
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Cooperative Content Dissemination on
Vehicle Networks

Diogo Recharte

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor at FEUP: Ana Aguiar

Supervisor at Veniam: Henrique Cabral

June 25, 2018

Abstract

Vehicular networks have seen great advancements over the last few years, mostly due to the in-
creased eagerness for smart and autonomous vehicles that motivate hefty investments by the auto-
motive industry.

The absence of a timely and cost-effective way to perform over-the-air (OTA) software updates
is contributing to defer the deployment of large fleets of connected vehicles. There is a high
cost associated with transmitting data over cellular networks and it cannot be expected that every
vehicle has access to a station or depot with adequate connectivity where it can get the awaited
data cheaply nor that this solution happens timely enough.

With this in mind, this thesis presents the design and implementation of a cooperative content
dissemination protocol that takes advantage of Vehicle-to-Vehicle (V2V) communication links to
distribute data across a network with reduced costs. To lessen the effects of short connection dura-
tion, the content to disseminate is divided into small chunks. Interested nodes periodically query
their neighbors about chunk availability and, upon receiving replies, decide which specific chunk
will be exchanged. This work bases the design decisions in real data from Veniam’s deployed
network in Porto, such as contact statistics and throughput measurements. Moreover, this work is
complemented with a performance analysis of the protocol on a deployed network of 17 vehicles
and 5 roadside units (RSUs).

The results show that the dissemination time is significantly sped up by V2V cooperation
and that is heavily influenced by vehicle mobility. Also, similar results can be achieved in an
infrastructure-less network, by allowing some vehicles to become the original seeders of the con-
tent. Moreover, results show that the chunk size and decision algorithm can have a considerable
impact in the performance of the protocol.

i

ii

Resumo

As redes veiculares têm sido alvo de grandes avanços nos últimos anos, sobretudo devido ao
crescente interesse por veículos inteligentes e autónomos que motiva investimentos avultados por
parte da indústria automóvel.

A inexistência de uma forma oportuna e económica de executar atualizações de software
over-the-air (OTA) está a contribuir para o adiar do lançamento de grandes frotas de veículos
inteligentes. O custo associado à transmissão de dados através de redes celulares é muito ele-
vado e não se pode garantir que cada veículo tenha acesso a uma estação ou estacionamento com
conectividade adequada em tempo útil, onde possa obter os dados esperados.

Com base nestas premissas, esta tese apresenta a concepção e implementação de um protocolo
cooperativo de disseminação de conteúdos que aproveita as ligações veículo-a-veículo (V2V) para
assegurar uma distribuição de dados pela rede, com custos reduzidos. De forma a reduzir os efeitos
das conexões de curta duração, o conteúdo a disseminar é dividido em pequenos blocos (chunks).
Os nós interessados questionam periodicamente os seus vizinhos acerca dos chunks que estes
possuem e, quando recebem respostas, tomam a decisão de qual será o chunk a ser transferido. Este
trabalho fundamenta todas as decisões de desenho do protocolo em dados reais provenientes da
rede de produção da Veniam no Porto, tais como estatísticas de contactos e medidas de throughput.
Além disso, este trabalho é complementado e suportado com uma análise do desempenho do
protocolo numa rede de 17 veículos e 5 roadside units (RSUs).

Os resultados mostram que a cooperação V2V reduz consideravelmente o tempo de dissem-
inação e que este é muito influenciado pela mobilidade dos veículos. Além disso, resultados
semelhantes poderão ser obtidos ao permitir que alguns veículos se tornem os seeders originais
do conteúdo. Os resultados também mostram que o tamanho dos chunks e o algoritmo de decisão
podem ter um impacto considerável na performance do protocolo.

iii

iv

Contents

1 Introduction 1
1.1 Veniam . 1
1.2 Objectives and Approach . 2
1.3 Structure of the Document . 2

2 Background and Related Work 5
2.1 Vehicular Ad Hoc Networks . 5

2.1.1 Architecture . 5
2.1.2 DSRC/WAVE Standards . 6

2.2 Delay Tolerant Networks . 8
2.3 Vehicular DTNs . 9

2.3.1 Routing . 9
2.3.2 Data Dissemination . 10
2.3.3 Peer-to-Peer and Colaborative Download 11

3 Proposed System Architecture 13
3.1 Problem Characterization . 13
3.2 Solution Overview . 14
3.3 Protocol Achitecture and Design . 15

3.3.1 Chunk Size . 15
3.3.2 Security . 16
3.3.3 Cloud and Content Discovery . 17
3.3.4 Peer Discovery . 18
3.3.5 Decision Making and Backoff Mechanism 21

3.4 Implementation . 22
3.4.1 Cloud Infrastructure . 22
3.4.2 Content Discovery Script . 22
3.4.3 Application . 22

4 Performance Evaluation 27
4.1 Scenario . 27
4.2 Performance Metrics . 28
4.3 Dissemination Evolution . 28
4.4 Chunk Popularity . 30
4.5 Contact Statistics . 31
4.6 V2I/V2V Importance . 33
4.7 Transmission Failures . 34
4.8 Overhead . 37

v

vi CONTENTS

4.8.1 Probing Overhead . 37
4.8.2 Retransmission Overhead . 38

5 Conclusions and Future Work 41
5.1 Synthesis . 41
5.2 Future Work . 42

References 43

List of Figures

2.1 Reference architecture (taken from [6]) . 6
2.2 WAVE protocol stack (taken from [8]) . 7
2.3 Channel access examples: (a) continuous and (b) alternating 8
2.4 DTN protocol taxonomy (taken from [14]) . 10

3.1 Frequency histogram of V2I connections. 15
3.2 Throughput vs distance. 16
3.3 Database architecture . 24

4.1 Dissemination evolution with time. 29
4.2 Dissemination evolution and node completion. 30
4.3 Chunk popularity. 31
4.4 Number of chunks exchanged per contact. 32
4.5 Frequency histogram of the number of chunks exchanged per contact 32
4.6 Evolution of V2I chunk exchanges . 34
4.7 Failure causes. 35
4.8 Frequency histogram of discarded data due to connection loss 39

vii

viii LIST OF FIGURES

List of Tables

2.1 Spectrum Allocation for WAVE/DSRC Applications (based on [9]) 8

3.1 Datagram . 19
3.2 Data block for chunk list . 19
3.3 Data block for ranges approach . 20
3.4 Data block for bitmap approach . 20

4.1 Trial settings . 27
4.2 Percentage of chunks exchanged through V2V communication 33
4.3 Failure ratio . 35
4.4 Download time and probing statistics . 37
4.5 Retransmission overhead . 38

ix

x LIST OF TABLES

xi

xii ACRONYMS

Acronyms

AP Access Point
API Application Programming Interface
AODV Ad Hoc On Demand Distance Vector
CCH Control Channel
CLI Command Line Interface
CRC Cyclic Redundancy Check
DDT Distance Defer Transfer
DSR Dynamic Source Routing
DSCF Directional Store-Carry-Forward
DSRC Dedicated Short Range Communication
DTN Delay-Tolerant Network
FDMA Frequency-Division Multiple Access
FFRDV Fastest-Ferry Routing in DTN-enabled Vehicular Ad Hoc Networks
FIFO First-In First-Out
IEEE Institute of Electrical and Electronics Engineers
IPC Inter-Process Communication
ITS Inteligent Transportation System
JSON JavaScript Object Notation
MAC Medium Access Control
MANET Mobile Ad Hoc Network
MTU Maximum Transmission Unit
OBU On Board Unit
OFDM Orthogonal Frequency-Division Multiplexing
OLSR Optimized Link State Routing
OTA Over-The-Air
PHY Physical
ROD Road Oriented Dissemination
RSU Roadside Unit
RTT Round-Trip Time
SCH Service Channel
SPAWN Swarming Protocol For Vehicular Ad Hoc Wireless Networks
TDMA Time-Division Multiple Access
TTL Time To Live
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
VANET Vehicular Ad Hoc Network
VDTN Vehicular Delay Tolerant Network
WAVE Wireless Access in Vehicular Environment
WSA WAVE Service Advertisement
WSMP WAVE Short Message Protocol

Chapter 1

Introduction

Throughout the years, technology has become present everywhere and the internet of things is

becoming a reality where everyone and everything has an internet connection. Vehicular ad hoc

networks (VANETs) are seen as one of the most influential technologies for improving road safety

and building intelligent transportation systems (ITSs) [1]. In fact, it has been an area of avid

research by industries, academic institutions and even governments around the world [2].

Soon every personal and public transportation vehicle will be part of a mesh network where

they continuously communicate with each other and the cloud. Smarter vehicles and embedded

infotainment systems rely on constant communication with adjacent vehicles to improve safety

and drive the need to move terabytes of data to and from the cloud to provide relevant content

to the vehicle operation as well as the comfort of the passengers. Moving such large amounts of

data over cellular networks is prohibitively expensive, especially when scaling up the network.

Dedicated Short-Range Communication (DSRC) technology defines several standards for wire-

less Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication. Even though

DSRC and the series of standards for Wireless Access in Vehicular Environment (WAVE) bring

major improvements in connection establishment and maintenance, VANETs, by nature, present

a volatile environment. As vehicles move in and out of range from each other, connections are

established and lost, and for this reason, it is unrealistic to assume that large sets of data can

be exchanged during the duration of a connection. Vehicular Delay Tolerant Network (VDTN)

overlays can mitigate the adverse impact of sparse and/or intermittent connectivity on data trans-

mission by making use of relays and store-carry-forward mechanisms to ensure that messages can

be delivered to the destination without a synchronous end-to-end connection.

1.1 Veniam

One of the largest networks of connected vehicles in the world, Veniam’s VANET in Porto has

been at the forefront of this industry with a fleet of over 400 public buses, garbage collection

trucks and municipality vehicles equipped with on board units (OBUs) that provided wireless

connectivity. Veniam’s platform takes advantage of multiple network interfaces and technologies

1

2 Introduction

such as DSRC, Wi-Fi and LTE to build an integrated vehicle ecosystem. Coupled with a versatile

network management tool that delivers mobility and seamless handovers between the different

technologies, it ensures connectivity through the interface that best caters to the immediate situ-

ation. It also implements local data management that decides which data should be offloaded in

real time and which data can be stored to be sent later in a delay tolerant manner.

The fleet in Porto is supported by an infrastructure of over 40 roadside units (RSUs) that

feature a reliable wired backhaul and are otherwise similar to the vehicle OBUs. The relatively

small downtown Porto area holds a good density of 4 RSU/km2 while the remaining metropolitan

area has a density of 0.6 RSU/km2. The deployment of RSUs can be expensive upfront but the use

of an infrastructure to support communications reduces daily costs. In fact, in the last 5 years in

downtown Porto, the use of vehicle-to-infrastructure (V2I) communications to offload data to the

cloud has yielded 48% cost savings when compared to a 4G only solution.

Currently, Veniam’s network enables delay-tolerant communication in the uplink but not in the

downlink. This leads to content being downloaded through the interface available at the given mo-

ment, which is often the expensive cellular connection. Moreover, automotive manufacturers are

in need of cost effective ways to disseminate delay tolerant content, as the ability to perform over-

the-air (OTA) software updates is imperative to ensure the longevity of any product. All things

considered, Veniam provides a unique environment with timely problems that have not yet been

dealt with and the possibility to experimentally evaluate solutions in a real-world environment.

1.2 Objectives and Approach

This work focuses on solving a popular content distribution (PCD) problem, where most or even

all nodes in a VANET are interested in downloading a given content. Using cellular connections to

distribute content over large fleets can lead to exorbitant expenses, due to the high cost of cellular

data. VANETs supported by an infrastructure with RSUs allow for the use of DSRC technology

to establish V2I links and distribute the content in a cheap way. However, the infrastructure de-

ployment is expensive and RSUs are often scarce. The scarcity of these units and the speed of

the vehicles lead to V2I contacts having a short duration which often does not allow for OBUs to

completely download the content.

In this work, a cooperative data dissemination protocol is proposed. By taking advantage

of V2V communication links, a peer-to-peer (P2P) network overlay is formed and a cooperative

file sharing system is created. Then, vehicle mobility spreads the content over a large area, and

consequently, dissemination time is reduced.

1.3 Structure of the Document

After this brief introduction, in which some basic concepts and topics that serve as motivation for

this work were presented, a deeper analysis of vehicle networks and related background work is

presented in Chapter 2. In Chapter 3, protocol design decisions and implementation details are

1.3 Structure of the Document 3

explained. In Chapter 4, a performance evaluation is presented as well as some considerations

about the system implementation. At last, conclusions, and future work are presented in Chapter

5.

4 Introduction

Chapter 2

Background and Related Work

In this chapter, the fundamentals of vehicular ad hoc networks (VANETs) are explained, topics

about delay tolerant networks (DTNs) are discussed and state-of-the-art research on data dissem-

ination and file sharing in VANETs is also presented. Firstly, in Section 2.1, a general VANET

architecture is reviewed, focusing on dedicated short range communication (DSRC) technology

that empowers communication in these networks. Section 2.2 presents a general introduction to

delay tolerant networking. In Section 2.3, several data dissemination schemes for VANETs are

presented together with an in-depth look at cooperative content download and popular content

distribution architectures.

2.1 Vehicular Ad Hoc Networks

Vehicular ad hoc networks (VANETs) comprise a very particular case of mobile ad hoc networks

(MANETs) where the mobile nodes are vehicles. Similarly to MANETs, a VANET is a system

of self-organizing and self-configuring nodes that act as a host and a router extending the one-

hop coverage area of a single wireless node. These nodes can be stationary or mobile, leading to

network topology changes.

2.1.1 Architecture

VANETs are comprised of a set of vehicles equipped with on board units (OBUs), enabling them

to communicate wirelessly with each other in vehicle to vehicle (V2V) interactions. VANETs can

also have road side units (RSUs) that are placed at fixed positions along roads and highways that

allow for some structure in the network, enhancing network performance and offering more stable

connections for data transmission. OBUs and RSUs can be seen as part of the ad hoc domain.

Although not strictly necessary to create a VANET, an infrastructure domain often complements

the ad hoc domain, expanding greatly the versatility of the network and providing Internet access.

RSUs serve as a gateway to the infrastructure network, enabling vehicle to infrastructure (V2I)

communication, illustrated in Figure 2.1. Having RSUs with a reliable and high bandwidth back-

haul connection can yield tremendous benefits in the performance of the network. These benefits

5

6 Background and Related Work

Figure 2.1: Reference architecture (taken from [6])

usually overcome the high investment needed for their deployment. However, these units are of-

ten scarce and their placement needs to be well planned; many studies have been conducted on

optimizing the placement of these units [3, 4, 5].

2.1.2 DSRC/WAVE Standards

OBUs and RSUs have limited wireless range and, as such, the high mobility of vehicles leads to a

very small time frame for interactions between them to occur [7]. Tradicional wireless communi-

cation protocols are not able to cope well with the dynamic nature of VANETs nor to comply with

the strict requirements these networks demand. To alleviate this problem, dedicated short range

communication (DSRC) and wireless access in vehicular environment (WAVE) were designed as

a set of standards to improve the connection establishment and maintenance in VANETs. These

improvements are crucial to vehicular safety applications that cannot tolerate long delays in the

connection establishment that might inhibit successful communication between vehicles. Also,

for non-safety related applications, these standards allow for several services to be implemented

that can enhance the effectiveness of intelligent transportation systems.

The WAVE protocol stack and architecture is represented in Figure 2.2 and its main con-

stituents are summarized as follows.

2.1 Vehicular Ad Hoc Networks 7

Figure 2.2: WAVE protocol stack (taken from [8])

• IEEE 1609.0 – “Guide for Wireless Access in Vehicular Environments (WAVE) - Architec-

ture.”;

• IEEE 1609.1 – “Standard for Wireless Access in Vehicular Environments (WAVE) - Re-

source Manager.”;

• IEEE 1609.2 – “Standard for Wireless Access in Vehicular Environments (WAVE) - Secu-

rity Services for Applications and Management Messages.”;

• IEEE 1609.3 – “Standard for Wireless Access in Vehicular Environments (WAVE) - Net-

working Services.”;

• IEEE 1609.4 – “Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-

Channel Operations.”;

• IEEE 802.11p – "Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications – Amendment 6: Wireless Access in Vehicular Environments";

At the PHY layer DSRC utilizes the 802.11p amendment to the IEEE 802.11 standard which

only adopts OFDM on 10 MHz channels operating at the 5.9 GHz frequency band. In Europe,

the band 5855-5925 MHz has been designated for the implementation of intelligent transportation

systems (ITS). The sub-band 5855-5875 MHz has been reserved for ITS non-safety applications,

the sub-band 5875-5905 MHz for safety-related ITS applications and the sub-band 5905-5925

MHz as an extension of ITS spectrum. Other frequency bands have been defined for use with

DSRC around the world, of particular interest are the ones shown on Table 2.1.

At the MAC layer, WAVE uses IEEE 802.11p as well as a layer extension defined by IEEE

1609.4. This extension provides multi-channel operation making use of the concept of frequency/time

division multiple access (FDMA/TDMA) to support a control channel (CCH) and multiple service

channels (SCH). There are two main modes of operation as shown in Figure 2.3: (a) continuous

mode and (b) alternating mode. The control channel (CCH) frequency and time slot is used to

8 Background and Related Work

Table 2.1: Spectrum Allocation for WAVE/DSRC Applications (based on [9])

Coutry/Region Frequency Bands (MHz) Reference Documents
ITU-R (ISM band) 5725-5875 Article 5 of Radio Regulations
Europe 5795-5815, 5855-5925 ETS 202-663, ETSI EN 302-571,

ETSI EN 301-893
North America 902-928, 5850-5925 FCC 47 CFR
Japan 715-725, 5770-5850 MIC EO Article 49

Figure 2.3: Channel access examples: (a) continuous and (b) alternating

transmit either (a) short messages, primarily for safety applications, as defined by the WAVE

short message protocol (WSMP) or (b) WAVE service advertisement (WSA) messages used to

announce the services available on other SCH frequency channels [9]. Moreover, the CCH only

allows for messages to be sent in broadcast, which implies that a SCH must be used whenever

unicast messages need to be exchanged.

WAVE short message protocol (WSMP) is a transport and network layer protocol which is

described in IEEE 1609.3. This provides the application layer protocol IEEE 1609.1 with the

ability to determine physical layer characteristics such as channel number and output power, as

well as data rate and receiver MAC addresses. The 1609.1 protocol is a resource manager that

multiplexes communication between one sender and multiple receivers. The IEEE 1609.2 protocol

adds security which is very important in this kind of networks [10].

2.2 Delay Tolerant Networks

Due to some fundamental assumptions built into the Internet architecture, such as relatively static

topologies and the need of a constant end-to-end path between two nodes, traditional Internet

protocols do not work well for disruptive scenarios. Common routing protocols designed for

MANETs, such as OLSR, AODV and DSR, permit mobile nodes to obtain routes quickly for new

destinations and respond to changes in network topology in a timely manner. Yet, they assume

2.3 Vehicular DTNs 9

an end-to-end path between any pair of nodes, small round-trip times (RTTs) and low drop prob-

ability. In very dynamic MANETs, high node mobility leads to a constant change of the network

topology that can violate all the assumptions mentioned. Delay Tolerant Networks (DTNs) are

built with these issues in mind.

DTNs are designed to carry out communication in adverse conditions with sparse and intermit-

tent connectivity, large and variable delay, high error rates, and even no end-to-end path between

nodes. With the absence of a complete path between source and destination nodes, the data can

start to be transmitted, getting stored in a node when no path is available and forwarded when

a new link is established. This concept is called store-and-forward and it implies that the DTN

nodes must have some type of persistent storage. Also, DTN nodes transfer the responsibility for

the data, i.e. there are no end-to-end acknowledgments, only link acknowledgments.

Cerf, et al. [11] proposed the use of a message-oriented overlay called bundle layer below the

application layer to manage the data to be sent. This layer transforms application data into units

with a defined format called bundles which are forwarded by the nodes. Bundles may be split up

into multiple smaller bundles during transmission and reassembled anywhere in the network.

Scott and Burleigh [12] proposed the use of a convergence layer that abstracts the characteris-

tics of lower layers to the bundle protocol making possible a reliable transfer of bundles between

two DTN nodes independently of the set of lower layers in use. This convergence layer is also in

charge of sending and receiving bundles on behalf of the bundle protocol that generally deals only

with the forwarding phase and does not provide routing details.

2.3 Vehicular DTNs

In VANETs vehicles have a high mobility and are distributed over a wide area, therefore is com-

mon that there is no end-to-end path between source and destination. Hence, a vehicular delay

tolerant network (VDTN) is often the solution applied.

2.3.1 Routing

As stated in section 2.2, generally, the bundle protocol deals only with the forwarding phase, it

does not provide details of routes for the data packets between the nodes [13]. Routing in VDTNs

is a very important topic and many studies have been carried trying to provide adequate solutions.

Tornell, et al. [14] proposed a protocol taxonomy described bellow and summarized in Fig-

ure 2.4. The first hierarchy categorization is due to the objective of the protocol, it can be a)

Unicast – messages have a specific destination or b) Dissemination – messages should reach all

nodes in the network. In the second categorization level the protocols are grouped according to

the amount of control information required. In the dissemination category there are epidemic

protocols and geo-connectivity protocols, which estimate node connectivity based on geographic

information. Unicast protocols that do not require knowledge about the vehicle or environment

status are categorized as Zero Knowledge, otherwise are categorized as Utility Based. The proto-

cols in the latter category choose the routes based on an estimation of how a transmission improves

10 Background and Related Work

Figure 2.4: DTN protocol taxonomy (taken from [14])

the probability of reaching the destination, this metric is called benefit of transmission and can be

calculated based on different knowledge: i) contact history and social relationships, ii) geographic

location, iii) road map, iv) hybrid protocols and v) online protocols.

2.3.2 Data Dissemination

Many studies have presented strategies that disseminate messages across a vehicular network.

Message dissemination schemes focus on selecting a data path that has the best chance to spread

the message over a large number of nodes inside the network in an efficient way.

A Flooding scheme [15, 16] where each node rebroadcasts every message received certainly

accomplishes the dissemination requirements of reaching as many nodes as possible. However,

besides the known issues of broadcast storm [17] and waste of resources in infinite rebroadcast

loops, it is also limited by the connectivity of the network because nodes will only propagate

messages as long as the network is connected.

Epidemic routing [18, 19], shares a message every time a contact occurs, if the encountered

peer does not have it yet. This requires contents to be stored which, depending on the policy

used, may use too much storage. Moreover, it needs a trigger to stop the dissemination and it also

requires a negotiation phase which introduces some overhead and delay.

Geographic Protocols [20, 21, 22, 23, 24, 25] are protocols who base their routing in positional

information. DSCF [20], FFRDV [21] and DV-CAST [24] are examples of protocols only suited

for highway scenarios due to their directionality where they make decisions based on whether the

nodes are moving towards or away from the message source.

Road Oriented Dissemination (ROD) [22] uses the same principle as Distance Defer Transfer

Protocol (DDT) [26] to optimize bandwidth usage. DDT selects only one vehicle per transmission

to rebroadcast the message, ROD adds a store-and-forward mechanism when no vehicle is able

to disseminate the messages further, thus rebroadcasts periodically until another node has also re-

ceived and broadcasted the message. UV-CAST [23] is similar to ROD but, instead of overhearing

2.3 Vehicular DTNs 11

messages from its neighbors to choose the carrier nodes, it uses geographic position to determine

whether they are located on the boundary of the source node’s connected region. SERVUS [25]

joins groups of connected nodes in clusters based on their geographic position and if a node is the

last node of the cluster rebroadcasts previous messages when it contacts a new node from outside

of the cluster.

These protocols address the dissemination of data inside a network. Some focus on reducing

the dissemination time, others try to optimize bandwidth and reduce congestion. However, they

do not specify efficient ways of distributing large contents that originate from outside the network.

2.3.3 Peer-to-Peer and Colaborative Download

In VANETs, vehicles high speed and connections limited bandwidth means that often OBUs fail

to download the entirety of the content when passing through an RSU. Given the long inter-RSU

distances, vehicles then move into areas of transmission outage that delay the download of the

content. Cooperative networking was first introduced as a way to cope with the web flash crowd

problem, improving network performance [27]. However, it can also be applied in VANETs to

reduce the download time of a file by allowing a node to continue fetching the required content

from neighbor nodes when in areas without access to RSUs.

SPAWN [28], a pull-based protocol, is proposed as a BitTorrent-like strategy where the con-

tent is divided into smaller blocks of equal size, called chunks or pieces. The protocol starts with

a car arriving in the range of a gateway (RSU); it initiates the download receiving as many chunks

of data as possible during the contact duration; after getting out of range it starts to gossip with its

neighbors about the content it possesses and exchanges pieces of the file; as long as its neighbors

have chunks of the file, it can keep downloading the file as opposed to waiting for the next gateway

to resume the download. To advertise the chunk list that it possesses, the OBU periodically sends

a gossip message containing the TorrentID that identifies the file, the list of pieces, a timestamp of

when it originated and a list of nodes that processed it along the route. The periodicity of this ad-

vertisement has the potential of generating a large number of gossip messages increasing network

congestion. The authors also showed that a rarest-closest first approach to the chunk selection

strategy, where each node first determines the rarest file piece it needs and then looks for the clos-

est node that has it, performs much better than the default rarest-first strategy used in BitTorrent,

and that the locality awareness of this approach improves the scalability and performance of the

P2P network. Simulation experiments in [29] further support that the best chunk selection strategy

combines closeness and rarity.

Studies [30] and [31] address the V2V phase of collaborative PCD problem. Wang et al. [30]

propose a solution based on coalition formation of game theory. In this approach, neighbor nodes

join and collaborate to maximize a utility function that combines content requests, peer locations,

channel capacities and potential interferences. If the network scale surpasses a given threshold, it is

divided into several sub-networks. For each sub-network, the nodes group into several coalitions,

and the nodes in the coalition with the highest service rate broadcast chunks based on a greedy

strategy. In [31], the authors propose the grouping of nodes into clusters (cells) based on their

12 Background and Related Work

position. To achieve this, roads are divided into continuous homogeneous cells of fixed size and

position. This allows to treat the cells as static nodes which simplifies the modeling of the network

and eases the decision process of where to disseminate the content to. Cell density is defined as

the average number of OBUs present on that cell. The use of principles such as high cell density

first and high downloading rate first accumulate chunks to a small number of core cells first, and

afterwards distribute them to low-degree cells within a few hops. Simulation results show that this

approach performs better that the coalition formation approach presented in [30], especially with

large content sizes.

Other studies do not focus heavily on the content dissemination across many nodes, but

nonetheless use cooperation strategies the overcome the limited range of RSUs. These deal with

the transmission outage problem with local store-carry-forward transmission mechanisms that se-

lect some vehicle to act as a relay. The authors in [32] proposed an opportunistic relay protocol,

where the RSUs broadcast the data packets such that all vehicles in its range can hear it. This

data broadcast is done at an optimal data rate that strikes a balance of throughput and distance,

in order to ensure that only the best suited vehicles successfully receive the data, and thus be-

come relay candidates. Each candidate contends to relay the frame to the destination, and through

an analytical model the expected throughput to the destination is computed. The vehicle with

higher expected throughput, usually the one closer to the destination, is selected as the relay ve-

hicle. Unlike [32], in [33] the authors focus on a bidirectional highway scenario. They propose a

store-carry-forward scheme that utilises inter-RSU cooperation to select a second relay from the

vehicles moving in the reverse direction. Having two consecutive relays, one in each direction,

greatly reduces the transmission outage time.

In [34] the authors propose an approach with a query management server that uses vehicle

location data to forward the pending request to RSUs in the area where the downloader vehicle is

traveling. Based on contact information and download rates from the server, RSUs predict future

V2V and V2I contacts and make locally-optimal decisions on where to forward the data. The data

can be delivered directly or by a relay vehicle; its assumed that all vehicles are available for traffic

relay whenever they are not receiving data from an RSU.

Many network coding based approaches have also been proposed like VANETCODE [35],

CodeTorrent [36], CodeOn [37], CodeCast [38], and the ones presented in [39, 40]. These proved

to have good overall performance; however, these solutions have more complex implementations

and are not ideal for resource constrained devices since communication overhead, computational

overhead and disk I/O overhead can become problematic [41]. Also, often the performance of

network coding approaches are not dissimilar from non-coding approaches [31].

Chapter 3

Proposed System Architecture

This chapter describes the proposed system architecture and presents the design decisions, com-

plemented with the rationale behind them. Firstly, a characterization of the problems addressed by

this work is presented in Section 3.1. An overview of the solutions to these problems is presented

in Section 3.2. Section 3.3 provides an in-depth look at all the constituents of this architecture and

the fundamentals that motivated the design decisions. To wrap up this Chapter, implementation

details are described in Section 3.4.

3.1 Problem Characterization

In a general form, the problems addressed by this work can be divided into three main parts: (1)

content discovery, (2) peer discovery and (3) peer and chunk selection. These three phases have

very distinct goals and requirements and thus are handled in different ways.

This work is focused on disseminating over-the-air (OTA) updates, which are quietly made

available in the cloud. Therefore, a node is not aware of its existence, and thus there must be a

content discovery mechanism that informs OBUs and RSUs of this content. Veniam already has a

solution for content discovery which involves polling the cloud periodically. However, the current

cloud infrastructure does not implement the features needed by this work, namely the creation

of chunks and metadata. Therefore, a new cloud infrastructure needs to be implemented and,

consequently, a content discovery mechanism independent from the one in production also needs

to be created. There is also security concerns about content access and data integrity that need to

be addressed.

After discovering the required content, a node needs to learn which peers can provide him

that content. Therefore, a peer discovery mechanism that provides the information needed for

the selection mechanism to decide who will be the content provider, needs to be designed. The

peer discovery mechanism must get an up-to-date information, rapidly and without generating

much network traffic, allowing for the scalability of the network without running into congestion

problems. A peer and chunk selection algorithm also needs to be developed to facilitate the chunk

exchanges and avoid connections that might decrease the dissemination performance.

13

14 Proposed System Architecture

3.2 Solution Overview

Similarly to the already implemented content discovery mechanism, this work also periodically

polls the cloud infrastructure to verify if an update is available. The details of this interaction are

explored in Subsection 3.4.2.

In order to overcome the problems of diversified contact duration inherent to VANETs, the

approach followed in this work bears some resemblance to P2P file sharing networks, such as the

well known BitTorrent. Specifically, it applies the concept of dividing the content into several

blocks of equal size, called chunks. The chunk size is an important parameter that can have a

substantial influence in the performance of the dissemination. Small sized chunks imply that a

file will be split into many chunks which causes an increased overhead for two reasons: (1) the

control messages become larger as they need to represent numerous chunks and (2) the overhead

inherent to the TCP protocol is exacerbated as the number of connections needed to transmit the

entire file increases. On the other hand, large chunks take longer to be transmitted which increases

the probability of a disconnection happening during the exchange, causing data to be discarded.

The incomplete chunks are discarded so that chunks can be treated as indivisible units identifiable

by an ID number.

The content segmentation process happens prior to any data exchange and, as such, it should

be controlled by the entity who owns the original content, which in this work is the cloud in-

frastructure. Together with the process of fragmenting the designated data into chunks, the cloud

also generates the meta information of the content to distribute. This is called metadata and it

is the first thing a node receives when it initiates the process of downloading the content. Also,

the distributed nature of vehicular networks raises some security concerns especially about data

integrity. These are addressed by validating each dissemination attempt in the cloud and using a

hashing function to perform a data integrity check.

The peer discovery is achieved by periodically broadcasting a probe to all neighbors within

one hop distance asking for a given content. The neighbors respond to theses probes, specifying

the set of chunks possessed for that specific content. A node ceases to send these probes after it

has completed the download, but it continues to answer to neighbors probes until the content’s

time to live (TTL) has expired.

In regards to the peer and chunk selection, two approaches are followed: (a) chunks are chosen

sequentially and the first peer to respond is selected, and (b) peer and chunk are chosen randomly.

Both approaches are complemented with a backoff algorithm that uses intelligence from the last

chunk exchanges to avoid peers that showed to be problematic. In this work, RSUs and OBUs

are treated equally and all nodes take part in the P2P overlay. However, there is a configurable

parameter that allows a node to get the chunks directly from the cloud. Given the fast and reliable

backhaul connection of RSUs, it makes sense to have this feature activated for them.

3.3 Protocol Achitecture and Design 15

(a) V2I connection duration (b) Interval between consecutive V2I connections

Figure 3.1: Frequency histogram of V2I connections.

3.3 Protocol Achitecture and Design

3.3.1 Chunk Size

Defining a contact as the scenario where two nodes are within range and are able to communicate

with each other, then the two most important metrics to take into account when calculating an

adequate chunk size are (a) the duration of the contact between nodes and (b) the throughput

of the link. Given the availability of a real VANET, all decisions were based in real world data

from previously conducted tests rather than theoretical values. Given the current features of the

platform, no data was available regarding V2V contact duration. However, one week of data

from 366 vehicles in downtown Porto, allowed us to conclude that the duration of OBU-RSU

established connections had a mean of 57 s and a median of 20 s, while the interval between those

connections showed a mean of 65 s and a median of 9 s. The frequency histogram of the duration

of V2I DSRC connections and interval between consecutive connections can be seen in Figure 3.1.

As can be seen from the distribution in the histograms, it is very common to have frequent yet short

duration contacts, this further motivates the need of a protocol like the one proposed in this work

to facilitate the content distribution. Note that there are a few peaks around 60 s and 120 s, this

is an artifact of the method used to obtain this data that is based on the established connections

instead of the visibility of the two nodes. Also, this was due to an unwanted behavior on Veniam’s

connection manager, that was later fixed. It caused a connection to be terminated if no response to

the keep-alive packet, which has a periodicity of 60 s, was received from the mobility controller.

All in all, this does not influence the results much.

Additionally, data on the throughput of a DSRC connection was also available from previous

tests. These were conducted with a DSRC channel rate of 6 Mbit/s and without other commu-

nications occupying the channel. The throughput was measured using iperf in two different

scenarios. The first scenario represents a V2I communication with a fixed RSU and the vehicle

moving at 50 km/h, while the second scenario represents a V2V communication where one ve-

hicle is stopped and the other one is moving at 50 km/h. In both scenarios, the moving vehicle

16 Proposed System Architecture

(a) V2I at 50 km/h (b) V2V at 50 km/h

Figure 3.2: Throughput vs distance.

started and stopped side by side with the other vehicle or RSU. It performed 3 trips moving away

from the other vehicle or RSU, and 2 trips moving towards it. The V2I scenario yielded a median

throughput of 3.84 Mbit/s and the V2V scenario showed a median of 3.26 Mbit/s. The distribu-

tion of the results obtained for the two scenarios is shown as a function of distance in Figure 3.2.

Note that these tests were conducted in a controlled environment. In a real network, others nodes

would generate data that occupies the DSRC channels, which might cause congestion, leading to

a reduction of throughput.

With T being the contact duration, R the throughput of the link and n the number of chunks

transmitted per contact, then the chunk size Lc is given by:

Lc =
RT
n

(3.1)

Based on the results presented, assuming a contact duration of T = 20s, let the throughput be the

most conservative value of R = 3.26Mbit/s and define that a minimum of n = 8 chunks must be

successfully transmitted per contact. Solving Equation (3.1), 8 Mbit or 1 MB can be inferred as an

adequate value for the chunk size.

3.3.2 Security

There are three possible approaches to content distribution: (1) centralized, (2) fully distributed

and (3) hybrid. The centralized approach involves a central unit that provides the content to all

other nodes. In the fully distributed approach, all nodes have a similar role where they can request

or share some content without the participation of any central control unit. In order to avoid

a possible congestion of unwanted content requests across the network, a hybrid dissemination

scheme was chosen. This scheme relies on the cloud infrastructure to validate all requests before

any messages get disseminated. In this manner, when a node wants to access a designated content it

must communicate with the cloud, validating that the required file exists and that it has permission

to access it, and only then can it continue to download the file.

3.3 Protocol Achitecture and Design 17

Given the volatile nature of vehicular networks communication links, it was mandatory to find

a way to ensure data integrity. TCP was selected as the transport layer protocol over which the

chunk exchanges are performed, due to its reliability features, error detection, flow control and

congestion control. These mechanisms are very important when transmitting data on crowded

areas, where the DSRC communication channels are prone to congestion. TCP has a 16-bit ones-

complement checksum mechanism that will catch any burst error of 15 bits or less, and all 16-bit

burst errors except for those which replace one 1’s complement zero with another (i.e., 16 adjacent

1 bits replaced by 16 zero bits, or vice-versa) [42]. However, when moving large amounts of

data over adverse network conditions, this is not enough. Even cyclic redundancy check (CRC)

mechanisms are unreliable to ensure data integrity [42, 43, 44]. The adopted solution was to use

a cryptographic hash function to calculate a hash of each individual chunk and another one of

the whole file. When a chunk exchange is finished, its hash can be computed and compared with

the expected one, as specified in the metadata. In this manner, it can be immediately verified

if the received data corresponds to the expected one and decide whether it should be kept or

discarded. Several hashing functions were taken into account, SHA-256 is a very popular one,

and although some weaknesses are already known [45], these are related to possible collisions

that affect signatures but are irrelevant for data integrity checks; thus, SHA-256 was the hashing

algorithm chosen. In addition to the verification of each individual chunk’s hash on its arrival,

the subsequent comparison of the whole file’s hash adds an extra layer of assurance that is even

able to identify possible storage errors or malfunctions. In case the calculated chunk hash does

not match the expected one, the problematic chunk is discarded and later requested again. On the

other hand, if a file hash does not match then the individual chunk hashes are recalculated and the

chunks whose hash do not match are requested again. If this situation is recurrent, it might be

caused by an error in the metadata received or a defect in the node’s storage. To deal with this,

the file is blacklisted and it will not be requested again, freeing the DSRC channel and avoiding

unnecessary congestion on the network.

3.3.3 Cloud and Content Discovery

The cloud infrastructure has an important role in this work. It segments the content into chunks,

validates the download requests, generates the content’s metadata and provides an API that allows

nodes to check for new content, retrieve chunks and metadata.

The first phase in the dissemination process is to access the cloud infrastructure in order to

validate the request and to retrieve the metadata. This interaction happens only once per content

and the amount of data involved in it is quite small, just a few kilobytes. Also, it is important

that this first stage is completed rapidly so that the second stage starts as early as possible. Given

these requirements, it was decided that this access to the cloud and consequent download of the

metadata should be accomplished using the communication technology available at the moment,

even if it involves using the expensive cellular connection.

Nodes have a configurable parameter that allows them to download chunks directly from the

cloud. Veniam’s network has the support of an infrastructure of RSUs with cheap, fast and reliable

18 Proposed System Architecture

backhaul connection; thus, it makes sense to allow these units to access the cloud to download the

content.

When a node requests some content it knows the content’s name or ID but there is some

additional information inherent to the content that is required to successfully download it using

the dissemination protocol. This information comprises the following fields: file ID, file name,

file size, file hash (Section 3.3.2), chunk size and an array of all chunk hashes. There are many

serialization formats that could be explored to transmit this data but, realistically, in this particular

application, this is not specially important and thus it was decided that the meta data would be

serialized into JSON format, as it is standard at Veniam.

3.3.4 Peer Discovery

After getting the required metadata from the cloud a node may start the second stage, which

encompasses the exchange of control messages to assess the chunk availability in adjacent nodes.

There are two approaches that can be implemented: (1) gossiping and (2) probing.

In a gossiping strategy like the one proposed in SPAWN [28], a node announces its own content

to its neighbors, which then decide whether to download it. On the contrary, in a probing approach,

the interested node is the one that sends messages to its neighbors, which then respond with a

list of chunks they possess. In gossiping, a node keeps generating network traffic after the file

has finished downloading, which at scale can be a significant problem, and also requires extra

coordination with the cloud infrastructure to define when the nodes should stop gossiping. On

the contrary, in the availability probing mechanism, nodes stop sending the control messages after

finishing the download, which reduces congestion as the dissemination proceeds. For this reason,

the peer discovery strategy adopted in this work is probing.

In order to keep an always up-to-date record of the content in its ever-changing surroundings,

this message exchange is repeated periodically until the node has completed the download of the

content. This action continues to be executed while a chunk is being downloaded, allowing for an

immediate decision to be taken if the download fails and another chunk-node combination needs

to be selected. The probing periodicity is configurable and a value of 500 ms is reasonably fast to

ensure that a node is always aware of its dynamically changing surroundings without becoming

unbearably demanding in terms of its internal resource usage.

It was evaluated whether these probes should take advantage of DSRC provider services or if

it should use UDP signaling. Using the DSRC provider services, channel congestion is smaller

because WAVE Service Advertisements (WSAs) are bundled into a single frame, which avoids

extra transmissions and provides less overhead, due to it being L2 frames. If the network is

operating in alternate mode, then the WSA frames are sent in the control channel (CCH), avoiding

the traffic from other applications in the system. However, the testbed where this work was tested

was operating in continuous mode which invalidates this benefit. Also, using UDP to perform the

availability probing makes this protocol agnostic to the communication technology being used,

which is an important benefit in platforms that use multiple interfaces, e.g. Veniam platform

also uses Wi-Fi for inter-node communication. Moreover, in this scenario, the mentioned DSRC

3.3 Protocol Achitecture and Design 19

Table 3.1: Datagram

Offset octet 0 1 2 3 4 5 6 7 8 9 ...
Type Node ID Number of Blocks Data Blocks

Table 3.2: Data block for chunk list

Offset octet 0 1 2 3 4 5 6 7
File ID Chunk ID

provider service benefits only have a practical effect on high congestion situations, which greatly

affects the chunk transfers either way. With these effects in mind, it was decided to use UDP for

its versatility.

Multicast could be used to restrict the reachability of the probes, creating groups of nodes that

are able to receive these messages. However, the scenario tested is one where there is no differ-

entiation between nodes. Given the need to query all neighbor nodes, these availability probes are

broadcast over UDP so that all nodes within range receive the message. Upon receiving one of

these probes, a node must respond specifying the files it holds or, if the requested content does not

match any of its possessions, ignore it. These responses are sent in unicast to the requesting peer

in order to avoid that other nodes process unnecessary messages that may not be of their interest.

While an OBU ignores availability probes of contents it does no possess, RSUs start to down-

load the requested content to become a seeder for that file. This network configuration applies a

simplified strategy of RSU caching, where data is stored on the edge of the network and can then

be disseminated to the rest of the nodes. This is a reactive approach where after every request a

RSU keeps the content in storage until the file’s TTL has expired. If a request for another content

is received and the storage is full, then that file is not cached. This caching policy is far from ideal

and is very different from other caching strategies, like the ones present in [46]. However, in the

specific scenario of this work, the dissemination is controlled by the cloud infrastructure and it is

not expected to have a large number of concurrent content dissemination happening. Therefore, it

is an adequate strategy for keeping the content on the network, facilitating the download for other

nodes.

In order to support multiple files being concurrently disseminated, the availability probe is a

variable length datagram. As depicted in Table 3.1, the first byte defines the type of the message.

Currently, there are only 2 possible values for the type field: 0 for when a node is querying its

neighbors for their content availability, and 1 for when a node is replying to a received probe.

The next 4 bytes contain a unique ID that identifies the node who sent the message. Bytes 5 to

8 represent the number of data blocks described by the remaining bytes starting on byte 9, which

are represented on Table 3.2, Table 3.3 and Table 3.4.

The most straightforward approach to represent the chunks needed is to list all the chunk IDs.

However, this has an unbearable maximum datagram size Lmax, given by Equation 3.2, where N

is the number of files and ni is the number of chunks that make up file i. 9 is the of the datagram

20 Proposed System Architecture

Table 3.3: Data block for ranges approach

Offset octet 0 1 2 3 4 5 6 7 8 9 10 11
File ID Chunk ID Start Chunk ID End

Table 3.4: Data block for bitmap approach

Offset octet 0 1 2 3 4 5 6 7 8 ...
File ID Bitmap size Bitmap

header size, as can be seen in Table 3.1, and 8 is the size of the block represented by Table 3.2.

L = 9+
N

∑
i=1

8ni (3.2)

To compress the data, two different approaches to express the data blocks were explored, with

different advantages and disadvantages. In the first approach, the nodes announce the required

chunks in the form of a range of chunk IDs which is defined by a start and end as shown in Table

3.3. The second method uses a bitmap where each bit represents one chunk and can be either 0 if

the chunk is not required/available or 1 if the chunk is required/available. As shown in Table 3.4,

this second option needs to be complemented with 4 bytes that represent the bitmap size due to

the variable number of chunks per file and consequently a variable bitmap length.

The first method has the unique characteristic of having a variable length message that is

affected by the state of download; in particular it varies based on the ability to group the missing

chunks into ranges. Depending on the arrangement of the chunks it might be possible to group

all chunks of a certain file into a single range, thus minimizing the datagram size, or it might be

fragmented in such a way that it requires many different ranges to express the state. By choosing to

download chunks in a sequential manner it is always assured that the message will have a constant

and minimal size, independent of the number of chunks. This approach yields a datagram length

L than can be expressed as:

L = 9+12N (3.3)

On the other hand, if the chunk decision is not sequential, this range-based method is no longer

ideal. In this situation, this approach needs to represent up to ni
2 ranges per file. Therefore, the

datagram has a variable length bounded by an upper limit Lmax, given by Equation (3.4):

Lmax = 9+
N

∑
i=1

6ni (3.4)

In contrast, the bitmap approach has a message length that does not depend on the current

state of download, but only on the number of files and the number of chunks per file, as defined

by Equation (3.5).

L = 9+8N +
N

∑
i=1

⌈ni

8

⌉
(3.5)

3.3 Protocol Achitecture and Design 21

If a sequential chunk request is used, the range-based approach can compress the data into a

smaller datagram. However, if a non-sequential decision process is chosen, the fixed length of the

bitmap-based option is more efficient than the upper-bounded range-based alternative.

3.3.5 Decision Making and Backoff Mechanism

After collecting information about the content availability on adjacent nodes, a node needs to

decide which chunk is going to be downloaded and which node will supply it. Two approaches to

the chunk selection are considered: (a) request the chunks in sequential order and (b) request the

chunks randomly.

The simplest solution is to choose the first node to reply to the probe and request the chunks in

sequential order, which pairs well with range-based probes due to their small size. However, this

suffers from the well documented last chunk problem in P2P networks [47], where some chunks

are very popular and are well distributed across the network while there is a starvation of the least

popular chunks. To avoid this problem without increasing the complexity too much, both chunk

and node are chosen based on a pseudo-random algorithm.

This algorithm requires additional fine tuning to account for potential problematic behaviors.

There are three different scenarios that require specific actions. Assume two nodes, A and B:

• If node A fails to connect to node B because node B is already transmitting some content

to another node, then the connection is rejected and node A sets a backoff time of tc
2 during

which it does not attempt to reconnect to node B. The expected download time of one

chunk tc, is a parameter that can be calculated based on the chunk size Lc and the expected

throughput R, given by equation 3.6.

• If node A fails to establish a connection because it cannot reach node B or if the connection

was lost sometime during transmission, then node A ignores previous records of availability

from node B. If available, node A tries other nodes, otherwise it waits until a new response

to the availability probes is received.

• If node A receives a chunk from node B and its hash does not match the expected one, node

A reduces the priority of node B, favoring other nodes. If this situation happens more than

Ntol times for a certain node, then that node is blacklisted for that file, i.e. it will not be

selected for any other chunk from that file. Ntol is a configurable parameter and it was set to

3 in the trials conducted.

tc =
Lc

R
(3.6)

22 Proposed System Architecture

3.4 Implementation

3.4.1 Cloud Infrastructure

First, the cloud component of this work was implemented as an HTTP server written in Java. This

cloud architecture supports a command line interface (CLI) used to: (1) add new files to the content

that can be downloaded, (2) manage the HTTP server and (3) initiate the dissemination trials. It

is also through this CLI that the parameters like chunk size, file ID and access permission can be

set on a per content basis. In case these parameters are not specified, the default configurations,

stored in a JSON file, are applied.

Three different API paths have been created:

• /download is where nodes can download the chunks and the metadata.

• /logs is the path where nodes upload the data logs after finishing a trial.

• /check is the path that specifies a list of active trials at each moment.

When a node wants to download a chunk from the cloud it must perform an HTTP GET request to

the /download path specifying two parameters: (a) file and (b) chunk, which represent the file

ID and chunk ID, respectively. To access the content’s metadata, a node performs the same HTTP

GET request, but only specifies the file parameter.

3.4.2 Content Discovery Script

The content discovery mechanism was kept separate from the main application to ensure future

integration with the rest of the platform. As mentioned in Section 3.1, Veniam already has a solu-

tion for content discovery that is planned to be adapted to interact with the application developed

in this work.

Therefore, the cloud polling is done via a Python script that, with a periodicity of 60 s, accesses

the /check API path to verify if any new content has been made available. It also utilizes the

inter-process communication (IPC) framework used in the OBUs and RSUs, to communicate to

the application specified by this work, that a new file should be downloaded.

3.4.3 Application

The application responsible for executing the protocol specified by this work was implemented as

a multi-threaded application written in C. This thread-based architecture is adequate due to the big

focus on I/O operations inherent to this type of work. There are six different thread types in this

implementation:

• Request manager thread (main thread) is responsible for loading all settings

from the configuration file, starting all the required threads and interfacing with the IPC

framework to handle the content requests. When handling a request from the IPC frame-

work, this thread verifies that downloading the requested file will not exceed the threshold

3.4 Implementation 23

percentage of the storage that can be occupied. This threshold percentage is defined by a

parameter in the configuration file. It is also this thread who is responsible for deleting the

file after its TTL.

• Cloud request thread is responsible for accessing the cloud to validate the request

and to download the meta file required. This thread manages a linked list that the main

thread populates with the parsed content requests and it saves the metadata returned from

the cloud into the files and chunks tables of the local database, as illustrated in Figure 3.3.

• Cloud chunk downloader thread. All nodes are capable of downloading chunks

directly from the cloud, yet this type of interaction is dependent on a flag in the configuration

file. If this flag is active then this thread downloads the required chunks from the cloud.

• Availability dispatcher thread is the central point of this architecture, it seri-

alizes the pending contents into one of the datagram formats specified in Section 3.3.4,

broadcasts the availability probes, receives and parses the responses from the neighbors and

updates the availability and node tables with the information received from the neighbors.

• Downloader thread executes the actual decision process based on the information con-

tained in the local database, after which it requests and downloads the selected chunk from

the corresponding neighbor. It is also the responsibility of this threads to do the error track-

ing that feeds the backoff mechanism.

• Seeder thread is a TCP server that accepts a connection from another node, reads and

validates a request, and transfers the requested chunk.

The number of downloader and seeder threads can have an important impact on the performance

of the application, as this parameter controls how many streams of data can happen concurrently

on each node, and therefore it is configurable through the configuration file.

3.4.3.1 Database

In order to ensure that the download progress is not compromised by external events, e.g. a reboot,

the content and the information relative to its transfer need to be stored in a non-volatile medium.

The content itself is stored directly into the OBUs or RSUs storage. The management information

like content metadata, download progress and node statistics that feed the backoff mechanism are

stored on a local database, implemented in SQLite. This database is comprised of four tables, as

show by Figure 3.3 and listed bellow:

• Files table holds the metadata of the file. It also holds state information like the

verified flag that is set to true after the download has finished and the file’s hash has

been verified. The path column holds the path to where the file is stored.

• Chunks table holds the metadata of the chunks, a verified flag and a foreign key to

the files table.

24 Proposed System Architecture

Figure 3.3: Database architecture

• Nodes table holds the information of the neighbor nodes that replied to the probes. This

data is used to perform the chunk requests and to implement the backoff mechanism.

• Availability table holds the node-chunk pairs, represented by two foreign keys to

the Nodes and Chunks tables, as well as a flag that represents if a given chunk is currently

being downloaded from the respective node.

3.4.3.2 Configuration

When designing an embedded system’s application is mandatory to have the flexibility of changing

parameters without patching the application. Therefore, at the start of the application the following

parameters are loaded from a JSON file:

• Maximum percentage of free storage space that can be occupied

• Cloud API endpoint

• UDP port

• TCP port

• Number of seeder threads

• Number of downloader threads

3.4 Implementation 25

• Probing interval

• Download chunks directly from cloud

• Ntol (mentioned in Subsection 3.3.5)

• TTL of the availability table records

26 Proposed System Architecture

Chapter 4

Performance Evaluation

4.1 Scenario

The testbed where the experimental tests were conducted comprises 17 public buses and 5 RSUs.

Due to restrictions on bus schedules and maintenance stops it was not possible to run the experi-

ments on all 17 buses at the same time and, because of this, the ratio of RSUs ranges from 25% to

35.7% of the total number of nodes. The exact number of vehicles, methods and file sizes for each

trial can be consulted on Table 4.1.

To automate the test deployment, all nodes were set to periodically check the cloud for new

tests which implies that, after being started through the cloud, all nodes receive the request within

60 s. Moreover, after finishing the download the nodes upload a log file to the cloud for data

analysis.

There are other parameters that were left as configurable and should be mentioned. To simplify

the evaluation and keep the parameter space under control, every node was limited to only one

seeder and one downloader thread, which means that there was only one upload and one download

stream concurrently available. Also, the probing period was set as 500 ms and the time to live of

the availability table records was set to 2 s. It was chosen to use files of 40 MiB and 100 MiB split

into chunks of 1 MB; 40 MiB is a typical size for an OBU update and 100 MiB was chosen simply

to see how the protocol behaves with a larger file.

It is also important to emphasize that the bus routes could not be controlled and, as such, the

mobility pattern of the vehicles varies in each trial. Moreover, the trials were conducted at different

times of the day, but given the duration of the tests, all of them overlap with peak traffic hours.

Table 4.1: Trial settings

Probing + Decision Range + Sequential Bitmap + Random

File Size 40 MiB 100 MiB 40 MiB 100 MiB

Trial 1 2 3 4 5 6 7 8 9 10 11 12 13

Vehicles 13 13 15 15 14 15 13 14 11 11 13 9 12

27

28 Performance Evaluation

4.2 Performance Metrics

A variety of metrics can be analysed to evaluate the performance of a dissemination protocol:

• Dissemination time is the most important metric, because it represents the time needed

to make the content available for all nodes. It is characterized by the difference between the

moment the last node successfully receives the final chunk and the instant when the content

was made available in the cloud.

• Download time is the time a node spends downloading the content, i.e. the difference

between the moment a node receives the last chunk and the instant when it performed the

request to download the metadata from the cloud.

• Number of chunks exchanged per contact is a metric that allows for a better

understanding of the type of contacts endured during the experiments. It also allows us to

see how V2I and V2V links differ in practice.

• V2V chunk exchange percentage is important to understand how much V2V inter-

actions are contributing to the dissemination. This metric shows the impact of using a coop-

erative scheme. It is defined as the ratio between the number of chunks exchanged through

V2V link and the total number of chunks disseminated.

• Failure ratio is defined as the ratio between the number of failed and successful chunks

exchanges. This is important to analyse the problems faced in the dissemination. Subdivid-

ing this metric in the several failure causes eases the optimization of this work.

• Probing overhead is defined as the ratio between the total amount of data exchanged

by the peer discovery mechanism and the total amount of useful content data. This is crucial

to understand the efficiency of the probing mechanism.

• Retransmission overhead is defined as the ratio between the total amount of data

discarded due to incomplete transfers and the total amount of useful content data. This

metric allows us to infer the impact that the network conditions have in the dissemination

process.

4.3 Dissemination Evolution

Concerning the dissemination of content across the network, several different behaviors can be

identified (see Figure 4.1). Initially, there is a very fast progress due to the fast and reliable

backhaul connection of the RSUs that allows them to get the content in a short time, limited only

by their pooling interval. This achieves the desired effect of pushing the content to the edge of the

network first and disseminating it to the mobile nodes afterwards.

4.3 Dissemination Evolution 29

(a) 40 MiB file, range based and sequential (b) 100 MiB file, range based and sequential

(c) 40 MiB file, bitmap based and random (d) 100 MiB file, bitmap based and random

Figure 4.1: Dissemination evolution with time.

It should also be pointed that, even for equally sized files, there is a large discrepancy in the

total dissemination time, e.g. trial 3 took 5.7 times longer than trial 1 to complete the dissemina-

tion. Moreover, on most trials, two different phases can be identified: first there is a quick and

almost linear dissemination and, after a certain point, there is a slowdown where the dissemination

nearly stalls. This might seem counter intuitive at first as one would expect that, with more nodes

possessing the content, it would be easier for a requesting node to find a neighbor with the desired

chunks, and thus the dissemination would speed up. However, evaluating an animation of the GPS

traces of the routes taken by the buses revealed that some vehicles had particular routes that rarely

encountered other nodes and thus a tail is present on most trials.

Figure 4.2 shows an overlay of dots that illustrates the moment where a node finishes the

download. The vertical axis of this overlaid dots represents the percentage of nodes that have

completed the download. It can be clearly seen that almost all nodes have completed the transfer

and the tail is caused by a few "lagging" nodes, one in trial 2 and three in trial 3, for example. The

vertical distance of the dots to the evolution line in Figure 4.2, represents the number of chunks

30 Performance Evaluation

(a) 40 MiB file (b) 100 MiB file

Figure 4.2: Dissemination evolution and node completion.

that are present in nodes that have not finished the download of the entire file, i.e. if the dot is

far from the line then there are several nodes that possess some chunks but have not downloaded

the completed file. In trial 2, the node completion dots follow almost exactly the evolution line,

which means that each node was able to finish the download in a few contacts or at least before

other nodes where able to exchange any chunks. On the contrary, trial 3 shows that, most of

the time, there were several nodes with an incomplete file, the cause for this will be explored

further on Section 4.7. As expected, with bigger file sizes this presence of incomplete files is more

prominent, as shown by the increased distance between the dots and the line in Figure 4.2b. It

is also important to note the difference between trial 6 and 7, where in trial 6 nodes finished the

download at a relatively steady pace as opposed to trial 7 where the large time frame between

0.7 h and 7.7 h showed that chunks were being exchanged but the nodes were not completing the

download of the file. This delay in finishing the download can be caused by short and sparse

contacts that do not allow for many chunks being transmitted per contact, we will take a deeper

look at this in Section 4.5. It can also be indicative that there are some chunks that are unpopular,

and thus are difficult to find; this will be explored further in Section 4.4.

4.4 Chunk Popularity

Analysing the distribution of each chunk in the network, Figure 4.3 depicts the percentage of nodes

that contain chunk i throughout time. Figure 4.3a and Figure 4.3b clearly show that requesting

chunks sequentially causes some chunks to become consistently less popular. This is much more

apparent on trial 7 than on trial 6, corroborating the result exposed in Figure 4.2b, and confirming

that disparities in chunk popularity can lead to delays in the dissemination of the content. The

effects of randomizing the chunk selection are perfectly illustrated by the intense interweaving in

Figure 4.3c, that indicates that no chunk was consistently more popular than the rest.

4.5 Contact Statistics 31

(a) Trial 6 (sequential decision) (b) Trial 7 (sequential decision)

(c) Trial 13 (random decision)

Figure 4.3: Chunk popularity.

4.5 Contact Statistics

In Subsection 3.3.1, the results of some preliminary tests regarding contact durations were pre-

sented as a justification for the chosen chunk size. Now, after the deployment of the protocol, it

is important to validate these decisions and to look for better insights into the underlying causes

for the behavior seen in this specific scenario. With this in mind, Figure 4.4 shows the mean and

median of the number of chunks transmitted during single contacts of both V2I and V2V connec-

tions. Note that contacts where no chunks were exchanged were removed from this analysis to

give a better understanding of the successful communications; failed exchanges will be explored

32 Performance Evaluation

(a) Mean (b) Median

Figure 4.4: Number of chunks exchanged per contact.

Figure 4.5: Frequency histogram of the number of chunks exchanged per contact

latter in Section 4.7.

Overall, V2I links allowed for more chunks to be transmitted per contact with an average

of 12.15 chunks against the 10.41 chunks on V2V connections. However, analysing the median

values shows that globally V2I and V2V performed exactly the same with 6 chunks per contact

each. These results show that V2I contacts are usually longer than V2V but, otherwise, they are

very much comparable.

It is also interesting to note that more than half of the V2V contacts in trial 2 allowed for

at least 34 chunks to be exchanged, which corresponds to approximately 81% of the file being

transferred in a single contact. This supports the strong correlation between the node completion

4.6 V2I/V2V Importance 33

and the dissemination evolution seen in Figure 4.2a.

The results presented in Section 4.3 showed that trial 3 had an exceptionally bad performance

and that, on that same trial, there were many nodes with incomplete files. Intuitively, one would

think that this could be an indication that the contact duration was likely smaller and fewer chunks

were transmitted per contact. However, Figure 4.4 shows that this was not the case since contacts

that originated complete transfers of chunks were not different from the other trials. This will be

revisited in Section 4.7.

Figure 4.5 shows the distribution of the number of chunks transmitted per contact for all trials.

It was expected that most contacts allowed fewer than 10 chunks to be exchanged. However, it was

not entirely expected that a single chunk would be the mode of the distribution, in both V2V and

V2I contacts. This shows that connections are shorter than the expected. Note that this histogram

shows the data from 6 trials that had 42 chunks per file and 7 trials that had 105 chunks per file,

which is another factor that limits the number of occurrences that could be seen for more than 42

chunks per contact.

4.6 V2I/V2V Importance

Due to the ability of downloading the chunks directly from the cloud, RSUs have the advantage of

getting the content before any vehicle and thus the dissemination always starts with V2I commu-

nications. Despite the dissemination starting with V2I only, in the long run V2V chunk exchanges

play a crucial role in spreading the content across the network, as can be seen by analysing Table

4.2. In all trials, V2V communication accounted for over 40% of chunk transfers. Trial 3 even

reached 86.83%, which shows that, on that specific test, the vehicle routes did not cross the RSUs

location often.

As stated previously, V2I communications are essential in the early stages of the dissemination

as the RSUs are the original seeders of the content. Yet, it is not trivial to understand whether the

infrastructure has a special influence or if mobile nodes could be chosen as the original seeders.

To better understand this, Figure 4.6 shows the percentage of V2I communications as the dissem-

ination unfolds, i.e. the evolution of the ratio between the number of chunks exchanged through

V2I communications and the total number of chunks exchanged. Almost every trial exhibited a

behavior similar to trials 5 and 9, where after the initial exchanges, there is a trend for converging

to value similar to the ratio of RSUs in the network, which ranges from 25% to 35.7%, as stated

Table 4.2: Percentage of chunks exchanged through V2V communication

Trial 1 2 3 4 5 6 7 8 9

V2V (%) 43.78 54.58 86.83 48.99 65.78 51.20 68.43 55.18 67.52

Trial 10 11 12 13

V2V (%) 50.53 66.44 56.67 56.23

34 Performance Evaluation

Figure 4.6: Evolution of V2I chunk exchanges

in Section 4.1. This convergence indicates that RSUs are not different from the other nodes and

that the same results are expected in networks without infrastructure by selecting some nodes as

original seeders. This means that networks can be designed without an infrastructure and content

dissemination would perform similarly.

One curious exception to this pattern is trial 3. After the initial 84 chunks have been exchanged

through V2I links, all other chunks were downloaded through V2V communication, as can be seen

in the hyperbolic curve in Figure 4.6. Again, this might be due to the specific routes taken by the

vehicles during the experiment.

4.7 Transmission Failures

In the 13 trials conducted, a total of 12600 chunks were successfully transmitted and 10006 chunk

exchanges failed; this is 44.26% of all download attempts failed, corresponding to a global failure

ratio of 79.41%. Table 4.3 shows the failure ratios for each trial; we can highlight that trial 3 had

more than twice as many failures as successful transfers, which explains the fact that it performed

a lot worse than the others. The high failure ratios degrade the dissemination performance, and as

such it is important to dig deeper into their causes.

Download failures can have several causes: (a) the peer is already busy and rejected a new

connection, (b) connection is lost during the download, (c) there is no route to the peer, (d) the

chunk’s hash verification failed, or (e) some other undisclosed error happened. Figure 4.7a shows

a global view of these causes while Figure 4.7b provides a per trial analysis. It can be seen that

the main causes for a download failure are the peer being busy and connection being lost during

transmission. In contrast, there were no failures due to a bad hash, which is expected as this should

not happen in normal circumstances.

4.7 Transmission Failures 35

Table 4.3: Failure ratio

Trial 1 2 3 4 5 6 7

Failure Ratio (%) 23.9 6.6 256.3 15.7 65.7 17.5 85.9

Trial 8 9 10 11 12 13

Failure Ratio (%) 63.2 67.2 20.1 37.3 65.9 22.4

(a) global

(b) per trial

Figure 4.7: Failure causes.

36 Performance Evaluation

Connection loss and the peer being unreachable are problems inherent to the mobility of the

nodes in the network. Connection loss happens when a download is interrupted, for example

due to weak signal strength. This failure cannot be avoided by the protocol, but its effect can be

minimized as will be explained in Section 4.8.2. The unreachable peer failure happens when in

the time between a node receiving an availability report and performing the download request a

path to that peer is no longer available or valid, e.g. the vehicle moved away. As mentioned in

Section 4.1, these tests were conducted using a probing period of 500 ms and a time to live of the

availability table records of 2 s. This proved to be a mistake, as the table records should be obsolete

after the probing period, because if an answer to the last availability probe is not received, then a

chunk download should not be attempted. Therefore, by reducing the time to live of the availability

records to a value similar to the probing period, the number of unreachable peer failures should be

reduced.

On the other hand, errors related to the peer being busy are not caused by networking issues

but by the limited number of seeder threads. This type of failure happens when a node tries to

connect to another peer but its connection is rejected, meaning that all seeder threads are already

busy sending chunks to another node. Remember from Section 3.4 that the number of seeder and

downloader threads can be configured to determine how many upload and download connections

are supported simultaneously. Also, all trials were conducted using only one seeder thread and one

downloader thread, limiting the number of concurrent links to one upload and one download. By

allocating more threads to handle the seeding of the content, multiple simultaneous connections

are allowed and, therefore, the amount of rejected requests can be reduced. However, the num-

ber of connections allowed needs to be handled carefully as this might increase network traffic,

especially when the network is scaling up and large clusters are formed. Also, handling mul-

tiple simultaneous connections means that the TCP congestion control mechanisms reduce the

available throughput per chunk, and thus the chunk size calculations might need to be adjusted to

compensate for that fact. In practice, there might not be a significant difference in overall dissem-

ination time. This type of failures can also be greatly reduced if the seeder node stops answering

to availability probes when all its seeder threads are already busy. However, unlike the previous

optimization, this does not help the node that is probing because it is simply ignored.

Focusing on the trial 3 again, it was discussed on Section 4.6 that, due to the higher V2V

chunk exchange percentage, this specific trial must have had mobility patterns that did not overlap

the RSUs position often. The high failure ratio of 256.3 % and the fact that 80.86 % of the

failures were due to connection loss, shows that the connections were more volatile in this trial

than the rest. Joining the fact, exposed in Section 4.5, that the number of chunks exchanged

in successful contacts showed no real difference from the other trials, it can be concluded that

most contacts were small enough that no chunks were successfully transferred, while the ones that

were successful lasted long enough to account for an average of 10.26 chunks per V2V interaction.

Once again, this average does not take into account the contacts where no chunks were exchanged.

This conclusion points to the possibility that some correlation between the ratio of V2V chunk

exchanges (Table 4.2) and the transmission failure ratio (Table 4.3) might exist. Even though this

4.8 Overhead 37

data set is very small, only 13 trials, a Pearson’s correlation analysis shows that there is a very

strong positive correlation between these two variables, with a coefficient of r = 0.861 and a p-

value of p = 1.55×10−4 that makes it statistically significant for a significance level of 0.01. This

indicates that there is a probability of only 1.55×10−4 that an uncorrelated system produces data

sets that would have this same result. This does not imply that there is a causal link between these

two measures, i.e. it is not the existence of V2V chunk exchanges that causes transmission failures

or vice versa. However, this indicates that the network conditions that emerge when mobility

patterns allow for more V2V chunk exchanges can also induce more failures. Since Pearson’s

correlation analysis assumes that both data sets are normally distributed and there is no evidence

that this is, in fact, true, a Spearman rank-order correlation analysis was also done which produced

results that backup the former claims with ρ = 0.824 and p = 5.30×10−4.

4.8 Overhead

The versatility of the dissemination protocol presented in this work comes at the cost of transmit-

ting excess data that ultimately does not contribute the retrieved content. This wasted data can

be twofold: (a) probing overhead which is all the data exchanged with the intention of inferring

the content availability of neighbors, and (b) retransmission overhead, which is all the data that is

discarded on a transmission failure, i.e. partially-downloaded chunks.

4.8.1 Probing Overhead

The probing overhead metric is important to analyse the impact of using a probing strategy and

to compare the two methods tested. As explained in Chapter 3, the probing is done periodically,

meaning that the number of sent probes is correlated with each node’s download time. Table 4.4

shows the results on a per trial basis and makes it easy to draw this relation between the download

time and the number of probes sent. However, the number of probes alone is not indicative of the

impact of this strategy as it does not take into account the probe size nor the actual content size;

therefore it is important to calculate the overhead it generates. It can be concluded that probing

Table 4.4: Download time and probing statistics

Trial 1 2 3 4 5 6 7

Mean Download Time (s) 2231 3921 13796 4908 13132 7336 21713
Probes Sent 79513 127749 479235 169500 538658 236662 629389

Probing Overhead (%) 0.243 0.368 1.305 0.455 0.702 0.300 0.816

Trial 8 9 10 11 12 13

Mean Download Time (s) 11336 9527 4051 8067 7637 8921
Probes Sent 318141 296711 129594 306550 213812 303302

Probing Overhead (%) 0.380 0.461 0.386 0.769 0.350 0.408

38 Performance Evaluation

the environment does not significantly impact the amount of data transferred as most trials yielded

a probing overhead inferior to 1%. Also, there was not a noteworthy difference between both

probing methods, as the range-based method produced a median overhead of 0.455% and the

bitmap-based method showed a median value of 0.397%. The probing overhead of the bitmap-

based approach can be further reduced by removing the bitmap from the request message, i.e. the

data block of the sent probe would just include the file ID and the response message would be the

only to include the bitmap.

4.8.2 Retransmission Overhead

As explained in Section 4.7, a chunk exchange can fail due to several reasons. Connection loss

failures usually happen after some data has already been exchanged which will then have to be

discarded, thus constituting useless overhead. As can be seen in Table 4.5, these failures lead to

a substantial overhead with a median value of 2.773% of the total dissemination data and reached

a maximum of 4.181% in trial 11. Looking at the overall results, taking into account all trials,

there was an overhead of 2.816%. To put these values into context, this overall scenario with a

file of 100 MB disseminated across 20 nodes, culminates in 2 GB of data transmitted across the

network with 56.32 MB being discarded due to retransmissions. However, not all connection loss

failures constitute data overhead as some of theses failures happen in the time frame between

the connection establishment and the actual exchange of data. In fact, 65.37% of all connection

loss failures happened in this exact circumstance. It is interesting to note that 94.80% of these

connection loss failures without any data transferred happened in V2I communication, which is a

clear indication of a network congestion problem. Remember that, even though only 17 vehicles

were participating in the dissemination trials, this network is comprised of a fleet of over 400

vehicles that share the same DSRC channel and prioritise V2I connections to offload sensor data

to the cloud, provide free Wi-Fi for the passengers, among others. Data showed that, in these

failures, the connection was successfully established, the downloader successfully sent the request

packet to seeder RSU, and that the failure happened in the transmission of the first data packet.

The request packet reaches the RSU without a failure because, due to its small size, it has a low

collision probability. On the contrary, the first data packet likely has the maximum transmission

unit (MTU) size, which takes longer to be transmitted, and thus has a higher collision probability,

even with carrier sensing.

Table 4.5: Retransmission overhead

Trial 1 2 3 4 5 6 7

Retransmission Overhead (%) 2.131 0.786 3.234 1.566 2.649 2.261 2.391

Trial 8 9 10 11 12 13

Retransmission Overhead (%) 3.956 3.265 2.773 4.181 2.877 3.168

4.8 Overhead 39

Figure 4.8: Frequency histogram of discarded data due to connection loss

Figure 4.8 shows the frequency histogram of the amount of data discarded per connection loss

failure, in all trials; note that the failed transfers with no data loss were ignored for this graph.

There is a tendency for failures to happen when there are still small amounts of data exchanged.

This is due to the TCP slow start mechanism, where the transmission starts with a small congestion

window that limits the amount of data that can be transmitted, and thus the first bytes take longer to

transmit. Assuming that the error probability is constant, the fact that the first bytes take longer to

be transmitted leads to a higher failure probability. It can be seen, in Figure 4.8, that the probability

of a failure happening after 200 kB have been transferred is approximately constant. Nonetheless,

these late failures have a big impact on the overhead as they involve more data being discarded.

A rough calculation of the reduction that using a smaller chunk size would have in the overall

overhead can be done by assuming that the time between chunk transfers is 0, that there is no data

exchange to perform the request, and that the failure would happen exactly at the same point in

time. For example, in this approximation, changing the chunk size from 1 MB to 500 kB would

imply that a failure happening at a point in time that led to 800 kB of data being discarded would

now imply that 500 kB would have been successfully transferred and only 300 kB would have

been discarded. Applying this calculation to the data collected shows that reducing the chunk

size to 500 kB would imply a reduction of 41.21% in overhead, bringing it to 1.655% of the total

dissemination data. Changing the chunk size does not alter the probe size when the range-based

probes with sequential chunk decision is in place, like in trials 1-9. However, in the case of bitmap

based probes, trials 10-13, the probe size would increase by 21.74% for the 40 MiB files and

41.94% for the 100 MiB file, increasing the probing overhead by the same amount. Given the

difference between the results of the probing overhead and the retransmission overhead, reducing

the chunk size seems to be a good optimization, although it is still unknown if other factors like the

40 Performance Evaluation

TCP connection establishment overhead and the request latency would be significantly impacted

by the larger number of chunks.

Chapter 5

Conclusions and Future Work

5.1 Synthesis

Over the last years there has been a growing need to move data from the cloud to vehicles in

an efficient way. In this work, a data dissemination protocol that focuses on cooperation between

nodes has been studied and implemented. The proposed implementation uses V2V communication

links to create a cooperative P2P network that successfully disseminates content across the network

without resorting to expensive cellular networks. The presented protocol was designed based

on the analysis of real world data of Veniam’s deployed VANET in Porto but, nonetheless, all

implementation decisions were focused on making this work as versatile as possible.

The protocol was successfully implemented in Veniam’s production devices and its perfor-

mance was evaluated in the live service network. Throughout the several trials conducted, it was

apparent that the mobility patterns of the vehicles were a decisive factor that heavily influenced

the dissemination time. This was not surprising given that it is the dynamic mobility of the nodes

that makes vehicular networks a very particular case study. Tests were conducted in a scenario

that took advantage of the implemented infrastructure by using RSUs as the original content seed-

ers. However, results showed that V2V data exchanges were more prevalent and it was concluded

that, by choosing some nodes to act as the original seeders of the content, similar behaviors can

be achieved without the support of an infrastructure. This implies that these initial seeders would

need to use cellular data to download the content which goes against the original goal of reducing

the cellular data to a minimum but would, nonetheless, greatly reduce the cost of dissemination.

It was also seen that some congestion problems were present when using V2I links. Also, two

distinct options for the availability probes and chunk selection have been studied. It could be con-

cluded that using a bitmap to represent the missing chunks and basing the chunk decision on a

pseudo-random algorithm reduces chunk popularity mismatches; it is speculated that on networks

with higher vehicle density real benefits can be achieved by using this strategy.

41

42 Conclusions and Future Work

5.2 Future Work

Due to production constraints, testing was confined to a small network of 17 vehicles and, although

some patterns emerged that made it possible to speculate about how this protocol would scale up, it

is still unclear how it would behave in a much larger and denser network. Therefore, studies should

be conducted to better understand if greater vehicle densities facilitate the dissemination or if this

cooperative dissemination model will run into congestion problems. Some congestion problems

related to V2I connections have been discussed in Subsection 4.8.2; it would be interesting to see

if running similar trials on a DSRC channel separate from the one used in the production network

would alleviate the observed effects.

As mentioned in Section 4.7, it was common to see download attempts being rejected due

to peers being busy exchanging chunks with other nodes. This shows that, even on this small

network, there was a clustering phenomenon were multiple nodes were simultaneously attempting

to access the same seeder node. In the same section it was also stated that to improve this situation,

the number of allowed simultaneous connections could be increased. However, there is a high

probability that these competing nodes are missing the same chunks and thus it could be created a

multicast group to transmit the content to several nodes at the same time, increasing the efficiency

of the dissemination. This scenario is also adequate for the use of network coding. This can be

especially useful in public transportation depots where a large cluster is formed for long periods

of time.

In Subsection 3.3.2, it was stated that hash failures might indicate a storage malfunction. This

storage problem might be either from the downloader or the seeder node. Therefore, it would

be useful to define a set of messages that could be exchanged to notify the other node of this

situation. These messages could also be extended to other types of failures and performance

issues, in order to help neighbor nodes to optimize the peer and chunk selection process. Also,

there are other optimizations that can be made to the selection algorithm. For example, taking into

account the mobility of adjacent nodes to choose connections that are expected to have a longer

duration or prioritizing chunks that could take advantage of already established connections, thus

minimizing the overhead inherent to the creation of TCP streams. The performance evaluation

also indicated that some performance gains could be had by optimizing the chunk size parameter.

A more comprehensive analysis of how this affects the dissemination would be beneficial to adapt

the protocol to different network conditions.

As stated previously, results showed that the dissemination process would behave similarly if,

instead of RSUs, some OBUs were selected to download the content directly from the cloud, and

thus become the original seeders. Like many studies showed, RSU locations can be a decisive

factor in the effectiveness of these networks [3, 4, 5]. Similarly, the decision of which mobile

nodes should be selected to be the seeders can also have a tremendous impact in the dissemination.

Therefore, choosing a minimum set of OBUs that minimises the dissemination time is a problem

left open by this work. Instead of selecting a few OBUs to receive the whole content, it could also

be explored the effect of sending just a few chunks to a larger set of OBUs.

References

[1] George Dimitrakopoulos and Panagiotis Demestichas. Intelligent Transportation
Systems. IEEE Vehicular Technology Magazine, 5(1):77–84, mar 2010. URL:
http://ieeexplore.ieee.org/document/5430544/, doi:10.1109/MVT.
2009.935537.

[2] Sherali Zeadally, Ray Hunt, Yuh-Shyan Chen, Angela Irwin, and Aamir Hassan. Ve-
hicular ad hoc networks (VANETS): status, results, and challenges. Telecommunica-
tion Systems, 50(4):217–241, 2012. URL: http://link.springer.com/10.1007/
s11235-010-9400-5, doi:10.1007/s11235-010-9400-5.

[3] Evellyn S. Cavalcante, André L.L. Aquino, Gisele L. Pappa, and Antonio A.F. Loureiro.
Roadside unit deployment for information dissemination in a VANET. Proceedings of
the fourteenth international conference on Genetic and evolutionary computation confer-
ence companion - GECCO Companion ’12, page 27, 2012. URL: http://dl.acm.org/
citation.cfm?doid=2330784.2330789, doi:10.1145/2330784.2330789.

[4] Yazhi Liu, Jianwei Niu, Jian Ma, and Wendong Wang. File downloading oriented Roadside
Units deployment for vehicular networks. Journal of Systems Architecture, 59(10 PART
B):938–946, 2013. URL: http://dx.doi.org/10.1016/j.sysarc.2013.04.007,
doi:10.1016/j.sysarc.2013.04.007.

[5] Sara Mehar, Sidi Mohammed Senouci, Ali Kies, and Mekkakia Maaza Zoulikha. An Op-
timized Roadside Units (RSU) placement for delay-sensitive applications in vehicular net-
works. 2015 12th Annual IEEE Consumer Communications and Networking Conference,
CCNC 2015, pages 121–127, 2015. doi:10.1109/CCNC.2015.7157957.

[6] Car 2 Car Communication Consortium. C2C-CC Manifesto. System, page 94,
2007. URL: http://www.car-2-car.org/fileadmin/downloads/
C2C-CC{_}manifesto{_}v1.1.pdf.

[7] Elmer Schoch, Frank Kargl, Michael Weber, and Tim Leinmüller. Communication patterns
in VANETs. IEEE Communications Magazine, 46(11):119–125, 2008. doi:10.1109/
MCOM.2008.4689254.

[8] Daniel Jiang and Luca Delgrossi. IEEE 802.11p: Towards an international standard for
wireless access in vehicular environments. IEEE Vehicular Technology Conference, pages
2036–2040, 2008. doi:10.1109/VETECS.2008.458.

[9] Yunxin Li. An Overview of the DSRC/WAVE Technology. pages 544–558. 2012.
URL: http://link.springer.com/10.1007/978-3-642-29222-4{_}38, doi:
10.1007/978-3-642-29222-4_38.

43

http://ieeexplore.ieee.org/document/5430544/
http://dx.doi.org/10.1109/MVT.2009.935537
http://dx.doi.org/10.1109/MVT.2009.935537
http://link.springer.com/10.1007/s11235-010-9400-5
http://link.springer.com/10.1007/s11235-010-9400-5
http://dx.doi.org/10.1007/s11235-010-9400-5
http://dl.acm.org/citation.cfm?doid=2330784.2330789
http://dl.acm.org/citation.cfm?doid=2330784.2330789
http://dx.doi.org/10.1145/2330784.2330789
http://dx.doi.org/10.1016/j.sysarc.2013.04.007
http://dx.doi.org/10.1016/j.sysarc.2013.04.007
http://dx.doi.org/10.1109/CCNC.2015.7157957
http://www.car-2-car.org/fileadmin/downloads/C2C-CC{_}manifesto{_}v1.1.pdf
http://www.car-2-car.org/fileadmin/downloads/C2C-CC{_}manifesto{_}v1.1.pdf
http://dx.doi.org/10.1109/MCOM.2008.4689254
http://dx.doi.org/10.1109/MCOM.2008.4689254
http://dx.doi.org/10.1109/VETECS.2008.458
http://link.springer.com/10.1007/978-3-642-29222-4{_}38
http://dx.doi.org/10.1007/978-3-642-29222-4_38
http://dx.doi.org/10.1007/978-3-642-29222-4_38

44 REFERENCES

[10] Katrin Bilstrup, Elisabeth Uhlemann, and EG Ström. Medium access control in vehicular
networks based on the upcoming IEEE 802.11 p standard. Proc. of the 15th World Congress
on . . . , (3):1–12, 2008. URL: http://www2.hh.se/staff/bettan/Publications/
BilUhlStrITS08.pdf.

[11] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and H. Weiss.
Delay-Tolerant Networking Architecture. Technical report, apr 2007. URL: https://
www.rfc-editor.org/info/rfc4838, doi:10.17487/rfc4838.

[12] K. Scott and S. Burleigh. Bundle Protocol Specification. Technical report,
2007. URL: https://www.rfc-editor.org/info/rfc5050, arXiv:arXiv:
1011.1669v3, doi:10.17487/rfc5050.

[13] Hyunwoo Kang, Syed Hassan Ahmed, Dongkyun Kim, and Yun-Su Chung. Routing Proto-
cols for Vehicular Delay Tolerant Networks: A Survey. 2015, 2015.

[14] Sergio M. Tornell, Carlos T. Calafate, Juan Carlos Cano, and Pietro Manzoni. DTN protocols
for vehicular networks: An application oriented overview. IEEE Communications Surveys
and Tutorials, 17(2):868–887, 2015. doi:10.1109/COMST.2014.2375340.

[15] Christopher Ho, Katia Obraczka, G Tsudik, and K Viswanath. Flooding for reliable multicast
in multi-hop ad hoc networks. In 3rd Intl. workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications (DIAL-M’99), pages 64–71, 1999.

[16] Sathy Main Road. Performance Comparison of Broadcasting methods in Mobile Ad Hoc
Network. International Journal of Future Generation Communication and Networking,
2:47–58, 2009. URL: https://ssrn.com/abstract=2149417.

[17] Yu Chee Tseng, Sze Yao Ni, Yuh Shyan Chen, and Jang Ping Sheu. The broadcast storm
problem in a mobile ad hoc network. Wireless Networks, 8(2-3):153–167, 2002. doi:
10.1023/A:1013763825347.

[18] A. Bujari, C. E. Palazzi, D. Maggiorini, C. Quadri, and G. P. Rossi. A solution for mobile
DTN in a real urban scenario. 2012 IEEE Wireless Communications and Networking Con-
ference Workshops, WCNCW 2012, pages 344–349, 2012. doi:10.1109/WCNCW.2012.
6215519.

[19] Amin Vahdat and David Becker. Epidemic routing for partially connected ad hoc
networks. Technical report number CS-200006, Duke University, (CS-200006), 2000.
URL: ftp://ftp.cs.duke.edu/dist/techreport/2000/2000-06.ps, arXiv:
1001.3405, doi:10.1.1.34.6151.

[20] Shinpei Kuribayashi, Yusuke Sakumoto, Satoshi Hasegawa, Hiroyuki Ohsaki, and Makoto
Imase. Performance evaluation of broadcast communication protocol DSCF (Directional
Store-Carry-Forward) for VANETs with two-dimensional road model. I-SPAN 2009 - The
10th International Symposium on Pervasive Systems, Algorithms, and Networks, pages 615–
619, 2009. doi:10.1109/I-SPAN.2009.65.

[21] Danlei Yu and Young-Bae Ko. FFRDV: Fastest-ferry routing in DTN-enabled vehicular Ad
Hoc networks. International Conference on Advanced Communication Technology, ICACT,
02:1410–1414, 2009.

http://www2.hh.se/staff/bettan/Publications/BilUhlStrITS08.pdf
http://www2.hh.se/staff/bettan/Publications/BilUhlStrITS08.pdf
https://www.rfc-editor.org/info/rfc4838
https://www.rfc-editor.org/info/rfc4838
http://dx.doi.org/10.17487/rfc4838
https://www.rfc-editor.org/info/rfc5050
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.17487/rfc5050
http://dx.doi.org/10.1109/COMST.2014.2375340
https://ssrn.com/abstract=2149417
http://dx.doi.org/10.1023/A:1013763825347
http://dx.doi.org/10.1023/A:1013763825347
http://dx.doi.org/10.1109/WCNCW.2012.6215519
http://dx.doi.org/10.1109/WCNCW.2012.6215519
ftp://ftp.cs.duke.edu/dist/techreport/2000/2000-06.ps
http://arxiv.org/abs/1001.3405
http://arxiv.org/abs/1001.3405
http://dx.doi.org/10.1.1.34.6151
http://dx.doi.org/10.1109/I-SPAN.2009.65

REFERENCES 45

[22] Mohamed Oussama Cherif, Sidi Mohammed Secouci, and Bertrand Ducourthial. How to
disseminate vehicular data efficiently in both highway and urban environments? 2010 IEEE
6th International Conference on Wireless and Mobile Computing, Networking and Commu-
nications, WiMob’2010, pages 165–171, 2010. doi:10.1109/WIMOB.2010.5644988.

[23] Wantanee Viriyasitavat, Ozan K. Tonguz, and Fan Bai. UV-CAST: An urban vehicu-
lar broadcast protocol. IEEE Communications Magazine, 49(11):116–124, 2011. doi:
10.1109/MCOM.2011.6069718.

[24] Ozan K. Tonguz, Nawaporn Wisitpongphan, and Fan Bai. DV-CAST: A distributed vehicular
broadcast protocol for vehicular ad hoc networks. IEEE Wireless Communications, 17(2):47–
57, 2010. doi:10.1109/MWC.2010.5450660.

[25] Raul A. Gorcitz, Prométhée Spathis, Marcelo Dias De Amorim, Ryuji Wakikawa, and Serge
Fdida. SERVUS: Reliable low-cost and disconnection-aware broadcasting in VANETs.
IWCMC 2011 - 7th International Wireless Communications and Mobile Computing Con-
ference, pages 1760–1765, 2011. doi:10.1109/IWCMC.2011.5982615.

[26] Min-te Sun, We-chi Feng, and Lai Ten-Hwang. GPS-based message broadcast for adap-
tive inter-vehicle communications. Vehicular Technology Conference Fall 2000. IEEE
VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152), 6:2685–
2692, 2000. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=886811, doi:10.1109/VETECF.2000.886811.

[27] Venkata N. Padmanabhan and Kunwadee Sripanidkulchai. The case for cooperative net-
working. In Revised Papers from the First International Workshop on Peer-to-Peer Sys-
tems, IPTPS ’01, pages 178–190, London, UK, UK, 2002. Springer-Verlag. URL: http:
//dl.acm.org/citation.cfm?id=646334.758993.

[28] A. Nandan, S. Das, G. Pau, M. Gerla, and M.Y. Sanadidi. Co-operative Downloading in
Vehicular Ad-Hoc Wireless Networks. Second Annual Conference on Wireless On-demand
Network Systems and Services, pages 32–41, 2005. URL: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=1383401, doi:10.1109/WONS.
2005.7.

[29] Alok Nandan, Shirshanka Das, Biao Zhou, Giovanni Pau, and Mario Gerla. Adtorrent:
Digital billboards for vehicular networks. In IN PROC. OF IEEE/ACM INTERNATIONAL
WORKSHOP ON VEHICLETO-VEHICLE COMMUNICATIONS (V2VCOM, 2005.

[30] Tianyu Wang, Lingyang Song, Zhu Han, Zhaohua Lu, and Liujun Hu. Popular content
distribution in vehicular networks using coalition formation games. IEEE International
Conference on Communications, 31(9):6381–6385, 2013. arXiv:arXiv:1211.2081v1,
doi:10.1109/ICC.2013.6655631.

[31] Wei Huang and Liangmin Wang. ECDS: Efficient collaborative downloading scheme for
popular content distribution in urban vehicular networks. Computer Networks, 101:90–
103, 2016. URL: http://dx.doi.org/10.1016/j.comnet.2016.02.006, doi:
10.1016/j.comnet.2016.02.006.

[32] J. Yoo, B. S. C. Choi, and M. Gerla. An opportunistic relay protocol for vehicular road-
side access with fading channels. In The 18th IEEE International Conference on Network
Protocols, pages 233–242, Oct 2010. doi:10.1109/ICNP.2010.5762772.

http://dx.doi.org/10.1109/WIMOB.2010.5644988
http://dx.doi.org/10.1109/MCOM.2011.6069718
http://dx.doi.org/10.1109/MCOM.2011.6069718
http://dx.doi.org/10.1109/MWC.2010.5450660
http://dx.doi.org/10.1109/IWCMC.2011.5982615
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=886811
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=886811
http://dx.doi.org/10.1109/VETECF.2000.886811
http://dl.acm.org/citation.cfm?id=646334.758993
http://dl.acm.org/citation.cfm?id=646334.758993
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1383401
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1383401
http://dx.doi.org/10.1109/WONS.2005.7
http://dx.doi.org/10.1109/WONS.2005.7
http://arxiv.org/abs/arXiv:1211.2081v1
http://dx.doi.org/10.1109/ICC.2013.6655631
http://dx.doi.org/10.1016/j.comnet.2016.02.006
http://dx.doi.org/10.1016/j.comnet.2016.02.006
http://dx.doi.org/10.1016/j.comnet.2016.02.006
http://dx.doi.org/10.1109/ICNP.2010.5762772

46 REFERENCES

[33] Y. Wang, Y. Liu, J. Zhang, H. Ye, and Z. Tan. Cooperative store-carry-forward scheme for
intermittently connected vehicular networks. IEEE Transactions on Vehicular Technology,
66(1):777–784, Jan 2017. doi:10.1109/TVT.2016.2536059.

[34] F. Malandrino, C. Casetti, C. F. Chiasserini, and M. Fiore. Content download in vehicular
networks in presence of noisy mobility prediction. IEEE Transactions on Mobile Computing,
13(5):1007–1021, May 2014. doi:10.1109/TMC.2013.128.

[35] Shabbir Ahmed and SS Kanhere. VANETCODE: network coding to enhance cooperative
downloading in vehicular ad-hoc networks. . . . of the 2006 International Confer-
ence on . . . , pages 527–532, 2006. URL: http://portal.acm.org/citation.
cfm?id=1143654{%}5Cnhttp://dl.acm.org/citation.cfm?id=1143654,
doi:10.1145/1143549.1143654.

[36] Uichin Lee, Joon-Sang Park, Joseph Yeh, Giovanni Pau, and Mario Gerla. Code tor-
rent: content distribution using network coding in VANET. ACM MobiShare ’06, page 1,
2006. URL: http://portal.acm.org/citation.cfm?id=1161252.1161254,
doi:10.1145/1161252.1161254.

[37] Ming Li, Zhenyu Yang, and Wenjing Lou. CodeOn: Cooperative popular content distribution
for vehicular networks using symbol level network coding. IEEE Journal on Selected Areas
in Communications, 29(1):223–235, 2011. doi:10.1109/JSAC.2011.110121.

[38] Joon Sang Park, Mario Gerla, Desmond S. Lun, Yunjung Yi, and Muriel Médard. Code-
Cast: A network-coding-based ad hoc multicast protocol. IEEE Wireless Communications,
13(5):76–81, 2006. doi:10.1109/WC-M.2006.250362.

[39] JS Park, Ui Lee, SY Oh, M Gerla, and DS Lun. Emergency related video streaming in
VANET using network coding. ACM International Workshop on Vehicular Ad Hoc Networks
(VANET), 2006:102, 2006. URL: http://portal.acm.org/citation.cfm?doid=
1161064.1161087, doi:10.1145/1161064.1161087.

[40] Yong Li, Depeng Jin, Pan Hui, and Sheng Chen. Contact-aware data replication in roadside
unit aided vehicular delay tolerant networks. IEEE Transactions on Mobile Computing,
15(2):306–321, 2016. doi:10.1109/TMC.2015.2416185.

[41] Seung-hoon Lee, Uichin Lee, Kang-won Lee, and Mario Gerla. Content Distribution in
VANETs using Network Coding : The Effect of Disk I / O and Processing O / H. SECON’08.
5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Com-
munications and Networks,, pages 117–125, 2008. doi:10.1109/SAHCN.2008.24.

[42] C. Partridge, J. Hughes, and J. Stone. Performance of checksums and crcs over real data. In
Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM 1995, pages 68–76, 1995. Cited By :15.

[43] Roelof Schiphorst, F.W. Hoeksema, and Cornelis H. Slump. Undetected error probabil-
ity for data services in a terrestrial DAB single frequency network, pages 75–84. Number
LNCS4549. Werkgemeenschap voor Informatie- en Communicatietheorie (WIC), Nether-
lands, 5 2007.

[44] Jonathan Stone and Craig Partridge. When the crc and tcp checksum disagree. In Proceed-
ings of the Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication, SIGCOMM ’00, pages 309–319, New York, NY, USA, 2000. ACM.

http://dx.doi.org/10.1109/TVT.2016.2536059
http://dx.doi.org/10.1109/TMC.2013.128
http://portal.acm.org/citation.cfm?id=1143654{%}5Cnhttp://dl.acm.org/citation.cfm?id=1143654
http://portal.acm.org/citation.cfm?id=1143654{%}5Cnhttp://dl.acm.org/citation.cfm?id=1143654
http://dx.doi.org/10.1145/1143549.1143654
http://portal.acm.org/citation.cfm?id=1161252.1161254
http://dx.doi.org/10.1145/1161252.1161254
http://dx.doi.org/10.1109/JSAC.2011.110121
http://dx.doi.org/10.1109/WC-M.2006.250362
http://portal.acm.org/citation.cfm?doid=1161064.1161087
http://portal.acm.org/citation.cfm?doid=1161064.1161087
http://dx.doi.org/10.1145/1161064.1161087
http://dx.doi.org/10.1109/TMC.2015.2416185
http://dx.doi.org/10.1109/SAHCN.2008.24

REFERENCES 47

URL: http://doi.acm.org/10.1145/347059.347561, doi:10.1145/347059.
347561.

[45] Philip Hawkes, Michael Paddon, and Gregory G. Rose. On corrective patterns for the sha-2
family. Cryptology ePrint Archive, Report 2004/207, 2004. https://eprint.iacr.
org/2004/207.

[46] R. Ding, T. Wang, L. Song, Z. Han, and J. Wu. Roadside-unit caching in vehicular ad hoc
networks for efficient popular content delivery. In 2015 IEEE Wireless Communications and
Networking Conference, WCNC 2015, pages 1207–1212, 2015. Cited By :12.

[47] T. Hoßfeld, D. Schlosser, K. Tutschku, and P. Tran-Gia. Cooperation strategies for P2P
content distribution in cellular mobile networks: Considering selfishness and heterogeneity,
pages 132–151. Mobile Peer-to-Peer Computing for Next Generation Distributed Environ-
ments: Advancing Conceptual and Algorithmic Applications. 2009.

http://doi.acm.org/10.1145/347059.347561
http://dx.doi.org/10.1145/347059.347561
http://dx.doi.org/10.1145/347059.347561
https://eprint.iacr.org/2004/207
https://eprint.iacr.org/2004/207

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Veniam
	1.2 Objectives and Approach
	1.3 Structure of the Document

	2 Background and Related Work
	2.1 Vehicular Ad Hoc Networks
	2.1.1 Architecture
	2.1.2 DSRC/WAVE Standards

	2.2 Delay Tolerant Networks
	2.3 Vehicular DTNs
	2.3.1 Routing
	2.3.2 Data Dissemination
	2.3.3 Peer-to-Peer and Colaborative Download

	3 Proposed System Architecture
	3.1 Problem Characterization
	3.2 Solution Overview
	3.3 Protocol Achitecture and Design
	3.3.1 Chunk Size
	3.3.2 Security
	3.3.3 Cloud and Content Discovery
	3.3.4 Peer Discovery
	3.3.5 Decision Making and Backoff Mechanism

	3.4 Implementation
	3.4.1 Cloud Infrastructure
	3.4.2 Content Discovery Script
	3.4.3 Application

	4 Performance Evaluation
	4.1 Scenario
	4.2 Performance Metrics
	4.3 Dissemination Evolution
	4.4 Chunk Popularity
	4.5 Contact Statistics
	4.6 V2I/V2V Importance
	4.7 Transmission Failures
	4.8 Overhead
	4.8.1 Probing Overhead
	4.8.2 Retransmission Overhead

	5 Conclusions and Future Work
	5.1 Synthesis
	5.2 Future Work

	References

