

Implementation and Evaluation of Open Source LTE-
EPC Software

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Chenhan Zhu

In partial fulfilment

of the requirements for the degree of

MASTER IN TELECOMMUNICATIONS ENGINEERING

Advisor: Dr. ILKER DEMIRKOL

Barcelona, June 2018

Abstract
In general, Software Defined Radio (SDR) is based on a common

hardware platform to use software to implement various communication

modules. There are two crucial keywords in this concept: "universal hardware

platform" and "software." The "universal hardware platform" means that we

can implement a variety of communication functions based on this hardware

platform, not that a hardware platform can only implement one kind of

communication function. "Software" to implement the communication

module is relative to the traditional radio technology. Since the SDR is more

and more popular in the scientific research field, lots of different Open Source

SDR Software can be used. In this thesis, I used two different open source

LTE and EPC software to run the same setup in order to implement and

evaluate the advantages and disadvantages of these software.

Keywords: LTE, eNB, EPC, OpenAirInterface, srsLTE.

Acknowledgements

First of all I would like to thank my parents, who has always supported

me and encouraged me to overcome one obstacle after another.

Second, I must thank the CSC(China Scholarship Council) for giving me

this chance and financial support.

What’s more, I was really grateful to the supervision and ideas of my

advisor, Ilker Demirkol. During this four months, his way of work and attitude

was really inspiring for me.

I would also like to thank Nitin who gived me a very warm welcome

when I first came, Christian who give me advices to be a researcher, Sidtarth

who is my best friend here.

And finally, I am grateful for this amazing city Barcelona, which give

me a memory of a lifetime and taught me how to accept new things in my life.

And I will never finished my thesis without these helps.

Revision history and approval record

Revision Date Purpose

0 18/05/2018 Document creation

1 28/05/2018 Document revision

Written by: Reviewed and approved by:

Date 26/05/2018 Date 28/05/2018

Name Chenhan Zhu Name Dr. Ilker Demirkol

Position Project Author Position Project Supervisor

Contents
Abstract ... 2

Revision history and approval record .. 4

1. Introduction .. 7

2. Background ... 8

2.1 LTE .. 8

2.1.1 Concept ... 8

2.1.2 Architecture of LTE ... 9

2.2 OAI .. 10

2.3 srsLTE ... 11

3. The State of the Art ... 12

3.1 OAI Studies ... 12

3.1.1Physical layer link simulation ... 12

3.1.2 LTE system-level simulation .. 13

3.1.3 SDR-based LTE system ... 13

3.3 srsLTE Studies... 15

3.3.1 Main Feature of srsLTE .. 15

3.3.2 Test environment of srsLTE ... 16

3.3.3 srsLTE’s application ... 16

4. Implementation .. 18

4.1 LTE Link on OAI .. 18

4.1.1 Hardware verification ... 18

4.1.2 Operating system verification ... 20

4.1.3 Get repository ... 22

4.1.4 Connect OAI eNB with COTS UE ... 22

4.2 LTE Link on srsLTE ... 42

4.2.1 Get repository ... 42

4.2.2 LTE network construction .. 44

5. Evaluations .. 52

5.3 Channel quality of B210 and E3372.. 52

5.2 Performance of OAI in different Bandwidth ... 54

5.2 Performance comparison between srsLTE and OAI ... 57

6. Conclusions and future work ... 60

Bibliography .. 61

1. Introduction
Software Radio uses modern software to manipulate and control the

traditional "pure hardware circuit" wireless communication technology. The

important value of software radio technology lies in the fact that the traditional

hardware radio communication equipment only serves as the basic platform

for wireless communication, and many communication functions are

implemented by software, which breaks the realization of the communication

function of the equipment in history and only depends on the development of

the hardware. The emergence of software radio technology is the third

revolution in the field of communications after from fixed communication to

mobile communication and from analog communication to digital

communication.

The key idea of the so-called software radio is to construct a general

hardware platform with openness, standardization, modularization, and

various functions, such as working frequency band, modem type, data format,

encryption mode, communication protocol, etc., all completed by software.

Also, another important purpose is to make broadband A/D and D/A

converters as close to the antenna as possible to develop a new generation of

wireless communication systems that are highly flexible and free. It can be

said that this platform is a platform that can be controlled and redefined by

software. Different software modules can be used to achieve different

functions, and the software can be upgraded and updated. Its hardware can

also constantly update modules and can be upgraded like a computer. Since

software radio's various functions are implemented in software, adding a new

software module is a must if you want to implement a new service or

modulation method. At the same time, because it can form a variety of

modulation waveforms and communication protocols, it can also

communicate with various radio stations in the old system, greatly prolonging

the service life of radio stations, and also saving costs.

The current mainstream SDR-based LTE platform in the world are OAI,

srsLTE, OpenLTE, and so on. And since the function of OpenLTE is too weak,

it is not used by a lot people. For Amarisoft, though it is the best performance

SDR LTE platform at present, it is not an open-source software. So I am only

going to test OAI LTE and srsLTE, along with OAI EPC and srsEPC in this

thesis. In this thesis, I also designed and implemented different LTE/EPC

setups with different version of OAI and Ubuntu, analyzing the throughput,

delay and channel quality metrics.

2. Background

2.1 LTE

2.1.1 Concept

Long Term Evolution (LTE) is a long-term evolution of the universal

mobile telecommunications system (UMTS) technology standard developed

by 3GPP (The 3rd Generation Partnership Project), launched and started in

the 2004 December’s 3GPP Toronto conference formally. The LTE system

introduces key technologies such as Orthogonal Frequency Division

Multiplexing (Orthogonal Frequency Division Multiplexing) and MIMO

(Multi-Input & Multi-Output) and significantly increases spectral efficiency

and data transmission rate (In the case of 64QAM 20M bandwidth 2X2 MIMO,

the theoretical downlink maximum transmission rate is 201 Mbps, and the

signaling overhead is about 150 Mbps. However, it is generally considered

that the downlink peak rate is 100 Mbps and the uplink is 50 Mbps, depending

on the actual networking and terminal capabilities.) Bandwidth allocation:

1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz and 20MHz, etc. And it also

supports the global mainstream 2G/3G frequency band and some new

frequency bands. As a result, the spectrum allocation is more flexible and the

system capacity and coverage are significantly improved. The network

architecture of the LTE system is more flattened and simplified, reducing

network node and system complexity, thereby reducing system latency and

reducing network deployment and maintenance costs. LTE system supports

interoperation with other 3GPP systems. Different LTE systems are divided

into FDD-LTE (Frequency Division Duplexing) and TDD-LTE (Time

Division Duplexing). The main difference between the two technologies lies

in the physical layer of the air interface (like frame structure, time division

design, synchronization, etc.). The uplink and downlink of the air interface of

the FDD system receive and send data in pairs of bands, while the uplink and

downlink of the TDD system use the same frequency band to transmit in

different time slots. Compared with the FDD duplex scheme, the TDD has

higher spectrum utilization.

 2.1.2 Architecture of LTE

The LTE system only has a packet domain. It is divided into two network

elements, an Evolved Packet Core (EPC) and an Evolved Node B (evolved

Node B). The EPC is responsible for the core network part, the signaling

processing part is a Mobility Management Entity (MME), and the data

processing part is a S-GW (Serving Gateway). The eNode B is responsible for

the access network part, which is also called E-UTRAN (Evolved UTRAN),

as shown in FIG.2.1. The set of radio access and core network of LTE receive

the name in the specification of Evolved Packet System (EPS), which has an

E-UTRAN and EPC.

The EPC block also include Home Subscriber Server (HSS), Equipment

Identity Register (EIR), Charging Rules Function (PCRF), Online Charging

System (OCS), Offline Charging System (OFCS).

Figure 2.1 LTE Architecture

2.2 OAI

OpenAirInterface (OAI), also known as OpenAirInterface5g, is an open

source SDR LTE project initiated and maintained by EURECOM in Europe.

EURECOM created the OpenAirInterface (OAI) Software Alliance, a legal

entity independent of EURECOM, designed to provide an ecosystem of open

source, 3GPP's core (EPC) and access network (EUTRAN) protocols.

According to the standard of 3GPP, OAI fully implements three parts of the

core network (EPC), base station (eNB) and user (UE) of the LTE protocol.

Currently, the OAI supports the function of Release 10 and keeps updating.

Recently, the OAI organization is ready to build an open source SDR NB-IoT

platform based on the OAI platform, which is very attractive. Cellular systems

can interoperate with closed sources in any part of the network. In addition to

the huge economic open source model, the alliance will be a huge industrial

and academic tool. More importantly, it will ensure the communication

mechanism between the two. In order to make academia closer to the complex

real world, the system is mainly controlled by industrial engineers in the

wireless industry. In the context of the evolution toward 5G, it is clear OAI is

a prototype framework to ensure common R & D and for rapid proof-of-

concept design.

OAI Gitlab website at https://gitlab.eurecom.fr/oai/openairinterface5g,

the code and the corresponding tutorial can be seen on this site. However, at

present, OAI does not have a forum for users to discuss the issue. There is

only one mailing list, and everybody can ask questions and discuss them in

the mailing list. OAI users would reply to the mail to help each other.

The function of OAI is very powerful. It implements the functions of the

UE, eNB, and EPC full protocol stack according to the 3GPP LTE protocol.

Currently, the Release 10 version is supported and is constantly updated.

However, OAI platform function is too complex, resulting in its operation and

configuration, to be troublesome. For example, for the correct operation of

OAI EPC, you need to separately run the HSS, MME and SPGW three

modules, and the configuration also need to be configured separately,

Therefore, the process is a little bit cumbersome.

2.3 srsLTE

srsLTE is an open source SDR LTE platform developed by a team in

Ireland called SoftwareRadio Systems. SoftwareRadioSystems is a

commercial company engaged in SDR development.

 The company currently includes four products: AirScope, srsLTE, srsUE,

and srsENB. AirScope is a set of LTE air interface signal analyzer based on

SDR. This product is commercial software and needs to be paid for, which is

mostly not suitable for academia. srsLTE is a simple LTE system developed

based on SDR. Only the physical layer have the downlink, and the code is

open source now.

Until last year, srsLTE only has UEs and eNBs. There was no EPC

function, and when srsUE and srsENB were running, they had to connect to

an external EPC. So it was necessary to find a third-party EPC to work with

the srsLTE. However, in 2018, srs has open-sourced their EPC module, and

its configuration and use is very simple. Hence, it is no longer necessary to

use a third-party EPC to build a complete LTE system using srs software.

srsUE is a set of LTE UE systems developed based on SDR. It contains

layers of protocols from PHY to NAS and is currently open source. srsENB

is a set of LTE eNB systems developed based on SDR, including PHY, MAC,

RLC, PDCP, RRC, GTP-U and S1-AP layers. This product was commercial

software and needs to be paid for in the past. But recently, the srsUE, srsENB

and srsEPC are all open source. So I did some test on the srsLTE software in

this thesis.

The srsLTE is subject to the 3GPP Release 10 protocol implementation.

It only supports the FDD duplex mode, and supports two transmission modes

of TM1 (SISO) and TM2 (Transmission Diversity)

Although srsLTE is a set of SDR LTE system, it includes two parts of

eNB and UE, but downlink functions only exist in physical layer, i.e., includes

PSS, SSS, PBCH, PCFICH, PHICH, PDCCH, PDSCH and other channels.

srsLTE installation and operation method is also very simple, but need

to install srsGUI before installing srsLTE. srsLTE will call the srsGUI library

to display the graphical interface in real time. Specific installation and

operation methods can refer to README.md on the official website of

github1.

3. The State of the Art

3.1 OAI Studies

OpenAirInterface (OAI) is a continuously updated, open source SDR

LTE platform, developed and maintained by Eurecom in France. Compared

with other open source SDR LTE platforms, OAI has a wide range of

international application scenarios.

OAI platform is mainly written in C language. OAI has realized LTE

eNBs, UEs and EPCs according to 3GPP standards and is the most complete

one in the open source SDR LTE platforms. In addition, OAI platform also

contains a large number of simulation platform for verification of various

communication algorithms.

The following describes a variety of simulators of OAI studies.

3.1.1Physical layer link simulation

In the OAI folder openairinterface5g/openair1/SIMULATION/LTE_PHY/,

there are six typical physical layer link-level simulation platform.

Simulation platform Features

dlsim Dlsim is a simulation platform of PDSCH

channels. But in fact, dlsim platform also contains

the information of channels like PDCCH. (So dlsim

1 https://github.com/srsLTE/srsLTE

is more like a lightweight LTE physical layer

system simulation platform.)

pbchsim Pbchsim is a simulation platform of PBCH

channel, which contains the transceiver process of

PBCH channel.

pdcchsim Pdcchsim is a simulation platform of PDCCH

channel, which contains the transceiver process of

PDCCH channel.

prachsim Prachsim is a simulation platform of PRACH

channel, which contains the transceiver process of

PRACH channel.

pucchsim Pucchsim is a simulation platform of PUCCH

channel, which contains the transceiver process of

PUCCH channel.

ulsim Ulsim is a simulation platform of PUSCH channel,

which contains the transceiver process of PUSCH

channel.

In addition, if we want to verify or test some physical layer algorithm, we

can modify or add the corresponding code directly in the corresponding

simulation platform. Because the platform is written in C language, the

simulation speed is very fast.

3.1.2 LTE system-level simulation

OAI in the folder openairinterface5g/targets/SIMU/USER/has a LTE

system-level simulation platform oaisim. As oaisim involves all layers of LTE,

various process code, it is suitable for advanced LTE learning. If you want to

validate some of the LTE system-level algorithms or features, you can add the

appropriate code modules on the oaisim platform.

3.1.3 SDR-based LTE system

OAI implements the LTE eNB, the UE and the EPC according to the

3GPP protocol. From a commercial point of view, LTE eNBs and EPCs are

more important. From the scientific point of view, LTE UEs are equally

important. OAI is paying more attention to the development and maintenance

of the eNB and the EPC. The eNB and the EPC are relatively stable. However,

the UE only has the corresponding function and is very unstable.

OAI eNB:

OAI's eNBs now support Release 10 features and are relatively stable.

The system has been branched. Holding 5MHz, 10MHz bandwidth, 20MHz

bandwidth, support FDD, TDD two modes.

OAI eNB mainly contains three threads, one for sending data, one for

receiving data, one for interacting with hardware devices like the USRP.

OAI EPC:

OAI's EPC is basically ready for use today. However, personally I feel

a little difficult to use it. There are too many parameters that need to be

configured.

OAI UE:

The OAI UE has the function of Release 10. But since the OAI

organization emphasize on the OAI eNB and OAI EPC, the organization has

fewer test tables for OAI UEs, resulting in very unstable OAI UEs and more

system bugs. Based on OAI's complete set of SDR LTE system, we have a lot

of application scenarios.

For example,

Wireless Security Research:

The traditional cellular network security research is mainly based on the

OpenBTS system. If we want to study the security of LTE network, we can

base on OAI's SDR LTE system.

New technology communication test:

By adding the appropriate code modules on the OAI system, we can validate

various new communication technologies such as NOMA, MIMO, etc.

Professional network :

In some specific scenarios, we need to build an LTE local area network, and

the OAI platform can provide eNBs and EPCs for the LTE system.

NB-IoT:

Recently, the Internet of Things is very popular. OAI organizations are also

ready to add NB-IoT capabilities on the OAI platform.

3.3 srsLTE Studies

3.3.1 Main Feature of srsLTE

Compatible with LTE Release 10;

FDD configuration:Test bandwidth: 1.4, 3, 5, 10, 15 and 20 MHz;

Transmission modes 1 (single antenna) and 2 (transmission diversity);

UE's cell search and synchronization process;

UE and eNodeB support all DL channels/signals: PSS, SSS, PBCH,

PCFICH, PHICH, PDCCH, PDSCH;

The UE supports all UL channels/signals: PRACH, PUSCH, PUCCH, SRS;

Frequency-based ZF and MMSE equalizers;

Highly optimized turbo decoder for Intel SSE4.1/AVX (+100 Mbps) and C

standard (+25Mbps);

The MATLAB and OCTAVE MEX libraries generate many components;

The UE receiver tests and verifies the Amarisoft LTE 100 eNodeB and the

commercial LTE network (Ireland's Telefonica Spain, Three.ie and Eircom).

Deleted features:

Closed-loop power control

Semi-Persistent scheduling

3.3.2 Test environment of srsLTE

srsLTE runs on Ubuntu system. It was successfully installed on both the

14.04 and 17.04 systems. Therefore, the Ubuntu system can be selected from

14.04 or higher. If the computer is configured, it is best to use the i7 CPU.

The higher the frequency, the better. The installation of the system is

recommended to use a U disk to create a boot disk, and then you can install it.

The library currently supports Ettus Universal Hardware Driver (UHD)

and bladeRF drivers. In addition, any hardware suitable for UHD or bladeRF

drivers is also supported. There is no sample rate conversion, so the hardware

should support a sampling rate of 30.72 MHz in order to keep the LTE

sampling frequency and the decoded signal in LTE base stations working

properly.

SRS have tested the following hardware:

USRP B210

USRP X300

bladeRF

3.3.3 srsLTE’s application

srsLTE’s downlink only exists in the physical layer of LTE, therefore the

application scenario is limited:

1. The LTE signal analyzer in srsUE can use the UE in srsLTE to receive the

signal of the commercial base station and demodulate the system information

of the commercial base station.

2. Physical layer algorithm verification and improvement

After porting the algorithm to srsLTE, the signal over the air interface can

verify the algorithm performance more realistically.

3. The srsLTE provides many function libraries commonly used in LTE

communications. The srsLTE library can be used to design certain LTE for

different purposes.

4. Building LTE Demo.

The LTE Demo can be demonstrated in the laboratory using the function of

srsLTE and some hardware like the USRP.

4. Implementation

4.1 LTE Link on OAI

4.1.1 Hardware verification

It is required at least Intel Core i5-6600 CPU @ 3.30GHz × 4 to

implement a User Equipment (UE) or an eNB.

Our project test USRP B210 and a USRP X310. B210 required a free

USB 3.0 port in PC to operate so that we can support RF. (USB 2.0 is tested

and it is infeasible.) The power was supported by the USB. And then we

change our devices into USRP X310, which required and an ethernet interface

in PC. The ethernet interface of the PC must have a speed faster than

1024MB/S. In addition, since the power consumption of X310 is very high, it

required an independent power cable to provide the electricity.

The PC I used in this thesis is a Ubuntu 14.04 machine with a CPU of i7

7700 and a Ubuntu 16.04 machine with a CPU of i9 7900k.

Figure 4.1 USRP B210

Figure 4.2 USRP X310

Figure 4.3 System and Hardware

4.1.2 Operating system verification

PCs should have installed Ubuntu LTS 14.04.3 (64bits) with low latency

Kernel version 3.19,

if kernel installed is of a different version it can be updated with:

$ sudo apt-get install linux-image-3.19.0-61-lowlatency linux-headers-3.19.0-61-

lowlatency

In order to change into the new kernel, we have to reboot the computer, and

to confirm it is typed:

$ uname -a

Linux “NAME” 3.19.0-61-lowlatency #69~14.04.1-Ubuntu SMP PREEMPT Thu Jun 9

10:15:00 UTC 2016 x86_64 x86_64 x86_64 GNU/Linux.

And the branch of OAI should be tag v0.3.2 under this circumstance.

We can also use Ubuntu LTS 16.04.3 (64bits) with low latency Kernel

version 3.8.

In this case, we should use the develop branch of OAI (>= tag v0.4.0).

Due to real time communications, it is necessary to disable power

management features in the BIOS as p-states, c-states and also disable CPU

frequency scaling.

CPU frequency should be constant, so cpufrequtils is required. In file:

/etc/default/cpufrequtils a new parameter will be added:

$ sudo apt-get install cpufrequtils

$ sudo vi /etc/default/cpufrequtils

And add the following line to it:

GOVERNOR=”performance”

Finally, we need to disable ondemand daemon so that when the next time

that PC be turned on, the settings would not be overwritten.

$ sudo update-rc.d ondemand disable

Once power management features have been disabled, i7z tool is used to

verify that CPU does not change its frequency, and just C0 state remains

available. Figure 4.5 shows the result obtained with i7z tool.

Enter $ sudo i7z in the terminal, it will show an output similar to: (the C0%

should be 100%)

Figure 4.4 Power management features disabled and CPU information

4.1.3 Get repository

In order to obtain the repository for UE/eNB, git must be installed.

$ sudo apt-get update

$ sudo apt-get install subversion git

There are different repositories posted on EURECOM gitlab. Here we use

the openairinterface5g, because it contains source code for UE/eNB RAN.

To install the openairinterface5g, we need to input following sentence in the

terminal.

$ cd ~/

$ git clone https://gitlab.eurecom.fr/oai/openairinterface5g.git

Finally, it is necessary to run once and only once to install missing packages.

$ cd ~/openairinterface5g/

$ cd cmake_targets

$./build_oai -I -w USRP

In this thesis, we use usrp, so we have to type USRP in the sentence to make

the openairinterface5g support the USRP.

4.1.4 Connect OAI eNB with COTS UE

To connect the OAI eNB with UE, there are mainly three ways to achieve

your goal, connecting OAI eNB with OAI UE, connecting OAI eNB with

COTS (Commercial Off-The-Shelf) UE and connecting OAI eNB with

mobile phones.

Figure 4.5 Basic structure of COTS connection

Here I use the COTS as an example. The COTS I use here is LTE Dongle:

Huawei E3372.

Figure 4.6 LTE Dongle: Huawei E3372

 Unlike the OAI UEs, the COTS require the S1 interface and the EPC to

work. Therefore, here the core network part of the OAI is required.

Since I only use one computer for the tests, I use a virtual machine to

work as the EPC. The virtual machine software I used is VMware workstation

14 and the setup is shown in the following figure.

Figure 4.7 Basic setup of the virtual machine

By using the command(in virtual machine):

git clone https://gitlab.eurecom.fr/oai/openair-cn.git

can build the core network which is stored in a folder called openair-cn.

And then run the automated script for openair-cn:

https://gitlab.eurecom.fr/oai/openair-cn.git

git checkout v0.3.2

./build_epc -i #(Need to run only once to install missing packages)

./build_hss -i #(Need to run only once to install missing packages)

When we were building the hss, it would automatically install the SQL server.

However, the installation of SQL server would fail if we only use the

command on the tutorials of OAI. It showed

error2002：can't connect to local mysql server through socket.

After checking, it was found that mysql-server was not automatically installed.

In order to avoid subsequent errors in the database import, I reinstalled the

system and kernel, manually installed mysql-server before performing this

step, and solved the problem.

Therefore, we need to install the SQL (Sudo apt-get install mysql-server)

before build the hss to make this succeed.

And then, after entering 127.0.0.1/phpmyadmin in the browser, the “not

found interface” appears.

I solved this by adding phpmyadmin in Apache configuration

Fisrt open the apache.conf file:

Vim /etc/apache2/apache2.conf

Then add the following statement:

Include /etc/phpmyadmin/apache.conf

Restart the apache service:

/etc/init.d/apache2 restart

And we can enter the SQL server after the above has been done.

Here is the details of my setup. The ip address of different interfaces can be

seen by entering the command “ifconfig”.

Figure 4.8 Detailed LTE setup with Ethernet interfaces and IP addresses

First use “ifconfig” in the eNB(physical machine) to see the IP address of

different interface.

Figure 4.9 Information of the Interface in eNB

Since the virtual machine I used worked in NAT mode, so the interface which

connects the virtual machine is vmnet8. So this interface is the interface of

eNB for EPC.

And then do the same command in the EPC side(virtual machine) to check the

ip address of the MME. In this case the interface is called eth0.

Figure 4.10 Information of the Interface in EPC(The virtual machine)

In configuration file(~/openairinterface5g/targets/PROJECTS/GENERIC-

LTE-EPC/CONF/enb.band7.tm1.usrpb210.conf), we change the IP address

to the IP address of the interface, which we read in the terminal.

So we change the original file into:

////////// MME parameters:

mme_ip_address = ({ipv4 = "172.16.173.128";

ipv6="192:168:30::17";

active="yes";

NETWORK_INTERFACES :

{

ENB_INTERFACE_NAME_FOR_S1_MME = "vmnet8";

ENB_IPV4_ADDRESS_FOR_S1_MME = "172.16.173.1";

ENB_INTERFACE_NAME_FOR_S1U = "vmnet8";

ENB_IPV4_ADDRESS_FOR_S1U = "172.16.173.1";

In EPC configuration file (~/openair-cn/BUILD/EPC/epc.conf.in),

As I mentioned before, we would have to change it into:

NETWORK_INTERFACES :

{

MME_INTERFACE_NAME_FOR_S1_MME = "eth0"; # YOUR NETWORK CONFIG

HERE

MME_IPV4_ADDRESS_FOR_S1_MME = "172.16.173.128/24"; # YOUR NETWORK

CONFIG HERE

SGW_INTERFACE_NAME_FOR_S1U_S12_S4_UP = "eth0"; # YOUR NETWORK

CONFIG HERE

SGW_IPV4_ADDRESS_FOR_S1U_S12_S4_UP = "172.16.173.128/24"; # YOUR

NETWORK CONFIG HERE

PGW_INTERFACE_NAME_FOR_SGI = "eth0"; # YOUR NETWORK CONFIG HERE

PGW_IPV4_ADDRESS_FOR_SGI = "172.16.173.128/24"; # YOUR NETWORK

CONFIG HERE

PGW_MASQUERADE_SGI = "yes"; # YOUR NETWORK CONFIG HERE

And then, compile and run the EPC and the HSS by entering the following

command:

Compile & Run EPC:

cd ~/openair-cn

cd SCRIPTS

./build_epc -c -l

./run_epc -i -r

Compile & Run HSS:

cd ~/openair-cn

cd SCRIPTS

./build_hss -c -l

./run_hss

You should have seen the following words in the terminal when you are

running the EPC and the HSS if you succeed.

Figure 4.10 Both HSS and EPC show “state open”

IN the meantime, the SQL server is required to connect the eNB with the

LTE dongle. We need to change a few parameters.

Parameters to be changed in _hss.conf_:

MYSQL_server _127.0.0.1_;

MYSQL_user _root_;

MYSQL_pass _linux_;

MYSQL_db _oai_db_;

OPERATOR_key _11111111111111111111111111111111_;

Table 4.4: Parameters to be changed in _hss_fd.conf_:

Identity _hss.openair4G.eur_;

Realm _openair4G.eur_;

Then we need to enter the sim card’s information in the SQL server so that

the eNB can recognize the LTE dongle. The sim card’s information can be

read by a card reader like SCR 3310.

Here we have the sim card information like this:

MCC (Mobile Country Code) 214

MNC (Mobile Network Code) 03

TAC (Tracking Area Code) 4

IMSI (International Mobile

Subscriber Identity)

214030000000004

OP (Operator Key) 11111111111111111111111111111111

(32 digits)

Table 4.1: UE SIM card con_guration

The most important information of the sim card to be authenticated is

IMSI, OP and Ki. In this case, the Ki is

8BAF473F2F8FD09487CCCBD7097C6862 (32 digits) and the Opc can be

calculated by the HSS through Ki and OP.

If the sim card’s information is uncertain, we should use a card reader to

check the detailed information of the sim card. In this thesis, I use SCR3310.

Figure 4.11 Card reader: SCR3310

To read the information of the sim card, we have to get the code of PySIM:

git clone git://git.osmocom.org/pysim pysim
cd pysim

and then run the /pySim-read.py to read your card:

./pySim-read.py

if you done everything allright, you will see something similar:

Figure 4.12 Card information successfully read

All the information of the sim card must be written into the database of

HSS. When I was working on the Ubuntu 14.04, inserting a new user in oai

database can do the job. All the work can be done in visual interface of

phpadmin.

Figure 4.13 sim card’s information added in the database

 For this LTE Dongle at the UE side, we can enter the graphic interface

on the url 192.168.8.1. And then we have to go to Profile Management and

add a new APN profile.

Figure 4.14 Parameters of APN

And the successful connection to the LTE network is shown in Figure 4.13.

Figure 4.15 Successful connection of the LTE Dongle

And in the eNB machine, the xform will show something like the

following figure. And stats like CQI will also be shown in the eNB machine.

Figure 4.16 LTE uplink scope

Figure 4.17 general stats and CQI values

Figure 4.18 L2 stats

Since most of the innovation work in OAI are done in the developed

branches, I tried to apply the same setup in recent branch of OAI tag v0.5. In

this case, there will be a problem with the GTPU module. To solve this, we

should use a new kernel which is higher than 4.7.7. And the eNB should be

updated to Ubuntu 16.04 with a kernel of lowlatency. Here we use the kernel

4.13 lowlatency.

Figure 4.19 System and Hardware

Another difference is that the EPC was separated into mme, hss and spgw.

So it has to be complied and run independently.

Build mme,hss and spgw.

cd openair-cn

git checkout develop

git pull

cd SCRIPTS

./build_mme -i #(Need to run only once to install missing packages)

./build_hss -i #(Need to run only once to install missing packages)

./build_spgw -i #(Need to run only once to install missing packages)

The adjustment in the config file is also different. First we have to copy

the EPC config files in /usr/local/etc/oai:

sudo mkdir -p /usr/local/etc/oai/freeDiameter

sudo cp ~/openair-cn/ETC/mme.conf /usr/local/etc/oai

sudo cp ~/openair-cn/ETC/hss.conf /usr/local/etc/oai

sudo cp ~/openair-cn/ETC/spgw.conf /usr/local/etc/oai

sudo cp ~/openair-cn/ETC/acl.conf /usr/local/etc/oai/freeDiameter

sudo cp ~/openair-cn/ETC/mme_fd.conf /usr/local/etc/oai/freeDiameter

sudo cp ~/openair-cn/ETC/hss_fd.conf /usr/local/etc/oai/freeDiameter

And then, all the adjustment should be done in the new config files,

otherwise all the change would not be compile in the EPC.

The changes in the mme.conf and spgw.conf is the same as the epc.config in

the master branch.

In MME freediameter configuration file

(/usr/local/etc/oai/freeDiameter/mme_fd.conf):

Identity = "nano.openair4G.eur";

Realm = "openair4G.eur";

ConnectPeer= "hss.openair4G.eur"

The identity should be your hostname.openair4G.eur. Otherwise error

“returning 22” will occur when we run the mme.

Running eNB, EPC and HSS:

Install certificates:

cd ~/openair-cn/SCRIPTS

./check_hss_s6a_certificate /usr/local/etc/oai/freeDiameter/

hss.openair4G.eur

./check_mme_s6a_certificate /usr/local/etc/oai/freeDiameter/

nano.openair4G.eur

Before running the EPC side, we need to write the information of the sim

card into the hss as well.

However, in this case, when we follow the same process as we did in Ubuntu

14.04, the following error will appear.

Figure 4.20 Error in database

At first, I thought this happened because I edit the original user’s

information in the database. So I use the insert instead of edit. But the same

problem happened.

The main reason was that the information filled in was inconsistent with

the sim card information, and the filling method was not due to the reasons.

1) In the phpmyadmin database, click on the insert directly above to add, the

error is that value key, rand and OPc three values are truncated;

2) In the mysql command line to directly perform the add command, there is

warning, because the data is truncated;

3) Change the data length of key, rand, and OPc from varbinary16 to

varbinary32. The added data will not be truncated, but the data will

automatically change when hss is run, resulting in authentication failure.

Finally through learning to find the difference between the data types, I

found out that the data must be changed to binary, and add a hexadecimal

number written as 0x. And after this, we can successfully run the whole

system.

Figure 4.21 Use SQL Language to add user into database

Enter the following into the SQL session:

INSERT INTO users (`imsi`, `msisdn`, `imei`, `imei_sv`, `ms_ps_status`,

`rau_tau_timer`, `ue_ambr_ul`, `ue_ambr_dl`, `access_restriction`,

`mme_cap`, `mmeidentity_idmmeidentity`, `key`, `RFSP-Index`, `urrp_mme`,

`sqn`, `rand`, `OPc`) VALUES ('214030000000004', NULL, NULL, NULL,

'NOT_PURGED', '120', '40000000', '100000000', '47', '0000000000', '1',

0x8BAF473F2F8FD09487CCCBD7097C6862, '1', '0', '',

0x00000000000000000000000000000000, '');

And after this, we can successfully run the whole system.

Compile & Run HSS (ALWAYS RUN HSS FIRST):

cd ~/openair-cn

cd SCRIPTS

./build_hss -c

./run_hss -i ~/openair-cn/SRC/OAI_HSS/db/oai_db.sql #Run only once to

install database

./run_hss #Run for all subsequent runs

Compile & Run MME:

cd ~/openair-cn/SCRIPTS

./build_mme -c

./run_mme

Compile & Run SP-GW:

cd ~/openair-cn

cd SCRIPTS

./build_spgw -c

./run_spgw

After EPC is connected to HSS, compile and start eNB with the same

command used in the master branches.

Figure 4.22 mme, hss and spgw successfully running

From the window for the mme, we can see how many eNB is attached to

the mme. After the eNB is running, you should see something like this.

Figure 4.23 Number of eNBs connnected to the MME

When the UE is connected to the LTE network, the status of Figure 4.19

will change to the one shown in Figure 4.20. And the the UE side with the

dongle will show the same image I showed before.

Figure 4.24 UEs connnected to the MME

Later on, I tested this setup with the USRP X310. The only difference is

that we have to change the config file in the eNB side. Switch the file into

tm1.usrpx310.conf and change the address of mme and eNB.

4.2 LTE Link on srsLTE

Since the srsLTE has a much better stability than the OAI, it does not

require specific the kernel like the OAI. In this thesis, I choose the same

system and kernel as the OAI’s setup. Pay attention to the OS when

installing. The following tests in this thesis use the OS of Ubuntu 16.04.

4.2.1 Get repository

After the system is installed, you just need to install common tools,

such as git, vim, etc. You can use Ubuntu system apt-get to install.

First, install git on the PC.

sudo apt-get update

sudo apt-get install git

The USRP B210 is selected as the hardware device, so the UHD driver

needs to be installed on the system. Currently UHD version 3.10.0.0 is

relatively stable for OAI and srsLTE.

git clone https://github.com/EttusResearch/uhd

cd uhd

git checkout release_003_010_000_000

Test: If the above steps are completed, you can insert the usrp into your

computer for testing.

sudo uhd_find_devices

sudo uhd_usrp_probe

If the usrp device is detected and the information of the USRP is shown

on the computer, that means the uhd is successfully installed and the

connection between the PC and the usrp is working properly.

And then, on Ubuntu 16.04 system or higher version, execute the

following command

sudo apt-get install cmake libfftw3-dev libmbedtls-dev libboost-program-

options-dev libboost-thread-dev libconfig++-dev libsctp-dev

In addition, srs also provides the srsGUI library, which can be used to

view the constellations and signal energy in real time during debugging. The

github link is: https://github.com/srslte/srsgui. The installation command is as

follows:

sudo apt-get install libboost-system-dev libboost-test-dev libboost-thread-

dev libqwt-dev libqt4-dev

git clone https://github.com/suttonpd/srsgui.git

cd srsGUI

mkdir build

cd build

cmake ../

make

sudo make install

sudo ldconfig

And after this we can install the srsLTE by using the command:

git clone https://github.com/srsLTE/srsLTE

mkdir build

cd build

cmake ../

make

make test

sudo make install

sudo ldconfig

4.2.2 LTE network construction

The operating parameters of srsLTE are all configured using

configuration files. That is, only the configuration file needs to be added after

the running program while the configuration parameters are performed in the

configuration file. The srsLTE provides corresponding sample configuration

files for the UE, eNB, and EPC. Placed in the corresponding srsUE, srsENB,

and srsEPC folders, and named as *.example, as shown below srsENB

configuration file:

Figure 4.25 Configuration files in srsLTE

While running, these configuration files can be copied and the file name

modified, such as assigning enb.conf.example and named enb.conf.

 srsENB and srsEPC can be run on one computer(with virtual

machine) or on two different computers, but it is necessary to ensure the IP

reachability between the two machines and modify the related configuration

files; srsUE needs to run on another computer. In this thesis, I choose the

Huawei E3372 dongle as the UE to compare the performance of OAI and the

srsLTE.

After executing sudo make install, we can directly use srsEPC, srsENB,

and srsUE to run the corresponding module.

To construct the LTE link, we should first build an EPC in the virtual

machine.

In srsEPC, the hss data base is much simpler than the oai, we just have

to change the file called user_db.csv. Add the information of the sim card in

this file will make the authentication of the dongle succeed. The information

type is listed below:

 # .csv to store UE's information in HSS

Kept in the following format: "Name,IMSI,Key,OP,AMF"

Name: Human readable name to help distinguish UE's. Largely ignored

by the HSS

IMSI: UE's IMSI value

Key: UE's key, where other keys are derived from. Stored in

hexadecimal

OP: Operator's code, sotred in hexadecimal

AMF: Authentication management field, stored in hexadecimal

SQN: UE's Sequence number for freshness of the authentication

So here I add the line:

zch,214030000000004,8baf473f2f8fd09487cccbd7097c6862,1111111111

1111111111111111111111,9001,000000001234

And then we have to change the ip address, mnc, mcc, etc.

 [mme]

mme_code = 0x1a

mme_group = 0x0001

tac = 4

mcc = 214

mnc = 03

mme_bind_addr = 192.168.34.128

apn = srsapn

dns_addr = 8.8.8.8

###

##########

 [hss]

auth_algo = xor

db_file = user_db.csv

###

##########

SP-GW configuration

gtpu_bind_addr: GTP-U bind adress.

###

##########

[spgw]

gtpu_bind_addr=127.0.1.100

sgi_if_addr=172.16.0.1

###

##########

[log]

all_level = debug

all_hex_limit = 32

filename = /tmp/epc.log

After all the files changed correctly, we can run the epc.

cd srsEPC/

sudo srsEPC epc.conf

Figure 4.26 srsEPC successfully initialized

In the eNB side, we have to run the eNB in the src file. So I copy these conf

file and then renamed them to delete the “example” in their name.

cd srsLTE/build/srsENB/src

cp ../../../srsENB/*.example

mv sib.conf.example sib.conf

mv rr.conf.example rr.conf

mv enb.conf.example enb.conf

mv drb.conf.example drb.conf

The next step is to open enb.conf and configure srsENB to open the GUI

mode of the srsENB.

Find the following line:

[gui]

enable = false

 And change it into:

[gui]

enable = true

In addition, the address of the MME needs to be configured in enb.conf

to be the same as the address of the MME in the virtual machine. The address

of the MME changed in enb.conf is as follows. (Change 127.0.1.100 to the

address of your MME)

 mme_addr = 192.168.34.128

And finally, run the srsENB with the command:

sudo ./srsENB enb.conf

When the UE is successfully attached with the epc and the enb, the figure

in the PC is as figure 4.23 showed.

Figure 4.27 srsEPC, srsENB and srsUE successfully connected

4.2.3 srsLTE with Next EPC

Using Next EPC as the EPC to work with the srsLTE is another setup. In this

case, we have to first install the next EPC.

sudo apt-get update

sudo apt-get -y install software-properties-common

sudo add-apt-repository ppa:acetcom/nextepc

sudo apt-get update

sudo apt-get -y install nextepc

This will create a virtual network interface named as pgwtun. It is

automatically removed by uninstalling NextEPC. If the interface is

successfully set, you should see the following figure after entering “ifconfig”

Figure 4.28 Information of interface pgwtun

The LTE user subcription information of NextEPC is stored and maintained

by Mongo DB. NextEPC provides an alternative management interface for

customers to manage their subscriber information in an easy way, that is Web

User Interface. The following shows how to install the Web UI of NextEPC.

sudo apt-get -y install curl

curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -

curl -sL http://nextepc.org/static/webui/install | sudo -E bash -

Now the web server is running on http://localhost:3000.

Then we can log in and enter the information of our sim card.

Figure 4.29 Information of sim card saved in the next EPC

 Then, S1AP/GTP-C IP address, PLMN ID, TAC updated in the MME

Configuration.

 Add S1AP address : 127.0.1.100 (srsENB Default Value)

 Add GTP-C address : 127.0.1.100 (Use Loopback Interface)

diff -u mme.conf.old mme.conf

--- mme.conf.old 2018-04-15 18:28:31.000000000 +0900

+++ mme.conf 2018-04-15 19:53:10.000000000 +0900

@@ -14,18 +14,20 @@

mme:

freeDiameter: mme.conf

s1ap:

addr: 127.0.1.100

gtpc:

addr: 127.0.1.100

gummei:

plmn_id:

mcc: 214

mnc:03

mme_gid: 2

mme_code: 1

tai:

plmn_id:

mcc: 214

mnc: 03

tac: 4

GTP-U IP address updated in the SGW Configuration.

 Add GTP-U address : 127.0.0.2 (Use Loopback Interface)

diff -u /etc/nextepc/sgw.conf.old /etc/nextepc/sgw.conf

--- sgw.conf.old 2018-04-15 18:30:25.000000000 +0900

+++ sgw.conf 2018-04-15 18:30:30.000000000 +0900

@@ -14,3 +14,4 @@

 gtpc:

 addr: 127.0.0.2

 gtpu:

 addr: 127.0.0.2

After changing conf files, restart NextEPC daemons.

sudo systemctl restart nextepc-mmed

sudo systemctl restart nextepc-sgwd

After this, the EPC will be successfully run.

5. Evaluations
In this chapter, I test the performance of two different softwares for

SDR, and evaluate the performance of USRP B210 with the dongle E3372.

5.1 Channel quality of B210 and E3372

First, I do some tests on the basic setup of our LTE link. Since we always

have problems with the strength of the signal without antenna, I test the CQI

without antenna when the distance between USRP and Dongle is different.

Figure 5.1 CQI-distance chart with antenna

The CQI is an information indicator of channel quality and represents the

quality of the current channel, which corresponds to the signal-to-noise ratio

of the channel. The value ranges from 0 to 15. When the CQI value is 0, the

channel quality is the worst; when the CQI value is 15, the channel quality is

the best. In this case the LTE link only works properly within 20cm. This chart

has shown that the USRP B210 has a very poor performance without the

antenna. So I did another test with the antenna of 2.4GHz.

Figure 5.2 CQI-distance chart with antenna(OAI)

Figure 5.3 CQI-distance chart with antenna(SRSLTE)

According to the result, the setup will work until the distance is larger

than 4 meters. So USRP B210 should work with cables or antennas during

tests, otherwise the transmitting signal would be too weak to detect. For

srsLTE, the signal was more stable, especially when the signal is weak. The

LTE link was more likely to break in OAI when the distance is far away while

the srsLTE would have the connection even though the CQI is very low.

5.2 Performance of OAI

In the UE side, the interface of the dongle is shown in the following

figure.

Figure 5.4 Interface of the dongle

First, I did some ping test from my laptop (ThinkPad X1 carbon 2016,

OS: Windows 10/Ubuntu 16.04), which is connected to the dongle. Ping tests

of srsLTE and OAI had the exact same condition. In this case, I use USRP

B210 as the SDR, both tests were run without antenna and the distance

between the dongle and the USRP is 10cm, with a high CQI=15.

Figure 5.5 Ping test of OAI

Then, I tested the Bandwidth in OAI when the PRB=25(default setup)

both in TCP and in UDP with two 2.4GHz antennas.

Figure 5.6 Downlink data rate using TCP

Figure 5.7 Downlink data rate using UDP

In addition, in order to find the optimal data rate, I changed the size of

the TCP window and the UDP buffer size to finish both TCP and UDP tuning.

Figure 5.8 Data rate-TCP window size chart of OAI

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000 1200

D
at

a
ra

te
（

M
b

/s
）

TCP window size（KB）

Data rate-TCP window size chart of OAI

Here we can observe that the peak of the data rate was near the TCP

window size of 400KB while the UDP buffer size was not directly related to

the data rate. So in the UDP test, I still use the default number 208KB.

After the TCP and UDP tuning, since the uplink and the downlink speed

could be different, I did some test about the uplink and downlink speed in both

TCP and UDP.

Figure 5.9 Bandwidth of TCP uplink

Figure 5.10 Bandwidth of TCP downlink

Figure 5.11 Bandwidth of UDP uplink

Figure 5.12 Bandwidth of UDP downlink

From the figure above, we can notice that the downlink bandwidth of this

link is about 2 times faster than the uplink. And since in this setup, there are

very few lost packets, the transmitting speed of TCP and UDP are very similar.

If we vary the distance between the eNB and the dongle, the data rate of the

UDP would be faster than the TCP when there are more packets lost as the

following figure has shown.

Figure 5.13 Data rate-distance chart of TCP and UDP

After the tests, I found out that the stability is the best when the PRB=25

(bandwidth=5MHZ) when I tried to run the same setup when PRB=50 and

100. In the OAI, the default number of PRB is 25. For PRB=50, the eNB will

fail to transmit signal with UE and the error thrown is “retransmission takes

more resource than the system has”. And for PRB=100, the setup would

connect but running the iperf would not work for the unstability of the LTE

link.

5.3 Performance of srsLTE

First, I did the same ping test in srsLTE to compare the data with the OAI’s.

Figure 5.14 Ping test of srsLTE

From the figure above we can see that the delay of srsLTE is obviously

smaller than the OAI. At first, I believed that it is because the code of srsLTE

is tidier and more in order than OAI, which make the LTE link more stable

and faster. However, when I tried to ping the eNB(192.168.34.1), it turned out

both the softwares have a delays of about 32ms. I believed that the cause is

the difference between the EPC. The srsEPC is a lightweight LTE Core

Network implementation platform, which make it easier to run and has less to

process in the computer. Since I was using a virtual machine which do not

have a high performance, the OAI EPC could use more time than the srsEPC.

 In addition, I use iperf with TCP to test the downlink data rate of both

srsLTE using PRB=25. The port I used is 8000 and the TCP window is

85.3KB.

Figure 5.15 Data rate test in srsLTE

As we can see, the transmitting speed of these software is very similar to

OAI.

I did the same TCP tuning to find the optimal TCP window for srsLTE.

Figure 5.16 Data rate-TCP window size chart of srsLTE(PRB=25)

We can find that the TCP window size in srsLTE is smaller in OAI and

when the data rate is highest, which meets our expectation because of the

feature of TCP (the delay of srsLTE is smaller.).

Unlike the OAI, srsLTE works perfectly when PRB=50 and 100. So the

tuning of TCP was done in both bandwidth to find the optimal TCP window

size and the highest data rate.

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800

D
at

a
ra

te
（

M
b

/s
）

TCP window size（KB）

Data rate-TCP window size chart of srsLTE(PRB=25)

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000 1200 1400 1600

D
at

a
ra

te
（

M
b

/s
）

TCP window size（KB）

Data rate-TCP window size chart of srsLTE(PRB=50)

Figure 5.17 Data rate-TCP window size chart of srsLTE(PRB=50)

 From the figure above, we can find that the peak of data rate reached

17Mb/s with optimal TCP widow size of 580 when PRB=50. Both the data

rate and the TCP window size observed in downlink is almost double of 25

PRBs, which is expected as the bandwidth is doubled in this case.

Figure 5.18 Data rate-TCP window size chart of srsLTE(PRB=100)

 As for PRB=100, we can find that the peak of data rate reached 33Mb/s with

optimal TCP widow size of about 1100. Both the data rate and the TCP

window size observed in downlink is approximately 4 times of 25 PRBs. All

of these has shown that the srsLTE runs perfectly and presents the feature of

the LTE network.

6. Conclusions and future work

In this thesis, we test and evaluate the performance of a set up in two

different opensource LTE and EPC project (by OpenAirInterface project and

srsLTE project) with commodity hardware.

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500

D
at

a
ra

te
（

M
b

/s
）

TCP window size（KB）

Data rate-TCP window size chart of srsLTE(PRB=100)

At the beginning, I built a conventional LTE network, which uses COTS

UE, a computer as the eNB and a virtual machine in the same computer as the

EPC.

And then, based on this setup, I tested two different open source projects.

Later I evaluated the stability, bandwidth and the hardware performance in

these two setups.

For the hardware, USRP X310 and B210 both work in this construction

I built. In this moment, the B210 is more stable due to the requirement is only

USB3.0 while the X310’s bandwidth and power requirements are rather high,

which would cause some problem.

For the software, the OAI is obviously a more popular software.

However, in my humble opinion, the OAI is not very friendly for a first time

user, especially those who do not have a background knowledge of LTE and

SDR. And since the OAI is developing every day, the new errors could appear

anytime. For example, there are still some problems with the OAI UE right

now in the develop branch. On the other hand, the srsLTE is much simpler

than the OAI, the code is more in order and the testing process is very easy.

(For example, the hss do not require an external database.) Few error occured

during the testing of srsLTE. But for a more advanced user, the srsLTE only

focuses on the LTE part, which means that it is hard to test the technology

after 3GPP R14 such as LWA and the tech in 5G. So for these uses, OAI is a

much better option.

For future work, the config file of the eNB should be modified to solve

the problem when PRB=75. After the OAI UE problems are solved, a more

detailed comparison between srs and OAI in this setup should be done to get

a more general conclusion of these two softwares.

Bibliography
[1] C. S. Inc., Cisco visual networking index: global mobile data traffic

forecast update 2016-2012, 2017.

[2] J. Sachs and P. J. Gebert, “Multi-access management in heterogeneous

networks” , Wireless Personal Communications, vol. 48, no. 1, pp. 7-32,

January 2009.

 [3] V. Raghavan, J. Cezanne, S. Subramanian, A. Sampath, O. Koymen,

"Beamforming tradeoffs for initial UE discovery in millimeter-wave MIMO

systems", IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 543-559, Apr.

2016.

[4] J. G. Andrews, S. Buzzi What will 5g be? Selected Areas in

Communications, IEEE Journal on Selected Areas in Communications, vol.

32, no. 6, pp. 1065-1082, 2014.

[5] Y. Kojima, J. Suga, T. Kawasaki, M. Okuda and R. Takechi, ”LTE-WiFi

Link Aggregation at Femtocell Base Station,” World Telecommunications

Congress 2014(WTC 2014), pp. 1-6, Berlin, Germany, 2014.

[6] J. Andrews, and A. Gatherer, Femtocell networks: a survey, IEEE

Communications Magazine, vol. 46, no. 9, pp. 59-67, 2008

[7] B. Jin, S. Kim, D. Yun, Y. Yi, H. Lee and W. Kim, ”Aggregating LTE and

Wi-Fi: Fairness and split-scheduling,” 2016 14th International Symposium on

Modeling and Optimization in Mobile Ad Hoc, and Wireless Networks

(WiOpt), Tempe, AZ, 2016, pp. 1-8. doi:10.1109/WIOPT.2016.7492936

[8] NS-3 LTE-EPC Network simulator.

Available:http://networks.cttc.es/mobile-networks/software-tools/lena/

[9] Y. Khadraoui, X. Lagrange and A. Gravey, ”Very tight couplingbetween

LTE and WiFi: From theory to practice,” 2016 Wireless Days Conference,

Toulouse, 2016, pp. 1-3. 2016. DOI: 10.1109/WD.2016.7461502

[10] Y. Khadraoui, X. Lagrange and A. Gravey, ”TCP Performance for

Practical Implementation of Very Tight Coupling between LTE and WiFi,”

2016 IEEE the 84th Vehicular Technology Conference, Montreal, QC, 2016,

pp. 1-6. doi: 10.1109/VTC.

[11] P. Sharma, A. Brahmakshatriya and A. Franklin, “LWIR : LTE-WLAN

Integration at RLC Layer with Virtual WLAN Scheduler for Efficient

Aggregation” , IEEE Global Communications Conference (GLOBECOM),

pp. 4-8 Dec. 2016.

[12] T. Valerrian, S. Patro, B. Reddy, and A. Franklin, “Tight coupling of LTE

Wi-Fi Radio Access Networks - A Testbed Evaluation” , Networked Wirel.

Syst. Lab, 2016.

