UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

Escola Tecnica Superior d’Enginyeria
de Telecomunicacié de Barcelona

Implementation and Evaluation of Open Source LTE-
EPC Software

A Degree Thesis
Submitted to the Faculty of the

Escola Tecnica d'Enginyeria de Telecomunicacio de
Barcelona

Universitat Politecnica de Catalunya

by
Chenhan Zhu

In partial fulfilment
of the requirements for the degree of
MASTER IN TELECOMMUNICATIONS ENGINEERING

Advisor: Dr. ILKER DEMIRKOL

Barcelona, June 2018

Abstract

In general, Software Defined Radio (SDR) is based on a common
hardware platform to use software to implement various communication
modules. There are two crucial keywords in this concept: "universal hardware
platform" and "software." The "universal hardware platform" means that we
can implement a variety of communication functions based on this hardware
platform, not that a hardware platform can only implement one kind of
communication function. "Software" to implement the communication
module is relative to the traditional radio technology. Since the SDR is more
and more popular in the scientific research field, lots of different Open Source
SDR Software can be used. In this thesis, | used two different open source
LTE and EPC software to run the same setup in order to implement and
evaluate the advantages and disadvantages of these software.

Keywords: LTE, eNB, EPC, OpenAirinterface, srsLTE.

Acknowledgements

First of all 1 would like to thank my parents, who has always supported
me and encouraged me to overcome one obstacle after another.

Second, | must thank the CSC(China Scholarship Council) for giving me
this chance and financial support.

What’s more, I was really grateful to the supervision and ideas of my
advisor, llker Demirkol. During this four months, his way of work and attitude
was really inspiring for me.

I would also like to thank Nitin who gived me a very warm welcome
when | first came, Christian who give me advices to be a researcher, Sidtarth
who is my best friend here.

And finally, I am grateful for this amazing city Barcelona, which give
me a memory of a lifetime and taught me how to accept new things in my life.
And I will never finished my thesis without these helps.

Revision history and approval record

Revision |[Date Purpose

0 18/05/2018 |Document creation

1 28/05/2018 |Document revision

Written by: Reviewed and approved by:
Date 26/05/2018 Date 28/05/2018

Name Chenhan Zhu Name Dr. llker Demirkol
Position Project Author Position Project Supervisor

Contents

AADSTTACT ...ttt b et a et e e 2
Revision history and approval rECOTIMcociieiririrere e 4
Lo INEFOTUCTION. ...ttt sttt b et ebe e 7
2. BACKGIOUNG ...t 8
2. L LT E ettt ettt ettt e bt sh e she e st e e be e be e bt e bt e s heesateeteeteens 8
N I 0 o0 o | RPN 8

2.1.2 ArchiteCture OF LTE ..ot 9

2.2 QA ettt sttt et e e b e e bt e sat e s ateeabe e b e be e baenaes 10

2.3 SISLTE ettt bbb et b et b et b e sae e b she e 11

3. THe State OF The AT ...ttt 12
3.1 QAT STUIES ..ottt sttt ettt e ste st et e st e s e e eesteesaestesseessessesssesessnensesseensessesnsensens 12
3.1.1Physical layer link SIMUIALIONc..ccveiriiriririnieeee s 12

3.1.2 LTE system-level SIMUIALION............cccceiiiieiicietccecee st 13

3.1.3 SDR-based LTE SYSIEMc.cciieieieiteeiecieeteete ettt sttt 13

BB SISLTE STUTIES. ...ttt 15
3.3.1 Main Feature Of SISLTE........ccciviirieirieinieeeee et 15

3.3.2 Test environmMent OF SISLTEcccvviiieinieieeeecee s 16

3.3.3 SISLTE’S QPPLICALION....cciutiiiiriiiieeieeieesieste ettt e st saee st ssteenseesaeesaaesanesans 16

O [0 F=T g T=T g1 =TSP 18
AL LTE LINK ON OAL .ottt sttt sttt ne 18
4.1.1 Hardware VEIFICALIONccovviirieirieieeeet et 18

4.1.2 Operating System VErifiCatioN..........ccceecverieiere e 20

Gl = =] 010] (o] YU 22

4.1.4 Connect OAI eNB With COTS UE......cc.coiiiiirierereceeeeeenereseee s 22

42 LTE LINK ON SISLTE ..ottt 42
A A €= A =Y 010] (o] YRS 42

4.2.2 LTE NetWOrk CONSIIUCEIONeoverviteieieiieieeienieetestesieie et 44

T V£ LU 1[0 LR 52

5.3 Channel quality of B210 and E3372.......cccoeiiiiiiieirereseeeeeeeeese s 52

5.2 Performance of QAL in different BandWidth..........cc.eeeeveiiieeieiiieeeeeeeeeee e 54
5.2 Performance comparison between SrSLTE and OAloovevveciiieceeiiceeceeese e 57
6. CONCIUSIONS AN TULUIE WOTK ...ttt ettt ettt e e e e e e e ettt e e e e e e e e e et reeeesesasseeeeneeeesens 60

BIDIOGIAPNY ..ot ene s 61

1. Introduction

Software Radio uses modern software to manipulate and control the
traditional "pure hardware circuit" wireless communication technology. The
Important value of software radio technology lies in the fact that the traditional
hardware radio communication equipment only serves as the basic platform
for wireless communication, and many communication functions are
implemented by software, which breaks the realization of the communication
function of the equipment in history and only depends on the development of
the hardware. The emergence of software radio technology is the third
revolution in the field of communications after from fixed communication to
mobile communication and from analog communication to digital
communication.

The key idea of the so-called software radio is to construct a general
hardware platform with openness, standardization, modularization, and
various functions, such as working frequency band, modem type, data format,
encryption mode, communication protocol, etc., all completed by software.
Also, another important purpose is to make broadband A/D and D/A
converters as close to the antenna as possible to develop a new generation of
wireless communication systems that are highly flexible and free. It can be
said that this platform is a platform that can be controlled and redefined by
software. Different software modules can be used to achieve different
functions, and the software can be upgraded and updated. Its hardware can
also constantly update modules and can be upgraded like a computer. Since
software radio's various functions are implemented in software, adding a new
software module is a must if you want to implement a new service or
modulation method. At the same time, because it can form a variety of
modulation waveforms and communication protocols, it can also
communicate with various radio stations in the old system, greatly prolonging
the service life of radio stations, and also saving costs.

The current mainstream SDR-based LTE platform in the world are OAl,
srsLTE, OpenLTE, and so on. And since the function of OpenLTE is too weak,
it is not used by a lot people. For Amarisoft, though it is the best performance
SDR LTE platform at present, it is not an open-source software. So | am only
going to test OAI LTE and srsLTE, along with OAI EPC and srsEPC in this
thesis. In this thesis, | also designed and implemented different LTE/EPC

setups with different version of OAI and Ubuntu, analyzing the throughput,
delay and channel quality metrics.

2. Background

21LTE

2.1.1 Concept

Long Term Evolution (LTE) is a long-term evolution of the universal
mobile telecommunications system (UMTS) technology standard developed
by 3GPP (The 3rd Generation Partnership Project), launched and started in
the 2004 December’s 3GPP Toronto conference formally. The LTE system
introduces key technologies such as Orthogonal Frequency Division
Multiplexing (Orthogonal Frequency Division Multiplexing) and MIMO
(Multi-Input & Multi-Output) and significantly increases spectral efficiency
and data transmission rate (In the case of 64QAM 20M bandwidth 2X2 MIMO,
the theoretical downlink maximum transmission rate is 201 Mbps, and the
signaling overhead is about 150 Mbps. However, it is generally considered
that the downlink peak rate is 100 Mbps and the uplink is 50 Mbps, depending
on the actual networking and terminal capabilities.) Bandwidth allocation:
1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz and 20MHz, etc. And it also
supports the global mainstream 2G/3G frequency band and some new
frequency bands. As a result, the spectrum allocation is more flexible and the
system capacity and coverage are significantly improved. The network
architecture of the LTE system is more flattened and simplified, reducing
network node and system complexity, thereby reducing system latency and
reducing network deployment and maintenance costs. LTE system supports
interoperation with other 3GPP systems. Different LTE systems are divided
into FDD-LTE (Frequency Division Duplexing) and TDD-LTE (Time
Division Duplexing). The main difference between the two technologies lies
in the physical layer of the air interface (like frame structure, time division
design, synchronization, etc.). The uplink and downlink of the air interface of
the FDD system receive and send data in pairs of bands, while the uplink and

downlink of the TDD system use the same frequency band to transmit in
different time slots. Compared with the FDD duplex scheme, the TDD has
higher spectrum utilization.

2.1.2 Architecture of LTE

The LTE system only has a packet domain. It is divided into two network
elements, an Evolved Packet Core (EPC) and an Evolved Node B (evolved
Node B). The EPC is responsible for the core network part, the signaling
processing part is a Mobility Management Entity (MME), and the data
processing part is a S-GW (Serving Gateway). The eNode B is responsible for
the access network part, which is also called E-UTRAN (Evolved UTRAN),
as shown in FIG.2.1. The set of radio access and core network of LTE receive
the name in the specification of Evolved Packet System (EPS), which has an
E-UTRAN and EPC.

The EPC block also include Home Subscriber Server (HSS), Equipment
Identity Register (EIR), Charging Rules Function (PCRF), Online Charging
System (OCS), Offline Charging System (OFCS).

E-UTRAN EPC
S1-MME
Uu
S1-U

Figure 2.1 LTE Architecture

2.2 OAI

OpenAirinterface (OALl), also known as OpenAirinterface5g, is an open
source SDR LTE project initiated and maintained by EURECOM in Europe.
EURECOM created the OpenAirinterface (OAIl) Software Alliance, a legal
entity independent of EURECOM, designed to provide an ecosystem of open
source, 3GPP's core (EPC) and access network (EUTRAN) protocols.
According to the standard of 3GPP, OAI fully implements three parts of the
core network (EPC), base station (eNB) and user (UE) of the LTE protocol.
Currently, the OAI supports the function of Release 10 and keeps updating.
Recently, the OAI organization is ready to build an open source SDR NB-loT
platform based on the OAI platform, which is very attractive. Cellular systems
can interoperate with closed sources in any part of the network. In addition to
the huge economic open source model, the alliance will be a huge industrial
and academic tool. More importantly, it will ensure the communication
mechanism between the two. In order to make academia closer to the complex
real world, the system is mainly controlled by industrial engineers in the
wireless industry. In the context of the evolution toward 5G, it is clear OAl is
a prototype framework to ensure common R & D and for rapid proof-of-
concept design.

OAI Gitlab website at https://gitlab.eurecom.fr/oai/openairinterface5g,
the code and the corresponding tutorial can be seen on this site. However, at
present, OAI does not have a forum for users to discuss the issue. There is
only one mailing list, and everybody can ask questions and discuss them in
the mailing list. OAI users would reply to the mail to help each other.

The function of OAl is very powerful. It implements the functions of the
UE, eNB, and EPC full protocol stack according to the 3GPP LTE protocol.
Currently, the Release 10 version is supported and is constantly updated.
However, OAI platform function is too complex, resulting in its operation and
configuration, to be troublesome. For example, for the correct operation of
OAIl EPC, you need to separately run the HSS, MME and SPGW three
modules, and the configuration also need to be configured separately,
Therefore, the process is a little bit cumbersome.

2.3srsLTE

srsLTE is an open source SDR LTE platform developed by a team in
Ireland called SoftwareRadio Systems. SoftwareRadioSystems is a
commercial company engaged in SDR development.

The company currently includes four products: AirScope, srsLTE, srsUE,
and srsENB. AirScope is a set of LTE air interface signal analyzer based on
SDR. This product is commercial software and needs to be paid for, which is
mostly not suitable for academia. srsLTE is a simple LTE system developed
based on SDR. Only the physical layer have the downlink, and the code is
open source NOw.

Until last year, srsLTE only has UEs and eNBs. There was no EPC
function, and when srsUE and srsENB were running, they had to connect to
an external EPC. So it was necessary to find a third-party EPC to work with
the srsLTE. However, in 2018, srs has open-sourced their EPC module, and
its configuration and use is very simple. Hence, it is no longer necessary to
use a third-party EPC to build a complete LTE system using srs software.

srsUE is a set of LTE UE systems developed based on SDR. It contains
layers of protocols from PHY to NAS and is currently open source. sSrsENB
Is a set of LTE eNB systems developed based on SDR, including PHY, MAC,
RLC, PDCP, RRC, GTP-U and S1-AP layers. This product was commercial
software and needs to be paid for in the past. But recently, the srsUE, srsENB
and srsEPC are all open source. So | did some test on the srsLTE software in
this thesis.

The srsLTE is subject to the 3GPP Release 10 protocol implementation.
It only supports the FDD duplex mode, and supports two transmission modes
of TM1 (SISO) and TM2 (Transmission Diversity)

Although srsLTE is a set of SDR LTE system, it includes two parts of
eNB and UE, but downlink functions only exist in physical layer, i.e., includes
PSS, SSS, PBCH, PCFICH, PHICH, PDCCH, PDSCH and other channels.

srsLTE installation and operation method is also very simple, but need
to install srsGUI before installing srsLTE. srsLTE will call the srsGUI library

to display the graphical interface in real time. Specific installation and
operation methods can refer to README.md on the official website of
githuba.

3. The State of the Art

3.1 OAI Studies

OpenAirinterface (OAl) is a continuously updated, open source SDR
LTE platform, developed and maintained by Eurecom in France. Compared
with other open source SDR LTE platforms, OAIl has a wide range of
international application scenarios.

OAlI platform is mainly written in C language. OAI has realized LTE
eNBs, UEs and EPCs according to 3GPP standards and is the most complete
one in the open source SDR LTE platforms. In addition, OAI platform also
contains a large number of simulation platform for verification of various
communication algorithms.

The following describes a variety of simulators of OAI studies.

3.1.1Physical layer link simulation

In the OAI folder openairinterface5g/openairl/SIMULATION/LTE_PHY/,
there are six typical physical layer link-level simulation platform.

Simulation platform | Features

dlsim DIsim is a simulation platform of PDSCH
channels. But in fact, dlsim platform also contains
the information of channels like PDCCH. (So dIsim

1 https://github.com/srsLTE/srsLTE

iIs more like a lightweight LTE physical layer
system simulation platform.)

pbchsim Pbchsim is a simulation platform of PBCH
channel, which contains the transceiver process of
PBCH channel.

pdcchsim Pdcchsim is a simulation platform of PDCCH
channel, which contains the transceiver process of
PDCCH channel.

prachsim Prachsim is a simulation platform of PRACH
channel, which contains the transceiver process of
PRACH channel.

pucchsim Pucchsim is a simulation platform of PUCCH
channel, which contains the transceiver process of
PUCCH channel.

ulsim Ulsim is a simulation platform of PUSCH channel,
which contains the transceiver process of PUSCH
channel.

In addition, if we want to verify or test some physical layer algorithm, we
can modify or add the corresponding code directly in the corresponding
simulation platform. Because the platform is written in C language, the
simulation speed is very fast.

3.1.2 LTE system-level simulation

OAI in the folder openairinterfacebg/targets/SIMU/USER/has a LTE
system-level simulation platform oaisim. As oaisim involves all layers of LTE,
various process code, it is suitable for advanced LTE learning. If you want to
validate some of the LTE system-level algorithms or features, you can add the
appropriate code modules on the oaisim platform.

3.1.3 SDR-based LTE system

OAI implements the LTE eNB, the UE and the EPC according to the
3GPP protocol. From a commercial point of view, LTE eNBs and EPCs are

more important. From the scientific point of view, LTE UEs are equally
important. OALI is paying more attention to the development and maintenance
of the eNB and the EPC. The eNB and the EPC are relatively stable. However,
the UE only has the corresponding function and is very unstable.

OAI eNB:

OAl's eNBs now support Release 10 features and are relatively stable.
The system has been branched. Holding 5MHz, 10MHz bandwidth, 20MHz
bandwidth, support FDD, TDD two modes.

OAIl eNB mainly contains three threads, one for sending data, one for
receiving data, one for interacting with hardware devices like the USRP.

OAI EPC:

OAl's EPC is basically ready for use today. However, personally I feel
a little difficult to use it. There are too many parameters that need to be
configured.

OAIl UE:

The OAIl UE has the function of Release 10. But since the OAI
organization emphasize on the OAI eNB and OAI EPC, the organization has
fewer test tables for OAI UEs, resulting in very unstable OAI UEs and more
system bugs. Based on OAIl's complete set of SDR LTE system, we have a lot
of application scenarios.

For example,

Wireless Security Research:

The traditional cellular network security research is mainly based on the
OpenBTS system. If we want to study the security of LTE network, we can
base on OAIl's SDR LTE system.

New technology communication test:
By adding the appropriate code modules on the OAI system, we can validate
various new communication technologies such as NOMA, MIMO, etc.

Professional network :
In some specific scenarios, we need to build an LTE local area network, and
the OAI platform can provide eNBs and EPCs for the LTE system.

NB-IoT:
Recently, the Internet of Things is very popular. OAI organizations are also
ready to add NB-10T capabilities on the OAI platform.

3.3 srsLTE Studies

3.3.1 Main Feature of srsLTE

Compatible with LTE Release 10;

FDD configuration: Test bandwidth: 1.4, 3, 5, 10, 15 and 20 MHz;
Transmission modes 1 (single antenna) and 2 (transmission diversity);
UE's cell search and synchronization process;

UE and eNodeB support all DL channels/signals: PSS, SSS, PBCH,
PCFICH, PHICH, PDCCH, PDSCH,;

The UE supports all UL channels/signals: PRACH, PUSCH, PUCCH, SRS;
Frequency-based ZF and MMSE equalizers;

Highly optimized turbo decoder for Intel SSE4.1/AVX (+100 Mbps) and C
standard (+25Mbps);

The MATLAB and OCTAVE MEX libraries generate many components;

The UE receiver tests and verifies the Amarisoft LTE 100 eNodeB and the
commercial LTE network (Ireland's Telefonica Spain, Three.ie and Eircom).

Deleted features:

Closed-loop power control

Semi-Persistent scheduling

3.3.2 Test environment of srsLTE

srsLTE runs on Ubuntu system. It was successfully installed on both the
14.04 and 17.04 systems. Therefore, the Ubuntu system can be selected from
14.04 or higher. If the computer is configured, it is best to use the i7 CPU.
The higher the frequency, the better. The installation of the system is
recommended to use a U disk to create a boot disk, and then you can install it.

The library currently supports Ettus Universal Hardware Driver (UHD)
and bladeRF drivers. In addition, any hardware suitable for UHD or bladeRF
drivers is also supported. There is no sample rate conversion, so the hardware
should support a sampling rate of 30.72 MHz in order to keep the LTE
sampling frequency and the decoded signal in LTE base stations working

properly.
SRS have tested the following hardware:

USRP B210
USRP X300
bladeRF

3.3.3 srsLTE’s application

srsLTE’s downlink only exists in the physical layer of LTE, therefore the
application scenario is limited:
1. The LTE signal analyzer in srsUE can use the UE in srsLTE to receive the
signal of the commercial base station and demodulate the system information
of the commercial base station.
2. Physical layer algorithm verification and improvement

After porting the algorithm to srsLTE, the signal over the air interface can
verify the algorithm performance more realistically.
3. The srsLTE provides many function libraries commonly used in LTE
communications. The srsLTE library can be used to design certain LTE for
different purposes.
4. Building LTE Demo.

The LTE Demo can be demonstrated in the laboratory using the function of
srsLTE and some hardware like the USRP.

4. Implementation

4.1 LTE Link on OAI

4.1.1 Hardware verification

It is required at least Intel Core i5-6600 CPU @ 3.30GHz % 4 to
implement a User Equipment (UE) or an eNB.

Our project test USRP B210 and a USRP X310. B210 required a free
USB 3.0 port in PC to operate so that we can support RF. (USB 2.0 is tested
and it is infeasible.) The power was supported by the USB. And then we
change our devices into USRP X310, which required and an ethernet interface
in PC. The ethernet interface of the PC must have a speed faster than
1024MB/S. In addition, since the power consumption of X310 is very high, it
required an independent power cable to provide the electricity.

The PC I used in this thesis is a Ubuntu 14.04 machine with a CPU of i7
7700 and a Ubuntu 16.04 machine with a CPU of i9 7900k.

] s B

.

Figure 4.1 USRP B210

Figure 4.2 USRP X310

Details

All Settings Details

Default Applications
Removable Media

Legal Notice

ubuntu 14.04 LTS

Device name | gamboa
Memory 15,6 GiB
Processor |ntel® core™i7-7700 CPU @ 3.60GHz x 4
Graphics Gallium 0.4 on llvmpipe (LLVM 3.8, 256 bits)
OStype 64-bit
Disk 455,6 GB

Install Updates

Figure 4.3 System and Hardware

4.1.2 Operating system verification

PCs should have installed Ubuntu LTS 14.04.3 (64bits) with low latency
Kernel version 3.19,

if kernel installed is of a different version it can be updated with:

$ sudo apt-get install linux-image-3.19.0-61-lowlatency linux-headers-3.19.0-61-
lowlatency

In order to change into the new kernel, we have to reboot the computer, and
to confirm it is typed:

$ uname -a

Linux “NAME” 3.19.0-61-lowlatency #69~14.04.1-Ubuntu SMP PREEMPT Thu Jun 9
10:15:00 UTC 2016 x86_64 x86_64 x86_64 GNU/Linux.

And the branch of OAI should be tag v0.3.2 under this circumstance.

We can also use Ubuntu LTS 16.04.3 (64bits) with low latency Kernel
version 3.8.

In this case, we should use the develop branch of OAI (>= tag v0.4.0).

Due to real time communications, it is necessary to disable power
management features in the BIOS as p-states, c-states and also disable CPU
frequency scaling.

CPU frequency should be constant, so cpufrequtils is required. In file:
/etc/default/cpufrequtils a new parameter will be added:

$ sudo apt-get install cpufrequtils

$ sudo vi /etc/default/cpufrequtils
And add the following line to it:
GOVERNOR="performance”

Finally, we need to disable ondemand daemon so that when the next time
that PC be turned on, the settings would not be overwritten.

$ sudo update-rc.d ondemand disable

Once power management features have been disabled, i7z tool is used to
verify that CPU does not change its frequency, and just CO state remains
available. Figure 4.5 shows the result obtained with i7z tool.

Enter $ sudo i7z in the terminal, it will show an output similar to: (the C0%
should be 100%)

F

gamboa@gamboa: ~
Cpu speed from cpuinfo 3600.00Mhz
cpuinfo might be wrong if cpufreq is enabled. To guess correctly try estimating
Linux's inbuilt cpu_khz code emulated now
True Frequency (without accounting Turbo) 3599 MHz
CPU Multiplier 36x || Bus clock frequency (BCLK) 99.97 MHz

Socket [@] - [physical cores=4, logical cores=4, max online cores ever=4]
TURBO EMABLED on 4 Cores, Hyper Threading OFF
Max Frequency without considering Turbo 3698.97 MHz (99.97 x [37])
Max TURBO Multiplier (if Enabled) with 1/2/3/4 Cores is 42x/41x/41x/40x
Real Current Frequency 3998.90 MHz [99.97 x 40.00] (Max of b

| Core [core-id] :Actual Freq (Mult.) CO%
Core 1 [0]: 3998 0ex) 100
Core 2 [1]: 998.89 (40.600x) 106
Core 3 [2]: 998 (40.00x) 106
Core 4 [3]: 998.89 (40.600x) 106

Processor running without halting

Processor running with halts (States =C@ are power saver)
Cores running with PLL turned off and core cache turned off
Everything in C3 + core state saved to last level cache
Above values in table are in percentage over the last 1 sec

Figure 4.4 Power management features disabled and CPU information

4.1.3 Get repository

In order to obtain the repository for UE/eNB, git must be installed.
$ sudo apt-get update
$ sudo apt-get install subversion git

There are different repositories posted on EURECOM gitlab. Here we use
the openairinterface5g, because it contains source code for UE/eNB RAN.

To install the openairinterface5g, we need to input following sentence in the
terminal.

$cd~/

$ git clone https://gitlab.eurecom.fr/oai/openairinterface5g.git

Finally, it is necessary to run once and only once to install missing packages.
$ cd ~/openairinterface5g/

$ cd cmake_targets

$./build_oai -l -w USRP

In this thesis, we use usrp, so we have to type USRP in the sentence to make
the openairinterface5g support the USRP.

4.1.4 Connect OAI eNB with COTS UE

To connect the OAI eNB with UE, there are mainly three ways to achieve
your goal, connecting OAI eNB with OAI UE, connecting OAI eNB with
COTS (Commercial Off-The-Shelf) UE and connecting OAI eNB with
mobile phones.

Wireless Connection

=

LTE dongle EE

Figure 4.5 Basic structure of COTS connection

Here | use the COTS as an example. The COTS | use here is LTE Dongle:
Huawei E3372.

Figure 4.6 LTE Dongle: Huawei E3372

Unlike the OAI UEs, the COTS require the S1 interface and the EPC to
work. Therefore, here the core network part of the OAL is required.

Since | only use one computer for the tests, | use a virtual machine to
work as the EPC. The virtual machine software | used is VMware workstation
14 and the setup is shown in the following figure.

Hardware | Options

Device summary
& Processors 2

L Hard Disk (SCSI) 20GB

(:FCD/DVD (SATA) Auto detect
Network Adapter NAT

W Sound Card Auto detect
= Printer Present
USB Controller Present
M Display Auto detect

Figure 4.7 Basic setup of the virtual machine

By using the command(in virtual machine):

git clone https://gitlab.eurecom.fr/oai/openair-cn.git

can build the core network which is stored in a folder called openair-cn.

And then run the automated script for openair-cn:

https://gitlab.eurecom.fr/oai/openair-cn.git

git checkout v0.3.2
Jbuild_epc -i #(Need to run only once to install missing packages)
Jbuild_hss -1 #(Need to run only once to install missing packages)

When we were building the hss, it would automatically install the SQL server.
However, the installation of SQL server would fail if we only use the
command on the tutorials of OAI. It showed

error2002 . can't connect to local mysqgl server through socket.

After checking, it was found that mysql-server was not automatically installed.
In order to avoid subsequent errors in the database import, | reinstalled the
system and kernel, manually installed mysql-server before performing this
step, and solved the problem.

Therefore, we need to install the SQL (Sudo apt-get install mysql-server)
before build the hss to make this succeed.

And then, after entering 127.0.0.1/phpmyadmin in the browser, the “not
found interface” appears.

| solved this by adding phpmyadmin in Apache configuration
Fisrt open the apache.conf file:

Vim /etc/apache2/apache2.conf

Then add the following statement:

Include /etc/phpmyadmin/apache.conf

Restart the apache service:

/etc/init.d/apache? restart

And we can enter the SQL server after the above has been done.

Here is the details of my setup. The ip address of different interfaces can be
seen by entering the command “ifconfig”.

[oAl EPC in VMware

eth0 .
172.16.173.128
wI
vmnet8 e
o
172.16.173.1
»
2
<

OAl eNB ethd

17216173128

17216.173.128

Figure 4.8 Detailed LTE setup with Ethernet interfaces and IP addresses

First use “ifconfig” in the eNB(physical machine) to see the IP address of
different interface.

gamboa@gamboa: ~

inet addr:192.168.122.1 Bcast:192.168.122.255 Mask:255.255.255.0
UP BROADCAST MULTICAST MTU:1580 Metric:1

RX packets:0 errors:® dropped:® overruns:® frame:@

TX packets:® errors:0 dropped:@ overruns:® carrier:@

collisions:® txqueuelen:8

RX bytes:® (8.0 B) TX bytes:0@ (0.0 B)

Link encap:Ethernet HWaddr 80:50:56:c0:00:01

inet addr:172.16.179.1 Bcast:172.16.179.255 Mask:255.255.255.0
inet6 addr: feB8@::250:56ff:fTec®:1/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:® errors:0 dropped:® overruns:® frame:0

TX packets:51 errors:® dropped:@ overruns:@ carrier:®
collisions:® txqueuelen:1000

RX bytes:® (8.0 B) TX bytes:@ (0.0 B)

Link encap:Ethernet HWaddr 08:50:56:c0:00:08

inet addr:172.16.173.1 Bcast:172.16.173.255 Mask:255.255.255.0
ineté addr: feB8@::250:56FfF:fecd:8/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:® errors:0 dropped:® overruns:® frame:o0

TX packets:52 errors:0 dropped:@ overruns:® carrier:@
collisions:8 txqueuelen:1000

RX bytes:0 (0.8 B) TX bytes:0 (0.8 B)

Figure 4.9 Information of the Interface in eNB

Since the virtual machine | used worked in NAT mode, so the interface which
connects the virtual machine is vmnet8. So this interface is the interface of
eNB for EPC.

And then do the same command in the EPC side(virtual machine) to check the
Ip address of the MME. In this case the interface is called ethO.

0 e osboxes@nano: ~

osboxes@nano:~5 ifconfig
etho Link encap:Ethernet HWaddr 00:0c:29:14:ab:1d
inet addr:172.16.173.128 Bcast:172.16.173.255 Mask:255.255.255.0
inet6 addr: fe80::28c:29ff:fe14:ab1d/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1508 Metric:1
RX packets:38 errors:0 dropped:® overruns:0 frame:®
TX packets:87 errors:0 dropped:® overruns:8 carrier:0
collisions:0 txqueuelen:1000
RX bytes:4772 (4.7 KB) TX bytes:12475 (12.4 KB)

Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

ineté addr: ::1/128 Scope:Host

UP LOOPBACK RUNNTNG MTU:65536 Metric:1

RX packets:36 errors:0 dropped:® overruns:® frame:@
TX packets:36 errors:0 dropped:® overruns:@ carrier:0
collisions:0 txqueuelen:1

RX bytes:2782 (2.7 KB) TX bytes:2782 (2.7 KB)

osboxes@nano:~5% I

Figure 4.10 Information of the Interface in EPC(The virtual machine)

In configuration file(~/openairinterface5g/targets/PROJECTS/GENERIC-
LTE-EPC/CONF/enb.band7.tm1.usrpb210.conf), we change the IP address
to the IP address of the interface, which we read in the terminal.

So we change the original file into:
[T MME parameters:

mme_ip_address = ({ipv4 = "172.16.173.128";

ipv6="192:168:30::17";

active="yes";

NETWORK_INTERFACES :

ENB_INTERFACE_NAME_FOR_S1_MME = "vmnet8";

ENB_IPV4_ADDRESS_FOR_S1_MME ="172.16.173.1";

ENB_INTERFACE_NAME_FOR_S1U = "vmnet8",;

ENB_IPV4_ADDRESS_FOR_S1U ="172.16.173.1";
In EPC configuration file (~/openair-cn/BUILD/EPC/epc.conf.in),

As | mentioned before, we would have to change it into:
NETWORK_INTERFACES :

{

MME_INTERFACE_NAME_FOR_S1_MME = "eth0"; # YOUR NETWORK CONFIG
HERE

MME_IPV4_ADDRESS_FOR_S1_MME = "172.16.173.128/24"; # YOUR NETWORK
CONFIG HERE

SGW_INTERFACE_NAME_FOR_S1U_S12_S4 UP = "eth0"; # YOUR NETWORK
CONFIG HERE

SGW_IPV4_ADDRESS FOR_S1U S12 S4 UP ="172.16.173.128/24"; # YOUR
NETWORK CONFIG HERE

PGW_INTERFACE_NAME_FOR_SGI = "eth0"; # YOUR NETWORK CONFIG HERE

PGW_IPV4_ADDRESS_FOR_SGI ="172.16.173.128/24"; # YOUR NETWORK
CONFIG HERE

PGW_MASQUERADE_SGI = "yes"; # YOUR NETWORK CONFIG HERE

And then, compile and run the EPC and the HSS by entering the following
command:

Compile & Run EPC:
cd ~/openair-cn

cd SCRIPTS

Jbuild_epc -c -l

Jrun_epc -i -r

Compile & Run HSS:
cd ~/openair-cn

cd SCRIPTS

Jbuild_hss -c -I

Jrun_hss

You should have seen the following words in the terminal when you are
running the EPC and the HSS if you succeed.

osboxes@nano: ~fopenair-cn/SCRIPTS s <€) 10:51 %
AMETER_SUCCESS' (2001 (0x7d1))
03/87/18,10:23:51.301918 NOTI : 'Origin-Host'(264) 1=26 f=-M val="na
no.openairdG.eur”
03/07/18,10:23:51.301921 NOTI 'origin-Realm'(296) 1=21 f=-M val="o
penairdG.eur”
03/07/18,10:23:51.301923 NOTI : 'Origin-State-Id"(278) 1=12 f=-M val
=1520418169 (0x5a9fbd79)
03/07/18,10:23:51.301925 NOTI : "Host-IP-Address"(257) 1=14 f=-M val
=172.16.173.128
03/67/18,10:23:51.301928 NOTI : '"Vendor-Id'(266) 1=12 f=-M wval=0 (Ox
0)
03/07/18,10:23:51.301930 NOTI : '"Product-Name'(269) 1=20 f=-- val="f
reeDiameter™
03/07/18,10:23:51.301932 NOTI 'Firmware-Revision'(267) 1=12 f=-- v
al=10200 (©x27d8)
03/07/18,10:23:51.301935 NOTI AVP: 'Vendor-Specific-Application-Id’' (260
) 1=32 f=-M val=(grouped)
03/07/18,10:23:51.301937 NOTI AVP: 'Auth-Application-Id'(258) 1=12 f

M val=16777251 (©x1000023)

3/07/18,10:23:51.301939 NOTI AVP: 'Vendor-Id'(266) 1=12 f=-M val=10
415 (0x28af)
03/87/18,10:23:51.301941 NOTI AVP: 'Supported-Vendor-Id'(265) l=12 f=-M
val=10415 (8x28af)
03/87/18,10:23:51.301951 NOTI No TLS protection negotiated with peer 'nano.op
enair4G.eur'.
03/07/18,10:23:51.301961 NOTI 'STATE_WAITCEA' -> "STATE_OPEN' "nano.op
enair4G.eur'
03/07/18,10:24:20.726336 DBG a (no model)e/280
f:R--- src:'nano.openair4G.e { 96 2}
03/87/18,10:24:20.726391 DBG i tchdog-
Answer'0/280 f:---- src:'(nil)' len:96 {C:268/1:12,C:264/1:26,C:296/1:21,C:278/1
112}

03/07/18,10:24:49.176147 DBG SENT to 'nano.openair4G. H i tchdog-
Request'0/280 fi:R--- src:'(nil)' len:84 {C:264/1:26,C:296/1:21,C: /
03/07/18,10:24:49.176341 DBG RCV from 'nano.op ir4 ur': (no mod

f:---- src:'nano.openair4G.eur’' le {c Ji:12 / 1

112}

03/07/18,10:25:18.366191 DBG RCV from 'nanc.op

f:R--- src:'nano.openair4G.e
03/07/18,10:25:18.366253 DBG
An r'e/280 f:---- src:'(nil)"
112}

03/07/18,10:25:47.068816 DBG SENT to 'nano.openair4G.eur': 'Device-Watchdog-

4 {cC /1:26,C:296/1

osboxes@nano: ~fopenair-cn/SCRIPTS el m <€) 10:50 4
a7s 'STATE_OPEN' - "FDEVP_CNX_MSG_RECV' (0x7f8764600910,96)
6 nano.openair4G.eur'
001378 01476:018964 7F8781FFB700 ALERT SG6A esfopenair-cn/SRC/S6A/s6a_task.c:0
a7s RCV from 'nano.openair4G.eur': (no model)©/280 -- src:'nano.openair4G
.eur' len:96 {C:268/1:12,C:264/1:26,C:296/1:21,C:278/1:12}
001379 01476:018975 TF8781FFB700 ALERT SG6A es/openair-cn/SRC/S6A/s6a_task.c:0
a7s Iterating on rules of COMMAND: 'Device-Watchdog-Answer'.
001380 01476:018979 7F8781FFB700 ALERT S6A es/openair-cn/SRC/S6A/s6a_task.c:0
@75 Peer timeout reset to 38 seconds (+/- 2)
001381 01476:018981 7F8781FFB700 ALERT S6A es/openair-cn/SRC/S6A/s6a_task.c:0
075 'nano.openair4G.eur' in state 'STATE_OPEN' waiting for next event.
001382 01480:766800 7FB8TAB7FE700 DEBUG MME-AP SRC/MME_APP/mme_app_statistics.c:@
036 = Statistics =
001383 01480:766806 7FB7AB7FE700 DEBUG MME-AP SRC/MME_APP/mme_app_statistics.c:0
037 | Global | since last display
001384 01480:766807 7FB7AB7FE700 DEBUG MME-AP SRC/MME_APP/mme_app_statistics.c:0
038 UE] 0| [
001385 01480:766809 7TFB8TABTFE700 DEBUG MME-AP SRC/MME_APP/mme_app_statistics.c:0
039 Bearers | 0 | (<]
001386 01490:766800 7FB7AB7FE700 DEBUG MME-AP SRC/MME_APP/mme_app_statistics.c:0
036 Statistics
001387 01490:766806 TFB87TAB7FE700 DEBUG MME-AP SRC/MME_APP/mme_app_statistics.c:0
037 | Global | Since last display |
001388 01490:766807 7FB7AB7FE700 DEBUG MME-AP SRC/MME_APP/mme_app_statistics.c:0
038 UE | 0| [|
001389 01490:766808 7FB7AB7FE700 DEBUG MME-AP SRC/MME_APP/mme_app_statistics.c:0
039 Bearers | 0 | <] |
001390 01500:766798 7FB8TAB7FE700 DEBUG MME-AP SRC/MME_APP/mme_app_statistics.c:@
036 Statistics
001391 01500:766806 7FB7AB7FE700 DEBUG MME-AP SRC/MME_APP/mme_app_statistics.c:0
037 | Global | since last display
001392 01500:766807 7FB7AB7FE700 DEBUG MME-AP SRC/MME_APP/mme_app_statistics.c:0
038 UE] 0| [
001393 01500:766808 7TFB8TAB7FE700 DEBUG MME-AP SRC/MME_APP/mme_app_statistics.c:@
039 Bearers | 0 | (<]
001394 01507:482554 7F8781FFB700 ALERT S6A es/openair-cn/SRC/S6A/s6a_task.c:@
875 'STATE_OPEN' <-- 'FDEVP_PSM_TIMEOUT' ((nil),0) 'nano.openair4g.
eur'
001395 01507:482585 7F8781FFB700 ALERT S6A es/openair-cn/SRC/S6A/s6a_task.c:0
075 Peer timeout reset to 30 seconds
001396 01507:482587 7TF8781FFB700 ALERT SG6A esfopenair-cn/SRC/S6A/s6a_task.c:0
a7s 'nano.openair4G.eur’ in state 'STATE_OPEN' waiting for next event.
001397 01507:486559 7F87817FA700 ALERT S6A es/openair-cn/SRC/S6A/s6a_task.c:0

Figure 4.10 Both HSS and EPC show “state open”

IN the meantime, the SQL server is required to connect the eNB with the
LTE dongle. We need to change a few parameters.

Parameters to be changed in _hss.conf :

MYSQL_server _127.0.0.1_;

MYSQL_user root_;

MYSQL_pass _linux_;

MYSQL_db oai_db_;

OPERATOR key 11111111111112111111121212111111211 ;

Table 4.4: Parameters to be changed in _hss_fd.conf _:

Identity _hss.openair4G.eur_;

Realm _openairdG.eur_;

Then we need to enter the sim card’s information in the SQL server so that
the eNB can recognize the LTE dongle. The sim card’s information can be
read by a card reader like SCR 3310.

Here we have the sim card information like this:

MCC (Mobile Country Code) 214

MNC (Mobile Network Code) 03

TAC (Tracking Area Code) 4

IMSI (International Mobile 214030000000004

Subscriber Identity)

OP (Operator Key) 11111111121211217121212121211211121212
(32 digits)

Table 4.1: UE SIM card con_guration

The most important information of the sim card to be authenticated is
IMSI, OP and Ki. In this case, the Ki IS
8BAF473F2F8FD09487CCCBD7097C6862 (32 digits) and the Opc can be
calculated by the HSS through Ki and OP.

If the sim card’s information is uncertain, we should use a card reader to
check the detailed information of the sim card. In this thesis, | use SCR3310.

Figure 4.11 Card reader: SCR3310

To read the information of the sim card, we have to get the code of PySIM:
git clone git://git.osmocom.org/pysim pysim
cd pysim

and then run the /pySim-read.py to read your card:
IpySim-read.py

if you done everything allright, you will see something similar:

Reading ...

ICCID: 8901901550000123456
IMSI: 2014030000000004

KI: BBAF473F2F8FD09487CCCBD7097C6862

SMSP: FRFFFFFfffffffffffrfffrfrdffffrffrfrffffffffffffffo69186770700F9ffFFFFFfff

Figure 4.12 Card information successfully read

All the information of the sim card must be written into the database of
HSS. When | was working on the Ubuntu 14.04, inserting a new user in oai
database can do the job. All the work can be done in visual interface of
phpadmin.

php [l G Server: localhost » @ Database: oai_db > Table: users
o8 Ee 8 [Z] Browse Gt Structure [] sQL L Search 3#¢ Insert [Export 5} Import J° Operations © Tracking 22 Triggers
(Recent tables) j Column Type Function Null Value
m varchar(15) -]
@ informat e 5 214030000000004
T
- mysal -
- d varchar(46; -
1) cai_db e el E NULL
Fj New
Y m varchar(15) < C
®iden | Imd | NULL
] mmeidentity
i
] pdn har(2) K
] pow
] terminal-inf -
ij = me. enum - NOT_PURGED j
@@ performance schema rau_tau_timer int(10) unsigned o
% phpmyadmin 120
ue_ambr_ul bigint(20) unsigned e Ev—
bigint(20) unsigned A O 00000000
int(10) unsigned 40 [m
int(10) unsigned zerofill 4 O 5000000000
mmeidentity_idmmeidentity int(11) -)
ke binary(16) -
= & 5 8baf473F2f8fd09487cccbd 0!
RFSP-Index smallint(s) unsigned - ;
ump_mme tinyint(1) j o
san bigint(20) unsigned zerofill - 20090090000000001024
rand binary(16) +
& R 046ee1166ed5016F6bF6291a¢
OPc binary(16) <
v R 8¢27b6aF0e6926750F 3266733

Figure 4.13 sim card’s information added in the database

For this LTE Dongle at the UE side, we can enter the graphic interface
on the url 192.168.8.1. And then we have to go to Profile Management and
add a new APN profile.

[Hox (DNex BMx (&#fx @Fx(=-—x (&&Ex ([Ex (#Ex[ix ﬂmxthx‘[]mx Chrfstoplher ~ — 4

! 0@ ©® Notsecure | 192.168.8.1/html/profilesmgr.html| or W ™M

B BE-T, AR08 O NBAMAGE A L SRARNESY. [) ERASAR K PRFLEE-FAT @ ENEE-NE [) SFFEEETE [ROLERRAS

English v
W2 Huawer e
Home Statistics SMS Update M
Dial- .
s 2 Profile Management
Mobile Connection
Network Settings Profile name: eur(default) v
secu"'y o User name: [fOOl “
Syst :
Yoo 2 Password: [reese |
APN: [oatipv4 |

New Profile | | Delete H Apply |

Figure 4.14 Parameters of APN

And the successful connection to the LTE network is shown in Figure 4.13.

C O © 192.1688.1/html/home htm * MO B
B oapps & BE-T, FRAE O NABATERG Ll ZMOMSHEE [BRI ® SFALERSST @ ROiE-i8 [) eUE2 ewTs »
English
2 Huawe il 14

M Statistics SMS Update Settings

Orange

[]
. i i i Connected
4G

Connection Settings

3

Current connection
Received/Sent: 304.52 KB/ 72 KB Duration: 00:00:28

Figure 4.15 Successful connection of the LTE Dongle

And in the eNB machine, the xform will show something like the
following figure. And stats like CQI will also be shown in the eNB machine.

© @ LTE UL SCOPE eNB for CC_id 0, UE 0

nal (Time-Domain,

Channel Frequency

MF Output

Figure 4.16 LTE uplink scope

eNB 071 Frame 288: RN Gain 129 dB, 10 -101 dBu (24,0) dB
PRE 10 (0,0,0,00; -115 -115 -112 -115 -115 -115 -115 -115 -112 -117 -115 -116 -110 -115 <115 -115 -116 =110 -117 -115 -115 -115 -115 -112 -115

PERFORMANCE PARAMETERS
Total DLSCH 3 kbits / 289 frames Total DLSCH throughput O kbps Total DLSCH trans 24 7 289 frar
UE 0 (7121} Power: (48,0) dB, Po_PUSCH: (-31.0) dBm, Po_PUCCH (-77/-96) dBm, Po_PUCCHL (-125, 84) dBm, PUCCHL Thres -115 dBm
DL mcs 0, UL mes 4, UL rb 3, delta_TF -282, Wideband COI: (0,0} dB
IL TH 1, Dl_cqi 14, TL_pui_single O Timing sdvance 24 samples (6 16Ts), update 4 Mode = PUSCH(Z) UE_id_mac = 0, RRC status = 4
SR received/total: 15/8666 (diff 8651}
DL Subband COI: 14 14 14 14 14 13 13
ULSCH errors/attempts per harq (per round):
harg 03 0158 (fer 0) (07158, 040, 040, 0A0) harg 13 0/298 (fer 0) (04238, 040, 040, 0/0)
harq 23 04453 (fer 0) (04453, 070, 0/0, 0/0) harq 33 14720 (fer 0) (1/720, 171, 1/1, 1/1)
harg 43 0196 (fer 0) (07156, 040, 040, 0A0) harg B3 0/295 (fer 0) (07235, 0/0, 040, 0/0)
harq B3 14461 (fer 0) (27461, 1/2, 1/1, 1/1) harq 73 04720 (fer 0} (04720, 070, 0/0, 0/0)
ULSCH errors/attempts total 2/3267 (3/3267. 2/3, 272, 2/2)
DLSCH errors/attempts per harg (per round):
harq 0: 045 (5/0/9, 07070, 0/0/0, 0/0/0) harg 13 0/1 (14071, 0/0/0, 04040, 0/0/0)
harg 23 045 (5/0/5, 0/0/0, 0/0/0, 0/0/0) harg 31 041 (17071, 07070, 074040, 0/0/0)
harq 4: 044 (4/0/4, 07070, 0/0/0, 0/0/0) harg 53 042 (2/0/2, 0/0/0, 0/0/0, 0/0/0]
harq B3 046 (B/0/6, 0/0/0, 0/0/0, 0/0/0) harg 73 040 (04070, 07070, 074040, 0/0/0)
DLECH er‘rors/attempts total 0424 (0424, 070, 040, 0/0):
DLSCH total bits from MAC: Okbit DLSCH total bits ack'ed: Zkbit DLSCH Awerage throughput (100 frames): Okbps

EOF

Figure 4.17 general stats and CQI values

12 stats

eNB 0 CC 0 Frame 8043 Active UEs 1, Awailable PRBs 25, nCCE O, Scheduling decisions 0, Missed Deadlines O

BCCH , MB_TH_MAC = 49784, transmitted butes (TTI 15, total 896115} MCS (TTI 2)

DLSCH bitrate (TTI 0, avg 0) kbps, Transmitted bytes (TTI 0, total 0), Transmitted PDU (TTL 0, total 0)

ULSCH bitrate (TTI O, awg 1573) kbps, Receiwed butes (TTI 63, total 1583278}, Receiwed PDU (TTI 0, total 24858)

UE O (DLSCH),status RRC_RECONFIGURED, RNTI 7121 ; COI 43, MCS1 28, MCS2 0, RE (tx 2, retx 2, total 162}, ncee (tx O, retx O)

ILSCH bitrate (TTI 0, avg 0), Transmitted bytes (TTI 4, total 531), Total Transmitted PDU 73, Overhead (TTI 2, total 942, avg 0)

UE O {ULSCH), Status RRC_RECONFIGURED, Failute timer O, RNTI 7121 3 rx power (normalized -390, target -90), MCS (pre 11, post 11), RE {rx 0, retx 0, total 74730
ULSCH bitrate (TTI 0, avg 1573}, received bytes (total 1523278), Total received FIU 24856, Total errors O

Received PHR PH = 40 (db)

Received BSR LCGID[O][L][2][2] =00 0 0

ICCH Hade AH, MNB_SDU_TO_TH = 5 (NB_SDU_TO_TH_DISC O (bytes 0)

ICCH Fode AM, NB_ NB_TX_CONTROL 6 (butes 12} ME_TH_RETY O (bytes 0} NB_TK_RETH_BY_STATUS = 0 (butes o)

ICCH Hode A, NB_RY_DATA = es 207 NB_RX_CONTROL 5 (butes 10} ME_RH_DUPL O {bytes O} NE_RE_IROP = 0 (bytes 0} NB_RX_OUT_OF _WINDOW =
ICCH Hode AM, RX_REODERING_ TIHEUUT =0 R¥_POLL_RET_TIMEOQUT ¢ RR_PROHIBIT_TIME_OUT O

ICCH Fode AM, NB_SDU_TO_]

ITCH Fode UM, NB_ 1834882532 (butes L7RE7E0654) HB_SDI_TO_TA_DISC 1884370549 (bytes 1954112032)

DITCH Hode UM, NB_TH_DATA 673015333 [bytes S41676620) NE_TX_CONTROL 0 (butes 0) B_TH_RETX 0 (bytes 0) MNB_TH_RETK_BY_STATUS = 0 (butes 0)

DTCH Hade UH, MNB_R¥_DATA = 1768700654 (butes 168437054E) ME_RE_CONTROL 5 (bytes 10) NE_R¥_DUPL 740895600 (bytes 1634862532) NB_RH_DROP = 14305403
ITCH Hode UM, RX_REODERING_ TIHEUUT =0 R¥_POLL_RET_TIMEOUT O RR_PROHIBIT_TIME_OUT O

DITCH Hode UH, NB_SDU_TO_RY = 1348265520 (bytes 1616326127)

Figure 4.18 L2 stats

Since most of the innovation work in OAI are done in the developed
branches, | tried to apply the same setup in recent branch of OAI tag v0.5. In
this case, there will be a problem with the GTPU module. To solve this, we
should use a new kernel which is higher than 4.7.7. And the eNB should be
updated to Ubuntu 16.04 with a kernel of lowlatency. Here we use the kernel
4.13 lowlatency.

© Details
AllSettings Details

Default Applications

Removable Media
Legal Notice

ubuntu 16.04 LTS

Device name | nano

Memory 31,1GiB
Processor Intel® Core™ i9-7900X CPU @ 3.30GHz x 20
Graphics NVAS
OStype 64-bit
Disk 438,9GB

Install Updates

Figure 4.19 System and Hardware

Another difference is that the EPC was separated into mme, hss and spgw.
So it has to be complied and run independently.
Build mme,hss and spgw.

cd openair-cn

git checkout develop

git pull

cd SCRIPTS

Jbuild_mme -i #(Need to run only once to install missing packages)
Jbuild_hss -i #(Need to run only once to install missing packages)
Jbuild_spgw -i #(Need to run only once to install missing packages)

The adjustment in the config file is also different. First we have to copy
the EPC config files in /usr/local/etc/oai:

sudo mkdir -p /usr/local/etc/oai/freeDiameter

sudo cp ~/openair-cn/ETC/mme.conf /usr/local/etc/oai

sudo cp ~/openair-cn/ETC/hss.conf /usr/local/etc/oai

sudo cp ~/openair-cn/ETC/spgw.conf /usr/local/etc/oai

sudo cp ~/openair-cn/ETC/acl.conf /usr/local/etc/oai/freeDiameter
sudo cp ~/openair-cn/ETC/mme_fd.conf /usr/local/etc/oai/freeDiameter
sudo cp ~/openair-cn/ETC/hss_fd.conf /usr/local/etc/oai/freeDiameter

And then, all the adjustment should be done in the new config files,
otherwise all the change would not be compile in the EPC.

The changes in the mme.conf and spgw.conf is the same as the epc.config in
the master branch.

In MME freediameter configuration file
(/usr/local/etc/oai/freeDiameter/mme_fd.conf):

Identity = "nano.openair4G.eur";
Realm = "openair4G.eur";
ConnectPeer= "hss.openair4G.eur"

The identity should be your hostname.openair4G.eur. Otherwise error
“returning 22” will occur when we run the mme.

Running eNB, EPC and HSS:

Install certificates:

cd ~/openair-cn/SCRIPTS

Jcheck_hss s6a_certificate /usr/local/etc/oai/freeDiameter/
hss.openair4dG.eur

Jcheck_mme_s6a_certificate lusr/local/etc/oai/freeDiameter/
nano.openair4G.eur

Before running the EPC side, we need to write the information of the sim
card into the hss as well.

However, in this case, when we follow the same process as we did in Ubuntu
14.04, the following error will appear.

Error

SQL query: . Edit

UPDATE ‘oai_db’. users’ SET ‘Imsi’ =
'214030000000004' WHERE "users™.’imsi’ =
'208950000000013" AND

‘users’. mmeidentity_idmmeidentity” =1
MySQL said:

#1862 - Duplicate entry "21483000068606884-1° for key
' PRIMARY '

Figure 4.20 Error in database

At first, | thought this happened because | edit the original user’s
information in the database. So | use the insert instead of edit. But the same
problem happened.

The main reason was that the information filled in was inconsistent with
the sim card information, and the filling method was not due to the reasons.

1) In the phpmyadmin database, click on the insert directly above to add, the
error is that value key, rand and OPc three values are truncated,

2) In the mysqgl command line to directly perform the add command, there is
warning, because the data is truncated;

3) Change the data length of key, rand, and OPc from varbinaryl6 to
varbinary32. The added data will not be truncated, but the data will
automatically change when hss is run, resulting in authentication failure.

Finally through learning to find the difference between the data types, |
found out that the data must be changed to binary, and add a hexadecimal
number written as Ox. And after this, we can successfully run the whole
system.

8 CflScrver: localhost > @) Database: oai_db » [Table: users

| Browse | Structure || SQL , Search ¢ Insert [& Export =} Import Operations % Tracking 2= Triggers

Run SQL query/queries on database oai_db: g

N ’ 1 i . fdex . b A . ‘fand’,)_VALUES [*214030006000004 , '33611123456', '35609204679299", NULL. 'NOT_PURGED', "120'.
406000007, *100000000°, '47'. '0000000O00'. '1'. OxBBAF47IF2FBFDBI4BTCCCBDTE97CEBG6Z. 1. '0°. '°. B

SELECT * SELECT INSERT UPDATE DELETE Clear

Bookmark this SQL query:

[Delimiter |; 1 Show this query here again Retain query box

Figure 4.21 Use SQL Language to add user into database
Enter the following into the SQL session:

INSERT INTO users (‘imsi’, ‘msisdn’, “imei’, ‘imei_sv’, ‘ms_ps_status,
‘rau_tau_timer, “ue_ambr_ul’, “ue ambr _dlI', “access_restriction’,
‘mme_cap’, mmeidentity idmmeidentity’, "key', '/RFSP-Index’, "urrp_mme",
sqn’, ‘rand’, "OPc’) VALUES ('214030000000004', NULL, NULL, NULL,
'NOT_PURGED?, '120', '40000000', '100000000', '47*, '0000000000', 1,
O0x8BAF473F2F8FD09487CCCBD7097C6862, 1 ‘0,
0x00000000000000000000000000000000,);

And after this, we can successfully run the whole system.

Compile & Run HSS (ALWAY'S RUN HSS FIRST):

cd ~/openair-cn
cd SCRIPTS
Jbuild_hss -c

Jrun_hss -i ~/openair-cn/SRC/OAI_HSS/db/oai_db.sgl #Run only once to
install database

Jrun_hss #Run for all subsequent runs

Compile & Run MME:

cd ~/openair-cn/SCRIPTS
Jbuild_mme -c

Jrun_mme

Compile & Run SP-GW:

cd ~/openair-cn
cd SCRIPTS
Jbuild_spgw -c
Jrun_spgw

After EPC is connected to HSS, compile and start eNB with the same
command used in the master branches.

*a & a9

=0 WHERE ‘users”

1 rows affected
Query: UPDATE ‘users’ ‘sqn’ = ‘sqn’ + 32 WHERE ‘users’. imsi'='2140300000000
04’

-

3.8 B1T 1 rows affected

SENT to 'nano.openair4G.eur 'Authentication-1
L GO E R RS = = " fornation-An z - srcz'(nil)’ L
1413/ 114 :12,C:264/1: 1296/1: 68/)
R RCV from 'nano.openair4G.e
= Corenetwork : o ' d/ =
.720830 DBG
cd ~/openair-cn/SCRIPTS \nswer ' e src:'(nil)' len:96 {

.999907 DBG RCV from 'nano. ap nairdG

./build hss -c
"nano.openairdG.eur' len:84 {C:264/1: 1296/1:
e CLYGEYRE:N 61:3 .999963 DBG SENT to 'nano.o
./run_hss #Run for all subsequent runs |NJENETRNONPEL) "(nil)' L
112}
cd ~/openalz-cn/SCRIPTS :39:18.145473 DBC RCV from 'nano.openatrg
nano.openairdG.eur' len:84 /

©5/03/18,01:39:18.145569 DBG SENT to

A ./build_mme —c \nswer '@ 0 src:'(nil)' lel
15

Mo00135 00001:080945 7F87EB2FD740 DEBUG S11 ano/openair-cn/src/sil/sll_sgw.c: r)001104 00400:348824 7F2471FFB700 DEBUG MME-AP src/mme_app/mme_app_statistics.

Initializing S11 interface: DONE | Current Status| Added since last display| Removed
6 00001:080956 7F87EB2FD740 DEBUG SPGH-A nofopenair-cn/src/sgw/sgw_task. :0<= last display |

Initializing SPGW-APP task interface 001105 66400:348826 TF2471FFB700 DEBUG MME-AP Src/mme_. app/mme app_statistics.
00001:080959 7F87EB2FD740 DEBUG GTPv1- air-cn/src/gtpvi-u/gtpviu_task 036 Connected eNBs | 1 | |
Initializing GTPV1U interface -] |
00001:080968 7F87E73DO70@ DEBUG UDP /srcfudp/udp_primitives_server.c:0(001106 00400:348828 7F2471FFB700 DEBUG MME-AP src/mme_app/mme_app_statistics.
Creating new listen socket on address 127.0.11.2 and port 2123 038 Attached UEs | 0 | 0 |
00001:082991 7F87E73DO70@ DEBUG UDP /src/udp/udp_primitives_server.c:o| o |
Inserting new descriptor for task 6, sd 31 ©0400:348831 7F2471FFB700 DEBUG MME-AP src/mme_app/mme_app_statistics.
©00001:083040 7F87E73D0700 DEBUG UDP /src/udp/udp_primitives_server. Connected UEs | <) | <) |
Received 1 events |
ERROR: Module gtp is not currently loaded ©0400:348833 7F2471FFB700 DEBUG MME-AP src/mme_app/mme_app_statistics.
00001:112356 7F87EB2FD740 NOTIC GTPv1- -cn/src/gtpvi-u/gtp_mod_kernel. Default Bearers| 0 | 0 |
using the GTP kernel mode (genl ID is 27) |
00001:138106 7F8TEB2FD740 DEBUG GTPV1- -cn/src/gtpvl-u/gtp_moed_kernel. 00400:348835 7F2471FFB700 DEBUG MME-AP src/mme_app/mme_app_statistics.
Setting route to reach UE net 172.16.0.0 via gtpe S1-U Bearers | 0 | 0 |
©00001:138343 7F87EB2FD74@ NOTIC GTPV1- -cn/src/gtpvi-u/gtp_mod_kernel.c:o| |
GTP kernel configured
00001:139540 7FBTEB2FD740 s = _task.c: ©0400:348838 7F2471FFB700 DEBUG MME-AP src/mme_app/mme_app_statistics
Initializing GTPVIU interface: DONE STATISTICS

000145 ©0001:202855 7F87EB2FD74@ DEBUG SPGW-A no/openalr-cn/src/sgw/sgw_task.

208 Initializing SPCW-APP task interface: DONE

Figure 4.22 mme, hss and spgw successfully running

From the window for the mme, we can see how many eNB is attached to
the mme. After the eNB is running, you should see something like this.

STATISTICS
| Current Status| Added since last display| Removed since last display |
Connected eNBs | (5] | (5]
Attached UEs |
Connected UEs |
Default Bearers|
51-U Bearers |

Figure 4.23 Number of eNBs connnected to the MME
When the UE is connected to the LTE network, the status of Figure 4.19
will change to the one shown in Figure 4.20. And the the UE side with the

dongle will show the same image | showed before.

| Current Status| Added since last display| Removed since last display |
Connected eNBs | | 0 |

Attached UEs | 0
Connected UEs |

Default Bearers|

S1-U Bearers

Figure 4.24 UEs connnected to the MME
Later on, | tested this setup with the USRP X310. The only difference is
that we have to change the config file in the eNB side. Switch the file into

tm1.usrpx310.conf and change the address of mme and eNB.

4.2 LTE Linkon srsLTE

Since the srsLTE has a much better stability than the OAI, it does not
require specific the kernel like the OAL. In this thesis, | choose the same
system and kernel as the OAI’s setup. Pay attention to the OS when
installing. The following tests in this thesis use the OS of Ubuntu 16.04.

4.2.1 Get repository

After the system is installed, you just need to install common tools,
such as git, vim, etc. You can use Ubuntu system apt-get to install.

First, install git on the PC.
sudo apt-get update
sudo apt-get install git

The USRP B210 is selected as the hardware device, so the UHD driver
needs to be installed on the system. Currently UHD version 3.10.0.0 is
relatively stable for OAI and srsLTE.

git clone https://github.com/EttusResearch/uhd

cd uhd
git checkout release 003 _010_000_000

Test: If the above steps are completed, you can insert the usrp into your
computer for testing.

sudo uhd_find_devices
sudo uhd_usrp_probe

If the usrp device is detected and the information of the USRP is shown
on the computer, that means the uhd is successfully installed and the
connection between the PC and the usrp is working properly.

And then, on Ubuntu 16.04 system or higher version, execute the
following command

sudo apt-get install cmake libfftw3-dev libmbedtls-dev libboost-program-
options-dev libboost-thread-dev libconfig++-dev libsctp-dev

In addition, srs also provides the srsGUI library, which can be used to
view the constellations and signal energy in real time during debugging. The
github link is: https://github.com/srslte/srsgui. The installation command is as
follows:

sudo apt-get install libboost-system-dev libboost-test-dev libboost-thread-
dev libqwt-dev libgt4-dev

git clone https://github.com/suttonpd/srsgui.git
cd srsGUI

mkdir build

cd build

cmake ../

make

sudo make install

sudo ldconfig

And after this we can install the srsLTE by using the command:

git clone https://github.com/srsLTE/srsLTE
mkdir build

cd build

cmake ../

make

make test

sudo make install

sudo Idconfig

4.2.2 LTE network construction

The operating parameters of srsLTE are all configured using
configuration files. That is, only the configuration file needs to be added after
the running program while the configuration parameters are performed in the
configuration file. The srsLTE provides corresponding sample configuration
files for the UE, eNB, and EPC. Placed in the corresponding srsUE, srsENB,
and srseEPC folders, and named as *.example, as shown below srsENB
configuration file:

CMakeLists.txt drb.conf.example enb.conf.example hdr rr.conf.example sib.conf.example src test

Figure 4.25 Configuration files in srsLTE

While running, these configuration files can be copied and the file name
modified, such as assigning enb.conf.example and named enb.conf.

srIsSENB and srsEPC can be run on one computer(with virtual
machine) or on two different computers, but it is necessary to ensure the IP
reachability between the two machines and modify the related configuration
files; srsUE needs to run on another computer. In this thesis, | choose the
Huawei E3372 dongle as the UE to compare the performance of OAI and the
SIsLTE.

After executing sudo make install, we can directly use srsEPC, srsENB,
and srsUE to run the corresponding module.

To construct the LTE link, we should first build an EPC in the virtual
machine.

In srsEPC, the hss data base is much simpler than the oai, we just have
to change the file called user_db.csv. Add the information of the sim card in
this file will make the authentication of the dongle succeed. The information
type is listed below:

.csv to store UE's information in HSS
Kept in the following format: "Name,IMSI,Key,OP,AMF"

Name: Human readable name to help distinguish UE's. Largely ignored
by the HSS

IMSI: UE's IMSI value

Key: UE's key, where other keys are derived from. Stored in
hexadecimal

OP: Operator's code, sotred in hexadecimal

AMF: Authentication management field, stored in hexadecimal
SQN: UE's Sequence number for freshness of the authentication
So here | add the line:

zch,214030000000004,8baf473f2f8fd09487ccchd7097¢6862,1111111111
1111111111111111111111,9001,000000001234

And then we have to change the ip address, mnc, mcc, etc.
[mme]

mme_code = 0xla

mme_group = 0x0001

tac =4

mcc = 214

mnc = 03

mme_bind_addr = 192.168.34.128
apn = srsapn
dns_addr = 8.8.8.8

HHHH B R R
T

[hss]
auth_algo = xor

db_file = user_db.csv

T T T T T T R T
HHHHHH R

SP-GW configuration

#

gtpu_bind_addr: GTP-U bind adress.
#

T R R T R R
HHHHEHH R

[spgw]
gtpu_bind_addr=127.0.1.100
sgi_if addr=172.16.0.1

R R R R R R R T
HHHHBHH Y

[log]
all_level = debug

all_hex_limit = 32

filename = /tmp/epc.log

After all the files changed correctly, we can run the epc.
cd srseEPC/

sudo srsEPC epc.conf

ano@nano:~/fsrsepc$ sudo srsepc epc.conf

Software Radio Systems EPC

eading configuration file epc.conf...
SS Initialized.

ME GTP-C Initialized

ME Initialized.

P-GW Initialized.

Figure 4.26 srsEPC successfully initialized

In the eNB side, we have to run the eNB in the src file. So | copy these conf
file and then renamed them to delete the “example” in their name.

cd srsLTE/build/srsENB/src
cp ../..[..IsrsENB/*.example
mv sib.conf.example sib.conf
mv rr.conf.example rr.conf
mv enb.conf.example enb.conf
mv drb.conf.example drb.conf

The next step is to open enb.conf and configure srsENB to open the GUI
mode of the srsENB.

Find the following line:

[gui]

enable = false

And change it into:
[gui]

enable = true

In addition, the address of the MME needs to be configured in enb.conf
to be the same as the address of the MME in the virtual machine. The address
of the MME changed in enb.conf is as follows. (Change 127.0.1.100 to the
address of your MME)

mme_addr = 192.168.34.128
And finally, run the srsENB with the command:
sudo ./srsENB enb.conf

When the UE is successfully attached with the epc and the enb, the figure
in the PC is as figure 4.23 showed.

Channel Response PUSCH - Equalized

- Magnitude Symbols
40 £ 40 4
304 [E 30 3
20 F20 | @2
10 J - 10 21 :- on
g o o || Bo 3533
-10 ~ -10 =-1 - o
-20 E-20 | ©O-2
-30 E-30 3
-40 E-40 -4
Ll s il e ol L r T T T T T T 1
1 CETRTANENRIND 4 -3 2 <1 0 1 2 3 4
Index In-phase
Channel Response PUCCH - Equalized
- Argument Symbols

100 ! 100 o
1=
50 | 50
2 o - [}
ng for clock rate ___1_
ally got clock rate -50 / 50 !
orming timer loopback te -100 -100 o

rforming timer loopb

A R - I TS

, offset=9, temp_crnti=

Figure 4.27 srsEPC, srsENB and srsUE successfully connected

4.2.3 srsLTE with Next EPC

Using Next EPC as the EPC to work with the srsLTE is another setup. In this
case, we have to first install the next EPC.

sudo apt-get update

sudo apt-get -y install software-properties-common
sudo add-apt-repository ppa:acetcom/nextepc
sudo apt-get update

sudo apt-get -y install nextepc

This will create a virtual network interface named as pgwtun. It is
automatically removed by uninstalling NextEPC. If the interface is
successfully set, you should see the following figure after entering “ifconfig”

Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

inet addr:45.45.0.1 P-t-P:45.45.0.1 Mask:255.255.0.0
inet6 addr: cafe::1/64 Scope:Global

UP POINTOPOINT NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:® dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:@ overruns:® carrier:0
collisions:0 txqueuelen:500

RX bytes:® (0.0 B) TX bytes:0 (0.0 B)

Figure 4.28 Information of interface pgwtun

The LTE user subcription information of NextEPC is stored and maintained
by Mongo DB. NextEPC provides an alternative management interface for
customers to manage their subscriber information in an easy way, that is Web
User Interface. The following shows how to install the Web Ul of NextEPC.

sudo apt-get -y install curl

curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -

curl -sL http://nextepc.org/static/webui/install | sudo -E bash -
Now the web server is running on http://localhost:3000.

Then we can log in and enter the information of our sim card.

Create Subscriber

Subscriber Configuration

IMSI*
214030000000004
Subscriber Key (K)* Authentication Management Field (AMF)*

BBAF473F2F8FD09487CCCBDT097C6862

USIM Type Operator Key (OPc/OP)*
oo 4 MMM muiunmninmmnmmm

UE-AMBR Downlink (Kbps)* UE-AMBR Uplink (Kbps)*
1024000 1024000

APN Configurations

CANCEL SAVE

Figure 4.29 Information of sim card saved in the next EPC

Then, SIAP/GTP-C IP address, PLMN ID, TAC updated in the MME
Configuration.

Add S1AP address : 127.0.1.100 (srsENB Default Value)
Add GTP-C address : 127.0.1.100 (Use Loopback Interface)

diff -u mme.conf.old mme.conf

--- mme.conf.old 2018-04-15 18:28:31.000000000 +0900
+++ mme.conf 2018-04-15 19:53:10.000000000 +0900
@@ -14,18 +14,20 @@

mme:

freeDiameter: mme.conf

slap:

addr: 127.0.1.100

gtpc:

addr: 127.0.1.100
gummei:
plmn_id:
mcc: 214
mnc:03
mme_gid: 2
mme_code: 1
tai:

plmn_id:
mcc: 214
mnc: 03

tac: 4

GTP-U IP address updated in the SGW Configuration.

Add GTP-U address : 127.0.0.2 (Use Loopback Interface)

diff -u /etc/nextepc/sgw.conf.old /etc/nextepc/sgw.conf
--- sgw.conf.old 2018-04-15 18:30:25.000000000 +0900
+++ sgw.conf 2018-04-15 18:30:30.000000000 +0900
@@ -14,3 +14,4 @@

gtpc:

addr: 127.0.0.2
gtpu:
addr: 127.0.0.2

After changing conf files, restart NextEPC daemons.

sudo systemctl restart nextepc-mmed

sudo systemctl restart nextepc-sgwd

After this, the EPC will be successfully run.

5. Evaluations

In this chapter, | test the performance of two different softwares for
SDR, and evaluate the performance of USRP B210 with the dongle E3372.

5.1 Channel quality of B210 and E3372

First, 1 do some tests on the basic setup of our LTE link. Since we always
have problems with the strength of the signal without antenna, | test the CQI
without antenna when the distance between USRP and Dongle is different.

CQl-distance chart without antenna

16

12

10

cal
[5.2]

0 5 10 15 20 25 30 35

Distance(cm)

Figure 5.1 CQI-distance chart with antenna

The CQI is an information indicator of channel quality and represents the
quality of the current channel, which corresponds to the signal-to-noise ratio
of the channel. The value ranges from 0 to 15. When the CQI value is 0, the
channel quality is the worst; when the CQI value is 15, the channel quality is
the best. In this case the LTE link only works properly within 20cm. This chart

has shown that the USRP B210 has a very poor performance without the
antenna. So | did another test with the antenna of 2.4GHz.

CQl-distance chart with antenna

16

»y—sssn
14 \0 ®
"\.
12 \.——I\
] *—"9,
10 \
g - :
6
1
2 H
0
0 50 100 150 200 250 300 350 400 450 500
Distance(cm)

Figure 5.2 CQI-distance chart with antenna(OAl)

CQl-distance chart with antenna

16

. . .-_‘__‘__""""---_.__
14
.-\.M
] L]
12 T
\\o—-—-o-_...\
10 .
g s
6
4
2 .
0
0 50 100 150 200 250 300 350 400 450 500
Distance(cm)

Figure 5.3 CQI-distance chart with antenna(SRSLTE)

According to the result, the setup will work until the distance is larger
than 4 meters. So USRP B210 should work with cables or antennas during
tests, otherwise the transmitting signal would be too weak to detect. For
srsLTE, the signal was more stable, especially when the signal is weak. The

LTE link was more likely to break in OAI when the distance is far away while
the srsLTE would have the connection even though the CQI is very low.

5.2 Performance of OAI

In the UE side, the interface of the dongle is shown in the following
figure.

enx@c5b8f279a64 Link encap:Ethernet HWaddr @c:5b:8f:27:9a:64
inet addr:192.168.8.100 Bcast:192.168.8.255 Mask:255.255.255.0
inet6 addr: fe80::e457:5b9a:5629:1979/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:5765 errors:® dropped:® overruns:@ frame:0
TX packets:5106 errors:® dropped:® overruns:@ carrier:@
collisions:® txqueuelen:1008

RX bytes:6166591 (6.1 MB) TX bytes:539316 (539.3 KB)

Figure 5.4 Interface of the dongle

First, | did some ping test from my laptop (ThinkPad X1 carbon 2016,
OS: Windows 10/Ubuntu 16.04), which is connected to the dongle. Ping tests
of srsLTE and OAI had the exact same condition. In this case, | use USRP
B210 as the SDR, both tests were run without antenna and the distance
between the dongle and the USRP is 10cm, with a high CQI=15.

Christopher Zhu’ping 192. 168. 3

Reply
Reply
Reply

Reply from

Sent = 4, Recelvec _
d trip times in milli
= 39ms, Maximum = 69ms, Average b2ms

Figure 5.5 Ping test of OAI

Then,

| tested the Bandwidth in OAI when the PRB=25(default setup)

both in TCP and in UDP with two 2.4GHz antennas.

Figure 5.7 Downlink data rate using UDP

In addition, in order to find the optimal data rate, |1 changed the size of
the TCP window and the UDP buffer size to finish both TCP and UDP tuning.

Data rate (Mb/s)

O P N W B U1 O N 0

Data rate-TCP window size chart of OAI

-

(@]

400 600 800
TCP window size (KB)

Figure 5.8 Data rate-TCP window size chart of OAI

Here we can observe that the peak of the data rate was near the TCP
window size of 400KB while the UDP buffer size was not directly related to
the data rate. So in the UDP test, I still use the default number 208KB.

After the TCP and UDP tuning, since the uplink and the downlink speed
could be different, | did some test about the uplink and downlink speed in both
TCP and UDP.

Server listening on TCP port 8000
TCP window size: 400 KByte (WARNING: requested 200 KByte)

[4] local 192.168.34.128 port 8000 connected with 172.16.0.2 port 49278
[ID] Interval Transfer Bandwidth
[4] 0.0- 5.9 sec 3.00 MBytes 4.24 Mbits/sec

Figure 5.9 Bandwidth of TCP uplink

Server listening on TCP port 8000 ,
TCP window size: 400 KByte (WARNING: requested 200 KByte)

3] local 192.168.8.100 port 59664 connected with 192.168.34.128 port 8000
[ID] Interval Transfer Bandwidth
[3] ©.0- 5.3 sec 5.50 MBytes 8.65 Mbits/sec

Figure 5.10 Bandwidth of TCP downlink

Client connecting to 192.168.34.128, UDP port 8080
sending 1470 byte datagrams
UDP buffer size: 208 KByte (default)

3] local 192.168.8.100 port 59830 connected with 192.168.34.128 port 8000
[ID] Interval Transfer Bandwidth
[3] ©.0- 5.8 sec 2.75 MBytes 4.62 Mbits/sec

Figure 5.11 Bandwidth of UDP uplink

Server listening on UDP port 8000
Receiving 1470 byte datagrams
UDP buffer size: 208 KByte (default)

3] local 192.168.8.100 port 46658 connected with 192.168.34.128 port 8000
[ID] Interval Transfer Bandwidth
[3] 0.0- 5.0 sec 5.26 MBytes 8.81 Mbits/sec

Figure 5.12 Bandwidth of UDP downlink

From the figure above, we can notice that the downlink bandwidth of this
link is about 2 times faster than the uplink. And since in this setup, there are
very few lost packets, the transmitting speed of TCP and UDP are very similar.
If we vary the distance between the eNB and the dongle, the data rate of the
UDP would be faster than the TCP when there are more packets lost as the
following figure has shown.

Data rate-distance chart

—_
%)
~
Ke)
2
Q
®
-
©
®
o

o | JDP

200 300

distance (cm)

Figure 5.13 Data rate-distance chart of TCP and UDP

After the tests, | found out that the stability is the best when the PRB=25
(bandwidth=5MHZ) when | tried to run the same setup when PRB=50 and
100. In the OALI, the default number of PRB is 25. For PRB=50, the eNB will
fail to transmit signal with UE and the error thrown is “retransmission takes
more resource than the system has”. And for PRB=100, the setup would
connect but running the iperf would not work for the unstability of the LTE
link.

5.3 Performance of srsLTE

First, | did the same ping test in srsLTE to compare the data with the OATI’s.

Pinging 192. 168. 34

I\le from 192. 168. :

ing statisTiﬁ. f11 lq“ 1““ : :
. = 4, 0OST ”]'ln 1o EE_,.:' ,
-d T11p T1mw~ in milli-seconds:

Hlnlmum = 28ms, Maximum = 38ms, Average 32ms

Figure 5.14 Ping test of srsLTE

From the figure above we can see that the delay of srsLTE is obviously
smaller than the OA. At first, | believed that it is because the code of srsLTE
Is tidier and more in order than OAI, which make the LTE link more stable
and faster. However, when I tried to ping the eNB(192.168.34.1), it turned out
both the softwares have a delays of about 32ms. | believed that the cause is
the difference between the EPC. The srsEPC is a lightweight LTE Core
Network implementation platform, which make it easier to run and has less to
process in the computer. Since | was using a virtual machine which do not
have a high performance, the OAI EPC could use more time than the srsEPC.

In addition, | use iperf with TCP to test the downlink data rate of both
srsSLTE using PRB=25. The port | used is 8000 and the TCP window is
85.3KB.

Ferver listening on TCP port 8800
CP window size: 85.3 KByte (default)

4] local 192.168.34.128 port 8000 connected with 172.16.8.2 port 49196

ID] Interval Transfer Bandwidth
4] ©.8- 5.8 sec 2.75 MBytes 4.01 Mbits/fsec

Figure 5.15 Data rate test in srsLTE

As we can see, the transmitting speed of these software is very similar to
OAl.

| did the same TCP tuning to find the optimal TCP window for srsLTE.

Data rate-TCP window size chart of srsLTE(PRB=25)

=
o

—
)

S
-
=
[}
-
M
-
]
-
1]
(a]

O P N W & U1 OO N 0 ©

300 400 500
TCP window size (KB)

Figure 5.16 Data rate-TCP window size chart of srsLTE(PRB=25)

We can find that the TCP window size in srsLTE is smaller in OAI and
when the data rate is highest, which meets our expectation because of the
feature of TCP (the delay of srsLTE is smaller.).

Unlike the OAI, srsLTE works perfectly when PRB=50 and 100. So the
tuning of TCP was done in both bandwidth to find the optimal TCP window
size and the highest data rate.

Data rate-TCP window size chart of srsLTE(PRB=50)

Data rate (Mb/s)

600 800 1000 1200 1400 1600
TCP window size (KB)

Figure 5.17 Data rate-TCP window size chart of srsLTE(PRB=50)

From the figure above, we can find that the peak of data rate reached
17Mb/s with optimal TCP widow size of 580 when PRB=50. Both the data
rate and the TCP window size observed in downlink is almost double of 25
PRBs, which is expected as the bandwidth is doubled in this case.

Data rate-TCP window size chart of srsLTE(PRB=100)

—_
»n

)
2
=
Q
)
@©
-
]
-
©
(a]

1000 1500
TCP window size (KB)

Figure 5.18 Data rate-TCP window size chart of srsLTE(PRB=100)

As for PRB=100, we can find that the peak of data rate reached 33Mb/s with
optimal TCP widow size of about 1100. Both the data rate and the TCP
window size observed in downlink is approximately 4 times of 25 PRBs. All
of these has shown that the srsLTE runs perfectly and presents the feature of
the LTE network.

6. Conclusions and future work

In this thesis, we test and evaluate the performance of a set up in two
different opensource LTE and EPC project (by OpenAirinterface project and
srsLTE project) with commodity hardware.

At the beginning, | built a conventional LTE network, which uses COTS
UE, a computer as the eNB and a virtual machine in the same computer as the
EPC.

And then, based on this setup, | tested two different open source projects.
Later | evaluated the stability, bandwidth and the hardware performance in
these two setups.

For the hardware, USRP X310 and B210 both work in this construction
| built. In this moment, the B210 is more stable due to the requirement is only
USB3.0 while the X310’s bandwidth and power requirements are rather high,
which would cause some problem.

For the software, the OAI is obviously a more popular software.
However, in my humble opinion, the OAI is not very friendly for a first time
user, especially those who do not have a background knowledge of LTE and
SDR. And since the OAl is developing every day, the new errors could appear
anytime. For example, there are still some problems with the OAI UE right
now in the develop branch. On the other hand, the srsLTE is much simpler
than the OAI, the code is more in order and the testing process is very easy.
(For example, the hss do not require an external database.) Few error occured
during the testing of srsLTE. But for a more advanced user, the srsLTE only
focuses on the LTE part, which means that it is hard to test the technology
after 3GPP R14 such as LWA and the tech in 5G. So for these uses, OAl is a
much better option.

For future work, the config file of the eNB should be modified to solve
the problem when PRB=75. After the OAI UE problems are solved, a more
detailed comparison between srs and OAI in this setup should be done to get
a more general conclusion of these two softwares.

Bibliography

[1] C. S. Inc., Cisco visual networking index: global mobile data traffic
forecast update 2016-2012, 2017.

[2] J. Sachs and P. J. Gebert, “Multi-access management in heterogeneous

networks” , Wireless Personal Communications, vol. 48, no. 1, pp. 7-32,
January 2009.

[3] V. Raghavan, J. Cezanne, S. Subramanian, A. Sampath, O. Koymen,
"Beamforming tradeoffs for initial UE discovery in millimeter-wave MIMO
systems", IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 543-559, Apr.
2016.

[4] J. G. Andrews, S. Buzzi What will 5g be? Selected Areas in
Communications, IEEE Journal on Selected Areas in Communications, vol.
32, no. 6, pp. 1065-1082, 2014.

[5] Y. Kojima, J. Suga, T. Kawasaki, M. Okuda and R. Takechi, ”LTE-WiFi
Link Aggregation at Femtocell Base Station,” World Telecommunications
Congress 2014(WTC 2014), pp. 1-6, Berlin, Germany, 2014.

[6] J. Andrews, and A. Gatherer, Femtocell networks: a survey, IEEE
Communications Magazine, vol. 46, no. 9, pp. 59-67, 2008
[7] B. Jin, S. Kim, D. Yun, Y. Yi, H. Lee and W. Kim, ”Aggregating LTE and
Wi-Fi: Fairness and split-scheduling,” 2016 14th International Symposium on
Modeling and Optimization in Mobile Ad Hoc, and Wireless Networks
(WiOpt), Tempe, AZ, 2016, pp. 1-8. doi:10.1109/WIOPT.2016.7492936
[8] NS-3 LTE-EPC Network simulator.
Available:http://networks.cttc.es/mobile-networks/software-tools/lena/

[9] Y. Khadraoui, X. Lagrange and A. Gravey, ”Very tight couplingbetween
LTE and WiFi: From theory to practice,” 2016 Wireless Days Conference,
Toulouse, 2016, pp. 1-3.2016. DOI: 10.1109/WD.2016.7461502
[10] Y. Khadraoui, X. Lagrange and A. Gravey, "TCP Performance for
Practical Implementation of Very Tight Coupling between LTE and WiFi,”
2016 IEEE the 84th Vehicular Technology Conference, Montreal, QC, 2016,
pp. 1-6. doi: 10.1109/VTC.

[11] P. Sharma, A. Brahmakshatriya and A. Franklin, “LWIR : LTE-WLAN
Integration at RLC Layer with Virtual WLAN Scheduler for Efficient
Aggregation” , IEEE Global Communications Conference (GLOBECOM)),
pp. 4-8 Dec. 2016.

[12] T. Valerrian, S. Patro, B. Reddy, and A. Franklin, “Tight coupling of LTE
Wi-F1 Radio Access Networks - A Testbed Evaluation” , Networked Wirel.
Syst. Lab, 2016.

