
line blocking

Users lose
synchronization

...

...

...

......

Job n+1

Job n+2

Time

Pipeline
depth

Budget job k (k TTIs)

Budget job n (k TTIs)
TTI
k+1

TTI
n+1

Figure 9.2: Baseline DSP pipeline parallelization. One subframe every transmission time
interval (TTI, 1 ms)

These are compute-intensive tasks and hence processing a job within a TTI is
challenging. For instance, Fig. 9.3 depicts the time it takes for a general-purpose CPU to
decode a transport block of data from one user—just one out of many operations when
processing an UL subframe—encoded with a mild modulation and coding scheme (3GPP
MCS index 17) in a 20-MHz channel, and enduring different Signal-to-noise ratio (SNR)
settings between 5 a 35 dB.

However, processing a DSP job every TTI is vital to preserve synchronization and
process control information. To give workers some slack, pipeline parallelization is
commonly used, that is, a pool of workers processes multiple jobs in parallel as shown in
Fig. 9.2. In this way, with a pool of k workers, each job n gets a computing budget of
roughly k TTIs to process UL subframe n (corresponding to the nth TTI) and compile
DL subframe n+ k + 1 (carrying DL signals during the (n+ k + 1)th TTI).

Albeit this approach is the basis for most of the work conducted to date [58,117–119],
we argue that it is not sufficient to attain carrier-grade performance over clouds. We show
this with an experiment with two DUs, virtualized over Linux containers and sharing 5
Intel Xeon x86 cores @ 1.9GHz.

In this experiment, vDU 1 transmits and receives as much data as possible. Conversely,
vDU 2 transmits and receives traffic following a random process with different parameters,
which generate normally-distributed computing workload with the mean and variance
shown at the bottom of Fig. 9.4: the higher the load variance of vDU 2, the larger the
fluctuations of the computing capacity available for vDU 1. Fig. 9.4 (top) depicts the
throughput of vDU 1 in yellow (“Baseline”) as a function of the workload produced by
vDU 2. The figure shows that the performance of vDU 1, which uses the baseline pipeline
introduced above, quickly deteriorates in the presence of computing capacity fluctuations.

Our analysis in Section 9.2 studying the latent factors behind such performance
collapse can be summarized as follows:

104 Designing a Cloud-native Radio Access Networks

0.0

0.5

1.0

1.5

102030
SNR (dB)

D
ec

od
in

g
tim

e
(m

s)

Figure 9.3: Decoding time
of one transport block in a
CPU core.

0.00

0.25

0.50

0.75

1.00

Th
ro

ug
hp

ut
 v

D
U

 1
(re

la
tiv

e)

Cloud-native

Baseline

0

1

2

3

Lo
ad

 v
D

U
 2

(m
s/

jo
b)

Figure 9.4: Two vDUs competing for computing
resources. The UL/DL data load of vDU 1 is the
highest possible while vDU 2’s is variable.

1. The PHY has tight inter-task deadlines, which constraints the maximum pipeline
depth (k = 3, usually) and, hence, the computing budget of each DSP job (∼3 ms,
usually);

2. Inter-task dependencies hinder task parallelization and causes head-of-line-blocking
(the scheduler needs feedback from UL tasks, DL tasks need grants, etc.); and

3. The time incurred by data processing tasks depends on the users’ behavior, channel
dynamics, and cloud computing fluctuations, which gives in to unreliability.

The latter is shown at the bottom of Fig. 9.2, which illustrates an example where
data processing tasks take longer time. As a consequence, the execution of the remaining
tasks gets delayed (head-of-line blocking), which plays havoc with the ability of the vPHY
processor to execute a DSP job every TTI if the pipeline depth is not sufficiently high
(unreliability).

The solution

The obvious solutions applied today in the market [107–109], namely, dedicated
hardware acceleration and aggressive over-dimensioning, diminish the very reasons that
make virtualization appealing for the RAN in the first place: flexibility and cost-efficiency.

On the one hand, research has shown that clouds require 5x more resources
than dedicated platforms to attain similar performance guarantees in real mobile
networks [120]. On the other hand, dedicated accelerators make vDUs more expensive
and power-hungry than their pure hardware counterparts [121]—let alone the fact that
the much-longed hardware/software decoupling is not achieved.

105

Process
UL

control

Forethread

DL data
workers

Process
DL

control

Process
DL/UL
data

Proc. UL dataUL data
workers

Proc. DL data

Figure 9.5: Dedicated workers for
UL/DL data processing tasks. Forethread
coordinates subframe processing.

Process
UL

control

Proc. DL data

Forethread

DL data
workers

Process
DL

control

Proc. UL dataUL data
workers Phase I Phase II

Figure 9.6: Computing allowance, split
into two phases, impose a hard deadline on
UL/DL data workers.

Conversely, the research community either (i) strives to expedite the processing time
of some operations involved in DSP tasks (usually forward error correction, by exploiting
SIMD instructions, intra-task parallelization, and other software optimizations) [122]; or
(ii) resorts to compute-aware radio scheduling methods [57], which can only track slow
and predictable dynamics.

These solutions certainly help but they do not tackle the core problem: a DSP pipeline
architecture that is unable to accommodate cloud computing fluctuations. Even if hardware
accelerators are shared à la cloud, as shown in Fig. 9.1, queueing in the abstraction layer
brokering access to the accelerators fall into similar issues [12]. Hence, we must find
new solutions to enable carrier-grade vRANs without compromising the advantages of
virtualization.

In this work, we take a step back, look at the PHY’s architecture as a whole, and design
a supple DSP processor that is suitable for clouds. Our design follows two objectives: (i)
resiliency upon deficit of computing resources; and (ii) task parallelization to efficiently
exploit multi-core clouds. To this end, we rely upon the four techniques illustrated in
Figures 9.5, 9.6, 9.7 and 9.8:

(Fig. 9.5) We parallelize UL and DL data processing tasks with dedicated workers, in addition
to performing pipeline parallelization. These are coordinated by a forethread, and
are initiated as early as possible every DSP job to maximize their computing
allowance.

(Fig. 9.6) We grant UL and DL data workers a fixed time budget to accomplish their tasks and
terminate them upon hard deadlines (red mark)—this ensures a minimum viable
subframe every TTI that preserves synchronization. Moreover, a ring buffer
allows us to absorb jitter when encoding DL data.

(Fig. 9.7) We deploy predictors to infer the decodability of UL data upon reaching the
forethread’s deadline. This allows us to provide additional slack to UL data workers

106 Designing a Cloud-native Radio Access Networks

Process
UL

control

Proc. DL data

Forethread

DL data
workers

Process
DL

control

Proc. UL dataUL data
workers Phase I Phase II

Figure 9.7: Early HARQ predicts the
decodability of unfinished UL data tasks.

Process
UL

control

Forethread

DL data
workers

Process
DL

control

Proc. UL dataUL data
workers Phase I Phase II

Proc. DL data

Figure 9.8: Congestion controller adapts
the generation of data tasks to the available
computing capacity.

and, hence, to minimize resource wastage.

(Fig. 9.8) We integrate a simple congestion control mechanism to dynamically adapt the
rate of workload (grants) to the availability of computing capacity.

In this way, in coalition with DSP task optimizations such as those in [122], the
proposed cloud-native approach takes a firm step forward to rid of dedicated hardware.
As shown by the purple line in Fig. 9.4, our proposed cloud-native approach sustains
maximum throughput despite severe fluctuations in computing capacity. The details of
our design and is presented in Section 9.3, while a thorough experimental assessment is
exposed in Chapter 10.

9.1. Fundamentals of 4G and 5G

In this section, we first introduce the fundamentals of 4G LTE and 5G New Radio (NR)
that are relevant to understand this work (Section 9.1). Then, we present the details of
the baseline PHY pipeline architecture introduced earlier (Section 9.1).

A primer in LTE & NR PHY

We next review characteristics of 4G LTE and 5G NR PHYs that are relevant for our
work. The interested reader may find more details in [123,124] and references therein.

NR adopts Orthogonal Frequency Division Multiplexing Access (OFDMA) with Cyclic
Prefix (CP) for both DL and UL transmissions, which enables fine-grained scheduling over
a time-spectrum grid, and Multiple-Input Multiple-Output (MIMO) techniques. While
LTE also adopts OFDMA in the DL, it relies on single-carrier FDMA (SC-FDMA) for
UL, a linearly precoded flavor of OFDMA that reduces peak-to-average power ratio in
mobile terminals.

9.1 Fundamentals of 4G and 5G 107

PDCCH carrying DCI

PDCCH not carrying DCI

PDSCH

PUSCH

DL

UL

TTI Subframe

S
u
bc

a
rr
ie
rs

Signaling
data
allocation

Figure 9.9: Subframes and PHY radio channels (FDD).

An example of the radio operation for FDD is depicted in Fig. 9.9. In the time
domain, each frame is comprised of 10 Subframes (SFs), each with 1-ms duration. Each
SF comprises 2 slots, each with 7 (with normal CP) or 6 (with extended CP) Orthogonal
Frequency Division Multiplexing (OFDM) symbols for LTE; and one or more slots, each
with 14 (with normal CP) or 12 (with extended CP) OFDM symbols for NR, depending
of the (flexible) OFDM numerology employed, which is configurable in 5G. Accordingly,
a TTI, which specifies the time resolution for scheduling, is equal to 1 ms in LTE and
configurable to one or multiple slots in NR. Without loss in generality, we will assume a
TTI is equal to 1 ms (baseline numerology in NR) to simplify our explanations. In the
spectrum domain, SFs comprise a number of subcarriers with inter-subcarrier spacing
equal to 15 kHz in LTE and variable, between 15 KHz and 240 kHz, for NR. LTE and
NR support different bandwidth configurations up to 20 MHz and 100 MHz, respectively.

The time-spectrum grid is divided into channels which, although LTE and NR map
into mildly different formats and grid allocations, are conceptually similar. Table 9.1
provides a summary of these PHY channels.

Downlink Channels and Signals
PDSCH Physical DL Shared Channel: Carries user data, higher-layer user information and paging,

as indicated in PDCCH.
PDCCH Physical DL Control Channel: Carries resource assignments and UL scheduling grants.
PBCH Physical Broadcast Channel: Carries basic information about the BS, e.g., bandwidth.
PHICH (LTE only) Physical HARQ Indicator Channel: Carries UL Hybrid-ARQ feedback.
PCFICH (LTE only) Physical Control Format Indicator Channel: Indicates the format used for

PDCCH and PHICH.
PSS/SSS Primary/Secondary Synchronization Signals: Signals used for synchronization and BS

identity.
Uplink Channels and Signals

PUSCH Physical UL Shared Channel: Carries user data as indicated in PDCCH and, optionally,
UL Control Information (UCI).

PUCCH Physical UL Control Channel: Carries UCI including feedback (HARQ, channel quality,
etc.) and scheduling requests.

Table 9.1: LTE & NR Channels

108 Designing a Cloud-native Radio Access Networks

FFT
(UL)

PUSCH
process

PUCCH
process

Get
DL/UL
grants

Base signals
(PSS/SSS,

PBCH)

PDSCH
process

PDCCH
process

PHICH
process

IFFT
(DL)

UL subframe (TTI n) DL subframe (TTI n+M)

UCI: PDSCH
ACK/NACK

UL HARQ Feedback

MACMAC
UL: Scheduling
Requests

DL: Resource allocation

Control Format

UL/DL: Resource allocation

From MAC

DSP worker

T=n+1

Transport TransportWait

T=n+M

δ

UL HARQ Feedback

4G LTE only

Processing budget = M-2δ-1 ms

Offloaded to
RU in O-RAN

Offloaded to
RU in O-RAN

Figure 9.10: LTE and NR PHY pipeline: DSP job n

A Physical Resource Blocks (PRB), comprised of 12 subcarriers and 1 slot, is the
smallest resource unit that can be allocated; and a Transport Block (TB) carries data
using a variable number of PRBs. The size of a TB depends on the state of data buffers
and the selected Modulation and Coding Scheme (MCS), which in turn depends on the
SNR. Every TTI, Physical Downlink Shared Channel (PDSCH) (for DL) and/or Physical
Uplink Shared Channel (PUSCH) (for UL) carry one TB (or two, in some MIMO settings)
for each user.

The grid allocation of TBs are indicated by DL/UL grants, computed by the Medium
Access Control Layer (MAC) scheduler, and carried by PDCCH’s Downlink Control
Information (DCI), as shown in Fig. 9.9.

Hybrid Automatic Repeat Request (HARQ), combining Forward Error Correction
(FEC) and Automatic Repeat Request (ARQ), is used for error control. To this end,
explicit feedback is received from the users in Uplink Control Information (UCI) messages
carried by PUSCH or Physical Uplink Control Channel (PUCCH), and TBs are encoded
with low-density parity-check codes (NR) or turbo codes (LTE).

Baseline DSP pipeline

A vPHY processor hosts a set of DSP workers. Every TTI, an idle worker handles
DSP job n, which consists of the pipeline shown in Fig. 9.10 [15,108,116]:

1. Process uplink subframe n (received during TTI n):

1.1. First, wireless samples corresponding to the nth UL SF are transformed into
OFDM symbols by performing Fast Fourier Transformation (FFT) and CP
removal.4

1.2. Then, the PUSCH and PUCCH channels are demodulated, decoded and
processed, providing UL TBs (data) and UL feedback (DL HARQ, channel
quality, scheduling requests) to the MAC layer.

2. Compute UL/DL grants carried by DL SF n + M : Schedule resources for
DL data and UL requests, considering HARQ and channel quality feedback. The

4 This task may be offloaded to the RU in O-RAN.

9.2 LTE and NR pipeline diagnosis 109

choice of M establishes the pipeline depth of the vPHY (more later).

3. Process downlink subframe n+M :

3.1. First, the base signals are encoded and modulated into the DL SF template,
including Primary Synchronisation Signal (PSS)/Secondary Synchronisation
Signal (SSS), Physical Broadcast Channel (PBCH), and, in case of LTE,
Physical Control Format Indicator Channel (PCFICH).

3.2. Then, the PDSCH and the Physical Downlink Control Channel (PDCCH) are
processed, encoded, and modulated, according to the UL/DL grants.

3.3. Finally, the encoded OFDM symbols corresponding the DL SF n + M are
converted into wireless samples by adding CP and performing Inverse Fast
Fourier Transformation (IFFT). The corresponding wireless samples are then
sent to the radio transmission chain, with sub-ms transportation delay δ, at
time n+M (note the “wait” at the end).4

Existing vRAN solutions, often built on top of Intel’s FlexRAN, expedite the execution of
individual tasks using SIMD extensions and intra-task parallelization, or they are simply
offloaded into hardware accelerators [122].

The choice of M sets a maximum allowance of M −2δ−1 ms for each worker to finish
a DSP job. This is because DL SF n+M must be delivered to the RU precisely at time
n + M . Therefore, this approach enables a maximum pipeline depth of M − 1 workers
processing DSP jobs in parallel: DSP worker 1 processes DSP job n (i.e., DL SF n and
UL SF n+M), worker 2 processes DSP job n+1 (i.e., DL SF n+1 and UL SF n+M+1),
and, in general, worker M − 1, processes job n+M − 2 (i.e., DL SF n+M − 2 and UL
SF n + 2M − 2). Fig. 9.11 shows an example with M = 4 (the usual case): note that,
because each worker must finish up in ∼3 ms, there can only be a maximum of 3 workers
processing DSP jobs in parallel at any given time.

9.2. LTE and NR pipeline diagnosis

The design presented in Section 9.1 is not suited for clouds without the assistance of
dedicated hardware acceleration or aggressive over-dimensioning [108], which compromise
flexibility and cost-efficiency [121]. We have identified the following issues.

Timing constraints. PHY tasks have hard time constraints. In LTE, the latency
between PUSCH reception and delivery of HARQ feedback shall be within 4 ms. NR
has other constraints: K0—delay between DL allocation (in PDCCH) and the associated
data delivery (within PDSCH); and K3—delay between ACK/NACK reception in UL
UCI and the corresponding DL re-transmission (PDSCH).

110 Designing a Cloud-native Radio Access Networks

ADC

TTI/job
n+2

TTI/job
n

4 ms

ADC ADC ADC
DAC DAC DAC DAC

Worker 1

Not needed

Worker 2

Worker 3

Worker 4

TTI/job
n+3

TTI/job
n+4 TTI n+4 TTI n+5 TTI n+6 TTI n+7

Figure 9.11: vPHY pipeline parallelization for M = 4 and four DSP workers in a worker-
time grid. Colored cells represent the computing budget of a worker to process a DSP job.
Because each job must be completed within 3 ms (M = 4), worker 1 must be available
to process job n + 3, which makes worker 4 always idle (dashed cells) and it is hence
redundant. Therefore, the maximum pipeline depth is 3, i.e,. 3 parallel workers.

Though these timings are tunable, they are configured at longer timescales by the CU.
As a consequence, these timing settings impose a deadline to process each DSP job and,
hence, caps the maximum pipeline depth at the vPHY. In practice, setting M = 4 is the
usual choice [125] (mandatory for LTE), which enables up to 3 useful parallel workers as
in Fig. 9.11.

Head-of-line blocking. Regardless of individual task optimizations [122], different PHY
processing tasks (such as PDSCH encoding, PUSCH decoding, or PUCCH decoding) are
strongly coupled.

For instance, DL resource allocations must be computed before actually mapping the
PDSCH into the resource grid; all UL TBs in PUSCH must be decoded before computing
UL scheduling grants; and so on.

As a result, known implementations (e.g., Samsung’s vDU [108], srsRAN5 and
OpenAirInterface6) perform each DSP job in a single-thread pipeline (Fig. 9.10), or
in a multi-thread pipeline where each thread has to wait and be executed in a precise
order [116], which boils down to Fig. 9.10 again. This prevents task parallelization and
causes head-of-line blocking, which averts an efficient use of multi-core clouds to expedite
job executions.

Unreliability. As hinted in our toy experiment shown in Fig. 9.4, the computing time
required by DSP tasks highly depends on the instantaneous availability of computing
resources. We note moreover that the most compute-intensive tasks also depend on the
context, that is, on the data load (rate of TBs to decode/encode) and on the mobility

5http://www.srsran.com/
6https://www.openairinterface.org/

http://www.srsran.com/
https://www.openairinterface.org/

9.2 LTE and NR pipeline diagnosis 111

Load = 25% Load = 50% Load = 75% Load = 100%

9dB 16dB 23dB 30dB 9dB 16dB 23dB 30dB 9dB 16dB 23dB 30dB 9dB 16dB 23dB 30dB
0

10
20
30

SNR

Th
ro

ug
hp

ut
 (M

b/
s)

Uplink Downlink

Load = 25% Load = 50% Load = 75% Load = 100%

9dB 16dB 23dB 30dB 9dB 16dB 23dB 30dB 9dB 16dB 23dB 30dB 9dB 16dB 23dB 30dB
0

100
200
300

SNR

Ti
m

e
(m

s)

UL Scheduling PDCCH enc. DL Scheduling FFT IFFT PDSCH enc. PUSCH dec.

Figure 9.12: Throughput performance for both uplink and downlink (top). CPU time
required by different PHY layer functions (bottom). Different uplink/downlink load
(relative to the maximum) and channel conditions (SNR).

patterns of the users (signal quality) [58], which can induce very quick fluctuations in the
demand for computing resources.

To illustrate this, we deploy our baseline vDU, implemented in srsRAN [15], processing
downlink and uplink traffic over one Intel i7 core in a 10-MHz band. Fig. 9.12 depicts
the achieved throughput in both the uplink and downlink (top subplots), and the median
time incurred by the CPU to perform DSP tasks (bottom subplots). We take these
measurements for different load intensities (relative to the capacity in UL and DL,
respectively) and average SNR indicating the channel quality for both UL and DL, and
adapt the MCS to minimize the workload issued by the decoder (differently to our results
in Fig. 9.3).

The results yield two observations. First, encoding TBs for PDSCH and (especially)
decoding TBs from PUSCH are the two tasks that consume CPU time the most, which
is not surprising as it has been observed before [15]. Second, while the CPU time of the
rest of tasks (and others not shown in the figure to reduce clutter) remains practically
constant,7 the time required to process PDSCH and PUSCH highly depends on the
context; that is, on the SNR—and so on the mobility patterns of the users, and on
the load—and hence on the behaviour of the users.

This gives in upon head-of-line blocking, causing unreliability, as there is no guarantee
that wireless samples encoding a minimally functional subframe will be ready for
transmission every TTI (see Fig. 9.2).

Conclusions: Optimization techniques exploiting AVX SIMD instructions (e.g., using
Intel’s FlexRAN platform) and intra-task parallelization as in [122] certainly help to
relieve these issues, but they do not tackle the fundamental problem at its core: a

7To be precise, the processing time of these tasks does vary with the number of users (e.g., scheduling
becomes more complex); however, our results (not shown here due to space constraints) indicate that this
variability is negligible compared to that of PUSCH and PDSCH processing tasks.

112 Designing a Cloud-native Radio Access Networks

flawed PHY pipeline architecture that cannot accommodate the fluctuations in processing
times intrinsic to cloud infrastructure. Note that even if shared pools of hardware
accelerators are used à la cloud to reduce processing times, queuing in the abstraction
layer brokering access to the accelerators across multiple vDUs incur in similar head-of-line
blocking issues [12]. Needless to say, aggressive over-dimensioning or dedicated hardware
accelerators [108,126] can deal with the aforementioned issues but they compromise cost
and flexibility, the very reasons Network Function Virtualization (NFV) is of interest for
next-generation RANs in the first place [121].

Conversely, we propose a pipeline design that exploits multi-core clouds efficiently to
maximize performance and is resilient to cloud computing fluctuations to attain reliability.

9.3. Cloud-native RAN

To overcome the issues introduced in Section 9.2, we present a novel cloud-native
vPHY architecture Our solution is specifically engineered for 4G LTE and 5G NR
workloads that are virtualized over clouds of shared resources with constrained and/or
fluctuating computing capacity.

Our approach pursues two objectives: (i) resiliency in the presence of computing
fluctuations; and (ii) task parallelization in multi-core clouds to maximize performance.
To this end, we rely upon four main techniques:

1. The baseline design presented earlier exploits pipeline parallelism but not task
parallelism. Pipeline parallelism helps to improve throughput (DSP jobs per unit
of time) but not latency (of each DSP job). Parallelizing data processing tasks
in UL/DL data workers, as illustrated in Fig. 9.5, alleviates the head-of-line
blocking they cause to other important tasks, executed by the forethread, such as
processing control channels or performing IFFT.

2. The time bugdet to process each job n, associated with UL SF n and DL SF n+M ,
goes between time n+ 1 + δ and n+M − δ, which constitutes a fixed allowance of
M − 2δ− 1 ms. The wireless samples of DL SF n+M must be delivered to the RU
at time n + M (and not before; note the “wait” in Fig. 9.10), that is, there is no
benefit in underusing this budget to complete a job.

To use it more efficiently, we divide it into two phases as depicted in Fig. 9.6.
Phase I processes the received UL SF and issues tasks to parallel data workers.
Phase II uses up the budget to harvest the labor of data workers and build the
respective DL SF in time. In this way, data tasks unaccomplished within Phase I
due to sudden cloud fluctuations may be ignored to guarantee (at least) a minimal
viable subframe (MVSF) every TTI.

9.3 Cloud-native RAN 113

FFT
(UL)

PUCCH
process

DL
temp
grants

Base signals
(PSS/SSS,

PBCH)

PHICH
process

IFFT
(DL)

UL subframe (TTI n) DL subframe (TTI n+M)

UL: HARQ
feedback

From MAC

To MAC

UL: Sched Requests

DL: Data Allocation (inc. future
grants if CPU allows) UCI: PDSCH

ACK/NACK

N UL-Data DSP
workers

DSP
forethread

N DL-Data DSP
workers

PUSCH
demux

Decode
TBs

PCFICH
process

PDCCH
process

PDSCH
Mapping

 Encode
 TBs

PHASE II
TIMER

Drop task if worker
exceeds DL SF TIMER

T=n+1 T=Φn:=n+M-τ

Transport Transport

T=n+M

δ
 DL/UL
grants

De-multiplex
data and UCI

E-HARQ

UL/DL: Resource
 allocation

UL: HARQ
Feedback

UL: HARQ
feedback

4G LTE only

Phase IIPhase I

Processing budget = M-2δ-1 ms

Wait

Offloaded to
RU in O-RAN

Offloaded to
RU in O-RAN

Figure 9.13: A 4G/5G PHY pipeline for cloud environments.

3. To mitigate the impact of Phase I’s deadline over UL data tasks during fast
computing fluctuations, we implement an Early Hybrid Automatic Repeat
Request (E-HARQ) procedure that predicts the decodability of unfinished
UL data workers (Fig. 9.7). This provides UL workers extra budget without
compromising the burden of the forethread, i.e., building a DL SF that encodes
HARQ feedback therein.

4. We introduce a simple congestion control mechanism that adapts the generation
of work to UL/DL data workers to slow fluctuations in computing capacity (Fig. 9.8).

The detailed design is depicted in Fig. 9.13. In contrast to the baseline design, where
each DSP job is handled by a single worker (see Fig. 9.10), the proposed cloud-native
pipeline enables a minimum number of three threads processing DSP tasks in parallel:

1. DSP forethread: One thread in charge of (i) performing a minimum subset of
tasks, computationally cheap and roughly deterministic; and (ii) coordinating the
remaining DSP job workers (see middle thread in Fig. 9.13);

2. UL-Data workers: One or more threads in charge of PUSCH decoding heavy-lifting
(top in Fig. 9.13); and

3. DL-Data workers: One or more threads in charge of the bulk of PDSCH processing
tasks (bottom in Fig. 9.13).

Decoupling compute-intensive data processing tasks in this way (top and bottom
threads in Fig. 9.13) effectively washes off head-of-line blocking that affects critical control
tasks performed by the DSP forethread (middle thread of Fig. 9.13) and allows increasing
task parallelization.

Once described the main characteristics of the proposed cloud-native RAN, in the
following sections we will dig into the details of each part of the pipeline, as well as the
mechanisms introduced in the previous section.

114 Designing a Cloud-native Radio Access Networks

9.3.1. DSP forethread

As mentioned above, our cloud-native solution divides the time budget of a DSP job
into two phases, as depicted in Fig. 9.13:

- Phase I: In this phase, the DSP forethread undertakes the most basic tasks
to process the received UL SF n and other UL-independent tasks to process DL SF
n+M . Specifically, Phase I comprises the following sequence of tasks:

1. FFT (in case of Cloud RAN).

2. (modified task) If PUSCH is received, demultiplex UL TBs from UCI
and buffer encoded TBs for external processing by an UL-Data worker
(see Section 9.3.2).

3. Process PUCCH/UCI if present, and encode base signals
(PSS/SSS/PBCH) for the corresponding DL SF n+M .

4. (new task) Compute temporary DL grants depending on the
availability of DL data, radio resources, and computing capacity. To this
end, we employ a simple congestion control mechanism that regulates
the flow of grants it issues, which indirectly controls the demand of
computing resources (details in Section 9.3.4). These DL grants are
temporary, and are stored in a separate buffer for external proceeding
by parallel DL-Data workers (see Section 9.3.2), because only those
processed before the beginning of Phase II will be actually granted in
this job (in DL SF n+M).

5. (new task) Snooze up until time Φn := n + M − τ , where τ is the
processing time incurred by Phase II plus transportation (δ ms). 8

This step is paramount because it lets us maximize the budget share
used by data workers, yet it gives the forethread the leeway to generate
an Minimal Viable Subframe (MVSF) that preserves connectivity if data
workers take longer than Φ during cloud fluctuations or sudden radio
changes.

- Phase II: The forethread awakes at time Φn to finish up DL SF n + M . To
this end, the forethread has τ−δ ms of the budget to perform the following sequence
of tasks:

1. (new task) E-HARQ makes a prediction upon the decodability of TBs
yet unprocessed by UL-Data workers. This prediction is used by the
MAC scheduler to schedule feedback and re-transmissions for the users,

8τ and δ are rather predictable (see Section 9.2) and can be estimated beforehand.

9.3 Cloud-native RAN 115

and lets us give more computing time budget to promising UL TBs that
were not decoded on time. More details in Section 9.3.2.

2. (modified task) Given the state of finished UL-Data workers,
predicted decodability of unfinished UL TBs (see Section 9.3.2), and the
actual amount of grants that the DL-Data workers managed to encode
on time (see Section 9.3.2), the final UL/DL grants are computed by the
MAC scheduler. Similarly to its DL counterpart, UL grants are ruled by
a simple congestion control algorithm, detailed in Section 9.3.4. In the
worst case, when no worker provided input to the buffer of encoded TBs
(e.g., during cloud capacity fluctuations), no DL grants are allocated
and the SF becomes an MVSF with the only responsibility of preserving
connectivity with the users.

3. If DL grants are provided, the encoded TBs are modulated and mapped
into the radio resource grid.

4. All the remaining control channels are processed.

5. IFFT (in case of Cloud RAN).

Dividing the time budget of each DSP job into two phases allows us to improve
performance and attain reliability. First, the idle time at the end of each DSP job in
our reference design (Fig. 9.10), is in our design used by different workers to process
data channels, which helps to increase performance (Fig. 9.13). Second, imposing a hard
deadline to data workers, which separates Phase I and II, guarantees a MVSF every
job, which provides reliability upon computing fluctuations or sudden changes on radio
conditions. In contrast, in the baseline pipeline of Fig. 9.10, head-of-line blocking and
computing fluctuations bar any guarantee to accomplish DSP jobs within the time budget,
hence becoming a source of unreliability and poor performance.

9.3.2. Data workers

Downlink Performance

DL-Data workers are in charge of encoding DL TBs issued by the forethread’s
temporary scheduler, which are stored in a buffer once encoded successfully. Then, during
Phase II, the forethread computes the final DL grants based on those that have already
been encoded and, hence, are stored in the buffer. This allows us to decouple data
encoding tasks from the rest of the pipeline.

It is expected that the temporary scheduler issues an amount of DL grants such that
the amount of workload they generate (by the encoder) can be carried out within Phase I
(before time Φn), as illustrated in Fig. 9.14’s scenario (1). We achieve this by employing a
rate controller that is introduced later in Section 9.3.4. However, during cloud computing

116 Designing a Cloud-native Radio Access Networks

Encode
TB

PDSCH
mappingSnooze

Encode
TB

Snooze

DL SF
TIMER

DL SF
TIMER n+M+K-δ

PDSCH
mappingSnooze

Phase I
(UL SF n+K)

...

... ...

...

Phase II

(1) (2)
DL SF
TIMER

Figure 9.14: DL-Data worker operation.

fluctuations, the DL grants computed by job n’s temporary scheduler may be ready only
at job n + K, for some integer K > 0. Therefore, K represents the amount of time
that DL data is buffered by the vPHY, which allows us to absorb computing fluctuations
appropriately and hence to preserve resiliency during events of computing volatility.

With the above, not only do we attain resiliency, we also carry out work that is
useful at all times, which increases performance. In contrast, the baseline pipeline must
start over each (useless) encoding task every time the budget is violated, which wastes
resources.

Uplink

As shown in Fig. 9.13, as soon as OFDM symbols arrive, the DSP forethread deposits
in a buffer the UL TBs being transported into PUSCH. Then, (coded) TBs are assigned to
idle UL-Data workers, i.e., to decode TBs is the main and only task of UL-Data workers.

Both types of decoders managed by UL-Data workers in 4G and 5G employ an iterative
algorithm to decode data, and a stopping criteria to decide on the decodability of the
TB [127,128]. Then, based on such decision, feedback is provided to the DSP forethread
so grants for UL re-transmissions (or just new UL data) are allocated.

As illustrated in Fig. 9.15, there are 4 possible scenarios:

1. TB is decoded successfully before time Φn: At time Φn, the UL-Data DSP worker
signals an Acknowledgement (ACK) to the UL MAC scheduler, which allocates
HARQ feedback accordingly.

2. TB can be decoded successfully after Φn: In this case, at time Φn, the DSP forethread
uses E-HARQ to predict the positive outcome of the decoding task executed by the
UL-Data DSP worker, and signals an ACK to the UL MAC scheduler, like before.

3. TB is declared undecodable before Φn: At Φn, the UL-Data DSP worker signals
a Negative Acknowledgement (NACK) to the UL MAC scheduler, and a grant to
retransmit the TB is computed accordingly.

4. TB is declared undecodable after Φn: At Φn, E-HARQ predicts the negative outcome
of the worker and signals a NACK to the UL MAC scheduler, like before.

9.3 Cloud-native RAN 117

Decode
TB

DL SF
TIMER

HARQ
predictorSnooze

Decode
TB

DL SF
TIMER

HARQ
predictorSnooze

Decode
TB

HARQ
predictor

NACKSnooze

Decode
TB

HARQ
predictorSnooze

 Noisy
signal

:

ACK ACK

NACK

(1) (2)

(3) (4)

...

...

...

... ...

...

...

Strong
signal

:

Figure 9.15: UL-Data worker operation

It is expected that cases (1) and (3) occur frequently if cloud resources have been
provisioned appropriately and/or our congestion control mechanism (see Section 9.3.4)
adapts sufficiently fast. However, due to the volatility inherent to cloud environments,
cases (2) and (4) will also occur, i.e., UL-Data workers may not finish their task by time
Φn. Simply discarding such TBs is a waste of expensive radio resources. Moreover, the
availability/lack of computing resources has no impact on the decodability of the TBs,
only on the time required to finish the task. To avoid this, the first task executed by the
DSP forethread at the beginning of Phase II, at time Φn, is E-HARQ, with the goal of
predicting the decodability of TBs for UL-Data DSP tasks unaccomplished by time Φ,
which leads us to the next section.

9.3.3. Early HARQ

E-HARQ is recently receiving attention in the context of low-latency communications.
The approach is usually to design appropriate stopping criteria for the iterative algorithms
employed by turbodecoders [128] and Low Density Parity Check (LDPC) decoders [129],
or to predict the decodability of the data to send HARQ feedback early [130]. As
mentioned before, our solution leverages this technique to provide extra time budget
to UL workers.

Let Sw,tn ∈ S denote the state of an UL-Data worker w at time t in DSP job n,
where S is the state space of the decoder. At time Φn, the DSP forethread observes the
state of each unfinished worker, i.e., Sw,Φn for all w ∈ Wu where Wu is the set of active
UL-Data workers, and apply a rule Π(Sw,Φn) ∈ {UNDECODABLE, DECODABLE, UNKNOWN} to
decide upon the decodability, undecodability, or uncertain decodability of the TB.

Once E-HARQ infers the decodability of the TB, it signals the UL MAC scheduler
so it delivers the appropriate UL HARQ feedback to the users and/or schedules re-

118 Designing a Cloud-native Radio Access Networks

transmissions, accordingly, as if the workers had finished their task. UNKNOWN TBs are
treated by the UL MAC scheduler as UNDECODABLE TBs; however, this information
is useful for congestion control, as we will show in Section 9.3.4. If Π(Sw,Φn) =
DECODABLE, the UL-Data worker w is allowed to continue up till a maximum number
of decoding iterations. Usually, Cyclic Redundancy Check (CRC) validation is used as a
stopping criterion. Otherwise, TB is discarded and the UL-Data worker w becomes idle
again and ready to receive new work.

Our approach to design the rule Π and S draws on different ideas from prior work
on turbo and LDPC codes. The key idea behind rests upon the concept of extrinsic
information, which spawns organically by belief propagation algorithms used by both
turbo and LDPC codes. We refer the reader to [131] for detailed information about
these coding techniques. In a nutshell, belief information is encoded into Log-Likelihood
Ratio (LLR), Lb := ln Prob(b=+1|input)

Prob(b=−1|input) , where “input” refers to all the inputs of each
decoding node i in a decoder, and b represents the information symbol (bit). The key to
iterative decoding is the sequence of a posteriori LLRs of the information symbols, #»

L
(k)
xi ,

which is exchanged every iteration k between the decoding nodes so each node takes
advantage of the information computed by the others.

To improve the bit estimations every iteration, the different nodes need to exchange
belief information that do not originate from themselves. The original concept of extrinsic
information was conceived precisely to identify the information components that depend
on redundant information introduced by the incumbent code. Such extrinsic LLRs #»

L
(k)
ei

are used to transform a posteriori LLRs into a priori LLRs #»

L
(k+1)
ai used as an input in the

next decoding iteration. For instance, a turbo decoder, consisting of two convolutional
decoding nodes, computes two sets of extrinsic LLR vectors every iteration as follows:

#»

L(k)
ei

= #»

L(k)
xi
− #»

Lx −
#»

L(k)
an
, ∀i 6= n ∈ {1, 2}

where #»

Lx is the sequence of input symbols to the decoder.
Extrinsic LLRs can be good estimators of the decodability of the Code Blocks (CBs)

that constitute a TBs. We define Sw,Φn := {K,
#»

L̄e1 , . . . ,
#»

L̄eD}, where D,K ∈ N are,
respectively, the number of decoding nodes and the number of iterations completed by
w by then.

#»

L̄ei := [L̄(1)
ei , . . . , L̄

(K)
ei] is a K-dimensional vector comprised of the mean

magnitude of extrinsic LLRs at every iteration k = {1, . . . ,K}, i.e., L̄(k)
ei = 1

N

∑N
b=1 |L

(k)
ei,b
|,

where N is the length of the CB being decoded and Lei,b is the extrinsic LLR of bit b.
Fig. 9.16 shows the mean

#»

L̄ei of both decoding nodes in a turbo decoder for decodable
CBs (colored with a blue-green-yellow gradient) and for undecodable CBs (colored in
red).9 The color of decodable CBs indicate the maximum number of iterations required
till CRC validates their successful decoding. We can observe that the mean extrinsic

9Dataset available at [hidden to respect the author’s anonymity].

9.3 Cloud-native RAN 119

0

500

1000

1500

1 2 3 4 5 6 7 8 9 10
Decoder Iteration

M
ea

n
ex

tri
ns

ic
 m

ag
ni

tu
de

Total nr.
of iterations

1

2

3

4

5

6

7

8

9

10

Figure 9.16: Mean extrinsic magnitude for each iteration of a turbodecoder. Dot/line
indicate the average value across multiple PUSCH TBs with different MCS, TBS and
SNR. Error bars indicate the standard deviation.

magnitude of undecodable CBs (in red) is small and rather steady across iterations. In
contrast, the mean extrinsic magnitude of decodable CBs grow over iterations. That
is, there exist patterns of extrinsic information as it propagates across iterations in the
decoder that are distinguishable between decodable CBs and undecodable CBs.

In light of the above, we implement a simple rule Π #»γ , parametrized with #»γ = [γ1, γ2]
and detailed in Algorithm 1, that poses minimal overhead to the DSP architect. Note
that, in case we do not have enough extrinsic information to make a prediction because
the decoder has not completed any iteration, we resort to simple predictive models that
only rely on SNR estimates such as that in [132].

9.3.4. Congestion control

For a vPHY processor operating in clouds, it is important to adapt the demand for
computing resources to the system capacity. This is a fundamentally different paradigm
to that of RANs using dedicated hardware. The proposed cloud-native solution, generates
temporary DL grants, and hence workload to the DL-Data workers during Phase I, and
UL grants, and hence workload to the UL-Data workers during Phase II. To achieve the
above goal, the computation of theses grants (and so the resulting workload) based on the
data buffers, the channel quality—like regular schedulers—and the available computing
capacity.

Adapting a flow of requests (encoding/decoding tasks, in this case) to a server capacity
(cloud platform) falls into the realm of congestion control. Hence, we resort to mechanisms

120 Designing a Cloud-native Radio Access Networks

Algorithm 1 E-HARQ rule Π #»γ

1: if K < 1 then
2: if P(MCS,SNR, N) > ε then . Using [132]
3: Ω← UNKNOWN
4: else
5: Ω← DECODABLE
6: end if
7: else
8: if

(
L̄

(K)
eD < γ1

)
‖
(
L̄

(K)
eD − L̄

(2)
eD < γ2

)
then

9: Ω← UNDECODABLE
10: else
11: Ω← DECODABLE
12: end if
13: end if
14: Return Ω ∈ {UNDECODABLE, DECODABLE, UNKNOWN}

amply used in networking protocols such as TCP. Similarly to TCP flows, schedulers
integrate an UL and a DL congestion window that regulate the flow of respective grants
that can be generated: cwndUL and cwndDL, respectively.

We adopt a conventional Additive-Increase/Multiplicative-Decrease (AIMD)
algorithm where the congestion window additively increases by α PRBs every DSP
job n (cwnd(n+1) = cwnd(n) + α) as long as congestion is not detected or the
maximum PRB capacity is reached, and multiplicatively decreases by a backoff factor
β (cwnd(n+1) = cwnd(n) · β) if congestion is detected. Of course, congestion is inferred
differently for UL and DL:

For DL grants, congestion is signalled if the aggregate amount of PRBs stored in
the DL-Data buffer exceeds λ times the PRB capacity of the vDU per TTI;

For UL grants, congestion is signalled every time E-HARQ declares the decodability
of a TB as UNKNOWN.

10 Experimental evaluation

To validate and evaluate our pipeline design, we have implemented the designed cloud-
native solution into srsRAN’s stack [15] with the parameters shown in Table 10.1, and
use its implementation of the baseline architecture shown in Fig. 9.10 as our benchmark.

We next:

Validate cloud-native’s approach and assess its performance with different settings
(congestion control, E-HARQ) in both downlink and uplink scenarios (Section 10.2
and Section 10.4);

Assess the proposed E-HARQ under different network conditions and computing
capacity settings (Section 10.3);

Evaluate cloud-native RAN in scenarios with a variable number of vDUs
contending for shared computing resources (Section 10.5).

Table 10.1: Cloud-native Parametrization

Parameter Value
Pipeline parallelization depth (M) 4

Nr. DL-DSP workers 3 per forethread
Nr. UL-DSP workers 3 per forethread
UL-DSP buffer size 8 grants
DL-DSP buffer size 25 grants
Phase II budget (τ) 1.3 ms

UL Congestion Control (α, β) 3, 0.9
DL Congestion Control (α, β, λ) 3, 0.9, 2

E-HARQ (γ1, γ2) 600, 200

121

122 Experimental evaluation

Cloud-native (l = 2) Cloud-native (l = 4) Cloud-native (l =¥) Baseline

0.00
0.25
0.50
0.75
1.00

1/5 1/40 1/80 1/120
Encoder computing capacity (b/ns)

Th
ro

ug
hp

ut
 (r

el
at

iv
e)

0

10

20

30

1/5 1/40 1/80 1/120
Encoder computing capacity (b/ns)

Bu
ffe

rin
g

(T
TI

s)

Figure 10.1: Downlink throughput (left) and vPHY buffering (right) with saturating
DL load. Comparison between the baseline and cloud-native approach with different λ
settings under different computing capacities.

10.1. Testbed description

Similarly to all the evaluations performed in this work, we deployed a real scenario
based on off-the-shelf Intel(R) Xeon(R) CPU D-1528 server with six x86 cores @ 1.90GHz,
and Linux containers to host vDU instances. To avoid uncontrolled effects, we disable
hyperthreading and apply CPU shielding to allocate five cores to host vDU instances; the
remaining core is reserved for the OS and other processes (e.g., for monitoring). Both
vDU and User Equipment (UE) run over an Ettus USRP board connected similarly to
the testbeds used in Sections 7.1.1, 7.2.1 and 7.3.1

10.2. Downlink

We begin by assessing the performance with downlink traffic. To this end, we set up a
scenario comprised of one vDU transmitting as much load as possible with high SNR, and
measure throughput (rate of bits successfully decoded by the receiver) and buffering (time
elapsed between scheduling a data grant for encoding and actually delivering it over the
air). Fig. 10.1 compares the performance of our baseline and the cloud-native approach
with different settings of λ, for different amount of computing resources allocated to the
vDU’s encoder, measured as the number of bits that are processed by time unit, between
8 b/µs and 200 b/µs. As a reference, a dedicated Intel Xeon core @ 1.9GHz provides an
encoding performance of 200 b/µs.

We first note that the baseline approach is inelastic: its throughput collapses suddenly
when its DSP jobs exceed the available processing time budget (see Fig. 9.10). In
marked contrast, the cloud-native solution preserves high throughput irrespective of the
available computing capacity, providing elasticity upon cloud computing fluctuations.
Indeed, λ serves to choose the desired trade-off between data buffering at the vPHY
(shown by the right-most subplot) and throughput. When λ = ∞, effectively

10.3 Uplink (Early HARQ) 123

g 1 = 200, g 2 = 200
g 1 = 400, g 2 = 200
g 1 = 600, g 2 = 200
g 1 = 600, g 2 = 400

0.00 0.25 0.50 0.75 1.00
Accuracy

g 1 = 200, g 2 = 200
g 1 = 400, g 2 = 200
g 1 = 600, g 2 = 200
g 1 = 600, g 2 = 400

0.00 0.25 0.50 0.75 1.00
False Positives

Figure 10.2: E-HARQ accuracy and false positive rate for different γ settings, and for
different combinations of MCS, TB size, SNR, and computing capacity.

disabling congestion control, the cloud-native solution is greedy and maintains maximum
throughput irrespective of the computing capacity but incurs high buffering. Lower values
of λ help reduce buffering at the cost of throughput upon cloud computing fluctuations.

10.3. Uplink (Early HARQ)

Different combinations of SNR, MCS, TB size, and computing capacity have different
effects on the E-HARQ’s performance. To assess this, we test different Πγ (see
Algorithm 1) and show in Fig. 10.2 its accuracy (ratio of predictions made right, at
the top), and its ratio of false positives (bottom subplot). The latter is relevant because a
false positive, i.e., acknowledging a TB that is not decodable, incurs substantially higher
cost because the TB has to be recovered by higher layers such as RLC or even TCP (if
RLC does not use ARQ). This exercise lets us explore the parameter space of our E-HARQ
approach and choose the most appropriate setting. Although {γ1 =600, γ2 =400} reaches
a negligible false positive ratio (∼ 0.04%) and high accuracy (95%), we have selected
{γ1 = 400, γ2 = 200} because it attains 99% accuracy while keeping a low ratio of false
positives as well (∼0.1%).

Certainly, the actual performance is determined by the (extrinsic) information
available when Phase II starts in each DSP job. To get additional insight on this, we
present in Fig. 10.3 the minimum computing capacity required by the decoder to attain
a given target of accuracy from 50% to 99% for 3 different SNR regimes (low, with
SNR below 20 dB, medium, with SNR up to 25 dB, and high), and 6 different MCS
indexes (14 to 19) from 3GPP.1 As a baseline to compare against, we plot with a red line

1A higher MCS index allows higher data bit count per PRB by either reducing the coding rate or
increasing the modulation level. See 3GPP TS 36.213.

124 Experimental evaluation

E-HARQ
provides

35x tolerance

High tolerance to
computing deficit

Low SNR Medium SNR High SNR

14 15 16 17 18 19 14 15 16 17 18 19 14 15 16 17 18 19
0

100
200
300
400

Modulation and Coding Scheme (MCS) index

D
ec

od
in

g
la

te
nc

y
to

le
ra

nc
e(

ns
/b

it)

Target accuracy
0.5

0.6

0.7

0.8

0.85

0.9

0.95

0.99

no E-HARQ

Figure 10.3: Maximum computing latency supported by cloud-native’s E-HARQ given a
target accuracy.

the computing capacity required to run up to 10 decoder iterations in our time budget,
which is the usual threshold to decide on the decodability of a TB when E-HARQ is not
employed. As a reference, a dedicated Intel Xeon core @ 1.9GHz provides a decoding
performance of ∼80 b/µs per iteration.

To attain high accuracy during medium and high SNR regimes, we only require
sufficient computing resources so our decoder can process ∼2.5 bits/µs (400 ns per bit).
This is true for all MCSs under medium SNR except for MCS 19, which tightens its
computing capacity requirement to ∼10 bit/µs. During low SNR regimes, we need to
process bits at a rate higher than ∼20 bit/µs if we target 99% accuracy. The rest of
MCS indexes under evaluation alternate between high and mild processing requirements
depending on the accuracy target and MCS during low SNR conditions. Remarkably,
our E-HARQ mechanism alone lets us reduce by 35x the amount of computing capacity
required to carry out the task.

10.4. Capacity region

We now characterize empirically the capacity region of one vDU under high SNR
regimes. To this end, we measure DL and UL throughput for a wide set of UL/DL
network load combinations. We also vary the amount of computing resources allocated
to the encoder and the decoder by scaling them down to k · c0, where c0 is the nominal
encoding/decoding capacity of a dedicated Intel Xeon core @ 1.9GHz, and k ≥ 1 Our
results are shown in Fig. 10.4 for the cloud-native solution, tuned with and without
E-HARQ and λ= {2,∞}, and for our baseline approach. To ease visualization, we only
present the region envelop and a few experimental points around it.

10.4 Capacity region 125

Cloud-native (l = ¥) Cloud-native (l = 2) Cloud-native (l = 2, no E-HARQ) Baseline

Higher network capacity

k=1

0.0 0.2 0.4 0.6 0.8 1.0
0.00
0.25
0.50
0.75
1.00

U
pl

in
k

th
ro

ug
hp

ut
 (r

el
at

iv
e)

Capacity region
shrinks

k=1/2.5

0.0 0.2 0.4 0.6 0.8 1.0

0.25
0.50
0.75
1.00

Baseline
collapses

k=1/4

0.0 0.2 0.4 0.6 0.8 1.0
0.00
0.25
0.50
0.75
1.00

Nuberu preserves DL
even w/o E-HARQ

k=1/5.5

0.0 0.2 0.4 0.6 0.8 1.0
0.00
0.25
0.50
0.75
1.00

Downlink throughput (relative)

Figure 10.4: Capacity region of the cloud-native solution and our baseline. Different
computing capacity settings equal to k · c0, where c0 is the nominal encoding/decoding
capacity of a dedicated Intel Xeon core @ 1.9GHz.

Obviously, when we have dedicated and over-dimensioned computing capacity (k = 1),
the networking capacity region shows a rectangular shape where uplink and downlink
reach maximum spectral efficiency. However, if we reduce the system’s computing capacity
by k = 1/2.5, the Cloud-native approach with λ =∞ (in purple line) preserves the highest
theoretical spectrum efficiency.2 Moreover, with λ = 2 (in dark blue line) provides a much
higher maximum aggregate throughput than our baseline approach (yellow line). Most
of this capacity gain comes from E-HARQ, as it can be seen from the fact that our
solution falls to the baseline’s performance when E-HARQ is disabled (green line). As
we reduce the amount of computing resources (k = 1/5 and k = 1/5.5), the baseline’s
capacity region keeps shrinking while the cloud-native approach sustains high downlink
capacity (even if E-HARQ is disabled) as well as uplink (unless E-HARQ is disabled and
the computing con-ditions are the harshest, i.e., k = 1/5.5). Remarkably, with k = 1/5.5,
which represents an 80% computing resource reduction over the best scenario for the
baseline, the cloud-native approach reaches ∼95% of the maximum theoretical spectrum
efficiency.

2As shown by our earlier experiment, this comes at the cost of buffering at the vPHY (results omitted
due to space constraints).

126 Experimental evaluation

Cloud-native (l = ¥) Cloud-native (l = 2) Cloud-native (l = 2, no E-HARQ) Baseline

0.0
0.2
0.4
0.6
0.8
1.0

0 1 2 4 6 8 10
Number of competing vDUs

U
L

th
ro

ug
hp

ut
 (r

el
at

iv
e)

0.0
0.2
0.4
0.6
0.8
1.0

0 1 2 4 6 8 10
Number of competing vDUs

D
L

th
ro

ug
hp

ut
 (r

el
at

iv
e)

Figure 10.5: Network capacity for a variable number of vDUs contending for computing
resources.

10.5. Multiple vDUs

In the previous sections, we have characterized the performance of the proposed cloud-
native approach (and the baseline’s) as a function of the processing speed provided by
the cloud infrastructure. In the following, we keep the maximum processing speed of our
experimental platform (which attains 200 encoded bits/µs and ∼80 decoded bits/µs per
iteration), and deploy multiple vDU instances sharing the common computing resource
(five Intel Xeon cores @ 1.90GHz).

Specifically, we let one vDU under test compete for resources with a variable number
of baseline vDUs. Baseline vDUs do not adapt their workload to the available capacity;
instead, we let them generate DSP jobs with a duration that follows a normal distribution
with average 1 ms and standard deviation 0.25 ms. Fig. 10.5 depicts the UL and DL
throughput (left and right subplots, respectively) when the vDU under test uses the cloud-
native approach with the same settings used before (blueish and green bars), and when
it uses the baseline (yellow bar), for different scenarios where the number of competing
(baseline) vDUs spans between 0 and 10.

The performance of the proposed cloud-native approach remains high in all scenarios.
Only when E-HARQ is not employed, UL throughput drops approximately 5% per
competing vDU. When using E-HARQ, UL throughput only drops 10% when λ = 2
and ∼ 2% when λ = ∞. Conversely, our cloud-native approach attains the maximum
spectral efficiency in the DL channel irrespective of the number of contending vDUs. In
marked contrast, the performance of our baseline approach drops significantly with every
competing vDU: UL performance collapses when it competes with more than 1 vDU,
and DL throughput only reaches 27% with 2 competing vDUs and < 5% with a higher
amount of competitors. This result provides strong evidence of the elasticity and high
efficiency of the proposed cloud-native solution in shared cloud environments.

11 Summary Part III

Research has shown that resource contention in cloud infrastructure degrades the
performance provided by dedicated platforms. Virtualized RANs are especially sensitive
to this problem due to the real-time timing constraints of many of its operations. In this
section, we have proposed a novel Distributed Unit (DU) design specifically engineered for
4G and 5G vRANs that are virtualized over clouds of shared resources with constrained
and/or fluctuating computing capacity.

The proposed cloud-native solution builds around four main techniques: (i) high
parallelization and decoupling of data processing tasks; (ii) tight deadline control of
data processing tasks; (iii) decodability prediction, which provides additional computing
budget to uplink data tasks; (iv) a control feedback loop that adapts the generation
of workload (data grants to encode/decode) to the availability of computing capacity.
In contrast to baseline designs where each DSP job is handled by a single worker,
the proposed cloud-native approach enables high intra-job parallelization. Decoupling
compute-intensive data processing tasks in this way effectively washes off head-of-line
blocking that affects critical control tasks and allows us to increase task parallelization.

A comprehensive evaluation of our solution has been conducted in a proof-of-concept.
Our results show that it dramatically improves the robustness of vRANs in cloud
environments over state-of-art solutions, e.g., providing as much as ∼ 95% spectrum
efficiency when computing resources are reduced by ∼80%.

127

12 Conclusions and future work

12.1. Conclusions

Network slicing and virtualization of network functions are key enablers for next
generation mobile networks. Along this work, we have investigated and proposed different
solutions to properly overcome the challenges arising from them.

The first block describes the design process we have followed to properly characterize
the evolution of mobile networks. We have proposed a path towards a cloud-aware
mobile protocol stack and a novel architecture envisioned to run functions as atomic
pieces independent of the cloud infrastructure.

The second block contains the complete process of design and implementation we
have followed to bring network slicing to softwarized mobile networks. More precisely,
in Section 6.1 we have presented POSENS, an open source solution for practical end-to-
end network slicing based on slice-aware shared RAN. This tool includes all the software
components needed to deploy a multi-slice network setup. POSENS enables the slicing
of the RAN as well as the core, which are fundamental building blocks for achieving
end-to-end network slicing. We have validated POSENS in an experimental deployment,
showing how it can obtain per-slice customization without paying a price in terms of
performance. Then, we have described in Section 6.2 our hands-on experience gained
from the implementation of some distinctive functionality of 5G Networking and (i) multi-
slice orchestration. All our designs and software implementations (based on open-source
software) are publicly available through scientific publications and code repositories. The
obtained results and tools that we release will prove very useful to researchers and
practitioners working on this area of research. Furthermore, in Section 6.3 we have
proposed a new framework for flexible re-orchestration of virtual network functions,
which allows on-the-fly orchestration without disrupting ongoing services. We have
developed an implementation of a 5G protocol stack that realizes it and have applied
it to Virtual Network Functions (VNFs) of different nature. We have evaluated the
resulting performance in a realistic network slicing setup, showing the feasibility and

129

130 Conclusions and future work

advantages of flexible re-orchestration. The flexible re-orchestration framework envisioned
and implemented for this work fits very well the current trends in network softwarization
followed by the industry.

Finally, the last block describes the process to properly design a cloud-native RAN.
We have designed a novel PHY pipeline architecture specifically thought for cloud
environments (Section 9.3) which perfectly fits with the architectural requirements
of future network deployments. With this approach, we dramatically improved the
robustness and efficiency when suffering from resources fluctuations on shared cloud
environments.

The research conducted along this thesis effectively closes the gap between
specification and experimentation, proposing at the same time novel ideas to adequately
overcome the identified challenges. Moreover, we have covered all the building blocks
of next generation mobile networks (RAN, CN, transport and MANO) from design to
implementation.

12.2. Future Work

Continuing with the softwarization of networks, the logical step forward is to continue
working on the re-design of network functions towards a complete serverless approach.
Regarding the network functions placed in the core network, more network functions can
be designed using the Context/Execution (c/e) split to evaluate its performance using
the proposed framework for flexible orchestration.

At the RAN level, there are still open challenges to address towards a fully serverless
design. For example, a complete design to correctly split high/low PHY while being
able to accomplish their communication constraints or the usage of task accelerators to
perform specific tasks implemented as atomic operations could be interesting challenges
to address as future work.

Moreover, initiatives such as Open RAN1 are promoting architectures to build
virtualized RAN on open hardware, enabling AI-based radio control. Withing this
field, there are multiple interesting challenges related with the design of the proposed
components and thinking about how to include and evaluate a RAN implementation
similar to the one we propose in this work.

1https://www.o-ran.org/

References

[1] G. Garcia-Aviles, C. Donato, M. Gramaglia, P. Serrano, and A. Banchs, “Acho:
A framework for flexible re-orchestration of virtual network functions,” Computer
Networks, vol. 180, p. 107382, 2020.

[2] M. Gramaglia, P. Serrano, A. Banchs, G. Garcia-Aviles, A. Garcia-Saavedra, and
R. Perez, “The case for serverless mobile networking,” in 2020 IFIP Networking
Conference (Networking). IEEE, 2020, pp. 779–784.

[3] G. Garcia-Aviles, M. Gramaglia, P. Serrano, F. Gringoli, S. Fuente-Pascual, and
I. L. Pavon, “Experimenting with open source tools to deploy a multi-service and
multi-slice mobile network,” Computer Communications, vol. 150, pp. 1–12, 2020.

[4] G. Garcia-Aviles, M. Gramaglia, P. Serrano, and A. Banchs, “Posens: A
practical open source solution for end-to-end network slicing,” IEEE Wireless
Communications, vol. 25, no. 5, pp. 30–37, October 2018.

[5] G. Garcia-Aviles, M. Gramaglia, P. Serrano, M. Portoles, A. Banchs, and F. Maino,
“Semper: a stateless traffic engineering solution for wan based on mp-tcp,” in 2018
IEEE International Conference on Communications (ICC). IEEE, 2018, pp. 1–6.

[6] S. Henri, G. García, P. Serrano, A. Banchs, and P. Thiran, “Protecting against
website fingerprinting with multihoming,” Proceedings on Privacy Enhancing
Technologies, vol. 2020, no. 2, pp. 89–110, 2020.

[7] M. Gramaglia, I. Labrador Pavón, F. Gringoli, G. Garcia-Aviles, and P. Serrano,
“Design and validation of a multi-service 5g network with qoe-aware orchestration,”
in Proceedings of the 12th International Workshop on Wireless Network Testbeds,
Experimental Evaluation & Characterization, 2018, pp. 11–18.

[8] P. Serrano, M. Gramaglia, D. Bega, D. Gutierrez-Estevez, G. Garcia-Aviles, and
A. Banchs, “The path toward a cloud-aware mobile network protocol stack,”
Transactions on Emerging Telecommunications Technologies, vol. 29, no. 5, p.
e3312, 2018.

131

132 REFERENCES

[9] W. Nakimuli, G. Landi, R. Perez, M. Pergolesi, M. Molla, C. Ntogkas, G. Garcia-
Aviles, J. Garcia-Reinoso, M. Femminella, P. Serrano et al., “Automatic deployment,
execution and analysis of 5g experiments using the 5g eve platform,” in 2020 IEEE
3rd 5G World Forum (5GWF). IEEE, 2020, pp. 372–377.

[10] 3GPP, “System architecture for the 5G System (5GS),” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 23.501, 03 2019,
version 15.5.0. [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3144

[11] “OSM project,” https://osm.etsi.org/.

[12] O-RAN Alliance, “Cloud Architecture and Deployment Scenarios for O-RAN
Virtualized RAN v02.01 (O-RAN.WG6.CAD-v02.01),” Technical Report, Jul. 2020.

[13] P. Serrano, P. Salvador, V. Mancuso, and Y. Grunenberger, “Experimenting
With Commodity 802.11 Hardware: Overview and Future Directions,” IEEE
Communications Surveys Tutorials, vol. 17, no. 2, pp. 671–699, 2015.

[14] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bonnet,
“Openairinterface: A flexible platform for 5g research,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 5, pp. 33–38, 2014.

[15] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano, C. Cano, and
D. J. Leith, “srslte: An open-source platform for lte evolution and experimentation,”
in Proceedings of the Tenth ACM International Workshop on Wireless Network
Testbeds, Experimental Evaluation, and Characterization, 2016, pp. 25–32.

[16] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancalepore, N. Sastry,
O. Holland, S. Tayade, B. Han, D. Bega et al., “Network slicing to enable scalability
and flexibility in 5g mobile networks,” IEEE Communications magazine, vol. 55,
no. 5, pp. 72–79, 2017.

[17] D. Bega, M. Gramaglia, C. J. Bernardos Cano, A. Banchs, and X. Costa-Perez,
“Toward the network of the future: From enabling technologies to 5g concepts,”
Transactions on Emerging Telecommunications Technologies, vol. 28, no. 8, p.
e3205, 2017.

[18] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slicing and
softwarization: A survey on principles, enabling technologies, and solutions,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2429–2453, 2018.

[19] K. Samdanis, X. Costa-Perez, and V. Sciancalepore, “From network sharing to
multi-tenancy: The 5g network slice broker,” IEEE Communications Magazine,
vol. 54, no. 7, pp. 32–39, 2016.

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://osm.etsi.org/

REFERENCES 133

[20] X. Foukas, M. K. Marina, and K. Kontovasilis, “Orion: Ran slicing for a flexible
and cost-effective multi-service mobile network architecture,” in Proceedings of the
23rd annual international conference on mobile computing and networking, 2017,
pp. 127–140.

[21] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,”
ACM SIGCOMM computer communication review, vol. 38, no. 2, pp. 69–74, 2008.

[22] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bonnet,
“Openairinterface: A flexible platform for 5g research,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 5, pp. 33–38, 2014.

[23] E. P. Report, “1st etsi nfv plugtests,” Mar. 2017.

[24] J. Mendes, X. Jiao, A. Garcia-Saavedra, F. Huici, and I. Moerman, “Cellular access
multi-tenancy through small-cell virtualization and common rf front-end sharing,”
Computer Communications, vol. 133, pp. 59–66, 2019.

[25] C.-Y. Chang, N. Nikaein, and T. Spyropoulos, “Radio access network resource
slicing for flexible service execution,” in IEEE INFOCOM 2018-IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2018,
pp. 668–673.

[26] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Kontovasilis, “Flexran:
A flexible and programmable platform for software-defined radio access networks,”
in Proceedings of the 12th International on Conference on emerging Networking
EXperiments and Technologies, 2016, pp. 427–441.

[27] “Mosaic5G ecosystem,” http://mosaic-5g.io/.

[28] X. Foukas, F. Sardis, F. Foster, M. K. Marina, M. A. Lema, and M. Dohler,
“Experience building a prototype 5g testbed,” in Proceedings of the Workshop on
Experimentation and Measurements in 5G, 2018, pp. 13–18.

[29] C.-Y. Huang, C.-Y. Ho, N. Nikaein, and R.-G. Cheng, “Design and prototype of
a virtualized 5g infrastructure supporting network slicing,” in 2018 IEEE 23rd
International Conference on Digital Signal Processing (DSP). IEEE, 2018, pp.
1–5.

[30] “The POWDER testbed,” https://powderwireless.net/.

[31] “The COSMOS lab,” https://www.cosmos-lab.org/.

http://mosaic-5g.io/
https://powderwireless.net/
https://www.cosmos-lab.org/

134 REFERENCES

[32] P. Rost, C. J. Bernardos, A. De Domenico, M. Di Girolamo, M. Lalam, A. Maeder,
D. Sabella, and D. Wübben, “Cloud technologies for flexible 5g radio access
networks,” IEEE Communications Magazine, vol. 52, no. 5, pp. 68–76, 2014.

[33] 3GPP, “Feasibility study on new services and markets technology enablers,” 2015.

[34] N. Alliance, “5g white paper,” Next generation mobile networks, white paper, vol. 1,
2015.

[35] A. De La Oliva, X. C. Pérez, A. Azcorra, A. Di Giglio, F. Cavaliere,
D. Tiegelbekkers, J. Lessmann, T. Haustein, A. Mourad, and P. Iovanna, “Xhaul:
toward an integrated fronthaul/backhaul architecture in 5g networks,” IEEE
Wireless Communications, vol. 22, no. 5, pp. 32–40, 2015.

[36] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach, “Virtual
network embedding: A survey,” IEEE Communications Surveys & Tutorials, vol. 15,
no. 4, pp. 1888–1906, 2013.

[37] E. Dahlman, S. Parkvall, J. Skold, and P. Beming, 3G evolution: HSPA and LTE
for mobile broadband. Academic press, 2010.

[38] A. L. Amarisoft, “100-software lte base station on pc.”

[39] G. T. 38.801, “Study on new radio access technology: Radio access architecture and
interfaces,” 2016.

[40] S. C. Forum, “Small cell virtualization: Functional splits and use cases. White
Paper, release 6.0, 2016,” 2016.

[41] D. Sabella, P. Rost, A. Banchs, V. Savin, M. Consonni, M. Di Girolamo, M. Lalam,
A. Maeder, and I. Berberana, “Benefits and challenges of cloud technologies for 5g
architecture,” in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring).
IEEE, 2015, pp. 1–5.

[42] C. Mobile, “C-ran: the road towards green ran,” White paper, ver, vol. 2, no. 5, pp.
15–16, 2011.

[43] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger,
and L. Dittmann, “Cloud ran for mobile networks-a technology overview,” IEEE
Communications surveys & tutorials, vol. 17, no. 1, pp. 405–426, 2014.

[44] M. C. Valenti, S. Talarico, and P. Rost, “The role of computational outage
in dense cloud-based centralized radio access networks,” in 2014 IEEE Global
Communications Conference. IEEE, 2014, pp. 1466–1472.

REFERENCES 135

[45] E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes, and J. N.
de Souza, “Elasticity in cloud computing: a survey,” annals of telecommunications-
annales des télécommunications, vol. 70, no. 7, pp. 289–309, 2015.

[46] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud computing: What it
is, and what it is not,” in 10th International Conference on Autonomic Computing
({ICAC} 13), 2013, pp. 23–27.

[47] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “How
should i slice my network? a multi-service empirical evaluation of resource sharing
efficiency,” in Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, 2018, pp. 191–206.

[48] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture enables
devops: Migration to a cloud-native architecture,” Ieee Software, vol. 33, no. 3, pp.
42–52, 2016.

[49] P. Aditya, I. E. Akkus, A. Beck, R. Chen, V. Hilt, I. Rimac, K. Satzke, and M. Stein,
“Will serverless computing revolutionize nfv?” Proceedings of the IEEE, vol. 107,
no. 4, pp. 667–678, 2019.

[50] M. Condoluci and T. Mahmoodi, “Softwarization and virtualization in 5g mobile
networks: Benefits, trends and challenges,” Computer Networks, vol. 146, pp. 65–84,
2018.

[51] 3GPP, “NG-RAN; Architecture description,” TS 38.401, v15.7.0, Mar. 2020.

[52] ——, “System architecture for the 5G System,” TS 28.801, Mar. 2019.

[53] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-
access edge computing: A survey of the emerging 5g network edge cloud architecture
and orchestration,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp.
1657–1681, 2017.

[54] V. Nagendra, A. Bhattacharya, A. Gandhi, and S. R. Das, “Mmlite: A scalable
and resource efficient control plane for next generation cellular packet core,” in
Proceedings of the 2019 ACM Symposium on SDN Research, 2019, pp. 69–83.

[55] B. Pfaff et al., “The design and implementation of open vswitch,” in 12th USENIX
NSDI 2015.

[56] 3GPP, “Management and orchestration; provisioning,” TS 28.531, v15.2.0, Mar.
2019.

136 REFERENCES

[57] D. Bega, A. Banchs, M. Gramaglia, X. Costa-Pérez, and P. Rost, “Cares:
Computation-aware scheduling in virtualized radio access networks,” IEEE
Transactions on Wireless Communications, vol. 17, no. 12, pp. 7993–8006, 2018.

[58] J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez, A. Banchs,
and J. J. Alcaraz, “vrain: A deep learning approach tailoring computing and radio
resources in virtualized rans,” in The 25th Annual International Conference on
Mobile Computing and Networking, 2019, pp. 1–16.

[59] Cilium, “BPF and XDP Reference Guide,” 2020. [Online]. Available: https:
//cilium.readthedocs.io/en/latest/bpf/

[60] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and G. Carle,
“Performance implications of packet filtering with linux ebpf,” in 2018 30th
International Teletraffic Congress (ITC 30), vol. 1. IEEE, 2018, pp. 209–217.

[61] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “Deepcog:
Cognitive network management in sliced 5g networks with deep learning,” in IEEE
INFOCOM 2019-IEEE Conference on Computer Communications. IEEE, 2019,
pp. 280–288.

[62] Y. Wang, R. Forbes, C. Cavigioli, H. Wang, A. Gamelas, A. Wade, J. Strassner,
S. Cai, and S. Liu, “Network management and orchestration using artificial
intelligence: Overview of etsi eni,” IEEE Communications Standards Magazine,
vol. 2, no. 4, pp. 58–65, 2018.

[63] B. Gerő, D. Jocha, R. Szabó, J. Czentye, D. Haja, B. Németh, B. Sonkoly, M. Szalay,
L. Toka, C. J. B. Cano et al., “The orchestration in 5g exchange, a multi-provider
nfv framework for 5g services,” in 2017 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN). IEEE, 2017, pp. 1–2.

[64] L. Ma, X. Wen, L. Wang, Z. Lu, and R. Knopp, “An sdn/nfv based framework
for management and deployment of service based 5g core network,” China
Communications, vol. 15, no. 10, pp. 86–98, 2018.

[65] D. M. Gutierrez-Estevez, M. Gramaglia, A. De Domenico, N. Di Pietro, S. Khatibi,
K. Shah, D. Tsolkas, P. Arnold, and P. Serrano, “The path towards resource
elasticity for 5g network architecture,” in 2018 IEEE Wireless Communications
and Networking Conference Workshops (WCNCW). IEEE, 2018, pp. 214–219.

[66] J. Ortín, C. Donato, P. Serrano, and A. Banchs, “Resource-on-demand schemes
in 802.11 wlans with non-zero start-up times,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 12, pp. 3221–3233, 2016.

https://cilium.readthedocs.io/en/latest/bpf/
https://cilium.readthedocs.io/en/latest/bpf/

REFERENCES 137

[67] “3GPP TS23.501, System Architecture for the 5G System„” Rel. 15, 2018.

[68] “3GPP TR28.801, telecommunication management;study on management and
orchestration of network slicing for next generation network,” Rel. 15, 2018.

[69] O. R. Alliance, “O-ran: towards an open and smart ran,” White Paper, 2018.

[70] X. Li and C. Qian, “A survey of network function placement,” in 2016 13th IEEE
Annual Consumer Communications & Networking Conference (CCNC). IEEE,
2016, pp. 948–953.

[71] A. Laghrissi and T. Taleb, “A survey on the placement of virtual resources and
virtual network functions,” IEEE Communications Surveys & Tutorials, vol. 21,
no. 2, pp. 1409–1434, 2018.

[72] H. Talebian, A. Gani, M. Sookhak, A. A. Abdelatif, A. Yousafzai, A. V. Vasilakos,
and F. R. Yu, “Optimizing virtual machine placement in iaas data centers:
taxonomy, review and open issues,” Cluster Computing, vol. 23, no. 2, pp. 837–
878, 2020.

[73] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. N. Chang, M. R. Lyu, and
R. Buyya, “Cloud service reliability enhancement via virtual machine placement
optimization,” IEEE Transactions on Services Computing, vol. 10, no. 6, pp. 902–
913, 2016.

[74] “OSM Release FIVE Technical Overview,” https://osm.etsi.org/images/
OSM-Whitepaper-TechContent-ReleaseFIVE-FINAL.pdf, Jan. 2019, online;
accessed Apr. 2020.

[75] “ONAP Architecture Overview whitepaper,” https://www.onap.org/wp-content/
uploads/sites/20/2019/07/ONAP_CaseSolution_Architecture_062519.pdf, July
2019, online; accessed Apr. 2020.

[76] “OSM Information Model,” https://osm.etsi.org/wikipub/index.php/OSM_
Information_Model, 2019, online; accessed Dec. 2019.

[77] M. E. Elsaid and C. Meinel, “Live migration impact on virtual datacenter
performance: Vmware vmotion based study,” in 2014 International Conference on
Future Internet of Things and Cloud. IEEE, 2014, pp. 216–221.

[78] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual machine
migration: Challenges, techniques, and open issues,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 2, pp. 1206–1243, 2018.

https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseFIVE-FINAL.pdf
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseFIVE-FINAL.pdf
https://www.onap.org/wp-content/uploads/sites/20/2019/07/ONAP_CaseSolution_Architecture_062519.pdf
https://www.onap.org/wp-content/uploads/sites/20/2019/07/ONAP_CaseSolution_Architecture_062519.pdf
https://osm.etsi.org/wikipub/index.php/OSM_Information_Model
https://osm.etsi.org/wikipub/index.php/OSM_Information_Model

138 REFERENCES

[79] “Openstack Docs live-migrate instances,” https://docs.openstack.org/nova/pike/
admin/live-migration-usage.html, 2019, accessed: Dec 2019.

[80] “VMware vSphere vMotion architecture, performance and best practices in vmware
vsphere 5: Performance study,” Technical White Paper, 2011, 2019, online; accessed
Dec. 2019.

[81] S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: Complete container state
migration,” in 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2017, pp. 2137–2142.

[82] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire,
S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library operating systems
for the cloud,” SIGPLAN Not., vol. 48, no. 4, pp. 461–472, Mar. 2013. [Online].
Available: http://doi.acm.org/10.1145/2499368.2451167

[83] S. Troia, A. Rodriguez, R. Alvizu, and G. Maier, “Senatus: An experimental
sdn/nfv orchestrator,” in 2018 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), Nov 2018, pp. 1–5.

[84] T. . 3GPP, “Enhancements of dedicated core networks selection mechanism (release
14),” 2016.

[85] 3GPP, “Nr; overall description; stage-2,” TS 38.300 V15.0.0, Jan. 2018.

[86] E. G. N.-M. 001, “Network functions virtualisation (nfv); management and
orchestration,” v1.1.1, Dec. 2014.

[87] S.-Q. Lee and J.-u. Kim, “Local breakout of mobile access network traffic by
mobile edge computing,” in 2016 International Conference on Information and
Communication Technology Convergence (ICTC). IEEE, 2016, pp. 741–743.

[88] A. Garcia-Saavedra, X. Costa-Perez, D. J. Leith, and G. Iosifidis, “Fluidran:
Optimized vran/mec orchestration,” in IEEE INFOCOM 2018-IEEE Conference
on Computer Communications. IEEE, 2018, pp. 2366–2374.

[89] Y. Zaki, T. Weerawardane, C. Gorg, and A. Timm-Giel, “Multi-qos-aware fair
scheduling for lte,” in 2011 IEEE 73rd Vehicular Technology Conference (VTC
Spring). IEEE, 2011, pp. 1–5.

[90] ETSI, “Network Functions Virtualisation (NFV);Use Cases,” Tech. Rep. GS NFV
001, 10 2013, v1.1.1.

[91] 3GPP, “Management and orchestration; Concepts, use cases and requirements,” 3rd
Generation Partnership Project (3GPP), Technical Specification (TS) 28.530, 12

https://docs.openstack.org/nova/pike/admin/live-migration-usage.html
https://docs.openstack.org/nova/pike/admin/live-migration-usage.html
http://doi.acm.org/10.1145/2499368.2451167

REFERENCES 139

2018, version 15.1.0. [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3273

[92] “Snowmix - the swiss army knife of open source live video mixing.” https://snowmix.
sourceforge.io/.

[93] “Apache Tomcat project,” https://tomcat.apache.org/.

[94] “FFMPG project,” https://ffmpeg.org/.

[95] X. Feng, J. Tang, X. Luo, and Y. Jin, “A performance study of live vm migration
technologies: Vmotion vs xenmotion,” in 2011 Asia Communications and Photonics
Conference and Exhibition (ACP), Nov 2011, pp. 1–6.

[96] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das,
and A. Akella, “Opennf: Enabling innovation in network function control,”
in Proceedings of the 2014 ACM Conference on SIGCOMM, ser. SIGCOMM
’14. New York, NY, USA: ACM, 2014, pp. 163–174. [Online]. Available:
http://doi.acm.org/10.1145/2619239.2626313

[97] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield, “Split/merge: System
support for elastic execution in virtual middleboxes,” in Presented as part of
the 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13). Lombard, IL: USENIX, 2013, pp. 227–240. [Online]. Available: https:
//www.usenix.org/conference/nsdi13/technical-sessions/presentation/rajagopalan

[98] “3GPP TS23.502, Procedures for the 5G System (5GS); stage 2 (release 16)„” Rel.
16, 2020.

[99] “ETSI, network functions virtualisation (nfv) release 3; evolution and ecosystem;
report on network slicing support with etsi nfv architecture framework,” 2017.

[100] “3GPP TS29.510, 5G System; Network function repository services; Stage 3
(Release 15),,” Rel. 15, 2020.

[101] “ONOS Project,” https://onosproject.org, 2019, online; accessed Dec. 2019.

[102] “Cloud-native network functions,” Cisco White Paper, 2018. [Online].
Available: https://www.cisco.com/c/en/us/solutions/service-provider/industry/
cable/cloud-native-network-functions.html

[103] “3GPP TS28.541, Management and orchestration; 5G Network Resource Model
(NRM); Stage 2 and stage 3„” Rel. 15, 2018.

[104] “5G-PPP vision and mission,” https://5g-ppp.eu/about-us/.

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3273
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3273
https://snowmix.sourceforge.io/
https://snowmix.sourceforge.io/
https://tomcat.apache.org/
https://ffmpeg.org/
http://doi.acm.org/10.1145/2619239.2626313
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/rajagopalan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/rajagopalan
https://onosproject.org
https://www.cisco.com/c/en/us/solutions/service-provider/industry/cable/cloud-native-network-functions.html
https://www.cisco.com/c/en/us/solutions/service-provider/industry/cable/cloud-native-network-functions.html
https://5g-ppp.eu/about-us/

140 REFERENCES

[105] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y. Kwon, and B.-J. Kim, “Performance
comparison analysis of linux container and virtual machine for building cloud.”
Science & Engineering Research Support soCiety, dec 2014. [Online]. Available:
https://doi.org/10.14257/astl.2014.66.25

[106] 5G-CORAL, “Refined design of 5G-CORAL orchestration and control system and
future directions,” D3.2, May 2019.

[107] Intel, “vRAN: The Next Step in Network Transformation,” White Paper, 2017.

[108] Samsung, “Virtualized Radio Access Network: Architecture, Key technologies and
Benefits.” Technical Report, 2019.

[109] Cisco, Rakuten, Altiostar, “Reimagining the End-to-End Mobile Network in the 5G
Era,” White Paper, 2019.

[110] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling network function
parallelism in nfv,” in Proceedings of ACM SIGCOMM 17. ACM, 2017, pp. 43–56.

[111] P. Kumar, N. Dukkipati, N. Lewis, Y. Cui, Y. Wang, C. Li, V. Valancius,
J. Adriaens, S. Gribble, N. Foster, and A. Vahdat, “Picnic: Predictable virtualized
nic,” in Proceedings of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM 19. Association for Computing Machinery, 2019, pp. 351–366.

[112] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-aware
performance prediction for virtualized network functions,” in Proceedings of ACM
SIGCOMM 20. ACM, 2020, pp. 270–282.

[113] J. Gong, Y. Li, B. Anwer, A. Shaikh, and M. Yu, “Microscope: Queue-based
performance diagnosis for network functions,” in Proceedings of ACM SIGCOMM
20. ACM, 2020, pp. 390–403.

[114] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Ratnasamy,
and S. Shenker, “Resq: Enabling slos in network function virtualization,”
in 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). Renton, WA: USENIX Association, Apr. 2018, pp. 283–297. [Online].
Available: https://www.usenix.org/conference/nsdi18/presentation/tootoonchian

[115] 3GPP, “5G;NG-RAN; Architecture description ,” 3GPP TS 38.401 version 16.2.0
Release 16, Dec. 2020.

[116] W. T. Han and R. Knopp, “OpenAirInterface: A pipeline structure for 5G,” in 2018
IEEE 23rd International Conference on Digital Signal Processing (DSP). IEEE,
2018, pp. 1–4.

https://doi.org/10.14257/astl.2014.66.25
https://www.usenix.org/conference/nsdi18/presentation/tootoonchian

REFERENCES 141

[117] S. Kumar, E. Hamed, D. Katabi, and L. Erran Li, “Lte radio analytics made easy
and accessible,” in Proceedings of ACM SIGCOMM 14, vol. 44, no. 4. ACM, 2014,
pp. 211–222.

[118] E. Hamed, H. Rahul, and B. Partov, “Chorus: Truly distributed distributed-mimo,”
in Proceedings of ACM SIGCOMM 18. ACM, 2018, pp. 461–475.

[119] Z. A. Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker, “A high
performance packet core for next generation cellular networks,” in Proceedings of
ACM SIGCOMM 17. ACM, 2017, pp. 348–361.

[120] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-PÃ©rez, “Resource
sharing efficiency in network slicing,” IEEE Transactions on Network and Service
Management, vol. 16, no. 3, pp. 909–923, 2019.

[121] Rethink Technology Research, “Special Report: Open Networks.” Technical Report,
2020.

[122] J. Ding, R. Doost-Mohammady, A. Kalia, and L. Zhong, “Agora: Real-time massive
MIMO baseband processing in software,” in Proceedings of ACM CoNEXT 20.
ACM, 2020.

[123] E. Dahlman, S. Parkvall, and J. Skold, 5G NR: The next generation wireless access
technology. Academic Press, 2018.

[124] X. Lin, J. Li, R. Baldemair, J. T. Cheng, S. Parkvall, D. C. Larsson, H. Koorapaty,
M. Frenne, S. Falahati, A. Grovlen, and K. Werner, “5G New Radio: Unveiling
the Essentials of the Next Generation Wireless Access Technology,” IEEE
Communications Standards Magazine, vol. 3, no. 3, pp. 30–37, 2019.

[125] F. Kaltenberger, A. P. Silva, A. Gosain, L. Wang, and T.-T. Nguyen,
“OpenAirInterface: Democratizing innovation in the 5G Era,” Computer Networks,
p. 107284, 2020.

[126] F. Civerchia, M. Pelcat, L. Maggiani, K. Kondepu, P. Castoldi, and
L. Valcarenghi, “Is opencl driven reconfigurable hardware suitable for virtualising 5g
infrastructure?” IEEE Transactions on Network and Service Management, vol. 17,
no. 2, pp. 849–863, 2020.

[127] L. Hanzo, J. P. Woodard, and P. Robertson, “Turbo decoding and detection for
wireless applications,” Proceedings of the IEEE, vol. 95, no. 6, pp. 1178–1200, 2007.

[128] P. Salija and B. Yamuna, “An efficient early iteration termination for turbo
decoder,” Journal of Telecommunications and Information Technology, 2016.

142 REFERENCES

[129] J. Li, G. He, H. Hou, Z. Zhang, and J. Ma, “Memory efficient layered decoder design
with early termination for ldpc codes,” in 2011 IEEE International Symposium of
Circuits and Systems (ISCAS). IEEE, 2011, pp. 2697–2700.

[130] N. Strodthoff, B. Göktepe, T. Schierl, C. Hellge, and W. Samek, “Enhanced machine
learning techniques for early HARQ feedback prediction in 5G,” IEEE Journal on
Selected Areas in Communications, vol. 37, no. 11, pp. 2573–2587, 2019.

[131] Y. Sun and J. R. Cavallaro, “A flexible ldpc/turbo decoder architecture,” Journal
of Signal Processing Systems, vol. 64, no. 1, pp. 1–16, 2011.

[132] P. Rost and A. Prasad, “Opportunistic hybrid arq-enabler of centralized-ran over
non ideal backhaul,” IEEE Wireless Communications Letters, vol. 3, no. 5, pp.
481–484, 2014.

	Acknowledgements
	Published Content
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	I Introduction, motivation and challenges
	Introduction
	Motivation
	Challenges and Contributions
	Thesis overview

	Background
	Mobile Networks
	The 4th Generation of mobile networks
	The 5th Generation of mobile networks

	Network slicing
	Properties and challenges

	Virtualization of Network functions
	Properties and challenges

	Software Defined Networking

	Open Source Virtual Network Functions
	Radio Access Networks
	Core Network
	Management and Orchestration
	Network Slicing

	Software patterns for NFV
	Towards a cloud-aware mobile network protocol
	The quest for cloudification
	Re-designing VNFs internals
	The need for performance indicators

	The case for Serverless mobile networking
	Serverless Mobile Architectures
	Challenges to Address

	Flexible re-orchestration of VNFs
	Advantages of a fine-grained re-orchestration
	State of the art solutions

	Summary Part I

	II Bringing Network Slicing to softwarized mobile networks
	Design and Implementation
	POSENS, a Practical Open Source Solution for end-to-end Network Slicing
	Design of POSENS

	Experimenting with open source tools to deploy a multi-service and multi-slice mobile network
	Novel services considered
	Access Network
	Local breakout
	Core Network
	Management and Orchestration
	Functions beyond 3GPP

	ACHO: A framework for flexible re-orchestration of virtual network functions
	ACHO: A suite for flexible 5G networking
	Re-configuration of VNFs, a context-based approach
	Baseline 5G implementation
	New MANO functionality
	Re-orchestrable VNFs
	ACHO adoption strategies

	Experimental evaluation
	End-to-end Network Slicing implementation
	Testbed Description
	Independence between slices
	Throughput performance
	Slice customization and orchestration
	Compatibility with commercial equipment

	Multi-service and multi-slice deployment evaluation
	Testbed Description
	Slicing-aware MAC Scheduling
	Service Creation Time
	VNF re-location
	Low latency through LB

	Flexible orchestration with ACHO
	Testbed description
	VNF relocation delay
	Performance under re-orchestration

	Summary Part II

	III Bringing cloud nativeness to softwarized mobile networks
	Designing a Cloud-native Radio Access Networks
	Fundamentals of 4G and 5G
	LTE and NR pipeline diagnosis
	Cloud-native RAN
	DSP forethread
	Data workers
	Early HARQ
	Congestion control

	Experimental evaluation
	Testbed description
	Downlink
	Uplink (Early HARQ)
	Capacity region
	Multiple vDUs

	Summary Part III
	Conclusions and future work
	Conclusions
	Future Work

	References

