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ABSTRACT 

Commercial cellular service providers are at the forefront of the paradigm shift 

from 4G Long Term Evolution (LTE) to 5G New Radio (NR). The increase in 

throughput, provisioning of ultra-low latency, and greater reliability of 5G enable 

potential uses that no other wireless communication could support. The Department of 

Defense (DOD) is interested in 5G NR technologies, but the implementation of the 

architecture can be lengthy and costly. This capstone configured a 4G LTE network and a 

5G non-standalone network using OpenAirInterface and software defined radios (SDRs). 

Universal Subscriber Identity Module (USIM) cards were configured and introduced to 

user equipment and attached to the 4G LTE network. A gNodeB (gNB) was added to the 

4G LTE network to establish the 5G non-standalone (NSA) network architecture (3GPP 

Option 3). The testbed developed in this research was able to connect the core to a 

commercial internet service provider and browse the internet using third-party 

applications. Our analysis educates future researchers on the challenges and lessons 

learned when implementing the OpenAirInterface 4G LTE and 5G NSA networks. This 

work also provides a better understanding of 4G LTE and 5G NSA OpenAirInterface 

software usability, flexibility, and scalability for potential use cases for the DOD. 
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I. INTRODUCTION 

In recent years, service providers have focused on delivering 5G technologies 

throughout the world. 5G is the fifth generation of wireless mobile technology that 

improves upon 4G Long-Term Evolution (LTE) technology. However, 4G is still widely 

used today and is likely to co-exist with 5G. The rollout of 5G began when the 3rd 

Generation Partnership Project (3GPP)—a consortium that governs specifications 

regarding mobile telecommunication networks—introduced a technical report known as 

Release 15. 5G technology offers increased bandwidth, extremely low latency, ultra-

reliability, and the ability to support a massive surge of mobile devices known as the 

Internet of Things (IoT). 

5G can accommodate the increased demand for reliable, fast, and low-latency data 

communications. The 5G spectrum operates in the low, mid I and II, and the high-band 

spectrums. The low-band covers the frequency range from 70 Megahertz (MHz) to 1 

Gigahertz (GHz) and can travel up to 30 kilometers (km). The mid-bands consist of two 

different parts, mid-band I and mid-band II. Mid-band I operates between 1 GHz and 2.6 

GHz and can travel up to 15 km, while mid-band II operates between 3.5 GHz and 6 GHz 

range and travels up to 8 km. The low-band and mid-bands together are referred to as the 

sub-6 band. The high-band operates between 24 - 40 GHz and travels less than 1 km  [1]. 

High-band is also referred to as millimeter Wave (mmW). 

The 5G frequency bands are implemented in two frequency ranges: “frequency 

range 1” (FR1) and “frequency range 2” (FR2). FR1 falls within the mid-band II 

spectrum—3.3 – 4.2 GHz and 4.4 – 4/99 GHz. FR2 is within the high-band spectrum—

24.25 – 29.5 GHz, 31.8 – 33 – 4 GHz, and 37 – 40 GHz [2]. The low-band, mid-band, and 

high-band spectrum each has advantages and disadvantages. The low-band spectrum offers 

higher distance and better propagation through objects. However, the high-band spectrum 

can support a higher data rate and lower latency, but it cannot propagate through buildings 

and trees. Though mid-band does not travel as far as the low-band, nor does it support the 

speed and latency that high-band offers, the mid-band spectrum offers higher speeds than 

low-band and greater distance than high-band.  
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Implementing a 5G network typically requires proprietary equipment only offered 

by large-scale vendors, which can be very expensive. An alternative approach is using 

software to replace hardware infrastructure. OpenAirInterface is an alternative low-cost, 

open-source initiative that provides a software implementation of cellular technology 

components: an eNodeB (eNB); a gNodeB (gNB); a user equipment (UE); and an evolved 

packet core (EPC) using computing platforms (x86) along with software-defined radios 

(SDR). This study aims to create a foundation for other research into the potential uses of 

5G non-standalone (NSA) architecture at a low cost. 

The purpose of this capstone is to facilitate future Department of Defense (DOD) 

research into operationally relevant uses of open-source software in 5G network 

implementations. The increased speed and ultra-low latency of 5G creates a broad spectrum 

of use that enables technology to communicate wirelessly. The DOD recognizes the 

benefits and potential uses of 5G networks.  

As of October 2020, the DOD became a stakeholder in 5G cellular technologies 

when the DOD approved $600 million to install 5G on five U.S. military bases to 

revolutionize their current logistical operations [3]. However, other than the approval of 

$600 million to implement 5G, there has not been much research published on the cost to 

implement a network on DOD installations. The DOD’s step toward modernizing its 

current cellular communications infrastructure shows its interest in the potential uses of 5G 

that could increase the efficiency of its daily operations. This capstone introduces open-

source software and hardware for a 5G network; another goal is to identify whether 

vulnerabilities exist within the OpenAirInterface software, ultimately enhancing the 

DOD’s ability to assess operationally relevant use cases. 

A. SCOPE 

This research seeks to document a potential implementation of the 

OpenAirInterface 4G/5G stack and our provisioning of 4G/5G user devices. This research 

also assesses the OpenAirInterface 5G NSA network architecture usability, flexibility, and 

security for potential DOD use. This capstone also establishes a physical testbed using the 
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4G LTE network and reconfigures the OpenAirInterface to support a 5G non-standalone 

network. 

The first phase of this capstone establishes a 4G LTE network using the 

OpenAirInterface software stack. The architecture implements the 5th Generation Radio 

Technology Base Station (gNodeB) and the EPC via the OpenAirInterface software. Once 

the 4G LTE stack is established, the next step is to configure OpenAirInterface as a 5G 

NSA architecture, introduce a USIM, and test whether it can successfully access the 5G 

network. During this research phase, OpenAirInterface software logs are analyzed to 

ensure that each component can successfully communicate. 

The second phase analyzes the OpenAirInterface to determine if there are known 

vulnerabilities present that are native to the traditional 5G architecture. With access to 

available cellular radios, this research can further inspect various aspects of the stack. This 

capstone can also use commercial cellular phones and other Quectel Modules to inspect 

different aspects/vectors for consideration when implementing 5G. 

B. RESEARCH OBJECTIVE 

This research explores the OpenAirInterface 5G NSA network architecture, which 

creates an environment where mobile devices can communicate, providing comprehensive 

insights into the different challenges of implementing the network. We establish 

reconfigurable 4G LTE and 5G NSA networks, using the OpenAirInterface software, to 

gain a better understanding of the virtualization of traditional cellular management 

systems. The goal is to determine whether OpenAirInterface can be leveraged to establish 

5G cellular networks at a low cost.  

This research is a first step to enabling the DOD to utilize open-source and 

inexpensive software to deploy a 5G architecture that could support service installations 

and integrate with a commercial backhaul. This research also aims to encourage further 

DOD research on using cellular technology and facilitate DOD use of the cellular spectrum 

for military purposes. Another objective of this study is to identify vulnerabilities within 

the OpenAirInterface stack, enabling the DOD to assess operationally relevant use cases. 
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C. ORGANIZATION OF CAPSTONE 

Chapter II discusses important concepts of cellular technologies from the first 

generation to the fifth generation. Chapter II also reviews existing research literature that 

showcases different uses of the OpenAirInterface software. The literature review is 

organized to show the different implementations of the OpenAirInterface software stack. 

In Chapter III, we outline the design of the OpenAirInterface software stack and the 

simulation of the 4G LTE / 5G NSA network. Chapter III also covers the methodology 

used to establish the network used for this capstone. Chapter IV presents the results. 

Finally, Chapter V is an analysis and an overview of the research results and contains future 

work. 
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II. BACKGROUND AND LITERATURE REVIEW 

This chapter discusses the history of cellular technology. The background includes 

key advances in cellular technology from the first generation through the fifth generation, 

the 4G LTE architecture, as pertinent to our work using the 5G NR NSA architecture. This 

chapter also summarizes the 4G LTE air interface stacks and critical protocols that enable 

traffic between the 4G network components. Finally, this chapter reviews different 

literature discussing various implementations of the OpenAirInterface software.  

A. BACKGROUND 

1. History of Advances in Cellular Technologies 

The first-generation (1G) in cellular technology was introduced in the late 1970s 

and became popular in the early 1980s. 1G technology enabled the use of wireless mobile 

devices. However, 1G technology was only capable of basic voice communications based 

on analog technology called Advanced Mobile Phone System (AMPS), which operates in 

the 800 – 900 MHz frequency range. 1G traffic is multiplexed using frequency-division 

multiple access (FDMA). It could transfer data at a maximum speed of 9.6 kbps within the 

150 MHz frequency range, described in [4].  

The second-generation (2G) in cellular technology was first introduced in the late 

1980s. 2G uses digital modulation instead of analog technology used in 1G. The standard 

used to deploy 2G was the Global System for Mobile Communications (GSM). 2G became 

known as 2.5G when the General Packet Radio Service (GPRS) was implemented into the 

system. GPRS is a packet-switching protocol that allows GSM-based devices to deliver 

data in other ways than short messages service (SMS). GPRS enabled 2G and 2.5G to 

improve spectrum utilization efficiency, data service, transmission quality, system 

capacity, and coverage. In addition to SMS, 2G also enabled fax and multimedia messaging 

service (MMS). 2G maximum data transfer rate is 43.2 kbps while 2.5G maximum data 

rate peaks at 384 Kbps, as shown in [5].  

Approximately ten years later, the third-generation (3G) of mobile networks was 

introduced. 3G was the first mobile system capable of up to 2 Mbps of data transfer [5] and 
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supporting quality-of-service (QoS) controls. In addition, 3G improved voice quality and 

increased data transmission capacity. The increase in data transmission enabled wireless 

internet access, allowing faster web browsing, video streaming, and more security. The 

emergence of mobile devices widely accessing the internet manifested from these advances 

in smartphones and 3G cellular networks. The universal mobile telecommunication system 

(UMTS) radio access network (UTRAN) is the 3G cellular network based on the GSM 

standard. 3G cellular technology also included the wideband code division multiple access 

(WCDMA), which “increase [d]  system capacity and communication quality” [5]. 

The first fourth generation (4G) network was launched in 2009. 4G enabled more 

robust network coverage, with higher data speeds than 3G offered. The evolved-UTRAN 

(E-UTRAN) in 4G improved on the 3G UTRAN system. The 4G cellular networks evolved 

into 4G LTE, which provides better mobile broadband support than its predecessor, 3G/

3.5G, and 4G. It was the fastest developing system of mobile communications technology. 

The theoretical peak data rate for 4G LTE is up to 300 Mbps. Commercial 4G service 

providers offered data download speeds from 24 Mbps to 36 Mbps, while the upload speeds 

measure between 7 Mbps and 17 Mbps [6]. With the increase of throughput, customers 

could access the internet, instant message (IM), stream media, and make live video calls. 

A fact sheet by Pew Research Center shows that mobile devices started to become more 

popular around the time 4G LTE was introduced [7].  

By the time fifth generation (5G) rolled out in 2019, it was advertised with the 

capabilities of enhanced mobile broadband (eMBB), ultra-reliable low latency (URLLC), 

and massive Machine Type Communications (mMTC). Those features enabled higher 

speeds and higher connection density than 4G LTE. 5G offers peak data rates scale up to 

10 Gbps, latency as low as one millisecond, and 99.999% reliability [8]. The increase in 

5G speeds and lower latency has presented new ways to take advantage of the cellular 

spectrum.  

5G mobile broadband allows for a high data rate in dense coverage areas, such as 

military installations, university campuses, and sports stadiums. In addition, URLLC and 

mMTC enable uses of the cellular spectrum that could not be explored in 4G. For example, 

URLLC improved latency that could be used in a command and control (C2) situation 
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where timely information is required for critical decision making—such as giving the 

command to fire a missile from an unmanned aerial vehicle (UAV), unmanned ground 

vehicle (UGV), or unmanned surface vessel (USV). As the name implies, mMTC enables 

machine-to-machine communication such that multiple UAVs, UGVs, and USVs could 

communicate using the 5G cellular spectrum.  

5G is still in the deployment phase within the commercial sector, where it is 

becoming more available through different parts of the United States. There are two 

approaches to the 5G deployment: non-standalone (NSA) and standalone (SA). NSA uses 

the current 4G LTE core to handle the user-plane functions, whereas SA uses all 5G NR 

equipment to handle both user-plane and control-plane functionalities of the 5G network. 

The testbed we developed as part of this research is the non-standalone deployment model.  

2. Air Interface Stack 

For 4G and 5G, the air interface protocol stack defines the radio transmission 

between the UE and the base station (eNodeB or gNodeB). According to the 

Telecommunications Engineer’s Reference, air interface “provides the physical link 

between the mobile [device] and the network” [9]. The layers of the air interface protocol 

stack are the physical (PHY) layer, medium access control (MAC) layer, radio link control 

(RLC) layer, and the packet data convergence protocol (PDCP) layer. Figure 1 illustrates 

the architecture of the air interface protocol stack.  
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Figure 1. The Architecture of the Air Interface Protocol Stack. 

Adapted from [10]. 

a. Control Plane 

The control plane manages signaling messages that are critical for UE connectivity. 

Control transmissions messages in the network originate from the Radio Resource Control 

(RRC) layer of the control plane or the Mobility Management Entity (MME). The RRC 

layer controls communications between the eNB and the UE. The MME is responsible for 

the initial paging procedures and authentication of UEs requesting access to the network. 

The RRC also transfers Non-Access Stratum (NAS) messages used to control 

communications between the UE and the MME [11]. The UE attachment to the MME is 

handled by a NAS protocol, the Evolved Packet System (EPS) mobility management 
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(EMM) protocol. The EPS Session Management (ESM) protocol supports establishing and 

managing the user data in the NAS. ESM protocol also defines the IP connectivity between 

a UE and a packet data network (PDN) [12]. Figure 2 illustrates the RAN protocol 

architecture. The EMM and ESM are handled by the NAS protocol and not depicted in 

Figure 2.  

 
Figure 2. RAN Protocol Architecture. Source [13]. 

b. User Plane 

The user plane manages the exchange of data packets—such as TCP, and UDP 

packets—produced and consumed by the users or applications. The user plane uses an IP/

UDP-based protocol, GPRS Tunneling Protocol (GTP), to transfer user data within the 

GSM and LTE networks. GTP is a group of communications protocols that are used for 

the transfer of GPRS packets within the 2G, 3G, 4G, and 5G standards.  

c. PDCP Layer 

One main function of the PDCP layer is to use header compression techniques to 

reduce the redundant IP header overhead within an IP flow. Other functions of the PCDP 

layer include the transfer of user data, ciphering/deciphering for the Data Radio Bearer 

(DRB) and Signaling Radio Bearer (SRB), integrity protection for the SRB, maintaining 

sequence numbers (SN) for SRB and DRB, and time-based SDU discard for SRB and 

DRB. In addition, the PDCP provides services to the RRC layer and the user plane layer.  
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d. RLC Layer 

The radio link control layer sits above the MAC layer and below the PDCP layer. 

The RLC functions are performed by an RLC entity configured at the eNB and a peer entity 

configured at the UE (or vice versa.) Three RLC modes can be configured—Transport 

Mode (TM), Un-Acknowledge Mode (UM), and Acknowledge Mode (AM). The three 

modes are further explained in [14]. The RLC layer receives Service Data Units (SDU), 

frames the SDUs, segments and concatenates the SDUs, and then constructs Protocol Data 

Units (PDU). An SDU is a packet received by a layer and a PDU is a packet output of a 

layer. Then, the RLC layer adds an RLC header based on the mode and submits the PDU 

to the MAC layer.  

e. MAC Layer 

The MAC layer manages the upper layers’ access to the PHY layer. As Figure 1 

shows, the MAC layer is connected to the PHY layer through transport channels and the 

RLC layer through logical channels. The MAC layer determines and performs switching 

on the logical channels to the transport channels. The MAC layer also multiplexes and 

demultiplexes the data between both channels.  

f. PHY Layer 

The PHY layer comprises three parts: the transport channel processor, the physical 

channel processor, and the analog processor. The PHY layer interfaces with the MAC 

sublayer (layer 2) and the RLC (layer 3). The PHY offers data transport to the higher layers 

of the air interface stack.  

g. Air Interface Stack Data Flow 

Packets (SDU) generated by an application will be received by the IP layer. The IP 

layer transfers the PDU packets to the PDCP layer. The PDCP layer receives the SDU 

packets, performs header compression, adds PDCP header information to the packets, and 

transfers the PDU packets to the RLC layer. The RLC layer segments the SDU packets, 

adds the mode of operation, and sends the PDU to the MAC layer. The MAC layer receives 

the SDU packets, adds a MAC header and padding, multiplexes or demultiplexes the SDU 



11 

packets, and submits the PDU packets to the PHY layer, which transmits the packets. 

Figure 3 shows an example of LTE data flow. 

Figure 3. Example of LTE Data Flow. Source [13]. 

3. Architecture and Equipment

The deployment of 5G is outlined in the 3rd Generation Partnership Project (3GPP) 

Release 15, which provides a standardized protocol for implementing 5G networks. 

a. Architecture and Deployment Models

3GPP Release 15 defines two 5G architecture deployment models: the Stand-Alone 

(SA) architecture and the NSA architecture. The SA architecture configures and operates 

the 5G new radio (NR) using only 5G components, whereas the NSA architecture relies on 

the existing 4G LTE core network. In the NSA architecture, the gNB connects to the eNB 

via the X2 interface. The eNB is the primary node, while the gNB is the secondary node. 

This capstone uses the 5G NSA deployment model (option 3). The 5G NSA architecture is 

the LTE Assisted “Architecture Option 3” [15], shown in Figure 4. 3GPP Option 3 

architecture offers dual connectivity through 4G (E-UTRA) and 5G (NR) called E-UTRA 
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and NR Dual Connectivity (EN-DC) [15]. Other deployment models are outlined in 

Appendix H.  

“c” indicates the control plane (dotted line), and “u” (solid line) indicates the user plane. 

Figure 4. 4G E-UTRA and 5G NR Dual Connectivity (3GPP Option 3a). 
Adapted from [15]. 

b. Evolved Packet Core

The Evolved Packet Core is the principal component of the radio access network 

(RAN), with three main network functions to deliver the core of the air interface network. 

The components on an EPC are a Mobility Management Entity (MME), a Home Subscriber 

Server (HSS), and Serving Gateways (SGW) [16].  

The Service Packet Gateway (SPGW) is separated into two network functions: 

SPGW-C and SPGW-U. The SPGW-C and SPGW-U are implemented via separated 

docker containers. The purpose of splitting SPGW functions is to separate the Control and 

User Plane (CUPS). 

The SPGW-C is the control plane of the packet data network gateway that manages 

the control portion of the Serving Gateway (SGW) and the Packet Network Gateway 
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(PGW) [16]. In addition, the SPGW-C handles control requests originating from the MME 

via the S11 interface. 

The SPGW-U is the packet data network gateway user plane that manages the user 

traffic between the PDN and the eNB. The SPGW-U communicates with the eNB via the 

S1-U interface. The user traffic is tunneled through the GTP, managed by the SPGW-C via 

the SXab interface. 

The HSS stores and updates the database containing the user subscription 

information. In addition, the HSS is responsible for authentication, authorization, and 

mobility management functions and connects to the MME via the S6a interface [17]. 

The MME is the core control function of the EPC. The MME handles the UE access 

network and mobility as well as establishes a link for the UE. The MME also authenticates 

the authorization of the UE access to the service provider Public Land Mobile Network 

(PLMN) [5]. The MME connects to the eNB via the S1-C interface and to the SPGW-C 

via the S11 interface. Figure 5 illustrates each component of the EPC and the respective 

interface it uses for communication within the OpenAirInterface architecture.  

  
Figure 5. EPC Network Functions 
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c. eNodeB / gNodeB 

The Evolved Node B (eNB) is the 4G LTE base station that creates mobile network 

coverage and serves LTE devices via the LTE CUPS. The gNodeB is the base station for 

5G RAN. The gNB manages NR devices’ control and user planes. The eNB connects to 

the EPC via the S1 interface. In a non-standalone architecture, the gNB connects to the 

eNB via the X2 interface. In a standalone architecture, the gNB connects to the 5GC via 

the NG interface.  

d. OpenAirInterface 

OpenAirInterface is an open-source software developed by EURECOM that 

implements 3GPP-compliant technology using software to create a 4G and 5G Radio 

Access Network (RAN) and Core Network (CN) technologies. OpenAirInterface was 

created by a community of developers worldwide, known as the OpenAirInterface 

Software Alliance (OSA). The software implements the components of the 4G/5G system 

and air interface protocol stack using software running on x86 processors and software-

defined radios. OpenAirInterface enables researchers and developers the ability to establish 

and disestablish ad-hoc cellular networks on-demand.  

e. Universal Software Radio Peripheral 

The 4G/5G architecture uses the Universal Software Radio Peripheral (USRP) that 

connects to an x86 computing platform through a high-speed cable (USB 3.0). The 

software-defined radio contains a field-programmable gateway array (FPGA), an 

integrated circuit chip on the USRP, which enables post-manufacturing reconfigurations 

by the user. The FPGA is critical for digital signal processing (DSP) because it translates 

real signals to low-rate, complex, baseband signals for the OpenAirInterface application 

running on the host computer. The USRP provides the radio frequency (RF) capabilities of 

the OpenAirInterface architecture.  

B. LITERATURE REVIEW 

Since 2017, a consortium of developers has implemented various versions of an 

open-source 4G LTE cellular stack with commercial off-the-shelf (COTS) hardware. 
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OpenAirInterface released a 5G standalone architecture in early 2021 for implementation; 

however, it is still under heavy development. There has been various research exploring 

using the OpenAirInterface 5G NSA software stack. With the exception of [18], none of 

the literature provided detailed guidance to replicate the testbeds used during research. The 

lack of available documentation leads to new researchers experiencing the same obstacles 

when replicating the different testbeds presented in the literature, and the documentation 

in this work aims to remove some of those obstacles. We also discuss other 4G and 5G 

open-source consortia in this section. 

1. OpenAirInterface—4G LTE 

The OpenAirInterface software stack was implemented in [18] to create a 4G LTE 

architecture. This 4G testbed [18] consisted of an EPC, eNB, USRP, Quectel module, and 

two attenuators. The attenuators directed transmissions from the Quectel module to the 

Ettus B200 USRP rather than transmitting over-the-air. Lanoue was able to connect the UE 

to the internet using the 4G LTE architecture [18]. Internet connectivity was verified by 

successfully pinging Google’s primary DNS server IP address (8.8.8.8) from the UE. The 

testbed included five different 4G LTE network setups that showcased the ease of 

configurability of OpenAirInterface. 

The work performed in [19] presented an all-in-one LTE network deployment on a 

PC using OpenAirInterface. Nikaein et al. were able to show OpenAirInterface’s 

interoperability with commercial LTE to transmit live-video streams. They were also able 

to demonstrate the reconfigurability of the OpenAirInterface platform. The researchers 

discussed whether the OpenAirInterface platform is a suitable LTE ecosystem and 

playground [19]. This work showed OpenAirInterface’s reconfigurability and 

interoperability with commercial smartphones. 

2. OpenAirInterface—5G NSA  

The authors in [20] designed a prototype programmable network-in-a-box using 

OpenAirInterface and COTS devices. The architecture can support a 4G LTE network or 

a 5G NSA LTE assisted network (3GPP Option 3). The implemented testbed demonstrated 

a solution for an on-the-fly 4G LTE and 5G NSA network. They also measured the latency 
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and throughput performance of their network-in-a-box prototype. This research tested the 

latency of the 5G NSA and observed an average throughput of 22.21 Mbps for the 5G NSA 

mode. The maximum throughput achieved was 30.7 Mbps. The research was able to 

determine the throughput and latency using iPerf tests.  

The testbed in [16] showcased the architecture of the OpenAirInterface software 

suite for both the NSA and the SA mode. In the NSA architecture, the 5G network uses an 

existing 4G network. The 5G NSA architecture accelerated the use of 5G capabilities 

without upgrading the EPC.  

The researchers in [21] discuss the implementation of a 5G Narrowband Internet-

of-Things (NB-IoT) using OpenAirInterface and LTEBox. “NB-IoT is a 3GPP standard 

defined to support mMTC service” [21]. LTEBox is Nokia’s version of the EPC. The 

authors used LTEBox instead of OpenAirInterface as its EPC because OpenAirInterface 

EPC did not support NB-IoT at the time of their research. [21], detailed its use of COTS 

hardware and NB-IoT modules to forward sensing data to the internet via its 

implementation of the 5G network. The installation used three personal computers (PCs): 

one PC as the EPC, another PC as the eNB, and the third PC to interface with the user UE. 

They used two Quectel BC95 modules as their UE and included a USRP for signaling.  

The author of [22] discussed industry professionals’ security concerns and the 

overall architecture of the 5G standard. The paper encapsulates the research performed on 

different vulnerabilities that affect the confidentiality, integrity, and availability (CIA triad) 

of 5G cellular networks. The research identified multiple vulnerabilities that could affect 

different components of the CIA triad. Some of the vulnerabilities identified included 

spoofing attacks, Man-in-the-Middle attacks, and denial-of-service (DoS) attacks. In 

addition, the research explains that a Distributed DoS (DDoS) attack is possible through 

“overburdening the system with fake requests” [22]. This capstone achieves a form of 

internal DoS attack, described in Chapter IV, Section B. A spoofing attack is covered in 

[18]; however, additional vulnerabilities native to 4G and 5G is discussed in [22]. 
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3. Comparison to Prior Work 

This research implements a 4G and 5G NSA network using the OpenAirInterface 

software, two cellular phones, and a Quectel module connection to the network without 

using attenuators. The networks implemented in [19], [21], and [22] use a combination of 

different open-source software vice a unitary OpenAirInterface stack. 

The UE used in [18] was an OpenAirInterface lte-uesoftmodem and the Quectel 

module EC20; the lte-uesoftmodem is an OpenAirInterface software version of a UE used 

to test network services. Additionally, the network configurations implemented in [18] use 

an attenuator between the SDR and the UE. Our testbed can also use different internet 

service providers (ISP) for backhaul services without major configuration changes. 

Finally, in contrast with prior work, we document additional network 

configurations, device setup, and challenges experienced during the different network 

configurations implementation. The procedures used to create the 4G and 5G RAN are 

concatenated in the appendices. We aim for this capstone to be a single point of reference 

for future researchers who wish to recreate a 4G or 5G NSA network using 

OpenAirInterface. 

4. OpenAirInterface Competitors 

OpenBTS is an open-source application that implements a 3GPP-compliant air 

interface. OpenBTS uses USRP hardware and Asterisk software to create a low-cost GSM 

cellular network. Asterisk is an open-source framework that can build communication 

applications, specifically providing voice over IP (VoIP) capabilities. Any IP connection 

can serve as a backhaul for the OpenBTS software. The OpenBTS official wiki page states 

that OpenBTS is only capable of 2G and 3G and does not support inter-Radio Access 

Technology (RAT) mobility [23].  

The FreedomFi approach to a low-cost 5G network differs from the other open-

source approaches. FreedomFi sells an x86 proprietary appliance named FreedomFi 

gateway. The gateway is pre-loaded with an open-source software, Magma that enables the 

creation of a private LTE and 5G network for about $500 [24]. The FreedomFi gateway 
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appliance is not required to access the Magma Access Gateway, rather, it is a quick and 

inexpensive method to establish mobile core network.  

Software Radio System RAN (srsRAN), also known as srsLTE, is an open-source 

4G and 5G software suite. The software suite runs on off-the-shelf compute and RF 

hardware and implements an eNB, gNB, and a UE. The SRS UE is a full-stack software 

that is implemented in C/C++. The eNB can be used in a 4G LTE network and 5G NSA 

network. The gNB solution for a 5G SA  network will be available in the second quarter 

of 2022 [25].  

free5GRAN is a new open-source 5G development framework. It provides a 5G 

RAN architecture that works in SA mode; however, free5GRAN is still under active 

development, and is not fully stable. The target audience for free5GRAN are engineers and 

researchers for testing and development, and beginners to experiment with the main 

components of its 5G stack. free5GRAN provides an application programming interface 

(API), [26], to help users understand its code.  

The open-source competitors provide different capabilities than OpenAirInterface. 

For example, OpenAirInterface is a software implementation of the EPC, eNB, and gNB; 

however, OpenBTS contains most of the GSM stack that enables mobility management, 

call control, and text messaging [27]. srsRAN is limited because it does not have an 

implementation of the EPC. Instead, srsRAN integrates with other open-source 

implementations of the EPC.  

FreedomFi offers a hardware device with Magma installed. Magma is an open-

source packet core project. Magma provides an alternative implementation of 

OpenAirInterface EPC. The Magma software provides an access gateway, orchestrator, 

and federation gateway. The access Gateway implements the EPC, PGW, and 

Authentication, Authorization, and Accounting (AAA) [28]. The orchestrator is a cloud 

solution that securely manages and monitors the wireless network. Finally, the federation 

gateway integrates 3GPP compliant mobile network operator (MNO) components.  
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III. METHODOLOGY 

This chapter covers the specifications of the devices used and the installation of 

the software required for the USRP, eNB/gNB, and the EPC. This section also describes 

the procedures used to configure the OpenAirInterface architecture. Section A discusses 

the installation of the USRP. Section B contains the installation process of the 

OpenAirInterface eNB/gNB open stack network. Section C discusses the installation 

procedure used for the OpenAirInterface EPC software stack. Finally, Section D 

describes the procedures to implement and configure the required hardware and software 

components for the eNB/gNB OpenAirInterface described in [18].  

The test environment in this capstone used HP ProBook 640 laptops with Intel® 

Core ™ i7-4712MQ processors running at 2.30GHz. The operating system (OS) used 

on all PCs was Ubuntu 18.04.1 LTS (Bionic Beaver). Three of the four PCs emulate the 

core components of the 4G and 5G networks. The first PC serves as the EPC, the second 

PC serves as the eNB, and the third PC serves as the gNB, which is also used to interact 

with the Quectel module in a single eNB LTE network configuration. The fourth PC is 

used to capture packets using Wireshark. This testbed used two Ettus B200 USRP SDR, 

connected to the eNB and gNB via USB. Specifications for the OpenAirInterface 

software require an Intel architecture-based PC with at least 4 CPU cores.  

A. USRP 

The Ettus B200 USRP is a low-cost experimental platform developed by Ettus 

Research Products that provides continuous frequency coverage from 70 MHz – 6 GHz 

with up to 56 MHz of real-time bandwidth [29]. The USRP supports the USRP Hardware 

Driver (UHD) software used in [18] and [21] to model GSM base stations. The software 

used to configure the Ettus B200 is called GNU Radio. GNU Radio is a free and open-

source software development toolkit that provides virtual signal handling to employ an 

SDR [30]. The Ettus B200, along with the OpenAirInterface software (running on a 

laptop), is used to implement the eNB.  
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The minimum software recommended for use with the Ettus B200 USRP is 

Ubuntu 18.04 with a low-latency kernel. The low-latency kernel is optimized to achieve 

the lowest latency possible for the OpenAirInterface implementation. To determine if 

the eNB/gNB PC has the low-latency kernel, the command “uname -r” within Ubuntu’s 

terminal can be executed. The result of the command will show the version number and 

the kernel header. The eNB/gNB PC kernel header for this experiment is “5.4.0-74-low-

latency.” The required steps to install and configure a low-latency kernel on Ubuntu 

18.04 LTS are described below.  

B. ENB/GNB  

OpenAirInterface implements the 4G base station, the eNB, of the 4G/5G 

network design. The eNB is the 4G LTE network base station that performs radio-related 

network functions and creates the mobile network [31]. The eNB sends and receives 

radio transmissions to the mobile devices connected to it. The eNB is connected to the 

EPC through the S1 interface. In the 5G NSA architecture, the eNB performs the user 

plane and control plane functions for the 4G LTE network and the user plane function 

for the 5G network. The gNB is the base station that performs the radio-related functions 

for the 5G network. The gNB performs the control plane functions in the 5G NSA 

architecture. The steps used to install and configure the eNB and gNB are detailed in 

Appendix A, Section B. The prerequisite instructions covered in Appendix A, Section 

A are required before performing the steps in Section B.  

C. EPC  

The EPC is installed on Docker and deployed via docker containers. This 

capstone installed “docker-ce/bionic 5:20.10.7~3-0~ubuntu-bionic amd64,” “docker-ce-

cli/bionic 5:20.10.7~3-0~ubuntu-bionic amd64,” and “docker-ce-rootless-extras/bionic 

5:20.10.7~3-0~ubuntu-bionic amd64.” The steps used to install and configure the EPC 

are detailed in Appendix A, Section C.  

During this research, the EPC was installed two times. The first time, the eNB 

was successfully able to establish a peer connection with the EPC. The PC that hosted 

the EPC later experienced a system failure that was unable to be restored. The EPC was 
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installed a second time, referencing the master branch on OpenAirInterface’s GitHub 

page. The installation procedures were different than the procedures used previously. 

The GitHub page advertises the installation and configuration as a “Simple Docker 

Deployment using the OAI Legacy MME” [32]. The new installation method did not 

require network-specific configuration as the previous method did. The new installation 

method took approximately 30 minutes, whereas the initial installation method took over 

three hours. The new installation was successfully installed without any errors; however, 

the eNB was unable to establish a peer connection with the EPC. After a considerable 

amount of troubleshooting, we focused on re-installing the EPC in the same way as the 

initial installation. The installation procedure used to install the EPC the second time is 

found in Appendix A, Section D. 

D. PROVISIONING UNIVERSAL SUBSCRIBER IDENTITY MODULE 

Universal Subscriber Identity Module (USIM) provisioning and reprovisioning 

were performed using the OYEITIMES SIM writer Ver 4.1.5. The OYEITIMES SIM 

writer program is publicly available for about $150 – $300; however, the OYEITIMES 

SIM writer program could be obtained by purchasing their SIM Card reader for about 

$30 – $50. The SIM writer can provision 2G SIM, 3G USIM, 4G USIM, and 5G 

Integrate SIM (iSIM) cards. In Figure 6, we highlight the configuration made within the 

OYEITIMES program to configure the USIM card. The other configurations that are not 

highlighted in Table 1 were the default configurations on the USIM card.  



22 

 
Figure 6. OYEITIMES SIM Writer 

Table 1 shows the fields that were changed in this capstone. It also lists the non-

abbreviated name, length, and a short description of the fields.  
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Table 1.  Description of USIM Fields Updated in OYEITIMES SIM Writer. Adapted from [33], [34], and [35]. 

 

 

Field Non-Abbreviated 
Form Configuration Length Description 

IMSI International Mobile 
Subscriber Identity 404921000000084 15 bits 

binary 
A unique identifier that identifies a 
subscriber within a mobile network. 

Ki Key Identification  0C0A34601D4F07677303652C0462535B 32-bits 
hexadecimal 

 Used to permit a subscriber to a 
mobile network. 

OP Operator Code  63BFA50EE6523365FF14C1F45F88737D 32-bits 
hexadecimal 

OP is the same for all SIMs for an 
operator. Used with Ki to generate 

an OPc.  

OPc Operator Code (derived 
from OP) BA05688178E398BEDC100674071002CB 32-bits 

hexadecimal 

Computed key using the Rijndael 
Encryption algorithm OPc=Encypt-

Algo(OP, Key) 

PLMN Public Land Mobile 
Network 

40492; 40493; 40494; 404045; 40496; 
40497; 40498; 40499 5 - 6 digits A sequence of MCC and MNC that 

identifies the operators RAN 

FPLMN Forbidden PLMN  313100; 310120; 312250; 311480 5 - 6 digits A list of forbidden PLMNs the 
subscriber is not allowed to access.  

MSISDN 
Mobile Station 

International Subscriber 
Directory Number  

+3366300084 - Programmable phone number of the 
subscriber. 

SPN Service Provider Name IND airtel - Name of the network. 
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E. SIMULATION 

This section describes the simulation of the 5G NSA network. This section 

explains the environment setup procedures, beginning with the network configuration 

setup, then running the EPC, connecting the eNB to the EPC, connecting the gNB to the 

eNB, and finally connecting UEs to the eNB and gNB. Lastly, this section covers tearing 

down the environment. Parts of this section were automated using multiple bash scripts. 

The installation methods discussed in Appendix A must be completed before performing 

any steps in this section.  

1. Network Configuration Setup 

Setting up the network architecture began with connecting the eNB to the EPC 

PCs using a network switch. The switch used in this lab is the LINKSYS LGS308. All 

parameters on the switch were left as default. Static IP addresses were assigned to each 

PC to ensure that the IP addresses remained the same throughout testing. A ping from 

the eNB host PC to the EPC host PC was performed to test connectivity between the two 

PCs. IP routes were then added from the eNB host machine to the docker virtual network 

bridge and tested by pinging the MME. The same series of steps were performed when 

the gNB was added to the network. Figure 7 depicts the network architecture.  

 
Figure 7. Physical Architecture of the Simulation Lab 
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In the network configurations that required a second eNB or a gNB, an external 

timing source was used to synchronize the Ettus B200 for coherent operations. The 

OctoClock CDA-2900-G was used for timing and frequency reference distribution. The 

OctoClock synchronizes the base stations to a common timing source that prevents time 

slippage of the additional eNB or the gNB. It distributes 10 MHz and 1 PPS signal 

generated from an internal GPS-disciplined, oven-controlled oscillator (GPSDO) that 

enables time-alignment and multi-channel systems to synchronize within ~50 ns [36].  

The “PPS Out” port one on the OctoClock was connected to the eNB Ettus B200 

USRP “PPS IN” port using a SubMiniature version A (SMA) cable. Port 2 on the 

OctoClock was used to connect to the eNB2/gNB Ettus B200 USRP “PPS IN” port. The 

“Primary Ref” switch was toggled to internal to use the GPSDO timing standard.  

2. Deploying the eNB / gNB 

The eNB is launched after all the containers on the EPC are running. The Docker 

commands listed in Appendix D, Section B were used on the EPC host machine to 

configure and update the containers. Before running the eNB, the routing tables on the EPC 

host machine were updated to ensure that the eNB host machine could ping the “prod-oai-

mme,” “prod-oai-spgwc,” and the “prod-oai-spgwu-tiny” containers. Attempts to ping the 

prod-oai-hss were unsuccessful. The installation procedure used in this phase noted that 

pinging the HSS container “won’t work” [37]. Although pinging the HSS container didn’t 

work, it was still accessible using commands listed in Appendix D, Section B. 

a. Launch the eNB 

To launch the eNB, the following command was executed: 

cd ~/openairinterface5g/cmake_targets/lte_build_oai/build 
sudo -E ./lte-softmodem -O ~/openairinterface5g/ci-scripts/conf_files/ 
<configuration_file> | tee <log_file_output> 

Generally, the eNB is launched after the EPC is running. The exception is to launch 

the eNB without the EPC using the “--noS1” flag. The “--noS1” flag enables the eNB to 

test connectivity to the UE without any support for the S1 interface. The “-E” flag ensures 
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that the environmental variables are preserved while running the eNB. The “-O” flag 

indicates the correct path and filename of the edited configuration file. The “tee 

<log_file_output>“ command is a UNIX command that copies the standard input to the 

standard output and makes a copy to a file. Additional flags that could be used while 

executing the eNB can be found in Appendix B, Section C.  

b. Launch the gNB 

The gNB was executed using the command as shown: 

cd ~/openairinterface5g/cmake_targets/ran_build/build 
sudo ./nr-softmodem -O ~/openairinterface5g/ci-scripts/conf_files/ <configuration_file> -
E | tee <log_file_output> 

The gNB is launched after the eNB is running. The “-E” flag in the gNB is “required 

to enable a tri-quarter sampling rate when using the B2xx series USRP” [38] . The “-O” 

flag is used for the same purpose as the eNB. Additional flags that could be used while 

executing the gNB can be found in Appendix B, Section C. 

3. Connecting the User Equipment 

There were two types of UEs used in this research. The first is the EC20 Quectel 

Module. The second were COTS cellphones. This research used the OnePlus 6T and the 

Google Pixel 4a 5G cellular phones. The sections below detail the process used to send AT 

commands to the EC20 Quectel Module and collect air interface traffic. The use of 

QNavigator is introduced next. Lastly, this section describes introducing the OnePlus 6T 

and the Google Pixel 4a 5G to the 4G network configuration. 

a. Android ONEPLUS 6T 

One mobile device used was the OnePlus 6T. Most Android devices will have a 

similar configuration setup since they both use the Android OS. Our phone was running 

Android version 8.1.0. The One Plus 6T has two sim slots; however, only one was used for 

this research.  

A new Access Point Name (APN) was created by navigating to settings and then 

selecting SIM & Network > SIM 1 (NPS 4G) > Access Point Names. The APN was then 
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added by clicking the “+” sign on the top right corner to add a new APN. The configuration 

settings shown in Table 2 are the APN settings used on the OnePlus 6T in this environment. 

After configuring and saving the new APN, the phone was connected to the 4G network.  

Table 2. OnePlus 6T APN Settings 

NAME apn1.carrier.com 
APN apn1.carrier.com 
Proxy Not set 
Port Not set 
Username Not set 
Password Not set 
Server Not set 
MMS proxy Not set 
MMS port Not set 
MCC 404 
MNC 92 
Authentication type Not set 
APN type default 
APN protocol IPv4/IPv6 
APN roaming protocol IPv4/IPv6 
Bearer LTE 
MVNO type None 

The OnePlus 6T was connected to the network by navigating to SIM & Network > 

SIM 1 (NPS 4G) > Network operators. The option to “Choose automatically” was turned 

off and the 4G “IND Airtel” RAN was selected.  

b. Google pixel 4a 5G

The second device used in the lab environment was the Google Pixel 4a 5G. The 

setup was similar to the OnePlus, with a few variations to the settings navigation path. 

First, the APN was created on the Google Pixel 4a 5G by navigating to settings > 

Networking and Internet > Mobile network > Advanced > Access Point Names. Next, the 

hamburger menu on the top right was selected, followed by New APN. After configuring 

and saving the new APN, the phone was connected to the 4G network by navigating to 

settings > Networking and Internet > Mobile network > Advanced > Choose network and 
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selecting the 4G RAN network. The configuration settings shown in Table 3 are the APN 

settings used on the Google Pixel 4a 5G in this environment.  

Table 3. Google Pixel 4a 5G APN Settings 

Name apn1.carrier.com 
APN apn1.carrier.com 
Proxy Not set 
Port Not set 
Username Not set 
Password Not set 
Server Not set 
MMSC Not set 
MMS proxy Not set 
MMS port Not set 
MCC 404 
MNC 92 
Authentication type Not set 
APN type default,mms,supl,hipri,fota,ims,cbs,xcap 
APN protocol IPv4/IPv6 
APN roaming protocol IPv4/IPv6 
Bearer Unspecified 
MVNO type None 

c. Interacting with the Quectel Module Using QNavigator

QNavigator is a Windows-based application used to interact with the Quectel 

module. QNavigator offers a graphical user interface to connect to the modem and to 

execute AT commands. Figure 8 displays the home tab of the QNavigator software 

showing information that could be queried using AT commands. This research used 

QNavigator V1.6.9.1. QNavigator was used to test the modem connection to the network 

and test internet connectivity. Connectivity was verified by pinging Cloudflare’s primary 

DNS IP address, and Google’s primary DNS IP address. [18] discusses common 

commands to interact with the Quectel module using QNavigator.  
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Figure 8. Quectel QNavigator V1.6.9—Home Tab 

d. Collect Cellular Network Air Interface Traffic and Interface with the
Quectel Module using Minicom.

Collecting cellular network air interface traffic was performed in two different 

ways—the first method required a several steps. To simplify the process, a script was 

created to launch Wireshark, launch minicom, and enter configurations to set up the 

minicom terminal. Minicom is a text-based modem control and terminal emulator 

connected to a device through GNU/Linux PC serial ports. A keyboard and mouse 

emulator, “xdotool,” was installed on the host PC to configure Minicom using the script. 

The scripts were configured on a PC that was not the EPC or eNB. The Quectel module is 

not capable of connecting the 5G network; it is only used for the 4G network configuration. 

Since the PC that served as the gNB was not used in the 4G network configuration, the 

gNB PC was also used to configure and install DiagParser, Android Tools, and Minicom 

to send AT commands to the UE. “DiagParser” is used to decode the Qualcomm DIAG 

format. Android Tools enable the user to the command-line interface (CLI) with the 

Quectel Modem. The installation and configuration scripts are found in Appendix C, 
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Sections A, and B. The common AT commands used in this project are given in Appendix 

C, Section B; however, the supplemental includes a full list of potential AT commands.  

The second method used to collect air interface traffic was Wireshark running on a 

fourth PC connected to the switch. We enabled port forwarding via ethernet from the ports 

on the switch that connected the EPC, eNB, and the gNB to the port on the switch to which 

the PC with Wireshark was connected. The benefit of using this method to capture packets 

is that it requires fewer steps and does not require configuration when reestablishing the 

network.  
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IV. RESULTS 

This chapter describes the results of the 4G LTE and the 5G NR NSA network 

configuration using the OpenAirInterface software. We test three additional network 

configurations not showcased in [18]. Also, this chapter provides an analysis of the 

OpenAirInterface platform, different components of the network architecture, network 

performance, and the network’s mobility.  

A. NETWORK CONFIGURATIONS 

This section discusses the different OpenAirInterface network configurations using 

three subsections to show the different configurations used during the experimentation 

phase of this research: 1. EPC and eNB network configuration; 2. EPC and dual eNB 

network configuration; and 3. EPC, eNB, and gNB network configuration. Figure 9 shows 

the IP address scheme used in “Network Configuration 1.” “Network Configuration 2,” 

and “Network Configuration 3” builds on the “Network Configuration 1” topology.  

 
Figure 9. eNB, EPC host, and Docker Containers IP Scheme 
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1. Network Configuration 1: EPC, eNB, and COTS UE 

After installing the OpenAirInterface software for the EPC and eNB, the two PCs 

were connected to a Linksys LGS308 switch, as shown in Figure 10. The EPC host machine 

was configured to have a static IP address of 192.168.1.7. The eNB host machine was 

configured to have a static IP address of 192.168.1.8. The EPC’s IP address was used as 

the gateway to forward the OpenAirInterface network traffic to its respective container.  

 
Figure 10. Network Configuration 1 

The EPC was launched using the scripts in Appendix A Section B. The scripts 

launched the docker containers in the required order to run the EPC successfully: 1. “oai-

hss:production”; 2. “oai-mme:production”; 3. “oai-spgwc:production”; and 4. oai-spgwu-

tiny:production. The last command in the script to execute follows the 

mme_check_run.log. Following the “mme_check_run.log” shows verbose details of the 

processes that are running related to the OpenAirInterface cellular network. The “tail” flag 

within the script enables the contents of the “mme_check_run.log” to display and is 

updated every five seconds. Figure 11 depicts a snapshot of the “mme_check_run.log” log 
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that shows the connection status of eNB and attached UEs. The “mme_check_run.log” can 

be found within the MME docker container (“oai-mme:production”).  

 
Figure 11. MME Log 

The eNB is launched after all the docker containers on the EPC host are running. 

The command used to launch the eNB is shown in Chapter III.E.1.a. After the command 

to launch the eNB is executed in the Linux terminal, a new connection is displayed on the 

MME Log. Figure 12 displays the established peer connection as well as debugging 

information. 

 
Figure 12. MME Log Showing eNB Peer Connection 
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The next step was to connect the UE, in this case, the OnePlus 6T, to the network. 

After a UE is introduced to the network, mme_check_run.log shows the number of 

“Connected UEs” and the number of “Attached UEs” in the “Current Status” column. The 

UE first connects to the eNB and then performs the LTE attach procedure. After the UE is 

attached to the EPC, the UE is in a state where the default EPS bearer enables IP 

connectivity for that UE [12]. After completing the attach procedure, the MME log is 

updated to display the “Connected eNBs,” “Attached UEs,” and “Connected UEs,” as 

displayed in Figure 13.  

 
Figure 13. Snapshot of MME Log Showing eNB Peer Connection and UE 

Attached 

2. Network Configuration 2: EPC, eNB1, eNB2, and COTS UE 

The dual eNB network configuration is similar to the single eNB network setup. 

The second eNB is connected using the same process as the first eNB. A configuration 

change is required to update the “eNB_ID” field on the template configuration file. If the 

MME identifies that it already has a peer connection with an eNB_ID, the MME will reject 

any additional eNB attempting to establish a peer connection with that eNB_ID. Additional 

configuration changes are outlined in Appendix A, Section B, Section 2.  

The IP scheme of the dual eNB configuration tested in this research is the same as 

the single eNB IP scheme, apart from the second eNB. Figure 14 illustrates the IP scheme 

used in “Network Configuration 2.” The IP addresses of the Docker containers remain the 

same, as shown in Figure 9. 
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Figure 14. Dual eNB and EPC Network Scheme 

The second EPC followed the same connection procedures depicted in Figure 11 

and Figure 12. Figure 15 below is a snapshot of the MME log in a dual eNB configuration.  

 
Figure 15. Snapshot of MME Log Showing Connected eNBs 

After both eNBs established peer connectivity with the EPC, the Google Pixel 4a 5G 

was introduced to the network. The MME log shows the addition in the “Current Status” 

column in Figure 16. The “Added since last display” column display is also updated.  
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Figure 16. Snapshot of MME Log Connected eNBs and Attached UEs 

3. Network Configuration 3: EPC, eNB, gNB, and COTS UE 

Introducing the gNB to the single eNB network configuration was the next step in 

configuring the 5G NSA architecture. The procedures to establish the 5G NSA 

configuration are first to launch the EPC, then the eNB, and finally the gNB. Figure 17 

shows the IP scheme used in “Network Configuration 3.”  

 
Figure 17. eNB, gNB, and EPC IP NSA Network Scheme 
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Unlike “Network Configuration 1,” in the 5G NSA architecture, the gNB 

establishes a peer connection with the eNB. When the gNB is connected to the eNB, it 

cannot be seen or viewed on the “mme_check_run.log log.” However, as shown in Figure 

18, a successful connection can be observed on the eNB terminal where the command to 

execute the eNB was performed. As shown, the gNB establishes a connection to the eNB 

using the stream control transmission protocol (SCTP) and the S1 Application Protocol 

(S1AP). SCTP is designed to transport cellular signaling messages over IP networks. S1AP 

provides the control plane signaling between the E-UTRAN and the EPC. [39] [40] were 

referenced when running the gNB.  

 
Figure 18. eNB View of gNB Peer Connection with eNB 

A successful connection can also be observed on the gNB terminal that was used 

to launch the gNB. The gNB uses the X2 Application Protocol (X2AP) to handle UE 

mobility signaling between the gNB and eNB and uses SCTP to establish a peer connection 

with the eNB. The communication to establish the 5G NSA network can be viewed in 

Figure 19. 
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Figure 19. gNB View of Peer Connection with eNB 

B. ANALYSIS 

This section examines each component of the OpenAirInterface software stack used 

in this capstone. The analysis performed in this section is derived from the various 

challenges experienced during this research’s installation and simulation phases.  

1. OpenAirInterface Platform 

The OpenAirInterface website states that it is “the fastest-growing community and 

software asset in 5G wireless” [41]. The OpenAirInterface Alliance has official GitHub 

pages where the master repository is available for developers and researchers. The alliance 

allows researchers and developers to branch the master repository and submit a pull request 

so that the researchers and developers can contribute towards identifying and removing 

bugs that are present within the software. The bugs can be found and fixed by researchers 

and developers in their respective branches. However, the bug can still exist in the master 

branch of the software until the updated branch has been verified and merged with the 



39 

master branch or the master branch has been updated to reflect the changes made in the 

developer’s branch.  

The OpenAirInterface publishes a charter with project timelines for adding 

functionality to the software. However, the timelines are an approximation and unreliable as 

they serve as more of a goal date than the expected date of the OpenAirInterface software 

update. There does not appear to be an official due date as to when the software will be 

updated.  

The procedure to install the software varies depending on the branch installed. The 

master branch contains elaborate procedures that are simple to follow for the installation; 

however, there were required dependencies that were not listed in the prerequisite portion of 

their installation page. For example, a dependency required before installing the eNB is 

freeDiameter, which implements the Diameter base protocol that provides authentication, 

authorization, and accounting. The freeDiameter protocol is used to enable authentication, 

authorization, and accounting (AAA) for mobile IPv4 applications within the 

OpenAirInterface 4G network [31]. 

The implementation of the OpenAirInterface software stack could be streamlined by 

maintaining a working repository that is properly configured. However, the initial 

configuration, changing configurations, maintenance, and troubleshooting of the networks 

require telecommunications systems and computer networking subject matter experts (SMEs) 

who can understand each component of the program in depth. In addition, implementing the 

OpenAirInterface software requires an intermediate level of knowledge to navigate Linux OS 

through CLI and a basic understanding of manipulating the OS’ network configurations. 

The SMEs must also have an in-depth foundation of cellular protocols. The verbose 

details shown on the MME log show the communications occurring between the different 

components and which protocol is being used. When the program fails, the issues are printed 

on the screen. The protocol displayed on the MME log should be the first thing investigated 

after a failure because it will help narrow down the root cause of the failure. The protocols are 

associated with a particular air interface layer that is usually correlated with a specific 

component.  
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The OpenAirInterface software is written in C, and the program is found within 

multiple C files. Usually, when an error occurs, it is echoed on the MME log along with the 

full path, filename, and line that the error occurred. Therefore, the SMEs must understand 

how to navigate the different files, read the C program, and resolve errors. Though the C files 

are lightly commented, they give context to where errors are derived from—which is useful 

for troubleshooting.  

Lastly, the OpenAirInterface eNB branch used in the test phase does not detect when 

stack smashing occurs. Stack smashing is a buffer overflow that happens when the input 

exceeds capacity buffer capacity [42]. As mentioned in [42], stack smashing occurs when a 

UE attempts to connect to the eNB and immediately releases the connection, which does not 

complete the RRC handshake. As a result, the eNB is left in a half-open state while constantly 

attempting to complete the connection, which exhausts the eNB resources. Any attempt to 

introduce the UE back to the network fails because the buffer overflow has already begun. 

After approximately a minute, the eNB crashes and requires a re-launch to resume normal 

operations. In srsRAN, the stack smashing is detected, and the backtrace, file containing 

debug information, is saved, and the program terminates. 

We were able to replicate the eNB stack smashing with high success. We observed 

the eNB stack smashing consistently when the Google Pixel 4a 5G was connected to the 

network and Voice over LTE (VoLTE) was enabled. VoLTE is a high-speed wireless standard 

where voice calls are transmitted using LTE networks. The eNB stack smashing does not 

occur as often when the OnePlus 6T is the only device connected to the network. The only 

way identified to resolve an eNB stack smashing occurrence was to re-launch the eNB. An 

eNB stack smashing can be considered as an internal DoS.  

2. Evolved Packet Core 

The procedures to install the EPC components were easy to follow; however, some 

installation commands required configuration parameters that are network specific, and some 

were default parameters. Some instructions were clear on which parameters required network 

specificity, while other commands were vague. The developer branches from the master 

repository were referenced during the installation as other branches had better installation and 



41 

configuration instructions than the master branch. The developer branch contains recent 

commits and is updated about once every week. 

As mentioned in Chapter III, Section C, we experienced an unrestorable failure of the 

EPC host machine. The second attempt to install the EPC on a new machine was unsuccessful 

because the master branch updated the installation procedures and docker containers. The 

master branch is updated once every two to three months and is subjected to the continuous 

integration process. The master branch was committed July 28th; however, is it not known if 

a failed peer connection from the eNB to the EPC was caused by a bug within the program or 

a feature not yet added to the updated master branch EPC. The periodic updates added features 

and changed methodologies of the OpenAirInterface software, making it difficult for 

researchers and developers to reproduce network configurations and test them against known 

potential vulnerabilities. The process to install the EPC via this method is outlined in 

Appendix A, Section C. 

To restore our testbed to operation, the EPC was restored from a cloned hard drive 

with the same version of the EPC and all the dependencies originally installed. A private 

GitHub page was then created to upload the EPC, eNB, and gNB repositories to provide a 

backup solution that is easily accessible should any PCs experience another unrestorable 

failure. The private GitHub page ensures that the repositories are not updated. The username 

and registered email of the GitHub page are provided in Table 4. 

Table 4. NPS GitHub 

Username Email Address 
NPS-OAI-LAB nps.oai.lab@gmail.com 

 

There were times when the EPC host PC was rebooted and the eNB could not establish 

a peer connection. It was caused because the PC flushes all non-persistent routes in its routing 

table at reboot. A solution was to create a script that clears all routes in the routing table and 

adds only the IP routes required for testing. These steps were performed on the EPC, eNB, 

and gNB. Once the IP routes were corrected, the EPC host, eNB, and gNB could ping the 

docker containers shown in Figure 9.  
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3. eNB 

The eNB installation presented similar challenges to the EPC. Configuring and 

installing “Network Configuration 1,” as shown in Figure 10, was the first step to constructing 

a 5G NSA architecture. The rationale for this method is to first establish the 4G LTE network 

before installing and configuring the gNB. However, configuring “Network Configuration 1” 

was difficult because of the complexity of the software. The lack of reliable installation 

documentation and instruction for the master repository caused unnecessary troubleshooting. 

A few different critical dependencies needed to install the eNB were not covered in the 

GitHub master repository. The GitHub page assumed that the installer had prior knowledge 

of the dependent software needed to install the eNB without errors. All software critical to the 

installation of the eNB is covered in Chapter III and Appendix A.  

4. gNB 

The procedure to install and configure the gNB was much simpler than that for the 

eNB. After the installation commands were executed, the configuration files were updated. 

The configuration that required changing was different than that of the eNB configuration file. 

The tracking_area_code, plmn_list, mme_ip_address, and enable_x2 changed to “yes” had to 

match the eNB configurations. The different configuration that the gNB file required set is the 

“target_enb_x2_ip_address.”  Once all configurations were updated, the gNB had no issues 

establishing peer connection to the eNB. 

The Google Pixel 4a 5G is the only phone on hand capable of accessing the 5G NSA 

network. However, connecting the Pixel to the gNB was inconsistent. Since the eNB was 

running simultaneously with the gNB, the phone often connected only to the eNB rather than 

the gNB although the gNB is part of the network. Often, the control plane functions were not 

handled by the gNB. Although the 5G NSA network was connected, we observed the phone 

connect to the gNB only one time. Every other attempt to connect the phone to the gNB failed. 

It is not clear why the phone failed to establish connectivity with the gNB. While 

troubleshooting, the gNB was rebooted, which deleted the stats printed on the terminal used 

to launch the gNB.  
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5. User Equipment 

The Quectel Module was the first device that was tested and was able to access the 

network. Interfacing with the device was initially performed using minicom; however, this 

research migrated to using QNavigator because its GUI is advantageous compared to the 

command line intensive program. QNavigator also has a functionality that lists AT commands 

and proper syntax that can be executed by clicking on the AT command.  

The second device we attempted to connect to the 4G network was the Google Nexus 

6P. Unfortunately, the Nexus could not find the “IND Airtel” network operator, and therefore, 

it was unable to connect. However, the Nexus 6P was able to find T-Mobile, AT&T, Sprint, 

Verizon, and FirstNet commercial networks, which are local networks specific to the 

geographic region. The phone was rebooted several times, a new APN was created, and the 

SIM card was swapped with a known good SIM card; however, the Nexus was still unable to 

find the 4G LTE network. We discontinued efforts to connect the Nexus 6P after we identified 

that the OnePlus was able to find and connect to the “IND Airtel” network. 

Connecting the OnePlus 6T and the Google Pixel 4a 5G to the network was as 

uncomplicated as the Quectel Module. First, a new APN was created and configured on each 

phone, as discussed in Chapter III, Section E. The network connection bar on the OnePlus and 

the Google Pixel 4a 5G displayed the 4G LTE icon on the settings bar. Next, the phones were 

assigned IP addresses on the 12.1.1.0/24 network as configured in the spgwc-cfg.sh file 

located within the SPGW-C container home directory. Ping tests to Google’s DNS primary 

server were successful from the OnePlus 6T, Google Pixel 4a 5G, and the Quectel Module.  

Although the phones were connected to the network and able to ping the DNS servers 

on the public internet, they could not browse the web using fully qualified domain names 

(FQDN). The error received on the Google Chrome web browser indicating that the issue was 

DNS-related. We validated that the issue was DNS-related by testing that the phones were 

able to browse using IP addresses. We tested using IP addresses for the Naval Postgraduate 

School’s Webpage, 52.42.202.22, and Cloudflare’s IP address, 1.1.1.1. 

The phones were then disconnected from the 4G network and connected to Wi-Fi to 

download “Network Tools—DNS Changer,” an application found on the Google Play Store 
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that can switch primary and secondary DNS servers. After re-establishing the connection to 

the OpenAirInterface cellular network, the DNS was switched to Google’s DNS server. The 

phone was able to ping and web browse when the DNS Changer application was enabled. The 

performance of the phones is discussed in section B.5 of this chapter.  

The next phase was to introduce the Pixel to the 5G NSA network. As mentioned in 

section 3.B of this chapter, connecting the Pixel to the gNB was inconsistent. When the Pixel 

is connected to the gNB, it can be viewed on the terminal; however, the phone did not display 

the 5G icon on its settings bar. It is likely because only the control plane was connected to the 

gNB, while the user plane was still connected to the eNB (or 4G LTE network). The network 

icon on the phone displayed a fill bar with the letter “R” above it. The “R” indicates that the 

phone is roaming, even though roaming was not enabled. 

When roaming was enabled on the Pixel, it causes the MME to fail and raise 

“SEGFAULT,” as shown in Figure 20. Although the MME failed, the phones seemingly 

remained connected to the network, but no services were available. The MME was restored 

by restarting each container within the MME. We tested roaming on the OnePlus 6T in order 

to troubleshoot, and the MME did not fail and continued operating normally. 

 
Figure 20. MME Log SEGFAULT 

6. Network Performance 

Network performance tests were performed to measure latency and throughput. 

Latency was measured using pings, and throughput was tested using iPerf. iPerf is a tool to 
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measure maximum achievable bandwidth on IP networks. Pings were conducted using a third-

party application available on Google Store, the Hurricane Electric (HE.Net) Network Tools. 

This third-party application was chosen because it implemented both pings and iPerf along 

with other network diagnostic tools.  

We performed iPerf tests from the Google Pixel 4a 5G to the EPC, eNB, and gNB, 

respectively. The iPerf test can measure the throughput between the UE and the base station. 

The EPC, eNB, and gNB were the server for each test, and the Pixel was the client in the test. 

Five iPerf2 tests were performed from the UE to the eNB and the EPC. The outcome of the 

iPerf tests with the eNB as the server resulted in an average bandwidth of 19.97 Mbits/sec. 

We also attempted to measure 5G NSA network performance. The iPerf test 

conducted from the UE to the EPC as the server resulted in an average bandwidth of 20.76 

Mbits/sec. The iPerf tests attempted on the gNB caused eNB to experience stack smashing 

most of the time when an iPerf test was performed. We gathered three successful iPerf tests 

with the gNB as the server out of more than 15 attempts. Table 5 shows the bandwidth of 

1MB iPerf tests from the Google Pixel to the EPC and eNB in LTE mode and the gNB in 

NSA mode. Appendix F lists the iPerf test performed in this research. 

The gNB performance results were significantly lower than expected. The cause of 

the low throughput could be due to the eNB stack smashing even during a successful iPerf 

test; however, we were not able to confirm that the eNB stack smashing is the cause of the 

low throughput. Appendix F lists the full iPerf results from the EPC, eNB, and gNB. 

Table 5. iPerf Test Results 

Server UE Min 
Bandwidth 

UE Avg 
Bandwidth 

UE Max 
Bandwidth 

Command Used on 
Server 

iPerf from 
UE to EPC  
LTE mode 

962 Kbits/sec 20.76 Mbits/sec 29.8 Mbits/sec iperf -s 192.168.1.7 

iPerf from 
UE to eNB 
LTE mode 

5.15 Mbits/sec 19.97 Mbits/sec 32.9 Mbits/sec iperf -s 192.168.1.8 

iPerf from 
UE to gNB 
NSA mode 

1.33 Kbits/sec 71.11 Kbits/sec 126 Kbits/sec iperf -s 192.168.1.9 
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We measured latency for “Network Configuration 1” by pinging Google’s, 

Cloudflare’s, and AT&T’s DNS servers using the HE.Net application. One thousand pings 

were performed from the OnePlus 6T and the Pixel 4a 5G to each DNS server. The average 

round-trip-time (RTT) for pings performed by the OnePlus 6T is 38.72 ms with a 0.013% 

packet loss rate. The average RTT for pings performed by the Google Pixel 4a 5G was 

42.11 ms with a 0.011% packet loss rate. Table 6 shows the average of the result from the 

ping tests conducted in this research. Appendix E shows the results of all pings performed 

from each phone.  

Table 6. Ping Test Results (average) 

OnePlus 6T 
Success Loss 

rate 
Avg 
RTT 

Best 
RTT 

Worst 
RTT 

0.987 0.013 38.72 27.0 76.87 
 

Google Pixel 
Success Loss 

rate 
Avg 
RTT 

Best 
RTT 

Worst 
RTT 

0.989 0.011 42.114 29.6 81.3 
 

7. Network Mobility 

One of the benefits of the OpenAirInterface network implementation is that it has 

a relatively small footprint. The small footprint enables the testing environment to be 

disestablished and re-established without making extensive configuration changes, if any. 

In our case, the only required configuration changes involve updating IP routes and 

ensuring the EPC can access the internet. The testing environment was moved from NPS’ 

Center for Cyber Warfare (CCW) to an offsite testing environment. The lab was able to be 

disestablished and re-established within minutes. IP routes were updated using bash scripts. 

While setup in the CCW, the phones experience an intermittent connection to the 

MME. We witnessed the “MME Log” displaying the UE completing the attach procedure 

and immediately terminating the UE attach connection. Fortunately, the cycle of the UE 

connecting to the network and disconnecting from the network did not cause the eNB to 
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crash because the UE completed the RRC handshake, which did not leave the eNB in a 

half-open state.  

It seems as if the cellular connection quality between eNB and the two UEs was 

better in the off-site test lab than the quality within the CCW. The phones did not 

disconnect intermittently, and web browsing was successfully tested for two hours. The 

only successful iPerf test was conducted in the offsite environment. After the testing 

environment was returned to the CCW, the issues experienced before the move recurred. 

The testbed was moved back to the offsite test lab a second time, and the issues experienced 

in the CCW didn’t reappear. Future researchers could leverage a spectrum analyzer to 

determine whether there are frequencies around the CCW that could potentially conflict 

with the LTE band 7 and NR band n78—the frequency band used during this capstone. 

3GPP LTE and NR operating bands are listed in Appendix G. 
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V. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

This capstone provides a detailed guide to implementing a 4G / 5G NSA network 

using the OpenAirInterface software. Also, it demonstrates the potential ability to establish 

scalable, inexpensive, rapidly deployable, and reconfigurable cellular networks using 

OpenAirInterface. Three network configurations and various tools that could be used have 

been discussed in this research, offering future researchers the ability to recreate, 

reconfigure, and troubleshoot the networks presented. The different network 

configurations presented in this work add to the network configurations analyzed in [18]. 

In addition, this research did not use the attenuators used in [18], proving that the Ettus 

B200 SDRs could handle air interface traffic at high speeds.  

Although OpenAirInterface has been under development in the past few years, the 

software is still unstable. Furthermore, we assess that the target audience for the 

OpenAirInterface software is researchers and developers. Therefore, the software’s 

usability cannot be evaluated until a stable release of the program is available.  

We have tested the flexibility of the OpenAirInterface software by adding an eNB 

to “Network Configuration 1.” We also proved the software’s flexibility by adding a gNB 

to “Network Configuration 1.” The addition of the eNB or gNB proves that the program 

does not require major configuration changes to change operating modes.  

Last, we were able to showcase the eNB crashing due to eNB stack smashing. The 

eNB stack smashing is a form of an internal DoS attack. The DoS attack could be caused 

intentionally or unintentionally. Other potential vulnerabilities native to 4G and 5G were 

not tested, and it remains unknown whether the vulnerabilities exist within the 

OpenAirInterface software. 

We conclude that the OpenAirInterface software is operational but not ready to be 

adopted for commercial use or implemented within the DOD. The software is still 

undergoing heavy development and significant changes. Though it is not known when the 

stable software will be released, continued research using the current software 
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implementation is valuable to understanding the potential use cases within the DOD once 

stable software is available.  

B. FUTURE WORK 

One direction for future work involves isolating and resolving issues related to the 

MME. For instance, future researchers could investigate the cause of the MME failure 

when roaming is enabled on the Pixel. The MME is susceptible to an internal DoS attack 

from within the network. Also, future researchers could determine if the cause of the MME 

segment fault is only caused by the Google Pixel 4a 5G or a bug within the 

OpenAirInterface software.  

The new process to implement the 4G LTE and 5G NSA architecture has been 

streamlined; however, different configurations must be examined. Continued research in 

the 4G LTE and 5G NSA networks would enable the DOD to move one step closer to 

realizing a cellular network that is owned, governed, and managed by the DOD. Also, 

additional research in the new installation process could evaluate whether some of the 

challenges experienced in this research still exist. For example, further research could 

determine if the new implementation methods handle the eNB crashing due to stack 

smashing. There is a potential that the OpenAirInterface implemented software solutions 

in the eNB manage and half-open connections caused by UEs.  

Furthermore, to truly realize the full capabilities that 5G offers, research in the SA 

architecture could prove beneficial for future use cases where eMBB, URLLC, high-speed 

wireless services, or mMTC are required in military operations. For example, a military 

application would be to use the 5G network to pass data using the Android Team 

Awareness Kit Military (ATAK-MIL) application in littoral operations. ATAK-MIL is a 

government off-the-shelf android app that enables blue and red force tracking on a map 

overlay, messaging, and critical information sharing that could be used in a tactical 

environment. Through ATAK, Commanders could maintain a near real-time situational 

awareness of an operation and deliver critical mission updates to nodes within the network. 

In the example mentioned above, the 5G network could also be used to enable node-to-

node communication. 
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Once a stable, end-to-end implementation of the 4G and 5G cellular network 

software is available, continued research could test the addition of multiple UEs and the 

stability of the 5G NSA software stack. We were not able to fully test and analyze all 

primary capabilities of mobile phones on the NSA network. To deploy the software or 

similar networks, research would be required to determine the additional equipment needed 

and compatibility to expand the cellular coverage range and ultimately scale the network 

to include multiple cores and base stations.  

Finally, one of the utilities used for writing SIM cards was OYEITIMES SIM 

Writer. The application had functionality that could not be updated because the fields were 

greyed out. Within the directory of the files, there was a file titled “GRSIMWrite.grsp,” 

which contains all the programmable fields in the OYEITIMES application. Future work 

could explore how the application writes to SIM cards and determine if the fields could be 

updated on the “.grsp” files to enable the fields to be written on the SIM.  
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APPENDIX A. OPENAIRINTERFACE SOFTWARE 
INSTALLATION GUIDE 

This appendix details the prerequisite software and installation steps discussed in 

Chapter III. This appendix is arranged into four sections—Section A describes the 

installation procedures to install the USRP. The installation processes to install the eNB 

and gNB are described in Section B. Finally, the methods to install the EPC are covered in 

Section C. Section D provides the new procedures used to install the EPC after recovering 

from the host failure.  

A. PREREQUISITE AND USRP SETUP 

1. Low-Latency Kernel 

1. Navigate to the Ubuntu packages webpage. 

https://packages.ubuntu.com/bionic/linux-signed-lowlatency-hwe-18.04/download 

2. Select the security.ubuntu.com/ubuntu link. 

3. A dialog box will appear. Click Ok.  

4. The linux-signed-low-latency-hwe-18.04 installation box will appear. 

Click Install. 

5. After the installation is completed, reboot the machine.  

6. Verify kernel installation. 

uname -a  

2. VOLK Libraries 

Vector-Optimized Library of Kernels (VOLK) is a library used to give GNU Radio 

a boost in performance in signal processing. The Volk framework adds single Instructions, 

Multiple Data (SIMD) functionality that simultaneously processes multiple data inputs 

with a single instruction. VOLK is a set of functions that act as a vector multiplier for 

complex floats [43]. The instructions to install VOLK radio is derived from [44]. 
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Install VOLK 

1. Clone the VOLK repository 

git clone --recursive https://github.com/gnuradio/volk.git 

2. Clone VOLK submodules 

git submodule update --init –recursive 

3. Build Volk 

cd volk 

mkdir build 

cd build 

cmake -DCMAKE_BUILD_TYPE=Release -DPYTHON_EXECUTABLE=/usr/bin/

python3 .// 

make 

make test 

sudo make install 

4. Link the system’s cache shared library. 

sudo ldconfig 

3. GNU Radio 

GNU Radio is an open-source software toolkit that performs signal processing 

using software rather than using embedded circuits in hardware radios. The GNU Radio 

software supports the required signal processing via that the open-air-interface stack needs 

to operate.  

4. USRP UHD 

1. Update and install the required dependencies. 

sudo apt-get update 

https://github.com/gnuradio/volk.git
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sudo apt-get -y install git swig cmake doxygen build-essential libboost-all-dev libtool 
libusb-1.0-0 libusb-1.0-0-dev libudev-dev libncurses5-dev libfftw3-bin libfftw3-dev 
libfftw3-doc libcppunit-1.14-0 libcppunit-dev libcppunit-doc ncurses-bin cpufrequtils 
python-numpy python-numpy-doc python-numpy-dbg python-scipy python-docutils qt4-
bin-dbg qt4-default qt4-doc libqt4-dev libqt4-dev-bin python-qt4 python-qt4-dbg python-
qt4-dev python-qt4-doc python-qt4-doc libqwt6abi1 libfftw3-bin libfftw3-dev libfftw3-
doc ncurses-bin libncurses5 libncurses5-dev libncurses5-dbg libfontconfig1-dev 
libxrender-dev libpulse-dev swig g++ automake autoconf libtool python-dev libfftw3-dev 
libcppunit-dev libboost-all-dev libusb-dev libusb-1.0-0-dev fort77 libsdl1.2-dev python-
wxgtk3.0 git libqt4-dev python-numpy ccache python-opengl libgsl-dev python-cheetah 
python-mako python-lxml doxygen qt4-default qt4-dev-tools libusb-1.0-0-dev 
libqwtplot3d-qt5-dev pyqt4-dev-tools python-qwt5-qt4 cmake git wget libxi-dev gtk2-
engines-pixbuf r-base-dev python-tk liborc-0.4-0 liborc-0.4-dev libasound2-dev python-
gtk2 libzmq3-dev libzmq5 python-requests python-sphinx libcomedi-dev python-zmq 
libqwt-dev libqwt6abi1 python-six libgps-dev libgps23 gpsd gpsd-clients python-gps 
python-setuptools 

2. Build and install the UHD from the source code. 

cd $HOME 

mkdir workarea 

cd workarea 

3. Clone the repository. 

git clone https://github.com/EttusResearch/uhd 

cd uhd 

4. List the UHD releases and checkout the desired UHD. 

git tag -l 

git checkout v3.14.0.0 

5. Create a build folder. 

cd host 

mkdir build 

cd build 

cmake ../ 
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make 

6. Run basic tests. 

make test 

7. Install the UHD 

sudo make install 

8. Link the system’s cache shared library. 

sudo ldconfig 

9. Ensure that the LD_LIBRARY_PATH environment is defined under the folder 

that the UHD is installed. 

export LD_LIBRARY_PATH=/usr/local/lib 

10. If the library is already defined, run the following command.  

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib 

11. Download the UHD FPGA Images. 

sudo uhd_images_downloader 

12. Write the “XG” FPGA image to the USRP B200. 

uhd_image_loader --args “type=x300,fpga=XG” 

13. Change the socket buffer sizes. 

sudo sysctl -w net.core.rmem_max=33554432 

sudo sysctl -w net.core.wmem_max=33554432 

14. Connect the USRP and verify the UHD installation. 

uhd_find_devices 

uhd_usrp_probe 

15. Configure the USB 

cd $HOME/workarea/uhd/host/utils 
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sudo cp uhd-usrp.rules /etc/udev/rules.d/ 

sudo udevadm control --reload-rules 

sudo udevadm trigger 

16. Configure thread scheduling 

sudo groupadd usrp 

sudo usermod -aG usrp $USER 

17. Configure USB to enable non-root users to access the device 

cd $HOME/workarea/uhd/host/utils 

sudo cp uhd-usrp.rules /etc/udev/rules.d/ 

sudo udevadm control --reload-rules 

sudo udevadm trigger 

5. GNU Radio 

1. Clone the repository 

cd /home/labware/workarea 

git clone --recursive https://github.com/gnuradio/gnuradio 

2. Checkout GNU Radio release 

cd gnuradio 

checkout branch 

git checkout v3.7.13.4 

3. Update submodules 

git submodule update --init --recursive 

4. Create a folder within the repository, invoke CMake, build GNU Radio 

mkdir build 

cd build 
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cmake ../ 

make 

5. Run basic tests. 

make test 

6. Install GNU Radio using the default prefix. 

sudo make install 

7. Link the system’s cache shared library. 

sudo ldconfig 

8. Verify that GNU Radio is installed.  

gnuradio-config-info --version 

gnuradio-config-info --prefix 

gnuradio-config-info --enabled-components 

9. Run the GNU Radio 

gunradio-companion 

B. ENB/GNB  

1. eNB Installation 

1. Retrieve the latest version of the `master` branch and build the eNB 

mkdir -p ~/openairinterface5g 

cd ~/openairinterface5g/ 

git checkout master 

source oaienv 

cd cmake_targets 

./build_oai -w USRP –eNB –build-lib 
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2. Edit the conf file by replacing all `CI_*IP_ADDR` pattern with the correct IP 

address. 

source oaienv 

cd ~/openairinterface5g/ci-scripts/conf_files 

cp enb.band7.tm1.25PRB.usrpb200.conf my-enb.band7.tm1.25PRB.usrpb200.conf 

vi my-enb.band7.tm1.25PRB.usrpb210.conf 

cd ~/openairinterface5g/cmake_targets 

3. Starting the eNB. 

sudo -E ./lte_build_oai/build/lte-softmodem -O ~/openairinterface5g/ci-scripts/conf_files/
ci-enb.band7.tm1.25PRB.usrpb210.conf --nokrnmod 1 --noS1 --
eNBs.[0].rrc_inactivity_threshold 0 2>&1 | tee ENB.log  

4. Running the eNB. 

cd cmake_targets 

sudo -E ./lte_build_oai/build/lte-softmodem -O ~/openairinterface5g/ci-scripts/conf_files/
ci-enb.band7.tm1.25PRB.usrpb210.conf --nokrnmod 0 --noS1 --
eNBs.[0].rrc_inactivity_threshold 0 2>&1 | tee ENB.log 

2. eNB Configuration 

The eNB requires a configuration file to set the RAN parameters to establish a peer 

connection to the EPC. The “enb.band7.tm1.25PRB.usrpb210.conf” file was used for this 

capstone. There are a few lines that are network-specific and are required to be updated. 

Figure 21 is a screenshot of the eNB configuration file. The configuration file shows an 

updated eNB_ID, tracking area code, and plmn_list (MCC and MNC updated).  
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Figure 21. enb.band7.tm1.25PRB.usrpb210 - eNB Configuration 

Table 7 summarizes the updated fields in the eNB configuration file and a brief 

description of the field.  

Table 7. Changes Made in the eNB Configuration File [45]. 

Option Update Description 

eNB_ID 0xe01 

It is not required for single eNB architecture. 
However, in a multiple eNB architecture, the 
eNB_ID will conflict on the EPC and only one 
will be allowed to establish peer connectivity. 

Tracking 
area code 5 Internationally unique identifier for a tracking 

area within the PLMN 

MCC 404 

MCC is used along with the International 
Mobile Subscriber Identity (IMSI) to identify 
the region from which the mobile subscriber 
belongs. 

MNC 92 
MNC uniquely identifies the home PLMN to 
the user on the mobile device display when 
connected to the network. 

 

Figure 22 is a screenshot of additional configuration changes made on the eNB 

configuration file. 
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Figure 22. enb.band7.tm1.25PRB.usrpb210 - MME Parameters and 

Network_Interfaces 

Table 8 shows configuration changes made in the MME parameters and X2 settings 

section of the eNB configuration file. The IP address shown in Table 8 is the default IP 

address of the MME; however, the docker network IP address could be changed. If changes 

to the Docker network IP address were made, this section would need to be updated.  

Table 8. enb.band7.tm1.25PRB.usrpb210—MME Parameters and X2 
Settings  

MME parameters 
Setting Update  

ipv4 “192.168.61.3” 
 X2 Settings 

Setting Update  
enable_x2 “yes” 
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Table 9 shows the Network Interfaces configuration updates made on the eNB 

configuration file. The IP addresses listed is the IP address of the eNB host PC. The eNB 

host machine was given a static IP address of 192.168.1.8. 

Table 9. enb.band7.tm1.25PRB.usrpb210—Network Interfaces Settings 

Network Interfaces  
Setting Update 

ENB_IPV4_ADDRESS_FOR_S1_MME “192.168.1.8” 
ENB_IPV4_ADDRESS_FOR_S1U “192.168.1.8” 
ENB_IPV4_ADDRESS_FOR_X2C “192.168.1.8” 

 

3. gNB Installation 

1. Download the repository from GitLab 

https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/develop 

2. Build and install the gNB.  

cd <oai installation directory>/openairinterface5g-develop  

source oaienv 

cd cmake_targets/ 

./build_oai -I -w USRP –gNB 

3. Update the MME section and the Network Interfaces section of the gNB 

configuration file with the IP address of the EPC.  

cd <oai installation directory>/openairinterface5g-develop/ci-scipts/conf_files 

gedit <filename.conf> 

4. Update the MME parameters section of the gNb configuration file with the IP 

address of the EPC. Update the X2 Network Interfaces section of the configuration file 

with the IP address of the eNB host / gNB host.  

cd <oai installation directory>/openairinterface5g-develop/ci-scipts/conf_files 

https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/develop
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gedit <filename.conf> 

4. gNB Configuration 

The gNB requires a configuration file to set the RAN parameters to establish a peer 

connection to the eNB. The gnb.band78.tm1.fr1.106PRB.usrpb210 file was used for this 

capstone. In addition, there are a few lines that are network-specific and are required to be 

updated. Figure 23 is a screenshot of the gNB configuration file. The configuration file 

shows an updated gNB_ID, tracking area code, and plmn_list to match the configuration 

made on the eNB configuration file.  

 
Figure 23. gnb.band78.tm1.fr1.106PRB.usrpb210—gNB Configuration 

Table 10 summarizes the updated fields in the gNB configuration file and a brief 

description of the field. 

Table 10. srpb210—gNB configuration 

Option Update Description 

gNB_ID 0xe01 Not required for single geNB architecture. 

Tracking 
area code 5 Internationally unique identifier for a tracking 

area within the PLMN 

MCC 404 MCC is used along with the International 
Mobile Subscriber Identity (IMSI) to identify 
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Option Update Description 

the region from which the mobile subscriber 
belongs. 

MNC 92 
MNC uniquely identifies the home PLMN to 
the user on the mobile device display when 
connected to the network. 

 

Figure 24 is a screenshot of additional configuration changes made on the gNB 

configuration file. 

 
Figure 24. gnb.band78.tm1.fr1.106PRB.usrpb210—MME Parameters and 

Network_Interfaces 
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Table 11 shows configuration changes made in the MME parameters and X2 

settings section of the gNB configuration file. The IP address shown in Table 11 is the 

default IP address of the MME that is in the eNB configuration file.  

Table 11. gnb.band78.tm1.fr1.106PRB.usrpb210—MME parameters and X2 
Settings 

MME parameters 
Setting Update  

ipv4 “192.168.61.3” 
 X2 Settings 

Setting Update  
enable_x2 “yes” 

 

Table 12 shows the Network Interfaces configuration updates made on the gNB 

configuration file. The IP addresses listed is the IP address of the gNB host PC. The eNB 

host machine was given a static IP address of 192.168.1.9. 

Table 12. gnb.band78.tm1.fr1.106PRB.usrpb210—Network Interface 
Settings 

Network Interfaces  
Setting Update 

GNB_IPV4_ADDRESS_FOR_S1_MME “192.168.1.9” 
GNB_IPV4_ADDRESS_FOR_S1U “192.168.1.9” 
GNB_IPV4_ADDRESS_FOR_X2C “192.168.1.9” 

 

C. EPC 

1. Low-Latency Kernel 

1. Navigate to the Ubuntu packages webpage. 

https://packages.ubuntu.com/bionic/linux-signed-lowlatency-hwe-18.04/download 

2. Select the security.ubuntu.com/ubuntu link. 
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3. A dialog box will appear. Click Ok.  

4. The linux-signed-low-latency-hwe-18.04 installation box will appear.  

Click Install. 

5. After the installation is completed, reboot the machine.  

reboot 

6. Verify kernel successfully installed. 

uname -a  

2. freeDiameter 

1. Install the required dependencies for building the source for freeDiameter 

sudo apt-get -y install mercurial cmake make gcc g++ bison flex libsctp28-dev libgnutls-
dev libgcrypt20-dev libidn11-dev ssl-cert debhelper fakeroot libpq-dev libmysqlclient-dev 
libxml2-dev swig python-dev 

2. Clone the freeDiameter repository 

cd  

hg clone http://www.freediameter.net/hg/freeDiameter 

cd freeDiameter 

3. Configure and generate Makefiles 

mkdir fDbuild 

cd fDbuild 

cmake ../freeDiameter 

4. Edit (optional) and compile files 

make edit_cache 

make 

3. Docker 

1. Uninstall old version of docker 
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sudo apt-get remove docker docker-engine docker.io containerd runc 

2. Set up the repository 

sudo apt-get update 

sudo apt-get install  

sudo apt-transport-https \ 

ca-certificates \ 

curl \ 

gnupg \ 

lsb-release 

3. Add Docker’s GPG key. 

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/
share/keyrings/docker-archive-keyring.gpg 

4. Set up the stable repository 

echo “deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] 
https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable” | sudo tee /etc/apt/
sources.list.d/docker.list > /dev/null 

5. Install Docker Engine (use this step to install the latest version of the Docker 

engine). 

sudo apt-get update 

sudo apt-get install docker-ce docker-ce-cli containerd.io 

6. List and install a specific version of the Docker Engine (use this step to install a 

previously released version). 

apt-cache madison docker-ce 

sudo apt-get install docker-ce=<VERSION_STRING> docker-ce-
cli=<VERSION_STRING> containerd.io 

7. Verify that Docker Engine is correctly installed 

sudo docker run hello-world 
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9. Delete the hello-world image (optional) 

docker image rm hello-world --force 

8. Check the currently installed version of Docker Engine 

apt list | grep docker-ce 

4. openair-epc-fed 

1. Clone the openair-epc-fed repository 

cd 

git clone https://github.com/OPENAIRINTERFACE/openair-epc-fed.git 

cd openair-epc-fed 

2. Check out the latest GIT repository 

git checkout master 

git pull origin master 

3. Resync the sub-modules 

./scripts/syncComponents.sh 

4. Log into docker and pull the docker images. 

docker login [enter your docker credentials when prompted] 

docker pull Ubuntu:bionic 

docker pull cassandra:2.1 

docker logout 

5. Enable forwarding from the Docker containers to the outside world 

sudo sysctl net.ipv4.conf.all.forwarding=1 

sudo iptables -P FORWARD ACCEPT 
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6. change the IP range of the default docker bridge network. If the daemon.json file 

does not exist, create it and add the bridge IP. If the daemon.json file does exist, verify the 

IP address of the bridge to your network.  

gedit /etc/docker/daemon.json 

7. Add the network information 

{ 

 “bip”: “Bridge_IP_ADDRESS” 

} 

8. Restart the docker daemon and verify that the bridge IP has been updated. 

sudo service docker stop 

sudo service docker start 

docker network inspect bridge name 

5. Build the HSS, MME, SPGW-C, and SPGW-U images without the EURECOM 

proxy option. 

docker build --target oai-hss --tag oai-hss:production --file component/oai-hss/docker/
Dockerfile.ubuntu18.04 component/oai-hss 
docker build --target oai-mme --tag oai-mme:production --file component/oai-mme/
docker/Dockerfile.ubuntu18.04 component/oai-mme 
docker build --target oai-spgwc --tag oai-spgwc:production --file component/oai-spgwc/
docker/Dockerfile.ubuntu18.04 component/oai-spgwc 
docker build --target oai-spgwu-tiny --tag oai-spgwu-tiny:production --file component/oai-
spgwu-tiny/docker/Dockerfile.ubuntu18.04 component/oai-spgwu-tiny 

6. Remove untagged and images not referenced by any container. 

docker image prune --force 

7. Verify the containers built were successful 

docker image ls 

8. Create docker public network 
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docker network create --attachable --subnet 192.168.61.0/26 --ip-range 192.168.61.0/26 
prod-oai-public-net 
docker run --name prod-cassandra -d -e CASSANDRA_CLUSTER_NAME=“OAI HSS 
Cluster” -e CASSANDRA_ENDPOINT_SNITCH=GossipingPropertyFileSnitch 
cassandra:2.1 
docker network connect prod-oai-public-net prod-oai-hss 
docker run --privileged --name prod-oai-mme --network prod-oai-public-net -d --
entrypoint /bin/bash oai-mme:production -c “sleep infinity” 
docker run --privileged --name prod-oai-spgwc --network prod-oai-public-net -d --
entrypoint /bin/bash oai-spgwc:production -c “sleep infinity” 
docker run --privileged --name prod-oai-spgwu-tiny --network prod-oai-public-net -d --
entrypoint /bin/bash oai-spgwu-tiny:production -c “sleep infinity” 

9. Configure the Cassandra, HSS, MME, SPGW-C, and SPGW-U containers. 

9.1. Cassandra 

docker cp component/oai-hss/src/hss_rel14/db/oai_db.cql prod-cassandra:/home 
docker exec -it prod-cassandra /bin/bash -c “nodetool status” 
Cassandra_IP=`docker inspect --format=“{{range 
.NetworkSettings.Networks}}{{.IPAddress}}{{end}}” prod-cassandra` 
docker exec -it prod-cassandra /bin/bash -c “cqlsh --file /home/oai_db.cql 
${Cassandra_IP}” 

9.2. HSS 

HSS_IP=`docker exec -it prod-oai-hss /bin/bash -c “ifconfig eth1 | grep inet” | sed -f ./ci-
scripts/convertIpAddrFromIfconfig.sed` \ python3 component/oai-hss/ci-scripts/
generateConfigFiles.py --kind=HSS  
--cassandra=${Cassandra_IP} --hss_s6a=${HSS_IP} --apn1=apn1.carrier.com \ 
--apn2=NPS4G.apn.epc.mnc092.mcc404.3gppnetwork.org --users=200 \ 
--imsi=320230100000001 --ltek=0c0a34601d4f07677303652c0462535b \  
--op=63bfa50ee6523365ff14c1f45f88737d  --nb_mmes=1 --from_docker_file \ 
docker cp ./hss-cfg.sh prod-oai-hss:/openair-hss/scripts 
docker exec -it prod-oai-hss /bin/bash -c “cd /openair-hss/scripts && chmod 777 hss-cfg.sh 
&& ./hss-cfg.sh” 

9.3 MME 

MME_IP=`docker inspect --format=“{{range 
.NetworkSettings.Networks}}{{.IPAddress}}{{end}}” prod-oai-mme` 
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SPGW0_IP=`docker inspect --format=“{{range 
.NetworkSettings.Networks}}{{.IPAddress}}{{end}}” prod-oai-spgwc` \ python3 
component/oai-mme/ci-scripts/generateConfigFiles.py --kind=MME \ 
--hss_s6a=${HSS_IP} --mme_s6a=${MME_IP} \ 
--mme_s1c_IP=${MME_IP} --mme_s1c_name=eth0 \ 
--mme_s10_IP=${MME_IP} --mme_s10_name=eth0 \ 
--mme_s11_IP=${MME_IP} --mme_s11_name=eth0  
--spgwc_s11_IP=${SPGW0_IP} \ 
--mcc=404 --mnc=92 --tac_list=“5 6 7” --from_docker_file 
docker cp ./mme-cfg.sh prod-oai-mme:/openair-mme/scripts 
docker exec -it prod-oai-mme /bin/bash -c “cd /openair-mme/scripts && chmod 777 mme-
cfg.sh && ./mme-cfg.sh” 

9.4 SPGW-C 

python3 component/oai-spgwc/ci-scripts/generateConfigFiles.py --kind=SPGW-C \ 
--s11c=eth0 --sxc=eth0 --apn=apn1.carrier.com --dns1_ip=172.20.20.12 --
dns2_ip=8.8.8.8 --from_docker_file 
docker cp ./spgwc-cfg.sh prod-oai-spgwc:/openair-spgwc 
docker exec -it prod-oai-spgwc /bin/bash -c “cd /openair-spgwc && chmod 777 spgwc-
cfg.sh && ./spgwc-cfg.sh” 

9.5 SPGW-U 

python3 component/oai-spgwu-tiny/ci-scripts/generateConfigFiles.py --kind=SPGW-U \ 
--sxc_ip_addr=${SPGW0_IP} --sxu=eth0 --s1u=eth0 --from_docker_file 
docker cp ./spgwu-cfg.sh prod-oai-spgwu-tiny:/openair-spgwu-tiny 
docker exec -it prod-oai-spgwu-tiny /bin/bash -c “cd /openair-spgwu-tiny && chmod 777 
spgwu-cfg.sh && ./spgwu-cfg.sh” 
docker inspect --format=“{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}” 
prod-cassandra 
docker inspect --format=“{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}” 
prod-oai-hss 
docker inspect --format=“{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}” 
prod-oai-mme 
docker inspect --format=“{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}” 
prod-oai-spgwc 
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docker inspect --format=“{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}” 
prod-oai-spgwu-tiny 
 

D. UPDATED EPC INSTALLATION 

This section provides the new methods to install the EPC. To install, replace Section 

C in this appendix with this section.  

1. openair-epc-fed 

1. Pull the images from Docker Hub 

docker login 

docker pull ubuntu: bionic 

docker pull cassandra:2.1 

docker pull rdefosseoai/oai-hss 

docker pull rdefosseoai/oai-mme 

docker pull rdefosseoai/oai-spgwc 

docker pull rdefosseoai/oai-spgwu-tiny 

2. re-tag the images for docker-compose 

docker image tag rdefosseoai/oai-hss:latest oai-hss:production 

docker image tag rdefosseoai/oai-mme:latest oai-mme:production 

docker image tag rdefosseoai/oai-spgwc:latest oai-spgwc:production 

docker image tag rdefosseoai/oai-spgwu-tiny:latest oai-spgwu-tiny:production 

3. remove the re-tagged images (optional) 

docker image rm rdefosseoai/oai-hss 

docker image rm rdefosseoai/oai-mme 

docker image rm rdefosseoai/oai-spgwc 

docker image rm rdefosseoai/oai-spgwu-tiny 



73 

4. Network Configuration 

sudo sysctl net.ipv4.conf.all.forwarding=1 

sudo iptables -P FORWARD ACCEPT 

5. Manually configuring IP range (optional) 

cd /etc/docker/ 

sudo touch daemon.json 

sudo cat >> daemon.json 

6. Enter the IPv4 address and CIDR notation into the daemon.json file.  

{ 

 “bip”: “ipv4/CIDR” 

} 

ctrl+ c 

7. Restart the docker service, verify it is running, and verify the network configurations 

committed.  

sudo service docker restart 

service docker status 

docker network inspect bridge 

8. Clone the repository 

git clone --branch v1.1.2 https://github.com/OPENAIRINTERFACE/openair-epc-fed.git 

cd openair-epc-fed 

git checkout -f v1.1.2 

9. Syncrhonize all git submodules 

./scripts/syncComponentsLegacy.sh 

10. Initialize the Cassandra DB 

https://github.com/OPENAIRINTERFACE/openair-epc-fed.git
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cd docker-compose/oai-mme-legacy 

docker-compose up -d db_init 

11. Follow database logs. Before continuing beyond this step, a connection must be 

made. An “OK” should appear to indicate a connection to the SQL server is successful. 

Because connection errors occur before receiving the “OK,” the following command may 

be entered multiple times. 

docker logs prod-db-init –follow 

12. Remove the database init container because it is not needed anymore.  

docker rm -f prod-db-init 
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APPENDIX B. OPENAIRINTERFACE SOFTWARE SIMULATION 

This appendix summarizes the steps used to create different bash scripts during 

simulation. Scripts are used to run a series of commands; any command that could be 

executed from the terminal can be used in a script. First, this appendix discusses creating 

bash scripts for running the environment. Using scripts speeds up and streamlines 

launching the EPC as well as tearing it down. Using bash scripts makes simulating the test 

environment easier and faster. Rather than running multiple commands, a single command 

could be executed to run the script.  

A. SETTING UP BASH SCRIPTS 

1. Open a text editor and save it with a “.sh” file extension in a location where the 

shell can find it. The first line should have only #!/bin/bash to interpret the file as an 

executable.  

2. The permission of the newly created script will need to be changed to allow the 

script to be executable.  

chmod +x [filename] 

B. LAUNCHING THE EPC 

1. Start the EPC Containers Script 

1. Create a script file named “launch_4g_containers.sh.” The script will launch all 

4G docker containers.  

#!/bin/bash 
cd ~/openair-epc-fed 
# Starting the network functions with ‘tshark’. Launching network functions with ‘tshark’ 
is not necessary; however, it is helpful for debugging issues.  
docker exec -d prod-oai-hss /bin/bash -c “nohup tshark -i eth0 -i eth1 -w /tmp/
hss_check_run.pcap 2>&1 > /dev/null” 
docker exec -d prod-oai-mme /bin/bash -c “nohup tshark -i eth0 -i lo:s10 -w /tmp/
mme_check_run.pcap 2>&1 > /dev/null” 
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docker exec -d prod-oai-spgwc /bin/bash -c “nohup tshark -i eth0 -i lo:p5c -i lo:s5c -w 
/tmp/spgwc_check_run.pcap 2>&1 > /dev/null” 
docker exec -d prod-oai-spgwu-tiny /bin/bash -c “nohup tshark -i eth0 -w /tmp/
spgwu_check_run.pcap 2>&1 > /dev/null” 
docker exec -d prod-oai-hss /bin/bash -c “nohup ./bin/oai_hss -j ./etc/hss_rel14.json --
reloadkey true > hss_check_run.log 2>&1” 
sleep 2 
 
# Launching each container. The order in which they are launched matters. The order 
should be prod-oai-hss, prod-oai-mme, prod-oai-spgwc, and prod-oai-spgwu-tiny.  
docker exec -d prod-oai-mme /bin/bash -c “nohup ./bin/oai_mme -c ./etc/mme.conf > 
mme_check_run.log 2>&1” 
sleep 2 
docker exec -d prod-oai-spgwc /bin/bash -c “nohup ./bin/oai_spgwc -o -c ./etc/spgw_c.conf 
> spgwc_check_run.log 2>&1” 
sleep 2 
docker exec -d prod-oai-spgwu-tiny /bin/bash -c “nohup ./bin/oai_spgwu -o -c ./etc/
spgw_u.conf > spgwu_check_run.log 2>&1” 
docker exec -it prod-oai-mme tail -f mme_check_run.log 
 

2. Stop the EPC Containers Script 

1. Create a script file named “stop_4g_containers.sh.” The script will stop all 4G 

docker containers, recover the log files, configurations, and traces, then zip the files. 

!#/bin/bash 
cd ~/openair-epc-fed 
# Stopping each container and tcpdumb.  
docker exec -it prod-oai-hss /bin/bash -c “killall --signal SIGINT oai_hss tshark tcpdump” 
docker exec -it prod-oai-mme /bin/bash -c “killall --signal SIGINT oai_mme tshark 
tcpdump” 
docker exec -it prod-oai-spgwc /bin/bash -c “killall --signal SIGINT oai_spgwc tshark 
tcpdump” 
docker exec -it prod-oai-spgwu-tiny /bin/bash -c “killall --signal SIGINT oai_spgwu tshark 
tcpdump” 
sleep 10 
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docker exec -it prod-oai-hss /bin/bash -c “killall --signal SIGKILL oai_hss tshark 
tcpdump” 
docker exec -it prod-oai-mme /bin/bash -c “killall --signal SIGKILL oai_mme tshark 
tcpdump” 
docker exec -it prod-oai-spgwc /bin/bash -c “killall --signal SIGKILL oai_spgwc tshark 
tcpdump” 
docker exec -it prod-oai-spgwu-tiny /bin/bash -c “killall --signal SIGKILL oai_spgwu 
tshark tcpdump” 
 

3. Recover the Logs, Configurations, and Traces  

rm -Rf archives 
mkdir -p archives/oai-hss-cfg archives/oai-mme-cfg archives/oai-spgwc-cfg archives/oai-
spgwu-cfg 
 
# Retrieve the modified configuration files. 
docker cp prod-oai-hss:/openair-hss/etc/. archives/oai-hss-cfg 
docker cp prod-oai-mme:/openair-mme/etc/. archives/oai-mme-cfg 
docker cp prod-oai-spgwc:/openair-spgwc/etc/. archives/oai-spgwc-cfg 
docker cp prod-oai-spgwu-tiny:/openair-spgwu-tiny/etc/. archives/oai-spgwu-cfg 
 
# Retrieve the modified logs. 
docker cp prod-oai-hss:/openair-hss/hss_check_run.log archives 
docker cp prod-oai-mme:/openair-mme/mme_check_run.log archives 
docker cp prod-oai-spgwc:/openair-spgwc/spgwc_check_run.log archives 
docker cp prod-oai-spgwu-tiny:/openair-spgwu-tiny/spgwu_check_run.log archives 
 
# Retrieve the packet captures (PCAP). 
docker cp prod-oai-hss:/tmp/hss_check_run.pcap archives 
docker cp prod-oai-mme:/tmp/mme_check_run.pcap archives 
docker cp prod-oai-spgwc:/tmp/spgwc_check_run.pcap archives 
docker cp prod-oai-spgwu-tiny:/tmp/spgwu_check_run.pcap archives 
 
# Create a zip file for the data.  
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zip -r -qq docker_files.zip archives 

4. Restart EPC Containers script 

1. Create a script file named “restart_4g_containers.sh.” The script will stop all 4G 

docker containers. 

!#/bin/bash 
docker container restart prod-cassandra prod-oai-hss prod-oai-mme prod-oai-spgwc prod-
oai-spgwu-tiny 
 

C. OPTIONAL FLAGS FOR LAUNCHING THE ENB/GNB 

Running the eNB and the gNB is covered in Chapter III. This section lists the 

different flags that could be used to launch the eNB and gNB. Table 13 lists optional flags 

that could be used to launch the eNB.  

Table 13. Optional flags to Launch the eNB. Adapted from [46]. 

eNB 
Flags Uses 

--basicsim 

enables the eNB to execute by emulating the 
radio head (USRP device). It allows 
connecting the OAI UE and the OAI eNodeB 
through a network interface carrying the time-
domain samples, getting rid of over the air 
unpredictable perturbations. 

--noS1 
used to inject/receive user-plane traffic over a 
virtual IP Point-to-Point interface, also known 
as a TUN interface.  

--nokrnomod 0 used to enforce kernel modules instead of tun.  

--nokrnomod 1 used to enforce the preferred and supported 
tunnel interface 

 

Table 14 lists optional flags that could be used to launch the gNB and a brief 

description of their use.  
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Table 14. Optional flags to Launch the gNB. Adapted from [46]. 

gNB 
Flags Uses 

--ue-fo-
compensation 

enables the frequency offset compensation at 
the UE. This command is useful when running 
over the air or without an external clock/time 
source 

--usrp-args sed to identify the USRP and set some basic 
parameters (like the clock source) 

--clock-source sets the clock source to internal or external 

--phy-test flag used to run the UE without the support of eNB 
or EPC in NSA mode 
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APPENDIX C. INSTALLING DIAGPARSER AND MINICOM 

A. INSTALLING DIAGPARSER AND MINICOM 

1. Download Wireshark from their official website (https://www.wireshark.org) 

and install it on a Linux 16.04 LTS PC or higher. Quectel has also been tested on Windows 

Subsystem for Linux (WSL). 

2. Install Diag Parser. 

sudo apt-get update 
sudo apt-get install libgnutls28-dev make gcc g++ libtalloc-dev autoconf automake make 
debhelper debscripts libtool build-essential pkg-config libpsclite-dev -y 

3. Install Diag Parser 

git clone git://github.com/moiji-mobile/diag-parser 
cd diag-parser 
. /build/build_local.sh 

4. Install Minicom 

sudo apt-get install minicom -y 
5. Install Android Tools 

sudo apt-get install android-tools-adb android-tools-fastboot -y 
sudo apt-get install gcc-arm-linux-gnueabi g++-arm-linux-gnueabi -y 
sudo apt-get install gdb-arm-none-eabi -y 
sudo apt-get install gdb -y 
sudo apt-get install gcc-arm-none-eabi -y 
sudo apt-get install libc6-armel-cross libc6-dev-armel-cross binutils-arm-linux-gnueabi 
libncurses5-dev -y 
sudo apt-get install binwalk -y 

6. Install NetCat. 

sudo apt-get install netcat 
 

https://www.wireshark.org/
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B. CONNECTING TO QUECTEL MODULE 

1. Install xdotool 

sudo apt update 

sudo apt install xdotool -y 

2. Create a script to collect traffic. This script will launch five separate terminal 

tabs—each performing a different function.  

#!/bin/bash 

 

# Terminal 1—Start monitoring traffic on port 4729. 

gnome-terminal --tab 

xdotool key Control+Page_Down 

cd  

xdotool key KP_Enter 

xdotool type nc\ -u\ -l\ -p\ 4729  

xdotool key KP_Enter 

xdotool sleep 10 

  

# Terminal 2 - Launch Wireshark from CLI and monitor port 4729. 

gnome-terminal --tab 

xdotool key Control+Page_Down 

xdotool type cd\ ~/Documents/capstone 

xdotool key KP_Enter 

xdotool type ./1terminal.sh 

xdotool key KP_Enter 
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xdotool type sudo\ wireshark\ -i\ lo\ -f”‘“port\ 4729”‘“\ -k 

xdotool key KP_Enter 

xdotool type [password] 

xdotool key KP_Enter 

xdotool sleep 15 

 

# Terminal 3 - Monitor DiagParser traffic 

gnome-terminal --tab 

xdotool key Control+Page_Down 

xdotool type sudo\ minicom\ -s 

xdotool key KP_Enter 

xdotool type [password] 

xdotool key KP_Enter 

xdotool sleep 3 

 

# Terminal 4—Use DiagParser to decode Qualcomm DIAG format from the Quectel 
Module. 

gnome-terminal --tab 

xdotool key Control+Page_Down 

xdotool type cd\ ~/diag-parser 

xdotool key KP_Enter 

xdotool type sudo\ ./diag_parser\ -g\ 127.0.0.1\ -i\ /dev/ttyUSB0\ -v 

xdotool key KP_Enter 

xdotool type [password] 

xdotool key KP_Enter 
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xdotool sleep 3 

 

# Terminal 5 - Send commands to the modem. 

gnome-terminal --tab 

xdotool key Control+Page_Down 

xdotool type sudo\ minicom\ -s 

xdotool key KP_Enter 

xdotool type [password] 

xdotool key KP_Enter 

3. The next steps are performed manually on the Linux terminal’s Tabs 3 and 5. 

First, the minicom virtual port will need to be changed to /dev/ttyUSB2 to send ATtention 

(AT) commands from the modem. AT commands are a set of instructions used to control 

the modem.  

3.a. Type “sudo minicom-s” in the terminal and enter the password if prompted. 

3.b. Use the keyboard to select “serial port setup.” 

3.c. Select Serial Device by typing “A.” 

3.d. Change “/dev/tty8” to “/dev/ttyUSB2”. 

3.e. Press “enter” on the keyboard twice.  

3.f. Select “Exit.”  

After completing step 3, AT Commands were used to reconfigure the Quectel 

modem or query the modem for information. Alternatively, a simpler method of sending 

AT commands to the Quectel modem is to use QNavigator.  
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C. AT COMMANDS 

Table 15 list the common AT commands that were used when interacting with the 

Quectel Module using minicom. A comprehensive list of AT Commands can be found at 

[47]. 

Table 15. AT Commands Used  

AT Commands  
Commands Description Output 

ATE1 display user input.  echoes [user input] 

AT+QCCID show ICCID +QCCID: 
8991920123456789000F 

AT+QOPN displays operator names [list operators] 

AT+QNWINFO Query Network Information 
+QNWINFO: “FDD LTE,” 
“311480,” “LTE BAND 5,” 
2561 

AT+CGREG Network Registration Status OK 

AT+GMI request manufacturer information Quectel 

AT+GMM request TA model identification EC20 

AT+GMR request TA revision identification 
software release EC20EQAR02A13E2G 

 

Table 16 is a quick reference of the minicom command. More about minicom can 

be found by performing the manual command (e.g., man minicom). The man page can be 

found online at [48]. 

Table 16. Minicom Quick Command Reference  

Minicom  
Commands Description 

Ctrl+a, c  clears the screen 
Ctrl+a, e local echo on/off 
Ctrl+a, i cursor key mode 
Ctrl+a, j suspend minicom 
Ctrl+a, m initialize modem 
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Minicom  
Commands Description 

Ctrl+a, o configure minicom modem 
Ctrl+a, q quits minicom 
Ctrl+a, s send files 
Ctrl+a, u add carriage return 
Ctrl+a, y paste files 
Ctrl+a, z brings up minicom command summary 
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APPENDIX D. COMMAND LINE CHEAT SHEET 

This appendix lists various Linux and Docker commands we used in the 

methodology and simulation phase of this capstone. First, the commonly used Linux 

command is listed in Section 1, the Docker commands are listed in Section 2.  

A. COMMON LINUX COMMAND LINE USED 

This section covers useful Linux commands for this capstone, as shown in Table 

17. The commands covered in this section are not inclusive of the commands used during 

this project and covers a list of common commands and commands that make debugging 

and troubleshooting easier. More information from each command can be found from its 

respective Linux manual page. To find a manual page for a command enter the command 

followed by “man.” To launch the manual page for the “man” command, enter “man man” 

in the Linux terminal.  

Table 17. Useful Linux Commands Used. Source [49]. 

Commands Description Example Use on Capstone 

apt list filter list available apt packages for a 
specific package. apt list | grep [package_name] 

cat 
concatenate files to output (default is 
screen). The command is used to 
read the data in a file. 

cat [filename] 

brctl managed bridged virtual networks. 
delbr option deletes the network brctl delbr [virtual_network_name] 

chmod modify file permission. -x switch the 
file to execution permission.  chmod +x [filename] 

df 

displays information of device name, 
total blocks, total disk space, used 
disk space, available disk space, and 
mount point one a file system. -h 
displays the information in a human-
readable format [50].  

df -h 
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Commands Description Example Use on Capstone 

du 

displays information on disk usage. -
-max-depth-N prints the entire 
directory if it is N or fewer levels 
below the command line argument. -
h displays the information in a 
human-readable format. du redirects 
the output of the command to more. 
more print the information one 
screen at a time.  

--max-depth=[N] -h | more 

gedit Launch the gedit text editor. gedit [filename] & 

grep 

command-line utility for searching 
for plain text. - is recursive. -n is the 
line number. -w is to match the 
whole word. -e is the pattern used to 
search.  

grep -rnw “[path]” -e “[string]” 

ifconfig View and configure the kernel-
resident network interfaces. ifconfig 

ip link 

configure the virtual networks on the 
host machine. The set option 
establishes the virtual bridge up or 
down. The del option deletes the 
virtual network 

sudo ip link set [virtual_link_name] [up or 
down] 
sudo ip link del [virtual_link_name] 

ip route list all of the route entries in the 
kernel. sudo ip route 

ip route add add a route to the destination ipv4 
network via the local gateway. 

sudo ip route add [ip4_address] via gateway 
[GW_ipv4_address] 

ip route del delete a route for destination network 
via interface device. 

sudo ip route del [ipv4_address] via 
[local_ipv4_interface_address] dev enp0s25 

ip route 
flush 

removes all of the current routes in 
the routing table.  sudo ip route flush table main 

ls 
display a list of files and folders in a 
given directory. The -1 option list 
each file and folder on a new line.  

ls [option] 

newgrp 

update group ID during a login 
session. prevent having to log off 
after updating the group with the 
current user logged in.  

newgrp [group name] 

ping 
used for troubleshooting network 
connections. -c [N] sends N number 
of ping requests to the destination.  

ping -c [N] [ipv4_address] 

ps -a displays a list of processes running 
on the system. -A displays all ps -A 
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Commands Description Example Use on Capstone 
processes currently running on the 
system.  

pwd print a copy of the working directory pwd 
reboot restarts the host machine.  reboot 
route display and alter the routing table. route 

sudo 

used to run a Linux command with 
elevated privileges. sudo [command] 

add group to the sudoers list group add [group name] 
add a user to a group. -a appends a 
user to a group. -G  
modifies additional user groups. 

usermod -aG [groupname] [username] 

service starts, stop, or restart a particular 
service. 

sudo service [service_name] start 
sudo service [service_name] stop 
sudo service [service_name] restart 

sleep suspend the program execution for a 
specified amount of time sleep [time]  

top 
displays a dynamic list of a real-time 
view of processes currently running 
on the system.  

top 

 

B. USEFUL DOCKER COMMAND LINE USED 

This section covers useful docker commands for this capstone, as detailed in Table 

18. The commands covered in this section are not inclusive of the commands used during 

this project and cover a list of common commands and commands that make debugging 

and troubleshooting easier.  

 

Table 18. Useful Docker Commands Used. Source [51]. 

Commands Description Example 

docker 
container 

inspect display detailed information 
about one or more containers docker container inspect [options] 

prune remove all unused containers docker container prune --force 
restart restart one or more container docker container restart [options] 
rm remove one or more containers docker container rm [options] 
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Commands Description Example 

stats 
display a live stream of 
container(s) resource usage 
statistics 

docker container stats [container 
name] 

start start one or more stopped 
containers docker container start [options] 

stop stop one or more running 
containers docker container stop [options] 

docker 
image 

ls list images docker image ls 
prune remove all unused images docker image prune --force 
rm remove one or more images docker image rm [options] --force 

docker  

exec enables command line interface 
within the docker container 

docker exec -it [contaiter name] 
/bin/bash 

  view status of cassandra 
database 

docker exec -it prod-cassandra /bin/
bash -c “nodetool status” 

help detailed information about a 
specific docker command docker [option] --help 

docker 
network 

  connect a container to a network docker network connect [options] 
network container 

disconnect disconnect a container from a 
network 

docker network disconnect [options] 
network container 

inspect display detailed information 
about one or more networks docker network inspect [options] 

ls list networks docker network ls [options] 
docker 

network 
prune remove all unused networks docker network prune --force 
rm remove one or more networks docker network rm [options] --force 

docker  rm remove one or more containers docker rm [options] --force 
docker  ps list containers docker ps [options] 

docker version show docker version 
information docker version 

 
Docker - Uninstall 

Commands Description 
dpkg -l | grep -i docker identify which package you have installed 

sudo apt-get purge -y docker-engine docker 
docker.io docker-ce docker-ce-cli 

sudo apt-get autoremove -y --purge docker-engine 
docker docker.io docker-ce   

remove images, containers, volumes, or user-
created configuration files 

sudo rm -rf /var/lib/docker /etc/docker 
sudo rm /etc/apparmor.d/docker 

sudo groupdel docker 
sudo rm -rf /var/run/docker.sock 

remove docker from the system completely 
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APPENDIX E. LATENCY RESULTS 

This appendix shows the results from the ping tests performed from the OnePlus 

6T and the Google Pixel 4a 5G while connected to the OpenAirInterface 4G LTE network.  

Table 19. Overall Ping Results between OnePlus 6T and Google Pixel 4a 5G 

     
OnePlus 6T 

Success 
 Loss 
rate  Avg RTT 

 Best 
RTT 

 Worst 
RTT 

0.987 0.013 38.72 27.0 76.87 
     

Google Pixel 

Success 
 Loss 
rate  Avg RTT 

 Best 
RTT 

 Worst 
RTT 

0.989 0.011 42.114 29.6 81.3 
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Table 20. Ping Results 

OnePlus 6T  Ping Test to Google Pixel 
Ping Test to Google DNS Server (8.8.8.8)  Google DNS Server (8.8.8.8) 

Success 
Loss 
rate 

 Avg 
RTT 

 Best 
RTT 

 Worst 
RTT 

 std. 
Dev  Success 

 Loss 
rate 

 Avg 
RTT 

 Best 
RTT 

Worst 
RTT 

 std. 
Dev 

95% 5% 38.94 29.6 52.9 4.85  97% 3% 40.82 30.9 51.8 3.89 
99% 1% 37.32 28.2 65 7.2  99% 1% 41.28 32 67.4 5.56 
99% 1% 37.58 28.7 57.5 5.98  100% 0% 42.22 32.4 73.9 4.94 

100% 0% 39.91 27.4 79.9 9.38  96% 4% 42.26 32.2 70.2 5.84 
97% 3% 39 29 58.8 5.15  99% 1% 42.19 29.8 78.9 7.91 
98% 2% 37.8 28.2 58.3 5.62  100% 0% 41.97 29.8 74.1 6.61 

99% 1% 39.46 29.1 59.8 6.26  100% 0% 43.85 29.6 78.7 8.51 
100% 0% 38.8 27.9 68.8 7.06  100% 0% 43.71 30.6 78.6 8.38 
98% 2% 38.31 29.6 66.4 6.45  100% 0% 42.13 31.2 67.4 5.84 

95% 5% 38.48 28.9 59.7 5.11  97% 3% 41.89 30.9 68 5.36 
Ping Test to Cloudfare (1.1.1.1)  Ping Test to Cloudfare (1.1.1.1) 

Success 

 
Loss 
rate 

 Avg 
RTT 

 Best 
RTT 

 Worst 
RTT 

 std. 
Dev  Success 

 Loss 
rate 

 Avg 
RTT 

 Best 
RTT 

 
Worst 
RTT 

 std. 
Dev 

98% 2% 40.47 29 69.7 6.97  98% 2% 42.85 31.9 59.4 4.94 

97% 3% 40.64 29.1 69.3 7.64  100% 0% 43.02 32.8 65.5 5.57 
99% 1% 39.28 29.1 58.3 5.55  100% 0% 42.71 32.5 71.9 6.1 

100% 0% 40.64 30.5 69.2 7.75  100% 0% 42.59 32 58.1 4.84 

99% 1% 41.52 29.5 65.4 7.57  100% 0% 41.34 30.9 51.3 4.05 
97% 3% 38.95 30.2 52.3 5.2  99% 1% 42.09 31.1 57 4.6 
99% 1% 40.05 29.6 68.1 7.65  97% 3% 41.98 31.8 50.5 4.06 

100% 0% 38.87 29.1 60.6 6.47  100% 0% 41.35 32 49 3.84 
100% 0% 37.72 28.7 56.1 5.8  100% 0% 43.18 33.2 76.1 5.52 
99% 1% 42.22 29.4 68.1 9.23  100% 0% 42.26 31.4 69.8 5.66 

Ping Test to ATT Primary DNS Server (68.94.156.1)  Ping Test to ATT Primary DNS Server (68.94.156.1) 

Success 
Loss 
rate 

Avg 
RTT 

Best 
RTT 

 Worst 
RTT 

 std. 
Dev  Success 

Loss 
rate 

 Avg 
RTT 

 Best 
RTT 

 
Worst 
RTT 

 std. 
Dev 

95% 2% 37.9 27 72.3 6.31  97% 3% 41.88 31.1 55.1 4.54 
100% 0% 36.92 27.3 54.2 4.52  97% 3% 41.74 29.8 59.2 4.68 
100% 0% 37.63 29 65.2 6.79  100% 0% 41.65 30 74.1 7.29 

100% 0% 36.39 28.5 56.6 4.64  98% 2% 41.64 30.5 75.3 7.41 
100% 0% 37.27 28.1 64.7 5.24  99% 1% 42.4 31.4 70.3 6.89 
98% 2% 39.01 28.1 67.9 28.1  100% 0% 39.66 29.6 46.8 3.56 

97% 3% 37.12 27.9 76.2 7.03  97% 3% 41.45 31.9 54.2 4.42 
100% 0% 37.03 27.8 57.8 5.75  97% 3% 42.12 32.3 68 5.81 
100% 0% 38.22 30.4 53.9 4.22  100% 0% 42.69 30.8 81.3 8.82 

100% 0% 38.17 28 73.3 7.99  100% 0% 42.5 30.5 72.8 7.25 
99% 1% 37.566 28.21 64.21 8.059  99% 2% 41.773 30.79 65.71 6.067 
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APPENDIX F. IPERF RESULTS 

A. IPERF TEST FROM UE TO EPC 

------------------------------------------------------------ 
Server listening on TCP port 5001 
Binding to local address 192.168.1.7 
TCP window size:  128 KByte (default) 
------------------------------------------------------------ 

Table 21. Full iPerf Results from UE to EPC 

Server UE 
[ ID] Interval Transfer Bandwidth Bandwidth 
[  4] 0.0- 9.9 sec 1.00 MBytes 850 Kbits/sec 962 Kbits/sec 
[  4] 0.0-46.2 sec 1.00 MBytes 182 Kbits/sec 24.9 Mbits/sec 
[  4] 0.0- 1.1 sec 1.00 MBytes 7.43 Mbits/sec 22.6 Mbits/sec 
[  4] 0.0-164.4 sec 1.00 MBytes 7.16 Kbits/sec 25.5 Mbits/sec 
[  4] 0.0- 1.1 sec 1.00 MBytes 7.47 Mbits/sec 29.8 Mbits/sec 

 

B. IPERF TEST FROM UE TO ENB 

------------------------------------------------------------ 
Server listening on TCP port 5001 
Binding to local address 192.168.1.8 
TCP window size:  128 KByte (default) 
------------------------------------------------------------ 

Table 22. Full iPerf Results from UE to eNB 

Server UE 
[ ID] Interval Transfer Bandwidth Bandwidth 
[  4] 0.0- 1.1 sec   1.00 MBytes   7.48 Mbits/sec 30.8 Mbits/sec 
[  4] 0.0- 2.5 sec   1.00 MBytes   3.30 Mbits/sec 5.15 Mbits/sec 
[  4] 0.0-18.0 sec   1.00 MBytes   465 Kbits/sec 5.7 Mbits/sec 
[  4] 0.0- 1.3 sec 1.00 MBytes   6.29 Mbits/sec 25.3 Mbits/sec 
[  4] 0.0-85.6 sec  1.00 MBytes   98.0 Kbits/sec 32.9 Mbits/sec 
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C. IPERF TEST FROM UE TO GNB 

The iPerf tests from the Google Pixel 4a 5G to the gNB cause the eNB to experience 

stack smashing. Even when the iPerf tests were completed, the iPerf result on the server 

(gNB) did not display the server’s bandwidth.  

 
 
------------------------------------------------------------ 
Server listening on TCP port 5001 
TCP window size:  128 KByte (default) 
------------------------------------------------------------ 

Table 23. iPerf Results from UE to gNB 

Server UE 
[ ID] Interval Transfer Bandwidth Bandwidth 
[ 3] 0.0 - 96.8 sec  1 Mbytes - 86 Kbits/sec 
[ 3]  0.0 - 63.3 sec   1 Mbytes - 1.33 Kbits/sec 
[ 3] 0.0 - 66.7 sec 1 Mbytes - 126 Kbits/sec 
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APPENDIX G. 4G AND 5G FREQUENCY OPERATING BAND 
CHARTS 

Table 24. 4G LTE Operating Bands. Source [52]. 

E-UTRA 
Operating 

Band 

Uplink (UL) operating band 
BS receive / UE transmit 

Downlink (DL) operating 
band BS transmit / UE 

receive 

Duplex 
Mode 

1 1920 MHz—1980 MHz  2110 MHz—2170 MHz  FDD 
2 1850 MHz—1910 MHz  1930 MHz—1990 MHz FDD 
3 1710 MHz—1785 MHz  1805 MHz—1880 MHz FDD 
4 1710 MHz—1755 MHz  2110 MHz—2155 MHz FDD 
5 824 MHz—849 MHz  869 MHz—894MHz FDD 
61 830 MHz—840 MHz  875 MHz—885 MHz FDD 
7 2500 MHz—2570 MHz  2620 MHz—2690 MHz FDD 
8 880 MHz—915 MHz  925 MHz—960 MHz FDD 
9 1749.9 MHz—1784.9 MHz  1844.9 MHz—1879.9 MHz FDD 
10 1710 MHz—1770 MHz  2110 MHz—2170 MHz FDD 
11 1427.9 MHz—1447.9 MHz  1475.9 MHz—1495.9 MHz FDD 
12 699 MHz—716 MHz  729 MHz—746 MHz FDD 
13 777 MHz—787 MHz  746 MHz—756 MHz FDD 
14 788 MHz—798 MHz  758 MHz—768 MHz FDD 
15 Reserved Reserved FDD 
16 Reserved  Reserved FDD 
17 704 MHz—716 MHz  734 MHz—746 MHz FDD 
18 815 MHz—830 MHz  860 MHz—875 MHz FDD 
19 830 MHz—845 MHz  875 MHz—890 MHz FDD 
20 832 MHz—862 MHz  791 MHz—821 MHz FDD 
21 1447.9 MHz—1462.9 MHz  1495.9 MHz—1510.9 MHz FDD 
22 3410 MHz—3490 MHz  3510 MHz—3590 MHz FDD 
231 2000 MHz—2020 MHz  2180 MHz—2200 MHz FDD 
24 1626.5 MHz—1660.5 MHz  1525 MHz—1559 MHz FDD 
25 1850 MHz—1915 MHz  1930 MHz—1995 MHz FDD 
26 814 MHz—849 MHz  859 MHz—894 MHz FDD 
27 807 MHz—824 MHz  852 MHz—869 MHz FDD 
28 703 MHz—748 MHz  758 MHz—803 MHz FDD 
29 N/A  717 MHz—728 MHz FDD2 

30 2305 MHz—2315 MHz  2350 MHz—2360 MHz FDD 
31 452.5 MHz—457.5 MHz  462.5 MHz—467.5 MHz FDD 
32 N/A  1452 MHz—1496 MHz FDD2 

33 1900 MHz—1920 MHz 1900 MHz—1920 MHz TDD 
34 2010 MHz—2025 MHz 2010 MHz—2025 MH TDD 
35 1850 MHz—1910 MHz 1850 MHz—1910 MHz TDD 
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36 1930 MHz—1990 MHz  1930 MHz—1990 MHz TDD 
37 1910 MHz—1930 MHz  1910 MHz—1930 MHz TDD 
38 2570 MHz—2620 MHz  2570 MHz—2620 MHz TDD 
39 1880 MHz—1920 MHz  1880 MHz—1920 MHz TDD 
40 2300 MHz—2400 MHz  2300 MHz—2400 MHz TDD 
41 2496 MHz 2690 MHz  2496 MHz 2690 MHz TDD 
42 3400 MHz—3600 MHz  3400 MHz—3600 MHz TDD 
43 3600 MHz—3800 MHz  3600 MHz—3800 MHz TDD 
44 703 MHz—803 MHz  703 MHz—803 MHz TDD 
45 1447 MHz—1467 MHz  1447 MHz—1467 MHz TDD 
46 5150 MHz—5925 MHz  5150 MHz—5925 MHz TDD8,9 

47 5855 MHz—5925 MHz  5855 MHz—5925 MHz TDD 
48 3550 MHz—3700 MHz  3550 MHz—3700 MHz TDD 
…    
64 Reserved 
65 1920 MHz—2010 MHz  2110 MHz—2200 MHz FDD 
66 1710 MHz—1780 MHz  2110 MHz—2200 MHz FDD 
67 N/A  738 MHz—758 MHz FDD2 

68 698 MHz—728 MHz 753 MHz—783 MHz FDD 
69 N/A  2570 MHz—2620 MHz FDD 
70 1695 MHz—1710 MHz  1995 MHz—2020 MHz FDD2 

NOTE 1: Band 6, 23 is not applicable 

NOTE 2: 

Restricted to E-UTRA operation when carrier aggregation is configured. 
The downlink operating band is paired with the uplink operating band 
(external) of the carrier aggregation configuration that is supporting the 
configured Pcell. 

NOTE 3: 
A UE that complies with the E-UTRA Band 65 minimum requirements in 
this specification shall also comply with the E-UTRA Band 1 minimum 
requirements. 

NOTE 4: The range 2180–2200 MHz of the DL operating band is restricted to E-
UTRA operation when carrier aggregation is configured. 

NOTE 5: A UE that supports E-UTRA Band 66 shall receive in the entire DL 
operating band 

NOTE 6: 
A UE that supports E-UTRA Band 66 and CA operation in any CA band 
shall also comply with the minimum requirements specified for the DL 
CA configurations CA_66B, CA_66C and CA_66A-66A 

NOTE 7: 
A UE that complies with the E-UTRA Band 66 minimum requirements in 
this specification shall also comply with the E-UTRA Band 4 minimum 
requirements. 

NOTE 8: This band is an unlicensed band restricted to licensed-assisted operation 
using Frame Structure Type 3 

NOTE 9: In this version of the specification, restricted to E-UTRA DL operation 
when carrier aggregation is configured. 
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NOTE 10: 

The range 2010–2020 MHz of the DL operating band is restricted to E-
UTRA operation when carrier aggregation is configured and TX-RX 
separation is 300 MHz The range 2005–2020 MHz of the DL operating 
band is restricted to E-UTRA operation when carrier aggregation is 
configured and TX-RX separation is 295 MHz 

 

Table 25. 5G NR FR1 Operating Bands. Source [53]. 

NR 
Operating 

Band 

Uplink (UL) operating band 
BS receive / UE transmit 

Downlink (DL) operating 
band BS transmit / UE 

receive 

Duplex 
Mode 

n1 1920 MHz—1980 MHz  2110 MHz—2170 MHz FDD 
n2 1850 MHz—1910 MHz  1930 MHz—1990 MHz FDD 
n3 1710 MHz—1785 MHz  1805 MHz—1880 MHz FDD 
n5 824 MHz—849 MHz  869 MHz—894 MHz FDD 
n7 2500 MHz—2570 MHz  2620 MHz—2690 MHz FDD 
n8 880 MHz—915 MHz  925 MHz—960 MHz FDD 
n12 699 MHz—716 MHz  729 MHz—746 MHz FDD 
n14 788 MHz—798 MHz  758 MHz—768 MHz FDD 
n18 815 MHz—830 MHz  860 MHz—875 MHz FDD 
n20 832 MHz—862 MHz  791 MHz—821 MHz FDD 
n25 1850 MHz—1915 MHz  1930 MHz—1995 MHz FDD 
n26 814 MHz—849 MHz  859 MHz—894 MHz FDD 
n28 703 MHz—748 MHz  758 MHz—803 MHz FDD 
n29 N/A  717 MHz—728 MHz SDL 
n303 2305 MHz—2315 MHz  2350 MHz—2360 MHz FDD 
n34 2010 MHz—2025 MHz  2010 MHz—2025 MHz TDD 

n3810 2570 MHz—2620 MHz  2570 MHz—2620 MHz TDD 
n39 1880 MHz—1920 MHz  1880 MHz—1920 MHz TDD 
n40 2300 MHz—2400 MHz  2300 MHz—2400 MHz TDD 
n41 2496 MHz—2690 MHz  2496 MHz—2690 MHz TDD 
n46 5150 MHz—5925 MHz  5150 MHz—5925 MHz TDD13 

n4711 5855 MHz—5925 MHz  5855 MHz—5925 MHz TDD 
n48 3550 MHz—3700 MHz  3550 MHz—3700 MHz TDD 
n50 1432 MHz—1517 MHz  1432 MHz—1517 MHz TDD1 

n51 1427 MHz—1432 MHz  1427 MHz—1432 MHz TDD 
n53 2483.5 MHz—2495 MHz  2483.5 MHz—2495 MHz TDD 
n65 1920 MHz—2010 MHz  2110 MHz—2200 MHz FDD4 

n66 1710 MHz—1780 MHz  2110 MHz—2200 MHz FDD 
n70 1695 MHz—1710 MHz  1995 MHz—2020 MHz FDD 
n71 663 MHz—698 MHz  617 MHz—652 MHz FDD 
n74 1427 MHz—1470 MHz  1475 MHz—1518 MHz FDD 
n75 N/A 1432 MHz—1517 MHz SDL 
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n76 N/A 1427 MHz—1432 MHz SDL 
n7712 3300 MHz—4200 MHz  3300 MHz—4200 MHz TDD 
n78 3300 MHz—3800 MHz  3300 MHz—3800 MHz TDD 
n79 4400 MHz—5000 MHz  4400 MHz—5000 MHz TDD 
n80 1710 MHz—1785 MHz  N/A SUL 
n81 880 MHz—915 MHz N/A SUL 
n82 832 MHz—862 MHz N/A SUL 
n83 703 MHz—748 MHz N/A SUL 
n84 1920 MHz—1980 MHz N/A SUL 
n86 1710 MHz—1780 MHz N/A SUL 
n89 824 MHz—849 MHz N/A SUL 
n90 2496 MHz—2690 MHz 2496 MHz—2690 MHz TDD5 

n91 832 MHz—862 MHz 1427 MHz—1432 MHz FDD9 

n92 832 MHz—862 MHz 1432 MHz—1517 MHz FDD9 

n93 880 MHz—915 MHz 1427 MHz—1432 MHz FDD9 

n94 880 MHz—915 MHz 1432 MHz—1517 MHz FDD9 

n958 2010 MHz—2025 MHz  N/A SUL 
n9614 5925 MHz—7125 MHz 5925 MHz—7125 MHz TDD13 

NOTE 1: 
UE that complies with the NR Band n50 minimum requirements in this 
specification shall also comply with the NR Band n51 minimum 
requirements 

NOTE 2: 
UE that complies with the NR Band n75 minimum requirements in this 
specification shall also comply with the NR Band n76 minimum 
requirements. 

NOTE 3: Uplink transmission is not allowed at this band for UE with external 
vehicle mounted antennas. 

NOTE 4: 
A UE that complies with the NR Band n65 minimum requirements in this 
specification shall also comply with the NR Band n1 minimum 
requirements. 

NOTE 5: 

Unless otherwise stated, the applicability of requirements for Band n90 is 
in accordance with that for Band n41; a UE supporting Band n90 shall 
meet the requirements for Band n41. A UE supporting Band n90 shall 
also support band n41. 

NOTE 6: A UE that supports NR Band n66 shall receive in the entire DL operating 
band. 

NOTE 7: 

A UE that supports NR Band n66 and CA operation in any CA band shall 
also comply with the minimum requirements specified for the DL CA 
configurations CA_n66B and CA_n66(2A) in the current version of the 
specification. 

NOTE 8: This band is applicable in China only. 
  

 

NOTE 9: Variable duplex operation does not enable dynamic variable duplex 
configuration by the network, and is used such that DL and UL frequency 
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ranges are supported independently in any valid frequency range for the 
band. 

NOTE 10: When this band is used for V2X SL service, the band is exclusively used 
for NR V2X in particular regions. 

NOTE 11: This band is unlicensed band used for V2X service. There is no expected 
network deployment in this band. 

NOTE 12: In the USA this band is restricted to 3450—3550 MHz and 3700—3980 
MHz 

NOTE 13: This band is restricted to operation with shared spectrum channel access 
as defined in 37.213. 

NOTE 14: This band is applicable in the USA only subject to FCC Report and Order 
FCC 20- 51 
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APPENDIX H. 3GPP CORE NETWORKS RADIO-ACCESS 
TECHNOLOGY 

This appendix outlines the different radio-access deployment technologies. The 

different 3GPP compliant deployment models are depicted in Figure 25.  

 
“c” indicates the control plane (dotted line) and “u” (solid line) indicate the user plane. 

Figure 25. Core Networks Deployment Models. Source [54]. 

• Option 1 is the LTE network consisting of the EPC as the core and eNB as 

the base station. “Network Configuration 1” and “Network Configuration 

2” are Option 1.  

• Option 2 consists of the 5G Core Network (5GCN) as the core and the gNB 

as the base station.  

• Option 3 consists of the EPC as the core and the eNB and gNB as the base 

stations. “Network Configuration 3” is set up as Option 3. In Option 3, the 

eNB handles the control plane and user plane functions, and the gNB 

handles the user plane functions. 

• Option 4 consists of the 5GCN as the core and the eNB and gNB as the base 

station. In Option 4, the eNB handles only user plane functions, and the 

gNB handles user plane and control plane functions. 

• Option 5 consists of the 5GCN as the core and an eNB as the base station. 
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• Option 7 consists of the 5GCN as the core and the eNB and gNB as the base 

stations. In Option 7, the eNB handles the control and user plane functions, 

and the gNB handles only user plane functions.  
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SUPPLEMENTAL FILE STRUCTURE 

This appendix provides lists the supplemental files provided with this research.  

A. HSS FILE STRUCTURE 

“acl.conf” Configuration file for the peer whitelist extension. 

“cacert.pem” File containing the HSS CA certificate. 

“hss.cert.pem” File containing the HSS public key. 

“hss_rel14.conf” MySQL cassandra_Server_IP address configuration file.  

“hss_rel14.json” Data structure and objects for HSS configurations.  

“hss_rel14_fd.conf” Data structure and objects for freeDiameter configurations.  

“oss.json” Data structure and objects for logging. 

B. MME FILE STRUCTURE 

“mme.cacert.pem” File containing the MME CA certificate. 

“mme.cakey.pem” File containing the MME private key. 

“mme.cert.pem” File containing the MME public key. 

“mme.conf” MME configuration file.  

“mme.csr.pem” File containing the MME certificate signing request.  

“mme_fd.conf” freeDiameter configuration for the MME. 

“mme-cfg.sh” MME configuration file.  

C. SPGW-C FILE STRUCTURE 

“spgwc-cfg.sh” File containing the current SPGW-C configurations. 
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D. SPGW-U FILE STRUCTURE 

“spgwu-cfg.sh” File containing the current SPGW-U configurations. 
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