353 research outputs found

    C-ITS road-side unit deployment on highways with ITS road-side systems : a techno-economic approach

    Get PDF
    Connectivity and cooperation are considered important prerequisites to automated driving, as they are crucial elements in increasing the safety of future automated vehicles and their full integration in the overall transport system. Although many European Member States, as part of the C-Roads Platform, have implemented and are still implementing Road-side Units (RSUs) for Cooperative Intelligent Transportation Systems (C-ITS) within pilot deployment projects, the platform aspires a wide extension of deployments in the coming years. Therefore, this paper investigates techno-economic aspects of C-ITS RSU deployments from a road authority viewpoint. A two-phased approach is used, in which firstly the optimal RSU locations are determined, taking into account existing road-side infrastructure. Secondly, a cost model translates the amount of RSUs into financial results. It was found that traffic density has a significant impact on required RSU density, hence impacting costs. Furthermore, major cost saving can be obtained by leveraging existing road-side infrastructure. The proposed methodology is valuable for other member states, and in general, to any other country aspiring to roll out C-ITS road infrastructure. Results can be used to estimate required investment costs based on legacy infrastructure, as well as to benchmark with the envisioned benefits from the deployed C-ITS services

    Vehicular Networks with Infrastructure: Modeling, Simulation and Testbed

    Get PDF
    This thesis focuses on Vehicular Networks with Infrastructure. In the examined scenarios, vehicular nodes (e.g., cars, buses) can communicate with infrastructure roadside units (RSUs) providing continuous or intermittent coverage of an urban road topology. Different aspects related to the design of new applications for Vehicular Networks are investigated through modeling, simulation and testing on real field. In particular, the thesis: i) provides a feasible multi-hop routing solution for maintaining connectivity among RSUs, forming the wireless mesh infrastructure, and moving vehicles; ii) explains how to combine the UHF and the traditional 5-GHz bands to design and implement a new high-capacity high-efficiency Content Downloading using disjoint control and service channels; iii) studies new RSUs deployment strategies for Content Dissemination and Downloading in urban and suburban scenarios with different vehicles mobility models and traffic densities; iv) defines an optimization problem to minimize the average travel delay perceived by the drivers, spreading different traffic flows over the surface roads in a urban scenario; v) exploits the concept of Nash equilibrium in the game-theory approach to efficiently guide electric vehicles drivers' towards the charging stations. Moreover, the thesis emphasizes the importance of using realistic mobility models, as well as reasonable signal propagation models for vehicular networks. Simplistic assumptions drive to trivial mathematical analysis and shorter simulations, but they frequently produce misleading results. Thus, testing the proposed solutions in the real field and collecting measurements is a good way to double-check the correctness of our studie

    A Data Fusion Approach to Automated Decision Making in Intelligent Vehicles

    Get PDF
    The goal of an intelligent transportation system is to increase safety, convenience and efficiency in driving. Besides these obvious advantages, the integration of intelligent features and autonomous functionalities on vehicles will lead to major economic benefits from reduced fuel consumption to efficient exploitation of the road network. While giving this information to the driver can be useful, there is also the possibility of overloading the driver with too much information. Existing vehicles already have some mechanisms to take certain actions if the driver fails to act. Future vehicles will need more complex decision making modules which receive the raw data from all available sources, process this data and inform the driver about the existing or impending situations and suggest, or even take actions. Intelligent vehicles can take advantage of using different sources of data to provide more reliable and more accurate information about driving situations and build a safer driving environment. I have identified five general sources of data which is available for intelligent vehicles: the vehicle itself, cameras on the vehicle, communication between the vehicle and other vehicles, communications between vehicles and roadside units and the driver information. But facing this huge amount of data requires a decision making module to collect this data and provide the best reaction based on the situation. In this thesis, I present a data fusion approach for decision making in vehicles in which a decision making module collects data from the available sources of information and analyses this data and provides the driver with helpful information such as traffic congestion, emergency messages, etc. The proposed approach uses agents to collect the data and the agents cooperate using a black board method to provide the necessary data for the decision making system. The Decision making system benefits from this data and provides the intelligent vehicle applications with the best action(s) to be taken. Overall, the results show that using this data fusion approach for making decision in vehicles shows great potential for improving performance of vehicular systems by reducing travel time and wait time and providing more accurate information about the surrounding environment for vehicles. In addition, the safety of vehicles will increase since the vehicles will be informed about the hazard situations

    Cooperative Content Dissemination on Vehicle Networks

    Get PDF
    As redes veiculares têm sido alvo de grandes avanços nos últimos anos, sobretudo devido ao crescente interesse por veículos inteligentes e autónomos que motiva investimentos avultados por parte da indústria automóvel. A inexistência de uma forma oportuna e económica de executar atualizações OTA (over-the-air) está a contribuir para o adiar do lançamento de grandes frotas de veículos inteligentes. O custo associado à transmissão de dados através de redes celulares é muito elevado e não se pode garantir que cada veículo tenha acesso a uma estação ou estacionamento com conectividade adequada em tempo útil, onde possa obter os dados esperados. Com base nestas premissas, esta tese apresenta a concepção e implementação de um protocolo cooperativo de disseminação de conteúdos que aproveita as ligações Veículo-a-Veículo (V2V) para assegurar uma distribuição de dados pela rede com custos reduzidos. Além disso, este trabalho é complementado e suportado com uma análise do desempenho do protocolo numa rede de 25 veículos.Vehicular networks have seen great advancements over the last few years, mostly due to the increased eagerness for smart and autonomous vehicles that motivate hefty investments by the automotive industry. The absence of a timely and cost-effective way to perform over-the-air (OTA) updates is contributing to defer the deployment of large fleets of connected vehicles. There is a high cost associated with transmitting data over cellular networks and it cannot be expected that every vehicle has access to a station or depot with adequate connectivity where it can get the awaited data cheaply nor that this solution happens timely enough. With this in mind, this thesis presents the design and implementation of a cooperative content dissemination protocol that takes advantage of Vehicle-to-Vehicle (V2V) communication links to distribute data across a network with reduced costs. Moreover, this work is complemented with a performance analysis of the protocol on a deployed network of 25 vehicles

    Modelling and Delay Analysis of Intermittently Connected Roadside Communication Networks

    Get PDF
    During the past decade, consumers all over the world have been showing an incremental interest in vehicular technology. The world’s leading vehicle manufacturers have been and are still engaged in continuous competitions to present for today’s sophisticated drivers, vehicles that gratify their demands. This has lead to an outstanding advancement and development of the vehicular manufacturing industry and has primarily contributed to the augmentation of the twenty first century’s vehicle with an appealing and intelligent personality. Particularly, the marriage of information technology to the transport infrastructure gave birth to a novel communication paradigm known as Vehicular Networking. More precisely, being equipped with computerized modules and wireless communication devices, the majority of today’s vehicles qualify to act as typical mobile network nodes that are able to communicate with each other. In addition, these vehicles can as well communicate with other wireless units such as routers, access points, base stations and data posts that are arbitrarily deployed at fixed locations along roadways. These fixed units are referred to as Stationary Roadside Units (SRUs). As a result, ephemeral and self-organized networks can be formed. Such networks are known as Vehicular Networks and constitute the core of the latitudinarian Intelligent Transportation System (ITS) that embraces a wide variety of applications including but not limited to: traffic management, passenger and road safety, environment monitoring and road surveillance, hot-spot guidance, on the fly Internet access, remote region connectivity, information sharing and dissemination, peer-to-peer services and so forth. This thesis presents an in-depth investigation on the possibility of exploiting mobile vehicles to establish connectivity between isolated SRUs. A network of intercommunicating SRUs is referred to as an Intermittently Connected Roadside Communication Network (ICRCN). While inter-vehicular communication as well as vehicle-to-SRU communication has been widely studied in the open literature, the inter-SRU communication has received very little attention. In this thesis, not only do we focus on inter-SRU connectivity establishment through the transport infrastructure but also on the objective of achieving delay-minimal data delivery from a source SRU to a destination SRU in. This delivery process is highly dependent on the vehicular traffic behaviour and more precisely on the arrival times of vehicles to the source SRU as well as these vehicles’ speeds. Vehicle arrival times and speeds are, in turn, highly random and are not available a priori. Under such conditions, the realization of the delay-minimal data delivery objective becomes remarkably challenging. This is especially true since, upon the arrival of vehicles, the source SRU acts on the spur of the moment and evaluates the suitability of the arriving vehicles. Data bundles are only released to those vehicles that contribute the most to the minimization of the average bundle end-to-end delivery delays. Throughout this thesis, several schemes are developed for this purpose. These schemes differ in their enclosed vehicle selection criterion as well as the adopted bundle release mechanism. Queueing models are developed for the purpose of capturing and describing the source SRU’s behaviour as well as the contents of its buffer and the experienced average bundle queueing delay under each of theses schemes. In addition, several mathematical frameworks are established for the purpose of evaluating the average bundle transit delay. Extensive simulations are conducted to validate the developed models and mathematical analyses

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Content Sharing in Mobile Networks with Infrastructure: Planning and Management

    Get PDF
    This thesis focuses on mobile ad-hoc networks (with pedestrian or vehicular mobility) having infrastructure support. We deal with the problems of design, deployment and management of such networks. A first issue to address concerns infrastructure itself: how pervasive should it be in order for the network to operate at the same time efficiently and in a cost-effective manner? How should the units composing it (e.g., access points) be placed? There are several approaches to such questions in literature, and this thesis studies and compares them. Furthermore, in order to effectively design the infrastructure, we need to understand how and how much it will be used. As an example, what is the relationship between infrastructure-to-node and node-to-node communication? How far away, in time and space, do data travel before its destination is reached? A common assumption made when dealing with such problems is that perfect knowledge about the current and future node mobility is available. In this thesis, we also deal with the problem of assessing the impact that an imperfect, limited knowledge has on network performance. As far as the management of the network is concerned, this thesis presents a variant of the paradigm known as publish-and-subscribe. With respect to the original paradigm, our goal was to ensure a high probability of finding the requested content, even in presence of selfish, uncooperative nodes, or even nodes whose precise goal is harming the system. Each node is allowed to get from the network an amount of content which corresponds to the amount of content provided to other nodes. Nodes with caching capabilities are assisted in using their cache in order to improve the amount of offered conten

    Networking And Security Solutions For Vanet Initial Deployment Stage

    Get PDF
    Vehicular ad hoc network (VANET) is a special case of mobile networks, where vehicles equipped with computing/communicating devices (called smart vehicles ) are the mobile wireless nodes. However, the movement pattern of these mobile wireless nodes is no more random, as in case of mobile networks, rather it is restricted to roads and streets. Vehicular networks have hybrid architecture; it is a combination of both infrastructure and infrastructure-less architectures. The direct vehicle to vehicle (V2V) communication is infrastructure-less or ad hoc in nature. Here the vehicles traveling within communication range of each other form an ad hoc network. On the other hand, the vehicle to infrastructure (V2I) communication has infrastructure architecture where vehicles connect to access points deployed along roads. These access points are known as road side units (RSUs) and vehicles communicate with other vehicles/wired nodes through these RSUs. To provide various services to vehicles, RSUs are generally connected to each other and to the Internet. The direct RSU to RSU communication is also referred as I2I communication. The success of VANET depends on the existence of pervasive roadside infrastructure and sufficient number of smart vehicles. Most VANET applications and services are based on either one or both of these requirements. A fully matured VANET will have pervasive roadside network and enough vehicle density to enable VANET applications. However, the initial deployment stage of VANET will be characterized by the lack of pervasive roadside infrastructure and low market penetration of smart vehicles. It will be economically infeasible to initially install a pervasive and fully networked iv roadside infrastructure, which could result in the failure of applications and services that depend on V2I or I2I communications. Further, low market penetration means there are insufficient number of smart vehicles to enable V2V communication, which could result in failure of services and applications that depend on V2V communications. Non-availability of pervasive connectivity to certification authorities and dynamic locations of each vehicle will make it difficult and expensive to implement security solutions that are based on some central certificate management authority. Nonavailability of pervasive connectivity will also affect the backend connectivity of vehicles to the Internet or the rest of the world. Due to economic considerations, the installation of roadside infrastructure will take a long time and will be incremental thus resulting in a heterogeneous infrastructure with non-consistent capabilities. Similarly, smart vehicles will also have varying degree of capabilities. This will result in failure of applications and services that have very strict requirements on V2I or V2V communications. We have proposed several solutions to overcome the challenges described above that will be faced during the initial deployment stage of VANET. Specifically, we have proposed: A VANET architecture that can provide services with limited number of heterogeneous roadside units and smart vehicles with varying capabilities. A backend connectivity solution that provides connectivity between the Internet and smart vehicles without requiring pervasive roadside infrastructure or large number of smart vehicles. A security architecture that does not depend on pervasive roadside infrastructure or a fully connected V2V network and fulfills all the security requirements. v Optimization solutions for placement of a limited number of RSUs within a given area to provide best possible service to smart vehicles. The optimal placement solutions cover both urban areas and highways environment
    • …
    corecore