
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2021-12

LEVERAGING OPENAIRINTERFACE AND
SOFTWARE DEFINED RADIO TO ESTABLISH A
LOW-COST 5G NON-STANDALONE ARCHITECTURE

Jasmin, Jean P.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/68767

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

APPLIED CYBER OPERATIONS
CAPSTONE REPORT

LEVERAGING OPENAIRINTERFACE AND SOFTWARE
DEFINED RADIO TO ESTABLISH A LOW-COST 5G

NON-STANDALONE ARCHITECTURE

by

Jean P. Jasmin

December 2021

Advisor: Chad A. Bollmann
Second Reader: Darren J. Rogers

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2021

3. REPORT TYPE AND DATES COVERED
Applied Cyber Operations Capstone Report

4. TITLE AND SUBTITLE
LEVERAGING OPENAIRINTERFACE AND SOFTWARE DEFINED RADIO
TO ESTABLISH A LOW-COST 5G NON-STANDALONE ARCHITECTURE

5. FUNDING NUMBERS

6. AUTHOR(S) Jean P. Jasmin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Commercial cellular service providers are at the forefront of the paradigm shift from 4G Long Term

Evolution (LTE) to 5G New Radio (NR). The increase in throughput, provisioning of ultra-low latency, and
greater reliability of 5G enable potential uses that no other wireless communication could support. The
Department of Defense (DOD) is interested in 5G NR technologies, but the implementation of the
architecture can be lengthy and costly. This capstone configured a 4G LTE network and a 5G
non-standalone network using OpenAirInterface and software defined radios (SDR). Universal
Subscriber Identity Module (USIM) cards were configured and introduced to user equipment and
attached to the 4G LTE network. A gNodeB (gNB) was added to the 4G LTE network to establish the
5G non-standalone (NSA) network architecture (3GPP Option 3). The testbed developed in this research
was able to connect the core to a commercial internet service provider and browse the internet using
third-party applications. Our analysis educates future researchers on the challenges and lessons
learned when implementing the OpenAirInterface 4G LTE and 5G NSA networks. This work also
provides a better understanding of 4G LTE and 5G NSA OpenAirInterface software usability, flexibility,
and scalability for potential use cases for the DOD.

14. SUBJECT TERMS
5G, OpenAirInterface, OAI, 4G LTE, Long-Term Evolution, EPC, Evolved Packet Core,
eNB, eNodeB, Evolved Node B, gNB, gNodeB, SDR, software defined radio, NSA, non-
standalone

15. NUMBER OF
PAGES

133
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

LEVERAGING OPENAIRINTERFACE AND SOFTWARE DEFINED RADIO
TO ESTABLISH A LOW-COST 5G NON-STANDALONE ARCHITECTURE

CPO Jean P. Jasmin (USN)

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED CYBER OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
December 2021

Reviewed by:

Chad A. Bollmann Darren J. Rogers
Advisor Second Reader

Accepted by:

Alex Bordetsky
Chair, Department of Information Sciences

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Commercial cellular service providers are at the forefront of the paradigm shift

from 4G Long Term Evolution (LTE) to 5G New Radio (NR). The increase in

throughput, provisioning of ultra-low latency, and greater reliability of 5G enable

potential uses that no other wireless communication could support. The Department of

Defense (DOD) is interested in 5G NR technologies, but the implementation of the

architecture can be lengthy and costly. This capstone configured a 4G LTE network and a

5G non-standalone network using OpenAirInterface and software defined radios (SDRs).

Universal Subscriber Identity Module (USIM) cards were configured and introduced to

user equipment and attached to the 4G LTE network. A gNodeB (gNB) was added to the

4G LTE network to establish the 5G non-standalone (NSA) network architecture (3GPP

Option 3). The testbed developed in this research was able to connect the core to a

commercial internet service provider and browse the internet using third-party

applications. Our analysis educates future researchers on the challenges and lessons

learned when implementing the OpenAirInterface 4G LTE and 5G NSA networks. This

work also provides a better understanding of 4G LTE and 5G NSA OpenAirInterface

software usability, flexibility, and scalability for potential use cases for the DOD.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. SCOPE ..2
B. RESEARCH OBJECTIVE ...3
C. ORGANIZATION OF CAPSTONE ..4

II. BACKGROUND AND LITERATURE REVIEW ...5
A. BACKGROUND ..5

1. History of Advances in Cellular Technologies5
2. Air Interface Stack ...7
3. Architecture and Equipment ..11

B. LITERATURE REVIEW ...14
1. OpenAirInterface—4G LTE ...15
2. OpenAirInterface—5G NSA ...15
3. Comparison to Prior Work ...17
4. OpenAirInterface Competitors ...17

III. METHODOLOGY ..19
A. USRP ...19
B. ENB/GNB..20
C. EPC..20
D. PROVISIONING UNIVERSAL SUBSCRIBER IDENTITY

MODULE..21
E. SIMULATION ...24

1. Network Configuration Setup ...24
2. Deploying the eNB / gNB ...25
3. Connecting the User Equipment...26

IV. RESULTS ...31
A. NETWORK CONFIGURATIONS ..31

1. Network Configuration 1: EPC, eNB, and COTS UE32
2. Network Configuration 2: EPC, eNB1, eNB2, and COTS

UE ..34
3. Network Configuration 3: EPC, eNB, gNB, and COTS

UE ..36
B. ANALYSIS ...38

1. OpenAirInterface Platform ...38
2. Evolved Packet Core ..40

viii

3. eNB ..42
4. gNB ..42
5. User Equipment ...43
6. Network Performance ...44
7. Network Mobility ...46

V. CONCLUSIONS AND FUTURE WORK ...49
A. CONCLUSIONS ..49
B. FUTURE WORK ...50

APPENDIX A. OPENAIRINTERFACE SOFTWARE INSTALLATION
GUIDE ..53
A. PREREQUISITE AND USRP SETUP ..53

1. Low-Latency Kernel ..53
2. VOLK Libraries ...53
3. GNU Radio ...54
4. USRP UHD ...54
5. GNU Radio ...57

B. ENB/GNB..58
1. eNB Installation ..58
2. eNB Configuration ...59
3. gNB Installation ...62
4. gNB Configuration ...63

C. EPC..65
1. Low-Latency Kernel ..65
2. freeDiameter ...66
3. Docker ...66
4. openair-epc-fed ...68

D. UPDATED EPC INSTALLATION..72
1. openair-epc-fed ...72

APPENDIX B. OPENAIRINTERFACE SOFTWARE SIMULATION75
A. SETTING UP BASH SCRIPTS ..75
B. LAUNCHING THE EPC ..75

1. Start the EPC Containers Script ..75
2. Stop the EPC Containers Script ...76
3. Recover the Logs, Configurations, and Traces77
4. Restart EPC Containers script ...78

C. OPTIONAL FLAGS FOR LAUNCHING THE ENB/GNB78

ix

APPENDIX C. INSTALLING DIAGPARSER AND MINICOM81
A. INSTALLING DIAGPARSER AND MINICOM81
B. CONNECTING TO QUECTEL MODULE ..82
C. AT COMMANDS...85

APPENDIX D. COMMAND LINE CHEAT SHEET ..87
A. COMMON LINUX COMMAND LINE USED87
B. USEFUL DOCKER COMMAND LINE USED89

APPENDIX E. LATENCY RESULTS ..91

APPENDIX F. IPERF RESULTS ..93
A. IPERF TEST FROM UE TO EPC ...93
B. IPERF TEST FROM UE TO ENB ..93
C. IPERF TEST FROM UE TO GNB ..94

APPENDIX G. 4G AND 5G FREQUENCY OPERATING BAND CHARTS95

APPENDIX H. 3GPP CORE NETWORKS RADIO-ACCESS
TECHNOLOGY ..101

SUPPLEMENTAL FILE STRUCTURE ...103
A. HSS FILE STRUCTURE ..103
B. MME FILE STRUCTURE ...103
C. SPGW-C FILE STRUCTURE..103
D. SPGW-U FILE STRUCTURE..104

LIST OF REFERENCES ..105

INITIAL DISTRIBUTION LIST ...111

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. The Architecture of the Air Interface Protocol Stack. Adapted from
[10]. ..8

Figure 2. RAN Protocol Architecture. Source [13]. ..9

Figure 3. Example of LTE Data Flow. Source [13]. ...11

Figure 4. 4G E-UTRA and 5G NR Dual Connectivity (3GPP Option 3a).
Adapted from [15]..12

Figure 5. EPC Network Functions ..13

Figure 6. OYEITIMES SIM Writer ..22

Figure 7. Physical Architecture of the Simulation Lab ...24

Figure 8. Quectel QNavigator V1.6.9—Home Tab ..29

Figure 9. eNB, EPC host, and Docker Containers IP Scheme31

Figure 10. Network Configuration 1 ...32

Figure 11. MME Log...33

Figure 12. MME Log Showing eNB Peer Connection ...33

Figure 13. Snapshot of MME Log Showing eNB Peer Connection and UE
Attached ...34

Figure 14. Dual eNB and EPC Network Scheme ..35

Figure 15. Snapshot of MME Log Showing Connected eNBs35

Figure 16. Snapshot of MME Log Connected eNBs and Attached UEs36

Figure 17. eNB, gNB, and EPC IP NSA Network Scheme ..36

Figure 18. eNB View of gNB Peer Connection with eNB ..37

Figure 19. gNB View of Peer Connection with eNB ..38

Figure 20. MME Log SEGFAULT ..44

Figure 21. enb.band7.tm1.25PRB.usrpb210 - eNB Configuration60

xii

Figure 22. enb.band7.tm1.25PRB.usrpb210 - MME Parameters and
Network_Interfaces ..61

Figure 23. gnb.band78.tm1.fr1.106PRB.usrpb210—gNB Configuration63

Figure 24. gnb.band78.tm1.fr1.106PRB.usrpb210—MME Parameters and
Network_Interfaces ..64

Figure 25. Core Networks Deployment Models. Source [54].101

xiii

LIST OF TABLES

Table 1. Description of USIM Fields Updated in OYEITIMES SIM Writer.
Adapted from [33], [34], and [35]. ..23

Table 2. OnePlus 6T APN Settings ..27

Table 3. Google Pixel 4a 5G APN Settings ...28

Table 4. NPS GitHub ..41

Table 5. iPerf Test Results ...45

Table 6. Ping Test Results (average) ...46

Table 7. Changes Made in the eNB Configuration File [45].60

Table 8. enb.band7.tm1.25PRB.usrpb210—MME Parameters and X2
Settings ...61

Table 9. enb.band7.tm1.25PRB.usrpb210—Network Interfaces Settings62

Table 10. srpb210—gNB configuration ...63

Table 11. gnb.band78.tm1.fr1.106PRB.usrpb210—MME parameters and X2
Settings ...65

Table 12. gnb.band78.tm1.fr1.106PRB.usrpb210—Network Interface Settings65

Table 13. Optional flags to Launch the eNB. Adapted from [46].78

Table 14. Optional flags to Launch the gNB. Adapted from [46].79

Table 15. AT Commands Used ..85

Table 16. Minicom Quick Command Reference ...85

Table 17. Useful Linux Commands Used. Source [49]. ..87

Table 18. Useful Docker Commands Used. Source [51]. ..89

Table 19. Overall Ping Results between OnePlus 6T and Google Pixel 4a 5G91

Table 20. Ping Results ...92

Table 21. Full iPerf Results from UE to EPC ..93

xiv

Table 22. Full iPerf Results from UE to eNB ..93

Table 23. iPerf Results from UE to gNB ...94

Table 24. 4G LTE Operating Bands. Source [52]. ...95

Table 25. 5G NR FR1 Operating Bands. Source [53]. ..97

xv

LIST OF ACRONYMS AND ABBREVIATIONS

1G First Generation
2G Second Generation
3G Third Generation
4G Fourth Generation
5G Fifth Generation
3GPP Third-Generation Partnership Project
AM Acknowledge Mode
AT ATtention
CLI Command Line Interface
CN Core Network
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
CUPS Control and User Plane Separation
DOD Department of Defense
DRB Data Radio Bearer
DSP Digital Signal Processing
eMBB enhanced Mobile Broadband
EMM EPS Mobility Management
eNB Evolved NodeB
EN-DC E-UTRAN and NR Dual Connectivity
EPC Evolved Packet Core
EPS Evolved Packet System
ESM EPS Session Manager
E-UTRA Evolved Universal Terrestrial Radio Access
FCC Federal Communications Commission
FGPA Field-Programmable Gateway Array
gNB gNodeB
GPRS General Packet Radio Services
GPSDO GPS-disciplined, oven-controlled oscillator
GSM Global System for Mobile Communications

xvi

GTP GPRS Tunneling Protocol
GUI Graphical User Interface
HSS Home Subscriber Server
IM Instant Messaging
IoT Internet of Things
IP Internet Protocol
ISP Internet Service Provider
LTE Long Term Evolution
MAC Medium Access Control
MIMO Multiple-Input Multiple-Output
MME Mobility and Management Entity
MMS Multimedia Message Service
mMTC massive Machine Type Communications
mmW Millimeter Wave
NAS Non-Access Stratum
NB-IoT Narrowband Internet-of-Things
NR New Radio
NSA Non-Standalone
OAI OpenAirInterface
OS Operating System
OSA OpenAirInterface Software Alliance
PC Personal Computers
PDCP Packet Data Convergence Protocol
PDN Packet Data Network
PDU Packet Data Unit
PGW Packet Data Network Gateway
PHY Physical
PLMN Public Land Mobile Network
QoS Quality-of-Service
RAN Radio Access Network
RF Radio Frequency
RLC Radio Link Control

xvii

RRC Radio Resource Control
SA Stand-Alone
SDR Software-Defined Radio
SDU Service Data Unit
SGW Serving Gateway
SIM Subscriber Identity Module
SIMD Single Instructions, Multiple Data
SMA SubMiniature version A
SME Subject Matter Expert
SMS Short Message Service
SN Sequence Number
SPGW Service Packet Gateway
SPGW-C Service Packet Gateway Control Plane
SPGW-U Service Packet Gateway User Plane
SRB Signaling Radio Bearer
TCP Transmission Control Protocol
UDM Unified Data Management
UDP User Datagram Protocol
UE User Equipment
UHD USRP Hardware Driver
UM Un-Acknowledge Mode
UPF User Plane Function
URLLC Ultra-reliable, Low Latency Communications
USIM Universal Subscriber Identity Module
USRP Universal Software Radio Peripheral
VOLK Vector-Optimized Library of Kernels
VoLTE Voice over LTE

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

xix

ACKNOWLEDGMENTS

I would like to thank the following people for their assistance, guidance, and insight

throughout this process.

Dr. CDR Chad Bollmann: thank you for your time, support, confidence, and

mentorship during this process.

Mr. Darren Rogers: thank you for the exchange of ideas, advice, and assistance

when I experienced difficulties in this project.

Most importantly, I thank my wife for her patience and devotion to our family while

I focused on this project, and my kids for their daily reminder of why I must remain

focused. I would not have completed this project without your support.

xx

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

In recent years, service providers have focused on delivering 5G technologies

throughout the world. 5G is the fifth generation of wireless mobile technology that

improves upon 4G Long-Term Evolution (LTE) technology. However, 4G is still widely

used today and is likely to co-exist with 5G. The rollout of 5G began when the 3rd

Generation Partnership Project (3GPP)—a consortium that governs specifications

regarding mobile telecommunication networks—introduced a technical report known as

Release 15. 5G technology offers increased bandwidth, extremely low latency, ultra-

reliability, and the ability to support a massive surge of mobile devices known as the

Internet of Things (IoT).

5G can accommodate the increased demand for reliable, fast, and low-latency data

communications. The 5G spectrum operates in the low, mid I and II, and the high-band

spectrums. The low-band covers the frequency range from 70 Megahertz (MHz) to 1

Gigahertz (GHz) and can travel up to 30 kilometers (km). The mid-bands consist of two

different parts, mid-band I and mid-band II. Mid-band I operates between 1 GHz and 2.6

GHz and can travel up to 15 km, while mid-band II operates between 3.5 GHz and 6 GHz

range and travels up to 8 km. The low-band and mid-bands together are referred to as the

sub-6 band. The high-band operates between 24 - 40 GHz and travels less than 1 km [1].

High-band is also referred to as millimeter Wave (mmW).

The 5G frequency bands are implemented in two frequency ranges: “frequency

range 1” (FR1) and “frequency range 2” (FR2). FR1 falls within the mid-band II

spectrum—3.3 – 4.2 GHz and 4.4 – 4/99 GHz. FR2 is within the high-band spectrum—

24.25 – 29.5 GHz, 31.8 – 33 – 4 GHz, and 37 – 40 GHz [2]. The low-band, mid-band, and

high-band spectrum each has advantages and disadvantages. The low-band spectrum offers

higher distance and better propagation through objects. However, the high-band spectrum

can support a higher data rate and lower latency, but it cannot propagate through buildings

and trees. Though mid-band does not travel as far as the low-band, nor does it support the

speed and latency that high-band offers, the mid-band spectrum offers higher speeds than

low-band and greater distance than high-band.

2

Implementing a 5G network typically requires proprietary equipment only offered

by large-scale vendors, which can be very expensive. An alternative approach is using

software to replace hardware infrastructure. OpenAirInterface is an alternative low-cost,

open-source initiative that provides a software implementation of cellular technology

components: an eNodeB (eNB); a gNodeB (gNB); a user equipment (UE); and an evolved

packet core (EPC) using computing platforms (x86) along with software-defined radios

(SDR). This study aims to create a foundation for other research into the potential uses of

5G non-standalone (NSA) architecture at a low cost.

The purpose of this capstone is to facilitate future Department of Defense (DOD)

research into operationally relevant uses of open-source software in 5G network

implementations. The increased speed and ultra-low latency of 5G creates a broad spectrum

of use that enables technology to communicate wirelessly. The DOD recognizes the

benefits and potential uses of 5G networks.

As of October 2020, the DOD became a stakeholder in 5G cellular technologies

when the DOD approved $600 million to install 5G on five U.S. military bases to

revolutionize their current logistical operations [3]. However, other than the approval of

$600 million to implement 5G, there has not been much research published on the cost to

implement a network on DOD installations. The DOD’s step toward modernizing its

current cellular communications infrastructure shows its interest in the potential uses of 5G

that could increase the efficiency of its daily operations. This capstone introduces open-

source software and hardware for a 5G network; another goal is to identify whether

vulnerabilities exist within the OpenAirInterface software, ultimately enhancing the

DOD’s ability to assess operationally relevant use cases.

A. SCOPE

This research seeks to document a potential implementation of the

OpenAirInterface 4G/5G stack and our provisioning of 4G/5G user devices. This research

also assesses the OpenAirInterface 5G NSA network architecture usability, flexibility, and

security for potential DOD use. This capstone also establishes a physical testbed using the

3

4G LTE network and reconfigures the OpenAirInterface to support a 5G non-standalone

network.

The first phase of this capstone establishes a 4G LTE network using the

OpenAirInterface software stack. The architecture implements the 5th Generation Radio

Technology Base Station (gNodeB) and the EPC via the OpenAirInterface software. Once

the 4G LTE stack is established, the next step is to configure OpenAirInterface as a 5G

NSA architecture, introduce a USIM, and test whether it can successfully access the 5G

network. During this research phase, OpenAirInterface software logs are analyzed to

ensure that each component can successfully communicate.

The second phase analyzes the OpenAirInterface to determine if there are known

vulnerabilities present that are native to the traditional 5G architecture. With access to

available cellular radios, this research can further inspect various aspects of the stack. This

capstone can also use commercial cellular phones and other Quectel Modules to inspect

different aspects/vectors for consideration when implementing 5G.

B. RESEARCH OBJECTIVE

This research explores the OpenAirInterface 5G NSA network architecture, which

creates an environment where mobile devices can communicate, providing comprehensive

insights into the different challenges of implementing the network. We establish

reconfigurable 4G LTE and 5G NSA networks, using the OpenAirInterface software, to

gain a better understanding of the virtualization of traditional cellular management

systems. The goal is to determine whether OpenAirInterface can be leveraged to establish

5G cellular networks at a low cost.

This research is a first step to enabling the DOD to utilize open-source and

inexpensive software to deploy a 5G architecture that could support service installations

and integrate with a commercial backhaul. This research also aims to encourage further

DOD research on using cellular technology and facilitate DOD use of the cellular spectrum

for military purposes. Another objective of this study is to identify vulnerabilities within

the OpenAirInterface stack, enabling the DOD to assess operationally relevant use cases.

4

C. ORGANIZATION OF CAPSTONE

Chapter II discusses important concepts of cellular technologies from the first

generation to the fifth generation. Chapter II also reviews existing research literature that

showcases different uses of the OpenAirInterface software. The literature review is

organized to show the different implementations of the OpenAirInterface software stack.

In Chapter III, we outline the design of the OpenAirInterface software stack and the

simulation of the 4G LTE / 5G NSA network. Chapter III also covers the methodology

used to establish the network used for this capstone. Chapter IV presents the results.

Finally, Chapter V is an analysis and an overview of the research results and contains future

work.

5

II. BACKGROUND AND LITERATURE REVIEW

This chapter discusses the history of cellular technology. The background includes

key advances in cellular technology from the first generation through the fifth generation,

the 4G LTE architecture, as pertinent to our work using the 5G NR NSA architecture. This

chapter also summarizes the 4G LTE air interface stacks and critical protocols that enable

traffic between the 4G network components. Finally, this chapter reviews different

literature discussing various implementations of the OpenAirInterface software.

A. BACKGROUND

1. History of Advances in Cellular Technologies

The first-generation (1G) in cellular technology was introduced in the late 1970s

and became popular in the early 1980s. 1G technology enabled the use of wireless mobile

devices. However, 1G technology was only capable of basic voice communications based

on analog technology called Advanced Mobile Phone System (AMPS), which operates in

the 800 – 900 MHz frequency range. 1G traffic is multiplexed using frequency-division

multiple access (FDMA). It could transfer data at a maximum speed of 9.6 kbps within the

150 MHz frequency range, described in [4].

The second-generation (2G) in cellular technology was first introduced in the late

1980s. 2G uses digital modulation instead of analog technology used in 1G. The standard

used to deploy 2G was the Global System for Mobile Communications (GSM). 2G became

known as 2.5G when the General Packet Radio Service (GPRS) was implemented into the

system. GPRS is a packet-switching protocol that allows GSM-based devices to deliver

data in other ways than short messages service (SMS). GPRS enabled 2G and 2.5G to

improve spectrum utilization efficiency, data service, transmission quality, system

capacity, and coverage. In addition to SMS, 2G also enabled fax and multimedia messaging

service (MMS). 2G maximum data transfer rate is 43.2 kbps while 2.5G maximum data

rate peaks at 384 Kbps, as shown in [5].

Approximately ten years later, the third-generation (3G) of mobile networks was

introduced. 3G was the first mobile system capable of up to 2 Mbps of data transfer [5] and

6

supporting quality-of-service (QoS) controls. In addition, 3G improved voice quality and

increased data transmission capacity. The increase in data transmission enabled wireless

internet access, allowing faster web browsing, video streaming, and more security. The

emergence of mobile devices widely accessing the internet manifested from these advances

in smartphones and 3G cellular networks. The universal mobile telecommunication system

(UMTS) radio access network (UTRAN) is the 3G cellular network based on the GSM

standard. 3G cellular technology also included the wideband code division multiple access

(WCDMA), which “increase [d] system capacity and communication quality” [5].

The first fourth generation (4G) network was launched in 2009. 4G enabled more

robust network coverage, with higher data speeds than 3G offered. The evolved-UTRAN

(E-UTRAN) in 4G improved on the 3G UTRAN system. The 4G cellular networks evolved

into 4G LTE, which provides better mobile broadband support than its predecessor, 3G/

3.5G, and 4G. It was the fastest developing system of mobile communications technology.

The theoretical peak data rate for 4G LTE is up to 300 Mbps. Commercial 4G service

providers offered data download speeds from 24 Mbps to 36 Mbps, while the upload speeds

measure between 7 Mbps and 17 Mbps [6]. With the increase of throughput, customers

could access the internet, instant message (IM), stream media, and make live video calls.

A fact sheet by Pew Research Center shows that mobile devices started to become more

popular around the time 4G LTE was introduced [7].

By the time fifth generation (5G) rolled out in 2019, it was advertised with the

capabilities of enhanced mobile broadband (eMBB), ultra-reliable low latency (URLLC),

and massive Machine Type Communications (mMTC). Those features enabled higher

speeds and higher connection density than 4G LTE. 5G offers peak data rates scale up to

10 Gbps, latency as low as one millisecond, and 99.999% reliability [8]. The increase in

5G speeds and lower latency has presented new ways to take advantage of the cellular

spectrum.

5G mobile broadband allows for a high data rate in dense coverage areas, such as

military installations, university campuses, and sports stadiums. In addition, URLLC and

mMTC enable uses of the cellular spectrum that could not be explored in 4G. For example,

URLLC improved latency that could be used in a command and control (C2) situation

7

where timely information is required for critical decision making—such as giving the

command to fire a missile from an unmanned aerial vehicle (UAV), unmanned ground

vehicle (UGV), or unmanned surface vessel (USV). As the name implies, mMTC enables

machine-to-machine communication such that multiple UAVs, UGVs, and USVs could

communicate using the 5G cellular spectrum.

5G is still in the deployment phase within the commercial sector, where it is

becoming more available through different parts of the United States. There are two

approaches to the 5G deployment: non-standalone (NSA) and standalone (SA). NSA uses

the current 4G LTE core to handle the user-plane functions, whereas SA uses all 5G NR

equipment to handle both user-plane and control-plane functionalities of the 5G network.

The testbed we developed as part of this research is the non-standalone deployment model.

2. Air Interface Stack

For 4G and 5G, the air interface protocol stack defines the radio transmission

between the UE and the base station (eNodeB or gNodeB). According to the

Telecommunications Engineer’s Reference, air interface “provides the physical link

between the mobile [device] and the network” [9]. The layers of the air interface protocol

stack are the physical (PHY) layer, medium access control (MAC) layer, radio link control

(RLC) layer, and the packet data convergence protocol (PDCP) layer. Figure 1 illustrates

the architecture of the air interface protocol stack.

8

Figure 1. The Architecture of the Air Interface Protocol Stack.

Adapted from [10].

a. Control Plane

The control plane manages signaling messages that are critical for UE connectivity.

Control transmissions messages in the network originate from the Radio Resource Control

(RRC) layer of the control plane or the Mobility Management Entity (MME). The RRC

layer controls communications between the eNB and the UE. The MME is responsible for

the initial paging procedures and authentication of UEs requesting access to the network.

The RRC also transfers Non-Access Stratum (NAS) messages used to control

communications between the UE and the MME [11]. The UE attachment to the MME is

handled by a NAS protocol, the Evolved Packet System (EPS) mobility management

9

(EMM) protocol. The EPS Session Management (ESM) protocol supports establishing and

managing the user data in the NAS. ESM protocol also defines the IP connectivity between

a UE and a packet data network (PDN) [12]. Figure 2 illustrates the RAN protocol

architecture. The EMM and ESM are handled by the NAS protocol and not depicted in

Figure 2.

Figure 2. RAN Protocol Architecture. Source [13].

b. User Plane

The user plane manages the exchange of data packets—such as TCP, and UDP

packets—produced and consumed by the users or applications. The user plane uses an IP/

UDP-based protocol, GPRS Tunneling Protocol (GTP), to transfer user data within the

GSM and LTE networks. GTP is a group of communications protocols that are used for

the transfer of GPRS packets within the 2G, 3G, 4G, and 5G standards.

c. PDCP Layer

One main function of the PDCP layer is to use header compression techniques to

reduce the redundant IP header overhead within an IP flow. Other functions of the PCDP

layer include the transfer of user data, ciphering/deciphering for the Data Radio Bearer

(DRB) and Signaling Radio Bearer (SRB), integrity protection for the SRB, maintaining

sequence numbers (SN) for SRB and DRB, and time-based SDU discard for SRB and

DRB. In addition, the PDCP provides services to the RRC layer and the user plane layer.

10

d. RLC Layer

The radio link control layer sits above the MAC layer and below the PDCP layer.

The RLC functions are performed by an RLC entity configured at the eNB and a peer entity

configured at the UE (or vice versa.) Three RLC modes can be configured—Transport

Mode (TM), Un-Acknowledge Mode (UM), and Acknowledge Mode (AM). The three

modes are further explained in [14]. The RLC layer receives Service Data Units (SDU),

frames the SDUs, segments and concatenates the SDUs, and then constructs Protocol Data

Units (PDU). An SDU is a packet received by a layer and a PDU is a packet output of a

layer. Then, the RLC layer adds an RLC header based on the mode and submits the PDU

to the MAC layer.

e. MAC Layer

The MAC layer manages the upper layers’ access to the PHY layer. As Figure 1

shows, the MAC layer is connected to the PHY layer through transport channels and the

RLC layer through logical channels. The MAC layer determines and performs switching

on the logical channels to the transport channels. The MAC layer also multiplexes and

demultiplexes the data between both channels.

f. PHY Layer

The PHY layer comprises three parts: the transport channel processor, the physical

channel processor, and the analog processor. The PHY layer interfaces with the MAC

sublayer (layer 2) and the RLC (layer 3). The PHY offers data transport to the higher layers

of the air interface stack.

g. Air Interface Stack Data Flow

Packets (SDU) generated by an application will be received by the IP layer. The IP

layer transfers the PDU packets to the PDCP layer. The PDCP layer receives the SDU

packets, performs header compression, adds PDCP header information to the packets, and

transfers the PDU packets to the RLC layer. The RLC layer segments the SDU packets,

adds the mode of operation, and sends the PDU to the MAC layer. The MAC layer receives

the SDU packets, adds a MAC header and padding, multiplexes or demultiplexes the SDU

11

packets, and submits the PDU packets to the PHY layer, which transmits the packets.

Figure 3 shows an example of LTE data flow.

Figure 3. Example of LTE Data Flow. Source [13].

3. Architecture and Equipment

The deployment of 5G is outlined in the 3rd Generation Partnership Project (3GPP)

Release 15, which provides a standardized protocol for implementing 5G networks.

a. Architecture and Deployment Models

3GPP Release 15 defines two 5G architecture deployment models: the Stand-Alone

(SA) architecture and the NSA architecture. The SA architecture configures and operates

the 5G new radio (NR) using only 5G components, whereas the NSA architecture relies on

the existing 4G LTE core network. In the NSA architecture, the gNB connects to the eNB

via the X2 interface. The eNB is the primary node, while the gNB is the secondary node.

This capstone uses the 5G NSA deployment model (option 3). The 5G NSA architecture is

the LTE Assisted “Architecture Option 3” [15], shown in Figure 4. 3GPP Option 3

architecture offers dual connectivity through 4G (E-UTRA) and 5G (NR) called E-UTRA

12

and NR Dual Connectivity (EN-DC) [15]. Other deployment models are outlined in

Appendix H.

“c” indicates the control plane (dotted line), and “u” (solid line) indicates the user plane.

Figure 4. 4G E-UTRA and 5G NR Dual Connectivity (3GPP Option 3a).
Adapted from [15].

b. Evolved Packet Core

The Evolved Packet Core is the principal component of the radio access network

(RAN), with three main network functions to deliver the core of the air interface network.

The components on an EPC are a Mobility Management Entity (MME), a Home Subscriber

Server (HSS), and Serving Gateways (SGW) [16].

The Service Packet Gateway (SPGW) is separated into two network functions:

SPGW-C and SPGW-U. The SPGW-C and SPGW-U are implemented via separated

docker containers. The purpose of splitting SPGW functions is to separate the Control and

User Plane (CUPS).

The SPGW-C is the control plane of the packet data network gateway that manages

the control portion of the Serving Gateway (SGW) and the Packet Network Gateway

13

(PGW) [16]. In addition, the SPGW-C handles control requests originating from the MME

via the S11 interface.

The SPGW-U is the packet data network gateway user plane that manages the user

traffic between the PDN and the eNB. The SPGW-U communicates with the eNB via the

S1-U interface. The user traffic is tunneled through the GTP, managed by the SPGW-C via

the SXab interface.

The HSS stores and updates the database containing the user subscription

information. In addition, the HSS is responsible for authentication, authorization, and

mobility management functions and connects to the MME via the S6a interface [17].

The MME is the core control function of the EPC. The MME handles the UE access

network and mobility as well as establishes a link for the UE. The MME also authenticates

the authorization of the UE access to the service provider Public Land Mobile Network

(PLMN) [5]. The MME connects to the eNB via the S1-C interface and to the SPGW-C

via the S11 interface. Figure 5 illustrates each component of the EPC and the respective

interface it uses for communication within the OpenAirInterface architecture.

Figure 5. EPC Network Functions

14

c. eNodeB / gNodeB

The Evolved Node B (eNB) is the 4G LTE base station that creates mobile network

coverage and serves LTE devices via the LTE CUPS. The gNodeB is the base station for

5G RAN. The gNB manages NR devices’ control and user planes. The eNB connects to

the EPC via the S1 interface. In a non-standalone architecture, the gNB connects to the

eNB via the X2 interface. In a standalone architecture, the gNB connects to the 5GC via

the NG interface.

d. OpenAirInterface

OpenAirInterface is an open-source software developed by EURECOM that

implements 3GPP-compliant technology using software to create a 4G and 5G Radio

Access Network (RAN) and Core Network (CN) technologies. OpenAirInterface was

created by a community of developers worldwide, known as the OpenAirInterface

Software Alliance (OSA). The software implements the components of the 4G/5G system

and air interface protocol stack using software running on x86 processors and software-

defined radios. OpenAirInterface enables researchers and developers the ability to establish

and disestablish ad-hoc cellular networks on-demand.

e. Universal Software Radio Peripheral

The 4G/5G architecture uses the Universal Software Radio Peripheral (USRP) that

connects to an x86 computing platform through a high-speed cable (USB 3.0). The

software-defined radio contains a field-programmable gateway array (FPGA), an

integrated circuit chip on the USRP, which enables post-manufacturing reconfigurations

by the user. The FPGA is critical for digital signal processing (DSP) because it translates

real signals to low-rate, complex, baseband signals for the OpenAirInterface application

running on the host computer. The USRP provides the radio frequency (RF) capabilities of

the OpenAirInterface architecture.

B. LITERATURE REVIEW

Since 2017, a consortium of developers has implemented various versions of an

open-source 4G LTE cellular stack with commercial off-the-shelf (COTS) hardware.

15

OpenAirInterface released a 5G standalone architecture in early 2021 for implementation;

however, it is still under heavy development. There has been various research exploring

using the OpenAirInterface 5G NSA software stack. With the exception of [18], none of

the literature provided detailed guidance to replicate the testbeds used during research. The

lack of available documentation leads to new researchers experiencing the same obstacles

when replicating the different testbeds presented in the literature, and the documentation

in this work aims to remove some of those obstacles. We also discuss other 4G and 5G

open-source consortia in this section.

1. OpenAirInterface—4G LTE

The OpenAirInterface software stack was implemented in [18] to create a 4G LTE

architecture. This 4G testbed [18] consisted of an EPC, eNB, USRP, Quectel module, and

two attenuators. The attenuators directed transmissions from the Quectel module to the

Ettus B200 USRP rather than transmitting over-the-air. Lanoue was able to connect the UE

to the internet using the 4G LTE architecture [18]. Internet connectivity was verified by

successfully pinging Google’s primary DNS server IP address (8.8.8.8) from the UE. The

testbed included five different 4G LTE network setups that showcased the ease of

configurability of OpenAirInterface.

The work performed in [19] presented an all-in-one LTE network deployment on a

PC using OpenAirInterface. Nikaein et al. were able to show OpenAirInterface’s

interoperability with commercial LTE to transmit live-video streams. They were also able

to demonstrate the reconfigurability of the OpenAirInterface platform. The researchers

discussed whether the OpenAirInterface platform is a suitable LTE ecosystem and

playground [19]. This work showed OpenAirInterface’s reconfigurability and

interoperability with commercial smartphones.

2. OpenAirInterface—5G NSA

The authors in [20] designed a prototype programmable network-in-a-box using

OpenAirInterface and COTS devices. The architecture can support a 4G LTE network or

a 5G NSA LTE assisted network (3GPP Option 3). The implemented testbed demonstrated

a solution for an on-the-fly 4G LTE and 5G NSA network. They also measured the latency

16

and throughput performance of their network-in-a-box prototype. This research tested the

latency of the 5G NSA and observed an average throughput of 22.21 Mbps for the 5G NSA

mode. The maximum throughput achieved was 30.7 Mbps. The research was able to

determine the throughput and latency using iPerf tests.

The testbed in [16] showcased the architecture of the OpenAirInterface software

suite for both the NSA and the SA mode. In the NSA architecture, the 5G network uses an

existing 4G network. The 5G NSA architecture accelerated the use of 5G capabilities

without upgrading the EPC.

The researchers in [21] discuss the implementation of a 5G Narrowband Internet-

of-Things (NB-IoT) using OpenAirInterface and LTEBox. “NB-IoT is a 3GPP standard

defined to support mMTC service” [21]. LTEBox is Nokia’s version of the EPC. The

authors used LTEBox instead of OpenAirInterface as its EPC because OpenAirInterface

EPC did not support NB-IoT at the time of their research. [21], detailed its use of COTS

hardware and NB-IoT modules to forward sensing data to the internet via its

implementation of the 5G network. The installation used three personal computers (PCs):

one PC as the EPC, another PC as the eNB, and the third PC to interface with the user UE.

They used two Quectel BC95 modules as their UE and included a USRP for signaling.

The author of [22] discussed industry professionals’ security concerns and the

overall architecture of the 5G standard. The paper encapsulates the research performed on

different vulnerabilities that affect the confidentiality, integrity, and availability (CIA triad)

of 5G cellular networks. The research identified multiple vulnerabilities that could affect

different components of the CIA triad. Some of the vulnerabilities identified included

spoofing attacks, Man-in-the-Middle attacks, and denial-of-service (DoS) attacks. In

addition, the research explains that a Distributed DoS (DDoS) attack is possible through

“overburdening the system with fake requests” [22]. This capstone achieves a form of

internal DoS attack, described in Chapter IV, Section B. A spoofing attack is covered in

[18]; however, additional vulnerabilities native to 4G and 5G is discussed in [22].

17

3. Comparison to Prior Work

This research implements a 4G and 5G NSA network using the OpenAirInterface

software, two cellular phones, and a Quectel module connection to the network without

using attenuators. The networks implemented in [19], [21], and [22] use a combination of

different open-source software vice a unitary OpenAirInterface stack.

The UE used in [18] was an OpenAirInterface lte-uesoftmodem and the Quectel

module EC20; the lte-uesoftmodem is an OpenAirInterface software version of a UE used

to test network services. Additionally, the network configurations implemented in [18] use

an attenuator between the SDR and the UE. Our testbed can also use different internet

service providers (ISP) for backhaul services without major configuration changes.

Finally, in contrast with prior work, we document additional network

configurations, device setup, and challenges experienced during the different network

configurations implementation. The procedures used to create the 4G and 5G RAN are

concatenated in the appendices. We aim for this capstone to be a single point of reference

for future researchers who wish to recreate a 4G or 5G NSA network using

OpenAirInterface.

4. OpenAirInterface Competitors

OpenBTS is an open-source application that implements a 3GPP-compliant air

interface. OpenBTS uses USRP hardware and Asterisk software to create a low-cost GSM

cellular network. Asterisk is an open-source framework that can build communication

applications, specifically providing voice over IP (VoIP) capabilities. Any IP connection

can serve as a backhaul for the OpenBTS software. The OpenBTS official wiki page states

that OpenBTS is only capable of 2G and 3G and does not support inter-Radio Access

Technology (RAT) mobility [23].

The FreedomFi approach to a low-cost 5G network differs from the other open-

source approaches. FreedomFi sells an x86 proprietary appliance named FreedomFi

gateway. The gateway is pre-loaded with an open-source software, Magma that enables the

creation of a private LTE and 5G network for about $500 [24]. The FreedomFi gateway

18

appliance is not required to access the Magma Access Gateway, rather, it is a quick and

inexpensive method to establish mobile core network.

Software Radio System RAN (srsRAN), also known as srsLTE, is an open-source

4G and 5G software suite. The software suite runs on off-the-shelf compute and RF

hardware and implements an eNB, gNB, and a UE. The SRS UE is a full-stack software

that is implemented in C/C++. The eNB can be used in a 4G LTE network and 5G NSA

network. The gNB solution for a 5G SA network will be available in the second quarter

of 2022 [25].

free5GRAN is a new open-source 5G development framework. It provides a 5G

RAN architecture that works in SA mode; however, free5GRAN is still under active

development, and is not fully stable. The target audience for free5GRAN are engineers and

researchers for testing and development, and beginners to experiment with the main

components of its 5G stack. free5GRAN provides an application programming interface

(API), [26], to help users understand its code.

The open-source competitors provide different capabilities than OpenAirInterface.

For example, OpenAirInterface is a software implementation of the EPC, eNB, and gNB;

however, OpenBTS contains most of the GSM stack that enables mobility management,

call control, and text messaging [27]. srsRAN is limited because it does not have an

implementation of the EPC. Instead, srsRAN integrates with other open-source

implementations of the EPC.

FreedomFi offers a hardware device with Magma installed. Magma is an open-

source packet core project. Magma provides an alternative implementation of

OpenAirInterface EPC. The Magma software provides an access gateway, orchestrator,

and federation gateway. The access Gateway implements the EPC, PGW, and

Authentication, Authorization, and Accounting (AAA) [28]. The orchestrator is a cloud

solution that securely manages and monitors the wireless network. Finally, the federation

gateway integrates 3GPP compliant mobile network operator (MNO) components.

19

III. METHODOLOGY

This chapter covers the specifications of the devices used and the installation of

the software required for the USRP, eNB/gNB, and the EPC. This section also describes

the procedures used to configure the OpenAirInterface architecture. Section A discusses

the installation of the USRP. Section B contains the installation process of the

OpenAirInterface eNB/gNB open stack network. Section C discusses the installation

procedure used for the OpenAirInterface EPC software stack. Finally, Section D

describes the procedures to implement and configure the required hardware and software

components for the eNB/gNB OpenAirInterface described in [18].

The test environment in this capstone used HP ProBook 640 laptops with Intel®

Core ™ i7-4712MQ processors running at 2.30GHz. The operating system (OS) used

on all PCs was Ubuntu 18.04.1 LTS (Bionic Beaver). Three of the four PCs emulate the

core components of the 4G and 5G networks. The first PC serves as the EPC, the second

PC serves as the eNB, and the third PC serves as the gNB, which is also used to interact

with the Quectel module in a single eNB LTE network configuration. The fourth PC is

used to capture packets using Wireshark. This testbed used two Ettus B200 USRP SDR,

connected to the eNB and gNB via USB. Specifications for the OpenAirInterface

software require an Intel architecture-based PC with at least 4 CPU cores.

A. USRP

The Ettus B200 USRP is a low-cost experimental platform developed by Ettus

Research Products that provides continuous frequency coverage from 70 MHz – 6 GHz

with up to 56 MHz of real-time bandwidth [29]. The USRP supports the USRP Hardware

Driver (UHD) software used in [18] and [21] to model GSM base stations. The software

used to configure the Ettus B200 is called GNU Radio. GNU Radio is a free and open-

source software development toolkit that provides virtual signal handling to employ an

SDR [30]. The Ettus B200, along with the OpenAirInterface software (running on a

laptop), is used to implement the eNB.

20

The minimum software recommended for use with the Ettus B200 USRP is

Ubuntu 18.04 with a low-latency kernel. The low-latency kernel is optimized to achieve

the lowest latency possible for the OpenAirInterface implementation. To determine if

the eNB/gNB PC has the low-latency kernel, the command “uname -r” within Ubuntu’s

terminal can be executed. The result of the command will show the version number and

the kernel header. The eNB/gNB PC kernel header for this experiment is “5.4.0-74-low-

latency.” The required steps to install and configure a low-latency kernel on Ubuntu

18.04 LTS are described below.

B. ENB/GNB

OpenAirInterface implements the 4G base station, the eNB, of the 4G/5G

network design. The eNB is the 4G LTE network base station that performs radio-related

network functions and creates the mobile network [31]. The eNB sends and receives

radio transmissions to the mobile devices connected to it. The eNB is connected to the

EPC through the S1 interface. In the 5G NSA architecture, the eNB performs the user

plane and control plane functions for the 4G LTE network and the user plane function

for the 5G network. The gNB is the base station that performs the radio-related functions

for the 5G network. The gNB performs the control plane functions in the 5G NSA

architecture. The steps used to install and configure the eNB and gNB are detailed in

Appendix A, Section B. The prerequisite instructions covered in Appendix A, Section

A are required before performing the steps in Section B.

C. EPC

The EPC is installed on Docker and deployed via docker containers. This

capstone installed “docker-ce/bionic 5:20.10.7~3-0~ubuntu-bionic amd64,” “docker-ce-

cli/bionic 5:20.10.7~3-0~ubuntu-bionic amd64,” and “docker-ce-rootless-extras/bionic

5:20.10.7~3-0~ubuntu-bionic amd64.” The steps used to install and configure the EPC

are detailed in Appendix A, Section C.

During this research, the EPC was installed two times. The first time, the eNB

was successfully able to establish a peer connection with the EPC. The PC that hosted

the EPC later experienced a system failure that was unable to be restored. The EPC was

21

installed a second time, referencing the master branch on OpenAirInterface’s GitHub

page. The installation procedures were different than the procedures used previously.

The GitHub page advertises the installation and configuration as a “Simple Docker

Deployment using the OAI Legacy MME” [32]. The new installation method did not

require network-specific configuration as the previous method did. The new installation

method took approximately 30 minutes, whereas the initial installation method took over

three hours. The new installation was successfully installed without any errors; however,

the eNB was unable to establish a peer connection with the EPC. After a considerable

amount of troubleshooting, we focused on re-installing the EPC in the same way as the

initial installation. The installation procedure used to install the EPC the second time is

found in Appendix A, Section D.

D. PROVISIONING UNIVERSAL SUBSCRIBER IDENTITY MODULE

Universal Subscriber Identity Module (USIM) provisioning and reprovisioning

were performed using the OYEITIMES SIM writer Ver 4.1.5. The OYEITIMES SIM

writer program is publicly available for about $150 – $300; however, the OYEITIMES

SIM writer program could be obtained by purchasing their SIM Card reader for about

$30 – $50. The SIM writer can provision 2G SIM, 3G USIM, 4G USIM, and 5G

Integrate SIM (iSIM) cards. In Figure 6, we highlight the configuration made within the

OYEITIMES program to configure the USIM card. The other configurations that are not

highlighted in Table 1 were the default configurations on the USIM card.

22

Figure 6. OYEITIMES SIM Writer

Table 1 shows the fields that were changed in this capstone. It also lists the non-

abbreviated name, length, and a short description of the fields.

23

Table 1. Description of USIM Fields Updated in OYEITIMES SIM Writer. Adapted from [33], [34], and [35].

Field Non-Abbreviated
Form Configuration Length Description

IMSI International Mobile
Subscriber Identity 404921000000084 15 bits

binary
A unique identifier that identifies a
subscriber within a mobile network.

Ki Key Identification 0C0A34601D4F07677303652C0462535B 32-bits
hexadecimal

 Used to permit a subscriber to a
mobile network.

OP Operator Code 63BFA50EE6523365FF14C1F45F88737D 32-bits
hexadecimal

OP is the same for all SIMs for an
operator. Used with Ki to generate

an OPc.

OPc Operator Code (derived
from OP) BA05688178E398BEDC100674071002CB 32-bits

hexadecimal

Computed key using the Rijndael
Encryption algorithm OPc=Encypt-

Algo(OP, Key)

PLMN Public Land Mobile
Network

40492; 40493; 40494; 404045; 40496;
40497; 40498; 40499 5 - 6 digits A sequence of MCC and MNC that

identifies the operators RAN

FPLMN Forbidden PLMN 313100; 310120; 312250; 311480 5 - 6 digits A list of forbidden PLMNs the
subscriber is not allowed to access.

MSISDN
Mobile Station

International Subscriber
Directory Number

+3366300084 - Programmable phone number of the
subscriber.

SPN Service Provider Name IND airtel - Name of the network.

24

E. SIMULATION

This section describes the simulation of the 5G NSA network. This section

explains the environment setup procedures, beginning with the network configuration

setup, then running the EPC, connecting the eNB to the EPC, connecting the gNB to the

eNB, and finally connecting UEs to the eNB and gNB. Lastly, this section covers tearing

down the environment. Parts of this section were automated using multiple bash scripts.

The installation methods discussed in Appendix A must be completed before performing

any steps in this section.

1. Network Configuration Setup

Setting up the network architecture began with connecting the eNB to the EPC

PCs using a network switch. The switch used in this lab is the LINKSYS LGS308. All

parameters on the switch were left as default. Static IP addresses were assigned to each

PC to ensure that the IP addresses remained the same throughout testing. A ping from

the eNB host PC to the EPC host PC was performed to test connectivity between the two

PCs. IP routes were then added from the eNB host machine to the docker virtual network

bridge and tested by pinging the MME. The same series of steps were performed when

the gNB was added to the network. Figure 7 depicts the network architecture.

Figure 7. Physical Architecture of the Simulation Lab

25

In the network configurations that required a second eNB or a gNB, an external

timing source was used to synchronize the Ettus B200 for coherent operations. The

OctoClock CDA-2900-G was used for timing and frequency reference distribution. The

OctoClock synchronizes the base stations to a common timing source that prevents time

slippage of the additional eNB or the gNB. It distributes 10 MHz and 1 PPS signal

generated from an internal GPS-disciplined, oven-controlled oscillator (GPSDO) that

enables time-alignment and multi-channel systems to synchronize within ~50 ns [36].

The “PPS Out” port one on the OctoClock was connected to the eNB Ettus B200

USRP “PPS IN” port using a SubMiniature version A (SMA) cable. Port 2 on the

OctoClock was used to connect to the eNB2/gNB Ettus B200 USRP “PPS IN” port. The

“Primary Ref” switch was toggled to internal to use the GPSDO timing standard.

2. Deploying the eNB / gNB

The eNB is launched after all the containers on the EPC are running. The Docker

commands listed in Appendix D, Section B were used on the EPC host machine to

configure and update the containers. Before running the eNB, the routing tables on the EPC

host machine were updated to ensure that the eNB host machine could ping the “prod-oai-

mme,” “prod-oai-spgwc,” and the “prod-oai-spgwu-tiny” containers. Attempts to ping the

prod-oai-hss were unsuccessful. The installation procedure used in this phase noted that

pinging the HSS container “won’t work” [37]. Although pinging the HSS container didn’t

work, it was still accessible using commands listed in Appendix D, Section B.

a. Launch the eNB

To launch the eNB, the following command was executed:

cd ~/openairinterface5g/cmake_targets/lte_build_oai/build
sudo -E ./lte-softmodem -O ~/openairinterface5g/ci-scripts/conf_files/
<configuration_file> | tee <log_file_output>

Generally, the eNB is launched after the EPC is running. The exception is to launch

the eNB without the EPC using the “--noS1” flag. The “--noS1” flag enables the eNB to

test connectivity to the UE without any support for the S1 interface. The “-E” flag ensures

26

that the environmental variables are preserved while running the eNB. The “-O” flag

indicates the correct path and filename of the edited configuration file. The “tee

<log_file_output>“ command is a UNIX command that copies the standard input to the

standard output and makes a copy to a file. Additional flags that could be used while

executing the eNB can be found in Appendix B, Section C.

b. Launch the gNB

The gNB was executed using the command as shown:

cd ~/openairinterface5g/cmake_targets/ran_build/build
sudo ./nr-softmodem -O ~/openairinterface5g/ci-scripts/conf_files/ <configuration_file> -
E | tee <log_file_output>

The gNB is launched after the eNB is running. The “-E” flag in the gNB is “required

to enable a tri-quarter sampling rate when using the B2xx series USRP” [38] . The “-O”

flag is used for the same purpose as the eNB. Additional flags that could be used while

executing the gNB can be found in Appendix B, Section C.

3. Connecting the User Equipment

There were two types of UEs used in this research. The first is the EC20 Quectel

Module. The second were COTS cellphones. This research used the OnePlus 6T and the

Google Pixel 4a 5G cellular phones. The sections below detail the process used to send AT

commands to the EC20 Quectel Module and collect air interface traffic. The use of

QNavigator is introduced next. Lastly, this section describes introducing the OnePlus 6T

and the Google Pixel 4a 5G to the 4G network configuration.

a. Android ONEPLUS 6T

One mobile device used was the OnePlus 6T. Most Android devices will have a

similar configuration setup since they both use the Android OS. Our phone was running

Android version 8.1.0. The One Plus 6T has two sim slots; however, only one was used for

this research.

A new Access Point Name (APN) was created by navigating to settings and then

selecting SIM & Network > SIM 1 (NPS 4G) > Access Point Names. The APN was then

27

added by clicking the “+” sign on the top right corner to add a new APN. The configuration

settings shown in Table 2 are the APN settings used on the OnePlus 6T in this environment.

After configuring and saving the new APN, the phone was connected to the 4G network.

Table 2. OnePlus 6T APN Settings

NAME apn1.carrier.com
APN apn1.carrier.com
Proxy Not set
Port Not set
Username Not set
Password Not set
Server Not set
MMS proxy Not set
MMS port Not set
MCC 404
MNC 92
Authentication type Not set
APN type default
APN protocol IPv4/IPv6
APN roaming protocol IPv4/IPv6
Bearer LTE
MVNO type None

The OnePlus 6T was connected to the network by navigating to SIM & Network >

SIM 1 (NPS 4G) > Network operators. The option to “Choose automatically” was turned

off and the 4G “IND Airtel” RAN was selected.

b. Google pixel 4a 5G

The second device used in the lab environment was the Google Pixel 4a 5G. The

setup was similar to the OnePlus, with a few variations to the settings navigation path.

First, the APN was created on the Google Pixel 4a 5G by navigating to settings >

Networking and Internet > Mobile network > Advanced > Access Point Names. Next, the

hamburger menu on the top right was selected, followed by New APN. After configuring

and saving the new APN, the phone was connected to the 4G network by navigating to

settings > Networking and Internet > Mobile network > Advanced > Choose network and

28

selecting the 4G RAN network. The configuration settings shown in Table 3 are the APN

settings used on the Google Pixel 4a 5G in this environment.

Table 3. Google Pixel 4a 5G APN Settings

Name apn1.carrier.com
APN apn1.carrier.com
Proxy Not set
Port Not set
Username Not set
Password Not set
Server Not set
MMSC Not set
MMS proxy Not set
MMS port Not set
MCC 404
MNC 92
Authentication type Not set
APN type default,mms,supl,hipri,fota,ims,cbs,xcap
APN protocol IPv4/IPv6
APN roaming protocol IPv4/IPv6
Bearer Unspecified
MVNO type None

c. Interacting with the Quectel Module Using QNavigator

QNavigator is a Windows-based application used to interact with the Quectel

module. QNavigator offers a graphical user interface to connect to the modem and to

execute AT commands. Figure 8 displays the home tab of the QNavigator software

showing information that could be queried using AT commands. This research used

QNavigator V1.6.9.1. QNavigator was used to test the modem connection to the network

and test internet connectivity. Connectivity was verified by pinging Cloudflare’s primary

DNS IP address, and Google’s primary DNS IP address. [18] discusses common

commands to interact with the Quectel module using QNavigator.

29

Figure 8. Quectel QNavigator V1.6.9—Home Tab

d. Collect Cellular Network Air Interface Traffic and Interface with the
Quectel Module using Minicom.

Collecting cellular network air interface traffic was performed in two different

ways—the first method required a several steps. To simplify the process, a script was

created to launch Wireshark, launch minicom, and enter configurations to set up the

minicom terminal. Minicom is a text-based modem control and terminal emulator

connected to a device through GNU/Linux PC serial ports. A keyboard and mouse

emulator, “xdotool,” was installed on the host PC to configure Minicom using the script.

The scripts were configured on a PC that was not the EPC or eNB. The Quectel module is

not capable of connecting the 5G network; it is only used for the 4G network configuration.

Since the PC that served as the gNB was not used in the 4G network configuration, the

gNB PC was also used to configure and install DiagParser, Android Tools, and Minicom

to send AT commands to the UE. “DiagParser” is used to decode the Qualcomm DIAG

format. Android Tools enable the user to the command-line interface (CLI) with the

Quectel Modem. The installation and configuration scripts are found in Appendix C,

30

Sections A, and B. The common AT commands used in this project are given in Appendix

C, Section B; however, the supplemental includes a full list of potential AT commands.

The second method used to collect air interface traffic was Wireshark running on a

fourth PC connected to the switch. We enabled port forwarding via ethernet from the ports

on the switch that connected the EPC, eNB, and the gNB to the port on the switch to which

the PC with Wireshark was connected. The benefit of using this method to capture packets

is that it requires fewer steps and does not require configuration when reestablishing the

network.

31

IV. RESULTS

This chapter describes the results of the 4G LTE and the 5G NR NSA network

configuration using the OpenAirInterface software. We test three additional network

configurations not showcased in [18]. Also, this chapter provides an analysis of the

OpenAirInterface platform, different components of the network architecture, network

performance, and the network’s mobility.

A. NETWORK CONFIGURATIONS

This section discusses the different OpenAirInterface network configurations using

three subsections to show the different configurations used during the experimentation

phase of this research: 1. EPC and eNB network configuration; 2. EPC and dual eNB

network configuration; and 3. EPC, eNB, and gNB network configuration. Figure 9 shows

the IP address scheme used in “Network Configuration 1.” “Network Configuration 2,”

and “Network Configuration 3” builds on the “Network Configuration 1” topology.

Figure 9. eNB, EPC host, and Docker Containers IP Scheme

prod-oai-spgwu
192.168.61.5/26

prod-oai-spgwc
192.168.61.4/26

prod-oai-mme
192.168.61.3/26

prod-oai-hss
192.168.61.2/26

INTERNET

S1-C

S6a

S11

SGi

S1-U

prod-cassandra
172.17.0.2

eNB

EPC

USRP

4G LTE

eNB host IP:
192.168.1.8

EPC host IP:
192.168.1.7

32

1. Network Configuration 1: EPC, eNB, and COTS UE

After installing the OpenAirInterface software for the EPC and eNB, the two PCs

were connected to a Linksys LGS308 switch, as shown in Figure 10. The EPC host machine

was configured to have a static IP address of 192.168.1.7. The eNB host machine was

configured to have a static IP address of 192.168.1.8. The EPC’s IP address was used as

the gateway to forward the OpenAirInterface network traffic to its respective container.

Figure 10. Network Configuration 1

The EPC was launched using the scripts in Appendix A Section B. The scripts

launched the docker containers in the required order to run the EPC successfully: 1. “oai-

hss:production”; 2. “oai-mme:production”; 3. “oai-spgwc:production”; and 4. oai-spgwu-

tiny:production. The last command in the script to execute follows the

mme_check_run.log. Following the “mme_check_run.log” shows verbose details of the

processes that are running related to the OpenAirInterface cellular network. The “tail” flag

within the script enables the contents of the “mme_check_run.log” to display and is

updated every five seconds. Figure 11 depicts a snapshot of the “mme_check_run.log” log

33

that shows the connection status of eNB and attached UEs. The “mme_check_run.log” can

be found within the MME docker container (“oai-mme:production”).

Figure 11. MME Log

The eNB is launched after all the docker containers on the EPC host are running.

The command used to launch the eNB is shown in Chapter III.E.1.a. After the command

to launch the eNB is executed in the Linux terminal, a new connection is displayed on the

MME Log. Figure 12 displays the established peer connection as well as debugging

information.

Figure 12. MME Log Showing eNB Peer Connection

34

The next step was to connect the UE, in this case, the OnePlus 6T, to the network.

After a UE is introduced to the network, mme_check_run.log shows the number of

“Connected UEs” and the number of “Attached UEs” in the “Current Status” column. The

UE first connects to the eNB and then performs the LTE attach procedure. After the UE is

attached to the EPC, the UE is in a state where the default EPS bearer enables IP

connectivity for that UE [12]. After completing the attach procedure, the MME log is

updated to display the “Connected eNBs,” “Attached UEs,” and “Connected UEs,” as

displayed in Figure 13.

Figure 13. Snapshot of MME Log Showing eNB Peer Connection and UE

Attached

2. Network Configuration 2: EPC, eNB1, eNB2, and COTS UE

The dual eNB network configuration is similar to the single eNB network setup.

The second eNB is connected using the same process as the first eNB. A configuration

change is required to update the “eNB_ID” field on the template configuration file. If the

MME identifies that it already has a peer connection with an eNB_ID, the MME will reject

any additional eNB attempting to establish a peer connection with that eNB_ID. Additional

configuration changes are outlined in Appendix A, Section B, Section 2.

The IP scheme of the dual eNB configuration tested in this research is the same as

the single eNB IP scheme, apart from the second eNB. Figure 14 illustrates the IP scheme

used in “Network Configuration 2.” The IP addresses of the Docker containers remain the

same, as shown in Figure 9.

35

Figure 14. Dual eNB and EPC Network Scheme

The second EPC followed the same connection procedures depicted in Figure 11

and Figure 12. Figure 15 below is a snapshot of the MME log in a dual eNB configuration.

Figure 15. Snapshot of MME Log Showing Connected eNBs

After both eNBs established peer connectivity with the EPC, the Google Pixel 4a 5G

was introduced to the network. The MME log shows the addition in the “Current Status”

column in Figure 16. The “Added since last display” column display is also updated.

36

Figure 16. Snapshot of MME Log Connected eNBs and Attached UEs

3. Network Configuration 3: EPC, eNB, gNB, and COTS UE

Introducing the gNB to the single eNB network configuration was the next step in

configuring the 5G NSA architecture. The procedures to establish the 5G NSA

configuration are first to launch the EPC, then the eNB, and finally the gNB. Figure 17

shows the IP scheme used in “Network Configuration 3.”

Figure 17. eNB, gNB, and EPC IP NSA Network Scheme

37

Unlike “Network Configuration 1,” in the 5G NSA architecture, the gNB

establishes a peer connection with the eNB. When the gNB is connected to the eNB, it

cannot be seen or viewed on the “mme_check_run.log log.” However, as shown in Figure

18, a successful connection can be observed on the eNB terminal where the command to

execute the eNB was performed. As shown, the gNB establishes a connection to the eNB

using the stream control transmission protocol (SCTP) and the S1 Application Protocol

(S1AP). SCTP is designed to transport cellular signaling messages over IP networks. S1AP

provides the control plane signaling between the E-UTRAN and the EPC. [39] [40] were

referenced when running the gNB.

Figure 18. eNB View of gNB Peer Connection with eNB

A successful connection can also be observed on the gNB terminal that was used

to launch the gNB. The gNB uses the X2 Application Protocol (X2AP) to handle UE

mobility signaling between the gNB and eNB and uses SCTP to establish a peer connection

with the eNB. The communication to establish the 5G NSA network can be viewed in

Figure 19.

38

Figure 19. gNB View of Peer Connection with eNB

B. ANALYSIS

This section examines each component of the OpenAirInterface software stack used

in this capstone. The analysis performed in this section is derived from the various

challenges experienced during this research’s installation and simulation phases.

1. OpenAirInterface Platform

The OpenAirInterface website states that it is “the fastest-growing community and

software asset in 5G wireless” [41]. The OpenAirInterface Alliance has official GitHub

pages where the master repository is available for developers and researchers. The alliance

allows researchers and developers to branch the master repository and submit a pull request

so that the researchers and developers can contribute towards identifying and removing

bugs that are present within the software. The bugs can be found and fixed by researchers

and developers in their respective branches. However, the bug can still exist in the master

branch of the software until the updated branch has been verified and merged with the

39

master branch or the master branch has been updated to reflect the changes made in the

developer’s branch.

The OpenAirInterface publishes a charter with project timelines for adding

functionality to the software. However, the timelines are an approximation and unreliable as

they serve as more of a goal date than the expected date of the OpenAirInterface software

update. There does not appear to be an official due date as to when the software will be

updated.

The procedure to install the software varies depending on the branch installed. The

master branch contains elaborate procedures that are simple to follow for the installation;

however, there were required dependencies that were not listed in the prerequisite portion of

their installation page. For example, a dependency required before installing the eNB is

freeDiameter, which implements the Diameter base protocol that provides authentication,

authorization, and accounting. The freeDiameter protocol is used to enable authentication,

authorization, and accounting (AAA) for mobile IPv4 applications within the

OpenAirInterface 4G network [31].

The implementation of the OpenAirInterface software stack could be streamlined by

maintaining a working repository that is properly configured. However, the initial

configuration, changing configurations, maintenance, and troubleshooting of the networks

require telecommunications systems and computer networking subject matter experts (SMEs)

who can understand each component of the program in depth. In addition, implementing the

OpenAirInterface software requires an intermediate level of knowledge to navigate Linux OS

through CLI and a basic understanding of manipulating the OS’ network configurations.

The SMEs must also have an in-depth foundation of cellular protocols. The verbose

details shown on the MME log show the communications occurring between the different

components and which protocol is being used. When the program fails, the issues are printed

on the screen. The protocol displayed on the MME log should be the first thing investigated

after a failure because it will help narrow down the root cause of the failure. The protocols are

associated with a particular air interface layer that is usually correlated with a specific

component.

40

The OpenAirInterface software is written in C, and the program is found within

multiple C files. Usually, when an error occurs, it is echoed on the MME log along with the

full path, filename, and line that the error occurred. Therefore, the SMEs must understand

how to navigate the different files, read the C program, and resolve errors. Though the C files

are lightly commented, they give context to where errors are derived from—which is useful

for troubleshooting.

Lastly, the OpenAirInterface eNB branch used in the test phase does not detect when

stack smashing occurs. Stack smashing is a buffer overflow that happens when the input

exceeds capacity buffer capacity [42]. As mentioned in [42], stack smashing occurs when a

UE attempts to connect to the eNB and immediately releases the connection, which does not

complete the RRC handshake. As a result, the eNB is left in a half-open state while constantly

attempting to complete the connection, which exhausts the eNB resources. Any attempt to

introduce the UE back to the network fails because the buffer overflow has already begun.

After approximately a minute, the eNB crashes and requires a re-launch to resume normal

operations. In srsRAN, the stack smashing is detected, and the backtrace, file containing

debug information, is saved, and the program terminates.

We were able to replicate the eNB stack smashing with high success. We observed

the eNB stack smashing consistently when the Google Pixel 4a 5G was connected to the

network and Voice over LTE (VoLTE) was enabled. VoLTE is a high-speed wireless standard

where voice calls are transmitted using LTE networks. The eNB stack smashing does not

occur as often when the OnePlus 6T is the only device connected to the network. The only

way identified to resolve an eNB stack smashing occurrence was to re-launch the eNB. An

eNB stack smashing can be considered as an internal DoS.

2. Evolved Packet Core

The procedures to install the EPC components were easy to follow; however, some

installation commands required configuration parameters that are network specific, and some

were default parameters. Some instructions were clear on which parameters required network

specificity, while other commands were vague. The developer branches from the master

repository were referenced during the installation as other branches had better installation and

41

configuration instructions than the master branch. The developer branch contains recent

commits and is updated about once every week.

As mentioned in Chapter III, Section C, we experienced an unrestorable failure of the

EPC host machine. The second attempt to install the EPC on a new machine was unsuccessful

because the master branch updated the installation procedures and docker containers. The

master branch is updated once every two to three months and is subjected to the continuous

integration process. The master branch was committed July 28th; however, is it not known if

a failed peer connection from the eNB to the EPC was caused by a bug within the program or

a feature not yet added to the updated master branch EPC. The periodic updates added features

and changed methodologies of the OpenAirInterface software, making it difficult for

researchers and developers to reproduce network configurations and test them against known

potential vulnerabilities. The process to install the EPC via this method is outlined in

Appendix A, Section C.

To restore our testbed to operation, the EPC was restored from a cloned hard drive

with the same version of the EPC and all the dependencies originally installed. A private

GitHub page was then created to upload the EPC, eNB, and gNB repositories to provide a

backup solution that is easily accessible should any PCs experience another unrestorable

failure. The private GitHub page ensures that the repositories are not updated. The username

and registered email of the GitHub page are provided in Table 4.

Table 4. NPS GitHub

Username Email Address
NPS-OAI-LAB nps.oai.lab@gmail.com

There were times when the EPC host PC was rebooted and the eNB could not establish

a peer connection. It was caused because the PC flushes all non-persistent routes in its routing

table at reboot. A solution was to create a script that clears all routes in the routing table and

adds only the IP routes required for testing. These steps were performed on the EPC, eNB,

and gNB. Once the IP routes were corrected, the EPC host, eNB, and gNB could ping the

docker containers shown in Figure 9.

42

3. eNB

The eNB installation presented similar challenges to the EPC. Configuring and

installing “Network Configuration 1,” as shown in Figure 10, was the first step to constructing

a 5G NSA architecture. The rationale for this method is to first establish the 4G LTE network

before installing and configuring the gNB. However, configuring “Network Configuration 1”

was difficult because of the complexity of the software. The lack of reliable installation

documentation and instruction for the master repository caused unnecessary troubleshooting.

A few different critical dependencies needed to install the eNB were not covered in the

GitHub master repository. The GitHub page assumed that the installer had prior knowledge

of the dependent software needed to install the eNB without errors. All software critical to the

installation of the eNB is covered in Chapter III and Appendix A.

4. gNB

The procedure to install and configure the gNB was much simpler than that for the

eNB. After the installation commands were executed, the configuration files were updated.

The configuration that required changing was different than that of the eNB configuration file.

The tracking_area_code, plmn_list, mme_ip_address, and enable_x2 changed to “yes” had to

match the eNB configurations. The different configuration that the gNB file required set is the

“target_enb_x2_ip_address.” Once all configurations were updated, the gNB had no issues

establishing peer connection to the eNB.

The Google Pixel 4a 5G is the only phone on hand capable of accessing the 5G NSA

network. However, connecting the Pixel to the gNB was inconsistent. Since the eNB was

running simultaneously with the gNB, the phone often connected only to the eNB rather than

the gNB although the gNB is part of the network. Often, the control plane functions were not

handled by the gNB. Although the 5G NSA network was connected, we observed the phone

connect to the gNB only one time. Every other attempt to connect the phone to the gNB failed.

It is not clear why the phone failed to establish connectivity with the gNB. While

troubleshooting, the gNB was rebooted, which deleted the stats printed on the terminal used

to launch the gNB.

43

5. User Equipment

The Quectel Module was the first device that was tested and was able to access the

network. Interfacing with the device was initially performed using minicom; however, this

research migrated to using QNavigator because its GUI is advantageous compared to the

command line intensive program. QNavigator also has a functionality that lists AT commands

and proper syntax that can be executed by clicking on the AT command.

The second device we attempted to connect to the 4G network was the Google Nexus

6P. Unfortunately, the Nexus could not find the “IND Airtel” network operator, and therefore,

it was unable to connect. However, the Nexus 6P was able to find T-Mobile, AT&T, Sprint,

Verizon, and FirstNet commercial networks, which are local networks specific to the

geographic region. The phone was rebooted several times, a new APN was created, and the

SIM card was swapped with a known good SIM card; however, the Nexus was still unable to

find the 4G LTE network. We discontinued efforts to connect the Nexus 6P after we identified

that the OnePlus was able to find and connect to the “IND Airtel” network.

Connecting the OnePlus 6T and the Google Pixel 4a 5G to the network was as

uncomplicated as the Quectel Module. First, a new APN was created and configured on each

phone, as discussed in Chapter III, Section E. The network connection bar on the OnePlus and

the Google Pixel 4a 5G displayed the 4G LTE icon on the settings bar. Next, the phones were

assigned IP addresses on the 12.1.1.0/24 network as configured in the spgwc-cfg.sh file

located within the SPGW-C container home directory. Ping tests to Google’s DNS primary

server were successful from the OnePlus 6T, Google Pixel 4a 5G, and the Quectel Module.

Although the phones were connected to the network and able to ping the DNS servers

on the public internet, they could not browse the web using fully qualified domain names

(FQDN). The error received on the Google Chrome web browser indicating that the issue was

DNS-related. We validated that the issue was DNS-related by testing that the phones were

able to browse using IP addresses. We tested using IP addresses for the Naval Postgraduate

School’s Webpage, 52.42.202.22, and Cloudflare’s IP address, 1.1.1.1.

The phones were then disconnected from the 4G network and connected to Wi-Fi to

download “Network Tools—DNS Changer,” an application found on the Google Play Store

44

that can switch primary and secondary DNS servers. After re-establishing the connection to

the OpenAirInterface cellular network, the DNS was switched to Google’s DNS server. The

phone was able to ping and web browse when the DNS Changer application was enabled. The

performance of the phones is discussed in section B.5 of this chapter.

The next phase was to introduce the Pixel to the 5G NSA network. As mentioned in

section 3.B of this chapter, connecting the Pixel to the gNB was inconsistent. When the Pixel

is connected to the gNB, it can be viewed on the terminal; however, the phone did not display

the 5G icon on its settings bar. It is likely because only the control plane was connected to the

gNB, while the user plane was still connected to the eNB (or 4G LTE network). The network

icon on the phone displayed a fill bar with the letter “R” above it. The “R” indicates that the

phone is roaming, even though roaming was not enabled.

When roaming was enabled on the Pixel, it causes the MME to fail and raise

“SEGFAULT,” as shown in Figure 20. Although the MME failed, the phones seemingly

remained connected to the network, but no services were available. The MME was restored

by restarting each container within the MME. We tested roaming on the OnePlus 6T in order

to troubleshoot, and the MME did not fail and continued operating normally.

Figure 20. MME Log SEGFAULT

6. Network Performance

Network performance tests were performed to measure latency and throughput.

Latency was measured using pings, and throughput was tested using iPerf. iPerf is a tool to

45

measure maximum achievable bandwidth on IP networks. Pings were conducted using a third-

party application available on Google Store, the Hurricane Electric (HE.Net) Network Tools.

This third-party application was chosen because it implemented both pings and iPerf along

with other network diagnostic tools.

We performed iPerf tests from the Google Pixel 4a 5G to the EPC, eNB, and gNB,

respectively. The iPerf test can measure the throughput between the UE and the base station.

The EPC, eNB, and gNB were the server for each test, and the Pixel was the client in the test.

Five iPerf2 tests were performed from the UE to the eNB and the EPC. The outcome of the

iPerf tests with the eNB as the server resulted in an average bandwidth of 19.97 Mbits/sec.

We also attempted to measure 5G NSA network performance. The iPerf test

conducted from the UE to the EPC as the server resulted in an average bandwidth of 20.76

Mbits/sec. The iPerf tests attempted on the gNB caused eNB to experience stack smashing

most of the time when an iPerf test was performed. We gathered three successful iPerf tests

with the gNB as the server out of more than 15 attempts. Table 5 shows the bandwidth of

1MB iPerf tests from the Google Pixel to the EPC and eNB in LTE mode and the gNB in

NSA mode. Appendix F lists the iPerf test performed in this research.

The gNB performance results were significantly lower than expected. The cause of

the low throughput could be due to the eNB stack smashing even during a successful iPerf

test; however, we were not able to confirm that the eNB stack smashing is the cause of the

low throughput. Appendix F lists the full iPerf results from the EPC, eNB, and gNB.

Table 5. iPerf Test Results

Server UE Min
Bandwidth

UE Avg
Bandwidth

UE Max
Bandwidth

Command Used on
Server

iPerf from
UE to EPC
LTE mode

962 Kbits/sec 20.76 Mbits/sec 29.8 Mbits/sec iperf -s 192.168.1.7

iPerf from
UE to eNB
LTE mode

5.15 Mbits/sec 19.97 Mbits/sec 32.9 Mbits/sec iperf -s 192.168.1.8

iPerf from
UE to gNB
NSA mode

1.33 Kbits/sec 71.11 Kbits/sec 126 Kbits/sec iperf -s 192.168.1.9

46

We measured latency for “Network Configuration 1” by pinging Google’s,

Cloudflare’s, and AT&T’s DNS servers using the HE.Net application. One thousand pings

were performed from the OnePlus 6T and the Pixel 4a 5G to each DNS server. The average

round-trip-time (RTT) for pings performed by the OnePlus 6T is 38.72 ms with a 0.013%

packet loss rate. The average RTT for pings performed by the Google Pixel 4a 5G was

42.11 ms with a 0.011% packet loss rate. Table 6 shows the average of the result from the

ping tests conducted in this research. Appendix E shows the results of all pings performed

from each phone.

Table 6. Ping Test Results (average)

OnePlus 6T
Success Loss

rate
Avg
RTT

Best
RTT

Worst
RTT

0.987 0.013 38.72 27.0 76.87

Google Pixel
Success Loss

rate
Avg
RTT

Best
RTT

Worst
RTT

0.989 0.011 42.114 29.6 81.3

7. Network Mobility

One of the benefits of the OpenAirInterface network implementation is that it has

a relatively small footprint. The small footprint enables the testing environment to be

disestablished and re-established without making extensive configuration changes, if any.

In our case, the only required configuration changes involve updating IP routes and

ensuring the EPC can access the internet. The testing environment was moved from NPS’

Center for Cyber Warfare (CCW) to an offsite testing environment. The lab was able to be

disestablished and re-established within minutes. IP routes were updated using bash scripts.

While setup in the CCW, the phones experience an intermittent connection to the

MME. We witnessed the “MME Log” displaying the UE completing the attach procedure

and immediately terminating the UE attach connection. Fortunately, the cycle of the UE

connecting to the network and disconnecting from the network did not cause the eNB to

47

crash because the UE completed the RRC handshake, which did not leave the eNB in a

half-open state.

It seems as if the cellular connection quality between eNB and the two UEs was

better in the off-site test lab than the quality within the CCW. The phones did not

disconnect intermittently, and web browsing was successfully tested for two hours. The

only successful iPerf test was conducted in the offsite environment. After the testing

environment was returned to the CCW, the issues experienced before the move recurred.

The testbed was moved back to the offsite test lab a second time, and the issues experienced

in the CCW didn’t reappear. Future researchers could leverage a spectrum analyzer to

determine whether there are frequencies around the CCW that could potentially conflict

with the LTE band 7 and NR band n78—the frequency band used during this capstone.

3GPP LTE and NR operating bands are listed in Appendix G.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

V. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

This capstone provides a detailed guide to implementing a 4G / 5G NSA network

using the OpenAirInterface software. Also, it demonstrates the potential ability to establish

scalable, inexpensive, rapidly deployable, and reconfigurable cellular networks using

OpenAirInterface. Three network configurations and various tools that could be used have

been discussed in this research, offering future researchers the ability to recreate,

reconfigure, and troubleshoot the networks presented. The different network

configurations presented in this work add to the network configurations analyzed in [18].

In addition, this research did not use the attenuators used in [18], proving that the Ettus

B200 SDRs could handle air interface traffic at high speeds.

Although OpenAirInterface has been under development in the past few years, the

software is still unstable. Furthermore, we assess that the target audience for the

OpenAirInterface software is researchers and developers. Therefore, the software’s

usability cannot be evaluated until a stable release of the program is available.

We have tested the flexibility of the OpenAirInterface software by adding an eNB

to “Network Configuration 1.” We also proved the software’s flexibility by adding a gNB

to “Network Configuration 1.” The addition of the eNB or gNB proves that the program

does not require major configuration changes to change operating modes.

Last, we were able to showcase the eNB crashing due to eNB stack smashing. The

eNB stack smashing is a form of an internal DoS attack. The DoS attack could be caused

intentionally or unintentionally. Other potential vulnerabilities native to 4G and 5G were

not tested, and it remains unknown whether the vulnerabilities exist within the

OpenAirInterface software.

We conclude that the OpenAirInterface software is operational but not ready to be

adopted for commercial use or implemented within the DOD. The software is still

undergoing heavy development and significant changes. Though it is not known when the

stable software will be released, continued research using the current software

50

implementation is valuable to understanding the potential use cases within the DOD once

stable software is available.

B. FUTURE WORK

One direction for future work involves isolating and resolving issues related to the

MME. For instance, future researchers could investigate the cause of the MME failure

when roaming is enabled on the Pixel. The MME is susceptible to an internal DoS attack

from within the network. Also, future researchers could determine if the cause of the MME

segment fault is only caused by the Google Pixel 4a 5G or a bug within the

OpenAirInterface software.

The new process to implement the 4G LTE and 5G NSA architecture has been

streamlined; however, different configurations must be examined. Continued research in

the 4G LTE and 5G NSA networks would enable the DOD to move one step closer to

realizing a cellular network that is owned, governed, and managed by the DOD. Also,

additional research in the new installation process could evaluate whether some of the

challenges experienced in this research still exist. For example, further research could

determine if the new implementation methods handle the eNB crashing due to stack

smashing. There is a potential that the OpenAirInterface implemented software solutions

in the eNB manage and half-open connections caused by UEs.

Furthermore, to truly realize the full capabilities that 5G offers, research in the SA

architecture could prove beneficial for future use cases where eMBB, URLLC, high-speed

wireless services, or mMTC are required in military operations. For example, a military

application would be to use the 5G network to pass data using the Android Team

Awareness Kit Military (ATAK-MIL) application in littoral operations. ATAK-MIL is a

government off-the-shelf android app that enables blue and red force tracking on a map

overlay, messaging, and critical information sharing that could be used in a tactical

environment. Through ATAK, Commanders could maintain a near real-time situational

awareness of an operation and deliver critical mission updates to nodes within the network.

In the example mentioned above, the 5G network could also be used to enable node-to-

node communication.

51

Once a stable, end-to-end implementation of the 4G and 5G cellular network

software is available, continued research could test the addition of multiple UEs and the

stability of the 5G NSA software stack. We were not able to fully test and analyze all

primary capabilities of mobile phones on the NSA network. To deploy the software or

similar networks, research would be required to determine the additional equipment needed

and compatibility to expand the cellular coverage range and ultimately scale the network

to include multiple cores and base stations.

Finally, one of the utilities used for writing SIM cards was OYEITIMES SIM

Writer. The application had functionality that could not be updated because the fields were

greyed out. Within the directory of the files, there was a file titled “GRSIMWrite.grsp,”

which contains all the programmable fields in the OYEITIMES application. Future work

could explore how the application writes to SIM cards and determine if the fields could be

updated on the “.grsp” files to enable the fields to be written on the SIM.

52

THIS PAGE INTENTIONALLY LEFT BLANK

53

APPENDIX A. OPENAIRINTERFACE SOFTWARE
INSTALLATION GUIDE

This appendix details the prerequisite software and installation steps discussed in

Chapter III. This appendix is arranged into four sections—Section A describes the

installation procedures to install the USRP. The installation processes to install the eNB

and gNB are described in Section B. Finally, the methods to install the EPC are covered in

Section C. Section D provides the new procedures used to install the EPC after recovering

from the host failure.

A. PREREQUISITE AND USRP SETUP

1. Low-Latency Kernel

1. Navigate to the Ubuntu packages webpage.

https://packages.ubuntu.com/bionic/linux-signed-lowlatency-hwe-18.04/download

2. Select the security.ubuntu.com/ubuntu link.

3. A dialog box will appear. Click Ok.

4. The linux-signed-low-latency-hwe-18.04 installation box will appear.

Click Install.

5. After the installation is completed, reboot the machine.

6. Verify kernel installation.

uname -a

2. VOLK Libraries

Vector-Optimized Library of Kernels (VOLK) is a library used to give GNU Radio

a boost in performance in signal processing. The Volk framework adds single Instructions,

Multiple Data (SIMD) functionality that simultaneously processes multiple data inputs

with a single instruction. VOLK is a set of functions that act as a vector multiplier for

complex floats [43]. The instructions to install VOLK radio is derived from [44].

54

Install VOLK

1. Clone the VOLK repository

git clone --recursive https://github.com/gnuradio/volk.git

2. Clone VOLK submodules

git submodule update --init –recursive

3. Build Volk

cd volk

mkdir build

cd build

cmake -DCMAKE_BUILD_TYPE=Release -DPYTHON_EXECUTABLE=/usr/bin/

python3 .//

make

make test

sudo make install

4. Link the system’s cache shared library.

sudo ldconfig

3. GNU Radio

GNU Radio is an open-source software toolkit that performs signal processing

using software rather than using embedded circuits in hardware radios. The GNU Radio

software supports the required signal processing via that the open-air-interface stack needs

to operate.

4. USRP UHD

1. Update and install the required dependencies.

sudo apt-get update

https://github.com/gnuradio/volk.git

55

sudo apt-get -y install git swig cmake doxygen build-essential libboost-all-dev libtool
libusb-1.0-0 libusb-1.0-0-dev libudev-dev libncurses5-dev libfftw3-bin libfftw3-dev
libfftw3-doc libcppunit-1.14-0 libcppunit-dev libcppunit-doc ncurses-bin cpufrequtils
python-numpy python-numpy-doc python-numpy-dbg python-scipy python-docutils qt4-
bin-dbg qt4-default qt4-doc libqt4-dev libqt4-dev-bin python-qt4 python-qt4-dbg python-
qt4-dev python-qt4-doc python-qt4-doc libqwt6abi1 libfftw3-bin libfftw3-dev libfftw3-
doc ncurses-bin libncurses5 libncurses5-dev libncurses5-dbg libfontconfig1-dev
libxrender-dev libpulse-dev swig g++ automake autoconf libtool python-dev libfftw3-dev
libcppunit-dev libboost-all-dev libusb-dev libusb-1.0-0-dev fort77 libsdl1.2-dev python-
wxgtk3.0 git libqt4-dev python-numpy ccache python-opengl libgsl-dev python-cheetah
python-mako python-lxml doxygen qt4-default qt4-dev-tools libusb-1.0-0-dev
libqwtplot3d-qt5-dev pyqt4-dev-tools python-qwt5-qt4 cmake git wget libxi-dev gtk2-
engines-pixbuf r-base-dev python-tk liborc-0.4-0 liborc-0.4-dev libasound2-dev python-
gtk2 libzmq3-dev libzmq5 python-requests python-sphinx libcomedi-dev python-zmq
libqwt-dev libqwt6abi1 python-six libgps-dev libgps23 gpsd gpsd-clients python-gps
python-setuptools

2. Build and install the UHD from the source code.

cd $HOME

mkdir workarea

cd workarea

3. Clone the repository.

git clone https://github.com/EttusResearch/uhd

cd uhd

4. List the UHD releases and checkout the desired UHD.

git tag -l

git checkout v3.14.0.0

5. Create a build folder.

cd host

mkdir build

cd build

cmake ../

56

make

6. Run basic tests.

make test

7. Install the UHD

sudo make install

8. Link the system’s cache shared library.

sudo ldconfig

9. Ensure that the LD_LIBRARY_PATH environment is defined under the folder

that the UHD is installed.

export LD_LIBRARY_PATH=/usr/local/lib

10. If the library is already defined, run the following command.

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

11. Download the UHD FPGA Images.

sudo uhd_images_downloader

12. Write the “XG” FPGA image to the USRP B200.

uhd_image_loader --args “type=x300,fpga=XG”

13. Change the socket buffer sizes.

sudo sysctl -w net.core.rmem_max=33554432

sudo sysctl -w net.core.wmem_max=33554432

14. Connect the USRP and verify the UHD installation.

uhd_find_devices

uhd_usrp_probe

15. Configure the USB

cd $HOME/workarea/uhd/host/utils

57

sudo cp uhd-usrp.rules /etc/udev/rules.d/

sudo udevadm control --reload-rules

sudo udevadm trigger

16. Configure thread scheduling

sudo groupadd usrp

sudo usermod -aG usrp $USER

17. Configure USB to enable non-root users to access the device

cd $HOME/workarea/uhd/host/utils

sudo cp uhd-usrp.rules /etc/udev/rules.d/

sudo udevadm control --reload-rules

sudo udevadm trigger

5. GNU Radio

1. Clone the repository

cd /home/labware/workarea

git clone --recursive https://github.com/gnuradio/gnuradio

2. Checkout GNU Radio release

cd gnuradio

checkout branch

git checkout v3.7.13.4

3. Update submodules

git submodule update --init --recursive

4. Create a folder within the repository, invoke CMake, build GNU Radio

mkdir build

cd build

58

cmake ../

make

5. Run basic tests.

make test

6. Install GNU Radio using the default prefix.

sudo make install

7. Link the system’s cache shared library.

sudo ldconfig

8. Verify that GNU Radio is installed.

gnuradio-config-info --version

gnuradio-config-info --prefix

gnuradio-config-info --enabled-components

9. Run the GNU Radio

gunradio-companion

B. ENB/GNB

1. eNB Installation

1. Retrieve the latest version of the `master` branch and build the eNB

mkdir -p ~/openairinterface5g

cd ~/openairinterface5g/

git checkout master

source oaienv

cd cmake_targets

./build_oai -w USRP –eNB –build-lib

59

2. Edit the conf file by replacing all `CI_*IP_ADDR` pattern with the correct IP

address.

source oaienv

cd ~/openairinterface5g/ci-scripts/conf_files

cp enb.band7.tm1.25PRB.usrpb200.conf my-enb.band7.tm1.25PRB.usrpb200.conf

vi my-enb.band7.tm1.25PRB.usrpb210.conf

cd ~/openairinterface5g/cmake_targets

3. Starting the eNB.

sudo -E ./lte_build_oai/build/lte-softmodem -O ~/openairinterface5g/ci-scripts/conf_files/
ci-enb.band7.tm1.25PRB.usrpb210.conf --nokrnmod 1 --noS1 --
eNBs.[0].rrc_inactivity_threshold 0 2>&1 | tee ENB.log

4. Running the eNB.

cd cmake_targets

sudo -E ./lte_build_oai/build/lte-softmodem -O ~/openairinterface5g/ci-scripts/conf_files/
ci-enb.band7.tm1.25PRB.usrpb210.conf --nokrnmod 0 --noS1 --
eNBs.[0].rrc_inactivity_threshold 0 2>&1 | tee ENB.log

2. eNB Configuration

The eNB requires a configuration file to set the RAN parameters to establish a peer

connection to the EPC. The “enb.band7.tm1.25PRB.usrpb210.conf” file was used for this

capstone. There are a few lines that are network-specific and are required to be updated.

Figure 21 is a screenshot of the eNB configuration file. The configuration file shows an

updated eNB_ID, tracking area code, and plmn_list (MCC and MNC updated).

60

Figure 21. enb.band7.tm1.25PRB.usrpb210 - eNB Configuration

Table 7 summarizes the updated fields in the eNB configuration file and a brief

description of the field.

Table 7. Changes Made in the eNB Configuration File [45].

Option Update Description

eNB_ID 0xe01

It is not required for single eNB architecture.
However, in a multiple eNB architecture, the
eNB_ID will conflict on the EPC and only one
will be allowed to establish peer connectivity.

Tracking
area code 5 Internationally unique identifier for a tracking

area within the PLMN

MCC 404

MCC is used along with the International
Mobile Subscriber Identity (IMSI) to identify
the region from which the mobile subscriber
belongs.

MNC 92
MNC uniquely identifies the home PLMN to
the user on the mobile device display when
connected to the network.

Figure 22 is a screenshot of additional configuration changes made on the eNB

configuration file.

61

Figure 22. enb.band7.tm1.25PRB.usrpb210 - MME Parameters and

Network_Interfaces

Table 8 shows configuration changes made in the MME parameters and X2 settings

section of the eNB configuration file. The IP address shown in Table 8 is the default IP

address of the MME; however, the docker network IP address could be changed. If changes

to the Docker network IP address were made, this section would need to be updated.

Table 8. enb.band7.tm1.25PRB.usrpb210—MME Parameters and X2
Settings

MME parameters
Setting Update

ipv4 “192.168.61.3”
 X2 Settings

Setting Update
enable_x2 “yes”

62

Table 9 shows the Network Interfaces configuration updates made on the eNB

configuration file. The IP addresses listed is the IP address of the eNB host PC. The eNB

host machine was given a static IP address of 192.168.1.8.

Table 9. enb.band7.tm1.25PRB.usrpb210—Network Interfaces Settings

Network Interfaces
Setting Update

ENB_IPV4_ADDRESS_FOR_S1_MME “192.168.1.8”
ENB_IPV4_ADDRESS_FOR_S1U “192.168.1.8”
ENB_IPV4_ADDRESS_FOR_X2C “192.168.1.8”

3. gNB Installation

1. Download the repository from GitLab

https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/develop

2. Build and install the gNB.

cd <oai installation directory>/openairinterface5g-develop

source oaienv

cd cmake_targets/

./build_oai -I -w USRP –gNB

3. Update the MME section and the Network Interfaces section of the gNB

configuration file with the IP address of the EPC.

cd <oai installation directory>/openairinterface5g-develop/ci-scipts/conf_files

gedit <filename.conf>

4. Update the MME parameters section of the gNb configuration file with the IP

address of the EPC. Update the X2 Network Interfaces section of the configuration file

with the IP address of the eNB host / gNB host.

cd <oai installation directory>/openairinterface5g-develop/ci-scipts/conf_files

https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/develop

63

gedit <filename.conf>

4. gNB Configuration

The gNB requires a configuration file to set the RAN parameters to establish a peer

connection to the eNB. The gnb.band78.tm1.fr1.106PRB.usrpb210 file was used for this

capstone. In addition, there are a few lines that are network-specific and are required to be

updated. Figure 23 is a screenshot of the gNB configuration file. The configuration file

shows an updated gNB_ID, tracking area code, and plmn_list to match the configuration

made on the eNB configuration file.

Figure 23. gnb.band78.tm1.fr1.106PRB.usrpb210—gNB Configuration

Table 10 summarizes the updated fields in the gNB configuration file and a brief

description of the field.

Table 10. srpb210—gNB configuration

Option Update Description

gNB_ID 0xe01 Not required for single geNB architecture.

Tracking
area code 5 Internationally unique identifier for a tracking

area within the PLMN

MCC 404 MCC is used along with the International
Mobile Subscriber Identity (IMSI) to identify

64

Option Update Description

the region from which the mobile subscriber
belongs.

MNC 92
MNC uniquely identifies the home PLMN to
the user on the mobile device display when
connected to the network.

Figure 24 is a screenshot of additional configuration changes made on the gNB

configuration file.

Figure 24. gnb.band78.tm1.fr1.106PRB.usrpb210—MME Parameters and

Network_Interfaces

65

Table 11 shows configuration changes made in the MME parameters and X2

settings section of the gNB configuration file. The IP address shown in Table 11 is the

default IP address of the MME that is in the eNB configuration file.

Table 11. gnb.band78.tm1.fr1.106PRB.usrpb210—MME parameters and X2
Settings

MME parameters
Setting Update

ipv4 “192.168.61.3”
 X2 Settings

Setting Update
enable_x2 “yes”

Table 12 shows the Network Interfaces configuration updates made on the gNB

configuration file. The IP addresses listed is the IP address of the gNB host PC. The eNB

host machine was given a static IP address of 192.168.1.9.

Table 12. gnb.band78.tm1.fr1.106PRB.usrpb210—Network Interface
Settings

Network Interfaces
Setting Update

GNB_IPV4_ADDRESS_FOR_S1_MME “192.168.1.9”
GNB_IPV4_ADDRESS_FOR_S1U “192.168.1.9”
GNB_IPV4_ADDRESS_FOR_X2C “192.168.1.9”

C. EPC

1. Low-Latency Kernel

1. Navigate to the Ubuntu packages webpage.

https://packages.ubuntu.com/bionic/linux-signed-lowlatency-hwe-18.04/download

2. Select the security.ubuntu.com/ubuntu link.

66

3. A dialog box will appear. Click Ok.

4. The linux-signed-low-latency-hwe-18.04 installation box will appear.

Click Install.

5. After the installation is completed, reboot the machine.

reboot

6. Verify kernel successfully installed.

uname -a

2. freeDiameter

1. Install the required dependencies for building the source for freeDiameter

sudo apt-get -y install mercurial cmake make gcc g++ bison flex libsctp28-dev libgnutls-
dev libgcrypt20-dev libidn11-dev ssl-cert debhelper fakeroot libpq-dev libmysqlclient-dev
libxml2-dev swig python-dev

2. Clone the freeDiameter repository

cd

hg clone http://www.freediameter.net/hg/freeDiameter

cd freeDiameter

3. Configure and generate Makefiles

mkdir fDbuild

cd fDbuild

cmake ../freeDiameter

4. Edit (optional) and compile files

make edit_cache

make

3. Docker

1. Uninstall old version of docker

67

sudo apt-get remove docker docker-engine docker.io containerd runc

2. Set up the repository

sudo apt-get update

sudo apt-get install

sudo apt-transport-https \

ca-certificates \

curl \

gnupg \

lsb-release

3. Add Docker’s GPG key.

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/
share/keyrings/docker-archive-keyring.gpg

4. Set up the stable repository

echo “deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg]
https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable” | sudo tee /etc/apt/
sources.list.d/docker.list > /dev/null

5. Install Docker Engine (use this step to install the latest version of the Docker

engine).

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

6. List and install a specific version of the Docker Engine (use this step to install a

previously released version).

apt-cache madison docker-ce

sudo apt-get install docker-ce=<VERSION_STRING> docker-ce-
cli=<VERSION_STRING> containerd.io

7. Verify that Docker Engine is correctly installed

sudo docker run hello-world

68

9. Delete the hello-world image (optional)

docker image rm hello-world --force

8. Check the currently installed version of Docker Engine

apt list | grep docker-ce

4. openair-epc-fed

1. Clone the openair-epc-fed repository

cd

git clone https://github.com/OPENAIRINTERFACE/openair-epc-fed.git

cd openair-epc-fed

2. Check out the latest GIT repository

git checkout master

git pull origin master

3. Resync the sub-modules

./scripts/syncComponents.sh

4. Log into docker and pull the docker images.

docker login [enter your docker credentials when prompted]

docker pull Ubuntu:bionic

docker pull cassandra:2.1

docker logout

5. Enable forwarding from the Docker containers to the outside world

sudo sysctl net.ipv4.conf.all.forwarding=1

sudo iptables -P FORWARD ACCEPT

69

6. change the IP range of the default docker bridge network. If the daemon.json file

does not exist, create it and add the bridge IP. If the daemon.json file does exist, verify the

IP address of the bridge to your network.

gedit /etc/docker/daemon.json

7. Add the network information

{

 “bip”: “Bridge_IP_ADDRESS”

}

8. Restart the docker daemon and verify that the bridge IP has been updated.

sudo service docker stop

sudo service docker start

docker network inspect bridge name

5. Build the HSS, MME, SPGW-C, and SPGW-U images without the EURECOM

proxy option.

docker build --target oai-hss --tag oai-hss:production --file component/oai-hss/docker/
Dockerfile.ubuntu18.04 component/oai-hss
docker build --target oai-mme --tag oai-mme:production --file component/oai-mme/
docker/Dockerfile.ubuntu18.04 component/oai-mme
docker build --target oai-spgwc --tag oai-spgwc:production --file component/oai-spgwc/
docker/Dockerfile.ubuntu18.04 component/oai-spgwc
docker build --target oai-spgwu-tiny --tag oai-spgwu-tiny:production --file component/oai-
spgwu-tiny/docker/Dockerfile.ubuntu18.04 component/oai-spgwu-tiny

6. Remove untagged and images not referenced by any container.

docker image prune --force

7. Verify the containers built were successful

docker image ls

8. Create docker public network

70

docker network create --attachable --subnet 192.168.61.0/26 --ip-range 192.168.61.0/26
prod-oai-public-net
docker run --name prod-cassandra -d -e CASSANDRA_CLUSTER_NAME=“OAI HSS
Cluster” -e CASSANDRA_ENDPOINT_SNITCH=GossipingPropertyFileSnitch
cassandra:2.1
docker network connect prod-oai-public-net prod-oai-hss
docker run --privileged --name prod-oai-mme --network prod-oai-public-net -d --
entrypoint /bin/bash oai-mme:production -c “sleep infinity”
docker run --privileged --name prod-oai-spgwc --network prod-oai-public-net -d --
entrypoint /bin/bash oai-spgwc:production -c “sleep infinity”
docker run --privileged --name prod-oai-spgwu-tiny --network prod-oai-public-net -d --
entrypoint /bin/bash oai-spgwu-tiny:production -c “sleep infinity”

9. Configure the Cassandra, HSS, MME, SPGW-C, and SPGW-U containers.

9.1. Cassandra

docker cp component/oai-hss/src/hss_rel14/db/oai_db.cql prod-cassandra:/home
docker exec -it prod-cassandra /bin/bash -c “nodetool status”
Cassandra_IP=`docker inspect --format=“{{range
.NetworkSettings.Networks}}{{.IPAddress}}{{end}}” prod-cassandra`
docker exec -it prod-cassandra /bin/bash -c “cqlsh --file /home/oai_db.cql
${Cassandra_IP}”

9.2. HSS

HSS_IP=`docker exec -it prod-oai-hss /bin/bash -c “ifconfig eth1 | grep inet” | sed -f ./ci-
scripts/convertIpAddrFromIfconfig.sed` \ python3 component/oai-hss/ci-scripts/
generateConfigFiles.py --kind=HSS
--cassandra=${Cassandra_IP} --hss_s6a=${HSS_IP} --apn1=apn1.carrier.com \
--apn2=NPS4G.apn.epc.mnc092.mcc404.3gppnetwork.org --users=200 \
--imsi=320230100000001 --ltek=0c0a34601d4f07677303652c0462535b \
--op=63bfa50ee6523365ff14c1f45f88737d --nb_mmes=1 --from_docker_file \
docker cp ./hss-cfg.sh prod-oai-hss:/openair-hss/scripts
docker exec -it prod-oai-hss /bin/bash -c “cd /openair-hss/scripts && chmod 777 hss-cfg.sh
&& ./hss-cfg.sh”

9.3 MME

MME_IP=`docker inspect --format=“{{range
.NetworkSettings.Networks}}{{.IPAddress}}{{end}}” prod-oai-mme`

71

SPGW0_IP=`docker inspect --format=“{{range
.NetworkSettings.Networks}}{{.IPAddress}}{{end}}” prod-oai-spgwc` \ python3
component/oai-mme/ci-scripts/generateConfigFiles.py --kind=MME \
--hss_s6a=${HSS_IP} --mme_s6a=${MME_IP} \
--mme_s1c_IP=${MME_IP} --mme_s1c_name=eth0 \
--mme_s10_IP=${MME_IP} --mme_s10_name=eth0 \
--mme_s11_IP=${MME_IP} --mme_s11_name=eth0
--spgwc_s11_IP=${SPGW0_IP} \
--mcc=404 --mnc=92 --tac_list=“5 6 7” --from_docker_file
docker cp ./mme-cfg.sh prod-oai-mme:/openair-mme/scripts
docker exec -it prod-oai-mme /bin/bash -c “cd /openair-mme/scripts && chmod 777 mme-
cfg.sh && ./mme-cfg.sh”

9.4 SPGW-C

python3 component/oai-spgwc/ci-scripts/generateConfigFiles.py --kind=SPGW-C \
--s11c=eth0 --sxc=eth0 --apn=apn1.carrier.com --dns1_ip=172.20.20.12 --
dns2_ip=8.8.8.8 --from_docker_file
docker cp ./spgwc-cfg.sh prod-oai-spgwc:/openair-spgwc
docker exec -it prod-oai-spgwc /bin/bash -c “cd /openair-spgwc && chmod 777 spgwc-
cfg.sh && ./spgwc-cfg.sh”

9.5 SPGW-U

python3 component/oai-spgwu-tiny/ci-scripts/generateConfigFiles.py --kind=SPGW-U \
--sxc_ip_addr=${SPGW0_IP} --sxu=eth0 --s1u=eth0 --from_docker_file
docker cp ./spgwu-cfg.sh prod-oai-spgwu-tiny:/openair-spgwu-tiny
docker exec -it prod-oai-spgwu-tiny /bin/bash -c “cd /openair-spgwu-tiny && chmod 777
spgwu-cfg.sh && ./spgwu-cfg.sh”
docker inspect --format=“{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}”
prod-cassandra
docker inspect --format=“{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}”
prod-oai-hss
docker inspect --format=“{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}”
prod-oai-mme
docker inspect --format=“{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}”
prod-oai-spgwc

72

docker inspect --format=“{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}”
prod-oai-spgwu-tiny

D. UPDATED EPC INSTALLATION

This section provides the new methods to install the EPC. To install, replace Section

C in this appendix with this section.

1. openair-epc-fed

1. Pull the images from Docker Hub

docker login

docker pull ubuntu: bionic

docker pull cassandra:2.1

docker pull rdefosseoai/oai-hss

docker pull rdefosseoai/oai-mme

docker pull rdefosseoai/oai-spgwc

docker pull rdefosseoai/oai-spgwu-tiny

2. re-tag the images for docker-compose

docker image tag rdefosseoai/oai-hss:latest oai-hss:production

docker image tag rdefosseoai/oai-mme:latest oai-mme:production

docker image tag rdefosseoai/oai-spgwc:latest oai-spgwc:production

docker image tag rdefosseoai/oai-spgwu-tiny:latest oai-spgwu-tiny:production

3. remove the re-tagged images (optional)

docker image rm rdefosseoai/oai-hss

docker image rm rdefosseoai/oai-mme

docker image rm rdefosseoai/oai-spgwc

docker image rm rdefosseoai/oai-spgwu-tiny

73

4. Network Configuration

sudo sysctl net.ipv4.conf.all.forwarding=1

sudo iptables -P FORWARD ACCEPT

5. Manually configuring IP range (optional)

cd /etc/docker/

sudo touch daemon.json

sudo cat >> daemon.json

6. Enter the IPv4 address and CIDR notation into the daemon.json file.

{

 “bip”: “ipv4/CIDR”

}

ctrl+ c

7. Restart the docker service, verify it is running, and verify the network configurations

committed.

sudo service docker restart

service docker status

docker network inspect bridge

8. Clone the repository

git clone --branch v1.1.2 https://github.com/OPENAIRINTERFACE/openair-epc-fed.git

cd openair-epc-fed

git checkout -f v1.1.2

9. Syncrhonize all git submodules

./scripts/syncComponentsLegacy.sh

10. Initialize the Cassandra DB

https://github.com/OPENAIRINTERFACE/openair-epc-fed.git

74

cd docker-compose/oai-mme-legacy

docker-compose up -d db_init

11. Follow database logs. Before continuing beyond this step, a connection must be

made. An “OK” should appear to indicate a connection to the SQL server is successful.

Because connection errors occur before receiving the “OK,” the following command may

be entered multiple times.

docker logs prod-db-init –follow

12. Remove the database init container because it is not needed anymore.

docker rm -f prod-db-init

75

APPENDIX B. OPENAIRINTERFACE SOFTWARE SIMULATION

This appendix summarizes the steps used to create different bash scripts during

simulation. Scripts are used to run a series of commands; any command that could be

executed from the terminal can be used in a script. First, this appendix discusses creating

bash scripts for running the environment. Using scripts speeds up and streamlines

launching the EPC as well as tearing it down. Using bash scripts makes simulating the test

environment easier and faster. Rather than running multiple commands, a single command

could be executed to run the script.

A. SETTING UP BASH SCRIPTS

1. Open a text editor and save it with a “.sh” file extension in a location where the

shell can find it. The first line should have only #!/bin/bash to interpret the file as an

executable.

2. The permission of the newly created script will need to be changed to allow the

script to be executable.

chmod +x [filename]

B. LAUNCHING THE EPC

1. Start the EPC Containers Script

1. Create a script file named “launch_4g_containers.sh.” The script will launch all

4G docker containers.

#!/bin/bash
cd ~/openair-epc-fed
Starting the network functions with ‘tshark’. Launching network functions with ‘tshark’
is not necessary; however, it is helpful for debugging issues.
docker exec -d prod-oai-hss /bin/bash -c “nohup tshark -i eth0 -i eth1 -w /tmp/
hss_check_run.pcap 2>&1 > /dev/null”
docker exec -d prod-oai-mme /bin/bash -c “nohup tshark -i eth0 -i lo:s10 -w /tmp/
mme_check_run.pcap 2>&1 > /dev/null”

76

docker exec -d prod-oai-spgwc /bin/bash -c “nohup tshark -i eth0 -i lo:p5c -i lo:s5c -w
/tmp/spgwc_check_run.pcap 2>&1 > /dev/null”
docker exec -d prod-oai-spgwu-tiny /bin/bash -c “nohup tshark -i eth0 -w /tmp/
spgwu_check_run.pcap 2>&1 > /dev/null”
docker exec -d prod-oai-hss /bin/bash -c “nohup ./bin/oai_hss -j ./etc/hss_rel14.json --
reloadkey true > hss_check_run.log 2>&1”
sleep 2

Launching each container. The order in which they are launched matters. The order
should be prod-oai-hss, prod-oai-mme, prod-oai-spgwc, and prod-oai-spgwu-tiny.
docker exec -d prod-oai-mme /bin/bash -c “nohup ./bin/oai_mme -c ./etc/mme.conf >
mme_check_run.log 2>&1”
sleep 2
docker exec -d prod-oai-spgwc /bin/bash -c “nohup ./bin/oai_spgwc -o -c ./etc/spgw_c.conf
> spgwc_check_run.log 2>&1”
sleep 2
docker exec -d prod-oai-spgwu-tiny /bin/bash -c “nohup ./bin/oai_spgwu -o -c ./etc/
spgw_u.conf > spgwu_check_run.log 2>&1”
docker exec -it prod-oai-mme tail -f mme_check_run.log

2. Stop the EPC Containers Script

1. Create a script file named “stop_4g_containers.sh.” The script will stop all 4G

docker containers, recover the log files, configurations, and traces, then zip the files.

!#/bin/bash
cd ~/openair-epc-fed
Stopping each container and tcpdumb.
docker exec -it prod-oai-hss /bin/bash -c “killall --signal SIGINT oai_hss tshark tcpdump”
docker exec -it prod-oai-mme /bin/bash -c “killall --signal SIGINT oai_mme tshark
tcpdump”
docker exec -it prod-oai-spgwc /bin/bash -c “killall --signal SIGINT oai_spgwc tshark
tcpdump”
docker exec -it prod-oai-spgwu-tiny /bin/bash -c “killall --signal SIGINT oai_spgwu tshark
tcpdump”
sleep 10

77

docker exec -it prod-oai-hss /bin/bash -c “killall --signal SIGKILL oai_hss tshark
tcpdump”
docker exec -it prod-oai-mme /bin/bash -c “killall --signal SIGKILL oai_mme tshark
tcpdump”
docker exec -it prod-oai-spgwc /bin/bash -c “killall --signal SIGKILL oai_spgwc tshark
tcpdump”
docker exec -it prod-oai-spgwu-tiny /bin/bash -c “killall --signal SIGKILL oai_spgwu
tshark tcpdump”

3. Recover the Logs, Configurations, and Traces

rm -Rf archives
mkdir -p archives/oai-hss-cfg archives/oai-mme-cfg archives/oai-spgwc-cfg archives/oai-
spgwu-cfg

Retrieve the modified configuration files.
docker cp prod-oai-hss:/openair-hss/etc/. archives/oai-hss-cfg
docker cp prod-oai-mme:/openair-mme/etc/. archives/oai-mme-cfg
docker cp prod-oai-spgwc:/openair-spgwc/etc/. archives/oai-spgwc-cfg
docker cp prod-oai-spgwu-tiny:/openair-spgwu-tiny/etc/. archives/oai-spgwu-cfg

Retrieve the modified logs.
docker cp prod-oai-hss:/openair-hss/hss_check_run.log archives
docker cp prod-oai-mme:/openair-mme/mme_check_run.log archives
docker cp prod-oai-spgwc:/openair-spgwc/spgwc_check_run.log archives
docker cp prod-oai-spgwu-tiny:/openair-spgwu-tiny/spgwu_check_run.log archives

Retrieve the packet captures (PCAP).
docker cp prod-oai-hss:/tmp/hss_check_run.pcap archives
docker cp prod-oai-mme:/tmp/mme_check_run.pcap archives
docker cp prod-oai-spgwc:/tmp/spgwc_check_run.pcap archives
docker cp prod-oai-spgwu-tiny:/tmp/spgwu_check_run.pcap archives

Create a zip file for the data.

78

zip -r -qq docker_files.zip archives

4. Restart EPC Containers script

1. Create a script file named “restart_4g_containers.sh.” The script will stop all 4G

docker containers.

!#/bin/bash
docker container restart prod-cassandra prod-oai-hss prod-oai-mme prod-oai-spgwc prod-
oai-spgwu-tiny

C. OPTIONAL FLAGS FOR LAUNCHING THE ENB/GNB

Running the eNB and the gNB is covered in Chapter III. This section lists the

different flags that could be used to launch the eNB and gNB. Table 13 lists optional flags

that could be used to launch the eNB.

Table 13. Optional flags to Launch the eNB. Adapted from [46].

eNB
Flags Uses

--basicsim

enables the eNB to execute by emulating the
radio head (USRP device). It allows
connecting the OAI UE and the OAI eNodeB
through a network interface carrying the time-
domain samples, getting rid of over the air
unpredictable perturbations.

--noS1
used to inject/receive user-plane traffic over a
virtual IP Point-to-Point interface, also known
as a TUN interface.

--nokrnomod 0 used to enforce kernel modules instead of tun.

--nokrnomod 1 used to enforce the preferred and supported
tunnel interface

Table 14 lists optional flags that could be used to launch the gNB and a brief

description of their use.

79

Table 14. Optional flags to Launch the gNB. Adapted from [46].

gNB
Flags Uses

--ue-fo-
compensation

enables the frequency offset compensation at
the UE. This command is useful when running
over the air or without an external clock/time
source

--usrp-args sed to identify the USRP and set some basic
parameters (like the clock source)

--clock-source sets the clock source to internal or external

--phy-test flag used to run the UE without the support of eNB
or EPC in NSA mode

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

APPENDIX C. INSTALLING DIAGPARSER AND MINICOM

A. INSTALLING DIAGPARSER AND MINICOM

1. Download Wireshark from their official website (https://www.wireshark.org)

and install it on a Linux 16.04 LTS PC or higher. Quectel has also been tested on Windows

Subsystem for Linux (WSL).

2. Install Diag Parser.

sudo apt-get update
sudo apt-get install libgnutls28-dev make gcc g++ libtalloc-dev autoconf automake make
debhelper debscripts libtool build-essential pkg-config libpsclite-dev -y

3. Install Diag Parser

git clone git://github.com/moiji-mobile/diag-parser
cd diag-parser
. /build/build_local.sh

4. Install Minicom

sudo apt-get install minicom -y
5. Install Android Tools

sudo apt-get install android-tools-adb android-tools-fastboot -y
sudo apt-get install gcc-arm-linux-gnueabi g++-arm-linux-gnueabi -y
sudo apt-get install gdb-arm-none-eabi -y
sudo apt-get install gdb -y
sudo apt-get install gcc-arm-none-eabi -y
sudo apt-get install libc6-armel-cross libc6-dev-armel-cross binutils-arm-linux-gnueabi
libncurses5-dev -y
sudo apt-get install binwalk -y

6. Install NetCat.

sudo apt-get install netcat

https://www.wireshark.org/

82

B. CONNECTING TO QUECTEL MODULE

1. Install xdotool

sudo apt update

sudo apt install xdotool -y

2. Create a script to collect traffic. This script will launch five separate terminal

tabs—each performing a different function.

#!/bin/bash

Terminal 1—Start monitoring traffic on port 4729.

gnome-terminal --tab

xdotool key Control+Page_Down

cd

xdotool key KP_Enter

xdotool type nc\ -u\ -l\ -p\ 4729

xdotool key KP_Enter

xdotool sleep 10

Terminal 2 - Launch Wireshark from CLI and monitor port 4729.

gnome-terminal --tab

xdotool key Control+Page_Down

xdotool type cd\ ~/Documents/capstone

xdotool key KP_Enter

xdotool type ./1terminal.sh

xdotool key KP_Enter

83

xdotool type sudo\ wireshark\ -i\ lo\ -f”‘“port\ 4729”‘“\ -k

xdotool key KP_Enter

xdotool type [password]

xdotool key KP_Enter

xdotool sleep 15

Terminal 3 - Monitor DiagParser traffic

gnome-terminal --tab

xdotool key Control+Page_Down

xdotool type sudo\ minicom\ -s

xdotool key KP_Enter

xdotool type [password]

xdotool key KP_Enter

xdotool sleep 3

Terminal 4—Use DiagParser to decode Qualcomm DIAG format from the Quectel
Module.

gnome-terminal --tab

xdotool key Control+Page_Down

xdotool type cd\ ~/diag-parser

xdotool key KP_Enter

xdotool type sudo\ ./diag_parser\ -g\ 127.0.0.1\ -i\ /dev/ttyUSB0\ -v

xdotool key KP_Enter

xdotool type [password]

xdotool key KP_Enter

84

xdotool sleep 3

Terminal 5 - Send commands to the modem.

gnome-terminal --tab

xdotool key Control+Page_Down

xdotool type sudo\ minicom\ -s

xdotool key KP_Enter

xdotool type [password]

xdotool key KP_Enter

3. The next steps are performed manually on the Linux terminal’s Tabs 3 and 5.

First, the minicom virtual port will need to be changed to /dev/ttyUSB2 to send ATtention

(AT) commands from the modem. AT commands are a set of instructions used to control

the modem.

3.a. Type “sudo minicom-s” in the terminal and enter the password if prompted.

3.b. Use the keyboard to select “serial port setup.”

3.c. Select Serial Device by typing “A.”

3.d. Change “/dev/tty8” to “/dev/ttyUSB2”.

3.e. Press “enter” on the keyboard twice.

3.f. Select “Exit.”

After completing step 3, AT Commands were used to reconfigure the Quectel

modem or query the modem for information. Alternatively, a simpler method of sending

AT commands to the Quectel modem is to use QNavigator.

85

C. AT COMMANDS

Table 15 list the common AT commands that were used when interacting with the

Quectel Module using minicom. A comprehensive list of AT Commands can be found at

[47].

Table 15. AT Commands Used

AT Commands
Commands Description Output

ATE1 display user input. echoes [user input]

AT+QCCID show ICCID +QCCID:
8991920123456789000F

AT+QOPN displays operator names [list operators]

AT+QNWINFO Query Network Information
+QNWINFO: “FDD LTE,”
“311480,” “LTE BAND 5,”
2561

AT+CGREG Network Registration Status OK

AT+GMI request manufacturer information Quectel

AT+GMM request TA model identification EC20

AT+GMR request TA revision identification
software release EC20EQAR02A13E2G

Table 16 is a quick reference of the minicom command. More about minicom can

be found by performing the manual command (e.g., man minicom). The man page can be

found online at [48].

Table 16. Minicom Quick Command Reference

Minicom
Commands Description

Ctrl+a, c clears the screen
Ctrl+a, e local echo on/off
Ctrl+a, i cursor key mode
Ctrl+a, j suspend minicom
Ctrl+a, m initialize modem

86

Minicom
Commands Description

Ctrl+a, o configure minicom modem
Ctrl+a, q quits minicom
Ctrl+a, s send files
Ctrl+a, u add carriage return
Ctrl+a, y paste files
Ctrl+a, z brings up minicom command summary

87

APPENDIX D. COMMAND LINE CHEAT SHEET

This appendix lists various Linux and Docker commands we used in the

methodology and simulation phase of this capstone. First, the commonly used Linux

command is listed in Section 1, the Docker commands are listed in Section 2.

A. COMMON LINUX COMMAND LINE USED

This section covers useful Linux commands for this capstone, as shown in Table

17. The commands covered in this section are not inclusive of the commands used during

this project and covers a list of common commands and commands that make debugging

and troubleshooting easier. More information from each command can be found from its

respective Linux manual page. To find a manual page for a command enter the command

followed by “man.” To launch the manual page for the “man” command, enter “man man”

in the Linux terminal.

Table 17. Useful Linux Commands Used. Source [49].

Commands Description Example Use on Capstone

apt list filter list available apt packages for a
specific package. apt list | grep [package_name]

cat
concatenate files to output (default is
screen). The command is used to
read the data in a file.

cat [filename]

brctl managed bridged virtual networks.
delbr option deletes the network brctl delbr [virtual_network_name]

chmod modify file permission. -x switch the
file to execution permission. chmod +x [filename]

df

displays information of device name,
total blocks, total disk space, used
disk space, available disk space, and
mount point one a file system. -h
displays the information in a human-
readable format [50].

df -h

88

Commands Description Example Use on Capstone

du

displays information on disk usage. -
-max-depth-N prints the entire
directory if it is N or fewer levels
below the command line argument. -
h displays the information in a
human-readable format. du redirects
the output of the command to more.
more print the information one
screen at a time.

--max-depth=[N] -h | more

gedit Launch the gedit text editor. gedit [filename] &

grep

command-line utility for searching
for plain text. - is recursive. -n is the
line number. -w is to match the
whole word. -e is the pattern used to
search.

grep -rnw “[path]” -e “[string]”

ifconfig View and configure the kernel-
resident network interfaces. ifconfig

ip link

configure the virtual networks on the
host machine. The set option
establishes the virtual bridge up or
down. The del option deletes the
virtual network

sudo ip link set [virtual_link_name] [up or
down]
sudo ip link del [virtual_link_name]

ip route list all of the route entries in the
kernel. sudo ip route

ip route add add a route to the destination ipv4
network via the local gateway.

sudo ip route add [ip4_address] via gateway
[GW_ipv4_address]

ip route del delete a route for destination network
via interface device.

sudo ip route del [ipv4_address] via
[local_ipv4_interface_address] dev enp0s25

ip route
flush

removes all of the current routes in
the routing table. sudo ip route flush table main

ls
display a list of files and folders in a
given directory. The -1 option list
each file and folder on a new line.

ls [option]

newgrp

update group ID during a login
session. prevent having to log off
after updating the group with the
current user logged in.

newgrp [group name]

ping
used for troubleshooting network
connections. -c [N] sends N number
of ping requests to the destination.

ping -c [N] [ipv4_address]

ps -a displays a list of processes running
on the system. -A displays all ps -A

89

Commands Description Example Use on Capstone
processes currently running on the
system.

pwd print a copy of the working directory pwd
reboot restarts the host machine. reboot
route display and alter the routing table. route

sudo

used to run a Linux command with
elevated privileges. sudo [command]

add group to the sudoers list group add [group name]
add a user to a group. -a appends a
user to a group. -G
modifies additional user groups.

usermod -aG [groupname] [username]

service starts, stop, or restart a particular
service.

sudo service [service_name] start
sudo service [service_name] stop
sudo service [service_name] restart

sleep suspend the program execution for a
specified amount of time sleep [time]

top
displays a dynamic list of a real-time
view of processes currently running
on the system.

top

B. USEFUL DOCKER COMMAND LINE USED

This section covers useful docker commands for this capstone, as detailed in Table

18. The commands covered in this section are not inclusive of the commands used during

this project and cover a list of common commands and commands that make debugging

and troubleshooting easier.

Table 18. Useful Docker Commands Used. Source [51].

Commands Description Example

docker
container

inspect display detailed information
about one or more containers docker container inspect [options]

prune remove all unused containers docker container prune --force
restart restart one or more container docker container restart [options]
rm remove one or more containers docker container rm [options]

90

Commands Description Example

stats
display a live stream of
container(s) resource usage
statistics

docker container stats [container
name]

start start one or more stopped
containers docker container start [options]

stop stop one or more running
containers docker container stop [options]

docker
image

ls list images docker image ls
prune remove all unused images docker image prune --force
rm remove one or more images docker image rm [options] --force

docker

exec enables command line interface
within the docker container

docker exec -it [contaiter name]
/bin/bash

 view status of cassandra
database

docker exec -it prod-cassandra /bin/
bash -c “nodetool status”

help detailed information about a
specific docker command docker [option] --help

docker
network

 connect a container to a network docker network connect [options]
network container

disconnect disconnect a container from a
network

docker network disconnect [options]
network container

inspect display detailed information
about one or more networks docker network inspect [options]

ls list networks docker network ls [options]
docker

network
prune remove all unused networks docker network prune --force
rm remove one or more networks docker network rm [options] --force

docker rm remove one or more containers docker rm [options] --force
docker ps list containers docker ps [options]

docker version show docker version
information docker version

Docker - Uninstall

Commands Description
dpkg -l | grep -i docker identify which package you have installed

sudo apt-get purge -y docker-engine docker
docker.io docker-ce docker-ce-cli

sudo apt-get autoremove -y --purge docker-engine
docker docker.io docker-ce

remove images, containers, volumes, or user-
created configuration files

sudo rm -rf /var/lib/docker /etc/docker
sudo rm /etc/apparmor.d/docker

sudo groupdel docker
sudo rm -rf /var/run/docker.sock

remove docker from the system completely

91

APPENDIX E. LATENCY RESULTS

This appendix shows the results from the ping tests performed from the OnePlus

6T and the Google Pixel 4a 5G while connected to the OpenAirInterface 4G LTE network.

Table 19. Overall Ping Results between OnePlus 6T and Google Pixel 4a 5G

OnePlus 6T

Success
 Loss
rate Avg RTT

 Best
RTT

 Worst
RTT

0.987 0.013 38.72 27.0 76.87

Google Pixel

Success
 Loss
rate Avg RTT

 Best
RTT

 Worst
RTT

0.989 0.011 42.114 29.6 81.3

92

Table 20. Ping Results

OnePlus 6T Ping Test to Google Pixel
Ping Test to Google DNS Server (8.8.8.8) Google DNS Server (8.8.8.8)

Success
Loss
rate

 Avg
RTT

 Best
RTT

 Worst
RTT

 std.
Dev Success

 Loss
rate

 Avg
RTT

 Best
RTT

Worst
RTT

 std.
Dev

95% 5% 38.94 29.6 52.9 4.85 97% 3% 40.82 30.9 51.8 3.89
99% 1% 37.32 28.2 65 7.2 99% 1% 41.28 32 67.4 5.56
99% 1% 37.58 28.7 57.5 5.98 100% 0% 42.22 32.4 73.9 4.94

100% 0% 39.91 27.4 79.9 9.38 96% 4% 42.26 32.2 70.2 5.84
97% 3% 39 29 58.8 5.15 99% 1% 42.19 29.8 78.9 7.91
98% 2% 37.8 28.2 58.3 5.62 100% 0% 41.97 29.8 74.1 6.61

99% 1% 39.46 29.1 59.8 6.26 100% 0% 43.85 29.6 78.7 8.51
100% 0% 38.8 27.9 68.8 7.06 100% 0% 43.71 30.6 78.6 8.38
98% 2% 38.31 29.6 66.4 6.45 100% 0% 42.13 31.2 67.4 5.84

95% 5% 38.48 28.9 59.7 5.11 97% 3% 41.89 30.9 68 5.36
Ping Test to Cloudfare (1.1.1.1) Ping Test to Cloudfare (1.1.1.1)

Success

Loss
rate

 Avg
RTT

 Best
RTT

 Worst
RTT

 std.
Dev Success

 Loss
rate

 Avg
RTT

 Best
RTT

Worst
RTT

 std.
Dev

98% 2% 40.47 29 69.7 6.97 98% 2% 42.85 31.9 59.4 4.94

97% 3% 40.64 29.1 69.3 7.64 100% 0% 43.02 32.8 65.5 5.57
99% 1% 39.28 29.1 58.3 5.55 100% 0% 42.71 32.5 71.9 6.1

100% 0% 40.64 30.5 69.2 7.75 100% 0% 42.59 32 58.1 4.84

99% 1% 41.52 29.5 65.4 7.57 100% 0% 41.34 30.9 51.3 4.05
97% 3% 38.95 30.2 52.3 5.2 99% 1% 42.09 31.1 57 4.6
99% 1% 40.05 29.6 68.1 7.65 97% 3% 41.98 31.8 50.5 4.06

100% 0% 38.87 29.1 60.6 6.47 100% 0% 41.35 32 49 3.84
100% 0% 37.72 28.7 56.1 5.8 100% 0% 43.18 33.2 76.1 5.52
99% 1% 42.22 29.4 68.1 9.23 100% 0% 42.26 31.4 69.8 5.66

Ping Test to ATT Primary DNS Server (68.94.156.1) Ping Test to ATT Primary DNS Server (68.94.156.1)

Success
Loss
rate

Avg
RTT

Best
RTT

 Worst
RTT

 std.
Dev Success

Loss
rate

 Avg
RTT

 Best
RTT

Worst
RTT

 std.
Dev

95% 2% 37.9 27 72.3 6.31 97% 3% 41.88 31.1 55.1 4.54
100% 0% 36.92 27.3 54.2 4.52 97% 3% 41.74 29.8 59.2 4.68
100% 0% 37.63 29 65.2 6.79 100% 0% 41.65 30 74.1 7.29

100% 0% 36.39 28.5 56.6 4.64 98% 2% 41.64 30.5 75.3 7.41
100% 0% 37.27 28.1 64.7 5.24 99% 1% 42.4 31.4 70.3 6.89
98% 2% 39.01 28.1 67.9 28.1 100% 0% 39.66 29.6 46.8 3.56

97% 3% 37.12 27.9 76.2 7.03 97% 3% 41.45 31.9 54.2 4.42
100% 0% 37.03 27.8 57.8 5.75 97% 3% 42.12 32.3 68 5.81
100% 0% 38.22 30.4 53.9 4.22 100% 0% 42.69 30.8 81.3 8.82

100% 0% 38.17 28 73.3 7.99 100% 0% 42.5 30.5 72.8 7.25
99% 1% 37.566 28.21 64.21 8.059 99% 2% 41.773 30.79 65.71 6.067

93

APPENDIX F. IPERF RESULTS

A. IPERF TEST FROM UE TO EPC

--
Server listening on TCP port 5001
Binding to local address 192.168.1.7
TCP window size: 128 KByte (default)
--

Table 21. Full iPerf Results from UE to EPC

Server UE
[ID] Interval Transfer Bandwidth Bandwidth
[4] 0.0- 9.9 sec 1.00 MBytes 850 Kbits/sec 962 Kbits/sec
[4] 0.0-46.2 sec 1.00 MBytes 182 Kbits/sec 24.9 Mbits/sec
[4] 0.0- 1.1 sec 1.00 MBytes 7.43 Mbits/sec 22.6 Mbits/sec
[4] 0.0-164.4 sec 1.00 MBytes 7.16 Kbits/sec 25.5 Mbits/sec
[4] 0.0- 1.1 sec 1.00 MBytes 7.47 Mbits/sec 29.8 Mbits/sec

B. IPERF TEST FROM UE TO ENB

--
Server listening on TCP port 5001
Binding to local address 192.168.1.8
TCP window size: 128 KByte (default)
--

Table 22. Full iPerf Results from UE to eNB

Server UE
[ID] Interval Transfer Bandwidth Bandwidth
[4] 0.0- 1.1 sec 1.00 MBytes 7.48 Mbits/sec 30.8 Mbits/sec
[4] 0.0- 2.5 sec 1.00 MBytes 3.30 Mbits/sec 5.15 Mbits/sec
[4] 0.0-18.0 sec 1.00 MBytes 465 Kbits/sec 5.7 Mbits/sec
[4] 0.0- 1.3 sec 1.00 MBytes 6.29 Mbits/sec 25.3 Mbits/sec
[4] 0.0-85.6 sec 1.00 MBytes 98.0 Kbits/sec 32.9 Mbits/sec

94

C. IPERF TEST FROM UE TO GNB

The iPerf tests from the Google Pixel 4a 5G to the gNB cause the eNB to experience

stack smashing. Even when the iPerf tests were completed, the iPerf result on the server

(gNB) did not display the server’s bandwidth.

--
Server listening on TCP port 5001
TCP window size: 128 KByte (default)
--

Table 23. iPerf Results from UE to gNB

Server UE
[ID] Interval Transfer Bandwidth Bandwidth
[3] 0.0 - 96.8 sec 1 Mbytes - 86 Kbits/sec
[3] 0.0 - 63.3 sec 1 Mbytes - 1.33 Kbits/sec
[3] 0.0 - 66.7 sec 1 Mbytes - 126 Kbits/sec

95

APPENDIX G. 4G AND 5G FREQUENCY OPERATING BAND
CHARTS

Table 24. 4G LTE Operating Bands. Source [52].

E-UTRA
Operating

Band

Uplink (UL) operating band
BS receive / UE transmit

Downlink (DL) operating
band BS transmit / UE

receive

Duplex
Mode

1 1920 MHz—1980 MHz 2110 MHz—2170 MHz FDD
2 1850 MHz—1910 MHz 1930 MHz—1990 MHz FDD
3 1710 MHz—1785 MHz 1805 MHz—1880 MHz FDD
4 1710 MHz—1755 MHz 2110 MHz—2155 MHz FDD
5 824 MHz—849 MHz 869 MHz—894MHz FDD
61 830 MHz—840 MHz 875 MHz—885 MHz FDD
7 2500 MHz—2570 MHz 2620 MHz—2690 MHz FDD
8 880 MHz—915 MHz 925 MHz—960 MHz FDD
9 1749.9 MHz—1784.9 MHz 1844.9 MHz—1879.9 MHz FDD
10 1710 MHz—1770 MHz 2110 MHz—2170 MHz FDD
11 1427.9 MHz—1447.9 MHz 1475.9 MHz—1495.9 MHz FDD
12 699 MHz—716 MHz 729 MHz—746 MHz FDD
13 777 MHz—787 MHz 746 MHz—756 MHz FDD
14 788 MHz—798 MHz 758 MHz—768 MHz FDD
15 Reserved Reserved FDD
16 Reserved Reserved FDD
17 704 MHz—716 MHz 734 MHz—746 MHz FDD
18 815 MHz—830 MHz 860 MHz—875 MHz FDD
19 830 MHz—845 MHz 875 MHz—890 MHz FDD
20 832 MHz—862 MHz 791 MHz—821 MHz FDD
21 1447.9 MHz—1462.9 MHz 1495.9 MHz—1510.9 MHz FDD
22 3410 MHz—3490 MHz 3510 MHz—3590 MHz FDD
231 2000 MHz—2020 MHz 2180 MHz—2200 MHz FDD
24 1626.5 MHz—1660.5 MHz 1525 MHz—1559 MHz FDD
25 1850 MHz—1915 MHz 1930 MHz—1995 MHz FDD
26 814 MHz—849 MHz 859 MHz—894 MHz FDD
27 807 MHz—824 MHz 852 MHz—869 MHz FDD
28 703 MHz—748 MHz 758 MHz—803 MHz FDD
29 N/A 717 MHz—728 MHz FDD2

30 2305 MHz—2315 MHz 2350 MHz—2360 MHz FDD
31 452.5 MHz—457.5 MHz 462.5 MHz—467.5 MHz FDD
32 N/A 1452 MHz—1496 MHz FDD2

33 1900 MHz—1920 MHz 1900 MHz—1920 MHz TDD
34 2010 MHz—2025 MHz 2010 MHz—2025 MH TDD
35 1850 MHz—1910 MHz 1850 MHz—1910 MHz TDD

96

36 1930 MHz—1990 MHz 1930 MHz—1990 MHz TDD
37 1910 MHz—1930 MHz 1910 MHz—1930 MHz TDD
38 2570 MHz—2620 MHz 2570 MHz—2620 MHz TDD
39 1880 MHz—1920 MHz 1880 MHz—1920 MHz TDD
40 2300 MHz—2400 MHz 2300 MHz—2400 MHz TDD
41 2496 MHz 2690 MHz 2496 MHz 2690 MHz TDD
42 3400 MHz—3600 MHz 3400 MHz—3600 MHz TDD
43 3600 MHz—3800 MHz 3600 MHz—3800 MHz TDD
44 703 MHz—803 MHz 703 MHz—803 MHz TDD
45 1447 MHz—1467 MHz 1447 MHz—1467 MHz TDD
46 5150 MHz—5925 MHz 5150 MHz—5925 MHz TDD8,9

47 5855 MHz—5925 MHz 5855 MHz—5925 MHz TDD
48 3550 MHz—3700 MHz 3550 MHz—3700 MHz TDD
…
64 Reserved
65 1920 MHz—2010 MHz 2110 MHz—2200 MHz FDD
66 1710 MHz—1780 MHz 2110 MHz—2200 MHz FDD
67 N/A 738 MHz—758 MHz FDD2

68 698 MHz—728 MHz 753 MHz—783 MHz FDD
69 N/A 2570 MHz—2620 MHz FDD
70 1695 MHz—1710 MHz 1995 MHz—2020 MHz FDD2

NOTE 1: Band 6, 23 is not applicable

NOTE 2:

Restricted to E-UTRA operation when carrier aggregation is configured.
The downlink operating band is paired with the uplink operating band
(external) of the carrier aggregation configuration that is supporting the
configured Pcell.

NOTE 3:
A UE that complies with the E-UTRA Band 65 minimum requirements in
this specification shall also comply with the E-UTRA Band 1 minimum
requirements.

NOTE 4: The range 2180–2200 MHz of the DL operating band is restricted to E-
UTRA operation when carrier aggregation is configured.

NOTE 5: A UE that supports E-UTRA Band 66 shall receive in the entire DL
operating band

NOTE 6:
A UE that supports E-UTRA Band 66 and CA operation in any CA band
shall also comply with the minimum requirements specified for the DL
CA configurations CA_66B, CA_66C and CA_66A-66A

NOTE 7:
A UE that complies with the E-UTRA Band 66 minimum requirements in
this specification shall also comply with the E-UTRA Band 4 minimum
requirements.

NOTE 8: This band is an unlicensed band restricted to licensed-assisted operation
using Frame Structure Type 3

NOTE 9: In this version of the specification, restricted to E-UTRA DL operation
when carrier aggregation is configured.

97

NOTE 10:

The range 2010–2020 MHz of the DL operating band is restricted to E-
UTRA operation when carrier aggregation is configured and TX-RX
separation is 300 MHz The range 2005–2020 MHz of the DL operating
band is restricted to E-UTRA operation when carrier aggregation is
configured and TX-RX separation is 295 MHz

Table 25. 5G NR FR1 Operating Bands. Source [53].

NR
Operating

Band

Uplink (UL) operating band
BS receive / UE transmit

Downlink (DL) operating
band BS transmit / UE

receive

Duplex
Mode

n1 1920 MHz—1980 MHz 2110 MHz—2170 MHz FDD
n2 1850 MHz—1910 MHz 1930 MHz—1990 MHz FDD
n3 1710 MHz—1785 MHz 1805 MHz—1880 MHz FDD
n5 824 MHz—849 MHz 869 MHz—894 MHz FDD
n7 2500 MHz—2570 MHz 2620 MHz—2690 MHz FDD
n8 880 MHz—915 MHz 925 MHz—960 MHz FDD
n12 699 MHz—716 MHz 729 MHz—746 MHz FDD
n14 788 MHz—798 MHz 758 MHz—768 MHz FDD
n18 815 MHz—830 MHz 860 MHz—875 MHz FDD
n20 832 MHz—862 MHz 791 MHz—821 MHz FDD
n25 1850 MHz—1915 MHz 1930 MHz—1995 MHz FDD
n26 814 MHz—849 MHz 859 MHz—894 MHz FDD
n28 703 MHz—748 MHz 758 MHz—803 MHz FDD
n29 N/A 717 MHz—728 MHz SDL
n303 2305 MHz—2315 MHz 2350 MHz—2360 MHz FDD
n34 2010 MHz—2025 MHz 2010 MHz—2025 MHz TDD

n3810 2570 MHz—2620 MHz 2570 MHz—2620 MHz TDD
n39 1880 MHz—1920 MHz 1880 MHz—1920 MHz TDD
n40 2300 MHz—2400 MHz 2300 MHz—2400 MHz TDD
n41 2496 MHz—2690 MHz 2496 MHz—2690 MHz TDD
n46 5150 MHz—5925 MHz 5150 MHz—5925 MHz TDD13

n4711 5855 MHz—5925 MHz 5855 MHz—5925 MHz TDD
n48 3550 MHz—3700 MHz 3550 MHz—3700 MHz TDD
n50 1432 MHz—1517 MHz 1432 MHz—1517 MHz TDD1

n51 1427 MHz—1432 MHz 1427 MHz—1432 MHz TDD
n53 2483.5 MHz—2495 MHz 2483.5 MHz—2495 MHz TDD
n65 1920 MHz—2010 MHz 2110 MHz—2200 MHz FDD4

n66 1710 MHz—1780 MHz 2110 MHz—2200 MHz FDD
n70 1695 MHz—1710 MHz 1995 MHz—2020 MHz FDD
n71 663 MHz—698 MHz 617 MHz—652 MHz FDD
n74 1427 MHz—1470 MHz 1475 MHz—1518 MHz FDD
n75 N/A 1432 MHz—1517 MHz SDL

98

n76 N/A 1427 MHz—1432 MHz SDL
n7712 3300 MHz—4200 MHz 3300 MHz—4200 MHz TDD
n78 3300 MHz—3800 MHz 3300 MHz—3800 MHz TDD
n79 4400 MHz—5000 MHz 4400 MHz—5000 MHz TDD
n80 1710 MHz—1785 MHz N/A SUL
n81 880 MHz—915 MHz N/A SUL
n82 832 MHz—862 MHz N/A SUL
n83 703 MHz—748 MHz N/A SUL
n84 1920 MHz—1980 MHz N/A SUL
n86 1710 MHz—1780 MHz N/A SUL
n89 824 MHz—849 MHz N/A SUL
n90 2496 MHz—2690 MHz 2496 MHz—2690 MHz TDD5

n91 832 MHz—862 MHz 1427 MHz—1432 MHz FDD9

n92 832 MHz—862 MHz 1432 MHz—1517 MHz FDD9

n93 880 MHz—915 MHz 1427 MHz—1432 MHz FDD9

n94 880 MHz—915 MHz 1432 MHz—1517 MHz FDD9

n958 2010 MHz—2025 MHz N/A SUL
n9614 5925 MHz—7125 MHz 5925 MHz—7125 MHz TDD13

NOTE 1:
UE that complies with the NR Band n50 minimum requirements in this
specification shall also comply with the NR Band n51 minimum
requirements

NOTE 2:
UE that complies with the NR Band n75 minimum requirements in this
specification shall also comply with the NR Band n76 minimum
requirements.

NOTE 3: Uplink transmission is not allowed at this band for UE with external
vehicle mounted antennas.

NOTE 4:
A UE that complies with the NR Band n65 minimum requirements in this
specification shall also comply with the NR Band n1 minimum
requirements.

NOTE 5:

Unless otherwise stated, the applicability of requirements for Band n90 is
in accordance with that for Band n41; a UE supporting Band n90 shall
meet the requirements for Band n41. A UE supporting Band n90 shall
also support band n41.

NOTE 6: A UE that supports NR Band n66 shall receive in the entire DL operating
band.

NOTE 7:

A UE that supports NR Band n66 and CA operation in any CA band shall
also comply with the minimum requirements specified for the DL CA
configurations CA_n66B and CA_n66(2A) in the current version of the
specification.

NOTE 8: This band is applicable in China only.

NOTE 9: Variable duplex operation does not enable dynamic variable duplex
configuration by the network, and is used such that DL and UL frequency

99

ranges are supported independently in any valid frequency range for the
band.

NOTE 10: When this band is used for V2X SL service, the band is exclusively used
for NR V2X in particular regions.

NOTE 11: This band is unlicensed band used for V2X service. There is no expected
network deployment in this band.

NOTE 12: In the USA this band is restricted to 3450—3550 MHz and 3700—3980
MHz

NOTE 13: This band is restricted to operation with shared spectrum channel access
as defined in 37.213.

NOTE 14: This band is applicable in the USA only subject to FCC Report and Order
FCC 20- 51

100

THIS PAGE INTENTIONALLY LEFT BLANK

101

APPENDIX H. 3GPP CORE NETWORKS RADIO-ACCESS
TECHNOLOGY

This appendix outlines the different radio-access deployment technologies. The

different 3GPP compliant deployment models are depicted in Figure 25.

“c” indicates the control plane (dotted line) and “u” (solid line) indicate the user plane.

Figure 25. Core Networks Deployment Models. Source [54].

• Option 1 is the LTE network consisting of the EPC as the core and eNB as

the base station. “Network Configuration 1” and “Network Configuration

2” are Option 1.

• Option 2 consists of the 5G Core Network (5GCN) as the core and the gNB

as the base station.

• Option 3 consists of the EPC as the core and the eNB and gNB as the base

stations. “Network Configuration 3” is set up as Option 3. In Option 3, the

eNB handles the control plane and user plane functions, and the gNB

handles the user plane functions.

• Option 4 consists of the 5GCN as the core and the eNB and gNB as the base

station. In Option 4, the eNB handles only user plane functions, and the

gNB handles user plane and control plane functions.

• Option 5 consists of the 5GCN as the core and an eNB as the base station.

102

• Option 7 consists of the 5GCN as the core and the eNB and gNB as the base

stations. In Option 7, the eNB handles the control and user plane functions,

and the gNB handles only user plane functions.

103

SUPPLEMENTAL FILE STRUCTURE

This appendix provides lists the supplemental files provided with this research.

A. HSS FILE STRUCTURE

“acl.conf” Configuration file for the peer whitelist extension.

“cacert.pem” File containing the HSS CA certificate.

“hss.cert.pem” File containing the HSS public key.

“hss_rel14.conf” MySQL cassandra_Server_IP address configuration file.

“hss_rel14.json” Data structure and objects for HSS configurations.

“hss_rel14_fd.conf” Data structure and objects for freeDiameter configurations.

“oss.json” Data structure and objects for logging.

B. MME FILE STRUCTURE

“mme.cacert.pem” File containing the MME CA certificate.

“mme.cakey.pem” File containing the MME private key.

“mme.cert.pem” File containing the MME public key.

“mme.conf” MME configuration file.

“mme.csr.pem” File containing the MME certificate signing request.

“mme_fd.conf” freeDiameter configuration for the MME.

“mme-cfg.sh” MME configuration file.

C. SPGW-C FILE STRUCTURE

“spgwc-cfg.sh” File containing the current SPGW-C configurations.

104

D. SPGW-U FILE STRUCTURE

“spgwu-cfg.sh” File containing the current SPGW-U configurations.

105

LIST OF REFERENCES

[1] M. Goldstein, “Next-generation wireless overview & outlook,” Slideshare, Jul.
25, 2020. https://www.slideshare.net/markgirc/nextgeneration-wireless-overview-
outlook-update-72520

[2] Anritsu, “Key technical aspects of 5G-NR,” 2021. https://www.anritsu.eu/5G-
Poster.html?utm_campaign=5G_poster&utm_medium=banner&utm_source=web
site&utm_content=hero_banner (accessed Nov. 03, 2021).

[3] U.S. Department of Defense, “DOD Announces $600 Million for 5G
Experimentation and Testing at Five Installations,” Oct. 08, 2020.
https://www.defense.gov/News/Releases/Release/Article/2376743/dod-
announces-600-million-for-5g-experimentation-and-testing-at-five-installati/

[4] N. Bhandari, S. Devra, and K. Singh, “Evolution of Cellular Network: From 1G
to 5G,” International Journal of Engineering and Techniques, vol. 3, no. 5, p. 9,
Oct. 2017.

[5] M. Obaidat, F. Zarai, and P. Nicopolitidis, “Modeling and Simulation of
Computer Networks and Systems - 1st Edition,” Elsevier, Apr. 21, 2015.
https://www.elsevier.com/books/modeling-and-simulation-of-computer-networks-
and-systems/obaidat/978-0-12-800887-4

[6] Liane Cassavoy, “How Fast Is 4G LTE Wireless Service?,” Lifewire, Feb. 11,
2021. https://www.lifewire.com/how-fast-is-4g-wireless-service-577566

[7] Pew Research Center, “Demographics of Mobile Device Ownership and Adoption
in the United States,” Pew Research Center, Apr. 07, 2021.
https://www.pewresearch.org/internet/fact-sheet/mobile/?menuItem=011fca0d-
9756-4f48-b352-d58f343696bf

[8] D. Chandramouli, Rainer Liebhart, and Juho Pirskanen, 5G for the Connected
World, First edition. Hoboken, NJ: JohnWiley & Sons Ltd, 2019.

[9] F. Mazda, Telecommunications Engineer’s Reference Book. Oxford ; Boston:
Butterworth-Heinemann, 1993.

[10] C. Cox, An Introduction to LTE: LTE, LTE-Advanced, SAE, VoLTE and 4G
Mobile Communications, Second Edition. West Sussex, United Kingdom: John
Wiley & Sons, Incorporated, 2012.

[11] 3GPP, “Non-Access Stratum (NAS),” NAS. https://www.3gpp.org/technologies/
keywords-acronyms/96-nas (accessed Nov. 02, 2021).

106

[12] S. Yi, S. Chun, Y. Lee, S. Park, and S. Jung, Radio Protocols for LTE and LTE-
Advanced: Yi/Radio Protocols for LTE and LTE-Advanced. Chichester, UK: John
Wiley & Sons, Ltd, 2012. doi: 10.1002/9781118188545.

[13] E. Dahlman, S. Parkvall, and J. Sköld, 4G LTE/LTE-advanced for mobile
broadband, Second edition. Amsterdam ; New York: Elsevier, 2011. [Online].
Available: https://ebookcentral.proquest.com/lib/ebook- nps/
reader.action?docID=680868

[14] “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Link
Control (RLC) protocol specification (3GPP TS 36.322 version 16.0.0 Release
16).” Accessed: Nov. 15, 2021. [Online]. Available: https://www.etsi.org/deliver/
etsi_ts/136300_136399/136322/16.00.00_60/ts_136322v160000p.pdf

[15] “Universal Mobile Telecommunications System (UMTS); LTE; 5G; Non-Access-
Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3 (3GPP TS
24.301 version 15.8.0 Release 15).” Accessed: Nov. 15, 2021. [Online].
Available: https://www.etsi.org/deliver/etsi_ts/124300_124399/124301/
15.08.00_60/ts_124301v150800p.pdf

[16] F. Kaltenberger, A. P. Silva, A. Gosain, L. Wang, and T.-T. Nguyen,
“OpenAirInterface: Democratizing innovation in the 5G Era,” Comput. Netw.,
vol. 176, p. 107284, Jul. 2020, doi: 10.1016/j.comnet.2020.107284.

[17] The Plone Foundation, “End-to-end LTE/EPC network with OpenAirInterface
(OAI) simulated eNB/UE and OAI’s EPC — Emulab.” https://wiki.emulab.net/
wiki/phantomnet/oepc-protected/oai-sim-epc (accessed Jul. 09, 2021).

[18] M. J. Lanoue, “Spoofed Networks: Exploitation of GNSS Security Vulnerability
in 4G and 5G Mobile Networks,” Thesis, Naval Postgraduate School, Monterey,
CA, 2021. [Online]. Available: https://calhoun.nps.edu/bitstream/handle/10945/
67451/
21Jun_Lanoue_Matthew_Needs%20Supplemental.pdf?sequence=4&isAllowed=y

[19] N. Nikaein et al., “Demo: OpenAirInterface: an open LTE network in a PC,” in
Proceedings of the 20th annual international conference on Mobile computing
and networking, Maui Hawaii USA, Sep. 2014, pp. 305–308. doi: 10.1145/
2639108.2641745.

[20] A. Aijaz, B. Holden, and F. Meng, “Open and Programmable 5G Network-in-a-
Box: Technology Demonstration and Evaluation Results,” ArXiv210411074 Cs,
Apr. 2021, Accessed: Jul. 22, 2021. [Online]. Available: http://arxiv.org/abs/
2104.11074

107

[21] C.-C. Chen, R.-G. Cheng, C.-Y. Ho, M. Kanj, B. Mongazon-Cazavet, and N.
Nikaein, “Prototyping of Open Source NB-IoT Network,” in GLOBECOM 2020 -
2020 IEEE Global Communications Conference, Taipei, Taiwan, Dec. 2020, pp.
1–5. doi: 10.1109/GLOBECOM42002.2020.9322398.

[22] S. Fonyi, “Overview of 5G Security and Vulnerabilities,” Cyber Def. Rev., vol. 5,
no. 1, pp. 117–134, 2020.

[23] Range Networks, “OpenBTS-UMTS,” 2014. http://openbts.org/
w/index.php?title=OpenBTS-UMTS

[24] FreedomFi, “Order FreedomFi Gateway(s),” FreedomFi, 2021.
https://freedomfi.com/product/

[25] Software Radio Systems, Benefits of Choosing SRS. Software Radio Systems,
2021. [Online]. Available: https://www.srs.io/

[26] doxygen, free5GRAN. Accessed: Nov. 14, 2021. [Online]. Available:
https://free5g.github.io/free5GRAN-documentation/index.html

[27] Range Networks, “OpenBTS Application Suite Release 4.0 User Manual,” Apr.
15, 2014. http://openbts.org/site/wp-content/uploads/2014/07/OpenBTS-4.0-
Manual.pdf

[28] Magma, “Magma Introduction.” https://magmacore.org/ (accessed Dec. 01,
2021).

[29] E. R. Brand a National Instruments, “USRP B200 USB Software Defined Radio
(SDR),” Ettus Research. https://www.ettus.com/all-products/ub200-kit/ (accessed
Jun. 07, 2021).

[30] “About GNU Radio · GNU Radio.” Accessed: Jun. 07, 2021. [Online]. Available:
https://www.gnuradio.org/about/

[31] A Ghayas, “What is the difference between Node B, eNodeB, and gNB? -
Commsbrief,” COMMSBRIEF. https://commsbrief.com/what-is-the-difference-
between-node-b-enodeb-ng-enb-and-gnb/ (accessed Jun. 06, 2021).

[32] Openair-cn, openair-epc-fed. OpenAirInterface Software Alliance, 2021.
[Online]. Available: https://github.com/OPENAIRINTERFACE/openair-epc-fed

108

[33] European Telecommunications Standards Institute, “Universal Mobile
Telecommunications System (UMTS); LTE; 3G Security; Specification of the
MILENAGE algorithm set: An example algorithm set for the 3GPP authentication
and key generation functions f1, f1*, f2, f3, f4, f5 and f5*; Document 2:
Algorithm specification (3GPP TS 35.206 version 16.0.0 Release 16),” Sophia
Antipolis Cedex - France, ETSI TS 135 206 V16.0.0, Aug. 2020. [Online].
Available: https://www.etsi.org/deliver/etsi_ts/135200_135299/135206/
16.00.00_60/ts_135206v160000p.pdf

[34] Diameter Protocol, “Diameter Protocol Explained: Usage of OP/OPc and
Transport Key,” Diameter Protocol Explained. https://diameter-
protocol.blogspot.com/2013/06/usage-of-opopc-and-transport-key.html (accessed
Oct. 11, 2021).

[35] S. Blacksays, “LTE Network Architecture,” Nick vs Networking, May 13, 2019.
https://nickvsnetworking.com/usim-basics/ (accessed Oct. 11, 2021).

[36] E. R. Brand a National Instruments, “OctoClock Clock Distribution Module with
GPSDO,” Ettus Research. https://www.ettus.com/all-products/octoclock-g/
(accessed Oct. 24, 2021).

[37] OPENAIRINTERFACE/openair-epc-fed. OpenAirInterface Software Alliance,
2021. Accessed: Oct. 17, 2021. [Online]. Available: https://github.com/
OPENAIRINTERFACE/openair-epc-fed/blob/
8b36c7f5cd80ff0a5e633d2a30e44beeb273907f/docs/
CONFIGURE_NETWORKS.md

[38] Florian Kaltenberger, “TESTING_GNB_W_COTS_UE,” GitLab, Jun. 2021.
https://gitlab.eurecom.fr/oai/openairinterface5g/blob/develop/doc/
TESTING_GNB_W_COTS_UE.md

[39] Openairinterface 5G Wireless Implementation, Update SA documentation.
OpenAirInterface Software Alliance, 2021. [Online]. Available:
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/doc/
RUNMODEM.md

[40] Openairinterface 5G Wireless Implementation, TESTING GNB W COTS UE.
Openairinterface 5G Wireless Implementation, 2021. Accessed: Oct. 16, 2021.
[Online]. Available: https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/
develop/doc/TESTING_GNB_W_COTS_UE.md

[41] OpenAirInterface 5G software alliance, “OpenAirInterface – 5G software alliance
for democratising wireless innovation,” OpenAirInterface.
https://openairinterface.org/ (accessed Nov. 03, 2021).

109

[42] T. Byrd, V. Marojevic, and R. P. Jover, “CSAI: Open-Source Cellular Radio
Access Network Security Analysis Instrument,” ArXiv190507617 Cs Eess, May
2019, Accessed: Nov. 01, 2021. [Online]. Available: http://arxiv.org/abs/
1905.07617

[43] Rondeau Research, “VOLK: Vector-Optimized Library of Kernels,” Dec. 10,
2010. http://www.trondeau.com/blog/2010/12/11/volk-vector-optimized-library-
of-kernels.html

[44] Michael Dickens, Installing VOLK. GNU Radio, 2021. [Online]. Available:
https://github.com/gnuradio/volk/blob/
178de94bace71c1abea1cb2f193c9194e8ba0454/README.md

[45] NickvsNetworking, “LTE (4G) – USIM Basics,” Nick vs Networking, May 13,
2019. https://nickvsnetworking.com/usim-basics/

[46] Luis Pereira and Francois Taburet, “OpenAirInterface Functionalities,” GitLab,
Jun. 06, 2021. https://gitlab.eurecom.fr/oai/openairinterface5g/blob/develop/doc/
RUNMODEM.md

[47] Quectel Wireless Solutions Co., Ltd., “EC25 & EC21 AT Commands Manual,”
Nov. 14, 2017. https://sixfab.com/wp-content/uploads/2018/09/
Quectel_EC25EC21_AT_Commands_Manual_V1.2.pdf

[48] Miquel van Smoorenburg and Jukka Lahtinen, “Minicom - Linux manual page,”
Dec. 2013. https://man7.org/linux/man-pages/man1/minicom.1.html

[49] Michael Kerrisk, “The Linux man-pages project,” The Linux man-pages project.
https://www.kernel.org/doc/man-pages/ (accessed Nov. 25, 2021).

[50] Torbjorn Granlund, David MacKenzie, and Paul Eggert, “Linux Man Page - df,”
DF, Apr. 2020. https://linuxcommand.org/lc3_man_pages/df1.html

[51] Docker, “Docker Child Commands,” Docker Documentation, 2021.
https://docs.docker.com/engine/reference/commandline/docker/

[52] European Telecommunications Standards Institute, “LTE; Evolved Universal
Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission
and reception (3GPP TS 36.101 version 14.3.0 Release 14)6101v140300p.pdf,”
Sophia Antipolis Cedex - France, ETSI TS 136 101 V14.3.0, Apr. 2017. [Online].
Available: https://www.etsi.org/deliver/etsi_ts/136100_136199/136101/
14.03.00_60/ts_136101v140300p.pdf

110

[53] European Telecommunications Standards Institute, “5G; NR; User Equipment
(UE) radio transmission and reception; Part 1: Range 1 Standalone (3GPP TS
38.101-1 version 16.9.0 Release 16),” Sophia Antipolis Cedex - France, ETSI TS
138 101–1 V16.9.0, Oct. 2021. [Online]. Available: https://www.etsi.org/deliver/
etsi_ts/138100_138199/13810101/16.09.00_60/ts_13810101v160900p.pdf

[54] E. Dahlman, S. Parkvall, and J. Sköld, 5G NR: the next generation wireless
access technology, Second edition. London San Diego, CA Cambridge, MA
Oxford: Elsevier, Academic Press, 2021.

111

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	21Dec_Jasmin_Jean_First8
	21Dec_Jasmin_Jean_Needs Supplemental
	I. Introduction
	A. Scope
	B. Research Objective
	C. Organization of Capstone

	II. Background and Literature Review
	A. Background
	1. History of Advances in Cellular Technologies
	2. Air Interface Stack
	a. Control Plane
	b. User Plane
	c. PDCP Layer
	d. RLC Layer
	e. MAC Layer
	f. PHY Layer
	g. Air Interface Stack Data Flow

	3. Architecture and Equipment
	a. Architecture and Deployment Models
	b. Evolved Packet Core
	c. eNodeB / gNodeB
	d. OpenAirInterface
	e. Universal Software Radio Peripheral

	B. Literature Review
	1. OpenAirInterface—4G LTE
	2. OpenAirInterface—5G NSA
	3. Comparison to Prior Work
	4. OpenAirInterface Competitors

	III. Methodology
	A. USRP
	B. eNB/gNB
	C. EPC
	D. Provisioning Universal Subscriber Identity Module
	E. Simulation
	1. Network Configuration Setup
	2. Deploying the eNB / gNB
	a. Launch the eNB
	b. Launch the gNB

	3. Connecting the User Equipment
	a. Android ONEPLUS 6T
	b. Google pixel 4a 5G
	c.
	d. Interacting with the Quectel Module Using QNavigator
	e. Collect Cellular Network Air Interface Traffic and Interface with the Quectel Module using Minicom.

	IV. Results
	A. Network Configurations
	1. Network Configuration 1: EPC, eNB, and COTS UE
	2. Network Configuration 2: EPC, eNB1, eNB2, and COTS UE
	3. Network Configuration 3: EPC, eNB, gNB, and COTS UE

	B. Analysis
	1. OpenAirInterface Platform
	2. Evolved Packet Core
	3. eNB
	4. gNB
	5. User Equipment
	6. Network Performance
	7. Network Mobility

	V. Conclusions and Future Work
	A. Conclusions
	B. Future Work

	Appendix A. OpenAirInterface Software Installation Guide
	A. Prerequisite and USRP Setup
	1. Low-Latency Kernel
	2. VOLK Libraries
	3. GNU Radio
	4. USRP UHD
	5. GNU Radio

	B. ENB/GNB
	1. eNB Installation
	2. eNB Configuration
	3. gNB Installation
	4. gNB Configuration

	C. EPC
	1. Low-Latency Kernel
	2. freeDiameter
	3. Docker
	4. openair-epc-fed

	D. Updated EPC Installation
	1. openair-epc-fed

	Appendix B. OpenAirInterface Software Simulation
	A. Setting up Bash scripts
	B. Launching the EPC
	1. Start the EPC Containers Script
	2. Stop the EPC Containers Script
	3. Recover the Logs, Configurations, and Traces
	4. Restart EPC Containers script

	C. Optional Flags for Launching the eNB/gNB

	Appendix C. Installing DiagParser and Minicom
	A. Installing DiagParser and Minicom
	B. Connecting to Quectel Module
	C. AT Commands

	Appendix D. Command Line Cheat Sheet
	A. Common Linux Command Line Used
	B. Useful Docker Command Line Used

	Appendix E. Latency Results
	Appendix F. iPerf Results
	A. iPerf Test from UE to EPC
	B. iPerf Test from UE to eNB
	C. iPerf Test from UE to gNB

	Appendix G. 4G and 5G Frequency Operating Band Charts
	Appendix H. 3GPP Core Networks Radio-Access Technology
	Supplemental File Structure
	A. HSS File Structure
	B. MME File Structure
	C. SPGW-C File Structure
	D. SPGW-U File Structure

	List of References
	Initial Distribution List

