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ABSTRACT

Mesh Generation for Voxel-Based Objects

Hanzhou Zhang

A new physically-based approach to unstructured mesh generation via Monte-Carlo
simulation is proposed. Geometrical objects to be meshed are represented by systems
of interacting particles with a given interaction potential. A new way of distributing
nodes in complex domains is proposed based on a concept of dynamic equilibrium en-
semble, which represents a liquid state of matter. The algorithm is simple, numerically
stable and produces uniform node distributions in domains of complex geometries and
different dimensions. Well-shaped triangles or tetrahedra can be created by connect-
ing a set of uniformly-spaced nodes. The proposed method has many advantages and
potential applications.

The new method is applied to the problem of meshing of voxel-based objects.
By customizing system potential energy function to reflect surface features, particles
can be distributed into desired locations, such as sharp corners and edges. Feature-
preserved surface mesh can then be constructed by connecting the node set.

A heuristic algorithm using an advancing front approach is proposed to generate
triangulated surface meshes on voxel-based objects. The resultant surface meshes do
not inherit the anisotropy of the underlying hexagonal grid. However, the important
surface features, such as edges and corners may not be preserved in the mesh.

To overcome this problem, surface features such as edges, corners need to be
detected. A new approach of edge capturing is proposed and demonstrated. The
approach is based on a Laplace solver with incomplete Jacobi iterations, and as such
is very simple and efficient. This edge capturing approach combined with the mesh
generation methods above forms a simple and robust technique of unstructured mesh
generation on voxel-based objects.

A graphical user interface (GUI) capable of complex geometric design and remote
simulation control was implemented. The GUI was used in simulations of large fuel-
cell stacks. It enables one to setup, run and monitor simulations remotely through
secure shell (SSH2) connections. A voxel-based 3D geometrical modeling module is
built along with the GUI. The flexibility of voxel-based geometry representation en-
ables one to use this technique for both geometric design and visualization of volume
data.
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Chapter 1

Introduction

Mesh generation is an important part of modeling physical processes and engineering

structures by means of computer simulations. Meshes are used to create discrete

representations of physical objects and environments, which are governed by set of

laws expressed by partial differential equations (PDE). Mesh generation is a process

of discretizing a physical domain into a set of smaller elements. In the simplest case

these elements are represented by triangles or quadrilaterals for a two-dimensional

domain and tetrahedra or hexahedra for a three-dimensional domain.

Mesh generation is a necessary pre-processing step for many numerical methods,

such as boundary element methods (BEM), finite element methods (FEM) and finite

volume methods (FVM), which are often used for numerical solution of PDEs. Due

to the difficulty of solving differential equations for scientific or engineering problems

analytically, especially when dealing with complex geometries, numerical methods

are usually used to analyze and simulate physical phenomena such as heat transfer,

fluid flow etc. By forming approximations over simple elements in a mesh, a system

of linear equations is constructed and solved numerically by matrix inversion or in a
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iterative way.

A mesh can be structured or unstructured. A structured mesh generator attempts

to align elements with boundaries of a geometric domain. And typically a structured

mesh is all hexahedral, with interior nodes having an equal number of adjacent ele-

ments. On the other hand, an unstructured mesh allows any number of neighbors for

a given element. Elements in an unstructured mesh can be triangular or hexahedral.

While structured meshes are easier to implement and more efficient on simple geome-

tries, unstructured meshes are more suitable for complex geometries, and convenient

in mesh adaptivity. Unstructured mesh generation is the most adopted approach for

complex physical simulations. Generally, it is more difficult to develop automatic al-

gorithms for quadrilateral and hexahedral mesh generation. And thus, by far the most

common form of unstructured mesh generation is triangle and tetrahedral meshing.

Although mesh generation has found applications in many areas, such as numerical

analysis and simulation, computer graphics and visualization etc, the focus of this

study is to find methods of generating good quality meshes for numerical methods.

In this thesis we will exclusively consider unstructured triangular mesh generation,

which triangulates a surface into triangles or a volume into tetrahedra.

The geometry of the domain has to be defined before it can be meshed. Some

common methods used for describing geometries include constructive solid geome-

try (CSG), boundary representation (B-Rep), and piecewise linear complex (PLC).

How a geometric entity is defined affects directly the meshing of this object. Most

of geometries in practical scientific and engineering problems are modeled in CAD

systems, and are typically based on points, curves and surfaces. And thus, most mesh

generation methods are developed to deal with such.
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The advancement in hardware, especially cheaper and larger memories, has brought

attention to the technique of so-called volume graphics [32], which employs a volume

buffer of voxels to represent 3D scenes. A voxel in volume graphics is the 3D analogy

of a 2D pixel in raster graphics. It is the smallest distinguishable box-shaped unit of

volume supplied with numerical values representing some properties of a real object

or phenomenon. A collection of voxels forms a volumetric dataset. A particular voxel

can be identified by the coordinates of its corners, or its center.

Traditionally volume graphics are obtained from measurements or simulations,

such as biomedical images of computed tomography (CT) and magnetic resonance

imaging (MRI), seismic measurements in geophysical explorations, and CFD simu-

lation of fluid flow etc. Volume graphics is increasingly often applied to pure geo-

metric modeling. The representation of geometric objects based on voxels has many

advantages such as the ability to represent interiors and digital samples, easy im-

plementation of boolean and block operations and the capability to model arbitrary

complex geometries. And consequently the voxel-based modeling approach started

gaining popularity [25, 71, 70, 4, 69, 31].

Although many meshing methods exist, few of them are designed to deal with

voxel-based geometric objects. There has been very little work done on mesh gener-

ation directly from a voxel dataset. Most mesh generation algorithms need a surface

representation of the geometry, which is not explicitly defined for voxel-based geo-

metric objects.

The main objective in this study is to develop methodologies which can generate

good quality meshes for voxel-based objects. To resolve the geometry with correct

topology, the mesh also needs to be conformal to the boundaries with edges and sharp
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corners preserved.

In this study several findings are reported on new algorithms for mesh generation,

which simplify the mesh generation procedure and at the same time improve the

quality of meshes for both voxel based objects and general meshing of 2D and 3D

domains. These findings are summarized in Chapter 6.

1.1 Mesh Quality Measures

Mesh quality is important for the solution of a numerical simulation. In order to

evaluate mesh quality, many measures have been used, such as angle, skew, length

ratio, and orientation etc. Knupp [35] uses an algebraic framework to form a math-

ematical theory of mesh quality metrics, which is based on the Jacobian and related

matrices. The Jacobian matrix can be factored into geometrically meaningful parts

to construct different quality measures. Another work by Shewchuk [55] explains the

mathematical connections between mesh geometry, interpolation errors, and stiffness

matrix conditioning for triangular mesh elements. Also several quality measures for

evaluating triangular elements are presented.

In this study, the meshes generated will be isotropic triangular and tetrahedral

meshes. Some simple quality measures are enough to judge the mesh quality. For

triangles, we use aspect ratio, maximum and minimum angles as the quality measures.

A triangle’s aspect ratio is defined as the longest edge divided by the smallest height.

For triangles, the smaller the aspect ratio, the better the quality. The best triangle is

a equilateral triangle with an aspect ratio of 2/
√
3, or 1.1547. Concerning angles, one

good triangle mesh generator should try to maximize the minimal angle and minimize

the maximum triangle. Generally speaking, for triangles in a good quality isotropic
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mesh, the minimum angle is usually greater than 20o, the aspect ratio is usually less

than 5.

For tetrahedra, we use radius-edge ratio and aspect ratio as the quality measures.

A tetrahedron’s radius-edge ratio is the radius of its circumsphere divided by its

shortest edge length, and a tetrahedron’s aspect ratio is its longest edge length divided

by the diameter of its inscribed sphere. For tetrahedra, a small radius-edge ratio

means a good tetrahedron except for a sliver, which is a tetrahedron whose vertices

are almost coplanar and whose circumradius is not much larger than its shortest edge

length. A sliver has large aspect ratio.

1.2 Previous Work on Triangular Mesh Genera-

tion

Most current triangular meshing techniques can be classified into three main cate-

gories: Delaunay-Voronoi based methods, advancing front methods, and quadtree /

octree based methods [65]. First we are going to give a brief introduction to these

three techniques, and then review the previous work on mesh generation from voxel

dataset. For more extensive reviews we refer to the papers by Bern and Eppstein [6],

Bern and Plassmann [7], Teng and Wong [64], and Owen [46].

1.2.1 Delaunay-Voronoi Based Meshing Methods

Given a set of points on the plane: P = {p1, p2, ..., pn}, the Voronoi diagram of P is

a partition of the plane into n polygonal regions, one for each point in P , with the

property that every point of that region is closer to p than to any of the other points
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Figure 1.1: A Voronoi Diagram (solid line) and its dual - Delaunay Triangulation
(dash line).

from P . The Delaunay triangulation is a dual diagram connecting any two points

whose Voronoi regions intersect along a common line segment. An interesting prop-

erty of the Delaunay triangulation is that no point in P will be inside the circumcircle

of any triangle of the Delaunay set.These concepts generalize to higher dimensions.

The most popular meshing methods of triangular mesh generation are those uti-

lizing the Delaunay criterion, which has the so-called empty circle (2D) or empty

sphere (3D) property, that is, the circumcircle of any triangle or circumsphere of any

tetrahedron does not have any mesh nodes inside.

The empty circle or sphere property of Delaunay triangulation leads to several

other favorable characteristics. For example, in any dimension, the Delaunay trian-

gulation minimizes the largest minimum-containment sphere, where the minimum-

containment sphere of a simplex is the smallest sphere containing the simplex. In

two dimensions, the Delaunay triangulation minimizes the largest circumcircle and

moreover it maximizes the minimum angle in the mesh. And thus for a set of points

in 2D, the Delaunay triangulation will generate the best quality mesh. Unfortunately

the property of maximizing the minimum angle is lost in 3D and higher dimensions,
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and poor quality elements such as slivers can be formed by Delaunay triangulation.

Baker [5], George [26], and Weatherill [72] are among the first researchers utilizing

the Delaunay criterion to develop meshing algorithms. The Delaunay criterion in itself

is not a meshing algorithm. But it provides a criterion for how to connect points (or

nodes) into a mesh. Any Delaunay meshing method is composed of two phases:

placement of the mesh nodes and triangulation of the nodes. If the mesh nodes are

well placed, the triangulation phase can be simple.

Constrained Delaunay Triangulation

Delaunay triangulation has a sound mathematical basis and desired optimization

properties. However Delaunay triangulation is done over a set of points and the hull

of the triangulation will always be convex. While the domains to be meshed are not

usually convex, the Delaunay triangulation has to be forced to respect the boundaries

of the domains. This new forced triangulation is called Constrained Delaunay Trian-

gulation. The constrained Delaunay triangulation may not be strictly ”Delaunay”.

A free 2D constrained Delaunay triangulation program named Triangle was de-

veloped by Jonathon Shewchuk [53, 54]. It is based on a hybrid of Ruppert’s De-

launay refinement algorithm [50] and Chew’s Delaunay refinement algorithm [15].

The program is available at http://www-2.cs.cmu.edu/ quake/triangle.html. A 3D

constrained Delaunay triangulation program - Tetgen developed by Si is available

at http://tetgen.berlios.de. It implements the algorithms of Edelsbrunner and Shah

[22], and Si and Gärtner [57].
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Figure 1.2: A sliver has small radius-edge ratio with almost coplanar vertices (A, B,
C, D).

Sliver Elimination

The sliver is the only type of small volume tetrahedron whose radius-edge ratio does

not grow with decreasing volume [23]. Figure 1.2 shows a sliver.

Well-shaped meshes can be generated by many Delaunay meshing methods in two

dimensions. However in three dimensions, mesh generation becomes more difficult.

Slivers may exist in Delaunay tetrahedralizations even when the node set is well-

spaced [63]. And thus it is necessary to remove them in order to generate well-shaped

meshes.

Eliminating slivers from 3D meshes is one of the difficult tasks in mesh genera-

tion. Some algorithms have been proposed for sliver elimination. Chew [16] proposed

Delaunay refinement algorithm that inserts random points near the circumcenters

instead of points at the circumcenter. This method can avoid generating new slivers

but cannot guarentee to remove original slivers in the mesh. Cheng et al. [14] pro-
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posed weighted Delaunay triangulation and proved that no slivers will be generated

in the interior of the domain. However slivers may present near the boundary of the

domain. Motivated by the work of Chew [16] and Cheng et al. [14], Li [39] proposed

two algorithms in his thesis: one is smoothing and cleaning-up based on moving mesh

vertices; and the other one is based on adding Steiner points. While the former one

has difficulties in treating boundaries, the later one generates non-uniform meshes

and eliminates all original slivers without introducing new slivers in the final mesh.

The tetrahedra near domain boundary are also well-shaped guranteed by a complete

boundary treatment.

1.2.2 Advancing Front Meshing Methods

Advancing front meshing is another very popular family of triangular mesh generation

techniques. In this approach, triangles or tetrahedra are created progressively inward

from boundaries. An active front is maintained while creating new elements. Each

time, an edge (for 2D) or triangle (for 3D) on the front is selected to form the next

new triangle or tetrahedron with a newly generated node or an existing node. As

the algorithm progresses, new edges/triangles are added to the front while closed

old edges/triangles are removed from the front. Eventually the advancing front will

become empty and the domain is filled with mesh elements.

The main contributors to the advancing front meshing techniques include Lo [42,

43], Peraire [47], and Löhner [44] etc.
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1.2.3 Quadtree/Octree Based Meshing methods

Quadtree/Octree based meshing is less used comparing to the above mentioned two

techniques. Some proposed quadtree/octree based mesh generation methods are [73,

3, 52, 33]. Generally speaking, in all such methods, a square or cube is first generated

to cover the 2D or 3D domain. And then it is recursively subdivided into cells

(quadrants or octants) of desired resolution. The corners of the inner cells are used

as nodes in the mesh. For cells containing part of the domain boundaries, special

consideration is used to deal with the boundary. Mesh size grading is controlled by

varying the subdivision level of cells. In order to avoid dramatical change of element

size, the maximum difference between the levels of adjacent cells is typically limited

to one.

1.3 Previous Work on Meshing Voxel Dataset

1.3.1 Surface Meshing

Although many surface meshing methods exist today, few of them are designed to

deal with voxel-based geometric objects.

The problem with surface meshing of a voxel-based object is that the surface of

such an object is not explicitly defined. It is usually desirable to reconstruct the

surface in the form of piecewise linear mesh from the voxel data.

Many algorithms were developed to extract iso-surfaces from volume data for the

purpose of modeling and rendering, such as the marching cube algorithm [45] and

its variants. The marching cube family of algorithms produce a uniform surface

mesh with excessive triangles. These triangles could be in bad shapes and thus
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are not suitable for the purpose of numerical analysis. Also sharp features in the

objects are not preserved. An extended marching cube algorithm [36] can detect

and reconstruct sharp features by using an enhanced distance field representation

and performing feature detection and sampling. An octree-based dual contouring

algorithm [30] works by contouring a signed grid whose edges are tagged by hermite

data (i.e exact intersection points and normals). The algorithm can generate adaptive

iso-surfaces with good aspect ratios and preserve surface features, like sharp corners,

without explicitly identifying and processing these features in the object. However

exact intersection points and normals for edges are needed by this method.

1.3.2 Volume Meshing

There has been some work done on volume meshing from voxel dataset. The method

proposed by Frey et al. [24] generates uniformly dense mesh by splitting every voxel

into 5 or 6 tetrahedra. Hartmann and Kruggel [28] present an algorithm that allows

fast and stable creation of very large 3D meshes from Magnetic Resonance Tomo-

grams. Their algorithm is based on the idea of an image-based spatial decomposition

of the problem domain yielding smaller subproblems that can be efficiently handled.

Hale [27] meshes a 2D/3D image by combining the digital image with a lattice of

atomic points whose coordinates are optimized to minimize a potential energy func-

tion of the combination. The mesh connected with the atoms tends to be aligned

with image features, but is not guaranteed to be conformal to the domain bound-

ary. Udeshi [68] generates a graded and adaptive tetrahedral mesh from voxel data.

Mesh nodes are created from an octree, and connected into a tetrahedral mesh by

constrained Delaunay tetrahedralization. Zhang and Bajaj et al. [79, 80] extract
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adaptive tetrahedral and hexahedral meshes directly from volumetric imaging data.

The octree-based meshing approach is used by the authors.

1.4 Outline of the Thesis

In this thesis, a voxel-based geometric modeling system is built along with a GUI

(graphical user interface), which was used in multi-physics simulations of fuel cells.

The voxel-based objects used in our mesh generation studies are all modeled with this

modeling system. In Chapter 2 we start to focus on mesh generation, in particular

mesh generation for voxel-based objects. In this chapter we present an advancing front

approach for surface meshing on voxel-based objects [58]. In chapter 3, we begin to

develop a new mesh generation technique using particle simulation and Monte-Carlo

methods [78, 76, 75, 74]. This approach uses energy minimization via Monte-Carlo

simulation to optimize mesh node distribution, from which well-shaped meshes can

be constructed. And in Chapter 4, the problem of surface meshing on voxel-based

objects is revisited with this approach, which results in better mesh quality [77].

Chapter 5 describes the GUI and the voxel-based modeling system [60, 62, 61, 59].

The thesis is concluded with recommendation for future work.
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Chapter 2

Surface Mesh Generation for

Voxel-Based Objects with an

Advancing Front Approach

This chapter starts to address the problem of constructing surface meshes for the

voxel-based objects. A heuristic algorithm using an advancing front approach for

generating a triangulated surface mesh is proposed. The resultant meshes do not

inherit the anisotropy of the underlying hexagonal grid. Meshing strategies, such as

surface curvature estimation and neighbor-detection techniques are described. Ex-

amples of applications are given.

2.1 Introduction

Mesh generation is a process of dividing a physical domain into a large number of

small elements with relatively simple shapes. In general the surface of an object

needs to be meshed before the application of a 3D mesh generator, which often fills in
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the interior of the object with tetrahedral or hexahedral elements. The most common

unstructured surface meshing algorithms, which divide a surface into triangles, include

Delaunay meshing methods [5], and advancing front methods [37].

While vector graphics dominate most CAD packages, 3D surfaces in many engi-

neering and scientific applications are usually defined by means of parametric surfaces.

Thus most surface meshing algorithms are designed to deal with such. There are es-

sentially two types of surface meshing approaches: direct and indirect. With the

indirect approach, the mesh is first generated in a 2D parametric space, and then

mapped back to the actual surface in 3D space [12, 19, 66, 8]. In contrast, the direct

approach generates the mesh directly over the original surface in 3D space [37, 21].

With this approach surface parameteriztion is not required.

Although many surface meshing methods exist, few of them are designed to deal

with voxel-based geometric objects. In this study, a 3D surface meshing method using

an advancing front approach is proposed to mesh the surface of voxel-based objects.

Since no parametric surfaces exist for an voxel-based object, the algorithm proceeds

directly with voxels, and in the end the surface is extracted as a triangulated mesh.

Therefore, besides the purpose of generating quality mesh for numerical methods,

the meshing method also serves another purpose: volume rendering, which is the

objective of many surface construction algorithms, such as marching cubes algorithm

[45].

2.2 Method

The main targets of the meshing method are voxel objects, which are created by a

voxel-based modeling system, such as the one designed in this study (see Chapter
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5) [62]. Voxels are arranged on a regular 3D grid. Each voxel has a type, which

represents any property, such as a type of material, void space, etc. In a broader

paradigm of physical modeling multiple physical properties can be further associated

with each voxel type. A connected set of voxels of the same type represents a physical

object. In the simplest case where there are only objects of one type, a voxel can

have only two values: 0 and 1; with 1 representing a space occupied by an object and

0 representing the void space.

For each voxel, its neighbors can be reached by traversing the 3D grid. For a voxel

at the boundary, at least one of its neighbor voxels is outside of the object, i.e. has

a different type. Whether a voxel is at the boundary or not can be determined using

this neighbor information. Since voxels are arranged in a simple hexagonal order

voxel neighbors can be accessed by simply incrementing or decrementing any of its

three spatial coordinate indexes.

Unlike most isosurface extraction methods, which associate a set of faces with each

voxel, we associate a single point with each voxel, located in the center of the voxel.

The same approach is used in [2]. Figure 2.1 shows a voxel-based object rendered as

points.

Since the boundary point set is usually very large, it is not practical to include all

of them in the final mesh. Instead only a small set of boundary points will be enough

to create a feature preversing surface mesh. To generate a surface mesh, we pick up

points from surface boundary of the object as mesh nodes, that is any mesh node will

be coincident with one of the boundary points.

Each object has an id-number, which is assigned to every voxel representing that

object. The meshing routine receives the id-number of the object as an input param-

15



Figure 2.1: Voxels are treated as points.

eter and starts by scanning the voxel set for the first occurrence of this id. If such

voxel was found the routine invokes the surface meshing algorithm, which creates the

boundary mesh for that object. The routine continues then to search for voxels of

the same type.

In this study, a surface mesh is represented as a linked list of triangles, where each

triangle is represented by three vertexes, each of which belongs to a set of boundary

nodes. A boundary node inherits the coordinates of the corresponding boundary voxel.

The three vertexes of each triangle are oriented in a way such that the normal of the

triangle area points outward the object volume.

When the mesh is being constructed the algorithm operates on nodes and edges,

which can be of 2 types: open or closed. An open edge is an edge that belongs to only

one surface triangle. An open node is a node, which is not completely surrounded

by triangles. Open edges and open nodes are simply edges or nodes which are at the

front of the newly constructed surface mesh, that is, the part which is currently under
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construction (Fig.2.2). We call the front-edges open because each of them belongs

to only one triangle, whereas every edge inside the mesh belongs to two triangles.

Likewise, every node at the front (open node) belongs to at least two open edges,

whereas each node inside the mesh doesn’t belong to any open edges. When the

mesh is completely done all the nodes and edges should become closed and the front

reduces to a zero-set. The mesh front is essentially a one-dimensional segmented line.

Each open node has two pointers pointing to 2 neighboring open nodes, designated

as prev and next, The direction from the prev node to the next node following the

unmeshed area is in counter-clock wise direction with respect to the surface outward

normal vector. The angle between node’s two open edges on the unmeshed area side

is called the open angle. Figure 2.2 shows an active node A, its prev node B and next

node C, and its open angle. A closed node is also shown in this figure.

One step of the algorithm consists of closing a single node. For this purpose the

algorithm selects a current node from the set of open nodes, which is called this node,

and performs the closure operation. The selection of active nodes can be done in a

preferential manner so as to provide for a more uniform angle distribution inside the

surface triangles.

The very first node of the mesh selected on the boundary has its prev and next

pointers point to itself, and its open angle is set to 2π1. When a node is closed,

its open angle is 0. The set of open nodes is stored as a linked list. Each closure

operation of the node may lead to the appearance of other open nodes, which are

newly introduced nodes of the mesh. The meshing algorithm repeats the closure

1Strictly speaking, it can be less than 2π depending on the curvature of the surface at that point.
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Figure 2.2: Node this,its prev, next nodes and open angle.

operation on all open nodes until the list becomes empty.

The meshing algorithm can be summarized as the following:

1. Construct the first triangle, and add its three nodes to the linked list;

2. Select the node from the list with the smallest open angle. Call it this node;

3. Recursively create surrounding triangles until this node is closed; In this proce-

dure use either existing open nodes for new triangle vertexes or introduce new

open nodes;

4. When this node is closed, remove it from the list, and consider if its neighbor

nodes should be removed as well.

5. If there are open nodes in the list repeat from step 2.

The essential procedures performed by the algorithm are the following:
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Figure 2.3: Estimating surface normal of a boundary point

2.2.1 Construction of a Surface Normal

Surface normal vector is needed to determine the node-closure direction. Given a rigid

character of the surface in a voxel-based representation when looked at in the vicinity

of only few grid-nodes, one needs to perform some averaging to get a fair estimate

of the surface normal direction at each voxel. A quick way to do this estimate is to

account all the neighboring voxels, which don’t belong to the current object (outside

voxels). For each such voxel the distance vector, ~Pi, between this node and the

neighbor node, i, is calculated. The sum of these vectors will approximately point

in the surface normal direction. Thus, the normal vector ~n is estimated using the

following equation (see also Figure 2.3):

~n =

∑k
i=1

~Pi

|∑k
i=1

~Pi|
(2.1)
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2.2.2 Open Angle Estimation

The open angle estimation procedure is illustrated in Figure 2.2. First the dot product

of the two vectors ~AB and ~AC is computed to find the angle θ between them. Then

the actual open angle could be this angle or its complimentary of 2π. To decide on

this we need extra information, which comes from the normal vector ~n and the cross

product ~P of vectors ~AB and ~AC. If ~n and ~P are on the same side of the surface, i.e.

their scalar product is positive, then the open angle is θ, otherwise the open angle is

2π − θ. Thus, we have:

θ = arccos





~AB · ~AC

| ~AB|| ~AC|



 (2.2)

~P = ~AB × ~AC (2.3)

if(~n · ~P < 0)⇒ θ = 2π − θ (2.4)

2.2.3 Construction of a Triangle

To construct a new triangle for an open node, the following procedure is used (Fig. 2.4).

We consider that at this point an open node was selected as this node:

1. Check nearby open nodes to this node, and see if there is one suitable for

constructing a triangle, consisting of that node, this node and prev node, or

consisting that node, next node and this node. A suitable node is a node which

will lead to a triangle with good quality, e.g, from the respective of aspect ratio.

If such node is found:

• Then construct such triangle and call the newly found node the old node.
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Check if this, old node, and prev (or next) nodes are now closed. Remove

any closed node from the open node list.

2. Otherwise:

• create a new open node by searching an appropriate boundary voxel, such

that the distance to that voxel is consistent with the current mesh length-

scale, and the angle between this → prev and this → new directions is

around 60o (see below).

3. Change prev and/or next pointers of any involved node.

As can be seen this algorithm takes care of the meeting front problem, when the

open nodes from different parts of the front begin to converge on each other. That’s

why the existing nodes are tried first before creating new nodes in step 1 instead of

generating new nodes to form a triangle.

2.2.4 Generating a New Node

A new node is to be generated from a boundary voxel, inheriting its coordinates.

Two parameters are used in searching for a suitable boundary voxel. One is a control

angle. We try to make it close to 60 degrees by dividing the open angle by an integer:

control angle =
open angle

round(open angle/60.0)
(2.5)

Another parameter is a control distance, which is related to local mesh size control

(see below).

21



Figure 2.4: Constructing a new triangle

Figure 2.4 illustrates the searching process. Starting from the prev node, the

searching process walks through the boundary voxels from neighbor to neighbor in

counter clock wise direction keeping the distance from this node in a narrow strip,

until a point with the right angle is found.

2.2.5 Mesh Size Control

The mesh size is selected on the basis of two control sizes: one is a global size, set

by the user and serving as an upper bound of mesh-size; and another is local size,

related to the local surface curvature. Highly curved surfaces should use triangles of

smaller sizes. Therefore, to achieve the goal of mesh size control, surface curvature

evaluation is necessary.

Least Square Quadric Surface Fitting

To find the local curvature one can first fit a surface patch with a set of local points

around the point of interest, and then estimate curvature on the fitted surface. Many

different surfaces can be used for this purpose. In the current implementation a
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quadric surface patch fit with least square method is used, as described as follows.

One approach to fit a set of 3D points is least-squares surface fitting with a quadric

function:

f(x, y, z) = CV T (2.6)

where C is a vector of coefficients:

C = (c0, c1, c2, c3, c4, c5, c6, c7, c8, c9) (2.7)

and

V = (x2, y2, z2, xy, yz, xz, x, y, z, 1) (2.8)

We need at least 10 points to find the ten unknown coefficients. Suppose the

number of points N is greater than 10 points, generally they cannot be on the same

quadric surface. To fit the best surface, we can attempt to choose vector C to minimize

the error function:

E(C) = CMCT (2.9)

M = DTD (2.10)

where D is a N × 10 matrix whose ith row is:

(x2i , y
2
i , z

2
i , xiyi, yizi, xizi, xi, yi, zi, 1), i = 1, 2...N (2.11)
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Figure 2.5: Locating the closest point.

When all coefficients are 0 the error function has the minimum value zero. There-

fore there is a degree of freedom in this function. To get rid of it, we can choose C

to be a unit-length vector as a constraint. Now this problem is an eigenvalue prob-

lem. The minimum error will be the smallest eigenvalue of M. And the eigenvector

corresponding to the smallest eigenvalue is the coefficient vector C.

In the above construction, none of the sample points is guaranteed to be on the

fitted surface.

Curvature evaluation

After the quadratic surface fit was found, the closest point on that surface patch from

the point of interest is identified (since the fitted patch does not have to pass through

that point) and the curvature at that point is used to approximate the curvature at

the point of interest. The closest point is assumed to lie on the intersection between

the boundary normal at the point of interest computed earlier and the fitted surface

(Fig.2.5).

If ~P is the coordinate vector to the point of interest and ~N is the boundary normal
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vector at that point then the intersection point ~P ′ can be represented as: ~P ′ = ~P+k ~N ,

where k can be obtained by substituting the coordinates of ~P ′ into the fitted surface

equation. This will give a quadratic equation, which is easy to solve.

The curvature evaluation method used for 3D implicit quadric surface is shown

below.

Let F (x, y, z) = ax2+by2+cz2+exy+fyz+gxz+ lx+my+nz+d = 0 represent

an implicit quadric surface in R3. Fx, Fy and Fz are the first order partial derivatives

of F. Fxx, Fxy, ..., Fzz are the second order partial derivatives of F. The following

equations are used to calculate the curvature of surface F(x, y, z) [20]:

|∆F | =
√

F 2x + F 2y + F 2z (2.12)

L =
1

F 2z |∆F |
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1

F 2z |∆F |
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N =
1

F 2z |∆F |
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E = 1 +
F 2x
F 2z

(2.16)

H =
FxFy
F 2z

(2.17)
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G = 1 +
F 2y
F 2z

(2.18)
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(2.20)

The eigenvalues of B−1A are the principle curvatures k1 and k2. The values of

the Gaussian curvature K and the mean curvature H are then given by:

K = k1 · k2 (2.21)

H =
1

2
(k1 + k2) (2.22)

2.3 Discussion

The surface meshing method described here uses an advancing front technique, which

is similar to traditional advancing front methods [37]. However in our method the

front does not start from the boundary of a surface. Instead it can start from a random

point. Mesh quality might be improved if the front starts from corners and edges of

the object volume, but in that case corner detection and edge detection need to be

addressed before the meshing process. Another difference in the proposed method

is that it relies on the node closure routine introduced in the previous section. This

routine constitutes a single step of the algorithm, which is repeated until no open

nodes are left in the mesh. A conventional approach to front propagating uses edge
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(a) Edge closure: new trian-
gle CBD is to be constructed
to close edge CB

(b) Node closure: new trian-
gles AFG, AGH, and AHB
are to be constructed to close
node A

Figure 2.6: Edge vs node closure approaches to front propagation.

closure rather than node closure, in which for each open edge a new mesh triangle is

constructed with this edge making one side of the triangle (Fig.2.6).

Comparing the two approaches one may note that the node closure algorithm is

more complex in implementation than the edge closure one. However, the former has

a potential for a better control of the angles, which may lead to a higher uniformity

of the mesh. This is because the open angles for each node at the front are constantly

computed and sub-divided into the appropriate number of sub-angles. This means

that the node-closure algorithm will require less post-processing steps of mesh quality

improvements.

The node-closure algorithm has also a wider range of visibility when it looks out

for other front nodes as potential candidates to be joined with a current node. This is

because the lookout radius for each node is about the size of the local edge-length of

the mesh, whereas the lookout radius for the edge in the edge-closure case is usually
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smaller (Fig.2.6). It is still possible to employ the same strategy in the edge-closure

case of using a larger lookout radius for both nodes of a given edge. However, this

will lead to a considerable increase of the processing time, since each node will be

processed as many times as there are edges connected to it, which may be on the

order of 4 to 6 times more for surface meshes.

Even though each step of the node-closure algorithm takes more operations to

accomplish, the overall efficiency may be comparable to the edge closure procedure,

since several new mesh triangles can be generated during one step of the former,

while the latter only leads to the creation of one new triangle at a time. This is a

consequence of the fact that there are usually several times more edges than nodes in

a typical mesh.

The advantage of using node-cloure operation as compared to an edge-closure

operation used in a conventional advancing front method is that on the average it

spans a larger area while examining a neighborhood of the node as compared to the

edge. Indeed, to close an edge one needs to create a single node that will form a

triangle with other two nodes on the edge. To close a node one needs to create

more than one new node, therefore there is a wider range of possibilities and in fact

an optimization can be used to select the new nodes. There is also a larger area

examined in the process of selection of several nodes compared to just one. This

all amounts to an improved distribution of nodes with respect to the selected mesh

optimality criteria (aspect ratios, angles, etc.)

Speaking about the accuracy of surface representations, the mesh generated in the

present approach provides the resolution of surface details down to 4 to 6 voxels in size.

This is because the node closure operation requires a certain minimum separation of
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Exp. Grid N αmax αmin rmax
1 70× 70× 70 1158 114o 24o 3.35
2 100× 100× 60 1342 112o 25o 3.21
3 40× 60× 100 1880 113o 20o 3.08

Table 2.1: Characteristics of example meshes.

the open nodes to provide a more even angle distribution and to avoid inheriting the

hexagonal unisotropy of the voxel grid. Although this property sets a limit on the

resolution of surface details, such as sharp angles, it provides for the grid independence

of the mesh.

2.4 Result

Figures 2.7, 2.8 and 2.9 show surface meshing examples of spheres, joint spheres

and other composite objects. The voxel grid size, the number of tiangles, the maxi-

mum/minimum angle, and the maximum aspect ratio r are shown in Table 2.1. The

global mesh length-scale was chosen to be 6.

The quality of triangles are affected by the resolution of the object and the selected

global length scale. Since all coordinates of voxels are integer values, during the

procedure of searching a new node, we cannot make the angle exactly equal to the

control angle. The smaller the control distance (or the global length scale), the larger

the error from the control angle. Therefore if we have high resolution voxel grid for

the object, we can then choose larger length scale, and thus make the mesh quality

better.
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Figure 2.7: Example 1: Surface mesh on a sphere

Figure 2.8: Example 2: Surface mesh on two overlaying spheres
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Figure 2.9: Example 3: Surface mesh on overlaying cylinder and cube

2.5 Conclusion

The proposed mesh generation scheme belongs to the family of advancing front meth-

ods, but exploits the idea of using nodes and their triangle closure as basic steps in

building the surface mesh. The extension of this idea to 3D meshing is relatively

straightforward. In this case the node has to be closed by the envelop of tetrahe-

dral elements filling in the spherical region around the node. The construction of

these elements can be done using a 2D algorithm described here for meshing the sur-

face of the sphere, with subsequent connections of each newly generated node to the

sphere-central node.

The method suggested here works best on smooth surfaces of objects, since it has

a minimum resolution limit of several voxel sizes. Thus the method may not preserve

the sharp corners and edges. To correct this situation, corner detection and edge

detection are needed. We will address these problems in the later chapters.
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Chapter 3

Mesh Generation with Monte

Carlo Simulation

In this chapter, a new approach of node placement for unstructured mesh generation

is proposed. It is based on the Monte-Carlo method to place nodes for triangular or

tetrahedral meshes. Surface or volume geometries to be meshed are treated as atomic

systems, and mesh nodes are considered as interacting particles. By minimizing

system potential energy with Monte Carlo simulation, particles are placed into a

near-optimal configuration. Well-shaped triangles or tetrahedra can then be created

after connecting the nodes by constrained Delaunay triangulation or tetrahedrization.

The algorithm is capable of controlling mesh element sizes. The method works in an

almost identical way for 2D and 3D meshing. The algorithm is simple and easy to be

implemented. To the best of our knowledge this is the first application of Monte-Carlo

method for mesh generation.
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3.1 Introduction

Typically a mesh generation method consists of node placement and node connection

sub-routines. Node placement, i.e. generating nodes at various locations inside the

geometry is a key step in any meshing algorithm. Well distributed nodes will make

node connection process easier and result in good meshes. Different strategies for

node placement have been reported in various methods, and certainly each will have

a different effect on the final mesh.

While some methods place nodes incrementally and connect a new node into the

existing mesh right after it is generated, other meshing methods distribute all nodes

throughout the domain first and then connect the nodes into mesh.

In Delaunay meshing nodes are typically inserted incrementally into the existing

mesh. As each new node is inserted, the Delaunay criterion is maintained by re-

connecting nodes. Weatherill and Hassan in their tetrahedral meshing method [72]

propose to place new nodes at tetrahedrons’ centroids. Chew [17] and Ruppert [49]

propose to place new nodes at centers of element circumcircles or circumspheres.

With this strategy, the quality of triangles is guranteed with a minimum bound on

any angle in the mesh.

For advancing front triangular meshing methods, nodes are also inserted incre-

mentally. Typical steps of these methods consist of selecting an edge or a triangle

from the front to form a new triangle or tetrahedron by joining it with either an ex-

isting node on the front, or a newly created node. In the tetrahedral meshing scheme

by Lo [43], a set of nodes are generated beforehand inside the volume on a series of

parallel planes. When forming a tetrahedron, a node from this set is chosen based on

some optimization criteria. In some other tetrahedral meshing methods [47, 29], new
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nodes are generated simultaneously when creating tetrahedral elements. Peraire et al.

[47] choose to place a new node on a front triangle’s normal vector which is passing

through its centroid. The distance from the new node to the centroid is chosen such

that the average length from the new node to the triangle’s three vertices is unity in

a normalized space. Jin and Tanner [29] suggest a similar place for a new node on

the triangle’s normal vector which is passing its centroid. Besides they also introduce

many backup nodes which are located on 7 normal vectors. The authors try to select

the best one from existing neighbor nodes and the new nodes when forming the next

new tetrahedron.

In contrast to the approach of incrementally inserting nodes one by one into

an existing mesh, some mesh generation methods place all the nodes first before

connecting them into a mesh. Nodes are first distributed into optimal locations to

cover the whole domain, and then connected into mesh. In the bubble meshing

method [56], Shimada and Gossard place nodes at centers of a set of packed spheres

or bubbles. An inter-bubble force function is defined between adjacent bubbles and a

force balancing configuration of the nodes is found by performing dynamic simulation.

After node placement, the method connect the nodes into well-shaped mesh elements

by constrained Delaunay triangulation or tetrahedrization. In DistMesh [48], Persson

and Strang treat a simplex mesh as a truss structure and mesh points as nodes of the

truss. A linear force-displacement function is defined for each pair of nodes connected

by a bar (or edge). Nodes are gradually moved to optimal locations by iteratively

solving for force equilibrium. At each iteration, the node set is re-triangulated using

Delaunay triangulation algorithm in order to decide the edges. In the end, a high

quality triangular mesh is obtained.
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In our study, as in the bubble meshing method, a methodology of particle simu-

lation is used for node placement. Nodes are considered as interacting particles in a

force field. However, instead of solving for equilibrium by a deterministic approach,

we use statistical sampling based Monte Carlo method, to minimize system potential

energy, and thus find a near equilibrium configuration of nodes. With the optimized

configuration, nodes can then be connected into well-shaped elements by constrained

Delaunay triangulation algorithm.

Although Monte Carlo simulation is used in many fields, to our best knowledge it

was never used for mesh generation. However, by treating domains as energy systems,

it is natural to apply Monte Carlo simulation to obtain minimum-energy structures.

Monte Carlo simulation was used by Lim, Nebus and Assad [40] to find extremal

states of the logarithmic N-body problem on a sphere. Although they did not aim

to address a mesh generation problem, the resulted polygons on the spherical surface

are actually representing well-shaped surface mesh. A similar approach is used in our

study: after the energy function is defined for particle interactions, nodes are placed

in optimized locations by energy minimization using Monte Carlo simulation.

3.2 Method

3.2.1 The Energy System

A standard meshing procedure for 2D or 3D geometries produces a set of elements

consisting of connected nodes. In the current method the nodes are viewed as a

collection of atomic particles interacting with each other by a prescribed pairwise

potential energy function. Each realization of positions of all the particles results in
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a certain value for the total potential energy of the system. In a stable configuration

of particles, the system should have minimal potential energy. Therefore, if the pair

potential function is known, it is possible to find a minimum-energy configuration of

particles by energy minimization.

This optimization approach to mesh generation starts with the definition of the

potential energy function describing interaction forces between the particles. Gener-

ally, the potential energy of an atomic system may come from an external force field,

pair interactions, three-body interactions etc. Usually the most important part of

the potential is the pair potential, which depends only on the distance between two

particles [1]. Considering the pair potential only, the system potential energy (ϕ) can

be represented as:

ϕ =
∑

i

∑

j>i

φ(rij) (3.1)

where rij is the distance between a pair of particles i and j, φ(rij) is the pair potential.

In our study, we choose the Lennard-Jones (LJ) 12-6 potential as the pair poten-

tial:

φ(r) = 4ε

[

(

σ

r

)12

−
(

σ

r

)6
]

(3.2)

Figure 3.1 shows the Lennard-Jones pair potential with σ = 10 and ε = 150.

Parameter σ will determine the separation of particles in an equilibrium situation,

which happens when the particles occupy the positions corresponding to the minimum

of energy. For a pair of particles the equilibrium separation is equal to σ0 = 21/6σ ≈

1.122σ, which corresponds to the minimum of the curve in Fig.3.1. When the distance
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Figure 3.1: The Lennard-Jones pair potential.

is less than σ0, the pair potential rises steeply as r decreases, modeling the repulsion

between the pair of particles when they are too close to each other. When the distance

is larger than σ0, the pair potential has an attractive tail which also leads to energy

increase relative to its minimum. The potential is approaching a constant value as

the separation between the particles increases. This value is set to be zero, since

it corresponds to the absence of any interactions when two particles are infinitely

far from each other. For practical purposes the particles can be considered out of

interaction range when their separation is greater than 2σ. Parameter ε determines

the depth of the negative well of the potential.

With this energy function, in an idealized situation, all mesh nodes or particles

will be separated at distances corresponding to the minimum of the superposition of

all pair-potentials of the surrounding particles. Thus, the total system energy will

also be at the minimum. It should be noted, that the superposition of many potential

functions can make particle separation at equilibrium to be less than σ0. However,

because of the steep rise of the LJ potential at the distances less than σ0 this effect

37



is very small. In addition to that it is be further reduced by the introduction of the

cutoff distance ( 2σ in our case).

The situation of stable equilibrium for an ensemble of particles occurs at the

minimum of system energy with respect to particle positions. This minimization

can be accomplished using molecular dynamics simulations or the Monte Carlo (MC)

method. However, the resultant particle distribution can be highly uneven if the

total number of particles was not guessed correctly. For this reason we introduce an

empirical particle insertion/deletion criterion based on total system energy level and

use it in combination with the Monte Carlo methods to determine both the total

number of particles and their positions.

3.2.2 Metropolis Monte Carlo Approach to Node Placement

One of the Monte Carlo methods used in our study is the Metropolis Monte Carlo

method (MMC) [1]. The MMC method uses random moves to explore the search

space, and accepts the moves depending on the energy states of the system. One

advantage of this method is its simplicity and straightforward implementation for

both 2D and 3D domains.

In MMC method, a trial move is accepted or rejected based on the following rule:

accept if e−β∆ϕ > R

reject if e−β∆ϕ ≤ R (3.3)

where R ∈ (0, 1) is a random number generated at each trial move, ∆ϕ is the
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Figure 3.2: The function e−β∆ϕ vs ∆ϕ with β = 0.3.

energy change of the system after the trial move, and β is actually 1/kT , where k is

Boltzmann constant and T is temperature.

The origin of the function e−β∆ϕ is the Boltzmann Distribution law, in which β

depends on the system temperature. Since our system is not a real atomic system,

the temperature scale is irrelevant. However, we need to consider the order of en-

ergy change ∆ϕ when choosing the value of β. It should be selected such that the

probabilistically accepted energy increase range is reasonable for the system.

Figure 3.2 shows the change of e−β∆ϕ related to ∆ϕ when β = 0.3. As illus-

trated in the figure, when ∆ϕ < 0, the value of e−β∆ϕ is always greater than R (i.e.

e−β∆ϕ > 1.0 > R), and the move will be always accepted. If ∆ϕ > 0, the move is

probabilistically accepted when the energy increase is small (e.g. ∆ϕ < 20). The

move is essentially rejected when the energy increase is large (e.g. ∆ϕ > 20), since in

this case e−β∆ϕ is very close to 0. Overall the system’s potential energy will decrease

when increasing the number of random moves of the nodes.

During the simulation, the same procedure is repeated over and over again until
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Figure 3.3: The system energy declines when increasing the number of sweeps.

an equilibrium is found or a chosen number of sweeps is done. A sweep is a series of N

trials, where N is the number of nodes in the system. Since the Monte Carlo method

is a statistical method, it is impossible for it to find a configuration of exact energy

minimum with a finite number of sweeps. However, at the start of the procedure

the system energy declines rapidly, and within hundreds of sweeps reaches a near

equilibrium. Figure 3.3 shows a typical energy decline with the number of sweeps.

For mesh generation, a configuration of nodes near the equilibrium is good enough.

Usually, after 500 sweeps the nodes can be placed in very good locations. After

the node placement, one can connect the nodes into triangles or tetrahedrons by

constrained Delaunay triangulation or tetrahedrization.

3.2.3 Node Population Control

When starting the Monte Carlo simulation, one usually doesn’t know how many nodes

need to be distributed in the system in order to get a good mesh. Too few nodes will

result in a stable but uneven node distribution with node clusters in some regions
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and voids in the others. For a potential function defined by (3.2), this state will be

characterized by total system energy being negative, and will correspond to a solid

lattice of particles partially occupying the domain. If there are too many nodes in

the domain, the distances between the nodes may become smaller than the stable

equilibrium distance and the total system energy may become positive and large.

This will be a state of unstable or dynamic equilibrium and will correspond to a

liquid.

As we mentioned before, for LJ potential on 2D lattices the stable equilibrium

will occur at average node separations between σ and σ0. However, by trial and

error it was found that it is beneficial to create a slightly denser system by packing

particles at an average distance of σ. By ”liquifying” the system slightly in this way

we essentially prevent the occurrence of void regions. In addition to this it gives us a

way to automatically control the number of nodes, using system energy level. Since

all node separations of more than σ contribute with the negative potential and all

those less than σ give positive contributions (Fig.3.1), we can use a simple criterion

for mesh-size control: nodes should be inserted when the equilibrium energy of the

system is negative, and removed when it is positive. And we stop when the system

equilibrium energy level is zero or slightly above zero.

3.2.4 Grand Canonical Monte Carlo Approach to Node Place-

ment

One disadvantage of the Metropolis Monte Carlo method is that the number of nodes

during the simulation is fixed. Since we usually don’t know in advance how many

nodes are needed, sometimes it is more convenient to use the Grand Canonical Monte
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Carlo (GCMC) method, which is able to dynamically change the number of particles

by imposing a fixed system potential. During the simulation, the boundary nodes

are kept fixed, while the interior nodes are inserted/removed/displaced to satisfy a

chosen zero energy level, and in the mean time particles are distributed in optimal

locations.

One important feature of GCMC is that the potential is imposed during the

simulation, while the number of particles fluctuates. It is a good fit for the node

placement problem since we don’t know in advance how many nodes are needed to

cover the domain but we know the desired system potential is zero.

There are three types of trial moves in a GCMC simulation. They are:

1. Displacement of particles. A particle is randomly chosen to move with a random

displacement. The displacement is accepted or rejected based on the same

displacement rule as in the Metropolis Monte Carlo method:

accept if e−β∆ϕ > R

reject if e−β∆ϕ ≤ R (3.4)

2. Insertion of particles. A particle is inserted into the system at a random position.

The insertion is accepted or rejected based on the following criteria:

accept if
zV

N + 1
e−β∆ϕ > R

reject if
zV

N + 1
e−β∆ϕ ≤ R (3.5)

42



3. Removal of particles. A particle is randomly chosen to be removed. The removal

is accepted or rejected based on the following criteria:

accept if
N

zV
e−β∆ϕ > R

reject if
N

zV
e−β∆ϕ ≤ R (3.6)

In the above equations, R is a randomly generated number in (0, 1) at each trial

move; ∆ϕ is the energy change of the system after the trial move; N is the number of

particles in the system before the trial move; V is the volume of the system; β = 1/kT ,

where k is Boltzmann constant and T is temperature of the system; z = eβµ/Λ3, where

µ is the fixed system potential and should be zero for our problem, and Λ is called

thermal de Broglie wavelength.

3.2.5 Implementation

Mesh element size control. The mesh element size control is achieved by the

parameter σ in the pair potential function (3.2). If we need to obtain a uniform mesh

of equally sized elements, we set σ to be constant. To produce a non-uniform mesh σ

is set according to an appropriate node spacing function, which is a function of coor-

dinates. For each node, the node spacing function defines the desired distance from

this node to the other nodes. Since each node may have different desired distance,

when calculating pair potential for a pair of particles, we set σ as the average of the

two desired distances.
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Displacement of particles. During the simulation, at each trial the Monte Carlo

method randomly select a node to move with a random displacement. Suppose Carte-

sian coordinates (x, y, z) are used for the mesh nodes, then a trial move of a node i

can be expressed as:

x′i = xi +∆ ∗ (Rx − 0.5)

y′i = yi +∆ ∗ (Ry − 0.5)

z′i = zi +∆ ∗ (Rz − 0.5) (3.7)

where Rx, Ry, and Rz are random numbers between 0.0 and 1.0.

The displacement of xi, yi, and zi will be from −∆/2 to ∆/2. At each trial move,

we check first if the new location is in the bounding space of the domain to be meshed,

and reject the move if it is not.

The size of each moving step and the number of moves attempted are two impor-

tant factors that control how well the Monte Carlo simulation will perform. If the

size is too large, the change of the energy between two steps may become significant,

and virtually all of the attempts will be rejected. In this case the algorithm may get

stuck at a particular place in the search space. On the other hand, if the size is too

small, a large number of moves may be needed to explore the whole search space. In

this case the simulation will become slow. Fortunately, this size can be dynamically

adjusted according to the acceptance ratio during the simulation process.

In our study, we increase the size 5 percent after each sweep, if the acceptance

ratio is greater than 0.4; or decrease the size 5 percent, if the acceptance ratio is less

44



than 0.2; or don’t change the size otherwise. Since the adjusting process takes time,

it is still important to choose a reasonable initial moving size according to the search

space and the energy function. For a domain with varying node spacing, extra care

needs to be taken since one step size which is small enough in one region could be too

large in another region. What we can do is to set different maximum displacement

steps for different regions according to their required local node spacings.

For a node displacement on a surface, only two coordinates are to be displaced

during each move. If the surface is a flat surface on the x−y plain, then coordinates to

be displaced are x and y ; if the surface is a parametric surface in the 3D space, such

as a nurbs surface which has an underlying u−v representation, then the coordinates

to be displaced are u and v.

Computation of system energy change. The system energy change is checked

after a trial move to decide whether the move is accepted or not. When calculating

the energy change between two states, it is not necessary to calculate the total system

energy, only the change associated with the moving node needs to be calculated.

The energy change after displacing node i from state n to state n+1 is calculated

as:

∆ϕ =
N
∑

j=1;j 6=i

φ(rn+1ij )−
N
∑

j=1;j 6=i

φ(rnij) (3.8)

The energy change after inserting node N + 1 into the system is calculated as:

∆ϕ =
N
∑

j=1

φ(r(N+1)j) (3.9)

The energy change after removing node i from the system is calculated as:
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∆ϕ = −
N
∑

j=1;j 6=i

φ(rij) (3.10)

Further improvement can be done, considering that the nodes which are interact-

ing with the moving node should be within certain short distance from the latter. For

the energy system with the above energy function (3.2) a particle can be considered

to be only interacting with its neighbor particles which are within a sphere of radius

less than 2σ, since the Lennard-Jones pair potential gets close to zero when r > 2σ.

By doing this, computing time can be drastically reduced.

To confine the pair interactions within a small local range, we use a quadtree (for

2D) or octree (for 3D) structure. This tree structure is constructed to cover the whole

domain to be meshed. Based on the geometric domain and the node spacing function,

the quatree or octree is divided into many leaves whose sizes are in (2σ, 4σ). During

the simulation, particles are indexed into the leaves of the tree structure, and thus

for any particle its neighbor particles within the cutoff distance (2σ) can be found

quickly by traversing through this tree structure. An even faster method would be to

use a fully threaded tree [33], however we opted for a simpler implementation at this

stage.

Since the interaction for each particle is in a short range, the time complexity of

the computation at each iteration in the simulation is O(N).

Initial configuration of nodes. The simplest way to get an initial set of nodes is

to randomly generate a set of nodes. That is a specified number of nodes are inserted

into random locations in the domain to be meshed. And they will be distributed into

optimal location after the simulation.
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However in order to speed up the simulation, a good initial configuration of nodes

would be helpful. To get a set of good configured initial particles, we can take

advantage of the above mentioned quadtree (for 2D) or octree (for 3D) structure.

Since the size of a leaf of the tree structure is related to the desired local node spacing

when the leaf is inside the domain, we can make a fairly good guess for the number

of nodes inside each leaf, accordingly put a certain number of nodes into each leaf

which is inside the domain, and make them well separated before the MC simulation

starts.

Choosing parameters

Although we are considering the geometric domain as an energy system full of par-

ticles, it is not a real energy system. On one hand, we lose the advantages of using

available parameters from real energy systems; On the other hand, we may have

more freedom to setup the parameters. For example, when choosing β which is actu-

ally 1/kT , we don’t need to worry about the temperature. But still it is important

to choose a suitable value such that the probabilistically acceptable energy increase

range is reasonable for the system. The bigger the β, the smaller the probabilistically

acceptable energy increase range.

3.2.6 Summary of the Meshing Procedure

If using the Metropolis Monte Carlo method, the meshing procedure can be sum-

maried as follows:

1. Define node spacing function, energy function, choose values for various param-

eters.
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2. Configure an initial node placement inside the domain using a quadtree (for

2D) or octree (for 3D) structure. Treat the inside nodes as moving particles.

Take the boundary nodes such as end vertices of edges or boundary mesh nodes

as fixed particles.

3. Use Monte Carlo simulation to minimize system energy, in the mean time pro-

duce a near equilibrium distribution of particles.

4. Check the minimal system energy. Increase the number of nodes if it’s negative,

or decrease the number of nodes if it’s too large.

5. Repeat from step 3 until the final system energy is close to zero. The node

placement is done.

6. Connect the nodes into a mesh by constrained Delaunay triangulation or tetra-

hedrization.

If using the Grand Canonical Monte Carlo method, then the whole procedure can

be simplified since the number of nodes will be dynamically adjusted. The meshing

procedure is summarized as follows:

1. Define the energy function, the node spacing function, and values for various

parameters.

2. Configure an initial node placement inside the domain using a quadtree (for

2D) or octree (for 3D) structure. Treat the inside nodes as moving particles.

Take the boundary nodes such as end vertices of edges or boundary mesh nodes

as fixed particles.
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3. Start the Monte Carlo simulation with GCMCmethod to displace/insert/remove

particles until an near equilibrium is found or a chosen number of sweeps is done.

And in the mean time, nodes are distributed into well spaced configuration.

4. Connect the nodes into a mesh by constrained Delaunay triangulation or tetra-

hedrization.

When it comes to the overall time complexity of the algorithm, it can be noted

that, since the time complexity for each iteration of the Monte Carlo simulation is

O(N) and the number of iterations k does not increase with the number of nodes N ,

the computational time for the node placement stage is kO(N). The time complexity

of the node connection stage will depend on the constrained Delaunay triangulation

algorithm used, which can be as good as O(Nlog(N)). Therefore, the time com-

plexity for the whole meshing method can be as good as kO(N) + O(Nlog(N)) =

O(Nlog(N)).

A Java applet demonstration of the algorithm for 1D, 2D and 3D cases can be

run at http://mulphys.mae.wvu.edu/mesh/mc.

In next section, we will show some results for meshing both 2D and 3D domains.

The algorithm works in an almost identical way for both 2D and 3D cases.

3.3 Results

To illustrate the working of the method we considered several 2D and 3D examples,

with the MMC method and GCMC method respectively.

The input geometry is to be described by a .poly file or represented by a signed

distance function.
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For a 2D geometry, a .poly file can be used to describe a Planar Straight Line

Graph (PSLG) containing a list of vertices and segments, and some other information

such as holes. This is a format used in Shewchuk’s triangle [53] program. For a 3D

geometry, a .poly file can be used to represent a piecewise linear complex (PLC) as

well as some additional information. It consists of a list of points, a list of facets, and

some other information such as holes. This format is used in Si’s tetgen program (see

http://tetgen.berlios.de) . When using a .poly file, the input vertices are considered

as particles in the energy system, but they are fixed and don’t move during Monte

Carlo simulation.

A signed distance function implicitly describes the geometry by defining the dis-

tance from any node to its nearest boundary of the domain. A node has a negative

distance when it is inside the boundary, positive distance when it is outside, or zero

when it is on the boundary of the domain. If the boundary has been discretized, we

can add the boundary discretiztion nodes as fixed particles for the GCMC simulation.

Actually the input geometry can be anything as long as we have a way to keep

the particles inside the geometry when performing random moves. For geometries

implicitly described by signed distance functions, inside geometry testing is trivial.

3.3.1 2D Surface Mesh Examples with the MMC Method

When using the MMC method, the number of particles is fixed. In order to get a

final energy slightly over zero, we might need to repeat the simulation several times

by trying different number of nodes.

Figure 3.4 shows node placement inside a 200×200 square by the MMC after 500

sweeps, and the corresponding constrained Delaunay mesh. The value of ε chosen for
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(a) Node placement in
a square

(b) Constrained De-
launay triangulation
of the nodes

Figure 3.4: Node placement in a square and the corresponding constrained Delaunay
mesh

the energy function is 100. The mesh size is to be uniform over the square by setting

σ = 20.

The square is described in a .poly file with 40 segments of size 20, where we

can consider the 4 edges have already been meshed. The 40 nodes on the 4 edges

are considered as fixed particles in the system. The number of nodes we randomly

generated for the inside area is 90. After 500 sweeps, the system energy drops from

1.0e19 to about 3000.

It is interesting to note that one can actually mesh the square without meshing

the edges first. During the Monte Carlo simulation, some particles inside will be

pushed very close to the boundary edges. We can make these particles become the

boundary nodes by moving them to their projection points on the closest edges. In

this way the edges are meshed at the same time as the surface.

Figure 3.5 shows an example of this kind of situation. The triangle edges are

represented by 3 vertices and not meshed before the Monte Carlo simulation. After
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(a) Node place-
ment in a tri-
angle

(b) Con-
strained
Delaunay
triangulation
of the nodes

Figure 3.5: Node placement in a triangle and the corresponding constrained Delaunay
mesh

500 sweeps, some nodes are pushed onto or very close to the edges. A good mesh

can be obtained if these close nodes are moved to their projection points onto the

edges. The mesh shown in the figure has some bad triangles without an extra moving

procedure applied before connecting the nodes into mesh.

The triangle in Figure 3.5 is a isosceles triangle whose three angles are 30 degree,

75 degree and 75 degree. The vertical height of the triangle is 100. The mesh element

size changes linearly with the height by setting the node spacing function as:

s(r) = −tan15◦(h− 100)/4 + 1.0 (3.11)

Figure 3.6 shows the node placement and the corresponding constrained Dealau-

nay mesh in a hollow disc of radius 100 after 500 sweeps. The hole is a circle of

52



(a) Node placement in
a hollow disc

(b) Constrained De-
launay triangulation
of the nodes

Figure 3.6: Node placement in a hollow disc and the corresponding constrained De-
launay mesh

radius 10. Since we use PSLG to describe the circles, the circles are represented by

segments, i.e. they can be considered as a meshed boundaries. The inside circle is

meshed with 12 equal segments of size 5.18, and the outside circle is meshed with 24

segments of size 26.11. A node spacing function (eqn. 3.12) is used to change the

mesh size linearly from 5.18 to 26.11 with the distance r from the center of the disc.

The value of ε chosen for the energy function is still 100. The 36 input vertices are

considered as fixed particles, the 130 inside particles are randomly generated initially.

After 500 sweeps, the system energy drops from 1.0e15 to about 1500.

s(r) = 0.2325r + 2.86 (3.12)

The quality of a triangle can be measured with its aspect ratio, which is defined

as the longest edge divided by the smallest height. The smaller the aspect ratio, the

better the quality. The best triangle is an equilateral triangle with an aspect ratio of

2/
√
3, or 1.1547.
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The meshes shown in Figures 3.4 and 3.6 have fairly good mesh qualities. For the

former one, the smallest angle is 38 degree, the largest angle is 102 degree, and the

largest aspect ratio is 2.46. For the latter one, the smallest angle is 35 degree, the

largest angle is 104 degree, and the largest aspect ratio is 2.57.

The mesh shown in Figure 3.5 has some bad triangles. Since no edge meshing was

done in that case, preceding the surface meshing, many nodes close to the boundary

edges are not exactly on the edges. To get a good mesh, we need to move these nodes

to the boundaries, or mesh the edges before the surface node placement.

3.3.2 2D Surface Mesh Examples with the GCMC Method

To avoid guessing the right number of nodes and repeating the simulation, the GCMC

method can be used instead of the MMC method.

Figure 3.7 shows a node placement inside a circle of radius 100 with the GCMC

method after 500 sweeps, and the corresponding Delaunay mesh. The node spacing

is desired to be uniform over the domain by setting σ = 20. The mesh has fairly good

quality. The largest aspect ratio of triangles is 2.2; the smallest angle in the mesh is

35.6 degree, and the largest angle is 95.2 degree.

The boundary of the circle has been discretized before the MC simulation. The 30

equally spaced nodes on the boundary are given as fixed particles for the simulation.

After 500 sweeps, the GCMC method adjusts the number of the inside particles to

80. And the final system potential is slightly over zero (1590).

Figure 3.8 shows a node placement and the corresponding constrained Dealaunay

mesh in a hollow square after 500 sweeps. The square is of size 200*200, and the

hole is a circle of radius 20 in the center. The boundaries of the circle and the square
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(a) Node placement in
a circle

(b) Delaunay triangu-
lation of the nodes

Figure 3.7: Node placement in a circle and the corresponding Delaunay mesh

are discretized before the MC simulation. The circle boundary is discretized by 20

equally separated nodes, and the 4 square edges are discretized by 40 equally spaced

nodes. The 60 boundary nodes are given as fixed particles. A node spacing function

s = min(r/5.0+ 2.0, 20.0) is used to change the spacing with the distance r from the

center. After 500 sweeps, the GCMC method adjusts the number of inside nodes to

193. Again the mesh is fairly good. The largest aspect ratio of the triangles is 2.6.

The smallest angle in the mesh is 30.8 degree, and the largest angle is 104.3 degree.

And the final system potential is slightly over zero (2896).

As mentioned above, one can actually distribute nodes in the domain without

discretizing the edges first. During the Monte Carlo simulation, some particles will

be pushed very close to the boundary edges. By projecting these particles onto the

boundary, the edges can be discretized at the same time as the surface. Figure 3.9

shows such an example with the GCMC method. This geometry is borrowed from

[48]. It is represented by the following distance function:
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(a) Node placement in
a hollow square

(b) Constrained De-
launay triangulation
of the nodes

Figure 3.8: Node placement in a hollow square and the corresponding constrained
Delaunay mesh

d1 =
√

x2 + y2 − 1

d2 =
√

(x+ 0.4)2 + y2 − 0.55

d = max(d1,−d2,−y) (3.13)

Also the node spacing function is from the corresponding mesh size function in

[48] with a slight change.

s1 = 0.15− 0.2d1(x, y)

s2 = 0.06 + 0.2d2(x, y)

s3 = (d2(x, y)− d1(x, y))/3

s = min(s1, s2, s3) + 0.05 (3.14)
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Figure 3.9: Node placement without boundary discretization first

Besides the distance function, the 4 end vertices are set as fixed particles for the

MC simulation. After 1000 sweeps, the total number of particles becomes 74 and the

nodes are distributed into a fairly good configuration. From the picture we can see

some nodes are pushed onto or very close to the boundary edges. A good Delaunay

mesh can be obtained if these close nodes are moved to their closest boundary points.

However in order to speed up simulation and improve mesh quality, it is better to

discretize boundaries first and take the boundary nodes as fixed particles in the MC

simulation.

3.3.3 3D Volume Mesh Examples with the MMC Method

The algorithm for 3D meshing is almost identical to the one for 2D, and thus, in con-

trast to other meshing techniques, moving from 2D to 3D meshing does not increase

the complexity of the method.

Figure 3.10 shows the node placement in a sphere after 1000 sweeps with the

MMC method, and the corresponding constrained Delaunay tetrahedrization. The

number of nodes is 300. No surface meshing was done in this example.

Figure 3.11 shows the node placement in a cube, and the corresponding con-

strained Delaunay mesh. The cube has a sphere hole in the center. The size of the
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(a) Node placement in
a sphere

(b) Constrained
Delaunay tetra-
hedrization of the
node configuration

(c) A cross section of
the mesh

Figure 3.10: Node placement in a sphere and the corresponding constrained Delaunay
tetrahedrization

cube is 200× 200× 200, and the radius of the sphere is 40.

The surface meshing is done first for the sphere surface and the 6 square surfaces

of the cube before the volume meshing. The meshing for a square was shown in the

above 2D examples. The meshing for the sphere surface is using the same method

although it is a 3D surface meshing. The initial random points are generated on the

spherical surface, and they can only move on this surface during the MC simulation.

The mesh element size for the sphere surface mesh is about 10, and the mesh

element size for the cube surfaces is about 20. The number of mesh nodes of the

sphere surface is 200, and the number of the mesh nodes for the cube surfaces is 655.

After the surface meshing, we consider the surface mesh nodes as fixed particles

in the energy system, and insert random nodes into the volume. After 500 sweeps,

we get the node placement as shown in Figure 3.11. The number of nodes distributed

inside the volume is 1700. After the node placement with MC simulation, we connect
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(a) Node placement in
a hollow hollow cube

(b) Constrained
Delaunay tetra-
hedrization of the
node configuration

(c) A cross section of
the mesh

Figure 3.11: Node placement in a hollow cube and the corresponding constrained
Delaunay tetrahedrization

the nodes into constrained Delaunay mesh. The total mesh nodes of the volume mesh

is 2555.

The mesh element size is changing with the distance r from the center by setting

the spacing function as:

s(r) = min(10.0/3.0 + r/6.0, 20) (3.15)

3.3.4 3D Volume Mesh Examples with the GCMC Method

Figure 3.12 shows the node placement in a cube with the GCMC method after 500

sweeps and the corresponding constrained Delaunay tetrahedrization. The cube is of

size 200× 200× 200. The node spacing is desired to be uniform over the domain by

setting σ = 20. The six boundary surfaces are discretized (by Monte Carlo simulation

also) before the node placement inside the volume. The 656 surface nodes are fixed
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(a) Node placement in
a cube

(b) A cross section of
the tetrahedral mesh

Figure 3.12: Node placement in a cube and the corresponding constrained Delaunay
tetrahedrization

for the MC simulation. The initial inside particles are generated with the help of

a quadtree structure. After 500 sweeps, the total number of particles for the cube

becomes 1663, and the final system potential is slightly over zero.

All of the above tetrahedral meshes have very good radius-edge ratio. the largest

radius-edge ratio is less than 2.0, and for most tetrahedra it is less than 1.0. How-

ever some tetrahedra have very large aspect ratio. This is because some slivers are

generated. Slivers can be generated with Dealaunay methods even the nodes are well

spaced [63]. Sliver elimination can be achieved by using the algorithms introduced in

Chapter 1.

In this study, only the Lennard-Jones 12-6 potential is used to construct the

energy function. And it is related to distance or node spacing only. Introducing

more parameters, such as dihedral angle (which induces bending energy), into the

energy function might be helpful to address this problem. More work need to done

to investigate this possibility.
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Mesh Anglemin Anglemax rmax
by the Delaunay refinement method 35.6o 108.3o 2.77

by our method 35.6o 95.2o 2.20

Table 3.1: Mesh quality comparison with the Delaunay refinement method.

3.4 Discussion

There are many advantages for the proposed meshing method, such as:

1. It generates higher quality mesh than the Delaunay refinement method.

As mentioned in Chapter 1, one of the most popular meshing method is the

Delaunay refinement method [50, 54]. And the Triangle program by Shewchuk

is 2D mesh generator using the Delaunay refinement method. Here we compare

the meshes produced by our method and Triangle.

We use Triangle to mesh the same geometry shown in Figure 3.7. The input

to the program is the same 30 boundary discretization nodes. And a minimal

angle of 35.6 is used as its refinement criteria. Figure 3.13 shows both meshes

produced by our method and the Delaunay refinement method. Figure 3.14

compares the aspect ratio histograms of both meshes. We can see from the

figures that our mesh has better quality. Table 3.1 compares the quality mea-

surements. Both meshes have the same minimal angle. But the mesh produced

by our method has much smaller maximal angle and maximal aspect ratio.

It is understandable that our mesh has better quality because the node locations

are globally optimized in our method.

The mesh quality of our method is also comparable with some commercial

code. Figure 3.15 and Table 3.2 show a comparison with a mesh produced by
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(a) Mesh generated
by the Delaunay re-
finement method

(b) Mesh generated
by our method

Figure 3.13: Mesh comparison with the Delaunay refinement method.

(a) Histogram of the
mesh by the Delaunay
refinement method

(b) Histogram of the
mesh by our method

Figure 3.14: Aspect ratio histogram comparison with the Delaunay refinement
method.
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(a) Mesh generated
by Gambit

(b) Mesh generated
by our method

Figure 3.15: Mesh comparison with mesh by Gambit.

Mesh Anglemin Anglemax rmax
by Gambit 34.0o 91.8o 2.08

by our method 35.6o 95.2o 2.20

Table 3.2: Mesh quality comparison with Gambit.

Gambit, a mesh generator of Fluent (http://www.fluent.com/). Although the

mesh generated by Gambit has slightly better qualities in terms of angles and

aspect ratio, this mesh is less uniform than our mesh. Also the mesh generated

by Gambit is not a Delaunay mesh. The algorithm used for the mesh generation

is Gambit’s tri/pave scheme.

Another mesh comparison is shown in Figure 3.16 and Table 3.3. This time

although the sphere surface mesh produced by our method is good, the mesh

produced by Gambit is even better. Again the tri/pave scheme is used for

Gambit to generate the mesh.

2. It is simple and easy to implement, and works identical for 1D, 2D and 3D

problems.
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(a) Mesh generated
by Gambit

(b) Mesh generated
by our method

Figure 3.16: Sphere surface mesh comparison with mesh by Gambit.

Mesh Anglemin Anglemax rmax
by Gambit 44.3o 78.5o 1.65

by our method 36.7o 101.5o 2.46

Table 3.3: Sphere surface mesh quality comparison with Gambit.

One advantage of the Monte Carlo method is that it is unaffected by the di-

mensionality of the problem. For any dimension, the rules for random moves

of particles and acception/rejection of trial moves are the same. Unlike other

meshing methods, moving from one dimensionality to another will not increase

the complexity of the method.

3. The algorithm enables one to produce a surface mesh without meshing the edges

first, and volume mesh without meshing the boundary surfaces first.

As demonstrated in the examples above, during the MC simulation, some nodes

can be pushed very close to boundaries and thus they can be used to mesh

boundaries. However, because of its stochastic nature, it is impossible for MC

simulation to push nodes to exactly coincide with the boundaries. In order to
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get a high quality mesh, an extra step is needed to project these nodes onto the

boundaries after the MC simulation.

In some applications separate edge, surface, and volume meshing would be pre-

ferred. In this case one can mesh a domain in the order of edge meshing, surface

meshing and volume meshing, with each higher-dimensional procedure retriev-

ing the boundary information from the low-dimensional one. Thus, the edge

meshing procedure will use its end vertices as fixed boundary points, the surface

meshing procedure will obtain its boundary nodes from the edge meshing pro-

cedure, and the volume meshing procedure will obtain its boundary nodes from

the surface meshing procedure. Because the algorithm works in almost identi-

cal manner for 1, 2, and 3 dimensions, this approach can be easily implemented

with one basic routine.

4. The method is capable to control mesh element size. By customizing the node

spacing function, the resultant mesh can be uniform, or non-uniform with chang-

ing nodal density.

5. The method is flexible. By customizing energy functions, the method may be

able to generate different meshes, such as anisotropic meshes.

In molecular mechanics, due to the effects of different interaction energies, such

as the bonding energy, bending energy, and stretching energy etc, many different

molecular structures exist. From this prospective, one may be able to mimic

the energy functions found in molecular mechanics for certain crystal structure

and consequently generate similar shape mesh elements.

6. The method can be used directly to generate nodes for mesh free methods [75].
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Since no mesh required for mesh free methods, there is no need to connect

nodes.

7. The MC simulation approach can be used for optimization of an existing mesh.

For an existing mesh, we can use the available element connectivities to define

particle interactions. For example, one node can be considered interacting with

nodes only connected directly with it. With the MC simulation, nodes can be

moved to optimal locations while keeping the element connectivities.

Our method uses a particle simulation approach which is similar to that is used

in the bubble mesh scheme[56]. As mentioned in the bubble mesh scheme, because

of the non-linear characteristics of the force (or energy in our approach) and the

strict geometric constraints imposed on each degree of freedom to keep a particle

on the domain to be meshed, a direct solution to the static force balance, using a

multi-dimensional root-finding method such as the Newton-Raphson method, is not

efficient. Instead, a particle simulation approach is more appropriate.

Due to their similarity, it is worthy to compare our method with the bubble mesh

scheme.

1. The bubble mesh scheme defines a inter-bubble force between a pair of particles,

while our method defines energy for the system. The energy approach is more

flexible.

2. While our method uses a stochastic approach, the bubble mesh scheme uses a

deterministic approach, which is molecular dynamics (MD) simulation. A set of

differential equations of motion is integrated through time and solved iteratively.

A careful design for a combination of physical parameters is needed in order to
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avoid instabilities and slow convergence. Consequently, this approach appears

to be excessively complicated for the problem at hand.

3. During each time step of the bubble mesh scheme, the particles can move out of

the domain to be meshed. In order to confine particles to curves and surfaces,

the bubble mesh scheme has to correct the movement of particles in each time

step. While this correction is possible for parametric curves or surfaces, it might

be difficult for some other geometries, such as the surface of a voxel-based object.

In our method, a particle is always confined to the domain to be meshed during

a random trial move, there is no need to use an extra step to correct particle

movement.

4. Comparing with the bubble mesh scheme, another advantage with the proposed

MC approach is its simplicity of controlling node population. In the bubble

mesh scheme, an additional procedure is used to examine local bubble (node)

population, and add or remove bubbles (nodes) according to the node distances.

With our approach, the number of particles (nodes) can be dynamically adjusted

by adopting GCMC with a fixed system potential, which is desired to be zero.

5. Since for each particle, it interacts directly only with neighbor particles within

a small range. The time complexity of the node placement with Monte Carlo

simulation is linear to the number of nodes N , that is O(N). The time complex-

ity for the whole proposed meshing method will depend on the node connecting

stage. When using a constrained Delaunay triangulation algorithm, the best

time complexity can be O(Nlog(N)). While our method might need more it-

erations to get an equilibrium configuration of particles, it has the same best
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time complexity O(Nlog(N)) as the bubble mesh scheme.

Although theoretically the time complexity for our meshing method can be as

good as others, our method can be less efficient when the number of nodes is small.

The reason is that we need many iterations for the Monte Carlo simulation to reach

a near equilibrium, and the time for the node placement stage can outweigh the node

connection stage. To improve the efficiency of the method, some improvements can

be done:

1. Adopt more efficient Monte Carlo methods.

The MMC method is a simple, inefficient MC method, many more efficient MC

methods are possible to be adopted.

2. Use the Monte Carlo simulation in combination with the advancing front tech-

nique.

In this study, the node placement is done for all the nodes before the nodes

are connected into a mesh. However the node placement can also be used in

combination with the advancing front approach for mesh generation. Instead of

distributing all nodes inside the surface/volume at once, we can choose a small

energy system around one edge/triangle on the front, and optimize the location

for only one node each time with the MC simulation. In this way, the time

complexity is the same as the advancing front method. Some other possibilities

include partitioning a big domain into several smaller domains, and applying

the MC simulation in each domain separately.

3. Use Monte-Carlo approach in combination with molecular dynamics simula-

tions.
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In this case the direction of particle displacement will be determined from the

direction of the cumulative force computed in MD loop and thus, will reduce

the trial-and-error effort of MC algorithm. by a factor of 3. This is because the

direction of particle move is determined by 2 degrees of freedom, which will be

fixed, and only the magnitude of the displacement will be selected at random.

This approach is currently pursued as a further continuation of this study, and

the java-based demonstrations are available at

http://mulphys.mae.wvu.edu/mesh/mc

4. Use parallel meshing.

This method is easy to be parallelized. A domain can be partitioned into

several sub-domains. Each sub-domain will be meshed with the same approach

by keeping boundary points fixed.

An important finding of this study is the realization that dynamic node allocations

and removal can be achieved by using the liquid state ensemble of particles at energy

levels above that of static equilibrium. In other words, modeling the state of liquid

instead of solid provides the possibility for a much more neat alignment of nodes and

uniform filling of complex geometrical objects. This is a natural consequence of the

behavior of fluids to fill out the available spaces, which so far was not exploited in

the area of mesh generation.

3.5 Conclusion

A new approach of mesh generation with Monte Carlo simulation is proposed and

demonstrated. Domains to be discretized are considered as energy systems of inter-
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acting particles. With Monte Carlo simulation, particles, i.e. nodes, are distributed

in optimal locations. Well-shaped mesh can then be constructed by connecting the

nodes. The algorithm is simple and easy to be implemented for both 2D and 3D

domains.

The new concept of liquid state node ensemble was used to generate dynamic node

distributions. In contrast to solid-state static equilibriums used before the liquid-state

dynamic equilibrium enables one to fill out all interiors inside complex boundaries and

achieve the desired node distribution.

The proposed approach is very flexible in addressing different mesh generation

criteria by simple customizing of the energy function, the node spacing function etc.

One reason that Monte-Carlo based mesh generation was not used so far lies in the

seemingly low efficiency of the algorithm related to the random nature of Monte Carlo

statistical sampling procedure. This low efficiency is especially noticeable when the

number of nodes is small and the ratio of node-placement to node connectivity efforts

is relatively large. However, as large mesh sizes become more common this ratio is

decreasing and the method becomes more attractive. In addition to this the efficiency

of the method can be improved considerably using various techniques discussed in the

previous section.

Next chapter we are going to revisit the surface meshing for the voxel-based objects

using this approach.
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Chapter 4

Surface Mesh Generation for

Voxel-Based Objects via Monte

Carlo Simulation

In Chapter 2, we proposed an advancing front meshing method for the surface mesh

generation for voxel-based objects. As seen from the results, one obvious disadvantage

of that method is that the surface features are not preserved in the final meshes.

In this chapter, the problem of triangular surface meshing for voxel-based objects

is revisited by using the energy minimization approach proposed in the previous

chapter. A voxel-based object is treated as an energy system and surface mesh nodes

are treated as interacting particles. By customizing system potential energy function

to reflect surface features, particles can be distributed into desired locations. Feature-

preserved surface mesh can then be constructed by connecting the node set. The

Metropolis Monte-Carlo method is used as the energy minimization tool. In this

study, a surface edge capture method using a simple Laplace solver with incomplete
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Jacobi iterations is also proposed and demonstrated.

4.1 The Methodology

As described in Chapter 2, the voxels of a meshing target are considered as points

organized in a 3D grid. Each surface mesh node will be coincident with one of the

boundary points. Since the boundary point set is usually very large, it is not practical

to include all of them in the final mesh. Instead only a small set of boundary points

will be enough to create a feature preserving surface mesh.

To find such set of boundary points or the locations of the mesh nodes, the mesh

nodes are introduced as interacting atomic particles with a characteristic interaction

potential. A certain number of particles can first be generated from random boundary

voxel locations. These particles are then set to interact with each other, and move

inside the set of boundary voxels. In a stable configuration, the system will have a

minimal energy. Therefore, if the potential energy function of the system is known,

then it is possible to find a minimum-energy configuration of particles by energy

minimization.

4.1.1 Energy Function

Defining a suitable system energy function is the most important and difficult part of

the algorithm. We need an energy function such that when the system energy is at its

minimal, the particles will tend to occupy locations at important surface feature points

such as the edges, sharp corners etc. At the same time the surface mesh connected

through these particles or nodes should be conformal to the original surface within
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certain given error. The next section presents several effective customizations for the

energy function.

4.1.2 Monte-Carlo Method

The version of the Monte-Carlo method used in our study to minimize the system

energy is the Metropolis Monte-Carlo method (MMC), which is described in the

previous chapter.

The MMC method uses random moves to explore the search space, and accepts

or rejects the moves depending on the energy states of the system. In the simulation,

each time a randomly selected particle will move from a boundary voxel to a randomly

selected neighbor boundary voxel. For each voxel in the 3D grid, it has 26 neighbor

voxels. Therefore there are 26 choices for a particle’s trial move in order to move it

to a neighbor voxel. However some of the choices will lead the particle away from the

boundary. In order to keep the particles on the boundary surface, the trial moves to

voxels which are not on the boundary are always rejected.

In the beginning of the simulation, a specified number of particles are randomly

generated at the locations of the boundary voxels. The MMC method is then used

to move the particles around the boundary surface.

In the MC simulation, the same procedure is repeated over and over again until

an equilibrium is found or a chosen number of sweeps is done. A sweep is a series of

N trials, where N is the number of particles in the system.

Since the Monte Carlo method is a statistical method, it is impossible for it to

reach an exact equilibrium within a finite number of sweeps. However, the system

can reach a near equilibrium within hundred of sweeps. In our implementation, a
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fairly good node distribution can be obtained within 500 sweeps.

When calculating the energy change between two states, it is not necessary to

calculate the total system energy, only the change associated with the moving particle

needs to be calculated. And for a typical energy system, a particle doesn’t interact

with all the particles in the system, instead it interacts only with its close particles

within a certain cutoff distance. Therefore, we can only consider neighbor particles

when calculating the energy change. By doing this, computing time can be drastically

reduced, especially when the number of particles in the system is large. For this

purpose, an octree covering the whole voxel grid is divided into many leaves whose

sizes are about the cutoff distance. During a simulation, each particle is indexed into

a leaf of the tree structure, and neighbor particles can be found quickly through the

tree structure.

Another advantage of this locality feature of the algorithm is its easy paralleliza-

tion, which may become an issue when the model is too large to fit onto a single

workstation.

4.1.3 Connecting Node Set into a Surface Mesh

One way of connecting a node set into a surface mesh is to use Delaunay tetrahedriza-

tion. That is after the node distribution with the MC simulation, we can first compute

a 3D Delaunay tetrahedrization from the node set to get a volume mesh. This will

create a convex hull of the node set. For a convex object, the boundary mesh of this

volume mesh will be the surface mesh of the original object. But for an object with

concave surface features, some part of the volume mesh needs to be removed in order

to extract the original surface. This can be done by checking the Hausdorff distance
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from each triangle to the boundary point set of voxel-based object.

Hausdorff distance is defined as the maximum of the minimum distances from one

set of points to another set of points. The following equation defines the Hausdorff

distance h from the point set E to the point set S :

h(E, S) = max
e∈E

min
s∈S

‖ e− s ‖ (4.1)

For a surface mesh all the edges should be conformal to the surface within a certain

error. To get the surface mesh of a concave object, we need to check the Hausdorff

distance from each triangle to the boundary of the object. If the distance is within a

certain allowed range, the triangle is considered as part of the surface mesh, otherwise

it is removed. In the end, only triangles conformal to the original surface will remain.

And this will constitute the final surface mesh. The procedure is like sculpting.

Another way of connecting nodes is to use the advancing front approach. Since

nodes are already distributed into optimal locations, it will be easy to connect the

nodes into mesh one by one. Each time when forming a new triangle, try to select

an optimal node and make the new triangle conformal to the boundary surface of the

object.

4.2 Resolving Surface Features

4.2.1 Energy Function for Simple Convex Objects

For simple convex objects such as sphere, cylinder and rectangular prism, a simple

energy function as the following is enough for a good surface meshing.
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Object Anglemax Anglemin AspectRatiomax
Rect. prism 112.6o 24.1o 3.00
Cylinder 114.8o 27.6o 3.13
Sphere 110.3o 27.0o 2.97

Table 4.1: Characteristics of example meshes.

ϕ =
∑

i

∑

j>i

φ(rij)

φ(rij) =

(

c

rij

)2

(4.2)

where rij is the distance between the particles i and j, and c is a constant. To make

the change of φ(rij) be sensitive to rij, one can choose a big c, such as greater than

the cutoff distance for particle interaction. The above pair potential decreases with

the increase of the distance between the particles.

Figure 4.1 shows the triangular meshes connected through nodes (particles) dis-

tributed with the Monte Carlo method on the surfaces of a rectangular prism, a sphere

and a cylinder after 500 sweeps. The number of nodes on each surface is 300.

The meshes are in fairly good quality. The maximum angle, minimum angle and

the maximum aspect ratio are listed in table 4.1.

We can see from the pictures that the important surface features such as corners

and edges are preserved. In fact, the most important points such as corners can

usually be located no matter how many particles are put into the system. In an

extreme example, we can reconstruct the surface of the rectangular prism with only

eight particles, which are distributed by Monte Carlo simulation right at the eight
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Figure 4.1: Surface meshing for simple convex objects.
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corners of the object.

Figure 4.2 shows surface meshes of the rectangular prism constructed with 8, 20,

and 500 particles. This implies that multi-resolution representations can be con-

structed for the same object, and a volumetric dataset can be simplified with the

important feature points preserved.

However for concave objects, the energy function (4.2) is no longer good. With this

function, the particles won’t be able to locate edges or corners of surface cavities. To

address this problem, we need to detect edges and corners, and reflect these features

in the system energy function.

4.2.2 Capturing Edges with Incomplete Laplace Iterator

Consider a 3D scalar field such as temperature, electric potential etc, given on a grid

of voxels and governed by the Laplace equation:

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0 (4.3)

with a Dirichlet boundary condition u = 0. And the initial values are 1 for all

voxels occupied by the object and 0 for all voxels representing the void space. This

equation can be discretized using central differencing, and then solved numerically

with simple Jacobi iterations:

un+1i,j,k =
∑

q={−1,1}

uni+q,j,k + uni,j+q,k + uni,j,k+q
6

(4.4)

Please note we are not aiming to obtain the equilibrium solution. The purpose is

to produce two iso-surfaces, which can be used to identify the edges. Hence, after a
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Figure 4.2: Multi-resolution meshes of the same object.
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couple of Jacobi iterations, the ”temperature” u for voxels on the object surface will

change from 1 to some lower values. Based on the maximum (umax) and minimum

(umin) values on the surface, we pick two isotemperature surfaces whose temperatures

are umax+ε1 and umin−ε2, where ε1 and ε2 are some small positive numbers chosen to

satisfy umax < umax+ε1 < 1.0 and 0.0 < umin−ε2 < umin. The isotemperature surface

with the bigger temperature will be inside of the object , and the isotemperature

surface with the smaller temperature will be outside of the object. The shapes of the

isotemperature surfaces are similar to the shape of the voxel-based object but tend

to smooth out the edges and corners.

For a convex edge, the shortest distance h1 from a point on the edge to the outside

isotemperature surface is smaller than that from a point on a flat place; while the

shortest distance h2 from a point on the edge to the inside isotemperature surface

is larger than that from a point on a flat place. For a concave edge, the opposite is

true, i.e. shortest distance h1 from a point on the edge to the outside isotemperature

surface is larger than that from a point on a flat place; while the shortest distance

h2 from a point on the edge to the inside isotemperature surface is smaller than

that from a point on a flat place. As can be seen the asymmetry between h1 an h2

will naturally peak around edges, corners and other surface derivative singularities.

This is a natural consequences of Laplace operator producing a smooth solution,

which will be in contrast with any irregularities of the original surface. Based on

this observation, we can customize the energy function, so that the edge locations are

favored for particle distribution:
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ϕ =
∑

i

∑

j>i

φ(rij) +
∑

i

φE

φ(rij) =

(

c1
rij

)2

φE = −c2
(h1 + h2)

2

h1h2
(4.5)

The term φE is a negative potential caused by edge effects. For a point on an edge,

this term is smaller than that a point on a flat place. To minimize system energy, the

particles will tend to move to locations on edges.

Figure 4.3 shows particle distribution on the surfaces of an object, which is a

cylinder overlaying a rectangular prism, and an U-shape object. The first object has

4 concave edges which are the intersections of the cylinder and the rectangular prism.

The second object has 2 concave edges. As we can see, beside the convex edges and

convex corners, concave edges are also nicely detected by the particles. However the

two end points of a concave edge are not captured. The reason is that these corners

represent saddle points on the surface, which have both concave and convex features,

and this confuses the Laplace detection scheme. However, the problem can be solved

using another technique, as discussed below.

4.2.3 Capturing corners with corner detection

Although convex corners are well captured with the above energy function, saddle

points can still be missed. We can address this problem by first detecting corners and

then customizing the energy function so that corners are favorite places for particles
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Figure 4.3: Node distributions on concave object surfaces with edges located.

to move to.

A corner detection algorithm in [67] can be used for this purpose. In this case a

matrix C is constructed for each voxel point with the gradients Ix, Iy and Iz, which

are computed with the central differencing scheme.

C =
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(4.6)

where the summations are taken over a 3 × 3 × 3 neighborhood of the voxel. To
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Figure 4.4: Corner voxels are detected with a corner detection algorithm.

detect corners, we first solve for the eigenvalues λ1, λ2 and λ3 of the symmetric

matrix C. Assume λ3 is the smallest. If λ3 is greater than a threshold, than the voxel

is considered as a corner.

This procedure can lead to more than one voxel around a corner being marked. 4.4

shows the corner detection results with a threshold of 0.4. All real corner locations are

detected. Because of the discretized voxel-based modeling approach, some unwanted

places are also marked as corners.

Now, to make corners favorable in node distribution, we should customize the

energy function such that the system potential will decrease when a node is moving

83



closer to a corner. As shown in the following, an negative potential term φC is added

to achieve this effect.

ϕ =
∑

i

∑

j>i

φ(rij) +
∑

i

φE +
∑

i

φC

φC = −c3
∑

k

(
λ3
hC

)k (4.7)

where the term φC represents a negative potential caused by corner voxels. For each

particle i we search in a certain cutoff distance for detected corner voxels and thus

find out the distance (hC)k from the particle to a corner voxel k. Factor λ3 represents

the corner strength of a corner voxel. The greater the λ3, the more attraction force

from that voxel, and as a result of this, particles will tend to move to corner locations

to achieve energy minimization.

Figure 4.5 shows the resulting surface mesh of concave objects after adding the

corner potential term. As shown on the pictures, the concave corners are not exactly

located, but very close with only some small error. Also the surface meshes are in

fairly good quality. The smallest angle is 23.2o, the largest angle is 116.6o, and the

largest aspect ratio is 3.42.

4.3 Discussion

The results of this study show that the choice of the energy function is important.

The energy functions proposed here produce fairly good results for a large class of

shapes, including convex and concave objects. For more complex objects such as
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Figure 4.5: Surface meshing for concave objects.

those with arbitrary varying surface curvatures, more testing may need to be done.

Generally more nodes need to be located in the regions of high curvature than in

those with lower curvature. The methods proposed above will naturally create such

node distributions in most cases. However, one may eventually introduce a mesh size

parameter, which can be used to control the node distributions and be adaptive to the

surface curvature. One way to introduce the mesh size parameter σ into the energy

function is to use Lennard-Jones 12-6 potential as the pair potential:

φ(r) = 4ε
[

(
σ

r
)12 − (

σ

r
)6
]

(4.8)

In order to make mesh size be adaptive to the surface curvature, curvature needs to
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be evaluated at very place. This can be done by applying the least square fit to a local

set of points on a surface patch and then evaluating curvature of the surface patch

(see Chapter 2). However, this can make the Monte Carlo approach less efficient.

Another choice is to embed into the energy function the Hausdorff distance from

the edge of a pair of particles to the surface of the voxel-based object. Only particle

pairs whose Hausdorff distances are within a certain small range are allowed to interact

with each other. By including Hausdorff distance into the pair potential, we actually

take into account of surface curvature indirectly. For places with higher curvature,

particles will tend to be more concentrated since they have to be closer before there

are interactions.

4.4 Conclusion

The meshing approach via Monte Carlo simulation proposed in Chapter 3 is applied to

surface meshing of voxel-based objects. Its simplicity and versatility is demonstrated

in this study. The generated surface meshes preserve important surface features such

as edges and sharp corners as present in the volumetric model. With suitable energy

function, it is possible to generate meshes which are adaptive to surface curvatures.

This new meshing approach is flexible, and can be used for reduction of volumetric

datasets and constructing of mulit-resolution representions of the underlying objects.

The same meshing approach via Monte Carlo simulation can be used in an identical

way for volume meshing. For voxel-based objects, it is trivial to judge whether a

particle is inside the volume or not, therefore it is easy to keep particles inside the

volume while displacing particles. By taking surface mesh nodes as fixed particles,

and placing nodes inside the volume with Monte Carlo simulation, a set of well spaced
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nodes can be distributed. After that, volume mesh can be generated by connecting

the set of nodes.

A new approach of capturing surface edges is proposed and demonstrated. The

approach is based on a Laplace solver with incomplete Jacobi iterations, and as such

is very simple and efficient.
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Chapter 5

User Interface for Fuel-Cell

Simulation and Voxel-Based

Modeling

This chapter describes a graphical user interface (GUI) which is developed for a fuel-

cell simulator program and used in simulations of large fuel-cell stacks. Built with

Java technology, the GUI enables one to setup, run and monitor simulations remotely

through secure shell (SSH2) connections. The GUI can be either run as a normal local

application or invoked from a web-browser using Java webstart technology.

A voxel-based 3D geometrical modeling module is built along with the GUI. The

voxel-based objects used in previous chapters are all created by this modeling mod-

ule. The geometric design module is implemented using 3D voxel sculpting method-

ology, which is prototyped after 2D pixel graphics systems. The developed approach

was primarily aimed at the design of complex multi-component engineering systems.

However, the flexibility of voxel-based geometry representation enables one to use this
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technique for both 3D geometric design and visualization of volume data. Examples

of both applications are presented, with the focus on fuel-cell stack simulations.

5.1 Introduction

Distributed memory computer platforms, such as Beowulf clusters are increasingly

used for complex scientific simulations of physical processes and engineering systems.

Fuel cells offer a way of using the capabilities of distributed processing for efficient

simulation of single fuel cells and fuel cell stacks. The modularity of fuel-cell stacks

can be exploited on computer clusters by running the simulation of each fuel cell on a

separate processor. In earlier work the results of simulations of fuel cell stacks using

continuum solvers and distributed simulation techniques was reported in [11]. In this

study we focus on the issues of efficient simulation control on remote clusters and

modeling of a single fuel cell as a multi-component system.

Until recently it was common to consider two basic geometries for fuel-cells: tubu-

lar and planar. Currently we witness a proliferation of various designs aimed at

increased efficiency and power density. But even in the domain of simple planar de-

signs there are multitudes of configurations of different components, such as anode,

cathode, electrolyte, air/fuel channels, interconnect, separator plates, seals, current

collectors, etc. Each component is typically represented by it’s own physical model.

Many geometrical designs are employed, resulting in co-flow, counter-flow and cross-

flow configurations [51]. Consequently, there are two issues that arise in the design of

these complex multi-component, multi-physics systems: geometric design and phys-

ical modeling. This chapter gives a brief outline of the basic principles of general

physical modeling used in our fuel-cell simulations, but is primarily concerned with
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geometric design of a single fuel cell. In particular, for typical fuel cells configurations

we found that the design can be simplified by adopting a relatively straightforward

method of voxel sculpting [13, 71, 25].

Another aspect of simulating fuel cell stacks concerns simulation control on a

remote cluster. The simulation solver has to be specifically implemented for execu-

tion on a distributed memory system, using domain decomposition techniques and

message-passing interfaces (MPI, PVM). After such solver has been implemented,

to perform a simulation one has to go through the stages of setup, execution, data

processing and visualization. All the stages face challenges associated with the dis-

tributed nature of computations, especially when geometrically complex 3D systems

are involved. The task becomes extra difficult when the cluster has to be accessed

through the Internet from a remote workstation. In this case the user of the cluster

would greatly benefit from an accessibility to a graphical user interface (GUI), which

could provide for remote control of the simulation. In this study we developed such a

GUI, and used it in simulations of fuel-cell stacks on Beowulf clusters. The GUI per-

formed functions of (1) simulation setup, including complex 3D geometric design, (2)

monitoring and runtime control of the simulation, and (3) distributed data sampling

and visualization.

5.2 Method

5.2.1 Client - Server Model

In order to effectively monitor and control the execution of a parallel application

running on a remote cluster we use a client-server model (Fig.5.1). In this approach
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Figure 5.1: Simulation setup with a remote GUI control based on a client-server
model.

a client is run on a local workstation to connect a server process running on a re-

mote cluster. The client process enables the user to setup and remotely control the

simulation, as well as retrieve and visualize data samples.

Through the server process, the client can control the execution of a parallel solver

running on the cluster. In the simplest version the information can be exchanged

through files. Files containing user requests are created by the client and periodically

sent to the server, and server side information is periodically written into files and

read by the client.

5.2.2 Modeling Framework

Client and server exchange information on parameters, variables and domains, which

represent generic data types used by most continuum and discrete dynamics solvers.
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Each parameter stores a single value attributed to the given model or to the

simulation as a whole. Examples of parameters are total current through the system,

ambient temperature, number of processors, data sampling interval, etc.

Variables are represented by a set of multi-dimensional values (scalars, vectors,

etc.) with each element of the set attributed to one element of the domain. For

example, distributions of temperature, current, chemical species, etc.

Domain is a connected region of space assigned to a specific physical model. For

the purpose of numerical integration each domain is discretized by decomposing it

into smaller and geometrically simple regions (elements), where physical laws are

considered to be homogeneous and isotropic. The group of connected elements rep-

resents a grid, which can be of a structured type (global connectivity information)

or unstructured type (local connectivity), which is also called mesh. Thus, a domain

consists of a mesh, a set of variables and the solution procedure. The introduction of

the domain data class provides the basis for muti-physics simulations, where different

physical models can be assigned to the different regions of space.

5.2.3 Graphical User Interface

The graphical user interface (GUI) is implemented using Java Swing with the fun-

tionalities of a secure shell (SSH2) client. The purpose of the local client process is

to initiate the following actions through the user interface:

1. Problem setup on a local workstation.

2. Transfer of the data and source-code files to the remote cluster.

3. Building of the application executables and input files on the cluster.
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4. Submitting the remote application for execution.

5. Monitoring of the remote run.

6. Sampling of data from cluster nodes.

7. Terminating the run.

8. Collecting the data.

9. Visualizing

After the physical model has been setup the client can initiate the transfer of

necessary files to the cluster and schedule the simulation for execution. Once started,

the simulation can be monitored by periodic data sampling from the cluster nodes

and displaying them in numerical or graphical format. The data sampling strategy is

set from the considerations of bandwidth and problem size. One dimensional (vector)

data can be displayed as 2D plots.

Simulation parameters represent the input data of the problem, which are not af-

fected by the simulation, such as initial/boundary conditions, number of processors,

the duration of the run etc. Almost all the simulation parameters can be changed

dynamically during program execution. This enables one to change simulation con-

ditions in real-time.

Table 5.1 displays the list of some parameters used to control the sampling sizes

and frequencies as well as several physical parameters of a fuel-cell model. Some fields

in the parameter table can be set by the user, and others are fixed. Each parameter

is identified by several properties. Scope determines if the parameter represents a
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variable, defined on the nodes of computational mesh, such as temperature or con-

centration, or a single value valid for all the simulation, such as total current or the

ambient temperature. Parameters which belong to parameter-scope are not modified

by the solver, and can be changed by the user during the simulation. Parameters of

the variable-scope are subdivided into control variables and variables. Variables are

modified by the solver during the run, and thus can only be set as initial parameters

of the simulation, whereas the control variables can be set by the user during the run.

The type of the parameter identifies it’s numerical representation as an integer or a

real number. The parameter dimension identifies it as a scalar (0), a vector (1), or

a general n-rank tensor (n). The value and monitor fields are set by the user, where

the latter indicates if the parameter’s values will be monitored during the run.

It should be noted that the flexibility of setting up the control parameters enables

one not only to start/stop the execution but also to change model parameters during

the simulation, i.e. ambient temperature, total current, etc.

In addition to providing visualization capabilities, remote data monitoring, and

control of the simulation, the interface essentially hides from the user the intricacies of

the underlying operating system running on the cluster. Some of the interface menu

functions can in fact be developer-defined. Thus, it is possible for the code developer

to assign different Unix-type commands for the user to execute on the cluster without

requiring proficiency with Unix. These commands can be changed or implemented

without the need to recompile the interface executable itself.
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Name Scope Type Dim Value Monitor
NP parameter int 0 10 false

MonitorPlane parameter int 0 10 false
TotCurrent parameter real 0 600.0 false

TemperatureAmb parameter real 0 1250.0 false
StopTime parameter real 0 9000.0 false

PrintCntStep parameter int 0 1e9 false
PrintTimeStep parameter real 0 100.0 false
CathodeInletVel parameter real 0 1.214 false
AnodeInletVel parameter real 0 0.407 false
CathodeInletT parameter real 0 1073.0 false
AnodeInletT parameter real 0 1073.0 false
TimeStep controlvar real 0 0.0 false

TemperaturePEN variable real 0 1200.0 true
TemperatureAir variable real 0 1200.0 true
TemperatureFuel variable real 0 1200.0 true
TemperatureSep variable real 0 1200.0 true
TemperatureTop variable real 0 1200.0 true
CurrentDensity variable real 0 0.0 true

Table 5.1: Simulation control parameters for a fuel-cell application

5.2.4 Voxel-Based Geometric Modeling

While vector graphics still dominates engineering CAD applications, voxel-based vol-

ume graphics are getting more attention with the advancement in hardware, espe-

cially cheaper and larger memories. Vector graphics describe geometrical shapes using

mathematical expressions. This approach is simple, flexible, and good enough at rep-

resenting simple, well defined shapes. However, it has some drawbacks, such as the

inability to represent well 3D objects of complex geometry. On the other hand, vol-

ume graphics, which uses pixel-like volume elements - voxels, has the capability to

easily define arbitrary shapes, such as biological and geographical structures.

Built along with the GUI is a voxel-based 3D modeling and rendering model. The
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modeling methodology is a 3D counterpart of 2D pixel graphics. Complex 3D shapes

can be rendered in different modes, such as points, wireframes and surfaces. The

package is written in Java language and used in simulations of fuel cell stacks on

Beowulf clusters.

One disadvantage to voxel-based approach is seemingly inefficient usage of space,

which has to be uniformly filled by the voxels. However, the very uniformity of

voxel distribution opens the possibility to use efficient compression algorithms. With

today’s cheaper and larger memories, it is possible to use the simple and robust voxle

graphics techniques for engineering design and scientific applications that involve

dynamic 3D geometries and complex scene transformations. In applications to fuel

cells design the approach offers a simple technique for geometric design of these multi-

component systems.

3D Drawing

The volume graphics drawing methodology used is a direct extension of 2D graphics

packages, such as Xpaint. While a 2D drawing function operates on pixels in a plane,

a 3D drawing function needs to operate on voxels in a three dimensional space. A

simple technique to extend 2D pixel-drawing to 3D is to apply an extrusion operation

in the third direction. This extension is relatively straightforward, and can be easily

implemented on top of existing 2D drawing routines.

In essence, each 2D drawing tool can have its 3D counterpart, with a third spatial

dimension added to the tool. For example, the drawing pen can be extended into

3D as a ball with a certain radius selected by users. And in simple cases, many

objects such as cubes and cylinders, can be modeled by simply extruding images
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(a) 2D drawing plane (b) 3D representation

Figure 5.2: Voxel sculpting of 3D shapes.

drawn on a 2D plane into the third dimension, analogously to the operation done

in conventional CAD applications. This approach is adequate for the purposes of

designing many engineering systems, and was used in simulations of fuel cell stacks

on Beowulf clusters.

A more general approach such as voxel-sculpting [25, 71] can be pursued with

introduction of 3D sculpting tools. Figure 5.2 shows the example of voxel-based

sculpting of arbitrary 3D shapes.

To navigate in the drawing cube, it is important to have the capability of identi-

fying the position and orientation. In a simplified case 3D Cartesian coordinates are

enough for this purpose. And the drawing planes can be in 3 different orientations

with respect to Cartesian coordinates.

Introducing 3D controls can be as simple as changing the position and orientation

of the drawing plane. However, to alleviate the frustration of dealing with hundreds
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of drawing planes in case of high-resolution 3D scenes, more advanced 3D drawing

tools and motions controls should be introduced. Since there are three parameters

required for tool-positioning operation, it can be done, using only mouse controls. For

example, one can use two mouse-position coordinates to set the direction vector, and

mouse-wheel to move the tool along that direction. More sophisticated 3D navigation

tools can also be developed using prototype controls of a flight-simulator application.

3D Surface Rendering

3D visualization of the drawn scene is the key to successful drawing capabilities.

An almost trivial feature in 2D graphics, visualization and surface rendering become

the major efforts in 3D. For most purposes of engineering design a simple wireframe

rendering mode is usually enough. This can be accomplished in a number of ways,

and in a manner consistent with the resolution of the image, i.e, the ratio of the

image size to the grid-cell size. The advantages of wireframe rendering are that

it is relatively simple to handle algorithmically, and sufficiently fast to work well

even without accelerated graphics. It also provides one with the depth-perspective

(Fig.5.3).

Three different wireframe rendering modes were implemented in the current sys-

tem. The first mode is based on a grid-type wireframe, where each voxel is represented

as a cube with 12 edges. Only the surface edges of the object are actually rendered

(Fig.5.3(a)). This wireframe type offers the most detailed rendering mode. However,

it introduces unnecessary edginess into the surface carried over from the three di-

mensional voxel-grid. In addition to this the amount of detail is excessive for many

high-resolution scenes.
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The second wireframe type is based on a relatively versatile and fast method of

constructing cutting-plane contours. The number of planes, their orientations and

separations can be set by the user, thus, adjusting the rendering to high vs. low

resolution scenes (Fig.5.3(b),5.3(c)).

The third rendering mode is based on surface mesh representation. In this rep-

resentation the surface mesh preserves only the characteristic features of the surface

and skips the non-essential information on the 3 directions of the underlying voxel-

grid. There are different ways to extract such mesh representation from the voxel

data. For example, the marching cube algorithm [45] can be used for this purpose.

In this thesis, two different approaches for surface meshing from voxel data have

been proposed in the previous chapters. It should be noted that such polygon surface

mesh representation is more compact than the original voxel-representation, which is

important when the graphical information should be transferred over slow networks.

5.3 Simulation of fuel cell stacks

The methodology of integrated simulation setup and control based on voxel-graphics

and Java-technology was applied to simulations of fuel cell stacks on Beowulf clusters.

In this case the geometric design of a fuel cell is done on a local workstation by means

of voxel-based graphics tools implemented in Java. The geometric information and

the setup parameters are then transferred to the cluster. After the simulation is

started it can be monitored from on the workstation by periodically retrieving data

samples and displaying them in graphics format.

Figure 5.2 shows the example of voxel-based sculpting of arbitrary 3D shapes.

Application of this voxel-based sculpting to a cross-flow fuel-cell geometry is shown
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(a) Grid-wireframe

(b) 2-directional contour-
wireframe

(c) 3-directional contour-
wireframe

Figure 5.3: Different wireframe rendering modes.
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(a) Wireframe representation (b) Surface representation

Figure 5.4: Geometric design of fuel cells: surface representations.

in Fig.5.4. The geometry can be displayed either in wireframe representation or using

surface rendering.

A screen-shot of the GUI is shown in Fig.5.5 where the main components, such as

the main panel, the control panel, the 3D view panel, the 2D drawing pane, and the

3D wireframe view are displayed. Figure 5.6 shows the screenshot of the monitoring

window where the transient temperature retrieved from the remote cluster nodes

are displayed in a graphical format. Considering small time-steps that are required

for electrical and chemical sub-models of the solver, such simulation may take large

computer resources in terms of time and memory. Thus it is important to realize a

flexible system of simulation control which enables one to adjust parameters during

the run. Thus, in Fig.5.6 thermal responses to changes in total current are observed.

It should also be noted that large fuel cell stacks may exhibit unexpected temperature
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Figure 5.5: GUI control and monitoring windows: Control panel (left), 3D view panel
(Middle bottom), 2D drawing pane (Right top), 3D wireframe view (Right bottom),
Main panel, (in the back)
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Figure 5.6: Remote monitoring of transient temperatures.

and voltage variations, depending on the performance of separate cells. The developed

system can be effectively used to simulate various stack operation scenarios, where

the failure of one of several cells may affect the overall stack performance.

This system of remote setup and monitoring was successfully applied to the sim-

ulation of large stacks of up to 40 solid oxide fuel cells [11, 9, 10]. Figure 5.7 shows

sample distributions of temperature and voltage within a 20-cell stack. This simula-

tion was done under uniform stack conditions with respect to fuel and oxidizer supply.

However, non-uniform variations of temperature and voltage can clearly be observed

for the bottom and top group of cells in the stack.
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(a) Temperature

(b) Voltage

Figure 5.7: Distributions of physical parameters within the stack.
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5.4 Conclusions

An approach to 3D graphics based on voxel-representation was successfully applied to

the setup of typical fuel-cell geometries. The approach offers considerable simplicity

and flexibility. It also enables one to combine geometric design and data visualization

in a single framework.

Making use of Java-technology and a client-server model provides tools for the

design of web-based user interfaces for remote control and monitoring of scientific

and engineering simulations on Beowulf clusters.

Because of inherent modularity of fuel-cell stacks these systems can be effectively

simulated on distributed memory platforms, such as workstation clusters. These

simulations can benefit from remote interfaces with graphical capabilities, such as the

one developed in this study. An extra advantage of the interface is the flexible control

of the simulation, which provides the possibility of playing out different operation

scenarios.

Based on the results of this study we conclude that voxel-graphics is a promising

technique for applications in grid and cluster computing, related to 3D geometric

design and data visualization.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

1. A new approach of unstructured mesh generation based on Monte-Carlo sim-

ulation of a particle ensemble in dynamic equilibrium is proposed and demon-

strated. In contrast to the earlier approaches the method uses the concept of

a liquid state of matter to produce uniform node distributions inside complex

domains. The correct number of nodes is automatically selected to satisfy the

condition of positive system energy. This approach works for general complex

geometries, and in particular, it was applied in this study to meshing of voxel-

based objects. Besides the advantages we discussed in Chapter 3, it has many

potential applications, such as:

(a) Mesh optimization for quality improvement.

For an existing mesh, we can use the available element connectivities to

define particle interactions. For example, one node can be considered in-

teracting with nodes only connected directly with it. With the MC simu-
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lation, nodes can be moved to optimal locations while keeping the element

connectivities.

(b) Moving mesh generation.

During the Monte Carlo simulation, particles (or nodes) are moved towards

more optimal locations after each iteration. For a moving domain, we

can always start from the previous node configuration, and get the next

configuration with a few additional iterations.

To improve efficiency, particles which are already well distributed and far

away from the moving interface can be fixed. And in the region near the

moving interface, particles need to be constantly displaced, inserted or

removed.

(c) Anisotropic mesh generation.

The shape of mesh elements is directly related to the energy function. By

customizing energy functions, we are able to control the shape of mesh

elements.

The same approach can be used as mesh optimization method for quality

improvement of an existing mesh. For an existing mesh, since we know

the node connectivity already, particle interaction can be restricted among

interconnected nodes. Because of this, the efficiency would be much better

than when it is used for mesh generation.

(d) Node generation for mesh free methods[75].

In meshless methods [41], problem domains are represented by a set of

scattered nodes instead of meshes or elements. And thus comparing to

mesh based numerical methods such as FEM, FVM, meshless methods can
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eliminate the need for mesh generation. Instead, Node generation is needed

for the preprocessing of meshless methods. However, the node generation

problem has not been paid enough attention to, and there are very few

dedicated node generation methods[34, 18, 38]. Ironically, most people

obtain node sets for meshless methods from meshes which are generated

using mesh generators. With our approach, nodes can be generated directly

for mesh free methods. Since no mesh required for mesh free methods,

there is no need to connect the nodes after node placement.

2. A new heuristic algorithm to generate triangulated surface meshes on voxel-

based objects is proposed and implemented. This approach uses an advancing

front approach and enables to generate voxel-grid independent surface repre-

sentations.

3. A new approach of capturing important surface features, such as edges, corners

and other irregularities was proposed and demonstrated. The approach is based

on a Laplace solver with incomplete Jacobi iterations and is simple and time-

efficient.

4. A graphical user interface (GUI) capable of complex geometric design and re-

mote simulation control was implemented. The GUI was used in simulations of

large fuel-cell stacks.

6.2 Future Work

It is appropriate to conduct more study on the potential applications of the new mesh-

ing approach, such as its use for mesh optimization, on energy function customization
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for generation of desired mesh shapes, generation of anisotropic and moving meshes.

More study needs to be done to increase the mesh generation efficiency. One

improvement can be achieved by using a combined molecular-dynamics - Monte-Carlo

approach, where the direction of node displacement will no longer be determined by a

random choice but rather by a direction of the cumulative force acting on the particle.

This study is being currently pursued as a continuation of this work1.

Other possible solutions include using smarter Monte Carlo methods, as well as

simulation in small energy systems with the advancing front technique, using parallel

computing and grid computing technologies.

1http://mulphys.mae.wvu.edu/mesh/mc
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