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Summary

This thesis focuses on Vehicular Networks with Infrastructure. In the examined scenarios,
vehicular nodes (e.g., cars, buses) can communicate with infrastructure roadside units
(RSUs) providing continuous or intermittent coverage of anurban road topology.

Different aspects related to the design of new applicationsfor Vehicular Networks are
investigated through modeling, simulation and testing on real fields. In particular, the
thesis:

i) provides a feasible multi-hop routing solution for maintaining connectivity among
RSUs, forming the wireless mesh infrastructure, and movingvehicles;

ii) explains how to combine the UHF and the traditional 5-GHz bands to design and
implement a new high-capacity high-efficiency Content Downloading using disjoint
control and service channels;

iii) studies new RSUs deployment strategies for Content Dissemination and Download-
ing in urban and suburban scenarios with different vehiclesmobility models and
traffic densities;

iv) defines an optimization problem to minimize the average travel delay perceived by the
drivers, spreading different traffic flows over the surface roads in a urban scenario;

v) exploits the concept of Nash equilibrium in the game-theoryapproach to efficiently
guide electric vehicles drivers’ towards the charging stations.

Moreover, the thesis emphasizes the importance of using realistic mobility models, as well
as reasonable signal propagation models for vehicular networks. Simplistic assumptions
drive to trivial mathematical analysis and shorter simulations, but they frequently produce
misleading results. Thus, testing the proposed solutions in the real field and collecting
measurements is a good way to double-check the correctness of our studies.
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Chapter 1

Introduction

In the last few years, the interest in Intelligent Transportation Systems (ITS) has been
steadily increasing, fueled by the need for safety and entertainment applications. Road-
ways can be made safer by letting vehicular users communicate road and traffic con-
ditions, as well as position and velocity. Also, since a person often spends in the car
between one and two hours per day, most newly-manufactured vehicles boast multimedia
capabilities, which beg for advanced infotainment services (email/social network access,
newscasts, or local touristic clips).

To this aim, vehicular networks enable vehicles to communicate either with road-
side units, in what is widely known as vehicle-to-infrastructure (V2I) communication, or
among themselves, through vehicle-to-vehicle (V2V) communication. Several applica-
tions can be supported by either of the above communication paradigms, including trans-
portation safety services, traffic monitoring and infotainment. While the former class of
application requires broadcasting or geocasting of alarm or warning messages in a reli-
able, efficient manner, the latter two classes often imply the support of high-data rate,
UDP-based traffic, such as video streams.

In this thesis we focus our attention in the case where vehicular nodes (e.g., cars,
buses) can communicate with infrastructure roadside unitsproviding continuous or inter-
mittent coverage of an urban road topology, depending on theapplication we are going to
study. In particular, the thesis covers problems related torouting, connectivity, Road Side
Units (RSUs) placement and applications for Vehicular Networks. Different scenarios
have been studied through mathematical analysis, simulations and measurements on the
fields using real prototypes.

In Chapter 2, we consider a scenario where the RSUs provide continuous coverage to
the vehicles traveling along the roads. There, the wirelessmesh network represents the
infrastructure and the vehicular nodes are mesh nodes themselves. Mesh nodes connect
over the wireless medium and act as routers, and data packetsmay traverse multiple wire-
less hops. In that case, our aim is to design a solution that guarantees low jitter and high
packet delivery ratio to sustain high-data rate UDP-based applications for the vehicular
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1 – Introduction

users, such as video streaming. The problem is first addressed through simulations, then
the solution is validated in two real testbeds.

In Chapter 3, we reuse the system architecture described before, but we address the
problem of content downloading exploiting the benefit of using UHF bands for the trans-
mission of control messages, so as to make it more efficient. In fact, in previous studies
we realized that the 5 GHz bands offer limited capacity channels in comparison to the
broad range of services envisioned in vehicular networks. Indeed, we design a proto-
col for content downloading that leverages the UHF band for control messages and the
high-throughput, 5-GHz bands for data delivery. In this scenario, the RSUs using 5-GHz
bands provide intermittent coverage (like hot-spots), while the LRU (Long Range Unit)
using UHF band provides continuous coverage of the area. Theresults have been validate
through a testbed and compared with respect to the case whereonly 5-GHz bands are
used.

Also in Chapter 4, we study content downloading, along with content dissemination,
but there we address the problem of RSUs deployment to ensuregood performance to
bypassing users. The RSUs deployment implies costs relatedto the hardware, installation
and power consumption that are proportional to the number ofinstalled devices. Indeed,
over-dimensioning the network installing a big number of RSUs could guarantee high
performance but it is not affordable for the operators’ point of view due to its cost. Thus,
we propose new RSUs deployment strategies to find the right trade-off between costs and
performance, providing intermittent connectivity of the urban area but still guaranteeing
good service quality for both dissemination and content downloading.

In Chapters 5 and 6, we envision two applications that exploit the Vehicular Network
to provide real services to the users. The peculiarity of these chapters is that they address
problems related to routing of vehicles instead of routing of data packets. Functionally,
we assume to have a system architecture allowing the exchange of information among
vehicles, for instance like one of those presented in the previous chapters. In the con-
sidered scenarios, each vehicle gathers the required traffic information towards a Central
Controller using the available infrastructure, and relieson common navigation services.
In Chapter 5, we propose a method to optimize urban traffic layout using basic heuristics
and computationally efficient simulations. Instead of modeling an entire urban map with
hundreds of intersections, each typology of intersection is simulated in order to under-
stand how it responds to different traffic patterns and intensities. Then, this knowledge is
leveraged to allow the computation of minimal delay route onthe complete road map.

In Chapter 6, we address the problem of Electric Vehicle drivers’ assistance through
ITS. Drivers of EVs that are low in battery may ask a navigation service for advice on
which charging station to use and which route to take. A rational driver will follow the
received advice, provided there is no alternative choice that lets the driver reach its desti-
nation in a shorter time, i.e., in game-theory terms, if suchadvice corresponds to a Nash-
equilibrium strategy. Therefore, we solve the problem using a game-theoretic approach,
envisioning two models, namely a congestion game and a game with congestion-averse
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1 – Introduction

utilities, both admitting at least one pure-strategy Nash equilibrium. Using our models,
we show that the average per-EV trip time yielded by the Nash equilibria is very close
to the one attained by solving a centralized optimization problem that minimizes such a
quantity.

Finally, in Chapter 7, we present the conclusions that we draw from this work.
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Chapter 2

Seamless Connectivity and Routing

In this chapter, we consider vehicles (e.g., cars, buses or streetcars) that connect to differ-
ent roadside mesh nodes as they move in an urban environment,and we study the joint
problem of traffic delivery and connectivity management in such scenario. In that case,
our aim is to support high-data rate UDP-based applications, such as video streaming, de-
signing a solution able to guarantee low jitter and high packet delivery ratio. The problem
is first addressed through simulations, then the solution isimplemented and tested in two
real testbeds.

The content of this chapter is organized as follows. Section2.1 describes in details the
requirements to support high-data rate UDP-based servicesin Vehicular Networks with
Infrastructure. In Section 2.2 we review previous work, while in Section 2.3 we describe
our network system and we present two reference scenarios, which will be used for per-
formance assessment. Section 2.4 addresses the problem of efficiently routing a traffic
connection between vehicles and infrastructure, and showsthat our proposal based on
the BATMAN protocol gives excellent performance. Section 2.5 introduces the channel
selection scheme and the seamless handover procedure we designed. Finally, Section 2.6
presents the performance results obtained through two different testbeds, and Section 2.7
draws some conclusions.

2.1 Problem Statement

We consider a scenario of high practical relevance, in whichthe network infrastructure
is represented by a wireless mesh network and the vehicular node is a mesh node itself.
Mesh networks are typically free-standing, robust systemsthat can be conveniently inte-
grated with the existing infrastructure and offer high bit-rate services. Mesh nodes, also
calledmesh points, connect over the wireless medium and act as routers, and data pack-
ets may traverse multiple wireless hops. Note that, while the literature already features
works that address the mobility of user devices [1–4], they are usually seen as end nodes
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2 – Seamless Connectivity and Routing

rather than mesh routers. We specifically address the case inwhich the vehicular node is
a mesh router. The advantage of our solution is twofold: (i) it allows the routing protocol
to be run on the mobile node itself, thus better adapting to the high-mobility profile of
the node; (ii) the node on the vehicle becomes a full-blown “mobile hot spot” that can act
as a gateway towards the mesh infrastructure for all client devices on board the vehicle.
Also, as often done in mesh and vehicular networks [5–8], we envision several frequency
channels to be available for V2I communication as well as forcommunication between
roadside units, and that more than one radio interface is available at both the roadside and
the vehicular mesh points.

In such a scenario, uninterrupted connectivity is nominally guaranteed, but a rapidly-
reacting routing protocol is needed to handle sudden link quality drops caused by mobility
or channel fading; instrumental to ensuring connectivity and performance is therefore
the degree of responsiveness of the routing protocol. Also,a seamless procedure that
allows vehicles to identify the “best” channel available and hands over the connection
from one infrastructure mesh point to another is needed to guarantee sustained end-to-
end throughput, as well as low jitter (e.g., suitable for multimedia streaming to/from a
mobile node), throughout the journey of the vehicles.

As discussed more extensively in Section 2.2, several workshave dealt with reliabil-
ity of V2I communication links, channel access and support of QoS at the MAC layer
for real-time services, while few studies have considered the problem of V2I connection
management and seamless handover of UDP-based streams. Even fewer works have ex-
plored these issues through experimental measurements in realistic network scenarios. As
for the literature on wireless mesh networks, again, several studies have focused on inter-
ference and frequency allocation in multichannel systems,or on routing in totally fixed or
totally mobile mesh networks, while the joint problem of routing and mobility support in
a scenario with vehicular and roadside mesh points has been scarcely addressed.

In our work, we define an on-board fast-switching layer-2 architecture for 802.11-
based mesh networks with mobility support, which allows vehicles to efficiently com-
municate with the wireless mesh infrastructure. Generally, layer-2 routing for mesh net-
works has been proposed in the 802.11s draft standard [9], and, even earlier, within the
IETF MANET Working Group [10]. We identify a scheme that features implementations
both at the layer 2 and at layer 3, i.e., the BATMAN [11] protocol, which has been de-
veloped by the Freifunk Mesh Community and is becoming increasingly popular among
developers. We assess the performance of BATMAN by comparing it with three routing
protocols, each of which represents a different approach torouting: (i) AODV [12], a
reactive scheme which has inspired the Hybrid Wireless MeshProtocol specified in the
IEEE 802.11s Draft Standard [9], (ii) OLSR [13] and OLSR-ETX, well-known proactive
routing protocols, (iii) GPSR [14], a geographical routingprotocol. To avoid full-scale,
time-consuming experiments, which would have been difficult to carry out, we use ns2
simulations and run these schemes at layer 3 of the mesh nodesin the scenario outlined
above. We find that, when the traffic flows from a vehicle towards the infrastructure
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2 – Seamless Connectivity and Routing

(hereinafter referred to as uplink), the best performance is achieved by both GPSR and
BATMAN; the latter, however, fails to provide good results when traffic flows in the op-
posite direction (hereinafter referred to as downlink). Byinvestigating this contradictory
behavior, we identify a problem of the BATMAN protocol related to its window-based
mechanism for path quality estimation, and we solve it. We name the improved version
of the protocol as smart-window (sw-) BATMAN, and, through further simulations, we
observe that it yields good performance, both in uplink and downlink.

Based on these findings, we select sw-BATMAN for routing traffic, and we deploy
two real vehicular testbeds where sw-BATMAN is implementedat layer 2. Such an im-
plementation choice on the one hand allows the increase of its operations speed, on the
other it simplifies the network configuration, not requiringIP addresses to be assigned to
mesh points. We then devise and implement a channel selection scheme that lets a vehicle
connect to the infrastructure by using always the “best-quality” link, and we design a han-
dover mechanism that allows vehicles to connect to the roadside mesh node through the
channel used by the best-quality link. This enables a seamless transfer of data as vehicles
move, thus resulting in excellent performance in terms of throughput and delay jitter.

2.2 Related Work

Prior studies using IEEE 802.11 radio technology have evaluated the feasibility of both
V2I and V2V communications, in a real word scenario. In particular, the works in [15,16]
present measurements taken with cars running at different speeds and show that the main
factor affecting V2I connectivity is the distance between vehicle and infrastructure. Such
result is confirmed by the study in [17], where again the performance of V2I communica-
tions is shown to depend on communication range and line of sight.

At the MAC layer, several solutions have been proposed for the support of real-time
services, although most of them focus on safety applications. Examples are the proposals
in [18] and [19–21]. The scheme in [18] is designed to provideQoS support in vehicular
Internet access: it employs fixed gateways along the road that perform periodic admission
control and scheduling decisions for the packet traffic in their service area. The works
in [19–21], instead, aim at defining a fast connection setup mechanism for V2I communi-
cation, when vehicles are equipped with one radio interfaceonly and the 802.11p random
access protocol is used. The authors envision a centralized, polling-based access scheme
running at each roadside unit, on top of 802.11p, so as to provide an upper bound to the
delay experienced by safety traffic. Furthermore, each vehicle sends information on its
position, speed and direction so that roadside gateways canpredict when a vehicle enters
their service area and promptly include it in their traffic schedule. Analytical and simula-
tion results show the limited overhead of the solution and the feasibility of safety-critical
V2I applications in a dense-traffic, highway scenario.
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2 – Seamless Connectivity and Routing

At higher protocol layers, the problem of V2I connectivity has been addressed via sim-
ulation, e.g., in [22], where a hybrid architecture, calledVehicle-to-Vehicle-to-Infrastructure
(V2V2I), is evaluated. In V2V2I, the transportation network is broken into zones in which
a single vehicle, namely the Super Vehicle, is the only one able to communicate with the
infrastructure. All other vehicles can only communicate with the Super Vehicle. This
solution reduces the contention among vehicles to access a single roadside unit, although
the Super Vehicle-Infrastructure link may represent a bottleneck.

Well-known solutions for mobility support at the network layer are provided by the
IETF activities, e.g., Mobile IP and NEMO [23]. The former allows host mobility without
connection disruption, by letting a node acquire a care-of address and by redirecting traffic
towards it; the latter instead enables entire IPv6 networks(i.e., a mobile router aboard a
vehicle and a number of devices deployed within the vehicle)to change their point of
attachment to the Internet [24].

We highlight that our handover mechanism, unlike Mobile IP or NEMO, works at
layer 2; in this way, connectivity management is implemented through efficient, fast oper-
ations that make the support of UDP traffic, such as video streaming, possible. Also, since
our solution is based on the layer-2 implementation of the BATMAN routing protocol, it
leaves the MAC layer unchanged.

Finally, we point out that, while several works on mesh networks have focused on
interference and frequency allocation in multichannel systems (e.g., [6, 7] just to name
works based on testbeds), or on routing in totally fixed [25–30] or totally mobile wireless
mesh networks [31], few papers have addressed the joint problem of routing and mobility
support in a V2I scenario. Also, existing experimental works on wireless mesh networks
with mobility support, such as [1–4], have considered neither mobile mesh nodes, nor
the problem of ensuring a seamless procedure to let a highly-mobile mesh node connect
to different fixed nodes as it moves. In particular, in [2] traffic disruptions during the
handover of a mobile terminal between static mesh points areavoided thanks to the for-
mation of a multicast group, which the mesh points currentlyserving the user have to
join. The problem of applying such solution to our scenario lies on the overhead and on
the multicast group management in a highly-mobile environment. In [3], again, a low-
mobile terminal user is considered and a quick handover procedure in 802.11-based mesh
networks is envisioned, by letting a single-interface userquickly scan the access points in
range and choose the best, provided all nodes are synchronized. Besides the modifications
to the required 802.11 driver, this mechanism does not address the problem of seamless
handover, which is critical for the support of multimedia streams in a vehicular envi-
ronment. Similarly to our work, the study in [4] considers a multi-channel, multi-radio
terminal user that slowly moves between different 802.11 access points. Fast handover
is provided by letting one of the radio interfaces working inscan mode while the other
transmits/receives traffic. Such a solution, however, works at the MAC layer and does not
address traffic routing.
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Our study instead focuses on the management of vehicular-to-infrastructure connec-
tivity, when the vehicle is a mesh point itself, and we jointly address traffic routing and
handovers for the support of multimedia streams. Note that,in our case, the interfaces
of all network nodes operate in ad hoc mode, thus we do not facethe problem of asso-
ciation with access points, which is one of the main issues addressed in the literature on
fast handovers in 802.11-based networks. We also assess theperformance of our solution
in a real setting, showing that bandwidth-demanding applications, such as those based
on UDP streaming, can be successfully supported by a wireless mesh infrastructure, as
vehicular mesh points move and change point of attachment tothe fixed nodes. A pre-
liminary version of our work has appeared in [32], where onlya single V2I scenario was
considered and a much simpler, less efficient handover scheme was presented.

2.3 Network System and Reference Scenarios

We focus on a mesh network consisting of several roadside mesh points and one mo-
bile mesh node installed on a vehicle. The latter moves within the coverage of roadside
mesh points (hereinafter simply called roadside points). Our objective is to devise a fast-
switching layer-2 protocol architecture that can provide seamless, sustained-quality trans-
mission of multimedia and data streams in both uplink and downlink directions, between
a terminal endpoint attached to the vehicular mesh node and another endpoint reachable
through one of the roadside points.

Assuming that the vehicle equipped with the mesh node travels along a route, with
continuous coverage by roadside points, makes our testbedsamenable to being imple-
mented on a public transportation line (buses, streetcars,low-speed leisure trains, etc.). In
our setup we did not optimize transmissions for a mobile setting, i.e., by using variable-
aperture or variable-gain antennas; rather, we tried to devise solutions to cope with han-
dovers between different roadside points when the vehicular node is equipped with two
radio interfaces. The use of two radio transceivers in vehicular networks has been con-
sidered in several papers [33, 34] and it receives nods also in the VANET standardiza-
tion/industrial community [35,36]. Finally, we point out that our testbed scenarios delib-
erately feature areas with suboptimal coverage quality. Thus, the behavior of our archi-
tecture under adverse (though realistic) conditions couldbe investigated.

The Hardware and Software Platforms

All hardware devices use off-the-shelf components and run Open Source software. The
network nodes in the testbeds are installed at the roadside and on board a car that was
modified to accommodate external antennas. The nodes are enclosed in water-resistant
small-size boxes (180 mm×125 mm×46 mm), thus allowing ease of installation. Each
node is fitted with an Alix PC Engines motherboard, equipped with an AMD Geode 500
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2 – Seamless Connectivity and Routing

MHz processor; additionally, each has a compact flash memoryof 1 Giga Byte, an Eth-
ernet card and two Ubiquiti Networks XtremeRange 5 (5.5-5.7GHz) IEEE 802.11 radio
cards. Radio cards are compliant with the 802.11h specifications on spectrum and trans-
mission power management, but they support the data rate andMAC specified by the
802.11a standard. The set of available channels that we consider is composed of 11 chan-
nels (from channel 100 to channel 140), each 20 MHz-wide. Theradio cards driver is
MadWifi revision 3314, with OpenWRT patches.

Description of the Testbeds

To analyze the behavior of the overall system, two main testbeds were created. The first
one is based on three roadside points that cover a densely traveled-by urban road and its
aim is to evaluate the communication infrastructure in a real environment. The second
testbed was created on a private road, using several roadside points, where the aim was
the assessment of handovers and multi-hop communications.

ch120

ch100

ch100

antenna
Omnidirectional

Point 1
Roadside

Ethernet

Point 2
Roadside

Point 3
Roadside

ch120

ch140

ch100

ch140

antenna
Directional

ch120

(a) Abstract representation (b) Real view: locations of the roadside points are
marked by circles

Figure 2.1: Network scenario in the first testbed

The first testbed is set up on a 1-km stretch of public road, in abusy urban area that
provides plenty of obstacles (both fixed and moving), thus matching the expected real
operating conditions. Three roadside points set 50 m apart cover the stretch of road from
a vantage point, and a car equipped with a mesh node is driven between the two ends of the
road segment, trying to maintain a constant 36 km/h speed, which was not always possible
due to existing traffic (indeed, the actual average speed turned out to be nearly 18 km/h).
A continuous UDP stream (either in uplink or in downlink) is arranged between a laptop
carried on the car and a desktop reachable through the infrastructure nodes. The network
topology, as far as the roadside points are concerned, has a linear structure, as shown in
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2 – Seamless Connectivity and Routing

Figure 2.2: Network scenario in the second testbed. Circlesrepresent the eight roadside points
and the gateway node, while continuous lines represent the wireless links between roadside points
and with the gateway. The numbers within the ovals (namely, 100, 108, etc.) denote the channels
used on the links

the abstract representation of the reference scenario in Figure 2.1(a). The deployment of
the three roadside points is shown in Figure 2.1(b).

Each roadside point has two external antennas: one of them isomnidirectional, with
a gain of 9 dBi and transmit output power of 8 dBm, while the other exhibits a limited
aperture (either 18 degrees with 18 dBi gain and transmit output power of 10 dBm, or
60 degrees with 16 dBi gain and output power of 9 dBm1). In particular, the highly
directional antenna is used to establish a link with the omnidirectional antenna of the next
roadside point along the path. The omnidirectional antenna, beside forming one end of
the link with the previous roadside point in the path, also captures the transmissions of
the vehicle, when in range. Different, non-adjacent frequency channels are chosen for
each antenna and for the antennas of neighboring nodes, in order to limit interference
through frequency diversity [37]. A sample choice of channels is shown in Figure 2.1(a),
where channels 100, 120 and 140 are used and are such that the central frequencies of
channels 100 and 120, as well as of 120 and 140, are 100 MHz apart. The vehicle is
instead equipped with two omnidirectional antennas, each with gain of 9 dBi and transmit
output power equal to 6 dBm.

The second testbed is set up on a 1-km loop on a private road in awoodland area;
the full coverage is guaranteed by 8 roadside points and outside connectivity is achieved
through another mesh point, acting as a gateway, installed on the roof of a nearby build-
ing. Figure 2.2 describes the position of the roadside points and the channels that were
assigned to each link to avoid interference. Roadside points, as well as the car (which is
driven at the average speed of 18 km/h) are equipped with two omnidirectional antennas,

1Note that the values of transmit output power that we used aremuch lower than the maximum value
allowed by regulation, i.e., 1 W.
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with a gain of 9 dBi and transmit output power of 18 dBm2.

2.4 Routing in Vehicular Networks with Infrastructure

We identify BATMAN as a candidate layer-2 implementation ofa routing protocol. As
already mentioned, layer-2 routing has been already pursued in mesh and vehicular net-
works. Before proceeding with the implementation of BATMANin a real testbed, we use
simulation to compare its performance with other routing protocols for wireless ad hoc
and mesh networks. Since most of them only feature layer-3 implementations, we also
consider the layer-3 BATMAN version, which retains all the mechanisms of its layer-2
counterpart.

Next, we briefly recall the main features of the protocols that we consider and show
the results derived through simulation that resemble the settings used in our testbeds.
BATMAN shows some inconsistencies in its behavior that require a closer look at its
mechanisms. After the problem is identified, we propose a solution and evaluate its im-
pact, before committing ourselves to the final architectural choice for our testbeds.

The Protocols under Study

Since we do not aim at a comprehensive comparison of the performance ofall routing
protocols for wireless ad hoc and mesh networks known in the literature, we choose just
a few that represent a cross-section of a broader collectionof protocols. Specifically, we
include both reactive and proactive routing protocols, as well as protocols that use either
a link-state, a distance-vector, or a geographic approach.Below, we present the main
features of each scheme, highlighting the version of the protocols that we implemented.
AODV: it builds routes on demand by flooding the network with route request messages.
As a route request hits the intended destination or a node that is aware of a fresh route
towards the destination, the request is not forwarded any further and a reply message is
sent back to the source. While traveling through the network, route request and reply mes-
sages create paths pointing, respectively, to the source and to the destination. Sequence
numbers, route error messages, and local repair are used to handle link failures and avoid
loops. Variations of the protocol [38, 39] give a node the ability to store more than one
route per destination. However, since in our highly-dynamic scenario such enhancement
provides little improvement in performance, we stick to theprotocol version specified in
the RFC 3561 [12].
OLSR: it adopts a proactive, optimized link-state scheme to spread topology information
while keeping the overhead low. The key idea is that link-state information is generated

2The presence of several trees and other obstacles suggestedthe use of a higher power than in the first
testbed.
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and flooded in the network only by selected nodes, called Multi Point Relays (MPRs).
Any source-destination route is bidirectional and includes only MPRs as relay nodes. In
this work, we refer to the protocol specified in the RFC 3626 [13], which selects the
shortest path between a source and a destination. However, we also consider the version
that includes the Expected Transmission Count (ETX) metric[29], so that routes with
higher packet delivery ratio can be selected.

GPSR: it exploits the nodes’ geographical position to make packetforwarding decisions.
For each packet, the source polls a lookup service to acquirethe location of the intended
destination, then a greedy approach is used to forward packets to nodes that are progres-
sively closer to the destination. When no greedy path exists, GPSR forwards traffic in
perimetermode. In this case, a packet traverses successively closer faces of a planar sub-
graph of the full radio network connectivity graph until, reaching a node closer to the
destination, the greedy forwarding resumes. We refer to theprotocol version described
in [14].

BATMAN: it is a proactive protocol based on the distance-vector paradigm, therefore its
strategy is to determine, for each destination in the network, the neighbor that can be used
as best next hop towards the destination. To learn about the best next hop for each desti-
nation, all nodes periodically broadcast originator messages (OGMs) to their neighbors;
each OGM contains anoriginator address, asending node addressand aunique sequence
number. When a neighbor receives an OGM, it changes the sending address to its own
address and rebroadcasts the message if either the OGM was originated by a neighboring
node or the OGM was received from a node that is considered thebest next hop towards
the originator. To identify the best next hop towards a destination, a node counts the num-
ber of OGMs originated by the destination and received from the different neighbors. The
node records this information in the so-called originator list. Then, it selects as next hop
the neighbor from which it has received the highest number ofOGMs within a sliding
window (packet count metric), i.e., the path with best quality. In the following, we will
refer to the packet count metric aspath quality level. In this way, a node does not maintain
the full route to a destination but every node on the path onlyknows the next hop to use
to reach it. Note that, in the originator list, for each destination every node maintains as
many sliding windows as the number of neighbors from which the node has been receiv-
ing OGMs originated by that destination. Furthermore, a node removes a neighbor from
its originator list if it does not receive any OGM for a given time; changes in the originator
list may lead to a routing table update. In this work, we referto the protocol description
in [11].

Below, we compare the above protocols by using ns2 simulations, in a network scena-
rio similar to the one depicted in Figure 3.1. The simulationscenario, however, includes
eight roadside points; also, the number of vehicles travelling along the road as well as
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their speed are varying system parameters. We then use a setting that matches the de-
scription of the testbeds in Section 2.3, e.g., we set the node radio range3 to 250 m while,
to represent the different quality level of the links between roadside points and vehicle,
and of the links between roadside points, we set the maximum data rate of the two types
of links to 6 and 54 Mb/s, respectively. Both the cases of uplink and downlink CBR traffic
are investigated. For all protocols, the control messages used to assess the connectivity
with neighboring nodes (i.e., Hello messages in AODV and OLSR, Beacon messages in
GPSR, and OGMs in BATMAN) are periodically transmitted withtime interval equal to
1 s and, being broadcast messages, they are sent at the basic rate of 6 Mb/s. In GPSR,
we assume a vehicle always has a perfect, instantaneous knowledge of the position of the
destination through an ideal location service (which is notsimulated). The information
on the neighbors’ position, acquired through the GPS and included in the GPSR beacon
messages, is also considered to be error-free.

We remark that all curves have been derived by averaging the results over 10 different-
seed runs, obtaining a confidence level of 95%; also, the plots show the confidence inter-
val, which is represented through error bars.

Figure 2.3 presents the average received throughput at the application layer as the bit
rate of the CBR traffic varies, in uplink (left plot) and downlink (right plot). The results
refer to the case with one vehicle travelling at a constant speed of 36 km/h. In BATMAN,
the sliding window size is set to 128. We observe that, in uplink, BATMAN and GPSR
achieve the best performance. Indeed, BATMAN sends OGMs on every interface and
collects statistics on the quality of all existing paths, thus promptly selecting the route
that minimizes packet loss and delay latency. Similarly, inGPSR, the next-hop selection,
which exploits the information included in the beacons to maximize the advancement of
traffic towards the destination, allows a quick reaction to topology changes.

As for AODV, we observe that whenever the link between the source (i.e., the vehicle)
and its next hop fails due to mobility, a new, fully-fledged route discovery is started, thus
leading to performance degradation. We remark that, unlikeBATMAN, which constantly
monitors the quality of all paths through OGMs and switches promptly upon performance
degradation, AODV only acts upon compromised connectivitywith the previous next-hop
and ongoing packet loss.

We now look at the results given by OLSR, which, disregardinglink quality, provides a
lower throughput than BATMAN as the offered load increases.OLSR-ETX does account
for the link data rates, however, as shown in [40], the ETX metric takes quite a long
time to detect a link failure, thus leading to worse performance than OLSR in a dynamic
network. Finally, we point out that the better performance of BATMAN comes at the

3The node radio range in the testbed was measured as the maximum distance from a transmitter at which
a node can receive traffic with a packet error rate smaller or equal to 0.08 (as typically considered in 802.11
networks).

13



2 – Seamless Connectivity and Routing

cost of a higher message overhead; nevertheless, the overhead due to BATMAN is still
negligible compared to the system capacity (the ratio is indeed of the order of10−3).

Next, we look at the performance in presence of downlink traffic. OLSR and OLSR-
ETX give slightly lower values of throughput than in the caseof uplink traffic. Indeed, due
to their low reactivity, OLSR and OLSR-ETX fail in providingthe source with an updated
link-state information so as to route traffic correctly towards the destination (which is now
moving). As for the other schemes, GPSR still provides a highthroughput, consistently
with the results for the uplink transfer. AODV too yields good performance, indeed, when
a link breaks, the upstream node operates a local repair to recover connectivity to the
destination, thus avoiding a new route discovery. BATMAN, instead, surprisingly yields
the worst performance. In the next section, we investigate the behavior of BATMAN and
try to find a solution to the observed performance degradation.
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Figure 2.3: Protocols comparison in terms of average throughput, as the offered traffic load varies
and for a vehicle speed of 36 km/s

Identifying and Solving the Problem in BATMAN

BATMAN counts the number of OGMs within a sliding window to choose the best next-
hop node towards a given destination. In the BATMAN sliding window, all OGMs have
the same weight, i.e., older and newer messages have the sameimportance. By analyzing
the protocol behavior, we noticed that in the scenario understudy (i.e., a vehicular mesh
node connecting to roadside mesh nodes) such window management may cause temporary
routing loops and, thus, packet losses.

As an example, consider a network at timet0, as shown in Figure 2.4(a): nodes 1,
2 and 3 are roadside points, while nodev is mobile (circles with dashed lines represent
the node radio range). Using a window size of 128 packets and an OGM interval time of
1 s [11], att0 the BATMAN routing tables at the four nodes are as in Table 2.1.
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(a) t0 (b) t1

Figure 2.4: Network topology at different time instants

Table 2.1: Routing tables at timet0

Node 1
Dest. Next hop Quality

2 2 128
3 2 128
v 2 128

Node 2
Dest. Next hop Quality

1 1 128
3 3 128
v v 128

Node 3
Dest. Next hop Quality

1 2 128
2 2 128
v 2 128

Nodev
Dest. Next hop Quality

1 2 128
2 2 128
3 2 128

Observe that node 1 does not receive OGMs directly fromv and, thus, it uses node
2 to reachv; also, all routes report the maximum value4 of the path quality level (i.e.,
the packet count metric). Now, assume thatv reaches the new configuration shown in
Figure 2.4(b) at timet1. The routing tables at the four nodes att1 are as in Table 2.2.
Note that, within a timeout, set by default to twice the OGM interval, a node purges from
its originator list a neighbor from which OGMs are no longer received. Thus, nodes 2
andv realize that their link failed and update their routing tables accordingly. On the
contrary, node 3 starts receiving OGMs directly fromv, however, since BATMAN does
not discriminate between recent and older events, att1 node 3 still maintains node 2 as
next hop towardsv. It follows thatv can successfully send data to any other node, while
losses may arise in the opposite direction. For instance, ifnode 1 wants to transmit a

4In BATMAN finding the best route towards the destination corresponds to finding the best hop towards
it; the quality level metric at a generic node is therefore given by the number of OGMs originated by the
destination and received from a neighbor (candidate next-hop) within a sliding window.
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Table 2.2: Routing tables at timet1

Node 1
Dest. Next hop Quality

2 2 128
3 2 128
v 2 125

Node 2
Dest. Next hop Quality

1 1 128
3 3 128
v 3 11

Node 3
Dest. Next hop Quality

1 2 128
2 2 128
v 2 117

Nodev
Dest. Next hop Quality

1 3 7
2 3 7
3 3 7
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Figure 2.5: Comparison between BATMAN and sw-BATMAN: average throughput in downlink,
as sliding window size varies, and for different vehicle speeds

packet tov, it sends it to node 2, which forwards the packet to node 3. Node 3 checks
its routing table and sends the packet back to node 2; the packet is then bounced between
node 2 and node 3 till its Time To Live expires and the packet isdropped.

It is therefore clear that the problem lies in the use of the sliding window, which
slows down the reactivity of the protocol in the face of topology changes. A possible
solution would be to decrease the window size, but it would trade off reactivity with route
flapping, and the choice of the ideal size of the sliding window would still depend on the
node speed. This can be clearly seen by looking at Figure 2.5,which shows the downlink
throughput provided by BATMAN as the size of the sliding window varies. These results
refer to the case of a single vehicle generating CBR traffic at6 Mb/s and travelling at
different speeds.

We therefore take a different approach and modify the sliding window mechanism, so
as to tangibly reduce the problem without increasing the protocol complexity or altering
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Figure 2.6: Comparison between BATMAN and sw-BATMAN: average throughput in uplink and
downlink, as the offered traffic load varies

the spirit of BATMAN.
Our solution consists in changing the way OGMs are counted inthe sliding window so

that newer OGMs, representing fresh information, are weighted more than older OGMs.
The weights, however, must be chosen in such a way as to avoid fluctuations in the routing
tables: if the weight of fresher OGMs is too high compared to the others, the reception
of OGMs from different neighbors with similar link quality may lead to a continuous
change of the next-hop towards the destination. In our study, we considered the following
expression for the values of the weight vector,

w(i) = max

(

1,
⌊i · S

2i

⌋

)

i = 1, . . . , S (2.1)

wherew(i) is the i-th element of the weight vector andS is the sliding window size
(namely, 128);w(1) is associated to the freshest OGM, older OGMs being recordedfor
increasing values ofi. Note that the expression in (2.1) is a good choice because (i) it
implies an exponential decrease of at least the more recent values (this is a standard prac-
tice when dealing with time windows implementing exponential averaging, i.e., to bestow
greater importance to recent values than to older ones), (ii) it can be easily implemented
in the kernel of a communication node, (iii) it does not include excessively large weight
values so as to avoid overflow. We name this modified version ofthe protocol as smart
window (sw-) BATMAN.

By looking at Figure 2.6 and comparing the results (obtainedunder the same scenario
and settings as before) with the curves in Figure 2.3, we notice that sw-BATMAN pro-
vides excellent results in both uplink and downlink. Such good performance is confirmed
by the results in Figure 2.7, which shows the performance of BATMAN, sw-BATMAN
and GPSR (in uplink as well as in downlink), as the number of vehicles and their speed
(namely, 18, 27 and 36 km/h) vary. At the beginning of these simulations, half vehi-
cles move in one direction and the other half in the opposite direction. The offered load
corresponding to each traffic transfer is equal to 3 Mb/s; thesliding window size of BAT-
MAN and sw-BATMAN is still set to 128. Furthermore, Figure 2.5 shows that, unlike
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Figure 2.7: Comparison between different BATMAN versions and GPSR, as the number of vehi-
cles varies and for different vehicle speeds

BATMAN, the performance of sw-BATMAN only marginally depends on the choice of
the sliding window size (except for a window of size 2, for which route flapping is in-
evitable). While the exponentially decreasing weights used by sw-BATMAN consistently
provide the reactivity needed to achieve a sustained throughput under any window size,
the same cannot be said of standard BATMAN, where the “good” values of window size
depend on the vehicle speed.

Finally, we remark that the overhead due to sw-BATMAN is justslightly higher (few
kb/s higher) than in BATMAN, due to its quicker reaction to topology changes: the num-
ber of generated OGM packets is the same in both versions of the protocol, but the number
of rebroadcasted OGMs is higher in sw-BATMAN. Indeed, OGMs are rebroadcasted by
a node only if they have been originated by a neighbor, or if they have been received via
a bidirectional link that currently serves as the best link towards the originator. Thus,
upon a topology change, in BATMAN some OGMs are not rebroadcasted because they
are received over a link that is (wrongfully, having the bestlink changed) not considered
the best.

2.5 Layer-2 Implementation and Seamless Handover

The forwarding protocol used in our testbeds is layer-2 BATMAN Advanced Kernel Land,
modified in order to include the smart-window mechanism. Being a layer-2 implemen-
tation, all OGMs are encapsulated in their own Ethernet frames and the whole testbed
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network can be seen as a giant Ethernet switch5. Thanks to the layer-2 implementation,
BATMAN runs in kernel space, rather than in user space, increasing speed and respon-
siveness of the protocol. BATMAN Advanced Kernel Land uses MAC addresses as rout-
ing table identifiers, instead of IP addresses, which also eliminates the need to assign IP
addresses to mesh points.

A software module was added to the vehicular mesh point so as to handle the crucial
tasks of selecting the “best-quality” channel available and of achieving a seamless han-
dover between two roadside points. Recall that, in order to avoid interference, roadside
points are assumed to provide their coverage using a frequency channel that is different
from the one used by nearby roadside points. The solution we devise (i) manages the ve-
hicle’s radio interfaces in order to establish layer-2 connectivity to nearby roadside points
whenever possible, and (ii) hinges on sw-BATMAN routing to trigger the handover.

More specifically, our solution leverages the following twofactors: the availability of
multiple radio interfaces at the vehicle and the fact that sw-BATMAN uses all available
radios, each tuned to a different frequency channel. For clarity, below we will restrict the
description to the case where two interfaces are available at the vehicle. Each vehicle ra-
dio interface is independently managed to identify a sw-BATMAN-capable neighbor, by
intercepting its periodically transmitted beacon and reading the Basic Service Set Identi-
fier (BSSID)6. The beacon also informs (in one of its Information Elements, IEs) whether
the interface belongs to a roadside point or to another vehicle, in order to avoid V2V
communication. If the BSSID is recognized as belonging to the vehicular network and
the node interface issuing the beacon is part of the roadsideinfrastructure, the vehicle
interface establishes an ad hoc link with it. OGM messages then start to be exchanged
and statistics on the path quality are collected.

As the vehicle moves on, the quality of the link with the next hop along the current
path is compromised. At the same time, the second interface will have established a link
with the upcoming roadside point, and started to exchange OGMs through it. Conceiv-
ably, a better next hop (hence, path) will be known to sw-BATMAN through the second
interface. sw-BATMAN thus switches the packets onto the newpath and a “soft”, seam-
less handover is performed7. If the path quality level associated with the channel used by
the first interface has dropped below a given thresholdTq (set to the 80% of the maximum
value of the path quality metric in our testbeds), the link with the previous roadside point
interface is torn down and the MAC address of the roadside point interface is blacklisted.
Blacklisting of a roadside point interface is introduced inorder to temporarily (20 s in

5If the number of nodes scaled up in the tens or even hundreds, standard traffic-separation techniques at
layer 2 (i.e., the superimposing of VLANs) could be used to dampen the ill effects of growing traffic.

6The BSSID is the same for all nodes interfaces in the vehicular network.
7If the vehicle had only one interface, the fact that adjacentroadside points use different channels would

instead trigger a frequency scanning by the vehicle and, thus, an intermittent connectivity during handovers.
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our testbeds) prevent the re-establishment of a recently torn-down link, thus avoiding a
ping-pong effect. The 20 s duration we chose worked fine for our testbed, but it does not
necessarily apply to generic testbed conditions. Finding an adaptive solution would be
the optimal course, but we did not address this issue in the present work and reserve it for
future study.

We can detail the interface management at the vehicular meshpoint through a simple
state machine that runs independently for each radio interface. The state machine can be
in one of the following states: 1) scanning (the interface istrying to detect a roadside
point), 2) connecting (the interface has detected a roadside point and is exchanging sw-
BATMAN OGMs with it), and 3) active (the interface can be usedto reach the next-hop
found through sw-BATMAN routing).

The main actions performed in the three states by the interface are described below.
1) Scanning state: in this state, the interface performs a channel scan to detect a roadside
point and select a frequency channel. Note that the scanninginterface skips the channel
used by the active interface, if there is any. If more than oneroadside point is available,
the selection is based on the level of received signal power and on the MAC address
blacklist: the channel with the highest received signal strength index (RSSI), measured
on the beacon messages, and used by a non-blacklisted interface is chosen. The interface
then moves to connecting state.
2) Connecting state: the interface starts collecting OGMs andmonitors the trend of the
path quality level every second. If the quality level does not decrease over time, the
interface remains in connecting state until the path quality level becomes greater than the
thresholdTq, and then it moves to the active state. Otherwise, the state reverts back to
scanning.
3) Active state: the routing table entries associated to the interface are used by sw-
BATMAN to pick the next hop for the outgoing traffic from the vehicular node; when
both interfaces are active, sw-BATMAN ends up using the interface with best path qual-
ity to the destination (since this is the metric reported in each entry). Also, the node
inspects the routing table associated with the interface every second, in order to verify
the current path quality. If both interfaces are active, thevehicle node checks if the path
quality level associated with the channel used by an interface falls below the threshold
Tq; if so, such interface is moved to the scanning state and the roadside point interface is
blacklisted. If only one interface is active, the thresholdTq is not considered and a state
change of the active interface occurs only when the path quality level associated with the
channel used by the interface reaches zero.

2.6 Performance Evaluation in the Testbeds

As explained above, in both testbeds we considered a CBR stream (either in uplink or
in downlink) at 1.2 Mb/s, carried by UDP, with packet size equal to 1440 bytes to avoid
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Figure 2.8: Temporal evolution of the throughput and delay jitter, as the vehicle moves from
Roadside Point 1 to Roadside Point 2 and Roadside Point 3, in the first testbed

fragmentation. In the following, all throughput are measured at the MAC layer of the
receiver (using TCPdump).

With regard to the first testbed, we observed the performanceachieved as the vehicle
moved from Roadside Point 1 to Roadside Point 2 and Roadside Point 3 (see Figure 3.1).
As an example, Figures 2.8(a) and 2.8(b) show the throughputobtained during two of the
observed vehicle trips: the former plot refers to a trip of duration equal to 140 s and with
uplink traffic, while the latter refers to a trip of duration equal to 130 s and with downlink
traffic. Figures 2.8(c) and 2.8(d) present the delay jitter,in uplink and downlink, observed
during the same two trips. In the plots, vertical dashed lines indicate the time instants at
which a handover takes place. Note that, in this case, a handover corresponds to a change
in both channel and roadside point through which the traffic flows.

We observe that a seamless handover is performed at each transition from one road-
side point to another: no throughput or jitter degradation occur due to the change of point
of attachment. Low values of throughput and high jitter are instead experienced at certain
time instants (e.g., at the beginning of the measurement period) when no line-of-sight
communication is possible due to the presence of buildings along the road. Note also that
bursts of delayed packets are responsible for throughput spikes in excess of 1.2 Mb/s (i.e.,
higher than the offered load), which immediately follow dips in throughput. Comparing
uplink and downlink results, we observe that the behavior indownlink is smoother, except
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for few negative spikes of short duration. The reason for thedifferent throughput profiles
lies in the fact that uplink transmissions occur at lower power than downlink transmis-
sions. Consistently with these results, in the uplink transfer we note a higher jitter than
recorded in downlink.

As for packet losses, in uplink we lost two and one packets in correspondence of the
first and second handover, respectively, while in downlink three and four packets were lost
during the two transitions. Similar performances were obtained in all the measurements
we carried out.

Figure 2.9: Route followed by the vehicle in the second testbed. The circle denotes the starting
point of each lap

Next, we evaluate the system performance in the second testbed, using either one or
two vehicles.

In the case of uplink and downlink traffic, the UDP flow is generated, respectively,
by the vehicles and by the gateway node (GW in Figure 2.2) thatconnects the mesh net-
work to the fixed infrastructure. Each reported test is sample single lap out of several
back-to-back laps around the loop road, starting from the point tagged by the circle in
Figure 2.9. Although we tried to drive at similar speeds throughout each lap, this was
not always possible; different speeds, leading to different channel conditions, as well as
slightly different trajectories are thus responsible for inhomogeneities in results referring
to the same stretch of road. Throughput and jitter measurements for each lap are reported
in Figures 2.10 through to 2.17; solid vertical lines represent transitions between differ-
ent channels, while dashed vertical lines represent transitions between different roadside
points on the same channel.

We first look at the uplink results in Figures 2.10 and 2.11, which refer to a faster
and a slower lap, respectively. Both exhibit a qualitatively similar behavior in terms of
throughput and jitter, although the faster lap features a slightly larger number of inter-
nodal handovers (an intra-nodal handover, instead, can be seen in Figure 2.11, around
t = 103 s).

In Figures 2.12 and 2.13, we present the throughput and jitter results, respectively,
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Figure 2.10: Temporal evolution of the throughput and delayjitter in uplink, in the second testbed
(Test 1 - single vehicle)
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Figure 2.11: Temporal evolution of the throughput and delayjitter in uplink, in the second testbed
(Test 2 - single vehicle)

obtained by a pool of two vehicles both engaged in an uplink transfer. Interestingly, no
visible performance degradation can be noticed, mainly dueto the fact that the com-
bination of channel selection and of sw-BATMAN routing letseach node use the least
congested links.

Next, we shift our focus onto the downlink performance, shown in Figures 2.14 and
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Figure 2.12: Temporal evolution of the throughput in uplink, in the second testbed (Test 3 - two
vehicles)
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Figure 2.13: Temporal evolution of the delay jitter in uplink, in the second testbed (Test 3 - two
vehicles)
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Figure 2.14: Temporal evolution of the throughput and delayjitter in downlink, in the second
testbed (Test 1)

2.15, again referring to a faster and a slower lap, respectively. The degradation of through-
put performance with respect to the uplink is quite evident.Indeed, as already remarked
in previous sections of this chapter, sw-BATMAN is less reactive when the mobile node
is the traffic destination. This implies that traffic is routed towards a roadside point that
has already lost connectivity with the vehicle. Thus, the throughput exhibits short-lived
“black-outs” as opposed to the low (but still positive) dipsexperienced in uplink. As an
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Figure 2.15: Temporal evolution of the throughput and delayjitter in downlink, in the second
testbed (Test 2)
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Figure 2.16: Temporal evolution of the throughput in downlink, in the second testbed (Test 3 - two
vehicles)
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Figure 2.17: Temporal evolution of the delay jitter in downlink, in the second testbed (Test 3 - two
vehicles)

example, considering the 5-second intervals before and after the channel change, in the
first uplink test 1 (Figure 2.10(a)), the number of lost packets amounts to: 26 att = 78 s,
9 at t = 99 s, 356 att = 115 s, and 100 att = 134 s. Instead, in the first downlink
test (Figure 2.14(a)), in correspondence of the “black-outs” at t = 96 andt = 122 we
have, respectively, 410 and 525 lost packets. This behaviorhowever translates into lower
jitter (i.e., packets are lost rather than accumulating variable delays due to MAC-layer re-
transmissions). Also, we point out that the brief node/channel handover seen aroundt =
70 s (node sequence 2-1-2) may seem to contradict the blacklisting mechanism, while, in
fact, it is due to both links’ quality being aboveTq, hence being both active. A similar
phenomenon can also be seen in Figure 2.16(a), which shows the throughput experienced
by one car of the pool, again in downlink. Finally, as in the uplink case, the results for the
two-car pool are similar to the single-car case, except for ahigher jitter (see Figures 2.16
and 2.17).

Finally, in Table 2.3 we present the average and the varianceof the throughput, as
well as of the percentage of packet losses during a channel change. The results have been
obtained by averaging 39 tests with uplink traffic and 30 tests with downlink traffic (the
plots not included in this chapter can be found in [41]). Looking at the table, we can see
that very good results are obtained in both the uplink and downlink cases, although uplink
transfers exhibit slightly better performance.
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Figure 2.18: Snapshot from on-board camera streamed video in the second testbed

A subjective evaluation of the uplink transmission qualityin the second testbed is
provided by a video, available at [42]. The video was captured by an on-board-camera
and then streamed from the vehicle to a server reachable through the GW node, where it
was recorded. A snapshot of the video can be seen in Figure 2.18. The vehicle started its
lap from the point tagged by the blue circle in Figure 2.9 and,in about 240 s, completed
a full lap of the closed circuit. The video is somewhat garbled at 55 s (i.e., at the first
handover); also, at 88 s, the video freezes for a few seconds during the second handover.
On the whole, however, the quality of the uplink video transmission is remarkably good,
also in critical situations, e.g., when the vehicle makes a U-turn.

In light of these results, we can conclude that our solution is capable of providing
sustained end-to-end throughput as well as low jitter, throughout the journey of a vehicle
along the path. Moreover, it guarantees a low packet loss even in critical environments,
e.g., where the radio path between vehicles and roadside points is obstructed by trees and
constructions.

2.7 Conclusion

We addressed the problem of seamless connectivity and channel selection between ve-
hicular and roadside mesh points, a topic that is usually overlooked, since studies in the
literature are more concerned with support for nomadic or slowly moving end users. We

Table 2.3: Throughput and lost packets per channel change

Throughput [Mb/s] Lost packets [%]
Average Variance Average Variance

Uplink 1.17 0.049 6.6 3.3
Downlink 1.14 0.053 8.6 3.9
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identified BATMAN as a possible layer-2 solution that could suit our aims, and, through
simulation, we compared it with the most common routing protocols for ad hoc networks
in a vehicular scenario with roadside infrastructure. Fromthis comparison, some incon-
sistencies in the behavior of BATMAN emerged, and we proposed a solution to enhance
its reactivity. After introducing a weighting mechanism inthe window-based path quality
estimation used by BATMAN, we implemented it in our testbeds, along with a channel
selection mechanism and a seamless handover procedure. Theperformance observed in
the two roadside vehicular testbeds proved the feasibilityof our solution, and opened in-
teresting perspectives in the use of mesh networks for the support of UDP-based services
to vehicular users.
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Chapter 3

Content Downloading Using UHF Band

In this chapter, we consider a system architecture made by different RSUs and similar
to the one described in Chapter 2. Since in previous studies we realized that the 5 GHz
bands offer limited capacity channels in comparison to the broad range of service en-
visioned in vehicular networks, here we investigate the benefit of using UHF band to
extend the available system bandwidth. In particular, we design a new protocol for con-
tent downloading that leverages the large-coverage UHF band for control messages, and
the high-throughput 5-GHz bands for data delivery. The efficacy of the proposed solution
is proved through a testbed and the results have been compared with respect to the case
where only 5-GHz bands are used.

The content of this chapter is organized as follows. Section3.1 introduces the Content
Downloading problem and reviews previous work, while Section 3.2 describes the net-
work scenario that has been implemented in our vehicular testbed. The protocol message
exchange for content downloading, on both the UHF and the 5-GHz bands, is introduced
in Section 3.3. Section 3.4 details the testbed set up, whilethe results derived from our
measurement campaign are presented in Section 3.5. Section3.6 concludes the chapter
highlighting directions of future research.

3.1 Problem Statement

In order to support advanced infotainment services and applications (email/social net-
work access, newscasts, or local touristic clips), frequency spectrum regulations have
licensed 5.9 GHz band or dedicated short-range communication (DSRC) for ITS, while
the IEEE 802.11p specifications have standardized vehicular communications over the al-
located spectrum. In particular, 802.11p foresees a time division technique to let a vehicle
equipped with one radio operate on the control and service channels. Also, it allocates one
frequency channel for control message exchange and safety applications, and six channels
for other services, all of them in the 5.9 GHz band.
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3 – Content Downloading Using UHF Band

Figure 3.1: Abstract representation of the network scenario in the testbed.

Several research studies [43–47] suggest that, under high vehicle density or emer-
gency situations, this bandwidth will likely be insufficient for either safety or non-safety
services. To alleviate the spectrum demand, a number of solutions have been proposed.
The work in [46] considers vehicles equipped with a DSRC and aUHF radio, and ana-
lytically derives the performance gain yielded by a cognitive radio system that allows the
use of additional bands. Vehicles equipped with two radios are also considered in [47].
There, Kim et al. introduce a cognitive ad hoc network architecture to allow vehicle
opportunistic access to WiFi channels, and present a cognitive routing protocol leverag-
ing geographical location and sensed channel information.A simulation-based study is
described in [45], where vehicles sense the UHF spectrum licensed to TV broadcasters
and report their measurements to roadside processing units. The latter are in charge of
identifying the frequencies available for widening the 802.11p control channel spectrum.

Motivated by the aforementioned observations and studies,in this chapter we focus
on the use of low-frequency channels, namely, the UHF band at700 MHz, in support
to the channels at 5 GHz commonly used in ITS. Note that the useof UHF frequen-
cies at 700 MHz for vehicular communications have been already attracting a great deal
of interest, initially by the Japanese Transportation Institute and, more recently, by the
FCC [48]. Indeed, low-frequency bands offer a significantlylarger coverage than 5-GHz
DSRC implementations. At an identical transmitter power, alow-frequency signal will
have greater range than a high-frequency one, due to decreased free space attenuation and
lower absorption by buildings and obstacles. The advantageof using the UHF bandwidth
is that control information can be exchanged between vehicles and network infrastructure
independently of the coverage provided by roadside radio devices. This translates into
the possibility for the vehicles to interact with the ITS in advance, and get ready for the
(high-throughput) connectivity with an upcoming roadsidedevice. As a result, the time
under coverage of the latter can be fully exploited for data transfers, thus reducing the
experienced delay.
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We develop a real vehicular testbed, with infrastructure nodes operating in the UHF
band as well as roadside units (RSUs) operating at 5 GHz, while vehicles are equipped
with both a UHF radio and a 5-GHz radio. An abstract representation of the network
scenario in the testbed is depicted in Figure 3.1. We focus oncontent downloading ap-
plications, and design a message protocol that leverages the UHF channel for control
information and 5-GHz service channels for data delivery. We then investigate, through
our testbed, the benefits of such an approach.

To our knowledge, ours is one of the very few existing vehicular testbeds that exploit
white spaces or UHF bands [49]. Furthermore, although in this work we limit our atten-
tion to the 700-MHz band and to content downloading, our study could be extended to the
case of other low-frequency channels, like those used by Digital Mobile Radio (DMR),
as well as to include control messages for the support of safety and other non-safety ap-
plications.

3.2 System Scenario

As already hinted, our objective is to devise a fast reservation and scheduling mechanism
that can support the transfer of content from a server to moving vehicles, exploiting (i) the
longer transmission range of UHF communication to prefetchand schedule the delivery
in suitable advance and (ii) the high transmission rates andextensive spacial reuse that
communication in ISM bands can afford.

We focus on a roadside network consisting of the following actors, which are supposed
to be deployed in an area supporting downloading services for vehicular users.

• Central Controller (CC)acting as coordinator between content requests from vehi-
cles and scheduled downloads on the vehicular network.

• RoadSide Units (RSUs)providing short-range coverage to send downloaded content
to passing vehicles; RSUs are supposed to be connected to theCC either through a
wireline or through a wireless multihop connection (hereinafter referred to as “CC-
RSU link”).

• Long Range Units (LRUs)base stations operating on UHF bands, used to collect
movement updates and content requests from vehicles.

• On-Board Units (OBUs)used by vehicles to request content from the CC through
the LRU and to download it from RSUs.

Additionally, we assume that each vehicle has a location device (e.g., a GPS) attached
to its OBU and that the CC knows the locations of all RSUs underits control. The appro-
priate UHF channel is automatically supplied to the OBU by a radio map lookup service
available on the OBU itself, possibly integrated with sensing channel information [45,47].
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Figure 3.2: Protocol exchange among CC, RSU and OBU.

3.3 Protocol Description

In the following, we describe the protocol interactions between the four actors. We will
refer to this protocol as Locate-Fetch-Transfer (LFT), which summarizes the three tenets
of its design.

Locate A Vehicle Beatmessage (similar to the CAM specified by ETSI) is broadcast
by each OBU every second in the UHF band. This type of message carries geolocation
data (latitude, longitude, direction and speed), along with additional (e.g., safety-related)
information of a specific vehicle identified by its MAC address. The LRU receives the Ve-
hicle beats and forwards the data to the CC, which then updates each vehicle information
and its average speed (computed over the last ten seconds).

Fetch Content is requested by vehicle users through a URL (either provided by the
user application, or manually inserted) pointing to an Internet resource or to data locally
cached at the CC. The request, along with the MAC address of the requesting vehicle, is
received by the LRU on the UHF band and forwarded to the CC. If no LRU is available
(the request is not acknowledged), the request is periodically reissued until successful.

When the CC receives the request, it downloads a local copy ofthe requested content,
if not already available. Then, it selects the closest (or the most suitable) RSU to the
vehicle from its database and determines if, based on the vehicle position, its predicted
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movement, and the expected download rate, the content needsto be split across multiple
RSUs along the vehicle path. After identifying the first RSU that the vehicle is likely to
come across, the CC sends aVehicle Configurationmessage toward the vehicle (through
the LRU), detailing the network information, such as IP address, netmask, channel and
BSSID, needed by the vehicle to connect to the selected RSU. Additionally, the CC par-
titions the content in one or more macroblocks (depending onthe expected number of
RSUs involved and on their coverages), and it sends anRSU Cachingto the RSU nearest
to the vehicles. Such a message includes retrieval information for the first macroblock,
along with the vehicle ID (e.g., its MAC address). The selected RSU downloads the mac-
roblock through the CC-RSU link, further partitions it intochunks, each of which can fit
in a MAC frame, and waits for the vehicle arrival.

Transfer After the OBU of the vehicle has associated to the RSU using the information
provided by the Vehicle Configuration message, it starts sending shortGo messages to
the RSU until the first chunk is received from the RSU. The chunks, sent over UDP
and with the help of an application-level window protocol, are transferred until either
the macroblock is complete, or the vehicle leaves the RSU coverage. When the transfer
thus ends, the RSU returns anRSU reportmessage to the CC, informing it of the final
status of the transfer. The CC can then schedule the next RSU,possibly repartitioning the
remaining data of the requested content among one or more macroblocks.

Figure 3.2 summarizes the LFT exchanges upon the issuing of avehicle request,
among three of the four actors: for the sake of simplicity, the communication between
CC and OBU is always assumed to go through the LRU.

3.4 Testbed Setup

To validate the framework in a real scenario, we have relied on our TV White Spaces
(TVWS) testbed, in the Viù Valley, a mountain area in north-western Piedmont (Italy).
There, we have selected a TV frequency that is allocated to a broadcaster, but that is not
currently used. We have installed a bidirectional communication system based on the
IEEE 802.11 specifications, as described below.

Hardware Configuration

The coverage of the valley is guaranteed through an LRU with the following characteris-
tics:

• central frequency: 763 MHz, channel bandwidth: 5 MHz;

• antenna: 70-degree span, 9 dBi gain;
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Figure 3.3: Antenna configuration on the testbed car: 700 MHz(red circle) and 5 GHz (green
circle) antennas.

Figure 3.4: Antenna configuration at the RSU: antenna link with CC at the top, and with the OBU
at the bottom.

• transmission power: 18 dBm.

Vehicles are equipped with two omnidirectional antennas, at 5 GHz and 700 MHz,
respectively; the former has 5 dBi gain and uses a transmit power of 22 dBm, the latter
has 6 dBi gain and uses a transmit power of 18 dBm. On the vehicle, we have installed a
device with two miniPCI cards, one for the 5-GHz network and the other for the channel
at 700 MHz.

RSUs have been installed as APs operating at 5 GHz. As shown inFigure 3.4, RSUs
are equipped with two directional antennas (30-degree span, 23 dBi gain) at 5 GHz, one
of which is used to handle data exchange towards vehicles, while the other is used for the
CC-RSU link.
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As described in [50], we compared the performance of the UHF system along the road
to that of a device operating at 5 GHz. The wireless cards usedthe MadWiFi driver, with
the Minstrel rate adaptation algorithm activated. We evaluated the received signal strength
index (RSSI) and throughput in both bands; the values of RSSImeasured at 700 MHz,
shown in Figure 3.5, are such that a good data rate is always guaranteed between vehicles
and LRU.

Table 3.1: Transfer summary at 20 km/h: worst case, 4 contacts (top), and best case, 3 contacts
(bottom)

RSU1 RSU2 RSU2 RSU1
From CC [chunks] 61728 61728 53053 13163
To OBU [chunks] 57869 57888 39890 13163
Coverage time [s] 71 69 63 26

Throughput [Mb/s] 8.45 8.70 6.56 5.25

RSU1 RSU2 RSU2
From CC [chunks] 61728 61728 54334
To OBU [chunks] 54939 59537 54334
Coverage time [s] 85 78 63
Throughput [Mb/s] 6.70 7.91 8.94

Table 3.2: Transfer summary: worst case, 40 km/h

RSU1 Avg RSU2 Avg RSU Global avg
From CC [chunks] 34681 44456 39025
To OBU [chunks] 16964 20997 18757
Coverage time [s] 36 36 36

Throughput [Mb/s] 4.94 5.96 5.40

Figure 3.5: RSSI values at 700 MHz in the testbed road.
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Table 3.3: Transfer summary: 5 GHz only, worst case, 40 km/h

RSU1 Avg RSU2 Avg RSU Global avg
From CC [chunks] 31916 33117 32492
To OBU [chunks] 8487 4874 6752
Coverage time [s] 48 39 44
Throughput [Mb/s] 1.85 1.29 1.61

Finally, the OBU aboard the vehicle has two IP addresses. Thefirst one is used for
exchange of signaling messages with the LRU and the CC, the second address is dynam-
ically configured, as described above, and is used during thedata downloading from the
RSUs.

LFT Parameters

We have implemented the LFT protocol described in Section 3.3, and tested it with one
vehicle travelling on the stretch of road in Figure 3.5. We installed two RSUs, namely,
RSU 1 and RSU 2, operating in the 5 GHz bands using channel 100 and 120, respectively.
In order to represent the passage under several RSUs along the road, the vehicle proceeds
as follows. It starts outside the coverage of RSU 1, then enters it and associates to the
RSU. Next, the vehicle leaves the coverage of RSU 1 and, a little later, enters the coverage
of RSU 2 and associates to it. Finally, it leaves RSU 2, turns around and drives back,
repeating the procedure in reverse order. The vehicle is driven back and forth until the
transfer is complete.

We have run standalone tests where the vehicle uses LFT to request and download a
200-Mbyte file in each experiment. We then compared the attained performance to a case
where a 2-Mb/s dummy download was activated from each RSU toward an additional
OBU in a parked vehicle.

Each file was split into 168,810 chunks of 1296 byte each. In each test, the vehicle
travels either at a steady speed of 20 km/h or 40 km/h. Given the coverage attained with
the directional antennas at the RSUs, such vehicle speeds result in the scheduling at RSUs
of 61,728 and 45,000 chunks, respectively. If no chunks werelost, 3 and 5 contacts with
RSUs, respectively, would have been enough to complete the whole file transfer.

3.5 Experimental Results

We now present and discuss the performance recorded on the previously described testbed.
It is worth pointing out that, due to the duration of each test, not many of them could be
run in the same environmental conditions (namely, over a fewhours’ span, meteorolog-
ical conditions in a mountain valley are bound to change dramatically). Therefore, we
could not provide a solid statistical averaging of metrics and we resorted to showing the
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Figure 3.6: Instantaneous throughput vs. time, worst case;speed: 20 km/h.
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Figure 3.7: Instantaneous throughput vs. time, best case; speed: 20 km/h.

worst-case results recorded across each type of experiment. Occasionally, we will also
provide a set of best-case results for the sake of comparison.

The first set of results, showed in Figure 3.6, illustrates the instantaneous application-
layer throughput recorded during each of the four contacts with the RSUs (each contact
being separated by a vertical line), in the worst recorded case, driving at 20 km/h. Since
the signal quality did not allow to exceed 15 Mb/s of throughput, one contact more than
necessary had to occur for the entire file to be transferred. It is however to be noted that,
in the best case (Figure 3.7), three contacts, as predicted,are enough to complete the
transfer, thanks to a sustained throughput of almost 20 Mb/s.

Table 3.1 further details the transfers showing, respectively in each row, the mac-
roblock size scheduled by the CC in anticipation of the upcoming contact1; the number of

1For clarity, this quantity is expressed in number of chunks;recall, however, that the macroblock is
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Figure 3.8: Instantaneous throughput vs. time, worst case;speed: 40 km/h.

chunks actually downloaded by the OBU of the passing vehicle; the time under coverage2

of the RSU and, finally, the average application-layer throughput while under coverage.
In the second set of results in Figure 3.8, the test was repeated while driving at a steady

speed of 40 km/h. As expected, coverage under each RSU lasts for a shorter time, hence
the greater number of contacts needed. Table 3.2 reports theaverage number of chunks
scheduled and transferred in each of the 9 contacts (though not shown here, 9 contacts
were needed in the worst case while 7 contacts in the best case).

The comparison of the previous case with the scenario including background traffic
shows a performance degradation, which is mainly due to the additional flow carried on
the channel at 5 GHz (results are omitted for brevity).

Finally, we asked ourselves what the impact of the locate-and-fetch components of
the LFT protocol is, by comparing it to the case where only 5-GHz bands are used for
both control and data messages. Note that, in these tests, the OBU sends the request
through the RSU and the downloading of the remaining chunks is negotiated at the time
of every contact on the 5 GHz channel. This results in a plain vanilla file transfer lacking
the benefits of preemptive feeding of content to the upcomingRSU, as the vehicle has no
means to send its updated position to the CC while travellingoutside the RSU coverage.
As shown by Table 3.3, the average number of chunks transferred to the OBU is reduced,
yielding a low throughput. Indeed, precious time under RSU coverage ends up being
wasted in negotiating the download of the file leftover. Overall, the average throughput
during content downloading resulted to be 5.40 Mb/s, implying a 3x gain yielded by the
usage of the UHF band for the transmission of control messages.

divided into chunks only at the RSU.
2Here and in the following tables, for the last passage, this value represents the time under coverage till

download is complete.
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3.6 Conclusion

We defined a protocol for content downloading services, which leverages 5-GHz bands
for data delivery and UHF bands for the transmission of control messages (aimed at lo-
cating vehicles and collecting requests). We assessed the benefits of exploiting UHF
bands, providing much larger coverage than the 5-GHz frequencies, through a vehicular
testbed. Our experimental results show that a 3x throughputgain in content delivery can
be achieved with respect to the case where only 5-GHz bands are used. Such a gain is due
to preemptive data feeding to the upcoming RSU and to the factthat RSU coverage time
is fully exploited for high-throughput data transfers.

Future work will expand along the following directions: (i)experimental tests on
more complex road topologies, (ii) implementation of a mechanism for dimensioning the
content resource to be transferred to the RSU, based on the expected RSSI, (iii) imple-
mentation of fast authentication procedures as the vehiclemoves in and out the coverage
of different RSUs.
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Chapter 4

RSUs Deployment in Intelligent
Transportation Systems

In this chapter, similarly to the previous one, we study content downloading along with
content dissemination, but we focus more our attention on the problem of RSUs deploy-
ment to ensure satisfying performance to bypassing users. This topic is quite interesting
for the network operators’ point of view: in fact, they are strongly motivated in finding
the right trade-off between performance and costs. Even if over-dimensioning the net-
work installing a huge number of RSUs could guarantee high-performance, this is not the
best solution for the operators that constantly try to limitthe installation and management
costs of the infrastructure.

Thus, in this chapter we envision new RSUs deployment strategies able to find the
right trade-off between costs and performance. The problemis solved through mathemat-
ical modeling and optimization; then, the efficacy of the proposed strategies have been
evaluated using simulations with realistic settings. Intermittent connectivity of the ur-
ban area is provided, although good service quality for bothdissemination and content
downloading is guaranteed.

The content of this chapter is organized as follows. In Section 4.1 we illustrate the
RSUs deployment problem. In Section 4.2 we review existing approaches to the problem
of optimal RSUs deployment, and we discuss them by highlighting the differences and
the performance they can achieve. In Section 4.3 we present different formulations of the
infrastructure deployment problem. In Section 4.4 we describe the real-world mobility
scenarios we use in order to study the performance of contentdissemination and down-
loading. In Section 4.5 we use the aforementioned heuristics to derive an optimal RSUs
deployment in the realistic mobility scenarios under study. In this case, ideal channel ac-
cess and propagation conditions are considered and no protocol aspects are accounted for.
Simulation results obtained through the network simulatorns2 are presented in Section
4.6. Again, real-world road topologies and vehicular traces are used. The optimal RSUs
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deployment, computed as outlined above, is taken as an inputto the simulation, and ve-
hicular users are assumed to either receive the same information (dissemination service)
or download a different information item each, from the fixedInternet through 802.11p
RSUs. Finally, in Section 4.7 the major lessons learnt through the presented study are
summarized and some guidelines for RSU deployment in ITSs are highlighted.

4.1 Problem Statement

Most carmakers are striving to create an in-vehicle environment which is as comfortable
and entertaining as possible. An high percentage of newly-manufactured vehicles boast
multimedia capabilities that were once thought to belong toa living room, like LCD
screens or gaming consoles. Such technological wealth, however, is not complemented
with live features besides radio broadcasts. The presence of multiple LCD screens for
passengers begs, as it were, for advanced infotainment services of various nature, ranging
from email/social network access to more bandwidth-demanding contents, such as news-
casts or local touristic clips. Without affecting drivers attention, navigational aids may be
integrated by short videos showing traffic congestion and recommending alternate routes.
Furthermore, in keeping with the explosive growth of socialnetworks, it is envisioned
that car passengers may show a high interest in car-orientedsocial networking and multi-
player games. Finally, professional drivers could access services for efficient vehicle fleet
coordination, up-to-the-minute updated goods deliveriesor re-routing, and customized
cab pick-ups. Currently, the only connectivity option for vehicles amounts to accessing
a 3G network, which could provide high-speed network availability but is hampered by
restricted competition among network operators. Also, thelack of a local infrastructure,
which is specifically dedicated to geolocalized services, makes the realization of the above
scenarios hard to implement and limits its features. However, the emergence of commu-
nication standards for vehicular networks is bringing new visions and opportunities that
could come close to the always-connected paradigm. Globally referred to as Intelligent
Transportation System (ITS), this new vision aims at improving transportation in terms of
safety, mobility, traffic efficiency, impact on the environment, and productivity. Motivated
by such a vision, this chapter deals with the dissemination of information from RSUs to
vehicular users within a geographical region, as well as thedownloading from RSUs of
delay-tolerant (e.g., map services, touristic information) and bandwidth-demanding (e.g.,
video streaming) content, by passing-by vehicles. More specifically, the presented study
tackles the issue of deploying an ITS infrastructure based on the IEEE 802.11p technol-
ogy, which efficiently achieves the goal of information dissemination and downloading
in spite of the fleeting connectivity, highly dynamic trafficpatterns, and constrained node
movements. To this end, the following key issues are investigated:

i) Assuming that an area, with an arbitrary road topology, mustbe equipped with a limited

40



4 – RSUs Deployment in Intelligent Transportation Systems

number k of infrastructure nodes, what is the best deployment strategy to maximize
the dissemination process or the downloading throughput?

ii) Given such an optimal RSU deployment, what is the actual throughput performance
that can be achieved by users when realistic traces are used to represent the vehic-
ular mobility?

The answers to the above questions are given in the remainderof the chapter.

4.2 Related Work

Several works in the literature have addressed the problem of the deployment of RSUs
for vehicular access, although with a number of significantly different objectives. In this
chapter, the focus is on RSU deployments for (i) the dissemination of information to all
vehicles in a geographic region, and (ii) the downloading ofcontent from Internet-based
servers, by a subset of the vehicles.

The simplest solution possible to the RSU placement problem, i.e., a random deploy-
ment, is evaluated in [51]: such a strategy, representativeof unplanned access networks
like those identified in the real world [52], is shown to help the routing of data within
urban vehicular ad-hoc networks. Similarly, intuitive RSUdeployments, that are not
justified by means of a theoretical or experimental analysis, are evaluated in [55], with
the goal of improving delay-tolerant routing among vehicles, by letting each AP work
as a static cache for contents that have to be transferred between vehicles visiting it at
different times. However, although they benefit from the routing process, random or intu-
itive placements cannot represent, in general, an optimal solution to the RSU deployment
problem. In [53], [54] and [60], it is demonstrated that suchsimple strategies are easily
outperformed by more sound approaches, for both the dissemination and the downloading
objectives. As a consequence, in the following the focus will be on deployment strategies
that are instead built upon a precise placement rationale.

Firstly, note that standard maximum graph coverage approaches, such as those adopted
in [65], [66], [67], [68] and [69] do not fit the RSU deploymentproblem as considered
in this chapter. Indeed, these placement strategies are designed for sensor or cellular net-
works, and thus assume that the infrastructure nodes form a connected network or provide
a continuous coverage of the road topology. Moreover, many standard infrastructure de-
ployment techniques have an energy efficiency goal that instead is not of interest in a
vehicular environment. Secondly, the mobility of vehiclesis rather unique, as it obeys
traffic regulations, is constrained by the street layout andalternates very high and very
low speeds in relatively short times pans. As a consequence,the scenario differs signif-
icantly from those studied in [70], which deals with the deployment of Internet access
points in a static network, and in [71], which targets a mobile sensor network.
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In [58] and [59] target the maximization of the amount of timeeach vehicle is within
range of at least one RSU, an objective that may be seen as beneficial for both the dissem-
ination and downloading objectives. More precisely, theseworks formulate optimization
problems whose solutions provide the RSU positions that maximize the coverage time.
In the work [58], a minimum coverage requirement is guaranteed, while that by [59]
maximizes the minimum contact opportunity. However, both RSU deployment strategies
assume that a predefined set of paths over a given road topology is provided, which makes
their application limited to the particular case where onlya subset of the total traffic is to
be covered by RSUs.

Within the context of information dissemination to all vehicles in a geographical
region, [57] recently formulated an optimization problem that aims at maximizing the
spreading of an information within a temporal horizon. However, this work assumes
that RSU positions are given, and thus does not address the issue of the identification of
the RSUs locations. Recently, multiple dissemination schemes have been evaluated in
the context of vehicular environments in [64], with the aim of leveraging opportunistic
vehicle-to-vehicle communication so to offload the cellular infrastructure from the need
of forwarding some small information to all vehicles in a geographical region. However,
again, this work does not cope with the placement of RSUs, since the access network is
represented by a pervasive and ready-to-use cellular network. In [56], the authors for-
mulate an optimization problem for the planning of RSU locations, solvable with genetic
algorithms. However, the deployment is intended to facilitate the aggregation of data,
collected by the vehicles, on the road traffic conditions, rather than the dissemination of
information. [54] describes an optimization problems for the deployment of RSUs, whose
objective is that of the dissemination of information to vehicles in the shortest time possi-
ble. In this chapter, the formulation and results of this work are discussed and employed
as the starting point for a simulative performance evaluation campaign.

RSU deployments that aim at maximizing content downloadingare instead proposed
in [53] and [60]. However, the associated optimization problems are designed for a co-
operative downloading, i.e., a process where direct RSU-to-vehicle data exchanged are
augmented through vehicle-to-vehicle communication: thecooperative downloading thus
leverages opportunistic contacts among vehicles to increase the downloading speed. Of
the two, the formulation in [60] is the most complete, measuring the actual per-user
throughput in presence of realistic data transmission rates, channel access and inter-
ference. Also, [61] adopts a theoretical framework to studythe RSU deployment den-
sity that minimizes the uploading delay via vehicle-to-vehicle multi-hop communication.
However, RSU placement strategies that assume cooperativeapproaches and vehicle-to-
vehicle data transfers will not be further discussed in thischapter, since the focus here is
on the downloading via direct RSU-to-vehicle communication.

Also, related to the transfer of data in vehicular environments are the work [62]
and [63]. The former deals with the collection at the RSUs of small-sized data generated
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by vehicles, and thus targets content uploading rather thanthe dissemination and down-
loading, which are addressed in this chapter. The latter focuses instead on the scheduling
of data packets at RSUs, while it assumes the infrastructuredeployment to be given:
therefore, it does not concern the RSU placement problem considered here.

4.3 RSU Deployment for Content Dissemination and Down-
loading

In this section, the problem of planning vehicular networksfor information dissemination
and downloading is studied taking into account the peculiarities of the vehicular environ-
ment. In order to capture both the dissemination and downloading applications with a
single framework, the problem is cast as that of deploying a limited number of RSUs so
as to maximize (i) the number of vehicles served (i.e., covered) by the RSUs, and (ii) the
connection time between vehicles and RSUs. Such an approachfits well both the targeted
applications, which can be modeled as separate instances ofthe same problem above,
characterized by different durations of the desired connection time. As a matter of fact,
on the one hand, a dissemination process typically concernssmall pieces of information
and large amounts of vehicles, thus it requires that as many vehicles as possible enjoy a
small connection time. On the other hand, the downloading application limits the number
of mobile users involved in the process, since only a fraction of them is interested in re-
trieving some content from the Internet at the same time; however, each of such vehicles
must be covered for a long time, so as to be able to download thewhole amount of the
data it demanded.

RSU Deployment as an Optimization Problem

Formally, an urban road topology of area size equal to A is considered, includingN
intersections. RSUs can be deployed at any of theN intersections, since, as proved in
[54], placing RSUs at road junctions yields significant advantage over positioning them
along road segments, in terms of both covered vehicles and connection time. Each RSU
is assumed to have a service range equal toR. Such a service range may map into the
transmission range of the RSU, or into a multiple of its transmission range if information
delivery can be performed through multi-hop communication. Also, denote byV the
number of vehicles that transit over the areaA during a given time period, hereinafter
called observation period. The goal is then to deployk RSUs so as to maximize the
number of covered vehicles, among the possibleV , so that the connection time between
vehicles and RSUs is above a given thresholdτ . Notice that this problem can be seen as
a generalization of the well-known Maximum Coverage Problem (MCP), as also detailed
next. However, the fact that vehicles may be covered by more than one RSU during their
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route to destination, jointly with the connection time constraint embodied by the threshold
τ , makes most of the generalizations to the MCP unsuitable to the problem studied in this
chapter. Therefore, in the following several solutions to the problem outlined above are
discussed, as presented in [54].

Contact-Only RSU Deployment

As a baseline strategy to compare with, an RSU deployment is first introduced that only
considers the number of vehicle-to-RSU contacts, while it neglects the connection time
aspect. The goal is then to maximize the number of vehicles covered byk RSUs, that can
be deployed at theN intersections located in the road topology. To that end, by analyz-
ing the vehicular mobility in the selected area, define anN × V matrixP whose generic
element is given by

Pij =

{

1 if the vehicle i crosses the junction j during the observation period

0 otherwise

The problem is modeled as a Maximum Coverage Problem (MCP), which can be for-
mulated as follows. Given a collection of setsS = {S1, S2, . . . , SN}, where each setSi

is a subset of a given ground setX = {X1, X2, . . . , XV }, the goal is to pickk sets from
S so as to maximize the cardinality of their union. To better understand the correspon-
dence with the problem posed above, consider that the elements in X are the vehicles
that transit over the considered road topology during the observation period. Also, for
i = 1, 2, . . . , N , we have

Si = {xj ∈ X, j = 1, . . . , V : Pij = 1} (4.1)

i.e.,Si includes all vehicles that cross intersectioni at least once over the observation
period. Thus, by solving the above problem, the set ofk intersections where an RSU
should be placed can be obtained so as to maximize the number of covered vehicles.
Unfortunately, the MCP problem is NP-hard; however, as reported in [72], it is well
known that the greedy heuristic achieves an approximation factor of1 − (1 − 1/m)m,
wherem is the maximum cardinality of the sets in the optimization domain. The greedy
heuristic, hereinafter also called MCP-g, picks at each step a set (i.e., an intersection)
maximizing the weight of the uncovered elements. Now, consider an auxiliary collection
of setsG, subset ofS, and letWi (with i = 1, . . . , N) be the number of elements covered
by Si, but not covered by any set inG. The steps of the greedy heuristic are reported in
Figure 4.1.

We stress that, although the MCP-g algorithm provides a verygood approximation
of the optimal solution, it requires global knowledge of theroad topology and network
system, as well as the identity of the vehicles that have crossed theN intersections during
the observation period.
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Figure 4.1: Algorithm for the greedy MCP heuristic.

Coverage Time-Based RSU Deployment

Next, consider the case of actual interest, i.e.,k RSUs have to be deployed at the road
intersections so as to favor both the number of covered vehicles, as well as the time for
which they are covered. To this end, define anN × V matrixT whose generic element,
Tij, represents the total time that vehiclej would spend under the coverage of an RSU
if the RSU were located at intersectioni, i.e., the contact time between a vehiclej and
an RSU located at intersectioni. Then, the following problem can be formulated, named
Maximum Coverage with Time Threshold Problem, or MCTTP: given k RSUs to be
deployed, the aim is to serve as many vehicles as possible, for (possibly) at leastτ seconds
each, i.e.,

max

V
∑

j=1

min
{

τ,

N
∑

i=1

Tijyi

}

s.t.
N
∑

i=1

yi ≤ k; yi ∈ {0,1} ∀i

(4.2)

Note that in the first equation above an RSU is placed at an intersection so as to
maximize the number of vehicles that are covered, taking into account a vehicle contact
time up to a maximum value equal toτ . RSUs that provide coverage for at leastτ seconds
to a given vehicle do not further contribute to the overall gain of covering such a vehicle.
The constraint in the second equation instead limits the number of RSUs tok. It can
be easily verified that the MCP is a particular case of the above formulation, obtained
by settingτ = 1 andTij = Pij . Hence, MCTTP is NP-hard and a greedy heuristic is
proposed for its solution, denoted by MCTTP-g. The heuristic picks an intersection at
each step so as to maximize the provided coverage time, although only the contribution
due to vehicles for which the thresholdτ has not been reached is considered. LetG,
subset ofS, be a collection of sets and let nowWi (with i = 1, . . . , N) be the total contact
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time provided by intersectioni, considering for each vehicle a contribution such that the
vehicles coverage time due to the union of theG andSi sets does not exceed the threshold
τ . The greedy heuristic is reported in 4.2.

Figure 4.2: Algorithm for the greedy MCTTP heuristic.

Again, notice that the time-threshold heuristic requires knowledge of the global road
topology and of the vehicles identity. While the first assumption appears realistic, the
second may not always be so: therefore, it needs to be relaxed, proposing an RSU deploy-
ment strategy that is unaware of the vehicles identities.

Absence of Information of Vehicles Identities

When the vehicles identities are not available, the only information that can be exploited
is the total time that all vehicles would spend under the coverage of an RSU if it were
located at intersectioni, i.e.,

Ti =

V
∑

j=1

Tij i = 1, . . . , N (4.3)

Thus, in this case the objective is to maximize the total contact (service) time offered
to vehicles whenk RSUs are deployed. In this case, the problem can be formulated as a
01 Knapsack Problem (KP), which is defined in [73] as follows.A set ofN intersections
(items)I = {I1, I2, . . . , IN} is given; each intersection has a valueTi and unitary weight,
and the maximum number of selected intersections (maximum weight) must be equal to
k. The goal is to select a subset ofk intersections that maximizes the overall service time
provided to vehicles, i.e.,
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max

N
∑

i=1

Tiyi

s.t.
N
∑

i=1

≤ k; yi ∈ {0,1} ∀i

(4.4)

The 01 KP is an NP-hard problem in general; however in the caseunder study, where
each intersection has a constant weight, it can be solved in polynomial time by simply
sorting the intersections in decreasing order by their value, and selecting the firstk in-
tersections. This algorithm, which requires the knowledgeof the Ti coefficients (with
i = 1, . . . , N), is referred to as KP-T.

Computational Complexity

The computational complexity of both MCP and MCTTP isO(V Nk): givenN intersec-
tions, all possible combinations where thek RSUs can be placed have to be considered
and the weight of each intersection is computed overV vehicles. The cost of both greedy
heuristics, MCP-g and MCTTP-g, isO(KVN), since, fork times, the best choice among
the candidate intersections (initially set toN) has to be selected, and again the selection is
based on the weight computed overV elements. The complexity of the algorithm to solve
the 01 KP isO(V N +N logN), since it is enough to consider each of theN intersections
and sort the values to obtain the bestk choices.

4.4 Mobility Scenarios

In order to carry out the performance evaluation of the information dissemination and
downloading services, real-world road topologies from thecanton of Zurich, in Switzer-
land, are used. Realistic traces of the vehicular mobility in such a region, generated by the
Simulation and Modeling Group at ETH Zurich, are made available in [74]. These traces
describe the individual movement of cars through a queue-based model calibrated on real
data: as detailed in [75], they provide a realistic representation of vehicular mobility at
both microscopic and macroscopic levels.

The four road topologies depicted in 4.3(a)-4.3(d) are considered; they represent
100 km2 portions of the downtown urban areas of the cities of Zurich,Winterthur, and
of the suburban areas of Baden and Baar. For each topology, half an hour of vehicular
mobility is extracted, in presence of average traffic density conditions.

In order to remove partial trips (i.e., vehicular movementsstarting or ending close to
the border of the square area), the trace is filtered by removing cars that traverse only three
intersections or less, as well as those spending less than1 minute in the considered region.
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Figure 4.3: Road topology layout: Zurich (a), Winterthur (b), Baden (c), Baar (d).

The selected thresholds result in a low percentage of cars being removed from the traces
of the scenarios characterized by a higher traffic density (Zurich and Winterthur), while
the filtering is heavier on the traces of the suburban scenarios (Baden and Baar), where the
conditions set above are harder to meet. However, the resulting numbers still guarantee
the statistical validity of the tests conducted over all road topologies. Specifically, we
have83, 43, 38 and46 intersections and a number of vehicles equal to21373, 4942, 5914
and3736, in the Zurich, Winterthur, Baden and Baar scenarios, respectively.

4.5 Performance Analysis of the Heuristic under Ideal
Network Settings

In this section, a first statement on the performance of the algorithms previously intro-
duced is provided. To this end, the different heuristics aresolved in presence of real-
world road topologies, assuming ideal conditions from a network engineering viewpoint,
i.e., no channel losses, ideal disc-like propagation with radius equal to100 m, perfect
medium access, and instantaneous vehicle-to-RSU communication without any need for
control messages. The resulting RSU deployments are evaluated in terms of informa-
tion dissemination capabilities. In the following, the results obtained with the different
deployment algorithms maximizing coverage and contact times are compared.
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Heuristic Performance

The RSU placement provided by the coverage time-based heuristics presented earlier
varies depending on the thresholdτ . Indeed, this parameter allows the control of the
objective of the deployment, so as to favor

• a dissemination application, by choosing a low value ofτ and thus maximizing the
number of short-lived contacts that are needed to spread a small content from the
RSUs to as many passing-by vehicles as possible;

• a downloading application, by imposing a high value ofτ and thus maximizing the
number of vehicles that are covered for the arbitrarily longtime periods needed to
retrieve large-sized files from Internet-based servers.

As a result, let us first observe how the performance of the quasi-optimal deployment
obtained through the MCTTP-g algorithm varies as a functionof theτ parameter. Figure
4.4(a) focuses on the Zurich road topology and reports the coverage ratio, i.e., the fraction
of vehicles that are covered by at least one RSU during their route throughout the scenario,
versus the numberk of deployed RSUs. The parameterτ ranges between5 and120 s,
and the plot shows the result of the MCTTP-g scheme along withthose obtained under
the MCP-g and KP-T solutions. Looking at the results, it can be seen how MCTTP-g
falls in between an algorithm that maximizes vehicle-to-RSU contacts, i.e., MCP-g, and
one that maximizes the overall coverage time, i.e., KP-T. Inparticular, for low values of
τ , MCTTP-g tends to MCP-g, since the time constraint is easilysatisfied (a contact with
a single RSU is often sufficient to reach the desired coveragetime) and the algorithm
can thus focus on maximizing the coverage. Instead, whenτ is high enough, MCTTP-
g tends to KP-T, since the desired coverage time is seldom reached, and thus the same
vehicles end up contributing to the optimization: the focusof the algorithm then shifts
onto coverage times.

A confirmation to this analysis comes from the CDFs of the per-vehicle coverage time,
in Figure 4.4(b), where the same behavior of the MCTTP-g algorithm is observed, asτ
varies and fork = 6. It can be noted, however, how MCTTP-g withτ = 5 s matches
MCP-g in terms of coverage ratio, but outperforms it in termsof coverage time. Simi-
larly, MCTTP-g withτ = 120 s matches KP-T as far as the coverage time is concerned,
but provides a better coverage ratio. The combined maximization of contacts and cov-
erage time can thus achieve better performance than contacts-only, or time-only driven
solutions, even in borderline conditions.

Thus, it can be concluded that the coverage time thresholdτ can be leveraged to
calibrate the RSU deployment so as to fit the goals of the different types of services.

Next, it is important to evaluate the role that different mobility scenarios play in the
RSU deployment problem. This aspect is evaluated by fixing the thresholdτ to 30 s, a
contact duration that should be largely sufficient to transfer a few kbytes from RSUs to
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Figure 4.4: Coverage ratio versus number deployed RSUs (a) and CDF of the coverage time for 6
deployed RSUs (b), in the Zurich scenario.

vehicles. The MCTTP-g algorithm is compared to the optimal solution to the original
MCTTP formulation, which, as mentioned, is NP-hard and thussolvable only for small
instances of the problem (in the case under study, up tok = 6) via a brute-force approach.
The outcome of the KP-T algorithm is reported as well, along with that of a random RSU
deployment, so to benchmark the performance of the other schemes. The coverage ratio
achieved by such algorithms, in different road topologies and as the number of deployed
RSUs varies, is depicted in the plots of Figures 4.5(a)-4.5(d). Observe that, regardless
of the road topology considered, the MCTTP-g solution is always extremely close to the
optimal one. Moreover, the availability of information on the vehicular mobility plays a
major role in favoring contacts among vehicles and RSUs: as amatter of fact, the ran-
dom solution performs poorly, the KP-T algorithm provides an improved coverage of the
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vehicles, but the best performance is achieved by the MCTTP-g scheme, which lever-
ages the most detailed knowledge of the vehicular trajectories. Such a result is consistent
throughout all scenarios, although the entity of the difference in the coverage ratio pro-
vided by the different deployment algorithms varies with the considered road topology.
More precisely, a more complex road topology, such as that ofthe Zurich area, leads to
more significant differences between the schemes that are mobility-aware and those that
are not.

Figure 4.5: Coverage ratio versus the number deployed RSUs,in the Zurich (a), Winterthur (b),
Baden (c) and Baar (d) scenario.

Figures 4.6(a)-4.6(d) report instead the distribution of the coverage time, in the spe-
cific case in whichk = 6 RSUs are deployed over each road topology. Recall that the
goal is to maximize the time spent by vehicles under coverageof RSUs, up to the thresh-
old timeτ of 30 s, identified by the vertical line in the plots. The common result in all
road topologies is that random deployments lead to small coverage times, whereas the
other schemes tend to behave similarly, although KP-T is characterized by a more skewed
distribution than those of the MCTTP, in both its optimal solution and greedy approxima-
tion. As a matter of fact, the deployments determined by KP-Tresult, at a time, in more
vehicles with very low coverage times, and more vehicles with very high coverage times.
Conversely, the MCTTP leads to more balanced distributions, where many vehicles expe-
rience a coverage time around the thresholdτ . Once more, these observations hold for all
the scenarios considered.
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Figure 4.6: CDF of the coverage time for 6 deployed RSUs, in the Zurich (a), Winterthur (b),
Baden (c) and Baar (d) scenario.

When comparing the coverage times in Figures 4.6(a)-4.6(d)with the corresponding
coverage ratios in Figures 4.5(a)-4.5(d), notice that MCTTP and MCTTP-g provide very
similar performance, generally superior to those achievedby the other schemes. Indeed,
a random deployment of RSUs induces both a lower number of vehicle-to-RSU contacts
and a shorter coverage time with respect to the solutions above. The KP-T solution leads
to a performance comparable to that of MCTTP and relative heuristics in terms of cover-
age time, although with the skewness discussed before; however, this result is paid at a
high coverage ratio cost.

In conclusion, the MCTTP formulation represents an efficient solution to the RSU
deployment problem which enjoys the desirable properties of (i) being configurable to a
specific application by properly setting the value of the parameter, (ii) having an inex-
pensive greedy heuristics that well approximates the optimal solution, and (iii) yielding
results that are consistently better than those achieved with unplanned RSU placements
or Knapsack Problem-based formulations.

Impact of Routes

The figures in the previous section are averaged over space, aggregating the coverage
ratio and time of all vehicles moving in the region under study. As a further step in the
analysis, observe how the route traveled by a car affects thecoverage it enjoys during its
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movement. To that end, the MCTTP heuristics is considered and the coverage time on
a per-route basis is computed by aggregating the performance referring to vehicles that
followed the same route through the road topology scenario.

Figures 4.7(a)-4.7(d) show the coverage time measured on different routes traveled by
vehicles, in the different mobility scenarios, when the thresholdτ is set to30 s and the
number of deployed RSUs is varied. The x-axis of the plots reports the route identifier,
which is assigned according to a decreasing coverage ratio ordering (which implicitly
leads to monotonically decreasing curves). Observe that when just one RSU is placed in a
region, the coverage time is around20 s (i.e., approximately the duration of one vehicle-
to-RSU contact) along a subset of routes (i.e., those passing by the location of the lone
RSU). This result is consistent for all the road scenarios, although the number of routes
with non-zero coverage time varies depending on the street layout: clearly, more complex
topologies imply that more combinations of consecutive segments are available, and thus
that a higher number of possible routes will pass by the deployed RSUs. When the number
of deployed RSUs increases, as one could expect, more routesbecome covered for a
longer time. However, note that disparity among routes grows along with the number
of RSUs deployed: when more RSUs become available, the luckiest routes tend to get
coverage durations that are5 to 10 times those experienced by vehicles traveling on the
less fortunate routes. This result evidences how some routes are more prone to enjoy
better coverage than others, even in presence of a coverage that is approximating the
optimal one.

Figure 4.7: Average coverage time versus route, for a varying number of RSUs, in the Zurich (a),
Winterthur (b), Baden (c) and Baar (d) scenario.
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The impact of the time thresholdτ on the per-route performance is instead evaluated
in Figures 4.8(a)-4.8(d), when the number of RSUs is fixed to10. It is quite evident that
lower values ofτ allow a fairer distribution of RSUs over the road topology, as more
routes are covered, even if for a shorter amount of time on average. On the contrary,
increasing theτ threshold forces an RSU deployment that is significantly more clustered,
with the result that a smaller subset of routes enjoys a high coverage time, while the rest
is left uncovered or almost so. This behavior can be observedover all road topologies, but
it is especially evident in the Zurich scenario, due to the larger choice of routes enabled
by the more complex street layout. A visually-intuitive representation of such a disparity
is provided in Figures 4.9(a)-4.9(d): the plots show maps ofthe four road scenarios,
where darker and thicker lines represent road segments traveled by vehicles that have
higher coverage times. The results refer to the case of10 RSUs andτ equal to30 s,
but similar figures were obtained under any other parameter combination. According
to these results, it can be concluded that RSU deployments can be significantly unfair,
and, as a consequence, that a given average coverage time does not necessarily mean that
all vehicles will spend such a time interval under coverage of RSUs. Indeed, especially
when the number of RSUs or the minimum time constraint grow, adramatic disparity can
emerge in the performance observed by individual vehicles traveling in the same region
but along different routes.

Figure 4.8: Average coverage time versus route, for a varying thresholdτ , in the Zurich (a),
Winterthur (b), Baden (c) and Baar (d) scenario.
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Figure 4.9: Per-road coverage time, for10 RSUs andτ = 30 s, in the Zurich (a), Winterthur (b),
Baden (c) and Baar (d) scenario.

4.6 Performance Analysis of Heuristic in Realistic Envi-
ronments

In order to provide a realistic assessment of our heuristics, we ran ns2 simulations track-
ing vehicle movements in the four maps. Each vehicle is assumed to be equipped with
an IEEE 802.11p interface with which it communicates with RSUs. All RSUs use the
same frequency channel, 20-MHz wide, for beacons (issued every 0.2 s) and any other
communication with the vehicles. For simplicity, the link between vehicles and RSUs is
established on the service channel, operating at a data rateof 54 Mb/s, which, due to
the channel switching of IEEE 802.11p, translates to an effective maximum throughput
of about13 Mb/s at the application layer, in absence of contention and of transmission
errors. The link is simulated according to a shadowing modeldefined in [76], with urban
parameters for the Zurich and Winterthur maps (resulting inshorter-range coverage), and
with suburban parameters for the Baded and Baar maps (resulting in a longer-range cov-
erage). For each scenario, the transmission power of vehicles and RSUs is set in such a
way that95% of the transmitted packets are correctly received at a distance of100m.

In the dissemination case, the information is included withthe beacon issued by the
RSU (the beacon size is increased from22 to 1000 bytes), while in the downloading case
the vehicle sends a request packet upon receiving the first beacon from an RSU. The
request packet specifies the size of the file to be downloaded.Each downloader wishes
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to retrieve a file whose size follows the experimental distribution derived in [77]. Each
file is divided into chunks of1400 bytes each and the RSU starts sending it as soon as the
request is received. Chunks carry application-layer sequence numbers, thus vehicles can
selectively request the retransmission of missing chunks.

We start by looking at the dissemination case. Based on the discussion presented in
the previous section, the parameterτ is set to30 s, and RSUs are placed on each map
according to the MCTTP-g heuristic. Several experiments are carried out for each of the
four road layouts, with a number of RSUs ranging from5 to 25. Figure 4.10(a) shows
the coverage ratio, computed as the ratio between the numberof vehicles that receive
at least one beacon and the total number of vehicles in the area. Note that the results
match the behavior of the coverage ratio metric obtained in the various scenarios under
ideal settings (see Figures 4.5(a)-4.5(d)), although lower performance is achieved due
to the fact that realistic propagation conditions are now modeled. Interestingly, though
being both classified as urban areas (and thus being simulated with the same channel
model), Zurich and Winterthur provide both the worst and thebest coverage ratio, for any
number of RSUs. The reason lies in the lower average vehicle speed and higher number of
roads in the Zurich scenario, resulting in a longer travel time (compared to the simulation
length) before reaching an RSU. This is confirmed by the delaybetween entering the map
and receiving a beacon, shown in Figure 4.10(b), that is muchhigher for Zurich than for
Winterthur. Concerning the suburban scenarios, Baar achieves slightly better performance
than Baden because it has a lower number of roads, all crossing the same limited area;
thus, a better coverage of the vehicles can be achieved. Figure 4.10(c) reports the CDF of
the coverage time, when the number of RSUs is fixed to6. The coverage time is computed,
for each vehicle, as the sum of the intervals between back-to-back beacons received from
the same RSU. Again, comparing this plot with the ones in Figures 4.6(a)-4.6(d), it can
be seen that qualitatively similar results are obtained in the different road layouts. Also,
note that the coverage times reflect the behavior of the coverage ratio shown in Figure
4.10(a); in particular, the probability of having zero coverage time is in agreement with
the percentage of vehicles that do not receive any beacon, inall scenarios under study.

Next, the performance of content downloading is shown in Figures 4.11(a)-4.11(c).
For each scenario,1% of the total number of vehicles in the traces were selected tobe
downloaders. Their performance was monitored by settingτ equal to1000 s and placing
a varying number of RSUs according to the MCTTP-g heuristic.Looking at the plots, it
can be seen that results are affected by the road layout, the number of downloaders and the
node mobility in the different scenarios. In particular, for a fixed number of RSUs that are
deployed, a shorter total road length and a lower average vehicle speed result in a higher
coverage time (Figure 4.11(a)), hence in a higher throughput (Figure 4.11(b)). This effect
is especially evident by comparing the results obtained in the Baar area, where the total
road length is shorter (hence RSUs are necessarily placed closer to each other) to those
derived in the other suburban area, i.e., Baden, which is characterized by a larger total
road length coupled with faster vehicles. Similar considerations hold for the comparison
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Figure 4.10: Dissemination case in the four scenarios: coverage ratio versus number of RSUs (a),
delay between entering the map and receiving a beacon versusnumber of RSUs (b), CDF of the
coverage time per vehicle with6 deployed RSUs (c).

between the two urban scenarios, i.e., Zurich and Winterthur, where the former exhibits a
larger road length than the latter. Another important factor in determining the performance
is the number of vehicles under the same RSU that concurrently download information.
The Baden and Zurich scenarios are the ones that exhibit a larger number of downloaders,
and, consistently, feature a lower throughput than the others. It follows that the relation-
ship between throughput and coverage time (the latter shownin Figure 4.11(b)) is not
as strong as one would expect. Note also that the average per-downloader throughput is
computed at the application layer, over the vehicles that are able to start downloading the
file. An important metric to observe is therefore the percentage of downloaders that can
retrieve not even a chunk, as well as the percentage of downloaders that is never under
coverage of any RSU. Such results are reported in Table 4.1, for the various scenarios and
as the number of deployed RSUs varies. It can be seen that the Baden and Baar areas,
which are both suburban, exhibit better performance than the urban regions of Zurich and
Winterthur. This is mainly due to the fact that in the former scenarios almost all vehicles
travel on a few major roads, while in the urban environments downloaders may travel also
on narrow roads with little RSU coverage. Furthermore, better performance is achieved in
the Baar scenario than in the Baden area; indeed, the smallernumber of roads, all within
the same limited area, that characterizes the Baar layout leads to a larger coverage ratio.
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Figure 4.11: . Downloading case in the four scenarios: average coverage time (a), average through-
put achieved by downloaders (b) and delay between entering the map and receiving the first chunk
(c), versus number of RSUs.

Table 4.1: Content downloading: [percentage of downloaders experiencing zero throughput, per-
centage of downloaders experiencing zero coverage].

Scenario/No. RSUs 50 100 200 300 400

Zurich [13.09, 12.99] [12.4, 12.19] [4.00, 2.00] [2.00, 2.00] [2.00, 2.00]
Winterthur [12.50, 12.50] [12.50,12.50] [4.17, 4.17] [2.09, 2.09] [0, 0]

Baden [15.75, 13.11] [9.84, 9.84] [4.84, 3.23] [0, 0] [0, 0]
Baar [14.62, 12.50] [3.12, 3.12] [0, 0] [0, 0] [0, 0]

Finally, Figure 4.11(c) depicts the average delay between the time instant when the
downloader enters the service area and the time at which it receives the first chunk (note
that only downloaders that receive at least one chunk have been considered, in order to
compute such a delay). Observe that the mobility scenario has little impact on such a
metric, as the number of deployed RSUs is not as small as in thecase of dissemination
services; thus, it is likely that a downloader finds an RSU after a reasonable amount of
time independently of the road layout. Also, as expected, the larger the number of RSUs,
the lower the travel time before reaching an RSU, hence the experienced delay.
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4.7 Conclusion

This chapter addressed two fundamental information delivery services in vehicular net-
works with infrastructure support: information dissemination from RSUs to passing-by
vehicles and content downloading by vehicular users through nearby RSUs. In order to
ensure good performance for both services, RSU deployment was investigated, by casting
it as an optimization problem, and different formulations of the problem were presented.

Among such formulations, the one named Maximum Coverage with Time Threshold
Problem (MCTTP) aims at guaranteeing that a large number of vehicles travel under the
coverage of one or more RSUs for a sufficient amount of time, denoted byτ . Such a for-
mulation also leverages, with respect to the others, the knowledge of the vehicular trajec-
tories. The (either optimal or approximate) solution of theMCTTP problem emerged as
the most suitable to support different information delivery services in vehicular networks,
for a number of reasons. Firstly, it was shown that, by varying the minimum required
coverage time,τ , in the MCTTP formulation, the RSU deployment can be calibrated so
as to achieve a combined maximization of contacts and coverage time, which yields bet-
ter performance than contacts-only or time-only driven solutions. Secondly, the MCTTP
formulation leads to a more balanced distribution of the coverage time over the vehicles,
with respect to other formulations: when RSUs are deployed according to the MCTTP
solution, many vehicles experience a coverage time around the minimum required value
thresholdτ .

Simulation results, both under ideal and realistic conditions, also highlighted some
interesting effects. A factor which is often underestimated, and that was investigated in
this chapter, is the effect of the constraint on the coveragetime. Simulation results showed
that lower values ofτ allow a fairer distribution of RSUs over the road topology, as more
routes are covered, even if for a shorter time on average. On the contrary, increasing the
τ threshold yields a more clustered RSU deployment, with the result that a smaller subset
of routes enjoys a high coverage time, while the rest is left uncovered or almost so. We
thus concluded that aiming at a given average coverage time does not necessarily mean
that all vehicles will be under coverage of RSUs for so long, and fair coverage cannot
be achieved. Furthermore, simulations allowed us to establish the impact of factors such
as vehicle speed, vehicle density and road density, highlighting the need to collect these
types of statistics when designing the coverage, for both information dissemination and
content downloading.

In conclusion, RSU deployment cannot be addressed through random or intuitive
placements, since neither one represents, in general, an optimal solution to the RSU
deployment problem. Such simple strategies are easily outperformed by more sound
approaches, for both the dissemination and the downloadingobjectives. The MCTTP
formulation of the RSU deployment problem, which leveragesthe knowledge of the vehi-
cles trajectories, represents an efficient solution and enjoys the desirable properties of (i)
being configurable to a specific application by properly constraining the coverage time,
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(ii) having an inexpensive greedy heuristics that well approximates the optimal solution,
and (iii) yielding results that are consistently better than those achieved with unplanned
RSU placements or Knapsack Problem-based formulations.

An important aspect to the performance of data delivery services that should be ad-
dressed by future research, and that is complimentary to thestudy presented in this chap-
ter, is the interaction between the deployed RSUs and the vehicle-to-vehicle information
transfer. Indeed, this chapter highlighted the unfairnessin RSU coverage that may arise
in realistic road layouts. A way to mitigate such an (often) unavoidable effect is to let
vehicles share data of common interest in areas where connectivity with an RSU in not
possible. If the amount of data exchanged through vehicle-to-vehicle communication
could be predicted by the RSUs, an effective synergy could becreated between roadside
infrastructure and vehicles within the ITS.
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Chapter 5

Optimization of Urban Traffic Flows

In this chapter, we propose an application that exploit the Vehicular Network to provide
services to the users. Differently from previous chapters,here we address problems re-
lated to routing of vehicles instead of routing of information among vehicles. We suppose
to have a system architecture enabling the exchange of information among vehicles, like
one of those previously described. In the considered scenario, each vehicle communi-
cates with a Central Controller using the available infrastructure, and relies on common
navigation services. Exploiting the described architecture to collect the required traffic in-
formation, we propose a method to optimize urban traffic layout through basic heuristics
and computationally efficient simulations. Instead of modeling an entire urban map with
hundreds of intersections, each typology of intersection is simulated in order to under-
stand how it responds to different traffic pattern and intensities. Then, this knowledge is
leveraged to model the entire urban area and to compute minimal delay route for different
flows of vehicles. The problem is studied by means of mathematical optimization. The
proposed heuristic has been evaluated through simulationsin realistic urban scenarios and
compared with well-known existing routing strategies for vehicular traffic.

The content of this chapter is organized as follows. Section5.1 introduces the opti-
mization of urban traffic flow problem. Sections 5.2 and 5.3 describe the underlying idea
and some possible applications. Section 5.4 explains the difficulty of representing urban
traffic as a flow. Section 5.5 gives the details of our framework. Section 5.6 contains
the experimental results, while section 5.7 discusses the previous works which are most
related to our study. Finally, section 5.8 contains conclusions and future work.

5.1 Problem Statement

Traffic congestion is one of the major problems in urban areas. It impacts directly people’s
everyday lives and causes several billion dollars lost revenues each year [78]. Traffic con-
gestion can at times be tackled by resizing roads and junctions so that they can serve more
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vehicles. The roadway expansion problem reduces to classical bottleneck analysis which
are widely exploited in computer systems and network design. Roadwork can then be
planned empirically or as an optimization problem with respect to costs, time, space and
user requirement [79]. Unfortunately, even when feasible,the increase of road capacity
only mitigates the problem until the next inevitable demandgrowth. An alternative solu-
tion consists in efficient traffic control and management. Specifically, traffic control deals
with tuning traffic lights, green waves and access ramp rates, so that the traffic density
is sustainable for the infrastructure [80]. Traffic management proactively directs vehicles
towards alternative routes in order to avoid jams [81]. Bothapproaches are driven by the
goal of minimizing the delay perceived by the drivers.
Our work is inspired by computer network research that already dealt with congestion and
optimization back in the days of the early Internet [82]. However, there is no satisfactory
model for traffic flow on roadways as there is for computer network traffic. The com-
plexity stems from the fact that vehicles do not operate independently but they constantly
influence each other. Moreover, the problem is complicated by the unpredictability of the
human behavior. The challenge addressed in this chapter is to understand the behavior
of vehicular flows across urban intersections. In particular, this chapter clarifies how our
urban traffic optimization has to deal with the following problems:

• The use of mathematical frameworks, such as linear or convex optimization, is not
trivial because: (1) there is not a closed form solution to calculate the average delay
of a vehicle on a route; and (2) the dimension of the optimization problem grows
exponentially with the number of lanes and intersection that the system takes into
consideration;

• It is computational expensive to reproduce traffic on a city-wide scale thus an opti-
mal organization of traffic flows can hardly be found with an exhaustive search.

5.2 Contribution

The goal of this chapter is to find the optimal routing (i.e., minimum overall delay) in a
urban grid that includes intersections. Tackling the problem of vehicular flow optimiza-
tion as a whole is not feasible due to many variables. In the one hand, previous works
show that the methods that account for intersection detailsdo not provide a closed form
solution required for efficient multi-commodity flow optimization. On the other, exist-
ing flow optimization algorithms are suitable only for low-density highway traffic, indeed
without intersections. Henceforth this work formalizes how to break the problem into
smaller tasks that can be completed using simple tools and basic algorithms.

The underline idea consists in categorizing road segments so that they can be simu-
lated and modeled individually. First, the traffic behaviorat different types of intersection
under various conditions is derived, then this informationis exploited to compute optimal
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routing scheme for a given traffic demand. Based on this knowledge, the model of the
system has been designed and used to minimize the average travel delay of the drivers.

This approach is promising for the following reasons:

• the approach does not depend on a specific simulator or traffic model. The choice
of the simulator is intentionally left to the user as there are many simulators that
can be used, but none that can successfully represents everyscenario.

• In selecting the optimization algorithm it is possible to trade computational power
for precision. Nevertheless, the results in this chapter show how a simple greedy
algorithm can optimize traffic flows on a realistic urban scenario.

• The knowledge base is created just once and it is updated only if some intersections
change. Note that in this case the new model of intersection can be simulated indi-
vidually and the knowledge base can be updated incrementally. This is an important
aspect since it might take days to simulate small urban area while it takes less than
an hour to simulate a single intersection.

5.3 Example Scenario

The aim of this work is to accommodate the new generation of car navigators, in particular
that ones that can receive remote instructions to use low congestion detours if the primary
route is heavily congested. Today’s GPS navigators take in consideration only distance
and traffic updates. Unfortunately, this method does not work during rush hours because
all vehicles on the same congested segment take the same detour causing route flapping
[83]. The next generation navigator will assign drivers to different detours, reducing the
probability of congestion. For example consider a rush hoursituation when the same
people must drive on the same routes from home from to work. Via a smart navigator,
before leaving his garage, the driver is asked to choose the neighborhood closest to his
destination. With that information, the Traffic Authority randomly assigns the vehicle
to one of the possible routes that have been precomputed for the daily traffic demand.
Note that this route might be longer than the straight path solution. However it has the
advantage of being (1) decongested and (2) faster than traveling on the shortest path in
case of traffic jam.

Feasibility of the Implementation

The whole idea of letting a computer (e.g., the navigator) deciding the route to the des-
tination might sound excessive and even scary for the driver. However, the impact will
be beneficial to society, considered that the probability that an individual is consistently
routed toward longer routes is negligible. On average the miles driven will be about the
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same than before but the total amount of time spent in the car will be much less. The
main problem is the degree of penetration: this technology needs to be used by most of
the drivers to be cost effective. To this aim it is possible tooffer incentives to people who
are willing to collaborate, for instance routes that are notsuggested by the navigator for
a particular driver are considered toll roads. Otherwise, people can be threatened with a
fine if they do not respect their commitment. Note that it is not hard to verify if a vehicle
is on its route, for instance it is possible to install at the main intersections RFID readers
so that the presence of the vehicle can be recorded once it passes by. Viceversa, vehicles
can send a beacon to base stations along the path to notify their presence.

5.4 Vehicles Behavior in a Urban Scenario

The goal of this chapter is to find the optimal routing (i.e. min overall delay) in an urban
grid that includes intersections. For the sake of simplicity, only scenarios at full penetra-
tion rate with no selfish driver are considered in this work. Afuture extension will study
the sensitivity of the approach to the different penetration rates. The previous works (see
Section 5.7) indicates that the method that account for intersection details (e.g., cellular
automata schemes) do not yield the closed form solution required for efficient multi-
commodity flow optimization. On the other hand, existing flowoptimization algorithms
apply only to low-density highway traffic (no intersections). They cannot directly handle
surface roads and residential scenarios. More specifically, conventional flow optimization
methods cannot adequately approximate the impact of density impacts on: (1) the travel-
ing time on each lane and (2) the waiting time at each intersection. Therefore the result is
an oversimplified model that leads to misleading results.

In the following, a brief description of the vehicle interactions on the lanes and at the
intersection is provided based on our analysis.

Vehicles on the Lanes

Figure 5.1: Interaction of vehicles in a road with one lane per-direction

Vehicles on the same lane influence each other by accelerating and decelerating as
dictated by drivers habits. It is known, for example, that more aggressive drivers tend to
maintain a smaller inter vehicle distance whereas safe drivers tend to slow down when
approaching another car. Luckily, microscopic models suchas Newell’s car-following
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[84] successfully capture all these aspects allowing to reproduce traffic dynamics such as
jamsandshockwaves. These phenomena cannot be noticed when considering vehicles as
a flow. However, by taking into account their impact, on the flow model average delay, it is
possible to anticipate them and slow down the traffic before severe congestion set in. Note
that it is not feasible to redirect congested traffic in termsof flows. In case of congestion,
vehicles must be rerouted individually and not as a flow. How vehicles interact on a single
lane is shown in Fig. 5.1. In the picture,k is the vehicle length andIi is the length of the
lane. The road segmentdi is the space where normally vehicles are traveling whereasσ is
the space where they start slowing down to approach the intersection. Accordingly to the
majority of traffic models, vehicle interfere with each other by stretching the inter-vehicle
distances depending on the driver’s aggressiveness. An aggressive driver tends to stay
closer to the vehicle ahead of him whereas a safe driver slowsdown to keep more space
in between. By slowing down he might force another vehicle behind him to slow down
causing a chain reaction that propagates backward on the lane.

Vehicles in the Intersection

Figure 5.2: Interaction of vehicles at the intersection

Modeling intersections is even more complicated than modeling lanes, since vehicles
interact in more than one dimension. Besides depending on drivers actions, the perfor-
mance of an intersection is strongly influenced by:

• Capacity. Intersections have an implicit capacity bounded by the average time
needed by a vehicle to move from one street to another. This value can be found
with on-site measurements or can be computed from the average speed at the inter-
section. Note that, even knowing the capacity of an intersection, queue analysis still
remains hardly applicable since the capacity is not uniformly distributed to each in-
coming lane. Instead, it varies with respect to factors suchas geometry, policies,
traffic density etc. Fig.5.2 shows that a vehicle crosses theintersection only if there
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is at least a distancez from another incoming vehicle from a different lane. Note
that, the distancez is not a constant instead it depends on the drivers attitude.An
aggressive driver might cross the intersection forcing thevehicles with the right of
way to slow down to avoid a collision. Fig. 5.5 shows some results about how
intersection policies affect the capacity of each street lane. In Fig. 5.5(a)flow 2 is
the one with priority, while in Fig. 5.5(b)flow 1has the right of way againstflow 2.
Note how, even if in both the configurations there is only one flow with priority, the
performances are not the same (in the first performances dropat 800 v/h, whereas
in the other at700). This is an example of how small factors can impact the perfor-
mance of urban intersections In presence of a traffic light, the service time of the
intersection is time shared among all the lanes in such a way that these almost never
interfere with each other. In this particular case convex optimization can be used to
optimize the traffic demand.

• Enviroment. The environment influences the way drivers approach the intersection
and consequently its overall performance. This aspect can be better observed with
real measurements rather than simulation although factorssuch as narrow roads,
blind spots, bicycle lanes or pedestrian crossing impact sensibly the performance of
the intersection.

• Policies. The delay experienced by vehicles at an intersection strongly depends
on the policy of the intersection, e.g., right-before left,no right turn on red, traffic
lights etc., and the amount of vehicles traveling on each incoming lane. When
streets with priority are subject to high traffic volumes allthe other incident streets
become congested because the high priority streets are capturing the entire capacity
of the intersection.

5.5 Model

This model has been developed by assuming that waiting time at an intersection is much
smaller than the traveling time on the lanes between two intersections. However, if one
or more intersections are jammed, the intersection becomesthe bottleneck and the time
spent on the lanes is of secondary importance. With this key assumption the following
model has been formulated. A urban map is considered asM = (I, L), whereI is the
set of the intersections andL is the set of lanes on the map. Each laneli ∈ L is assumed
to have (1) known lengthdi and (2) a known vehicle average speedvi. Traffic demand is
expressed as:

1. A set of usersU = {uk : uk ∈ I × I}. Because flows are considered from
intersection to intersection.

2. A functionΦ(x) : U → R that maps users to theirvehicles/hour demand.
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Each user can be served by a number of routes from a setR = {ri : ri ⊂ L}. From
now on,ri ∈ uk signifies that routeri serves useruk. Analogouslyli ∈ rj means that
routerj contains the laneli. Two vectorsf = {f1, f2, ...f|L|} andy = {y1, y2, ..., y|R|}
represent the current state of the system,fi contains the amount of flow on laneli whereas
yj contains the amount of flow on the routerj .

By design, this model does not handle heavy, congested traffic as the latter cannot be
properly represented as a continuous steady state flow. However, if applied incremen-
tally, this approach delays the congestion build-up until the capacity of the road system is
reached.

Formally, it works under the assumption that, given a laneli, vehicles never stop
before having driven a distancedi − σ on it, whereσ is the space of the lane used by
vehicles to decelerate and approach the intersection. The reason is that given a laneli
the time spent on it, i.e.,Ti(f), must be split into two components: the amount spent at
the intersectionwi and the time spent moving on the street segmentli. This leads to the
expression:

Ti(f) =
di − σ

vi
+ wi(f) (5.1)

Thus, the total time spent on a routerj is equal to:

T (rj, f) =
∑

li∈rj

Ti(f) (5.2)

Thus, the minimum average delay for the drivers can be written as:

min
f

(

1

γ

∑

li∈L

Ti(f) · fi

)

(5.3)

whereγ is equal to
∑

rj∈R
yj. Note that, if this function were convex the problem could

be solved with the flow deviation method or similar frameworks. Unfortunately, as the
results in Fig. 5.6 show, the function does not remain convexdue towi(f). The time
spent at an intersection depends on the load of each incidentlane and, to the best of our
knowledge, beside [85] there is no previous work for a synthetic representation of the
different types of urban intersections. In order to complete the task, our model considers
the time spent at an intersection withn incident lanes as a generic functionRn → R

n

where the domain is the amount of flows on the incident lanes and the codomain is the
delay on each lane. An estimate can be obtained by simulation.

Simulation

Before running the simulations, intersections must be classified with respect to their ge-
ometry. This task can be easily done via software even thoughsome urban areas can
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Figure 5.3: Example of recognizable urban patterns in SantaMonica (CA).

simply be visually inspected. For example, in Fig. 5.3, it isclear which intersections
have the same geometry and which do not. Note the symmetry of the areas in red, yellow,
purple and blu. By zooming in, intersections can be recognized to have the same geome-
try. Differently, in the area colored in green each intersection is different from the others
and clearly need to be inspected further. The process of deriving a delay function can be
summarized as follows:

1. The process starts with an initial minimum flow on each lane. Then, at each iteration
one of the flow is incremented of a given step until all the lanes are saturated. The
smaller is the step, the more precise is the resulting function.

2. Simulation run so that both the time a vehicle arrives at a distanceσ from the inter-
section and the time the vehicle enters into another lane arerecorded. The difference
between the two is then averaged with basic statistic.

It is important to verify that vehicles depart at random instants of time before approaching
the intersection. The reader is owed of an explanation of whysimulations are ran only on
intersections and not on the entire lanes. In particular:

• The performance of streets can be usually approximated dividing their length by
the average speed. Intersections, instead, follow complexdynamics that do not
have a closed form solution. Although, on the other hand, intersections with similar
geometry, and same strategy, show similar performance, as in [86]. This chapter
aims at minimizing time and costs of traffic management by reducing the number
of simulations needed (simulation requires expensive hardware for computation).

• If there is no traffic jam, the time that a car travels before approaching the intersec-
tion is quite accurate.

• It is relatively easy to categorize intersections on a map by inspecting their geome-
try.
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Algorithm

At last an heuristic must be chosen to compute optimal routes. As a matter of fact, there
are many algorithms that can be used, each one with a different tradeoff between perfor-
mance and precision. Here we present a very intuitive greedyalgorithm that helped us to
prove the validity of our assumptions and gave good results in practice, as shown in Fig.
5.4. The algorithm simply loops over each useruk and distributes a fractionδ of its traffic
demandΦ(uk) on the route that would increase the total average delay the least. This can
be formalized as:

opt(uk, f) = ri s.t.
∂T (f)

dxi

= min
j∈uk

(

∂T (f)

dxj

)

The pseudo-code is the following:

Algorithm 1 Greedy Algorithm
1. whiletot < γ

2. y ← [0,0, ...,0]

3. p← [0,0, ...,0]

4. for eachuk ∈ U

5. min = opt(uk, f)

6. if (p[uk] < Φ[uk])

7. y[min] = y[min] + δ

8. p[uk] = p[uk] + δ

9. tot = tot+ δ

The time complexity isO(U); however, as most of the greedy algorithm, this is an
approximated algorithm which can deviate from the optimal solution. A theoretical bound
to the quality of the approximation is part of the future work, while the experimental
results can be found in the next section. In any case, the approach described throughout
this chapter can be used with any other heuristic that can optimize the objective function
(5.3).
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5.6 Evaluation

For the experiments we used the open source simulator SUMO (Simulation of Urban
MObility) [87]. Unfortunately, due to the complexity of parsing SUMO map files, ex-
periments could be run only over Manhattan grids with11 × 11, 21 × 21 and31 × 31
intersections of the same type. Future work will include real urban maps as the one in
Fig. 5.3. Each road segment on the grid is400 m long and vehicles travel on it with
an average speed of60 Km/h. Traffic demand consists of two orthogonal flows moving
respectively from East to West and from North to South.

The experiments used two different kinds of intersections:

• Priority: two parallel lanes out of four have absolute priority on theothers; this
implies that parallel lanes do not interfere with each other. Also, when the priority
lanes reach a certain density, the other two cannot use the intersection anymore, as
shown in Fig. 5.6.

• Right before left: This intersection is the most interesting because all the four lanes
impact, directly or indirectly, on the others.

Vehicles moved on the map using the car-following model as described in [88].

Comparison

The proposed greedy scheme has been compared against three different routing policies:

• Shortest Path (SP): traffic demand is directed toward its shortest route. Obviously,
this policy initially leads to the minimum average delay, but it causes congestion
earlier. Hence, it has been used as a lower bound.

• Load Balancing (LB): traffic demand is equally split on its possible routes. Note
that, on a Manhattan grid, load balancing would be the routing policy that delays
congestion the most if traffic could move as a simple fluid.

• Mixed Strategy (SP+LB): this policy combines the two previous approaches. The
flow moving from North to South is directed on the shortest path, whereas the other
is equally divided on all the available routes.
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Figure 5.4: The columns show the results obtained on three Manhattan grids, respectively with
(from left to right)11× 11, 21× 21, and31× 31 intersections per side. Graphs (a) refer to a map
with intersections of typepriority while (b) refer toright before left. The greedy method (OPT) is
compared against:shortest path SP, load balancing LBandmixed strategy SP + LB.

Results

The graphs in Fig.5.4 show: (1) the average delay of the routes computed with OPT is
overall better than the others. Note that for low demands OPTdoes not follow the short-
est path because of the drift caused by approximating the cost function of each lane. If71
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simulations were run with a smaller step OPT and SP would havethe same trajectory. (2)
OPT delays congestion more than any other routing scheme. (3) Even when routes are
congested, OPT still moves more vehicles/hour than the other algorithms. It is clear that,
even by taking into account only the delay introduced by the intersections, the results pro-
duced by our “greedy” optimization far outperform the typical load balance and shortest
path strategies. This is due, in great part, to the fact that our model, albeit approximate,
still reproduces the critical vehicle-to-vehicle interactions in a realistic way. Eventually,
also the greedy approach will lead to congestion for large enough offered loads. One may
argue that better heuristic solutions could be obtained by recalculating the entire traf-
fic layout after each increment in demand. Obviously, the time complexity of the latter
method would be much higher. A possible compromise is to adopt a randomized approach
to search for local minima, an option that we are currently investigating.

5.7 Related Work

Here, we discuss previous work dealing with traffic models and traffic management which
are mostly related to our study.

Traffic Models

Mobility models are classified under three categories, as byFiore et al in [89], that offer
different tradeoffs between performance and complexity: Macroscopic, Mesoscopic and
Microscopic.

Macroscopic modelslook at traffic as a continuous flow of vehicles. This is the highest
level of abstraction and it is hardly applicable to an urban scenario that has intersections
and cross traffic. The aim of this chapter is to use this level of abstraction to optimize
delays in a urban scenario without losing precision. Noticeable contributions are:

• From Prigogine et al. [90]. This model investigates the interactions of two traffic
flows in a urban scenario. It is a valuable contribution although it is quite far from
modeling realistic intersections.

• Fluid Traffic Model (FTM) [91]. This model adapts the speed of vehicles accord-
ing to traffic density. It considers a single lane without accounting for multi-flow
interactions.

Microscopic modelsconsider vehicles individually and capture the effect of their in-
teractions. This is the finest grain that can be used to simulate vehicles dynamics but it
requires high computational power and system memory. Giventhe level of detail, this
approach cannot scale to represent an entire neighborhood or a whole city. Popular ex-
amples of discrete microscopic models are cellular automata models that are quite often
used for larger scales. In particular:
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• Car following models. In this kind of models vehicle motionis described by Or-
dinary Differential Equations (ODE) or a Algebraic Differential Equations (ADE).
Popular examples are the Intelligent Driver Model (IDM), the GHR Model [92] and
the Krauss Model [88].

• Nagel and Schreckenberg [93] is a stochastic discrete automaton model to simulate
freeway traffic. This work consists of a discrete model that allows to represents
important phenomena such as (1) traffic jam and (2) the transition from laminar to
start-stop-traffic.

• Biham et al. in [94] describes how traffic flows interact on a two dimensional space.
In spite of the simplicity of the model, the results show a sharp transition that sep-
arates a low-density dynamical phase in which all cars move at a maximum speed
and a high-density static phase in which they get stuck in a global traffic jam.

Mesoscopic modelscompromise between the simplicity of a macroscopic approach
and the precision of microscopics. Vehicles usually move ingroups or clusters (e.g.,
platoons) so that the probability of a specific vehicle beingin a certain place at a specific
time instant can be bounded. This solution offers a tradeoffbetween car level precision
and the complexity of microscopic models, although it can deviate significantly from the
real scenario.

Traffic Management

Reactive schemes. They are usually studied from the control theory point of view: traf-
fic is seen as a dynamic system. A feedback mechanism triggersa controller to tune the
traffic regulators (e.g., traffic lights, access ramp controls, etc). In [95], two schemes are
used: a local balancing scheme and a global scheme. The global scheme assumes global
traffic knowledge at each node, which is unlikely to happen ina real environment. More-
over, in the latter case the routing is done by each vehicle independently and thus it is
subject to route flapping. The local scheme, on the other hand, assumes that the On Board
Navigator has heard from its peers in the adjacent road segments and uses that informa-
tion to perform local route balancing. Results in [95] statethat Global Optimization is not
any better than local load balancing. However, these results must be taken with a grain of
salt since they assume that the traffic is randomly distributed. This implies that there are
no major hot spots, such as a congested freeway access ramp, which is unlikely. In [96]
Mohandas et al. propose to use the Adaptive Proportional Integral rate controller as it
has been done for the Internet to deal with links congestion.The work showed the appli-
cability of the method although there has been no experimentation in the urban scenario.
Likewise, in [97] there is an extensive theory for vehiculartraffic control without attempts
to apply it to a real world scenario.
Proactive schemes. They consist in preemptively computing a best solution fortraffic
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Figure 5.5: The graphs show the performance of two kinds of intersections: (a)priority and (b)
right before left. Each row shows respectively (from left to right): delay, outgoing flow rate, and
average speed. Each graph plots the performance of a flow whose intensity varies (on the x-axis)
against a constant flow set to500 vehicles/hour.

using a knowledge base created with real measurements or viamodeling and simulation.
For example, Liu et al. in [98] use historical records to calculate the optimal routes for
the drivers. Other proposals, such as [99], suggests the useof bayesian networks to infer
traffic dynamics.
Flow-based schemes. Many proposals are inspired by previous work on computer net-
works optimization, such as [81] [100] [101]. For instance,Kim et al. in [81] use the
Flow Deviation algorithm for load balancing traffic demand over alternative routes. This
model has appeal because it leads to a closed form expressionof delay as a function of
road segment parameters, and can be used to obtain optimal routes using convex opti-
mization. Lanes act as the links of a network and intersections act as the routers. Each
laneli has a maximum capacityCi, measured invehicles/hour, and a traveling timeTp

(analogous to the propagation time of networks links) measured in seconds; intuitively
vehicles move from link to link like packets do in a computer network. From [82], the
average delay of a vehicle is equal to the time spent in a M/M/1queue with service rate
µi = Ci and arrival rateλi equal to the intensity of incoming traffic on the lane. The total
delay on the lane has two components:Td = Tp + Tq whereTq = 1

Ci−λi
is the average

queueing time spent at the ending intersection of laneli andTp = Lane Length

Average Speed
is the

average traveling time on the lane. The average delay perceived by vehicles can then be

74



5 – Optimization of Urban Traffic Flows

rewritten as:

T =

n
∑

li∈L

λi

γ
Td(i) (5.4)

wheren is the number of lanes in the map,γ is the total vehicle arrival rate to the system
andTd(i) is the average delay of laneli. Unfortunately, vehicles interact in a different
way than packets thus the result that can be obtained with this model are quite far from
what can be observed in reality. For example, packets in a router can be switched from
input to output port with minimal overhead, while vehicles suffer the most severe delays at
intersections. These models are based on the unrealistic assumption that a road lane can be
approximated with basic queues, such as an M/M/1. Other works, such as [102], dug more
into advanced queueing theory for a finer representation of the problem. Unfortunately,
while simple queue models fail in describing the real dynamics of vehicles, the advanced
queue models are too complicated to be applied to a real worldscenario. Instead, our
chapter proposes an hybrid approach that leads to realisticresults using relatively simple
algorithms and inexpensive simulators.
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Figure 5.6: The first graph (left) shows the delay experienced by the vehicles traveling on Flow 1
which has not priority at the intersection. The second graph(right) plots the delay experienced on
Flow 2 which has the priority. As it can be seen, the allocation of capacity is not easy to represent
with a simple convex function.

5.8 Conclusion

In this chapter we described an efficient yet simple way of optimizing traffic flows on a
realistic urban scenario. The proposed solution is computationally efficient, accurate and
inexpensive to be deployed. As future work, we would like to optimize traffic on a real
map and to study the algorithm sensitivity for different penetration rates.
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Chapter 6

Routing Strategies for Electric Vehicles

In this chapter, like in the previous one, we present an application that exploit the Vehic-
ular Networks to efficiently route vehicles in a urban area. In particular, here we focus on
the problem of Electric Vehicles drivers’ assistance through ITS. Drivers of EVs that are
low in battery may ask a navigation service for advice on which charging station to use
and which route to take. A rational driver will follow the received advice, provided there
is no alternative choice that lets the driver reach its destination in a shorter time, i.e., in
game-theory terms, if such advice corresponds to a Nash-equilibrium strategy. Therefore,
we solve the problem using a game-theoretic approach, envisioning two models, namely
a congestion game and a game with congestion-averse utilities, both admitting at least
one pure-strategy Nash equilibrium. Using our models, we show that the average per-EV
trip time yielded by the Nash equilibria is very close to the one attained by solving a
centralized optimization problem that minimizes such a quantity. The proposed models
have been evaluated both through mathematical analysis andsimulations in realistic urban
scenarios.

The content of this chapter is organized as follows. In Section 6.1 we introduce the
problem of Electric Vehicles drivers’ assistance through ITS, while in Section 6.2 we
discuss previous work highlighting the novelty of our contribution. The system scenario
is introduced in Section 6.3, along with the statement of theproblem under study. We
motivate our work in Section 6.4, by showing that centralized optimal solutions may lead
to advice that may not be followed by the EV drivers. The game-theoretic approach
that we adopt for the problem solution can be found in Section6.5. In Section 6.6, we
introduce the simulation scenario that we use to derive the results presented in Section 6.7.
There, we show the low complexity of the proposed method and its benefits in terms of
per-EV trip time. The latter results are derived through theSUMO simulator [87] and
using a real-world road topology. We draw our conclusions and discuss future work in
Section 6.8.
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6.1 Problem Statement

Any technology touted as environmentally-friendly is likely to have its place secured on
news media around the globe. Among green solutions, Electric Vehicles (EVs), viewed by
all as emission-free, clean and noiseless, are rapidly rising in popularity and expectations,
also thanks to the predictable shortage of fossil fuel in thenot-so-distant future. Indeed,
EV mass-production and widespread adoption seem all but likely if some early hurdles
are overcome, such as short driving range, lack of refueling(i.e., charging) infrastructure
and long charging time.

Arguably, any road scenario in ten years’ time will likely feature some ratio of EVs
taking over the streets. Old-fashioned gas pumps might alsobe gradually phased out
by public charging stations, with electric outlets poppingup in places such as curbside
parking, parking lots and cab stands.

Even in this rosy scenario, one wonders when worries about vehicle range and avail-
ability of charging stations will be lifted and whether drivers will not be forced to plan
their entire trip or commute around such availability, at least early on in charging station
development. Finally, it is not clear when the “time consuming” tag will be removed from
the task of car recharging.

Given the above concerns, ICT and ITS (Intelligent Transportation Systems) can step
in and provide solutions that alleviate such concerns. Indeed, traditional navigation ser-
vices could be integrated with the information provided by roadside network infrastruc-
ture and on-board user terminals through wireless communication [103, 104]. A Central
Controller (CC) could collect information on the vehiculartraffic conditions and on the
occupancy status of the charging stations through ITS facilities. Then, EV drivers that
need to recharge their batteries could send a request to the CC and ask for advice on the
specific charging station to choose and the route to take.

The key point in this scenario, however, is that drivers thatresort to such a naviga-
tion service will very likely behave as self-interested users, who aim at reaching their
destination in the shortest possible time (including the time they have to stop at the charg-
ing station). Thus, they will follow the advice provided by the CC only if they find it
convenient to themselves.

In this work, we show that the advice provided by the CC may notconform to the
interests of EV drivers when it is obtained by solving a centralized optimization problem
that, e.g., minimizes the average per-EV trip time or the maximum EV expected trip
time. We demonstrate instead that the above requirement is satisfied when the problem is
modeled as a non-cooperative game. Specifically, we resort to a congestion game [105]
and a game with congestion-averse utilities [106], where the players are the EVs that need
to recharge their batteries. In such games, the decision to be made concerns the charging
station that an EV should use, along with the route to take passing through such a station.
The two game models exhibit a different level of realism and complexity; however, for
both of them, we show that, when the CC uses the game solution to provide advice to the
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EVs, the following facts hold.

(i) The navigation strategies suggested by the CC correspond to Nash Equilibrium
(NE) strategy profiles1, i.e., each EV finds the suggestion by the CC convenient to
itself and is willing to adhere to it.

(ii) The advice provided by the CC leads to an average per-EV trip time that is very
close to the minimum obtained by solving a centralized optimization problem, and
much shorter than the one EV drivers can obtain by adopting a greedy approach
(e.g., always select the closest or the least congested charging station). This is
highly desirable since, shortening the average per-EV triptime, contributes to re-
ducing road congestion and energy consumption due to EVs.

6.2 Related Work

Recently, both the academic and industrial communities have devoted a great deal of
interest to EVs and to the use of ITS services in support of EV drivers.

As an example, in [107] Ferreira et al. consider the case where the behavior of EV
drivers, i.e., whether they drive to the closest or the cheapest charging station, depends on
their profile (age or gender). The authors design a system that, through various commu-
nication technologies, provides EV drivers with several information, among which, the
locations of the charging stations. The burden of selectingthe charging station, however,
is left to the drivers, as the study of the trip time associated to different alternatives is not
within the scope of [107].

An analytical model for the study of the EVs trip time is presented in [108]. The
road topology is modeled as a graph whose edges are associated with a fixed, i.e., non
traffic-dependent, waiting time. Charging stations are likened to multi-server queues, and
a theoretical lower bound to the charging time is derived. The model, however, does not
include the availability of a central controller and, unlike our study, it does not consider
that vehicles may deviate from their originally-planned route in order to reach a suitable
charging station. Thus, the study in [108] does not account for the EV travel time to and
from a charging station.

The works in [109–111] are mostly concerned with the EV consumption and its impact
on the power grid. In particular, in [111] the authors envision a central controller that
predicts the EVs mobility and advises each EV about which charging station to use and
when, so as to smooth the power consumption peak. The work in [111], however, accounts
neither for the time the EVs may have to wait in line at the charging station, nor for the

1Recall that an NE is a game solution, in which each player is assumed to know the equilibrium strategies
of the other players, and no player can gain anything by unilaterally changing his own strategy.
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fact that EVs may act strategically. The study in [112], instead, focuses on estimating
the battery discharge time. The trips of the EVs are modeled using real data and traffic
statistics, and vehicles are assumed to use the closest available charging station. Again,
the waiting time at the charging station and the fact that EV drivers may significantly
deviate from their planned route to reach a station are neglected.

At last, we mention that in [113], we presented a preliminarywork that investigates
which information is important that EV drivers receive through ITS. In particular, we
showed the benefit of transmitting specific suggestions to EVdrivers on which charging
station to use with respect to the case where only mere updates on traffic conditions and
charging station occupancy are provided. The evident advantages brought by specific
advice motivated our present work, which is concerned abouthowsuch advice should be
determined.

6.3 System Scenario and Problem Statement

We consider a road topology including a set ofroad segmentsL and a set ofcharging
stationsC. Any ordered sequence of adjacent segmentsl ∈ L is said to form aroute.

Among all vehicles that travel across the topology, we identify the following three
categories:

• non-EVs or EVs with medium-high battery level, which are not interested in using
a charging station;

• EVs whose battery is low, but that will not resort to the navigation service to identify
the charging station;

• EVs with low battery that use the navigation service to select a charging station.
If they find it convenient, they may deviate from their original route to reach a
charging station.

Note that the vehicles in the first category just contribute to the traffic intensity over the
roads, while those in the last two categories contribute both to the intensity of vehicular
traffic and to the occupancy of the charging stations.

For the vehicles that stop at a charging station, it is fair toassume that their battery is
replaced with a fully-charged one. Only in the unlikely casewhere no one is available,
is the EV battery recharged. This choice is due to the charging times approaching half
an hour, according to today’s fast recharge technology [114]. Charging stations may have
a number of replacing stalls (hereinafter servers), possibly varying from one station to
another. Clearly, upon reaching a charging station, an EV will incur a waiting time that
depends on the occupancy of the station, the service time andthe number of available
servers.
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Next, we focus on EV drivers that belong to the last category,i.e., they have got a
low battery level and resort to the navigation service. As mentioned, such EVs can be
considered as self-interested users. Specifically, we assume thattheir goal is to minimize
the total trip timetoward their intended destination. This translates into assuming that
drivers consistently act in order to pursue such an objective – as opposed to, e.g., driving
to the charging station they like better, or to the one where they can collect bonus points
or miles.

In the most general case, such EV drivers may be able to reach anumber of possible
charging stations and, for each of them, they may choose among multiple, different routes.
Therefore, they will ask the advice of the CC to make a decision on the charging station
to use and the route to take, including their current position and final destination in the
request. It is fair to assume that the CC has knowledge of the road topology and traffic
conditions, as well as of the locations of the charging stations, their current occupancy
and availability of fully-charged batteries. Based on suchinformation, the CC indicates
to the EVs which station to use and the route to take. Upon receiving a response from the
CC, all rational, self-interested EVs that made a request will be willing to follow the CC’s
suggestion if this conforms to their own interest. Some EV drivers, however, may not be
rational and eventually decide not to adhere to the receivedadvice; we will take this into
account in Section 6.7.

6.4 Why a Game Model?

A natural choice to solve the problem of selecting the charging station for each EV, and
the corresponding route, would be to let the CC formulate an optimization problem that
minimizes the average per-EV trip time. This would be desirable as it would lead to
reduced road congestion and to energy savings, i.e., to maximizing the social utility of the
system. However, it is easy to show that in general such an approach yields solutions that
EV drivers may find not convenient to themselves, hence to which they will not adhere.
The same observation holds in the case where the CC tries to minimize the maximum EV
expected trip time.

As an example, consider the toy scenario depicted in Fig. 6.1, where there are two
charging stations,ca andcb, both with one idle server and service time equal to 2 time
units. Assume that, at the same time, two EVs,v1 andv2, have low battery and ask for the
help of the navigation service to select the charging station to use. EVv1 can reach either
ca or cb, but its travel time toward the two stations is 2 and 1 time units, respectively, while
from both stations to its final destination,d1, the travel time is equal to 1 time unit. EVv2
instead can only head towardcb, with travel time equal to 1.5 time units, and from there it
can reach its destinationd2 in 1 time unit.

It is easy to verify that, if the CC provides its advice to the EVs so as to minimize either
the average per-EV trip time or the maximum EV expected trip time, then the solution is:
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Figure 6.1: A toy scenario.

v1 heads toca while v2 usescb. This would indeed lead to an average per-EV trip time and
a maximum EV expected trip time equal to 4.75 and 5 time units,respectively2. However,
v1 will not find the CC’s advice convenient to itself as, by heading tocb, it would incur a
total trip time of 4 time units, against the trip time of 5 timeunits it would experience by
following the CC’s suggestion. Thus,v1 will ignore it.

Based on the above observation, we propose a different approach. We model the prob-
lem of selecting the charging station, and the corresponding route, as a non-cooperative
game, in which the players are the EV drivers that resort to the navigation system for
advice. Then, we look for a strategy profile that is an NE and isconvenient from the
viewpoint of the system performance, and we take this as a solution to the problem. Since
in this case the advice by the CC corresponds to an NE, there isno alternative choice for
an EV that leads to a shorter time to destination, hence self-interested drivers will adhere
to it. For instance, in the example above, the CC will suggestto bothv1 andv2 to usecb,
and no one will deviate from the CC’s advice.

It is clear, however, that a game-theoretic approach does not ensure that the average
per-EV trip time3 is minimized (e.g., in the above toy scenario it increases from 4.75 to
5 time units). Nevertheless, in Section 6.7 we show that, even in real-word scenarios, the
average per-EV trip time obtained through our game-theoretic approach is remarkably
close to the optimum.

Finally, it is important to stress that the game could be solved by the EVs themselves,
provided that they have the required information. In our case, however, we take a practical
perspective and consider that it is the CC that collects all the information, processes it
and solves the game so as to provide the EV drivers with the strategy to adopt (i.e., the
charging station to use and the route to take). This implies that the proposed mechanism
neither significantly increases the system overhead due to communication protocols, nor
requires EV drivers to exchange sensitive information about themselves, or make any
computation to make a decision.

2If v1 usesca, its trip time is 2+2+1=5 time units, whilev2’s trip time is 1.5+2+1=4.5 units. This results
in an average per-EV trip time of 4.75 and a maximum EV expected trip time of 5. If insteadv1 heads
towardcb, it arrives there first and its trip time becomes 1+2+1=4 units, whilev2 finds the station server
occupied byv1, thus its trip time increases to 1.5+1.5+2+1=6. It follows that the average per-EV trip time
and the maximum EV expected trip time become 5 and 6 time units, respectively.

3In game-theoretic terms, this quantity is called price of anarchy (PoA).
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Figure 6.2: Abstract representation of the vehicular scenario where each EV may take several
different routes to a given charging station and from there to its intended destination.

6.5 The Recharging Game

We now detail the game models we use to solve the recharging problem in the system
scenario described in Section 6.3.

Assume that the CC processes the requests received from EVs with low battery every
T seconds. We denote the set of EVs that ask for advice during aT -second time period
by N , and its cardinality byN . Consider the most general case in which each of the
N EVs may reach several charging stations and take different routes to arrive at a given
station, as well as to go from there to its final destination. For clarity, we depict an abstract
representation of such a scenario in Fig. 6.2; we will deal with a real-world road topology
and realistic vehicular mobility while deriving the performance results in Section 6.7.

In the figure, lines connecting vehicles with charging stations, and the latter with
final destinations, represent the possible road segments that EVs can take to or from the
charging station. The different thickness of the lines denotes the fact that road segments
may be characterized by various levels of traffic intensity,hence they may imply different
travel times. Clearly, in a more general setting, road segments may end at any intersection
on the map, other than a charging station or an entry/destination point.

We then consider theN EVs to be the players of a congestion game [105], i.e., a
non-cooperative game, in which players strategically choose from a set of facilities and
derive utilities that depend (in an arbitrary way) on the congestion level of each facility,
i.e., on the number of players using it. Congestion games areof particular interest to us
since they have been proved [105] to admit at least one pure-strategy4 NE. It follows that,
if the CC derives its advice by modeling the system as a congestion game and finding a
solution that is an NE, then all rational, self-interested EVs will follow the advice.

4A pure-strategy NE is a deterministic solution, as opposed to a probabilistic one (e.g., go to charging
stationcx, rather than go tocx with probability 0.5).
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The Congestion Game

A congestion game is defined by the 4-tuple

Γ = (N ,F , {Si}, {τl(nl), ηc(nc)}) , (6.1)

whose elements in our case are as follows.

• The set of players,N , which, as mentioned, correspond to the EVs using the navi-
gation service.

• The set of facilities,F , which is composed of all possible charging stations and
road segments included in the road topology, i.e.,F = C ∪ L. GivenF , for each
playeri ∈ N , a subsetFi ⊆ F can be identified, including all facilities that EVi
can reach and use on its way to the destination. Clearly, if the road topology is fully
connected, thenFi = F , ∀i ∈ N .

• Denoting byP(Fi) the set of all possible partitions ofFi, Si ⊆ P(Fi) is the set of
viable strategies for EVi, i.e, all groups of facilities that can be used byi. In our
context, each strategy inSi is composed of:

(i) one of the charging stations that EVi can reach, along with

(ii) the road segments forming a route that allowsi to go from its current position
to the selected charging station, and from there to its final destination.

• For each strategy, the associated utility is the sum of the utilities of each selected
facility (either a charging station or a road segment). The utility of a facility is its
negated cost. Such a cost is defined as a function mapping the numbernf of players
selecting the facility onto a time delay inR. In our context, the cost of a strategy is
the sum of 1) the expected waiting time and the service time atthe corresponding
charging station, and of 2) the travel time on the associatedroute, from current road
segment to destination, via the charging station. We denotethe former byηc(nc),
with c ∈ C andnc being the number of players selecting stationc. We denote the
latter by

∑

l τl(nl), with thel’s being the road segments in the chosen route andnl

the number of players taking segmentl.

The game elements are summarized in Tab. 6.1. We stress that,the quantity repre-
senting the cost of a charging station or of a road segment, does not depend on the player
identity but only on the number of non-player EVs using the facility and on the number
of players selecting it. Our definition of the cost thereforecomplies with the anonymity
property of congestion games.

Furthermore, in accordance with the scenario detailed in Section 6.3, we writeηc(nc)
so as to account for (a) the number of servers at stationc, Kc, (b) the service time, (c)
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the number of fully-charged batteries currently availableatc, Bc, and (d) the waiting time
before an EV can be served. Specifically, we writeηc(nc) as:

ηc(nc) =























σ if wc < Kc

σ + σ
2

if Kc ≤ wc < 2Kc

σ + σ
2
+
⌊

wc−Kc

Kc

⌋

σ if 2Kc ≤ wc < Bc

ρ if wc ≥ Bc

(6.2)

with wc being the expected number of EVs that the generic player findsat the charging
station upon its arrival. Such a value is given by:wc = mc+nc/2, wheremc is the number
of non-player EVs that the CC estimates to be already at the station upon the arrival of
the generic player, andnc/2 is the expected number of other players that have already
reachedc, if nc players decide to use such a station. Note thatwc does not account for the
precise order of arrival of the single players since the costcannot depend on the player
identity.

In (6.2) the first line corresponds to the case where the generic player finds an idle
server, hence its stopping time atc coincides with the time necessary for battery replace-
ment,σ, which is assumed to be constant. The second line, instead, represents the case
where all servers are busy but the player finds a server with nobody else waiting to be
served (the expected remaining service time of the EV that iscurrently under service is
σ/2). The third line refers to all servers atc being busy, with EVs already waiting there
to be served. Thus, assuming a balanced load, the expressionincludes the expected time
that the generic player has to spend in line. Finally, the last line applies when no more
fully-charged batteries are available at the station, and the generic player has to recharge
its battery, in a time that is assumed to be constant and equalto ρ.

As mentioned, it has been shown in [105] that congestion games admit at least one
pure-strategy that is an NE. However, finding such an equilibrium is, in general, NP-
hard [115]. In order to lower the complexity, below we introduce a new game, namely, a
game with congestion-averse utilities.

Table 6.1: Comparing congestion games vs. CAGs

Players Facilities Strategies Strategy Cost

Congestion N F = C ∪ L ∀i ∈ N : Si = {{cx, l1, . . . , lm}x} s.t. cx ∈ C is reachable byi, and ηc(nc) +
∑

l τl(nl)

game {li}i=1...m ∈ L form a route from currenti’s segment to dest., throughcx (sum overl’s ∈ route)

CAG N F = C ∀i ∈ N : Si = {{cx}x, {cx, cy}x,y , {cx, cy, cz}x,y,z} ηc(n
(i)
c ) + τi,c

s.t. cx, cy, cz ∈ C and reachable byi; Si = {{cx}, {cy}, {cz}} (depends on player id)
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Figure 6.3: Abstract representation of the vehicular scenario where for each EV there is only one
possible route toward a given charging station, and from there to its intended destination.

Game Model with Congestion-averse Utilities

Let us now consider the same scenario as above, but assume that, for every EV-charging
station pair, there exists only one possible route to take, as depicted in Fig. 6.3. We
stress that, although simpler, such a model is still realistic if the CC associates to the EV-
charging station pair the route deemed to be the fastest one,based on its recent estimates.
Indeed, it is likely that such a route is the most convenient to the EV, hence neglecting
the others will not lead to significantly worse performance.This is also confirmed by our
results derived in real-world scenarios, shown in Section 6.7.

Under the above assumption, the system can be modeled as a game with congestion-
averse utilities (CAG), for which NEs are pure-strategies and can be found in polynomial
time [106]. The game is defined as a 4-uple similar toΓ, as in (6.1), however, two main
differences exist between CAGs and congestion games:

• in CAGs, it must hold thatSi = P(Fi) , ∀i ∈ N , i.e., all partitions ofFi are possible
strategies, and

• the costs of the facilities can depend on player identities.

The first difference implies that, for each playeri, the CC has to consider as viable
strategies not a subset but all possible partitions ofFi. A setF defined as in the case
of the congestion game would force the CC to consider non-meaningful strategies where
an EV stops at more than one charging station, located eitheron the same route or on
different routes. In order to overcome this issue, as a first step we redefine the set of
facilities asF = C, i.e., we remove the road segments and consider only the charging
stations. It follows that the set of facilities that the generic playeri can use,Fi, is now
given by just the charging stations that the EV can reach. This is a viable choice since, per
the initial assumption in this subsection, each EV-charging station pairs is implicitly, and
univocally, associated to one route only. As a second step, we prove the lemma below.

Lemma 1. Consider the game with congestion-averse utilities introduced above, in which
each facility has a cost greater than 0. Then, in order to identify a pure-strategy NE, for
any playeri ∈ N it is sufficient to examine the subset of viable strategiesS i ⊆ Si, such
that each strategy inS i includes one facility only.
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Proof. Players are self-interested and aim at maximizing their utility, i.e., minimize their
cost. Recall that costs are positive, thus selecting more than one facility (i.e., charging
station) leads to an increased overall cost. A player will therefore always deviate from a
strategy profile that lets it use more than one facility. It follows that, in order to find an
NE, it is enough to consider as viable strategies for each player the ones that imply the
use of one facility only.

Based on the above result, we can limit our attention to the set of strategiesS i, which
includes only partitions ofFi with cardinality equal to 1, and each of them corresponding
to only one of the charging stations that EVi can reach.

Next, we leverage the second difference between CAGs and congestion games, i.e.,
the fact that in CAGs utilities can depend on the player identity. In particular, we define
the cost of a charging stationc, which can be used by playeri, as the total trip timei
would incur, and we write it as:

ηi,c(n
(i)
c ) + τi,c . (6.3)

In (6.3), the first term is the sum of the delay due to the expected waiting time and the
charging time at stationc, while the second term is the travel time through the route
associated to the EV-charging station pair(i, c). Note that both terms depend on the
player identityi; furthermore, the following remarks hold.

• ηi,c(n
(i)
c ) can be obtained from (6.2) by replacingwc with m

(i)
c + n

(i)
c , andρ with

ρi. Indeed, now the CC can account for the numberm
(i)
c of non-player EVs that

it estimates to be at the station upon the arrival of playeri. Similarly, n(i)
c is the

number of players that the CC estimates to arrive atc before playeri does. Finally,
the recharging timeρi may be different from one player to another, and depend on
the remaining battery charge of the EV.

• The travel timeτi,c, associated to the EV-charging station pair(i, c), does not depend
on n

(i)
c , as it now accounts for the vehicular traffic intensity due toall non-player

vehicles only (i.e., the contribution of the players is neglected). Indeed, the CAG
model cannot track the contribution to the traffic intensitydue to players selecting
different charging stations but whose route partially overlap. The impact of such an
approximation is very limited since typically the number ofplayers is much smaller
than the number of all other vehicles traveling over the roadtopology (see also the
results in Section 6.7).

The elements of the CAG are summarized in Tab. 6.1. As mentioned, in the case of
CAGs, pure-strategy NEs can be found in polynomial time [106], thus the CC can solve
the game with low complexity. In the following, we evaluate the number of strategies that
the CC has to process before an NE is found, as well as the social utility corresponding
to such an NE, i.e., how good the NE is from the system performance viewpoint. We
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Figure 6.4: Road topology: red dots highlight the six charging stations.

also show that, in spite of its low complexity, the CAG model approximates very well the
previous (most general) scenario where multiple routes mayexist for any EV-charging
station pair.

6.6 Simulation Scenario

In order to show the benefits that can be obtained through our game-theoretic approach,
we use a real-world road topology representing a 3×2 km2 section of the urban area of In-
golstadt, Germany [116], depicted in Fig. 6.4. The vehicle mobility has been synthetically
generated using the SUMO simulator [87], with a time granularity of 0.1 s. The mobility
trace is representative of 30-minute-long road traffic and of average traffic intensity in the
area. We stress that we preferred a synthetic trace over real-world ones, e.g., taxi or bus
traces, since these only include a small portion of the car traffic and the represented vehi-
cles have predetermined routes from which they cannot deviate. The number of vehicles
simultaneously present in our road topology is a varying parameter of the system, and the
average vehicle trip time clearly depends on such a value.

The scenario includes 6 charging stations, which are placedon the main arteries of
the road topology, as portrayed by the red dots in Fig. 6.4. The number of servers at each
station may vary; namely, two stations have 2 servers, othertwo have 6 servers and the
remaining ones have 4 and 10 servers each. We assume that fully-charged batteries are
always available at the charging stations, thus the servicetime is considered to be constant
and equal to 3 minutes.

Without loss of generality, all vehicles are assumed to be electric. The average number
of EVs that resort to the navigation service is a varying parameter in our simulations. The
time instant at which an EV enters the low-battery status andasks the CC for advice is
uniformly distributed over its trip time, i.e., the time interval since the EV enters the road
topology till it leaves. For simplicity, we neglect the presence of EVs with low battery
that do not use the navigation service. Also, unless otherwise specified, we assume that
all EV drivers are rational.
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Figure 6.5: Average computational complexity vs. number ofplayers, when they are 20% (left),
40% (middle), 60% (right) of all vehicles. CAG and congestion game (CG) are compared.

The navigation service is provided via the cellular network, through which an EV may
issue a query to and receive a response from the CC without significant delay. However,
alternative solutions exploiting 802.11p-based roadsideunits could be considered as well.
As for the CC, we consider that information on the number of EVs currently waiting
at a charging station to be served, as well as on the traffic conditions, is acquired and
processed every 10 seconds. The requests for the navigationservice sent by the EVs are
instead processed by the CC everyT = 60 s.

6.7 Results

We now show the performance that is attained through our approach, and compare it to
the results obtained when a centralized optimization problem is solved at the CC as well
as when a greedy selection of charging station and route is adopted.

In order to derive the results in the cases where the CC generates its advice from the
solution of the CAG or of the congestion game, we proceed as follows. Every time inter-
val T , the CC solves the game considering as players the EVs from which it has received
a request. To do so, the CC starts from a random strategy profile, i.e., a random assign-
ment of the facilities to the players. In the case of the congestion game, it assigns both
the charging station and the corresponding route, while in the CAG, it assigns only the
charging station and associates to each player-charging station pair the fastest route that
takes the EV from its current road segment to the station, andfrom there to its destina-
tion. Player payoffs (i.e., trip times) are then computed through SUMO in the scenario
described in Section 6.6. To derive the trip times, we assumethat every non-player ve-
hicle takes its originally-planned route, while players will conform to the CC’s advice,
hence they will follow the suggested route.

Given the current strategy profile and player payoffs, the CCexamines other strategies
according to the solution algorithm in [106] for the CAG, andto the one in [117, Ch.7]
for the congestion game. For every strategy, player payoffsare computed via SUMO as
before. If a more convenient strategy is found for any of the players, then the new strategy
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is adopted and the whole procedure is repeated until an NE is reached. Unless otherwise
specified, we consider that the CC takes the first NE it finds as the solution of the game.

For both the CAG and the congestion game, we evaluate the computational complex-
ity, i.e., the number of strategies that the CC has to examinebefore reaching the game
solution, which also corresponds to the number of SUMO runs.Then, we calculate the
per-player trip time associated to such a solution. All results are averaged over 10 runs.
We compare such values with the trip time obtained through the techniques described
below.

Optimal: the solution that the CC can obtain by minimizing the trip time averaged over
all EVs that ask for advice. This solution in general is not anNE, thus it may not be
followed by rational drivers.

Greedy: the CC only disseminates information on the roads travel time, and on the oc-
cupancy and the charging time at the stations. Based on this knowledge, each EV inde-
pendently makes its own decision by selecting the charging station and the route that are
deemed to minimize its own trip time. Note that, in this case,the CC just informs the EVs
without providing any advice, and the EV decision is taken disregarding the presence of
other vehicles looking for a charging station.

Fig. 6.5 depicts the number of strategies that the CC has to examine before the solution
to the game is found, for both the CAG and the congestion game (CG). We stress that the
CC returns its advice to EV drivers only once the game solution (which is a pure-strategy
NE) has been reached, thus the computational burden is solely carried by the CC. The
three plots in the figure refer to the cases where the average number of EVs that are low in
battery and ask for advice (i.e., players) is, respectively, 20%, 40% and 60% of the average
total number of vehicles simultaneously present in the roadtopology. Thus, for a given
average number of players, the plots (from left to right) correspond to decreasing values
of the average total number of vehicles, i.e., a decreasing number of non-player EVs. As
an example, for an average number of players equal to 60, the left plot corresponds to an
average total number of EVs equal to 300, the middle plot to 150, and the right one to
100. Although 60% may seem an unreasonably high percentage,it was chosen to stress
the system.

As expected, the complexity of the congestion game is alwayshigher than that of the
CAG and, in both cases, it increases as the number of players grows. In particular, for our
range of player numbers, the CC always examines less than 4000 strategies before finding
the solution in the case of the CAG, and less than 8000 in the case of the congestion game.
We remark that one SUMO run only takes few seconds, hence the simulation impact is
very limited.

The plots also provide a striking comparison between the CAGand the congestion
game. While the complexity of the former remains remarkablylow, the complexity of the
latter increases severely as the number of players grows beyond 60. On the contrary, the
total number of EVs in the road topology has just a marginal impact on both the CAG
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Figure 6.6: Average per-EV trip time as a function of the number of players, when they repre-
sent 20% (left), 40% (middle), 60% (right) of all vehicles. CAG and congestion game (CG) are
compared against the optimal, for both player and non-player vehicles.
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Figure 6.7: Trip time breakdown for the CAG (left) and congestion game (right), when players are
60% of the total number of vehicles.

and the congestion game solution time. These results indicate that the CAG model is
highly scalable, hence it can be successfully applied even to very large, crowded system
scenarios.

Next, one may wonder whether the solution obtained through the CAG is as good as
the one of the congestion game, or if the gain in complexity wehave with the CAG takes
a high toll in terms of system performance. To answer this question, in Fig. 6.6 we show
the average vehicle trip time, for both player and non-player EVs, again as the number
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Figure 6.8: CAG, congestion game and optimal: 10th and 90th percentile of the per-player trip
time, vs. number of players, when they are 20% (left) and 60% (right) of all vehicles.
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of players is 20%, 40% and 60% of the total number of vehicles.The performance cor-
responding to the solutions of the two games are also compared to that of the centralized
optimal solution.

The figure shows that the average trip times of player and non-player EVs have the
same qualitative behavior, with the former clearly being higher than the latter since play-
ers stop at a charging station during their trip. Also, comparing the three plots, it can
be seen that the smaller the total number of vehicles simultaneously present in the road
topology, the lower the traffic intensity and the shorter theaverage per-EV trip time. As
for the comparison among the CAG, the congestion game and theoptimal, the difference
in performance can be barely noticed when the players are 20%and 40% of the total
number of EVs (left and middle plots of Fig. 6.6). When the percentage of players is
large (right plot), the difference with respect to the optimal is limited in the case of the
CAG, and it is again unnoticeable for the congestion game. This indicates that neglecting
the contribution of player EVs to the travel time makes the CAG model less precise only
when players represent the majority of vehicles on the road topology.

Fig. 6.7 confirms such an observation. The figure highlights the different contributions
to the average per-player trip time, due to the waiting time at the charging station, the
service time (which is constant) and the travel time. The results refer to the CAG (left
plot) and to the congestion game (right plot), when the players are 60% of all vehicles. It
can be seen that the difference between the two game models mainly resides in the travel
time, which is higher when the CAG solution is adopted.

Fig. 6.8 depicts the 10th (dashed line) and the 90th (solid line) percentiles of the
per-player trip time, when players are 20% (left) and 60% (right) of all vehicles. In the
case of the 10th percentile, the difference, among the solution of the CAG, that of the
congestion game and the optimal, can be barely detected. As for the 90th percentile, it
can be observed that, when the optimal solution is adopted, afraction of player EVs may
experience a significantly longer trip time than under the congestion game or the CAG.
This suggests that applying the optimal solution may lead tohigher unfairness in the user
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Figure 6.9: Average per-player trip time vs. number of players, when they represent 20% (left),
40% (middle), 60% (right) of all vehicles. Comparison amongCAG, congestion game, optimal,
and greedy. CAG-10 refers to the case where the CC takes as a solution of the game the best
among the first 10 NEs it finds.
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Figure 6.10: Average per-player trip time vs. number of players, when they are 20% (left) and
60% (right) of all vehicles. Comparison between rational and non-rational users.

performance.

We now investigate the benefit of our approach with respect tothe aforementioned
greedy scheme. Recall that the greedy technique assumes theEVs to have periodically
updated information about road traffic and status of the charging stations. In spite of
this, Fig. 6.9 clearly shows that a greedy approach cannot cope with the other techniques
in terms of performance: the degradation that is observed isindeed severe and becomes
exceedingly high as the number of players increases. Intuitively, this is due to many users
selecting the (currently) least crowded station, which suddenly becomes overloaded (as in
the well-known route-flapping effect). Fig. 6.9 also depicts the performance of the CAG
when the CC does not solve the game using the first NE that is reached, but the NE that
minimizes the average per-player trip time among the first 10it finds. In the plots, we
label this curve by CAG-10. Interestingly, such a simple enhancement to the solution
procedure makes the CAG approach as effective as the congestion game and the optimal,
without impairing its scalability (see in particular the right plot).

In conclusion, not only modeling the system through a CAG is afeasible, practical
approach to the problem, but its solution also leads to a performance that is remarkably
close to the optimum and much better than that attained with agreedy scheme.

At last, we consider the case where not all EVs that resorted to the navigation ser-
vice are willing to follow the advice of the CC. We call such EVs non-rational users,
and assume that they will act according to the greedy scheme.The results portrayed in
Fig. 6.10 refer to the case where there is an equal number of rational and non-rational
users. They show that non-rational users, on average, experience a higher trip time than
rational ones. Such a difference in performance is particularly evident, as the number of
players increases. This further confirms that our game-theoretic approach always leads to
solutions (i.e., advice from CC) that are convenient to the EVs thus increasing the user
satisfaction.
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6.8 Conclusions

Leveraging the use of ITS, we envisioned the availability ofa navigation service that
provides electric vehicles (EVs) that are low in battery with advice on the charging station
to use and the route to take. We focused on how to determine such advice so that rational
EV drivers find it convenient to themselves and they are willing to follow it.

After showing that traditional optimization approaches fail to achieve the above goal,
we considered a realistic scenario and modeled the problem as a congestion game, for
which at least one pure-strategy Nash equilibrium exists (i.e., a solution that all EVs
find it satisfactory). Then, in order to lower the complexity, we introduced a game with
congestion-averse utilities (CAG) that applies to a slightly simpler scenario but for which
an NE can be found in polynomial time. We assessed the performance of our approach
through SUMO and under a real-world vehicular environment.The results show that
using CAGs, not only is a viable, scalable technique, but it also leads to an average per-
EV trip time that is remarkably close the minimum that can be found through a traditional
optimization approach.

Future work will consider other road topologies as well as vehicular traffic scenarios,
and it will address the case where the information collectedthrough ITS and available at
the CC may be partial or not fully accurate.
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Chapter 7

Conclusions and Future Work

In this thesis, different problems have been investigated.For most of them, we came
out with easy, original and effective solutions. In the following, you can find the most
valuable results.

The first studied problem was how to maintain connectivity among RSUs and moving
vehicles in case of UDP-based multimedia streams. We considered vehicles (e.g., cars,
buses or streetcars) that connect to different roadside mesh nodes as they move in urban
environment. We assessed the performance of different routing protocols, both in simu-
lation and in the real field, but we realized that no one fit our needs. Thus, we designed
a new routing protocol able to support vehicular mobility called sw-BATMAN. We im-
plemented it in our vehicular testbeds, along with a channelselection mechanism and a
seamless handover procedure. We proved the feasibility of our solution and we opened
interesting perspectives in the use of mesh networks for thesupport of UDP-based service
to vehicular users.

Studying the first problem, we became conscious that the 5-GHz bands offer limited
capacity channels, in comparison to the broad range of services that are envisioned in
vehicular networks. We therefore explored the benefit of using UHF bands for the trans-
mission of control messages, so as to acquire more capacity.Specifically, we focused
on content downloading, and design a protocol that leverages the UHF band for control
messages (aimed at locating vehicles and collecting requests) and the high-throughput,
5-GHz bands for data delivery. We assessed the benefits of exploiting UHF bands, pro-
viding much larger coverage than the 5-GHz frequencies, through a vehicular testbed. We
proved that our solution introduces a 3x throughput gain in content delivery with respect
to the case where only 5-GHz bands are used.

Then, we studied where the RSUs have to be installed to provide high users cover-
age for Content Dissemination and Downloading. We reviewedprevious work that has
dealt with such an issue, and we presented a new strategy called MCTTP (Maximum
Coverage with Time Threshold Problem) aimed to guarantee that a large number of ve-
hicles travel under the coverage of one or more RSUs for a sufficient amount of time.
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We clearly demonstrated that RSU deployment cannot be addressed through random or
intuitive placements, since neither one represents, in general, an optimal solution to the
RSU deployment problem.

Since urban traffic jams are an actual problem, we thought that we could use the de-
ployed infrastructure to provide navigation hints to the drivers, trying to prevent the con-
gestion problem. Thus, we invented a method to optimize the urban traffic layout using
basic heuristics and computationally efficient simulations. Instead of modeling an entire
urban map with hundreds of crossroads, we simulated each typology of intersection to
understand how it responds to different traffic patterns andintensities. Then, this knowl-
edge is leveraged to allow the computation of minimal delay route on the complete road
map. We proved that, if the drivers follow the information provided by the navigation
system, our strategy prevents traffic jam and maintain the average travel time close to the
optimum.

Another application to exploit the infrastructure, in an environmental friendly context,
is by assisting the Electric Vehicle (EV) drivers that need to recharge or to substitute their
batteries. Drivers of EVs that are low in battery may ask a navigation service for ad-
vice on which charging station to use and route to take. A rational driver will follow the
received advice, provided there is no alternative choice that lets the driver reach its desti-
nation in a shorter time. Therefore, we represented this scenario using a game-theoretic
model and we assessed its performance through simulations under a real-world vehicular
environment. We showed that the average per-EV trip time yielded by our model is very
close to the one attained by solving a centralized optimization problem that minimizes
such quantity. This is an important result, as minimizing the average per-EV trip time
implies reduced road traffic congestion and energy consumption, as well as higher user
satisfaction.

Future work will focus on improving the previous studies, refining the presented so-
lutions and collecting more measurements in complex topologies. Moreover, additional
effort will be invested in designing new applications for Vehicular Networks with Infras-
tructure, envisioning also cooperation among vehicles exploiting the well-known Vehicle-
to-Vehicle communication paradigm.
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