1,294 research outputs found

    Average Interpolation Under the Maximum Angle Condition

    Full text link
    Interpolation error estimates needed in common finite element applications using simplicial meshes typically impose restrictions on the both the smoothness of the interpolated functions and the shape of the simplices. While the simplest theory can be generalized to admit less smooth functions (e.g., functions in H^1(\Omega) rather than H^2(\Omega)) and more general shapes (e.g., the maximum angle condition rather than the minimum angle condition), existing theory does not allow these extensions to be performed simultaneously. By localizing over a well-shaped auxiliary spatial partition, error estimates are established under minimal function smoothness and mesh regularity. This construction is especially important in two cases: L^p(\Omega) estimates for data in W^{1,p}(\Omega) hold for meshes without any restrictions on simplex shape, and W^{1,p}(\Omega) estimates for data in W^{2,p}(\Omega) hold under a generalization of the maximum angle condition which previously required p>2 for standard Lagrange interpolation

    Real-time localization using received signal strength

    Get PDF
    Locating and tracking assets in an indoor environment is a fundamental requirement for several applications which include for instance network enabled manufacturing. However, translating time of flight-based GPS technique for indoor solutions has proven very costly and inaccurate primarily due to the need for high resolution clocks and the non-availability of reliable line of sight condition between the transmitter and receiver. In this dissertation, localization and tracking of wireless devices using radio signal strength (RSS) measurements in an indoor environment is undertaken. This dissertation is presented in the form of five papers. The first two papers deal with localization and placement of receivers using a range-based method where the Friis transmission equation is used to relate the variation of the power with radial distance separation between the transmitter and receiver. The third paper introduces the cross correlation based localization methodology. Additionally, this paper also presents localization of passive RFID tags operating at 13.56MHz frequency or less by measuring the cross-correlation in multipath noise from the backscattered signals. The fourth paper extends the cross-correlation based localization algorithm to wireless devices operating at 2.4GHz by exploiting shadow fading cross-correlation. The final paper explores the placement of receivers in the target environment to ensure certain level of localization accuracy under cross-correlation based method. The effectiveness of our localization methodology is demonstrated experimentally by using IEEE 802.15.4 radios operating in fading noise rich environment such as an indoor mall and in a laboratory facility of Missouri University of Science and Technology. Analytical performance guarantees are also included for these methods in the dissertation --Abstract, page iv

    Mesh generation for voxel -based objects

    Get PDF
    A new physically-based approach to unstructured mesh generation via Monte-Carlo simulation is proposed. Geometrical objects to be meshed are represented by systems of interacting particles with a given interaction potential. A new way of distributing nodes in complex domains is proposed based on a concept of dynamic equilibrium ensemble, which represents a liquid state of matter. The algorithm is simple, numerically stable and produces uniform node distributions in domains of complex geometries and different dimensions. Well-shaped triangles or tetrahedra can be created by connecting a set of uniformly-spaced nodes. The proposed method has many advantages and potential applications.;The new method is applied to the problem of meshing of voxel-based objects. By customizing system potential energy function to reflect surface features, particles can be distributed into desired locations, such as sharp corners and edges. Feature-preserved surface mesh can then be constructed by connecting the node set.;A heuristic algorithm using an advancing front approach is proposed to generate triangulated surface meshes on voxel-based objects. The resultant surface meshes do not inherit the anisotropy of the underlying hexagonal grid. However, the important surface features, such as edges and corners may not be preserved in the mesh.;To overcome this problem, surface features such as edges, corners need to be detected. A new approach of edge capturing is proposed and demonstrated. The approach is based on a Laplace solver with incomplete Jacobi iterations, and as such is very simple and efficient. This edge capturing approach combined with the mesh generation methods above forms a simple and robust technique of unstructured mesh generation on voxel-based objects.;A graphical user interface (GUI) capable of complex geometric design and remote simulation control was implemented. The GUI was used in simulations of large fuel-cell stacks. It enables one to setup, run and monitor simulations remotely through secure shell (SSH2) connections. A voxel-based 3D geometrical modeling module is built along with the GUI. The flexibility of voxel-based geometry representation enables one to use this technique for both geometric design and visualization of volume data

    Robust surface modelling of visual hull from multiple silhouettes

    Get PDF
    Reconstructing depth information from images is one of the actively researched themes in computer vision and its application involves most vision research areas from object recognition to realistic visualisation. Amongst other useful vision-based reconstruction techniques, this thesis extensively investigates the visual hull (VH) concept for volume approximation and its robust surface modelling when various views of an object are available. Assuming that multiple images are captured from a circular motion, projection matrices are generally parameterised in terms of a rotation angle from a reference position in order to facilitate the multi-camera calibration. However, this assumption is often violated in practice, i.e., a pure rotation in a planar motion with accurate rotation angle is hardly realisable. To address this problem, at first, this thesis proposes a calibration method associated with the approximate circular motion. With these modified projection matrices, a resulting VH is represented by a hierarchical tree structure of voxels from which surfaces are extracted by the Marching cubes (MC) algorithm. However, the surfaces may have unexpected artefacts caused by a coarser volume reconstruction, the topological ambiguity of the MC algorithm, and imperfect image processing or calibration result. To avoid this sensitivity, this thesis proposes a robust surface construction algorithm which initially classifies local convex regions from imperfect MC vertices and then aggregates local surfaces constructed by the 3D convex hull algorithm. Furthermore, this thesis also explores the use of wide baseline images to refine a coarse VH using an affine invariant region descriptor. This improves the quality of VH when a small number of initial views is given. In conclusion, the proposed methods achieve a 3D model with enhanced accuracy. Also, robust surface modelling is retained when silhouette images are degraded by practical noise

    3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries

    Full text link
    Recent advances in electron microscopy have enabled the imaging of single cells in 3D at nanometer length scale resolutions. An uncharted frontier for in silico biology is the ability to simulate cellular processes using these observed geometries. Enabling such simulations requires watertight meshing of electron micrograph images into 3D volume meshes, which can then form the basis of computer simulations of such processes using numerical techniques such as the Finite Element Method. In this paper, we describe the use of our recently rewritten mesh processing software, GAMer 2, to bridge the gap between poorly conditioned meshes generated from segmented micrographs and boundary marked tetrahedral meshes which are compatible with simulation. We demonstrate the application of a workflow using GAMer 2 to a series of electron micrographs of neuronal dendrite morphology explored at three different length scales and show that the resulting meshes are suitable for finite element simulations. This work is an important step towards making physical simulations of biological processes in realistic geometries routine. Innovations in algorithms to reconstruct and simulate cellular length scale phenomena based on emerging structural data will enable realistic physical models and advance discovery at the interface of geometry and cellular processes. We posit that a new frontier at the intersection of computational technologies and single cell biology is now open.Comment: 39 pages, 14 figures. High resolution figures and supplemental movies available upon reques

    Robust surface modelling of visual hull from multiple silhouettes

    Get PDF
    Reconstructing depth information from images is one of the actively researched themes in computer vision and its application involves most vision research areas from object recognition to realistic visualisation. Amongst other useful vision-based reconstruction techniques, this thesis extensively investigates the visual hull (VH) concept for volume approximation and its robust surface modelling when various views of an object are available. Assuming that multiple images are captured from a circular motion, projection matrices are generally parameterised in terms of a rotation angle from a reference position in order to facilitate the multi-camera calibration. However, this assumption is often violated in practice, i.e., a pure rotation in a planar motion with accurate rotation angle is hardly realisable. To address this problem, at first, this thesis proposes a calibration method associated with the approximate circular motion. With these modified projection matrices, a resulting VH is represented by a hierarchical tree structure of voxels from which surfaces are extracted by the Marching cubes (MC) algorithm. However, the surfaces may have unexpected artefacts caused by a coarser volume reconstruction, the topological ambiguity of the MC algorithm, and imperfect image processing or calibration result. To avoid this sensitivity, this thesis proposes a robust surface construction algorithm which initially classifies local convex regions from imperfect MC vertices and then aggregates local surfaces constructed by the 3D convex hull algorithm. Furthermore, this thesis also explores the use of wide baseline images to refine a coarse VH using an affine invariant region descriptor. This improves the quality of VH when a small number of initial views is given. In conclusion, the proposed methods achieve a 3D model with enhanced accuracy. Also, robust surface modelling is retained when silhouette images are degraded by practical noise

    Decoupling method for parallel Delaunay two-dimensional mesh generation

    Get PDF
    Parallel mesh generation procedures that are based on geometric domain decompositions require the permanent separators to be of good quality (in terms of their angles and length), in order to maintain the mesh quality. The Medial Axis Domain Decomposition, an innovative geometric domain decomposition procedure that addresses this problem, is introduced. The Medial Axis domain decomposition is of high quality in terms of the formed angles, and provides separators of small size, and also good work-load balance. It presents for the first time a decomposition method suitable for parallel meshing procedures that are based on geometric domain decompositions.;The Decoupling Method for parallel Delaunay 2D mesh generation is a highly efficient and effective parallel procedure, able to generate billions of elements in a few hundred of seconds, on distributed memory machines. Our mathematical formulation introduces the notion of the decoupling path, which guarantees the decoupling property, and also the quality and conformity of the Delaunay submeshes. The subdomains are meshed independently, and as a result, the method eliminates the communication and the synchronization during the parallel meshing. A method for shielding small angles is introduced, so that the decoupled parallel Delaunay algorithm can be applied on domains with small angles. Moreover, I present the construction of a sizing function, that encompasses an existing sizing function and also geometric features and small angles. The decoupling procedure can be used for parallel graded Delaunay mesh generation, controlled by the sizing function
    • …
    corecore